US20210283108A1 - Method for treating neurodegenerative diseases - Google Patents
Method for treating neurodegenerative diseases Download PDFInfo
- Publication number
- US20210283108A1 US20210283108A1 US17/186,435 US202117186435A US2021283108A1 US 20210283108 A1 US20210283108 A1 US 20210283108A1 US 202117186435 A US202117186435 A US 202117186435A US 2021283108 A1 US2021283108 A1 US 2021283108A1
- Authority
- US
- United States
- Prior art keywords
- animals
- disease
- zln005
- als
- microglia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000004770 neurodegeneration Effects 0.000 title claims abstract description 44
- 208000015122 neurodegenerative disease Diseases 0.000 title claims abstract description 43
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims abstract description 95
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 43
- 208000023105 Huntington disease Diseases 0.000 claims abstract description 26
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 23
- 201000002832 Lewy body dementia Diseases 0.000 claims abstract description 14
- 208000005264 motor neuron disease Diseases 0.000 claims abstract description 14
- 230000007850 degeneration Effects 0.000 claims abstract description 12
- 208000016192 Demyelinating disease Diseases 0.000 claims abstract description 11
- 206010067889 Dementia with Lewy bodies Diseases 0.000 claims abstract description 10
- 208000026072 Motor neurone disease Diseases 0.000 claims abstract description 4
- LQUNNCQSFFKSSK-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-1h-benzimidazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NC2=CC=CC=C2N1 LQUNNCQSFFKSSK-UHFFFAOYSA-N 0.000 claims description 130
- 208000024891 symptom Diseases 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 25
- 230000004083 survival effect Effects 0.000 claims description 22
- 206010061296 Motor dysfunction Diseases 0.000 claims description 14
- 230000006741 behavioral dysfunction Effects 0.000 claims description 11
- 238000007910 systemic administration Methods 0.000 claims description 9
- 230000007659 motor function Effects 0.000 claims description 7
- 208000010877 cognitive disease Diseases 0.000 claims description 5
- 230000003920 cognitive function Effects 0.000 claims description 3
- 208000028698 Cognitive impairment Diseases 0.000 claims description 2
- 230000006999 cognitive decline Effects 0.000 claims description 2
- 230000003997 social interaction Effects 0.000 claims description 2
- 101150104557 Ppargc1a gene Proteins 0.000 abstract description 83
- 239000012190 activator Substances 0.000 abstract description 35
- IJWPAFMIFNSIGD-UHFFFAOYSA-N 4-[3-(3-fluorophenyl)-5,5-dimethyl-4-oxofuran-2-yl]benzenesulfonamide Chemical compound O=C1C(C)(C)OC(C=2C=CC(=CC=2)S(N)(=O)=O)=C1C1=CC=CC(F)=C1 IJWPAFMIFNSIGD-UHFFFAOYSA-N 0.000 abstract description 5
- 241001465754 Metazoa Species 0.000 description 206
- 210000000274 microglia Anatomy 0.000 description 96
- 210000004556 brain Anatomy 0.000 description 58
- 230000009261 transgenic effect Effects 0.000 description 58
- 241000699670 Mus sp. Species 0.000 description 55
- 229920000609 methyl cellulose Polymers 0.000 description 46
- 239000001923 methylcellulose Substances 0.000 description 46
- 235000010981 methylcellulose Nutrition 0.000 description 46
- PLRACCBDVIHHLZ-UHFFFAOYSA-N 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Chemical compound C1N(C)CCC(C=2C=CC=CC=2)=C1 PLRACCBDVIHHLZ-UHFFFAOYSA-N 0.000 description 43
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 39
- 201000010099 disease Diseases 0.000 description 37
- 230000014509 gene expression Effects 0.000 description 31
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 28
- 229960001052 streptozocin Drugs 0.000 description 28
- 210000003067 perivascular macrophage Anatomy 0.000 description 27
- 238000007619 statistical method Methods 0.000 description 22
- 238000012549 training Methods 0.000 description 20
- 230000001404 mediated effect Effects 0.000 description 18
- 238000011830 transgenic mouse model Methods 0.000 description 18
- 241000699660 Mus musculus Species 0.000 description 17
- 238000012217 deletion Methods 0.000 description 17
- 230000037430 deletion Effects 0.000 description 17
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 16
- 230000003959 neuroinflammation Effects 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 14
- 206010061218 Inflammation Diseases 0.000 description 13
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 13
- 210000005013 brain tissue Anatomy 0.000 description 13
- 230000003247 decreasing effect Effects 0.000 description 13
- 230000004054 inflammatory process Effects 0.000 description 13
- 230000033001 locomotion Effects 0.000 description 13
- 230000006433 tumor necrosis factor production Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000000684 flow cytometry Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000011870 unpaired t-test Methods 0.000 description 11
- 230000004913 activation Effects 0.000 description 10
- 238000010171 animal model Methods 0.000 description 10
- 230000002757 inflammatory effect Effects 0.000 description 10
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 210000001616 monocyte Anatomy 0.000 description 10
- 239000008194 pharmaceutical composition Substances 0.000 description 10
- 238000000540 analysis of variance Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 210000002865 immune cell Anatomy 0.000 description 9
- 230000000750 progressive effect Effects 0.000 description 9
- QUTFFEUUGHUPQC-ILWYWAAHSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]hexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)NC1=CC=C([N+]([O-])=O)C2=NON=C12 QUTFFEUUGHUPQC-ILWYWAAHSA-N 0.000 description 8
- 102000029816 Collagenase Human genes 0.000 description 8
- 108060005980 Collagenase Proteins 0.000 description 8
- 229920000742 Cotton Polymers 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 210000003169 central nervous system Anatomy 0.000 description 8
- 229960002424 collagenase Drugs 0.000 description 8
- 230000002025 microglial effect Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 7
- 230000034994 death Effects 0.000 description 7
- 230000003818 metabolic dysfunction Effects 0.000 description 7
- 201000006417 multiple sclerosis Diseases 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 102100026882 Alpha-synuclein Human genes 0.000 description 6
- 101150062345 CX3CR1 gene Proteins 0.000 description 6
- 101710089543 Nitric oxide synthase, inducible Proteins 0.000 description 6
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 6
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000003974 emollient agent Substances 0.000 description 6
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 230000004973 motor coordination Effects 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- 208000000044 Amnesia Diseases 0.000 description 5
- 206010012289 Dementia Diseases 0.000 description 5
- 206010061818 Disease progression Diseases 0.000 description 5
- 102000042092 Glucose transporter family Human genes 0.000 description 5
- 108091052347 Glucose transporter family Proteins 0.000 description 5
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 5
- 206010024264 Lethargy Diseases 0.000 description 5
- 206010033799 Paralysis Diseases 0.000 description 5
- 101150058068 SLC2A1 gene Proteins 0.000 description 5
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 5
- 230000005750 disease progression Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000002414 glycolytic effect Effects 0.000 description 5
- 208000010726 hind limb paralysis Diseases 0.000 description 5
- 239000005414 inactive ingredient Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000009747 swallowing Effects 0.000 description 5
- 230000009184 walking Effects 0.000 description 5
- 201000011240 Frontotemporal dementia Diseases 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000891092 Homo sapiens TAR DNA-binding protein 43 Proteins 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008499 blood brain barrier function Effects 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 238000010322 bone marrow transplantation Methods 0.000 description 4
- 230000006735 deficit Effects 0.000 description 4
- 230000003412 degenerative effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000004190 glucose uptake Effects 0.000 description 4
- 230000034659 glycolysis Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000006759 inflammatory activation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 230000008437 mitochondrial biogenesis Effects 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 210000002161 motor neuron Anatomy 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 102200036626 rs104893877 Human genes 0.000 description 4
- 210000003523 substantia nigra Anatomy 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000007916 tablet composition Substances 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- RUVJFMSQTCEAAB-UHFFFAOYSA-M 2-[3-[5,6-dichloro-1,3-bis[[4-(chloromethyl)phenyl]methyl]benzimidazol-2-ylidene]prop-1-enyl]-3-methyl-1,3-benzoxazol-3-ium;chloride Chemical compound [Cl-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C(N(C1=CC(Cl)=C(Cl)C=C11)CC=2C=CC(CCl)=CC=2)N1CC1=CC=C(CCl)C=C1 RUVJFMSQTCEAAB-UHFFFAOYSA-M 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108010024636 Glutathione Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 3
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 3
- 102100022338 Integrin alpha-M Human genes 0.000 description 3
- 102000004889 Interleukin-6 Human genes 0.000 description 3
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 102000003921 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Human genes 0.000 description 3
- 108090000310 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 description 3
- 101150080431 Tfam gene Proteins 0.000 description 3
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 3
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000007963 capsule composition Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 230000019771 cognition Effects 0.000 description 3
- 230000001149 cognitive effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000005064 dopaminergic neuron Anatomy 0.000 description 3
- 208000025688 early-onset autosomal dominant Alzheimer disease Diseases 0.000 description 3
- 208000015756 familial Alzheimer disease Diseases 0.000 description 3
- 230000005021 gait Effects 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 229940014259 gelatin Drugs 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 150000002303 glucose derivatives Chemical class 0.000 description 3
- 235000003969 glutathione Nutrition 0.000 description 3
- 229960003180 glutathione Drugs 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000028709 inflammatory response Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000001325 log-rank test Methods 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 229960001603 tamoxifen Drugs 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- -1 thiosulfite Chemical compound 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 239000012049 topical pharmaceutical composition Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 2
- 238000011818 5xFAD mouse Methods 0.000 description 2
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 2
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 2
- 101100191768 Caenorhabditis elegans pbs-4 gene Proteins 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 206010008748 Chorea Diseases 0.000 description 2
- 108010051219 Cre recombinase Proteins 0.000 description 2
- 206010013142 Disinhibition Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101100026326 Escherichia coli (strain K12) nhaA gene Proteins 0.000 description 2
- 206010017577 Gait disturbance Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101000588302 Homo sapiens Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 2
- 206010022998 Irritability Diseases 0.000 description 2
- 206010027951 Mood swings Diseases 0.000 description 2
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 2
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- 206010028289 Muscle atrophy Diseases 0.000 description 2
- 206010028347 Muscle twitching Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 206010037180 Psychiatric symptoms Diseases 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 2
- 102220592942 Transcription factor GATA-4_G93A_mutation Human genes 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 108090000185 alpha-Synuclein Proteins 0.000 description 2
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 2
- 101150008083 ant gene Proteins 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000006851 antioxidant defense Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 208000012601 choreatic disease Diseases 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 210000001652 frontal lobe Anatomy 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 238000002991 immunohistochemical analysis Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 210000002074 inflammatory monocyte Anatomy 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000017306 interleukin-6 production Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000004558 lewy body Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229940069328 povidone Drugs 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 101150062190 sod1 gene Proteins 0.000 description 2
- 101150005399 sod2 gene Proteins 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 210000003478 temporal lobe Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011820 transgenic animal model Methods 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical class CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 206010059245 Angiopathy Diseases 0.000 description 1
- 206010002942 Apathy Diseases 0.000 description 1
- 102000014461 Ataxins Human genes 0.000 description 1
- 108010078286 Ataxins Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical class [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 241000282461 Canis lupus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 206010008025 Cerebellar ataxia Diseases 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical class [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 206010009696 Clumsiness Diseases 0.000 description 1
- 206010010947 Coordination abnormal Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 206010012305 Demyelination Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000027534 Emotional disease Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- FMRHJJZUHUTGKE-UHFFFAOYSA-N Ethylhexyl salicylate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1O FMRHJJZUHUTGKE-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010018341 Gliosis Diseases 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 101000823051 Homo sapiens Amyloid-beta precursor protein Proteins 0.000 description 1
- 101100192145 Homo sapiens PSEN1 gene Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000004044 Hypesthesia Diseases 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 208000027382 Mental deterioration Diseases 0.000 description 1
- 206010027374 Mental impairment Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 206010027906 Monocytosis Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101001076414 Mus musculus Interleukin-6 Proteins 0.000 description 1
- 101001124986 Mus musculus Nitric oxide synthase, inducible Proteins 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010062575 Muscle contracture Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 102000006386 Myelin Proteins Human genes 0.000 description 1
- 108010083674 Myelin Proteins Proteins 0.000 description 1
- 208000009668 Neurobehavioral Manifestations Diseases 0.000 description 1
- 101710138657 Neurotoxin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101150035190 PSEN1 gene Proteins 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 101150101356 Ppargc1b gene Proteins 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 102000019204 Progranulins Human genes 0.000 description 1
- 108010012809 Progranulins Proteins 0.000 description 1
- FTALBRSUTCGOEG-UHFFFAOYSA-N Riluzole Chemical compound C1=C(OC(F)(F)F)C=C2SC(N)=NC2=C1 FTALBRSUTCGOEG-UHFFFAOYSA-N 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000005392 Spasm Diseases 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 102100038836 Superoxide dismutase [Cu-Zn] Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 101150016260 UCP3 gene Proteins 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000004598 abnormal eye movement Effects 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- BWZOPYPOZJBVLQ-UHFFFAOYSA-K aluminium glycinate Chemical compound O[Al+]O.NCC([O-])=O BWZOPYPOZJBVLQ-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 231100000871 behavioral problem Toxicity 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 208000006111 contracture Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229940015826 dihydroxyaluminum aminoacetate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- QQQMUBLXDAFBRH-UHFFFAOYSA-N dodecyl 2-hydroxypropanoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)O QQQMUBLXDAFBRH-UHFFFAOYSA-N 0.000 description 1
- 230000004771 dopaminergic neurodegeneration Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 102000046783 human APP Human genes 0.000 description 1
- 102000055128 human TARDBP Human genes 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical class [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 208000034783 hypoesthesia Diseases 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000005022 impaired gait Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000019171 interleukin-1 alpha production Effects 0.000 description 1
- 230000018276 interleukin-1 production Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229960000829 kaolin Drugs 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- 208000028756 lack of coordination Diseases 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000006742 locomotor activity Effects 0.000 description 1
- 231100000863 loss of memory Toxicity 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 210000001259 mesencephalon Anatomy 0.000 description 1
- 230000006371 metabolic abnormality Effects 0.000 description 1
- 230000010120 metabolic dysregulation Effects 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- IKEOZQLIVHGQLJ-UHFFFAOYSA-M mitoTracker Red Chemical compound [Cl-].C1=CC(CCl)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 IKEOZQLIVHGQLJ-UHFFFAOYSA-M 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 230000006677 mitochondrial metabolism Effects 0.000 description 1
- 230000006540 mitochondrial respiration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 210000005012 myelin Anatomy 0.000 description 1
- 210000003007 myelin sheath Anatomy 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 229960003921 octisalate Drugs 0.000 description 1
- 239000002357 osmotic agent Substances 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229940067107 phenylethyl alcohol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical class [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Chemical class 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000007425 progressive decline Effects 0.000 description 1
- 230000007101 progressive neurodegeneration Effects 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 229960004181 riluzole Drugs 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 231100000245 skin permeability Toxicity 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- 208000019116 sleep disease Diseases 0.000 description 1
- 230000004599 slow eye movement Effects 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008137 solubility enhancer Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000006886 spatial memory Effects 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000013595 supernatant sample Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000000152 swallowing effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- LADGBHLMCUINGV-UHFFFAOYSA-N tricaprin Chemical compound CCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCC)COC(=O)CCCCCCCCC LADGBHLMCUINGV-UHFFFAOYSA-N 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000021542 voluntary musculoskeletal movement Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4184—1,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/18—Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
Definitions
- the present invention relates to methods for treating neurodegenerative diseases by administering to a subject a Ppargc1a activator, 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole.
- ALS Amyotrophic lateral sclerosis
- Activation of immune cells in the central as well as peripheral nervous system has been suggested to be a critical determinant of disease progression in ALS (Phani et al, Front Pharmacol. 3:150, 2012). Specifically, microglia and macrophages have been shown to play distinct roles in the orchestration of neuroinflammation in this disease (Dibaj et al, PLoS One. 6(3):e17910, 2011; Boillee et al, Science, 312:1389-92, 2006).
- BMT bone marrow transplantation
- AD Alzheimer's Disease
- oxidative stress has been proposed to be an underlying cause of neurodegeneration in AD (Friedland-Leuner et al Mol Biol Transl Sci, 127:183-201, 2014).
- AD Alzheimer's disease
- Parkinson's disease also known as idiopathic or primary parkinsonism
- PD Parkinson's disease
- the motor symptoms of PD result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain; the cause of this cell death is unknown.
- movement-related include shaking, rigidity, slowness of movement and difficulty with fine motor skills, walking, and gait.
