US20210267529A1 - Multi-modal sleep system - Google Patents
Multi-modal sleep system Download PDFInfo
- Publication number
- US20210267529A1 US20210267529A1 US17/152,263 US202117152263A US2021267529A1 US 20210267529 A1 US20210267529 A1 US 20210267529A1 US 202117152263 A US202117152263 A US 202117152263A US 2021267529 A1 US2021267529 A1 US 2021267529A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- data
- monitoring system
- sleep
- modal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007958 sleep Effects 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 16
- 230000004044 response Effects 0.000 claims abstract description 13
- 238000012512 characterization method Methods 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 94
- 230000008667 sleep stage Effects 0.000 claims description 26
- 238000012544 monitoring process Methods 0.000 claims description 24
- 238000004458 analytical method Methods 0.000 claims description 14
- 210000001061 forehead Anatomy 0.000 claims description 6
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 4
- 231100000430 skin reaction Toxicity 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000004424 eye movement Effects 0.000 claims description 2
- 210000003205 muscle Anatomy 0.000 claims description 2
- 230000004617 sleep duration Effects 0.000 claims 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000003860 sleep quality Effects 0.000 claims 1
- 238000000537 electroencephalography Methods 0.000 description 33
- 230000000694 effects Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 7
- 210000000707 wrist Anatomy 0.000 description 5
- 238000003672 processing method Methods 0.000 description 4
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004622 sleep time Effects 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002567 electromyography Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 206010062519 Poor quality sleep Diseases 0.000 description 1
- 206010041347 Somnambulism Diseases 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1118—Determining activity level
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4812—Detecting sleep stages or cycles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0406—Constructional details of apparatus specially shaped apparatus housings
- A61B2560/0412—Low-profile patch shaped housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/04—Constructional details of apparatus
- A61B2560/0462—Apparatus with built-in sensors
- A61B2560/0468—Built-in electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
Definitions
- This application relates to a multi-modal sleep system operable in one of several modes.
- Some sleep devices are used in sleep labs for diagnosing sleep-related illnesses or conditions.
- the sleep devices employ wet electrodes for detecting signals such as EEG (Electroencephalography), EMG (Electromyography), and EOG (Electrooculargraph), signals of a user for diagnostics.
- EEG Electroencephalography
- EMG Electromyography
- EOG Electrooculargraph
- Many of these take-home sleep devices utilize accelerometers to track the physical movements of a user while asleep, e.g., the tossing and turning experienced by the user.
- a sleep tracking device offered by Zeo Inc., which employs dry electrodes, as opposed to wet electrodes, for sensing EEG signals of a user while asleep.
- the application of dry electrodes to a user's skin requires a headband to secure the dry electrodes to skin.
- the above-described sleep devices are single mode devices as each device relies on a single mechanism for receiving input signals (e.g., wet electrode, accelerometer, or dry electrode). Additionally, users prefer more choices in terms of the different ways of wearing or using a sleep device. For example, a user may prefer wearing a headband on some nights and a wristband on other nights. These single-mode devices in the market today limit a user to only one form of use (e.g., wearing a wristband, wearing a headband, etc.). While some sleep analysis devices include multiple sensor modalities, for example a combination of EEG electrodes and an accelerometer, such devices are not capable of determining which sensor modalities are actually outputting usable data and adjusting their operation accordingly. Thus, there exists a first need in the art for a multi-modal sleep device capable of adjusting its mode of operating based on a determination of which of a plurality of sensors is outputting useful data, thereby providing users flexibility in the way in which they use the device.
- a multi-modal sleep system comprising a data processor.
- the data processor is configured to operate in a plurality of operating modes.
- the data processor may detect at least one sensor providing data to the data processor and determine a sensor type associated with each of the at least one sensor.
- the data processor may select a mode of operation based on the determined sensor type of the detected at least one sensor.
- a first of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types.
- a second of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a second sensor type or combination of sensor types.
- the data processor may be configured to receive data from the at least one detected sensor.
- the data processor may process the received data according to the selected mode of operation to output a characterization of a user's sleep.
- the data processor is configured to select the first of the plurality of operating modes in response to detecting a single sensor including an accelerometer.
- the data processor may be configured to select the second of the plurality of operating modes in response to detecting a single sensor including an EEG electrode.
- the data processor is configured to select the first of the plurality of operating modes in response to the data processor detecting a single sensor including an accelerometer.
- the data processor may be configured to select the second of the plurality of operating modes in response to the data processor detecting at least two sensors including an accelerometer and at least a sensor of a second sensor type.
- the second sensor type may comprise a wet EEG electrode or a dry EEG electrode.
- the second of the plurality of operating modes may comprise an operating mode that collectively processes data output by the accelerometer and the at least one sensor of a second sensor type.
- the second of the plurality of operating modes may process data output by the accelerometer to weight a sleep condition analysis otherwise executed on data output by the sensor of the second type.
- the data processor may be configured to select the first of the plurality of operating modes in response to the data processor detecting a sensor including a dry EEG electrode.
- the data processor may be configured to select the second of the plurality of operating modes in response to the data processor detecting a sensor including a wet EEG electrode.
- the multi-modal sleep monitoring system includes a built-