- thinking and behavioral problems may arise, with dementia commonly occurring in the advanced stages of the disease, whereas depression is the most common psychiatric symptom.
- Other symptoms include sensory, sleep and emotional problems.
- PD is characterized by progressive motor impairment and neuroinflammation induced by microglia, the resident immune cells of the central nervous system (Aguzzi et al, Science, 339:156-61, 2013). Inflammatory mediators produced by dysfunctional microglia have been shown to induce neuronal cell death, which underlies the progressive impairment in cognitive and behavioral performance in neurodegenerative diseases (Czirr et al J Clin Invest, 122:1156-63, 2012). Nevertheless, specific signaling pathways that contribute to microglia-mediated inflammation remain elusive.
- HD Huntington's disease
- Frontotemporal degeneration is a disease that is closely related to AD in which progressive degeneration occurs in the frontal and temporal lobes of the brain. Gliosis and inflammatory activation of microglia have been documented in humans and animal models of FTD (Cagnin et al Annals of Neurol. 2004 6: 894-897; Yi et al. J. Exp. Med. 2010. 1:117-128). Patients with FTD experience a gradual decline in behavior and language with memory usually relatively preserved. As the disease progresses, it becomes increasingly difficult for afflicted subjects to organize activities, behave appropriately, and care for oneself. There are currently no treatments to slow or stop the progression of the disease.
- Dementia with Lew bodies is a type of dementia that is related to PD.
- the hallmark of this disease is the presence of alpha synuclein aggregates in brains of afflicted subjects. These patients experience PD-like symptoms including hunched posture, rigid muscles, a shuffling walk and trouble initiating movement as well as changes in reasoning and thinking, memory loss (but less significantly than AD).
- Lewy bodies are also present in PD, these two diseases may be linked to the same underlying abnormalities in how the brain processes the protein alpha-synuclein.
- microglia-related neuroinflammation is present in brains of subjects with DLB, although this pathological feature occurs more extensively (lannaccone et al, Parkinsonism Relat. Disord. 2013 19: 47-52).
- MND Motor neuron diseases
- ALS Motor neuron diseases
- progranulin can trigger inflammatory activation of microglia in an animal model of MND and genetic ablation of this pathway can delay disease progression (Philips et al J Neuropathol Exp Neurol. 2010 69:1191-200).
- Demyelinating diseases such as Guillain-Barré syndrome and multiple sclerosis (MS) are degenerative disorders in which in which the myelin sheath of neurons is compromised. This damage impairs signal conductivity in the affected nerves, causing deficiency in sensation, movement, cognition, or other functions. There is no cure for these diseases. Its most well-known form is MS, a disease in which the cellular subsets of the immune system have been implicated. For instance, on-going demyelination is often associated with infiltration of T cells and macrophages from the circulation as well as inflammatory activation of microglia (Kutzelnigg et al. Handb. Clin. Neurol. 2014, 122:15-58).
- the method should be effective and well tolerated.
- WT wild-type animal
- Veh animals treated with vehicle
- MPTP-Ctrl animals treated with MPTP and 0.5% methylcellulose
- MPTP-ZLN animals treated with MPTP and ZLN005
- STZ-Ctrl animals treated with STZ and 0.5% methylcellulose
- STZ-ZLN animals treated with STZ and ZLN005
- 5XFAD-Ctrl AD transgenic animals treated with 0.5% methylcellulose
- 5XFAD-ZLN AD transgenic animals treated with ZLN005
- ALS-Ctrl ALS transgenic animals treated with 0.5% methylcellulose
- ALS-ZLN ALS transgenic animals treated with ZLN005.
- FF Ppargc1a LoxP/LoxP mice
- Cre Ppargc1a LoxP/LoxP Cx3cr1 CreER mice.
- FIG. 1 shows the survival rate as a percentage of Cre animals and FF animals within 30 hours after MPTP induction.
- FIG. 2 shows that Ppargc1a activator ZLN005 increases expression of genes Pgc1a (Ppargc1a), Tfam, Nrf2, Ucp3, Ant, Sod1, Sod2 and upregulates tyrosine hydroxylase (Th).
- FIG. 3 shows the Pgc1a (Ppargc1a) protein expression in microglia in animals treated with Veh, MPTP-Ctrl, and (MPTP-ZLN).
- FIG. 4 shows the glucose transporter Slc2a1 levels and lactic acid levels in animals treated with Veh, MPTP-Ctrl, and MPTP-ZLN.
- FIG. 5 shows immunohistochemical analysis of dopaminergic neurons in the substantia nigra of animals treated with Veh, MPTP-Ctrl, and MPTP-ZLN.
- FIG. 6 shows TNF- ⁇ levels secreted by microglia in Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN.
- FIG. 7 shows weights (g) of shredded nestlets by Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN.
- FIG. 8 shows latency of fall (seconds) of Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN.
- FIG. 9 shows relative expression level of several genes in animals treated with Veh, STZ-Ctrl, and STZ-ZLN.
- FIG. 10 shows % of microglia that express TNF- ⁇ +(A), % ThioltrackerViolet hi (B), and % MitotrackerRed hi (C) in Veh, STZ-Ctrl, and STZ-ZLN.
- FIG. 11 shows mean disease scores of STZ-Ctrl and STZ-ZLN mice.
- FIG. 12 shows % of microglia that express IL1 (A) and TNF ⁇ (B), in WT, 5XFAD-Ctrl, and 5XFAD-ZLN.
- FIG. 13 shows % of microglia that express Mitotracker Green hi (A), and % microglia that had taken up 2-NBDG (B), in WT, 5XFAD-Ctrl, and 5XFAD-ZLN.
- FIG. 14 shows % blood monocytes over circulating immune cells in WT, 5XFAD-Ctrl, and 5XFAD-ZLN.
- FIG. 15 shows nest building activities (g) in WT, 5XFAD-Ctrl, and 5XFAD-ZLN.
- FIG. 16 shows % of brain perivascular macrophages that express iNOS, IL6, and TNF ⁇ in WT, ALS-Ctrl, and ALS-ZLN.
- FIGS. 17A-B show latency of fall (seconds) of ALS transgenic animals, treated with 0.5% methylcellulose (Ctrl) or ZLN, at a constant speed ( FIG. 17A ) and at an accelerating speed ( FIG. 17B ) in a wheel-running test.
- FIG. 18 shows % survival vs. time after 100 days in ALS transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005. Animals were treated 3 times a week starting at 5, 10, and 15 weeks of age.
- FIG. 19 shows % of brain perivascular macrophages among total brain immune cells in the brain in WT, ALS-Ctrl, and ALS-ZLN.
- FIG. 20 shows % of brain perivascular macrophages that have taken up a glucose analog 2-NBDG in WT, ALS-Ctrl, and ALS-ZLN.
- FIGS. 21A and 21B show % of total monocytes and % of Ly6C+ inflammatory monocytes among circulating immune cells, in WT, ALS-Ctrl, and ALS-ZLN.
- FIG. 21C shows the serum TNF- ⁇ levels in WT, ALS-Ctrl, and ALS-ZLN.
- FIG. 22 shows latency of fall (seconds) of HD transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005.
- FIGS. 23A and 23B show latency of fall (seconds) in FF and Cre mice.
- FF Ppargc1a LoxP/LoxP mice on DLB transgenic background
- Cre Ppargc1a LoxP/LoxP Cx3cr1 CreER mice on DLB transgenic background.
- FIGS. 24A and 24B show latency of fall (seconds) of DLB transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005.
- Inflammatory responses in the brain which can be demonstrated by changes in the properties of microglia, a cell type that is located only in the brain, are a common feature of human neurodegenerative diseases (Alzheimers Res Ther., 7(1):56. doi: 10.1186/s13195-015-0139-9, 2015).
- Yong The Neuroscientist, 16:408-420, 2010
- CNS central nervous system
- microglia activation is a cause of this inflammatory response
- microglia-mediated neuroinflammation is present in all neurodegenerative disorders.
- Ppargc1a a pleotropic regulator of cellular metabolism in many cell types, is an important regulator of all neurodegenerative diseases, in which neuroinflammation is mediated by microglia.
- the inventors have discovered a connection between Ppargc1 activation in microglia and its effect on the cognitive and motor functions of the whole organism.
- the inventors have discovered that Ppargc1a expression is decreased in humans and animal models with neurodegenerative diseases.
- the inventors have shown that Ppargc1a signaling in microglia is an important regulator of motor dysfunction and behavioral dysfunction in animal models and provided evidence that targeting Ppargc1a with its activator improves motor/behavior dysfunction in neurodegenerative diseases.
- the present invention is directed to a method for treating neurodegenerative diseases.
- the method comprises the step of administering an effective amount of a Ppargc1a activator to a subject suffering from a neurodegenerative disease.
- Neurodegenerative diseases refers to diseases that occur as a result of neurodegenerative processes, i.e., progressive loss of structure or function of neurons and/or death of neurons. Neurodegenerative diseases are incurable and debilitating, and patients typically have problems with movement (ataxias) and/or mental functioning (dementias). Neurodegenerative diseases include ALS, AD, PD, HD, frontotemporal degeneration disease, dementia with Lewy bodies, motor neuron diseases, demyelinating diseases (such as Guillain-Barre syndrome and multiple sclerosis), prion disease, spinocerebellar ataxia, and spinal muscular atrophy.
- ZLN005 activation of the Ppargc1a pathway in microglia by ZLN005 can suppress microglia-mediated inflammatory responses.
- Deletion of Ppargc1a specifically in microglia accelerates neuropathological development in transgenic animal models of PD (MPTP) and dementia with Lewy bodies (SNCA*A53T).
- MPTP transgenic animal models of P
- AD 5XFAD and icv-STZ
- H1D R6/2
- ALS SOD1*G93A
- dementia with Lewy bodies SNCA*A53T
- ZLN005 represents a treatment for all neurodegenerative disorders in which microglia-mediated neuroinflammation contributes to the disease development.
- Circulating monocytes from the blood give rise to brain perivascular macrophages, which reside just outside the vascular basement membrane. They are the main antigen-presenting cells of the CNS, thus playing an important role in immune reactions involving the brain.
- brain perivascular macrophages are the earliest macrophages from peripheral tissues that response to brain injuries. Their location at the interface between brain parenchyma and the vascular system and their continuous circulation in and out of blood vessels suits them ideally for this function.
- the inventors have discovered that brain perivascular macrophages in ALS transgenic mice exhibited an inflammatory phenotype, evidenced by a significant increase in iNOS production.
- ZLN005 By administering ZLN005 to these animals, iNOS production in the brain perivascular macrophages decreased and neuroinflammation was suppressed.
- ALS transgenic mice treated with ZLN005 had improved motor skills compared with untreated ALS transgenic mice.
- ALS transgenic mice exhibited hind limb paralysis at approximately 100 days and died shortly after.
- ZLN005 the onset of hind limb paralysis was delayed and the survival rate increased.
- the inventors have discovered that administering ZLN005 to the STZ-treated animal resulted in increased expression of genes involved in Ppargc1a signaling, mitochondrial metabolism, and anti-oxidative defense in the brain
- the principal chemical constituent of the amyloid plaques and amyloid angiopathy characteristic of AD is an approximately 4.2 KD protein of ⁇ -amyloid peptide.
- STZ-treated animals significantly increase the expression of ⁇ -amyloid peptide.
- ZLN005 By administering ZLN005, the expression of genes involved in ⁇ -amyloid generation in the brains of STZ-treated animals was decreased to normal levels.
- the inventors have shown that microglia in STZ-treated mice exhibited an inflammatory phenotype, evidenced by a significant increase in TNF- ⁇ production.
- Administering ZLN005 to the STZ-treated mice resulted in suppression of TNF- ⁇ production in the microglia cells and suppression of the microglia-mediated neuroinflammation.
- the inventors also discovered that ZLN005 modulated metabolic dysfunction in microglia induced by STZ, as evidenced by enhanced glycolysis, mitochondrial potential, and glutathione production in microglia isolated from STZ-treated animals and treated by ZLN005.
- STZ-treated mice exhibit several signs and symptoms of behavioral dysfunction and systemic inflammation including bleeding from the nose, eyes, ears, paralysis of hands and feet (Arabpoor et al Adv Biomed Res, 1:50, 2012).
- Administering ZLN005 to the STZ-treated mice resulted in a significant reduction in the disease severity.
- the inventors have generated microglia specific knockout of Ppargc1a, in which Ppargc1a signaling is absent in these cells and not in other cells of the brain such as neurons.
- PD was induced with MPTP in wild-type and microglia specific knockout animals, the knockout animals had significantly more severe motor impairment, indicating that Ppargc1a signaling in microglia regulates behavioral dysfunction.
- microglia in MPTP-treated mice exhibited an inflammatory phenotype, evidenced by a significant increase in TNF- ⁇ production and a decrease in mitochondrial biogenesis.
- Administering ZLN005 to the MPTP-treated mice resulted in decreased TNF- ⁇ production in the microglia cells and suppression of microglia-mediated neuroinflammation.
- MPTP-treated mice exhibit profound loss of fine motor skills and behavioral dysfunctions.
- the inventors have shown that by administering ZLN005 to the MPTP-treated mice, the motor skills of those mice were improved.
- Targeting Ppargc1a with its activator, ZLN005 ameliorates motor dysfunction in Huntington's disease (HD).
- the inventors have provided evidence that targeting Ppargc1a with ZLN005 improved motor skills in HD transgenic mice.
- the inventors have shown that HD transgenic mice treated with ZLN005 exhibited improved motor skills, as indicated by increases in their latency to fall, compared with untreated HD transgenic mice.
- Ppargc1a with its activator ZLN005 ameliorates motor dysfunction in dementia with Lewy bodies.
- the inventors have shown that microglia-specific deletion in transgenic DLB animals caused further deterioration of motor function in the animals.
- the inventors have also demonstrated that Ppargc1a activator, ZLN005, improved motor skills in DLB transgenic animals.
- Frontotemporal degeneration also called frontotemporal dementia (FTD) is a disease that is closely related to ALS in which progressive degeneration occurs in the frontal and temporal lobes of the brain.
- FTD frontotemporal dementia
- ZLN005 By suppressing microglia-mediated inflammation, ZLN005 improves motor skills in FTD transgenic mice and increases their survival rate.
- Motor neuron diseases are neurodegenerative disorders, similar to ALS, that selectively affect motor neurons.
- Microglia-mediated inflammation is a key factor for development factor for motor neuron diseases. By suppressing microglia-mediated inflammation, ZLN005 slows down and halts disease development.
- ZLN005 is effective in treating demyelinating diseases by reducing the inflammatory activation of microglia, which might be more susceptible to inflammatory stimuli in demyelinating diseases such as multiple sclerosis. By suppressing metabolic dysregulation and subsequent inflammatory transformation of microglia, ZLN005 promotes myelin repair and regeneration.
- the present invention provides pharmaceutical compositions comprising one or more pharmaceutically acceptable carriers and an active compound of 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole (ZLN005), or a pharmaceutically acceptable salt, or a solvate thereof.
- the active compound or its pharmaceutically acceptable salt or solvate in the pharmaceutical compositions in general is in an amount of about 0.01-20% (w/w) for a topical formulation; about 0.1-5% for an injectable formulation, 0.1-5% for a patch formulation, about 1-90% for a tablet formulation, and 1-100% for a capsule formulation.
- the pharmaceutical composition can be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like.
- the pharmaceutical composition can be an aerosol suspension of respirable particles comprising the active compound, which the subject inhales.
- the respirable particles can be liquid or solid, with a particle size sufficiently small to pass through the mouth and larynx upon inhalation. In general, particles having a size of about 1 to 10 microns, preferably 1-5 microns, are considered respirable.
- the active compound is incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the active compound and deliver it to the affected area by topical applications.
- any acceptable carrier including creams, gels, lotions or other types of suspensions that can stabilize the active compound and deliver it to the affected area by topical applications.
- the above pharmaceutical composition can be prepared by conventional methods.
- Pharmaceutically acceptable carriers which are inactive ingredients, can be selected by those skilled in the art using conventional criteria.
- Pharmaceutically acceptable carriers include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments.
- the pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxa
- Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
- preservatives include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use.
- a tablet formulation or a capsule formulation of the active compound may contain other excipients that have no bioactivity and no reaction with the active compound.
- Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation.
- excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly(acrylic acid), and polyvinylpyrrolidone.
- a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide.
- a capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
- a patch formulation of the active compound may comprise some inactive ingredients such as 1,3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben, polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water.
- a patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether.
- Topical formulations including the active compound can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension.
- the inactive ingredients in the topical formulations for example include, but not limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer), DMSO (solubility enhancer), silicone elastomer (rheology/texture modifier), caprylic/capric triglyceride, (emollient), octisalate, (emollient/UV filter), silicone fluid (emollient/diluent), squalene (emollient), sunflower oil (emollient), and silicone dioxide (thickening agent).
- diethylene glycol monoethyl ether emollient/permeation enhancer
- DMSO solubility enhancer
- silicone elastomer rheology/texture modifier
- caprylic/capric triglyceride e
- the present invention is directed to a method of treating neurodegenerative diseases.
- the method comprises the step of administering to a subject suffering from a neurodegenerative disease an effective amount of 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole, for treating the neurodegenerative disease.
- An effective amount is the amount effective to treat the neurodegenerative disease by ameliorating the pathological condition or reducing the symptoms of the disease.
- the neurodegenerative disease is ALS and the method reduces or alleviates motor dysfunction or behavioral dysfunction in an ALS patient.
- the method improves early symptoms such as difficulty in walking or doing normal daily activities; weakness in legs, feet, ankles, or hand; tripping or clumsiness; slurring of speech or trouble swallowing; and muscle cramps and twitching in the arms, shoulders and tongue.
- the method may also improve later symptoms such as difficulty in breathing.
- the method improves survival rate and length of survival.
- the neurodegenerative disease is AD and the method reduces or alleviates the disease symptoms and improves the cognitive and motor functions. For example, the method improves confusion, irritability, aggression, mood swings, trouble with language, and/or long-term memory loss in a patient. The method may also slow down the disease progression.
- the neurodegenerative disease is PD and the method reduces or alleviates motor dysfunction or behavioral dysfunction in a patient.
- the method improves movement-related symptoms such as shaking, rigidity, slowness of movement, and difficulty with fine motor skills, walking, and gait.
- the neurodegenerative disease is HD and the method reduces or alleviates motor dysfunction in a patient.
- the method improves involuntary and/or voluntary movement-related symptoms such as involuntary jerking or writhing movements (chorea); muscle problems (e.g., rigidity or muscle contracture (dystonia)); slow or abnormal eye movements; impaired gait, posture and balance; difficulty with the physical production of speech or swallowing.
- the neurodegenerative disease is dementia with Lewy bodies (DLB) and the method reduces or alleviates motor dysfunction and cognitive decline in a patient.
- the method improves PD-like symptoms such as motor coordination, difficulties with walking and swallowing, inability to maintain normal postures, rigidity as well as loss of memory and decline in thinking and reasoning.
- the method may also halt or slow down disease progression.
- the neurodegenerative disease is frontotemporal degeneration (FTD) and the method reduces or alleviates the disease symptoms that are associated with language skills and social interactions.
- FTD frontotemporal degeneration
- the method improves abilities to speak coherently, to organize thoughts and daily activities, to interact normally in social settings and alleviates symptoms of disinhibition, loss of sympathy and empathy, lack of executive control, hyperorality, and apathy.
- the method may also halt or slow down disease progression.
- the neurodegenerative disease is a motor neuron disease (MND) and the method reduces or alleviates motor dysfunction as well as improves survival rate and length of survival of patients with these diseases.
- MND motor neuron disease
- the method improves movement-related symptoms such as troubles with walking, maintaining normal gait, controlling balance, difficulties with fine motor coordination, slowness of movement, swallowing, and breathing.
- the neurodegenerative disease is a demyelinating disease such as Guillain-Barre syndrome or multiple sclerosis (MS) and the method reduces or alleviates behavioral dysfunction and cognitive impairment in patients with these diseases.
- the method improves early symptoms such as blurred vision, tingling sensation, numbness and weakness in limbs, lack of coordination.
- the method may also improve advanced symptoms such as difficulty in walking, tremors, muscle spasms, paralysis, troubling articulating thoughts and speaking.
- the method may also improve survival rate and length of survival.
- the pharmaceutical composition of the present invention can be applied by systemic administration or local administration.
- Systemic administration includes, but is not limited to oral, parenteral (such as intravenous, intramuscular, subcutaneous or rectal), and inhaled administration.
- parenteral such as intravenous, intramuscular, subcutaneous or rectal
- inhaled administration In systemic administration, the active compound first reaches plasma and then distributes into target tissues.
- Oral administration is a preferred route of administration for the present invention.
- Local administration includes topical administration.
- Dosing of the composition can vary based on the extent of the injury and each patient's individual response.
- plasma concentrations of the active compound delivered can vary; but are generally 1 ⁇ 10 ⁇ 10 -1 ⁇ 10 ⁇ 4 moles/liter, and preferably 1 ⁇ 10 ⁇ 8 -1 ⁇ 10 ⁇ 5 moles/liter.
- the pharmaceutical composition is administrated orally to a subject.
- the dosage for oral administration is generally 0.1-100, 0.1-20, or 1-50 mg/kg/day, depending on the subject's age and condition.
- the dosage for oral administration is 0.1-10, 0.5-10, 1-10, 1-5, or 5-50 mg/kg/day for a human subject.
- the active compound can be applied orally to a human subject at 1-100, 10-50, 20-1000, 20-500, 100-800 sage, or 200-600 mg/dosage, 1-4 times a day, depends on the patient's age and condition.
- the pharmaceutical composition is administrated intravenously to a subject.
- the dosage for intravenous bolus injection or intravenous infusion is generally 0.03 to 5 or 0.03 to 1 mg/kg/day.
- the pharmaceutical composition is administrated subcutaneously to the subject.
- the dosage for subcutaneous administration is generally 0.3-20, 0.3-3, or 0.1-1 mg/kg/day.
- the composition is applied topically to an area and rubbed into it.
- the composition is topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology.
- the topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5% (w/w) of the active compound.
- 0.2-10 mL of the topical composition is applied to the individual per dose.
- the active compound passes through skin and is delivered to the site of discomfort.
- the present invention is useful in treating a mammal subject, such as humans, horses, dogs and cats.
- the present invention is particularly useful in treating humans.
- mice with microglia-specific deletion of Ppargc1a were generated by crossing mice harboring the floxed allele of Ppargc1a (Ppargc1a LoxP/LoxP ) with those expressing Tamoxifen inducible Cre recombinase under the control of Cx3cr1 promoter (Cx3cr1 CreER )
- Cx3cr1 CreER Cx3cr1 CreER
- MPTP (20 mg/kg) was administered intraperitoneally in sterile PBS 4 times at 2-hour intervals on day 1. Control animals received a similar volume of PBS. After MPTP induction, 7 out of 12 Cre animals died within 30 hours, while 3 out of 16 FF animals died within 30 hours. The results are shown in FIG. 1 . Log-rank test was used for statistical analysis. The results show that Ppargc1a deletion in microglia accelerates MPTP-induced mortality.
- Ppargc1a an inducer of mitochondrial biogenesis, is widely expressed in cells throughout the body.
- Ppargc1a activator ZLN005 25 mg/kg, Sigma was administered orally once a day starting 30 minutes after MPTP administration on Day 1 (when animals exhibited PD-like symptoms) for 3 consecutive days in 0.5% methylcellulose (Sigma).
- mice were sacrificed on Day 4, 24 hours after the third oral dosage of ZLN005 and PBS-perfused brain tissues were processed for microglia isolation and flow cytometry analysis of glucose metabolism in microglia.
- Microglia were sorted by flow cytometry and subjected to lactic acid production assays ex vivo (Cayman Chem) for glycolysis measurement.
- Y-axis represents Slc2a1 expression in median fluorescence units (MFI, A) and lactic acid production in micromolar units (mM, B).
- MFI median fluorescence units
- mM micromolar units
- the results show that microglia in MPTP-treated mice exhibited a glycolytic activation phenotype, measured by increases in glucose transporter Slc2a1 expression (A) and lactic acid production (B), in non-treated MPT-intoxicated animals when compared with Veh mice.
- the results also show that by administering ZLN005 to MPTP-treated animals, glucose transporter expression and lactic acid production in microglia of these treated animals decreased, and thus their metabolic dysfunction was corrected.
- ANOVA was used for statistical analyses.
- Ppargc1a activator ZLN005 25 mg/kg, Sigma was administered orally once a day starting 30 minutes after MPTP administration on Day 1 for 7 consecutive days in 0.5% methylcellulose (Sigma).
- animals were sacrificed on Day 8, 24 hours after the 7th oral dosage of ZLN005, and paraformaldehyde-perfused brain tissues were processed for immunohistochemical analysis of dopaminergic neurons in the substantia nigra.
- the brown staining represents tyrosine hydroxylase expression in dopaminergic neurons of the substantia nigra.
- the results show that MPTP administration led to a depletion of these neurons, which was reversed by treatment with ZLN005.
- Example 6 Suppresses TNF- ⁇ Production in a Microglial Ppargc1a Dependent Manner
- results are summarized in FIG. 6 .
- the results show that MPTP administration induced TNF- ⁇ secretion by microglia in FF animals and this induction of TNF- ⁇ production was significantly higher in Cre animals.
- ZLN005 suppressed TNF- ⁇ production in microglia isolated from MPTP-treated FF animals but failed to exert its anti-inflammatory effects on microglia isolated from MPTP-treated Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia.
- These results indicate that ZLN005 suppresses expression of the inflammatory cytokine TNF- ⁇ in microglia via its activation of microglia specific Ppargc1a. Unpaired t-tests were used for statistical analyses.
- Example 7 Improves Fine Motor Skills in a Microglial Ppargc1a Dependent Manner
- Example 8 Improves Motor Coordination in a Microglial Ppargc1a Dependent Manner
- mice with microglia-specific deletion of Ppargc1a were generated as described in Example 1. At 7 weeks of age, these animals were subjected to 1.5 weeks of training on a treadmill at a constant speed 10 rpm (rotations per minute) and then 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 10 weeks of age, animals were treated with MPTP and tested for motor performance at an accelerating speed from 5-15 rpm.
- FIG. 8 shows that MPTP treatment impaired wheel running time in FF animals and ZLN005 treated mice performed significantly better than vehicle treated mice.
- the ability of ZLN005 to improve wheel-running skills is not present in Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia.
- Veh animals treated with artificial cerebrospinal fluid as vehicle in STZ model
- STZ-Ctrl animals treated with STZ and 0.5% methylcellulose
- STZ-ZLN animals treated with STZ and ZLN005
- WT wild-type animals
- 5XFAD-Ctrl transgenic AD animals treated with 0.5% methylcellulose
- 5XFAD-ZLN transgenic AD animals treated with ZLN005.
- Ppargc1a which is an activator of mitochondrial biogenesis, is widely expressed in cells throughout the body.
- Ppargc1a activator ZLN005 25 mg/kg, Sigma
- ZLN005 25 mg/kg, Sigma
- ZLN005 0.5% methylcellulose
- mice were sacrificed on Day 4, and PBS-perfused brain tissues were processed for RNA isolation, cDNA synthesis and real-time quantitative PCR (Invitrogen).
- results are summarized in FIG. 9 .
- Example 10 Ppargc1a Activator ZLN005 Suppresses TNF- ⁇ Production and Metabolic Abnormalities in Microglia in the Acute STZ Model of AD
- Ppargc1a activator ZLN005 25 mg/kg, Sigma was administered orally once in 0.5% methylcellulose (Sigma) immediately before the first dose of STZ on Day1. Treatment with ZLN005 was continued on a daily schedule until Day 7.
- microglia analysis animals were sacrificed on Day 7, and PBS-perfused brain tissues were digested with Collagenase IV and processed for flow cytometry. Microglia were phenotyped with antibodies directed against mouse TNF- ⁇ (Biolegend) and metabolic dyes ThioltrackerViolet, and MitotrackerRed (Invitrogen) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo). The results are summarized in FIG. 10 .
- Ppargc1a activator ZLN005 25 mg/kg, Sigma was administered orally once on Day 1 in 0.5% methylcellulose (Sigma) immediately before the first dose of STZ. Treatment with ZLN005 continued on a daily schedule until Day 4, when the animals were evaluated.
- STZ-ZLN mice 33% of the animals were active, 66% showed evidence of lethargy, and none were paralyzed.
- STZ-Ctrl mice only 10% were active, 70% were lethargic, and 20% of these animals had hind limb paralysis.
- Veh animals receiving intracerebral artificial cerebrospinal fluid exhibited normal behavior.
- the inventors designed a disease scoring system based on evidence of tissue inflammation: with scores of 1 (mild inflammation, increased vascularization/bleeding of internal organs), 2 (moderate inflammation, severe vascularization/bleeding of internal organs), and 3 (severe inflammation, intestinal or stomach swelling).
- the disease scoring system is also based on physical activity with scores of 1 (lethargic, general poverty of movements with signs of lethargy), 2 (inactive, lack of movement for more than 15 consecutive seconds), and 3 (paralysis of either front or hind limbs).
- the disease score presented in the example is the total score of the two scoring systems.
- the mean disease scores of animals on day 4 in STZ-Ctrl and STZ-ZLN are shown in FIG. 11 .
- STZ-ZLN mice had a significantly lower mean disease score (1.6) compared to STZ-Ctrl (2.5), indicating that the disease severity was improved by the ZLN005 treatment.
- Animals receiving intracerebral artificial cerebrospinal fluid behaved normally and had a mean score of 0. Unpaired t-test was used for statistical analysis.
- 5XFAD transgenic mice which are model of familial AD, were purchased from Jackson Laboratories (Oakley et al J Neurosci. 26:10129-40, 2006). These animals overexpress both mutant human APP(695) with the Swedish (K670N, M671L), Florida (I716V), and London (V717I) Familial Alzheimer's Disease (FAD) mutations and human PS1 harboring two FAD mutations, M146L and L286V. These transgenic mice rapidly recapitulate major features of amyloid pathology in AD by 8-10 weeks of age. Microglia abnormalities and neuroinflammation are also pronounced within this time window. Subsequently, neurodegeneration and behavioral dysfunction that mimic cognitive and psychiatric symptoms of human AD begin and are pronounced by 4-5 months of age.
- AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- Y-axis represents % of microglia that express IL1 (A) and TNF ⁇ (B).
- the results show that microglia in AD transgenic mice exhibited an inflammatory phenotype, evidenced by a significant increase in IL1 production in 5XFAD-Ctrl when compared with WT mice.
- the results also show that by administering ZLN005 to AD transgenic animals, IL1 and TNF ⁇ production in microglia of these treated animals decreased and thus neuroinflammation was suppressed. ANOVA was used for statistical analyses.
- AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry.
- Brain microglia were phenotyped with 2-NBDG and MitotrackerGreen (Invitrogen) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- Y-axis represents % of microglia that highly expressed MitotrackerGreen (A) and had taken up 2-NBDG (B).
- Mitochondrial respiration and glycolysis are two key energy generating pathways in living cells.
- immune cells like microglia, inflammatory transformation is associated with upregulation of glucose utilization and depression of mitochondrial biogenesis and function.
- the results show that microglia in 5XFAD-Ctrl exhibited a decrease in mitochondrial mass, measured by Mitotracker Green (A), and exhibited a glycolytic activation phenotype, evidenced by a significant increase in glucose uptake, measured by 2-NBDG incorporation (B), when compared with WT animals.
- AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- Y-axis represents % of total circulating monocytes among circulating immune cells.
- the results show that the percentage of blood monocytes was increased in 5XFAD-Ctrl when compared with WT mice.
- the results also show that by administering ZLN005 to AD transgenic animals, the percentage of monocytes decreased. ANOVA was used for statistical analysis.
- nest-building skill is one of the most reliable measurements of motor function.
- AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- ZLN005 Sigma
- animals were given cotton pads and the amount of cotton that was shredded over a 24-hour period was measured.
- the nest building activities (g) are shown in FIG. 15 .
- WT wild-type animals
- ALS-Ctrl transgenic ALS animals treated with 0.5% methylcellulose
- ALS-ZLN transgenic ALS animals treated with ZLN005.
- ALS transgenic animals were purchased from Jackson Laboratories. These animals express the G93A mutation in the gene SOD1 which has been implicated as the cause of the disease in a subset of human subjects with familial ALS. The animals exhibit hind limb paralysis, a classical symptom of ALS, upon 100-110 days of age and rapidly succumb. These animals represent a gold standard model for therapeutic discovery in the field of ALS research.
- ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry.
- Brain perivascular macrophages were phenotyped with antibodies directed against mouse iNOS, IL6, and TNF ⁇ (Biolegend) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- Y-axis represents % of brain perivascular macrophages that express iNOS (A), IL6 (B) and TNF ⁇ (C).
- the results show that brain perivascular macrophages in ALS transgenic mice exhibit an inflammatory phenotype, evidenced by a significant increase in iNOS, IL6, and TNF ⁇ production in ALS-Ctrl mice when compared with WT animals.
- the results also show that by administering ZLN005 to ALS transgenic animals, iNOS production in the brain perivascular macrophages of these treated animals decreased and thus neuroinflammation was suppressed.
- IL6 and TNF ⁇ production in the brain perivascular macrophages of ZLN005 treated animals were also suppressed, although these differences did not reach statistical significance. ANOVA was used for statistical analyses.
- ALS transgenic mice were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 9 weeks of age.
- a wheel-running test was performed similarly to that described in Example 8.
- the animals started training at 13 weeks of age for 1.5 weeks of training on a treadmill at a constant speed of 10 rpm and then for 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 14.5 and 16 weeks of age, animals were tested for motor performance at a constant speed and at an accelerating speed, respectively.
- the results are shown in FIGS. 17A-17B .
- ALS transgenic mice were orally treated 3 times a week with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5, 10 and 15 weeks of age.
- ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry.
- Y-axis represents % of brain perivascular macrophages among total brain immune cells in the brain.
- the results show an increase in the percentage of brain perivascular macrophages in ALS-Ctrl mice when compared with WT mice.
- the results also show that by administering ZLN005 to ALS transgenic animals, the percentage of the brain perivascular macrophages of these treated animals decreased. ANOVA was used for statistical analysis.
- Example 20 Ppargc1a Activator ZLN005 Suppresses Glycolytic Activation in Brain Perivascular Macrophages in ALS Transgenic Animals
- ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- ALS-ZLN ALS-ZLN
- PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry.
- Brain perivascular macrophages were stained with 2-NBDG, the fluorescent glucose analog, to measure glucose uptake for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- Y-axis represents % of brain perivascular macrophages that have taken up the glucose analog, 2-NBDG.
- the results show that brain perivascular macrophages in ALS transgenic mice exhibited a glycolytic phenotype, evidenced by a significant increase in 2-NBDG uptake in ALS-Ctrl mice when compared with WT mice.
- the results also show that by administering ZLN005 to ALS transgenic animals, glucose uptake in the brain perivascular macrophages of these ALS-ZLN animals decreased and thus glycolytic activation and metabolic dysfunction in brain perivascular macrophages in ALS transgenic animals were suppressed.
- ANOVA was used for statistical analysis.
- ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- FIGS. 21A and 21B he Y-axis in FIGS. 21A and 21B represents % of total monocytes and % of Ly6C+ inflammatory monocytes among circulating immune cells.
- the results show that monocytes, especially the Ly6C+ subset, were increased in ALS-Ctrl n compared with wild-type mice.
- the results also show that by administering ZLN005 to ALS transgenic animals, the percentage of these cells in treated animals decreased and thus systemic inflammation was suppressed.
- FIG. 21C shows that serum levels of TNF- ⁇ measured by ELISA in ALS transgenic animals were significantly suppressed by ZLN005 treatment Unpaired t-tests and ANOVA were used for statistical analyses.
- Ctrl transgenic HD animals treated with 0.5% methylcellulose
- ZLN transgenic HD animals treated with ZLN005.
- HD transgenic animals (R6/2) were purchased from Jackson Laboratories. The animals exhibit symptoms of HD such as hind limb paralysis, muscle wasting, and impaired motor coordination, upon 8-10 weeks of age and rapidly succumb.
- Ctrl DLB transgenic animals treated with 0.5% methylcellulose
- ZLN DLB transgenic animals treated with ZLN005.
- FF Ppargc1a LoxP/LoxP mice on DLB transgenic background
- Cre Ppargc1a LoxP/LoxP Cx3cr1 CreER mice on DLB transgenic background.
- SNCA*A53T transgenic mice an animal model in which the mutated form of human alpha synuclein is overexpressed, were generated to study pathological mechanisms in PD and DLB (Lee et al, Proc Natl Acad Sci USA. 2002, 13:8968-8970). These animals exhibit accumulation of pathogenic Lewy bodies upon aging, resulting in progressive motor dysfunction and eventual death.
- mice with microglia-specific deletion of Ppargc1a were generated as described in Example 1. Furthermore, these animals were bred with SNCA*A53T animals to generate mice with microglia-specific deletion of Ppargc1a on DLB genetic background. After tamoxifen treatment to induce deletion of Ppargc1a in microglia, animals were rested for 5 weeks before being subjected to treadmill training. At 8 weeks of age, these animals were subjected to 1.5 weeks of training on a treadmill at a constant speed 10 rpm (rotations per minute) and then 1.5 weeks of training at an accelerating speed from 5-15 rpm as described in Example 8. After the training period at 9.5 and 11 weeks of age, animals were tested for motor performance at a constant speed and at an accelerating speed, respectively.
- results, shown in FIG. 23A-23B are representative of two independent experiments of one animal per genotype with similar outcomes.
- FF animals exhibited significantly longer latency to falls (average of two running trials) than Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia, at both constant speed of 10 rpm and accelerating speed of 5-15 rpm.
- Cre animals which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia, at both constant speed of 10 rpm and accelerating speed of 5-15 rpm.
- DLB transgenic animals were purchased from Jackson Laboratories and were orally treated 3 times a week with 0.5% methylcellulose (Ctrl) or ZLN005 (ZLN) at 25 mg/kg in vehicle, starting at 8 weeks of age for 12 weeks.
- mice were subjected to 1.5 weeks of training on a treadmill at a constant speed 10 rpm and then 1.5 weeks of training at an accelerating speed from 5-15 rpm, similar to those described in Example 8.
- animals were tested for motor performance at a constant speed and at an accelerating speed, respectively.
- DLB-ZLN mice performed significantly better than DLB-Ctrl mice (194.0 seconds vs. 134.5 seconds, p value ⁇ 0.05).
- motor dysfunction of DLB mice was alleviated by ZLN005 treatment. Unpaired t-tests Were used for statistical analyses.
- TARDBP*A315T transgenic mice have been generated as an animal model to study ALS and FTD. These animals overexpress a mutant form of the DNA binding protein TARDBP, whose cytoplasmic inclusions are present in the brains of subjects with ALS and FTD (Barmada et al Nat Chem. Biol., 10:677-685, 2014).
- Ke et al Short-term Suppression of A315T Mutant Human TDP-43 Expression Improves Functional Deficits in a Novel Inducible Transgenic Mouse Model of FTLD-TDP and ALS, Acta Neuropathol. 2015 Oct.
- FTD transgenic animals are purchased from Jackson Laboratories and are orally treated 3 times a week with 0.5% methylcellulose (FTD-Ctrl) or ZLN005 (FTD-ZLN) at 25 mg/kg in vehicle, starting at 6 weeks of age. Subsequently, at 10 weeks of age, these animals are subjected to 1.5 weeks of training on a treadmill at a constant speed 10 rpm and then 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 11.5 and 13 weeks of age, animals are tested for motor performance at a constant speed and at an accelerating speed, respectively. Finally, they are monitored for survival analysis.
- FTD-Ctrl 0.5% methylcellulose
- FTD-ZLN ZLN005
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention is directed to a method for treating a neurodegenerative disease such as amyotrophic lateral sclerosis (ALS), Alzheimer disease, Parkinson's disease, Huntington's disease, frontotemporal degeneration, dementia with Lewy bodies, a motor neuron disease, or a demyelinating disease. The method comprises administering to a subject in need thereof a Ppargc1a activator 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole, in an effective amount. A preferred route of administration is oral administration.
Description
- The present invention relates to methods for treating neurodegenerative diseases by administering to a subject a Ppargc1a activator, 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole.
- Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that is characterized by the loss of motor neurons, leading to progressive decline in motor function and ultimately death. The motor symptoms of ALS include muscle weakness, twitching and wasting, which leads to difficulties in speaking, swallowing and breathing. The cause of motor neuron death in ALS is unknown and 5-10% of the ALS cases are inherited.
- Activation of immune cells in the central as well as peripheral nervous system has been suggested to be a critical determinant of disease progression in ALS (Phani et al, Front Pharmacol. 3:150, 2012). Specifically, microglia and macrophages have been shown to play distinct roles in the orchestration of neuroinflammation in this disease (Dibaj et al, PLoS One. 6(3):e17910, 2011; Boillee et al, Science, 312:1389-92, 2006). Of note, bone marrow transplantation (BMT) to replace host myeloid cells has been shown to extend survival in an animal model of ALS, which was thought to be mediated by replacement of CNS microglia (Beers et al, Proc Natl Acad Sci USA. 103:16021-6, 2006). However, recent studies have shown that these cells do not develop from bone marrow cells but from more primitive yolk sac progenitors (Ginhoux et al, Science, 330:841-5, 2110), suggesting that the bone marrow derived cells that mediated the therapeutic effects of BMT in the study above are more likely peripheral or brain perivascular macrophages. Nevertheless, specific signaling pathways that contribute to innate-immune-cell-mediated inflammation in ALS remain incompletely understood.
- Currently, there is no cure for ALS. Certain therapies such as riluzole, bone marrow transplantation (Deda, Cytotherapy. 11:18-25, 2009), and non-invasive ventilation (McDermott et al, BMJ, 336:658-62, 2008) have shown modest effects in improving quality of life and extending survival, but none are curative or provide dramatic benefit.
- Alzheimer's Disease (AD) is a degenerative brain disorder characterized clinically by progressive loss of motor function, in addition to memory, cognition, reasoning, judgment and emotional stability that gradually leads to profound mental deterioration and ultimately death. Neuronal metabolic dysfunction in the form of oxidative stress has been proposed to be an underlying cause of neurodegeneration in AD (Friedland-Leuner et al Mol Biol Transl Sci, 127:183-201, 2014).
- Although AD develops differently for every individual, there are many common symptoms. Early symptoms are often mistakenly thought to be age-related concerns, or manifestations of stress. In the early stages, the most common symptoms are motor decline and difficulty in remembering recent events, known as short-term memory loss (Buchman et al, Exp Rev Neurother, 11:665-76, 2011). When AD is suspected, the diagnosis is usually based on tests that evaluate behavior and thinking abilities, often followed by a brain scan if available. However, examination of brain tissue is required for a definitive diagnosis. As the disease advances, symptoms can include confusion, irritability, aggression, mood swings, trouble with language, and long-term memory loss. As the person's condition declines, he/she often withdraws from family and society. Gradually, bodily functions are lost, ultimately leading to death.
- Parkinson's disease (PD), also known as idiopathic or primary parkinsonism, is a degenerative neurological disorder of the central nervous system. The motor symptoms of PD result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain; the cause of this cell death is unknown. Early in the course of the disease, the most obvious symptoms are movement-related; these include shaking, rigidity, slowness of movement and difficulty with fine motor skills, walking, and gait. Later, thinking and behavioral problems may arise, with dementia commonly occurring in the advanced stages of the disease, whereas depression is the most common psychiatric symptom. Other symptoms include sensory, sleep and emotional problems.
- PD is characterized by progressive motor impairment and neuroinflammation induced by microglia, the resident immune cells of the central nervous system (Aguzzi et al, Science, 339:156-61, 2013). Inflammatory mediators produced by dysfunctional microglia have been shown to induce neuronal cell death, which underlies the progressive impairment in cognitive and behavioral performance in neurodegenerative diseases (Czirr et al J Clin Invest, 122:1156-63, 2012). Nevertheless, specific signaling pathways that contribute to microglia-mediated inflammation remain elusive.
- Huntington's disease (HD) is an autosomal dominant degenerative disorder of the central nervous system, in which the gene Huntingtin is mutated. HD is an inherited disease that causes the progressive breakdown (degeneration) of nerve cells in the brain. HD has a broad impact on a person's functional abilities and usually results in movement, thinking (cognitive) and psychiatric disorders.
- The symptoms of HD vary among affected subjects; however, the progression of the disease is relatively predictable (Mason S et al, J Neurol. 2015). Early in the course of the disease, the symptoms are subtle such as changes in mood. Later, cognition and motor problems may arise, with dementia commonly occurring in the advanced stages of the disease. Chorea (involuntary movement) is the most common motor symptom. Other complications include pneumonia, heart disease, and physical injuries due to falls.
- There is currently no cure for HD and full time care is required for subjects with advanced disease.
- Frontotemporal degeneration (FTD) is a disease that is closely related to AD in which progressive degeneration occurs in the frontal and temporal lobes of the brain. Gliosis and inflammatory activation of microglia have been documented in humans and animal models of FTD (Cagnin et al Annals of Neurol. 2004 6: 894-897; Yi et al. J. Exp. Med. 2010. 1:117-128). Patients with FTD experience a gradual decline in behavior and language with memory usually relatively preserved. As the disease progresses, it becomes increasingly difficult for afflicted subjects to organize activities, behave appropriately, and care for oneself. There are currently no treatments to slow or stop the progression of the disease.
- Dementia with Lewy Bodies
- Dementia with Lew bodies (DLB) is a type of dementia that is related to PD. The hallmark of this disease is the presence of alpha synuclein aggregates in brains of afflicted subjects. These patients experience PD-like symptoms including hunched posture, rigid muscles, a shuffling walk and trouble initiating movement as well as changes in reasoning and thinking, memory loss (but less significantly than AD). Since Lewy bodies are also present in PD, these two diseases may be linked to the same underlying abnormalities in how the brain processes the protein alpha-synuclein. Furthermore, similar to P), microglia-related neuroinflammation is present in brains of subjects with DLB, although this pathological feature occurs more extensively (lannaccone et al, Parkinsonism Relat. Disord. 2013 19: 47-52).
- Motor neuron diseases (MND), are neurological disorders, similar to ALS, that selectively affect motor neurons, the cells that control voluntary muscle activity including speaking, walking, swallowing, and locomotor activities. There is no effective treatment for MND. They are neurodegenerative in nature, and cause progressive disability and death. Furthermore, a specific pathway called progranulin can trigger inflammatory activation of microglia in an animal model of MND and genetic ablation of this pathway can delay disease progression (Philips et al J Neuropathol Exp Neurol. 2010 69:1191-200).
- Demyelinating diseases such as Guillain-Barré syndrome and multiple sclerosis (MS) are degenerative disorders in which in which the myelin sheath of neurons is compromised. This damage impairs signal conductivity in the affected nerves, causing deficiency in sensation, movement, cognition, or other functions. There is no cure for these diseases. Its most well-known form is MS, a disease in which the cellular subsets of the immune system have been implicated. For instance, on-going demyelination is often associated with infiltration of T cells and macrophages from the circulation as well as inflammatory activation of microglia (Kutzelnigg et al. Handb. Clin. Neurol. 2014, 122:15-58).
- There is a need for an improved method for treating neurodegenerative diseases. The method should be effective and well tolerated.
- WT=wild-type animal, Veh=animals treated with vehicle, MPTP-Ctrl=animals treated with MPTP and 0.5% methylcellulose, MPTP-ZLN=animals treated with MPTP and ZLN005, STZ-Ctrl=animals treated with STZ and 0.5% methylcellulose, STZ-ZLN=animals treated with STZ and ZLN005, 5XFAD-Ctrl=AD transgenic animals treated with 0.5% methylcellulose, 5XFAD-ZLN=AD transgenic animals treated with ZLN005, ALS-Ctrl=ALS transgenic animals treated with 0.5% methylcellulose, ALS-ZLN=ALS transgenic animals treated with ZLN005.
- FF=Ppargc1aLoxP/LoxP mice, Cre=Ppargc1aLoxP/LoxPCx3cr1CreER mice.
-
FIG. 1 shows the survival rate as a percentage of Cre animals and FF animals within 30 hours after MPTP induction. -
FIG. 2 shows that Ppargc1a activator ZLN005 increases expression of genes Pgc1a (Ppargc1a), Tfam, Nrf2, Ucp3, Ant, Sod1, Sod2 and upregulates tyrosine hydroxylase (Th). -
FIG. 3 shows the Pgc1a (Ppargc1a) protein expression in microglia in animals treated with Veh, MPTP-Ctrl, and (MPTP-ZLN). -
FIG. 4 shows the glucose transporter Slc2a1 levels and lactic acid levels in animals treated with Veh, MPTP-Ctrl, and MPTP-ZLN. -
FIG. 5 shows immunohistochemical analysis of dopaminergic neurons in the substantia nigra of animals treated with Veh, MPTP-Ctrl, and MPTP-ZLN. -
FIG. 6 shows TNF-α levels secreted by microglia in Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN. -
FIG. 7 shows weights (g) of shredded nestlets by Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN. -
FIG. 8 shows latency of fall (seconds) of Cre animals and FF animals, treated with Veh, MPTP-Ctrl, and MPTP-ZLN. -
FIG. 9 shows relative expression level of several genes in animals treated with Veh, STZ-Ctrl, and STZ-ZLN. -
FIG. 10 shows % of microglia that express TNF-α+(A), % ThioltrackerViolethi (B), and % MitotrackerRedhi (C) in Veh, STZ-Ctrl, and STZ-ZLN. -
FIG. 11 shows mean disease scores of STZ-Ctrl and STZ-ZLN mice. -
FIG. 12 shows % of microglia that express IL1 (A) and TNFα (B), in WT, 5XFAD-Ctrl, and 5XFAD-ZLN. -
FIG. 13 shows % of microglia that express Mitotracker Greenhi (A), and % microglia that had taken up 2-NBDG (B), in WT, 5XFAD-Ctrl, and 5XFAD-ZLN. -
FIG. 14 shows % blood monocytes over circulating immune cells in WT, 5XFAD-Ctrl, and 5XFAD-ZLN. -
FIG. 15 shows nest building activities (g) in WT, 5XFAD-Ctrl, and 5XFAD-ZLN. -
FIG. 16 shows % of brain perivascular macrophages that express iNOS, IL6, and TNFα in WT, ALS-Ctrl, and ALS-ZLN. -
FIGS. 17A-B show latency of fall (seconds) of ALS transgenic animals, treated with 0.5% methylcellulose (Ctrl) or ZLN, at a constant speed (FIG. 17A ) and at an accelerating speed (FIG. 17B ) in a wheel-running test. -
FIG. 18 shows % survival vs. time after 100 days in ALS transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005. Animals were treated 3 times a week starting at 5, 10, and 15 weeks of age. -
FIG. 19 shows % of brain perivascular macrophages among total brain immune cells in the brain in WT, ALS-Ctrl, and ALS-ZLN. -
FIG. 20 shows % of brain perivascular macrophages that have taken up a glucose analog 2-NBDG in WT, ALS-Ctrl, and ALS-ZLN. -
FIGS. 21A and 21B show % of total monocytes and % of Ly6C+ inflammatory monocytes among circulating immune cells, in WT, ALS-Ctrl, and ALS-ZLN.FIG. 21C shows the serum TNF-α levels in WT, ALS-Ctrl, and ALS-ZLN. -
FIG. 22 shows latency of fall (seconds) of HD transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005. -
FIGS. 23A and 23B show latency of fall (seconds) in FF and Cre mice. FF=Ppargc1aLoxP/LoxP mice on DLB transgenic background, Cre=Ppargc1aLoxP/LoxPCx3cr1CreER mice on DLB transgenic background. -
FIGS. 24A and 24B show latency of fall (seconds) of DLB transgenic animals treated with 0.5% methylcellulose (Ctrl) or ZLN005. - Inflammatory responses in the brain, which can be demonstrated by changes in the properties of microglia, a cell type that is located only in the brain, are a common feature of human neurodegenerative diseases (Alzheimers Res Ther., 7(1):56. doi: 10.1186/s13195-015-0139-9, 2015). Yong (The Neuroscientist, 16:408-420, 2010) reports that inflammation of the central nervous system (CNS) (neuroinflammation) is a feature of all neurological disorders; microglia activation is a cause of this inflammatory response and microglia-mediated neuroinflammation is present in all neurodegenerative disorders.
- The inventors have discovered that Ppargc1a, a pleotropic regulator of cellular metabolism in many cell types, is an important regulator of all neurodegenerative diseases, in which neuroinflammation is mediated by microglia. The inventors have discovered a connection between Ppargc1 activation in microglia and its effect on the cognitive and motor functions of the whole organism. The inventors have discovered that Ppargc1a expression is decreased in humans and animal models with neurodegenerative diseases. The inventors have shown that Ppargc1a signaling in microglia is an important regulator of motor dysfunction and behavioral dysfunction in animal models and provided evidence that targeting Ppargc1a with its activator improves motor/behavior dysfunction in neurodegenerative diseases.
- The present invention is directed to a method for treating neurodegenerative diseases. The method comprises the step of administering an effective amount of a Ppargc1a activator to a subject suffering from a neurodegenerative disease.
- The inventors have demonstrated that 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole, CAS Number 49671-76-3, also known as ZLN005, is an effective Ppargc1a activator. ZLN005 can penetrate the blood-brain barrier to activate the Ppargc1a pathway in microglia, and is effective for treating neurodegenerative diseases.
- The chemical structure of ZLN005 is shown below.
- Neurodegenerative diseases, as used herein, refers to diseases that occur as a result of neurodegenerative processes, i.e., progressive loss of structure or function of neurons and/or death of neurons. Neurodegenerative diseases are incurable and debilitating, and patients typically have problems with movement (ataxias) and/or mental functioning (dementias). Neurodegenerative diseases include ALS, AD, PD, HD, frontotemporal degeneration disease, dementia with Lewy bodies, motor neuron diseases, demyelinating diseases (such as Guillain-Barre syndrome and multiple sclerosis), prion disease, spinocerebellar ataxia, and spinal muscular atrophy.
- The inventors have discovered that activation of the Ppargc1a pathway in microglia by ZLN005 can suppress microglia-mediated inflammatory responses. Deletion of Ppargc1a specifically in microglia accelerates neuropathological development in transgenic animal models of PD (MPTP) and dementia with Lewy bodies (SNCA*A53T). Furthermore, in transgenic animal models of P) (MPTP), AD (5XFAD and icv-STZ), H1D (R6/2), ALS (SOD1*G93A), and dementia with Lewy bodies (SNCA*A53T), treatment with ZLN005 significantly alleviates behavioral dysfunction. Collectively, ZLN005 represents a treatment for all neurodegenerative disorders in which microglia-mediated neuroinflammation contributes to the disease development.
- Circulating monocytes from the blood give rise to brain perivascular macrophages, which reside just outside the vascular basement membrane. They are the main antigen-presenting cells of the CNS, thus playing an important role in immune reactions involving the brain. Along with microglia, brain perivascular macrophages are the earliest macrophages from peripheral tissues that response to brain injuries. Their location at the interface between brain parenchyma and the vascular system and their continuous circulation in and out of blood vessels suits them ideally for this function.
- The inventors have discovered that brain perivascular macrophages in ALS transgenic mice exhibited an inflammatory phenotype, evidenced by a significant increase in iNOS production. By administering ZLN005 to these animals, iNOS production in the brain perivascular macrophages decreased and neuroinflammation was suppressed.
- The inventors have provided evidence that ALS transgenic mice treated with ZLN005 had improved motor skills compared with untreated ALS transgenic mice.
- The inventors have also shown that ALS transgenic mice exhibited hind limb paralysis at approximately 100 days and died shortly after. By administering ZLN005 to these animals, the onset of hind limb paralysis was delayed and the survival rate increased.
- Administration of streptozocin (STZ) by intracerebral injection to mice and non-human primates is a well-established animal model of the sporadic form of AD (Arabpoor et al Adv Biomed Res, 1:50, 2012)
- The inventors have discovered that administering ZLN005 to the STZ-treated animal resulted in increased expression of genes involved in Ppargc1a signaling, mitochondrial metabolism, and anti-oxidative defense in the brain
- The principal chemical constituent of the amyloid plaques and amyloid angiopathy characteristic of AD is an approximately 4.2 KD protein of β-amyloid peptide. STZ-treated animals significantly increase the expression of β-amyloid peptide. By administering ZLN005, the expression of genes involved in β-amyloid generation in the brains of STZ-treated animals was decreased to normal levels.
- The inventors have shown that microglia in STZ-treated mice exhibited an inflammatory phenotype, evidenced by a significant increase in TNF-α production. Administering ZLN005 to the STZ-treated mice resulted in suppression of TNF-α production in the microglia cells and suppression of the microglia-mediated neuroinflammation. The inventors also discovered that ZLN005 modulated metabolic dysfunction in microglia induced by STZ, as evidenced by enhanced glycolysis, mitochondrial potential, and glutathione production in microglia isolated from STZ-treated animals and treated by ZLN005.
- STZ-treated mice exhibit several signs and symptoms of behavioral dysfunction and systemic inflammation including bleeding from the nose, eyes, ears, paralysis of hands and feet (Arabpoor et al Adv Biomed Res, 1:50, 2012). Administering ZLN005 to the STZ-treated mice resulted in a significant reduction in the disease severity.
- Administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at a sub-lethal dose to mice and non-human primates results in a neurodegenerative disease that is similar to PD in its pathology and symptoms, and this well established animal model has been widely used for drug screening (Blandini et al, FEBS J, 279:1156-66, 2012).
- The inventors have generated microglia specific knockout of Ppargc1a, in which Ppargc1a signaling is absent in these cells and not in other cells of the brain such as neurons. When PD was induced with MPTP in wild-type and microglia specific knockout animals, the knockout animals had significantly more severe motor impairment, indicating that Ppargc1a signaling in microglia regulates behavioral dysfunction.
- By analyzing the expression of specific genes in the brain, the inventors have shown that MPTP markedly inhibited Ppargc1a signaling and the anti-oxidant defense system. By administering ZLN005 to the MPTP-treated animal, the expression of genes involved in Ppargc1a signaling, anti-oxidative stress, and dopamine synthesis in the brains of those animals was increased. In addition, since ZLN005 was administered orally, it penetrated the blood-brain barrier as indicated by its activation of the Ppargc1a pathway in microglia.
- The inventors have shown that microglia in MPTP-treated mice exhibited an inflammatory phenotype, evidenced by a significant increase in TNF-α production and a decrease in mitochondrial biogenesis. Administering ZLN005 to the MPTP-treated mice resulted in decreased TNF-α production in the microglia cells and suppression of microglia-mediated neuroinflammation.
- At the organismal level, MPTP-treated mice exhibit profound loss of fine motor skills and behavioral dysfunctions. The inventors have shown that by administering ZLN005 to the MPTP-treated mice, the motor skills of those mice were improved.
- Targeting Ppargc1a with its activator, ZLN005, ameliorates motor dysfunction in Huntington's disease (HD). The inventors have provided evidence that targeting Ppargc1a with ZLN005 improved motor skills in HD transgenic mice. The inventors have shown that HD transgenic mice treated with ZLN005 exhibited improved motor skills, as indicated by increases in their latency to fall, compared with untreated HD transgenic mice.
- Dementia with Lewy bodies
- Targeting Ppargc1a with its activator ZLN005 ameliorates motor dysfunction in dementia with Lewy bodies. The inventors have shown that microglia-specific deletion in transgenic DLB animals caused further deterioration of motor function in the animals. The inventors have also demonstrated that Ppargc1a activator, ZLN005, improved motor skills in DLB transgenic animals.
- Frontotemporal degeneration, also called frontotemporal dementia (FTD) is a disease that is closely related to ALS in which progressive degeneration occurs in the frontal and temporal lobes of the brain.
- By suppressing microglia-mediated inflammation, ZLN005 improves motor skills in FTD transgenic mice and increases their survival rate.
- Motor neuron diseases are neurodegenerative disorders, similar to ALS, that selectively affect motor neurons. Microglia-mediated inflammation is a key factor for development factor for motor neuron diseases. By suppressing microglia-mediated inflammation, ZLN005 slows down and halts disease development.
- ZLN005 is effective in treating demyelinating diseases by reducing the inflammatory activation of microglia, which might be more susceptible to inflammatory stimuli in demyelinating diseases such as multiple sclerosis. By suppressing metabolic dysregulation and subsequent inflammatory transformation of microglia, ZLN005 promotes myelin repair and regeneration.
- The present invention provides pharmaceutical compositions comprising one or more pharmaceutically acceptable carriers and an active compound of 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole (ZLN005), or a pharmaceutically acceptable salt, or a solvate thereof. The active compound or its pharmaceutically acceptable salt or solvate in the pharmaceutical compositions in general is in an amount of about 0.01-20% (w/w) for a topical formulation; about 0.1-5% for an injectable formulation, 0.1-5% for a patch formulation, about 1-90% for a tablet formulation, and 1-100% for a capsule formulation.
- In one embodiment, the pharmaceutical composition can be in a dosage form such as tablets, capsules, granules, fine granules, powders, syrups, suppositories, injectable solutions, patches, or the like. In another embodiment, the pharmaceutical composition can be an aerosol suspension of respirable particles comprising the active compound, which the subject inhales. The respirable particles can be liquid or solid, with a particle size sufficiently small to pass through the mouth and larynx upon inhalation. In general, particles having a size of about 1 to 10 microns, preferably 1-5 microns, are considered respirable.
- In another embodiment, the active compound is incorporated into any acceptable carrier, including creams, gels, lotions or other types of suspensions that can stabilize the active compound and deliver it to the affected area by topical applications. The above pharmaceutical composition can be prepared by conventional methods.
- Pharmaceutically acceptable carriers, which are inactive ingredients, can be selected by those skilled in the art using conventional criteria. Pharmaceutically acceptable carriers include, but are not limited to, non-aqueous based solutions, suspensions, emulsions, microemulsions, micellar solutions, gels, and ointments. The pharmaceutically acceptable carriers may also contain ingredients that include, but are not limited to, saline and aqueous electrolyte solutions; ionic and nonionic osmotic agents such as sodium chloride, potassium chloride, glycerol, and dextrose; pH adjusters and buffers such as salts of hydroxide, phosphate, citrate, acetate, borate; and trolamine; antioxidants such as salts, acids and/or bases of bisulfite, sulfite, metabisulfite, thiosulfite, ascorbic acid, acetyl cysteine, cysteine, glutathione, butylated hydroxyanisole, butylated hydroxytoluene, tocopherols, and ascorbyl palmitate; surfactants such as lecithin, phospholipids, including but not limited to phosphatidylcholine, phosphatidylethanolamine and phosphatidyl inositiol; poloxamers and poloxamines, polysorbates such as polysorbate 80,
polysorbate 60, andpolysorbate 20, polyethers such as polyethylene glycols and polypropylene glycols; polyvinyls such as polyvinyl alcohol and povidone; cellulose derivatives such as methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and hydroxypropyl methylcellulose and their salts; petroleum derivatives such as mineral oil and white petrolatum; fats such as lanolin, peanut oil, palm oil, soybean oil; mono-, di-, and triglycerides; polymers of acrylic acid such as carboxypolymethylene gel, and hydrophobically modified cross-linked acrylate copolymer; polysaccharides such as dextrans and glycosaminoglycans such as sodium hyaluronate. Such pharmaceutically acceptable carriers may be preserved against bacterial contamination using well-known preservatives, these include, but are not limited to, benzalkonium chloride, ethylenediaminetetraacetic acid and its salts, benzethonium chloride, chlorhexidine, chlorobutanol, methylparaben, thimerosal, and phenylethyl alcohol, or may be formulated as a non-preserved formulation for either single or multiple use. - For example, a tablet formulation or a capsule formulation of the active compound may contain other excipients that have no bioactivity and no reaction with the active compound. Excipients of a tablet or a capsule may include fillers, binders, lubricants and glidants, disintegrators, wetting agents, and release rate modifiers. Binders promote the adhesion of particles of the formulation and are important for a tablet formulation. Examples of excipients of a tablet or a capsule include, but not limited to, carboxymethylcellulose, cellulose, ethylcellulose, hydroxypropylmethylcellulose, methylcellulose, karaya gum, starch, tragacanth gum, gelatin, magnesium stearate, titanium dioxide, poly(acrylic acid), and polyvinylpyrrolidone. For example, a tablet formulation may contain inactive ingredients such as colloidal silicon dioxide, crospovidone, hypromellose, magnesium stearate, microcrystalline cellulose, polyethylene glycol, sodium starch glycolate, and/or titanium dioxide. A capsule formulation may contain inactive ingredients such as gelatin, magnesium stearate, and/or titanium dioxide.
- For example, a patch formulation of the active compound may comprise some inactive ingredients such as 1,3-butylene glycol, dihydroxyaluminum aminoacetate, disodium edetate, D-sorbitol, gelatin, kaolin, methylparaben, polysorbate 80, povidone, propylene glycol, propylparaben, sodium carboxymethylcellulose, sodium polyacrylate, tartaric acid, titanium dioxide, and purified water. A patch formulation may also contain skin permeability enhancer such as lactate esters (e.g., lauryl lactate) or diethylene glycol monoethyl ether.
- Topical formulations including the active compound can be in a form of gel, cream, lotion, liquid, emulsion, ointment, spray, solution, and suspension. The inactive ingredients in the topical formulations for example include, but not limited to, diethylene glycol monoethyl ether (emollient/permeation enhancer), DMSO (solubility enhancer), silicone elastomer (rheology/texture modifier), caprylic/capric triglyceride, (emollient), octisalate, (emollient/UV filter), silicone fluid (emollient/diluent), squalene (emollient), sunflower oil (emollient), and silicone dioxide (thickening agent).
- The present invention is directed to a method of treating neurodegenerative diseases. The method comprises the step of administering to a subject suffering from a neurodegenerative disease an effective amount of 2-(4-tert-butylphenyl)-1H-benzimidazole, 2-[4-(1,1-dimethylethyl)phenyl]-1H-benzimidazole, for treating the neurodegenerative disease. “An effective amount,” as used herein, is the amount effective to treat the neurodegenerative disease by ameliorating the pathological condition or reducing the symptoms of the disease.
- In one embodiment, the neurodegenerative disease is ALS and the method reduces or alleviates motor dysfunction or behavioral dysfunction in an ALS patient. For example, the method improves early symptoms such as difficulty in walking or doing normal daily activities; weakness in legs, feet, ankles, or hand; tripping or clumsiness; slurring of speech or trouble swallowing; and muscle cramps and twitching in the arms, shoulders and tongue. The method may also improve later symptoms such as difficulty in breathing. In another important embodiment, the method improves survival rate and length of survival.
- In one embodiment, the neurodegenerative disease is AD and the method reduces or alleviates the disease symptoms and improves the cognitive and motor functions. For example, the method improves confusion, irritability, aggression, mood swings, trouble with language, and/or long-term memory loss in a patient. The method may also slow down the disease progression.
- In one embodiment, the neurodegenerative disease is PD and the method reduces or alleviates motor dysfunction or behavioral dysfunction in a patient. For example, the method improves movement-related symptoms such as shaking, rigidity, slowness of movement, and difficulty with fine motor skills, walking, and gait.
- In one embodiment, the neurodegenerative disease is HD and the method reduces or alleviates motor dysfunction in a patient. For example, the method improves involuntary and/or voluntary movement-related symptoms such as involuntary jerking or writhing movements (chorea); muscle problems (e.g., rigidity or muscle contracture (dystonia)); slow or abnormal eye movements; impaired gait, posture and balance; difficulty with the physical production of speech or swallowing.
- In one embodiment, the neurodegenerative disease is dementia with Lewy bodies (DLB) and the method reduces or alleviates motor dysfunction and cognitive decline in a patient. For example, the method improves PD-like symptoms such as motor coordination, difficulties with walking and swallowing, inability to maintain normal postures, rigidity as well as loss of memory and decline in thinking and reasoning. The method may also halt or slow down disease progression.
- In one embodiment, the neurodegenerative disease is frontotemporal degeneration (FTD) and the method reduces or alleviates the disease symptoms that are associated with language skills and social interactions. For example, the method improves abilities to speak coherently, to organize thoughts and daily activities, to interact normally in social settings and alleviates symptoms of disinhibition, loss of sympathy and empathy, lack of executive control, hyperorality, and apathy. The method may also halt or slow down disease progression.
- In one embodiment, the neurodegenerative disease is a motor neuron disease (MND) and the method reduces or alleviates motor dysfunction as well as improves survival rate and length of survival of patients with these diseases. For example, the method improves movement-related symptoms such as troubles with walking, maintaining normal gait, controlling balance, difficulties with fine motor coordination, slowness of movement, swallowing, and breathing.
- In one embodiment, the neurodegenerative disease is a demyelinating disease such as Guillain-Barre syndrome or multiple sclerosis (MS) and the method reduces or alleviates behavioral dysfunction and cognitive impairment in patients with these diseases. For example, the method improves early symptoms such as blurred vision, tingling sensation, numbness and weakness in limbs, lack of coordination. The method may also improve advanced symptoms such as difficulty in walking, tremors, muscle spasms, paralysis, troubling articulating thoughts and speaking. The method may also improve survival rate and length of survival.
- The pharmaceutical composition of the present invention can be applied by systemic administration or local administration. Systemic administration includes, but is not limited to oral, parenteral (such as intravenous, intramuscular, subcutaneous or rectal), and inhaled administration. In systemic administration, the active compound first reaches plasma and then distributes into target tissues. Oral administration is a preferred route of administration for the present invention. Local administration includes topical administration.
- Dosing of the composition can vary based on the extent of the injury and each patient's individual response. For systemic administration, plasma concentrations of the active compound delivered can vary; but are generally 1×10−10-1×10−4 moles/liter, and preferably 1×10−8-1×10−5 moles/liter.
- In one embodiment, the pharmaceutical composition is administrated orally to a subject. The dosage for oral administration is generally 0.1-100, 0.1-20, or 1-50 mg/kg/day, depending on the subject's age and condition. For example, the dosage for oral administration is 0.1-10, 0.5-10, 1-10, 1-5, or 5-50 mg/kg/day for a human subject. In one embodiment, the active compound can be applied orally to a human subject at 1-100, 10-50, 20-1000, 20-500, 100-800 sage, or 200-600 mg/dosage, 1-4 times a day, depends on the patient's age and condition.
- In one embodiment, the pharmaceutical composition is administrated intravenously to a subject. The dosage for intravenous bolus injection or intravenous infusion is generally 0.03 to 5 or 0.03 to 1 mg/kg/day.
- In one embodiment, the pharmaceutical composition is administrated subcutaneously to the subject. The dosage for subcutaneous administration is generally 0.3-20, 0.3-3, or 0.1-1 mg/kg/day.
- In one embodiment, the composition is applied topically to an area and rubbed into it. The composition is topically applied at least 1 or 2 times a day, or 3 to 4 times per day, depending on the medical issue and the disease pathology. In general, the topical composition comprises about 0.01-20%, or 0.05-20%, or 0.1-20%, or 0.2-15%, 0.5-10, or 1-5% (w/w) of the active compound. Typically 0.2-10 mL of the topical composition is applied to the individual per dose. The active compound passes through skin and is delivered to the site of discomfort.
- Those of skill in the art will recognize that a wide variety of delivery mechanisms are also suitable for the present invention.
- The present invention is useful in treating a mammal subject, such as humans, horses, dogs and cats. The present invention is particularly useful in treating humans.
- The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be construed as being limiting.
- All animal studies were conducted under protocols approved by APLAC from Stanford University. 8-10 week old C57BL6/J mice were used in all experiments. Data were presented as mean±SEM. Two-tailed Student's t-test, two-way ANOVA, and log rank test were used for statistical analyses. A p value of <0.05 was considered to be statistically significant.
- Veh=animals treated with PBS as vehicle, MPTP-Ctrl=animals treated with MPTP and 0.5% methylcellulose, MPTP-ZLN=animals treated with MPTP and ZLN005. FF=Ppargc1aLoxP/LoxP mice, Cre=Ppargc1aLoxP/LoxPCx3cr1CreER mice.
- Animals with microglia-specific deletion of Ppargc1a were generated by crossing mice harboring the floxed allele of Ppargc1a (Ppargc1aLoxP/LoxP) with those expressing Tamoxifen inducible Cre recombinase under the control of Cx3cr1 promoter (Cx3cr1CreER) To induce Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing cells, Tamoxifen (Sigma) in 200 μl corn oil (50 mg/ml, Sigma) was administered to 3 weeks old (Ppargc1aLoxP/LoxPCx3cr1CreER) mice twice at 48-hour intervals (Wolf et al
Front Cell Neurosci 2013, 18; 7:26. doi: 10.3389/fncel.2013.00026). Littermates carrying the floxed allele of Ppargc1a alleles but lacking expression of Cre recombinase (Ppargc1aLoxP/LoxP) were used as controls. Animals were rested for another 5-6 weeks before MPTP was administered. - To induce symptoms of PD, MPTP (20 mg/kg) was administered intraperitoneally in sterile PBS 4 times at 2-hour intervals on
day 1. Control animals received a similar volume of PBS. After MPTP induction, 7 out of 12 Cre animals died within 30 hours, while 3 out of 16 FF animals died within 30 hours. The results are shown inFIG. 1 . Log-rank test was used for statistical analysis. The results show that Ppargc1a deletion in microglia accelerates MPTP-induced mortality. - Ppargc1a, an inducer of mitochondrial biogenesis, is widely expressed in cells throughout the body. Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally once a day starting 30 minutes after MPTP administration on Day 1 (when animals exhibited PD-like symptoms) for 3 consecutive days in 0.5% methylcellulose (Sigma).
- For gene expression studies, animals were sacrificed on Day 4, 24 hours after the 3rd oral dosage of ZLN005, and PBS-perfused brain tissues were processed for RNA isolation, cDNA synthesis, and real-time quantitative PCR (Invitrogen). The results are summarized in
FIG. 2 . The results show that the Ppargc1a activator, ZLN005, increases expression of genes involved in Ppargc1a signaling (Pgc1a), mitochondrial genes (Tfam, Nrf2, Ucp3-downstream targets of Ppargc1a), and anti-oxidative stress genes (Ant, Sod1, Sod2) in the brains of MPTP-treated animals. There was also a 15% upregulation of tyrosine hydroxylase (Th), the enzyme that is critical for dopamine synthesis in the brain. These results indicate that ZLN005 penetrated the blood-brain barrier and activated the Ppargc1a pathway in the brain. Unpaired t-tests were used for statistical analyses. - For protein expression studies, animals were sacrificed on Day 4, 24 hours after the 3rd oral dosage of ZLN005 and PBS-perfused brain tissues were digested with Collagenase IV, processed for microglia isolation by flow cytometry (Ginhoux et al Science, 330:841-5, 2010), and immunoblot analysis of Ppargc1a expression. The results are summarized in
FIG. 3 . The results show that MPTP administration suppressed Ppargc1a protein expression in microglia, and that ZLN005 penetrated the blood-brain barrier and enhanced Ppargc1a protein expression in microglia in MPTP-treated animals. - For metabolic phenotyping studies, animals were sacrificed on Day 4, 24 hours after the third oral dosage of ZLN005 and PBS-perfused brain tissues were processed for microglia isolation and flow cytometry analysis of glucose metabolism in microglia.
- For measuring microglial expression of glucose transporter Slc2a1, MPTP-ZLN (n=10), MPTP-Ctrl (n=14), and Veh animals (n=14) were sacrificed. Brain microglia were phenotyped with antibody directed against glucose transporter Slc2a1 (RnD) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- For measuring microglial glycolysis, MPTP-ZLN (n=8), MPTP-Ctrl (n=6), and Veh animals (n=6) were sacrificed. Microglia were sorted by flow cytometry and subjected to lactic acid production assays ex vivo (Cayman Chem) for glycolysis measurement.
- The results are summarized in
FIG. 4 . Y-axis represents Slc2a1 expression in median fluorescence units (MFI, A) and lactic acid production in micromolar units (mM, B). The results show that microglia in MPTP-treated mice exhibited a glycolytic activation phenotype, measured by increases in glucose transporter Slc2a1 expression (A) and lactic acid production (B), in non-treated MPT-intoxicated animals when compared with Veh mice. The results also show that by administering ZLN005 to MPTP-treated animals, glucose transporter expression and lactic acid production in microglia of these treated animals decreased, and thus their metabolic dysfunction was corrected. ANOVA was used for statistical analyses. - Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally once a day starting 30 minutes after MPTP administration on
Day 1 for 7 consecutive days in 0.5% methylcellulose (Sigma). For protein expression studies, animals were sacrificed onDay 8, 24 hours after the 7th oral dosage of ZLN005, and paraformaldehyde-perfused brain tissues were processed for immunohistochemical analysis of dopaminergic neurons in the substantia nigra. - One representative picture of each of Veh (n=3), MPTP-Ctrl (n=5), and MPTP-ZLN (n=5) animals is shown in
FIG. 5 . The brown staining represents tyrosine hydroxylase expression in dopaminergic neurons of the substantia nigra. The results show that MPTP administration led to a depletion of these neurons, which was reversed by treatment with ZLN005. - Animals with microglia-specific deletion of Ppargc1a and controls were generated as described in Example 1. For flow cytometry studies, animals were sacrificed on Day 4, 24 hours after the 3rd oral dosage of ZLN005. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and isolated by flow cytometry.
- For measuring microglial production of TNF-α, MPTP-ZLN (n=5), MPTP-Ctrl (n=10) and Veh (n=6) animals were sacrificed. Isolated microglia were subjected to a 2-hour ex vivo TNF-α production assay. Supernatant samples were collected for TNF-α measurement with CBA technology (BD).
- The results are summarized in
FIG. 6 . The results show that MPTP administration induced TNF-α secretion by microglia in FF animals and this induction of TNF-α production was significantly higher in Cre animals. Furthermore, ZLN005 suppressed TNF-α production in microglia isolated from MPTP-treated FF animals but failed to exert its anti-inflammatory effects on microglia isolated from MPTP-treated Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia. These results indicate that ZLN005 suppresses expression of the inflammatory cytokine TNF-α in microglia via its activation of microglia specific Ppargc1a. Unpaired t-tests were used for statistical analyses. - Impaired nest-building skill has been widely used as one of the most reliable indication of motor dysfunction in the MPTP model of PD (Sedelis et al, Behav Brain Res, 125:109-25, 2001). In this test, animals are given cotton pads to be used as nestling, and are tested for their abilities to tear off the cotton pads into small pieces to build a nest; these abilities require fine motor coordination.
- Animals with microglia-specific deletion of Ppargc1a and controls were generated as described in Example 1. To induce symptoms of PD, MPTP was administered intraperitoneally in sterile PBS 4 times at 2-hour intervals on
day 1. ZLN005 was administered once 30 minutes after the first dose of MPTP, when animals exhibited PD symptoms. Control animals received a similar volume of PBS. Immediately after the last dosage of MPTP, each animal was put in one cage and given two cotton pads to be used in nestling; the appearance of the cotton pads was evaluated 16 hours later. - The results are shown in
FIG. 7 as weights of shredded nestlets (n=9-10 animals per treatment group). Animals who received PBS exhibited normal nest-building activity, while MPTP-treated mice failed to tear off the cotton pads into small pieces to make their nest. The results show that with one dose of ZLN005 at 25 mg/kg after disease induction, MPTP-treated animals exhibited marked improvement in their fine motor skills. MPTP-ZLN animals generated more cotton-debris in comparison to the MPTP-Ctrl group. Further, this effect was present only in FF animals but not in Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia. The results show that ZLN005 improves fine motor skills in MPTP-treated animals, and this beneficial effect of ZLN005 on nest building activity requires microglia specific Ppargc1a. Unpaired t-tests were used for statistical analyses. - The wheel-running test has been widely used as one of the most reliable measurements of behavioral dysfunction in animal models of neurodegeneration (Sedelis et al, Behav Brain Res, 125:109-25, 2001). In this study, animals were trained to run on a treadmill at specific speed and training duration before undergoing a formal test of motor skills. Motor performance of animals was evaluated by the time (seconds) that they remained running on the treadmill, which required motor coordination and strength. Longer running time on treadmill suggests enhanced motor skills.
- Animals with microglia-specific deletion of Ppargc1a were generated as described in Example 1. At 7 weeks of age, these animals were subjected to 1.5 weeks of training on a treadmill at a
constant speed 10 rpm (rotations per minute) and then 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 10 weeks of age, animals were treated with MPTP and tested for motor performance at an accelerating speed from 5-15 rpm. - Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally to the animals once a day starting 30 minutes after MPTP administration on
Day 1 for 7 consecutive days in 0.5% methylcellulose (Sigma) and the animals were trained on a treadmill at an accelerating speed fromDay 2 to Day 7 and tested onDay 8. The results of latency to fall in seconds of each group (n=5-21 per group) onDay 8 are shown inFIG. 8 . -
FIG. 8 shows that MPTP treatment impaired wheel running time in FF animals and ZLN005 treated mice performed significantly better than vehicle treated mice. The ability of ZLN005 to improve wheel-running skills is not present in Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia. These results indicate that ZLN005 improves motor skills in MPTP-treated animals in a microglial Ppargc1a dependent manner. Unpaired t-tests were used for statistical analyses. - To induce symptoms of AD, STZ (3 mg/kg, Sigma) was administered via intracerebral injection (Kalafatakis et al, Int J Neurosci, PMID 24494726, 2014). This is a well-established model of the sporadic form of AD. Briefly, animals were anesthetized and STZ solution in 5 μl artificial cerebrospinal fluid (Harvard Apparatus) was injected through the skull with a 50 μl syringe. Control animals received a similar volume of artificial cerebrospinal fluid without STZ. The injections were performed twice, on
Day 1 and Day 3. - Veh=animals treated with artificial cerebrospinal fluid as vehicle in STZ model, STZ-Ctrl=animals treated with STZ and 0.5% methylcellulose, STZ-ZLN=animals treated with STZ and ZLN005, WT=wild-type animals, 5XFAD-Ctrl=transgenic AD animals treated with 0.5% methylcellulose, 5XFAD-ZLN=transgenic AD animals treated with ZLN005.
- Ppargc1a, which is an activator of mitochondrial biogenesis, is widely expressed in cells throughout the body. Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally once on
Day 1 in 0.5% methylcellulose (Sigma) immediately before the first dose of STZ. Treatment with ZLN005 was continued on a daily schedule until Day 4. - For gene expression studies, animals were sacrificed on Day 4, and PBS-perfused brain tissues were processed for RNA isolation, cDNA synthesis and real-time quantitative PCR (Invitrogen).
- The results are summarized in
FIG. 9 . The results show that Ppargc1a activator ZLN005 increased expression of genes involved in Ppargc1a signaling and antioxidant defense (Tfam, Cytc), and decreased the expression of genes involved in β-amyloid generation (App and Psen1), in the brains of STZ-treated-animals (n=10 animal per condition). Unpaired t-tests were used for statistical analyses. - Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally once in 0.5% methylcellulose (Sigma) immediately before the first dose of STZ on Day1. Treatment with ZLN005 was continued on a daily schedule until Day 7.
- For microglia analysis, animals were sacrificed on Day 7, and PBS-perfused brain tissues were digested with Collagenase IV and processed for flow cytometry. Microglia were phenotyped with antibodies directed against mouse TNF-α (Biolegend) and metabolic dyes ThioltrackerViolet, and MitotrackerRed (Invitrogen) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo). The results are summarized in
FIG. 10 . - The results show that ZLN005 suppressed TNF-α production in microglia isolated from STZ-Ctrl (n=8) when compared with Veh animals (n=8) (A), which indicates that neuroinflammation was inhibited. The results also show that ZLN005 enhanced (B) the production of glutathione, an antioxidant with neuroprotective properties, and (C) mitochondrial potential, a marker of functional integrity of mitochondria, in microglia isolated from STZ-treated animals (n=4). These results indicate that ZLN005 reverses metabolic dysfunction in microglia induced by STZ. ANOVA was used for statistical analyses.
- Ppargc1a activator ZLN005 (25 mg/kg, Sigma) was administered orally once on
Day 1 in 0.5% methylcellulose (Sigma) immediately before the first dose of STZ. Treatment with ZLN005 continued on a daily schedule until Day 4, when the animals were evaluated. - The STZ-ZLN mice (n=14) appeared more active, less lethargic and none of the animals were paralyzed, compared with STZ-Ctrl mice (n=15). In STZ-ZLN mice, 33% of the animals were active, 66% showed evidence of lethargy, and none were paralyzed. In contrast, in STZ-Ctrl mice, only 10% were active, 70% were lethargic, and 20% of these animals had hind limb paralysis. Veh animals receiving intracerebral artificial cerebrospinal fluid exhibited normal behavior.
- The inventors designed a disease scoring system based on evidence of tissue inflammation: with scores of 1 (mild inflammation, increased vascularization/bleeding of internal organs), 2 (moderate inflammation, severe vascularization/bleeding of internal organs), and 3 (severe inflammation, intestinal or stomach swelling). The disease scoring system is also based on physical activity with scores of 1 (lethargic, general poverty of movements with signs of lethargy), 2 (inactive, lack of movement for more than 15 consecutive seconds), and 3 (paralysis of either front or hind limbs). The disease score presented in the example is the total score of the two scoring systems.
- The mean disease scores of animals on day 4 in STZ-Ctrl and STZ-ZLN are shown in
FIG. 11 . STZ-ZLN mice had a significantly lower mean disease score (1.6) compared to STZ-Ctrl (2.5), indicating that the disease severity was improved by the ZLN005 treatment. Animals receiving intracerebral artificial cerebrospinal fluid behaved normally and had a mean score of 0. Unpaired t-test was used for statistical analysis. - 5XFAD transgenic mice, which are model of familial AD, were purchased from Jackson Laboratories (Oakley et al J Neurosci. 26:10129-40, 2006). These animals overexpress both mutant human APP(695) with the Swedish (K670N, M671L), Florida (I716V), and London (V717I) Familial Alzheimer's Disease (FAD) mutations and human PS1 harboring two FAD mutations, M146L and L286V. These transgenic mice rapidly recapitulate major features of amyloid pathology in AD by 8-10 weeks of age. Microglia abnormalities and neuroinflammation are also pronounced within this time window. Subsequently, neurodegeneration and behavioral dysfunction that mimic cognitive and psychiatric symptoms of human AD begin and are pronounced by 4-5 months of age.
- AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- For studies of microglia, 5XFAD-ZLN (n=10), 5XFAD-Ctrl (n=8) and WT (n=11) animals were sacrificed at 7 weeks of age. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry. Brain microglia were phenotyped with antibodies directed against mouse IL1 and TNFα (Biolegend) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- The results are summarized in
FIG. 12 ; Y-axis represents % of microglia that express IL1 (A) and TNFα (B). The results show that microglia in AD transgenic mice exhibited an inflammatory phenotype, evidenced by a significant increase in IL1 production in 5XFAD-Ctrl when compared with WT mice. The results also show that by administering ZLN005 to AD transgenic animals, IL1 and TNFα production in microglia of these treated animals decreased and thus neuroinflammation was suppressed. ANOVA was used for statistical analyses. - AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- For studies of microglia, 5XFAD-ZLN (n=10) and 5XFAD-Ctrl (n=8) animals and WT animals (n=11) were sacrificed at 7 weeks of age. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry. Brain microglia were phenotyped with 2-NBDG and MitotrackerGreen (Invitrogen) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- The results are summarized in
FIG. 13 ; Y-axis represents % of microglia that highly expressed MitotrackerGreen (A) and had taken up 2-NBDG (B). Mitochondrial respiration and glycolysis are two key energy generating pathways in living cells. In immune cells like microglia, inflammatory transformation is associated with upregulation of glucose utilization and depression of mitochondrial biogenesis and function. The results show that microglia in 5XFAD-Ctrl exhibited a decrease in mitochondrial mass, measured by Mitotracker Green (A), and exhibited a glycolytic activation phenotype, evidenced by a significant increase in glucose uptake, measured by 2-NBDG incorporation (B), when compared with WT animals. The results also show that by treating AD transgenic animals with ZLN, (A) mitochondrial mass in the cells of 5XFAD-ZLN mice was enhanced, and (B) glucose uptake in microglia of these treated animals decreased, and thus their metabolic dysfunction was corrected. ANOVA was used for statistical analyses. - AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age.
- For measuring the frequency of CD115+CD11b+ blood monocytes, 5XFAD-ZLN (n=5), 5XFAD-Ctrl (n=4), and WT animals (n=4) were sacrificed at 7 weeks of age.
- The results are summarized in
FIG. 14 ; Y-axis represents % of total circulating monocytes among circulating immune cells. The results show that the percentage of blood monocytes was increased in 5XFAD-Ctrl when compared with WT mice. The results also show that by administering ZLN005 to AD transgenic animals, the percentage of monocytes decreased. ANOVA was used for statistical analysis. - As described in Example 7, nest-building skill is one of the most reliable measurements of motor function. In this test, AD transgenic animals were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 3 weeks of age. At 7 weeks of age, animals were given cotton pads and the amount of cotton that was shredded over a 24-hour period was measured. The nest building activities (g) are shown in
FIG. 15 . ZLN005 treatment (n=10) significantly increased the amount of cotton shredded by 5XFAD-ZLN animals in comparison to 5XFAD-Ctrl animals (n=8), indicating that motor skills of AD animals were improved. Unpaired t-test was used for statistical analysis. - WT=wild-type animals, ALS-Ctrl=transgenic ALS animals treated with 0.5% methylcellulose, ALS-ZLN=transgenic ALS animals treated with ZLN005.
- ALS transgenic animals were purchased from Jackson Laboratories. These animals express the G93A mutation in the gene SOD1 which has been implicated as the cause of the disease in a subset of human subjects with familial ALS. The animals exhibit hind limb paralysis, a classical symptom of ALS, upon 100-110 days of age and rapidly succumb. These animals represent a gold standard model for therapeutic discovery in the field of ALS research.
- ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- For study of brain perivascular macrophages, ALS-Ctrl (n=8), ALS-ZLN (n=12), and WT animals (n=12) were sacrificed at 13 weeks of age. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry. Brain perivascular macrophages were phenotyped with antibodies directed against mouse iNOS, IL6, and TNFα (Biolegend) for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- The results are summarized in
FIG. 16 ; Y-axis represents % of brain perivascular macrophages that express iNOS (A), IL6 (B) and TNFα (C). The results show that brain perivascular macrophages in ALS transgenic mice exhibit an inflammatory phenotype, evidenced by a significant increase in iNOS, IL6, and TNFα production in ALS-Ctrl mice when compared with WT animals. The results also show that by administering ZLN005 to ALS transgenic animals, iNOS production in the brain perivascular macrophages of these treated animals decreased and thus neuroinflammation was suppressed. IL6 and TNFα production in the brain perivascular macrophages of ZLN005 treated animals were also suppressed, although these differences did not reach statistical significance. ANOVA was used for statistical analyses. - ALS transgenic mice were orally treated 3 times a week for 4 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 9 weeks of age.
- A wheel-running test was performed similarly to that described in Example 8. The animals started training at 13 weeks of age for 1.5 weeks of training on a treadmill at a constant speed of 10 rpm and then for 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 14.5 and 16 weeks of age, animals were tested for motor performance at a constant speed and at an accelerating speed, respectively. The results are shown in
FIGS. 17A-17B . The results show that ALS-ZLN mice (n=16) exhibited significantly increased latency to fall than ALS-Ctrl mice (n=16) both at a constant speed (296.3 seconds vs. 261.4 seconds,FIG. 17A ) and at an accelerating speed (243.7 seconds vs. 118.1 seconds,FIG. 17B ). Unpaired t-tests were used for statistical analyses. - ALS transgenic mice were orally treated 3 times a week with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5, 10 and 15 weeks of age.
- Survival of ALS-Ctrl (n=18) and ALS-ZLN mice (n=8) were monitored until all animals succumbed. The results (
FIG. 18 ) demonstrate that ALS-ZLN at 5 or 10 weeks of age significantly increased survival (mean survival of 131-132 days) in comparison to ALS-Ctrl (mean survival of 119 days); p-values<0.05. Log-rank test was used for statistical analysis. - ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- For measuring the frequency of CD45hi CD11b+F4/80+ brain perivascular macrophages, ALS-Ctrl (n=13), ALS-ZLN (n=17), and WT animals (n=17) were sacrificed at 13 weeks of age. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry.
- The results are summarized in
FIG. 19 ; Y-axis represents % of brain perivascular macrophages among total brain immune cells in the brain. The results show an increase in the percentage of brain perivascular macrophages in ALS-Ctrl mice when compared with WT mice. The results also show that by administering ZLN005 to ALS transgenic animals, the percentage of the brain perivascular macrophages of these treated animals decreased. ANOVA was used for statistical analysis. - ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- For measuring brain perivascular macrophages, ALS-Ctrl (n=8), ALS-ZLN (n=8), and WT animal (n=12) were sacrificed at 13 weeks of age. PBS-perfused brain tissues of sacrificed animals were digested with Collagenase IV and processed for flow cytometry. Brain perivascular macrophages were stained with 2-NBDG, the fluorescent glucose analog, to measure glucose uptake for flow cytometric acquisition (LSRII, BD) and analysis (FlowJo).
- The results are summarized in
FIG. 20 ; Y-axis represents % of brain perivascular macrophages that have taken up the glucose analog, 2-NBDG. The results show that brain perivascular macrophages in ALS transgenic mice exhibited a glycolytic phenotype, evidenced by a significant increase in 2-NBDG uptake in ALS-Ctrl mice when compared with WT mice. The results also show that by administering ZLN005 to ALS transgenic animals, glucose uptake in the brain perivascular macrophages of these ALS-ZLN animals decreased and thus glycolytic activation and metabolic dysfunction in brain perivascular macrophages in ALS transgenic animals were suppressed. ANOVA was used for statistical analysis. - ALS transgenic animals were orally treated 3 times a week for 8 weeks with 0.5% methylcellulose or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose, starting at 5 weeks of age.
- For measuring the frequency of CD115+CD11b+ blood monocytes, ALS-Ctrl transgenic animals (n=10), ALS-ZLN (n=10), and WT animal (n=10) were sacrificed at 13 weeks of age.
- he Y-axis in
FIGS. 21A and 21B represents % of total monocytes and % of Ly6C+ inflammatory monocytes among circulating immune cells. The results show that monocytes, especially the Ly6C+ subset, were increased in ALS-Ctrl n compared with wild-type mice. The results also show that by administering ZLN005 to ALS transgenic animals, the percentage of these cells in treated animals decreased and thus systemic inflammation was suppressed.FIG. 21C shows that serum levels of TNF-α measured by ELISA in ALS transgenic animals were significantly suppressed by ZLN005 treatment Unpaired t-tests and ANOVA were used for statistical analyses. - Ctrl=transgenic HD animals treated with 0.5% methylcellulose, ZLN=transgenic HD animals treated with ZLN005.
- The wheel-running test in this example was performed similarly to that described in Example 8.
- HD transgenic animals (R6/2) were purchased from Jackson Laboratories. The animals exhibit symptoms of HD such as hind limb paralysis, muscle wasting, and impaired motor coordination, upon 8-10 weeks of age and rapidly succumb. HD transgenic mice were orally treated 3 times a week for 4 weeks with either 0.5% methylcellulose (n=8) or ZLN005 (Sigma) at 25 mg/kg in 0.5% methylcellulose (n=7), starting at 6 weeks of age. Subsequently, at 10 weeks of age, these mice were subjected to 2 weeks of training on a treadmill at a constant speed of 5 rpm (rotations per minute). After the training, mice were tested for motor performance at a constant speed of 5 rpm. The results are shown in
FIG. 22 . The results show that HD-ZLN005 animals had a significantly increased latency to fall when compared with HD-Ctrl mice (110 seconds vs. 41.7 seconds). Unpaired t-test was used for statistical analysis. - Ctrl=DLB transgenic animals treated with 0.5% methylcellulose, ZLN=DLB transgenic animals treated with ZLN005. FF=Ppargc1aLoxP/LoxP mice on DLB transgenic background, Cre=Ppargc1aLoxP/LoxPCx3cr1CreER mice on DLB transgenic background.
- SNCA*A53T transgenic mice, an animal model in which the mutated form of human alpha synuclein is overexpressed, were generated to study pathological mechanisms in PD and DLB (Lee et al, Proc Natl Acad Sci USA. 2002, 13:8968-8970). These animals exhibit accumulation of pathogenic Lewy bodies upon aging, resulting in progressive motor dysfunction and eventual death.
- Animals with microglia-specific deletion of Ppargc1a were generated as described in Example 1. Furthermore, these animals were bred with SNCA*A53T animals to generate mice with microglia-specific deletion of Ppargc1a on DLB genetic background. After tamoxifen treatment to induce deletion of Ppargc1a in microglia, animals were rested for 5 weeks before being subjected to treadmill training. At 8 weeks of age, these animals were subjected to 1.5 weeks of training on a treadmill at a
constant speed 10 rpm (rotations per minute) and then 1.5 weeks of training at an accelerating speed from 5-15 rpm as described in Example 8. After the training period at 9.5 and 11 weeks of age, animals were tested for motor performance at a constant speed and at an accelerating speed, respectively. - The results, shown in
FIG. 23A-23B , are representative of two independent experiments of one animal per genotype with similar outcomes. FF animals exhibited significantly longer latency to falls (average of two running trials) than Cre animals, which had Cre-mediated deletion of Ppargc1a in Cx3cr1 expressing microglia, at both constant speed of 10 rpm and accelerating speed of 5-15 rpm. These results show that microglia-specific Ppargc1a protects against motor dysfunction in this transgenic model of DLB. - DLB transgenic animals were purchased from Jackson Laboratories and were orally treated 3 times a week with 0.5% methylcellulose (Ctrl) or ZLN005 (ZLN) at 25 mg/kg in vehicle, starting at 8 weeks of age for 12 weeks.
- Subsequently, at 20 weeks of age, these animals were subjected to 1.5 weeks of training on a treadmill at a
constant speed 10 rpm and then 1.5 weeks of training at an accelerating speed from 5-15 rpm, similar to those described in Example 8. After the training period at 21.5 and 23 weeks of age, animals were tested for motor performance at a constant speed and at an accelerating speed, respectively. - The results are shown in
FIG. 24A-24B . DLB-ZLN mice (n=11) show an increase in latency to fall in comparison to DLB-Ctrl mice (n=9) at a constant speed of 10 rpm (271.5 seconds vs. 252.8 seconds). However, this difference did not reach statistical significance. At the accelerating speed of 5-15 rpm, DLB-ZLN mice performed significantly better than DLB-Ctrl mice (194.0 seconds vs. 134.5 seconds, p value<0.05). Thus, motor dysfunction of DLB mice was alleviated by ZLN005 treatment. Unpaired t-tests Were used for statistical analyses. - TARDBP*A315T transgenic mice have been generated as an animal model to study ALS and FTD. These animals overexpress a mutant form of the DNA binding protein TARDBP, whose cytoplasmic inclusions are present in the brains of subjects with ALS and FTD (Barmada et al Nat Chem. Biol., 10:677-685, 2014). Ke et al (Short-term Suppression of A315T Mutant Human TDP-43 Expression Improves Functional Deficits in a Novel Inducible Transgenic Mouse Model of FTLD-TDP and ALS, Acta Neuropathol. 2015 Oct. 5, e-Publication) report that constitutive expression of TARDBP*A315T resulted in progressive neurodegeneration, and compromised motor performance, spatial memory and disinhibition. This model has been widely used for screening of compounds with therapeutic potentials in ALS and FTD.
- These FTD transgenic animals are purchased from Jackson Laboratories and are orally treated 3 times a week with 0.5% methylcellulose (FTD-Ctrl) or ZLN005 (FTD-ZLN) at 25 mg/kg in vehicle, starting at 6 weeks of age. Subsequently, at 10 weeks of age, these animals are subjected to 1.5 weeks of training on a treadmill at a
constant speed 10 rpm and then 1.5 weeks of training at an accelerating speed from 5-15 rpm. After the training period at 11.5 and 13 weeks of age, animals are tested for motor performance at a constant speed and at an accelerating speed, respectively. Finally, they are monitored for survival analysis. - The invention, and the manner and process of making and using it, are now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to make and use the same. It is to be understood that the foregoing describes preferred embodiments of the present invention and that modifications may be made therein without departing from the scope of the present invention as set forth in the claims.
Claims (20)
1. A method of treating a neurodegenerative disease, comprising the step of administering to a subject suffering from a neurodegenerative disease an effective amount of 2-(4-tert-butylphenyl)-1H-benzimidazole.
2. The method of claim 1 , wherein the neurodegenerative disease is selected from the group consisting of: amyotrophic lateral sclerosis (ALS), Alzheimer disease, Parkinson's disease, Huntington's disease, frontotemporal degeneration, dementia with Lewy bodies, a motor neuron disease, and a demyelinating disease.
3. The method according to claim 1 , wherein said compound is administered by systemic administration.
4. The method according to claim 1 , wherein said compound is administered by oral administration.
5. The method according to claim 1 , wherein the neurodegenerative disease is ALS, and the method improves motor skills and/or survival rate of the subject.
6. The method according to claim 1 , wherein the neurodegenerative disease is Alzheimer disease and the method improves cognitive and motor functions of the subject.
7. The method according to claim 1 , wherein the neurodegenerative disease is Parkinson's disease and the method improves motor skills of the subject.
8. The method according to claim 1 , wherein the neurodegenerative disease is Huntington's disease and the method improves motor skills of the subject.
9. The method according to claim 1 , wherein the neurodegenerative disease is frontotemporal degeneration and the method alleviates symptoms associated with language skills and social interactions in the subject.
10. The method according to claim 1 , wherein the neurodegenerative disease is dementia with Lewy bodies and the method alleviates motor dysfunction and/or cognitive decline in the subject.
11. The method according to claim 1 , wherein the neurodegenerative disease is a motor neuron disease and the method improves motor skills, survival rate, and/or survival length of the subject.
12. The method according to claim 1 , wherein the neurodegenerative disease is a demyelinating disease and the method alleviates behavioral dysfunction and cognitive impairment in the subject.
13. The method of claim 5 , wherein said compound is administered by systemic administration.
14. The method of claim 5 , wherein the said compound is administered by oral administration.
15. The method of claim 6 , wherein said compound is administered by systemic administration.
16. The method of claim 6 , wherein the said compound is administered by oral administration.
17. The method of claim 7 , wherein said compound is administered by systemic administration.
18. The method of claim 7 , wherein the said compound is administered by oral administration.
19. The method of claim 8 , wherein said compound is administered by systemic administration.
20. The method of claim 8 , wherein the said compound is administered by oral administration.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/186,435 US20210283108A1 (en) | 2014-10-14 | 2021-02-26 | Method for treating neurodegenerative diseases |
US18/910,313 US20250032459A1 (en) | 2014-10-14 | 2024-10-09 | Method for treating neurodegenerative diseases |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462063882P | 2014-10-14 | 2014-10-14 | |
US201462063831P | 2014-10-14 | 2014-10-14 | |
US201562160543P | 2015-05-12 | 2015-05-12 | |
US201562160499P | 2015-05-12 | 2015-05-12 | |
PCT/US2015/055479 WO2016061190A1 (en) | 2014-10-14 | 2015-10-14 | Method for treating neurodegenerative diseases |
US201715518438A | 2017-04-11 | 2017-04-11 | |
US16/298,422 US10583125B2 (en) | 2014-10-14 | 2019-03-11 | Method for treating neurodegenerative diseases |
US16/777,061 US10966962B2 (en) | 2014-10-14 | 2020-01-30 | Method for treating neurodegenerative diseases |
US17/186,435 US20210283108A1 (en) | 2014-10-14 | 2021-02-26 | Method for treating neurodegenerative diseases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/777,061 Continuation US10966962B2 (en) | 2014-10-14 | 2020-01-30 | Method for treating neurodegenerative diseases |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US202418630376A Continuation | 2014-10-14 | 2024-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210283108A1 true US20210283108A1 (en) | 2021-09-16 |
Family
ID=55747253
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/518,438 Active US10272070B2 (en) | 2014-10-14 | 2015-10-14 | Method for treating neurodegenerative diseases |
US16/298,422 Active US10583125B2 (en) | 2014-10-14 | 2019-03-11 | Method for treating neurodegenerative diseases |
US16/777,061 Active US10966962B2 (en) | 2014-10-14 | 2020-01-30 | Method for treating neurodegenerative diseases |
US17/186,435 Abandoned US20210283108A1 (en) | 2014-10-14 | 2021-02-26 | Method for treating neurodegenerative diseases |
US18/910,313 Pending US20250032459A1 (en) | 2014-10-14 | 2024-10-09 | Method for treating neurodegenerative diseases |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/518,438 Active US10272070B2 (en) | 2014-10-14 | 2015-10-14 | Method for treating neurodegenerative diseases |
US16/298,422 Active US10583125B2 (en) | 2014-10-14 | 2019-03-11 | Method for treating neurodegenerative diseases |
US16/777,061 Active US10966962B2 (en) | 2014-10-14 | 2020-01-30 | Method for treating neurodegenerative diseases |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/910,313 Pending US20250032459A1 (en) | 2014-10-14 | 2024-10-09 | Method for treating neurodegenerative diseases |
Country Status (3)
Country | Link |
---|---|
US (5) | US10272070B2 (en) |
CA (1) | CA3000985C (en) |
WO (1) | WO2016061190A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025049707A1 (en) * | 2023-08-31 | 2025-03-06 | University Of Washington | Systems and methods for determining memory metrics |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3000985C (en) | 2014-10-14 | 2023-01-31 | The Board Of Trustees Of The Leland Stanford Junior University | Method for treating neurodegenerative diseases |
HUE051771T2 (en) * | 2015-12-15 | 2021-03-29 | Univ Leland Stanford Junior | Method for preventing and/or treating aging-associated cognitive impairment and neuroinflammation |
WO2018102824A1 (en) * | 2016-12-02 | 2018-06-07 | Axovant Sciences Gmbh | Methods for treating neurodegenerative disease |
MX2021001456A (en) | 2018-08-06 | 2021-05-27 | Univ Leland Stanford Junior | 2-ARYLBENZIMIDAZOLES AS PPARGC1A ACTIVATORS TO TREAT NEURODEGENERATIVE DISEASES. |
CN115916339A (en) | 2020-06-22 | 2023-04-04 | 特朗奎斯治疗股份有限公司 | Treatment of systemic immune activation syndrome |
EP4355326A4 (en) * | 2021-06-17 | 2025-04-23 | Tranquis Therapeutics, Inc. | THERAPEUTIC ORAL ADMINISTRATION OF A 2-ARYLBENZIMIDAZOLE |
WO2023081656A1 (en) | 2021-11-02 | 2023-05-11 | Tranquis Therapeutics, Inc. | Selection and treatment of subjects having a circulating myeloid cell inflammatory phenotype |
CN114457045B (en) * | 2022-02-25 | 2023-07-14 | 中国人民解放军军事科学院军事医学研究院 | RNAi adeno-associated virus for inhibiting Slc2a1, and preparation and application thereof |
CN114984008A (en) * | 2022-06-10 | 2022-09-02 | 南通大学 | Application of 2- (4-tert-butylphenyl) -1H-benzimidazole in preparation of pharmaceutical preparation for treating Parkinson's disease |
TW202415372A (en) | 2022-06-14 | 2024-04-16 | 美商特朗奎斯治療股份有限公司 | Treatment of aging-related changes and diseases |
TW202416960A (en) | 2022-06-17 | 2024-05-01 | 美商特朗奎斯治療股份有限公司 | Formulations of 2-arylbenzimidazole compounds |
AU2023380184A1 (en) * | 2022-11-18 | 2025-07-03 | Satoshi Gojo | Uses of zln-005 and related compounds |
WO2024118936A1 (en) | 2022-12-02 | 2024-06-06 | Tranquis Therapeutics, Inc. | 2-arylbenzimidazole compounds for the treatment of hemoglobinopathies |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1584296A (en) | 1976-12-07 | 1981-02-11 | Kanebo Ltd | 2-substituted benzimidazole compounds |
NZ234564A (en) | 1986-11-21 | 1991-04-26 | Haessle Ab | 1-substituted benzimidazoles and pharmaceutical compositions |
US5552426A (en) | 1994-04-29 | 1996-09-03 | Eli Lilly And Company | Methods for treating a physiological disorder associated with β-amyloid peptide |
BR9915013A (en) | 1998-11-03 | 2001-08-07 | Basf Ag | Compound, use of the same, process to prepare them, drug, and, method for in vitro detection for parp inhibitors |
SE0301371D0 (en) * | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | New Compounds |
CA2570693A1 (en) | 2004-06-17 | 2006-01-26 | Wyeth | Processes for preparing gonadotropin releasing hormone receptor antagonists |
PT1910384E (en) | 2005-08-04 | 2013-01-23 | Sirtris Pharmaceuticals Inc | Imidazo [2,1-b]thiazole derivatives as sirtuin modulating compounds |
GB0807103D0 (en) | 2008-04-18 | 2008-05-21 | Univ Bradford The | Compounds |
GB201009656D0 (en) | 2010-06-09 | 2010-07-21 | Univ St Andrews | Carboxylation catalysts |
CN104662018B (en) | 2012-04-20 | 2017-10-24 | 阿迪维纳斯治疗有限公司 | Substituted Heterobicyclic compounds, composition and its medical applications |
KR101435496B1 (en) | 2012-10-22 | 2014-08-28 | 한국과학기술연구원 | Benzimidazole derivatives as mitochondrial function modulators |
CA3000985C (en) * | 2014-10-14 | 2023-01-31 | The Board Of Trustees Of The Leland Stanford Junior University | Method for treating neurodegenerative diseases |
CN104873500A (en) | 2015-04-29 | 2015-09-02 | 中国人民解放军第四军医大学 | Application of compound ZLN005 |
HUE051771T2 (en) | 2015-12-15 | 2021-03-29 | Univ Leland Stanford Junior | Method for preventing and/or treating aging-associated cognitive impairment and neuroinflammation |
-
2015
- 2015-10-14 CA CA3000985A patent/CA3000985C/en active Active
- 2015-10-14 US US15/518,438 patent/US10272070B2/en active Active
- 2015-10-14 WO PCT/US2015/055479 patent/WO2016061190A1/en active Application Filing
-
2019
- 2019-03-11 US US16/298,422 patent/US10583125B2/en active Active
-
2020
- 2020-01-30 US US16/777,061 patent/US10966962B2/en active Active
-
2021
- 2021-02-26 US US17/186,435 patent/US20210283108A1/en not_active Abandoned
-
2024
- 2024-10-09 US US18/910,313 patent/US20250032459A1/en active Pending
Non-Patent Citations (2)
Title |
---|
Alzheimer Disease from Merck Manual, pp. 1-10. Accessed 11/27/2018. (Year: 2018) * |
Mattson MP, "Pathways towards and away from Alzheimer's disease," Nature, August 5, 2004, 430: 631-639, and p. 107. (Year: 2004) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025049707A1 (en) * | 2023-08-31 | 2025-03-06 | University Of Washington | Systems and methods for determining memory metrics |
Also Published As
Publication number | Publication date |
---|---|
US10583125B2 (en) | 2020-03-10 |
CA3000985A1 (en) | 2016-04-21 |
US20170304269A1 (en) | 2017-10-26 |
CA3000985C (en) | 2023-01-31 |
US10966962B2 (en) | 2021-04-06 |
US20250032459A1 (en) | 2025-01-30 |
US20190365716A1 (en) | 2019-12-05 |
US20200163941A1 (en) | 2020-05-28 |
WO2016061190A1 (en) | 2016-04-21 |
US10272070B2 (en) | 2019-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250032459A1 (en) | Method for treating neurodegenerative diseases | |
JP6837486B2 (en) | How to Prevent and / or Treat Age-Related Cognitive Disorders and Neuroinflammation | |
Biswal et al. | Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress | |
ES2940239T3 (en) | Treatment of autoimmune diseases with combinations of RXR agonists and thyroid hormones | |
JP6837835B2 (en) | Treatment of protein aggregation myopathy and neurodegenerative diseases by parenteral administration of trehalose | |
JP5605659B2 (en) | Cytoprotective agent | |
JP5030553B2 (en) | Pharmaceuticals for treating dry mice and / or salivary secretion disorders | |
JP6042392B2 (en) | Pharmaceutical composition for treating vasospasm | |
US8097640B2 (en) | Prophylactic or therapeutic agent for diabetic maculopathy | |
KR20230107890A (en) | Methods and Compositions for Treating Psychotic Disorders | |
JP2016540827A (en) | Use of cysteamine and its derivatives for the treatment of mitochondrial diseases | |
WO2011097577A2 (en) | Compositions and methods for treating or preventing retinal degeneration | |
JP6912072B2 (en) | Pharmaceuticals for the prevention or treatment of frontotemporal dementia | |
JP6429401B2 (en) | Agent for normalizing excessive accumulation of mutated type I collagen in the endoplasmic reticulum | |
JP6153838B2 (en) | Vascular permeability inhibitor | |
US20120225821A1 (en) | Composition for preventing or treating a spinal cord injury | |
US11826340B1 (en) | Method for treateing or preventing ischemic optic neuropathy | |
JP7502882B2 (en) | Polyglutamine protein aggregation inhibitor and drug for preventing or treating polyglutamine disease | |
Simmons | 5-Ht1f receptor agonism for the treatment of spinal cord injury | |
JP6551671B2 (en) | Alzheimer's treatment | |
Korimová et al. | Protective effects of glucosamine-kynurenic acid after compression-induced spinal cord injury in the rat | |
WO2023212411A1 (en) | Methods of treating neuropathy using foretinib and compositions thereof | |
RU2494707C2 (en) | Method of treating open-angle glaucoma | |
CN117042773A (en) | Use of Chk2 inhibitors | |
WO2014088106A1 (en) | Prophylactic or therapeutic agent for fibromyalgia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, KHOA DINH;ENGLEMAN, EDGAR G.;REEL/FRAME:055426/0480 Effective date: 20170602 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |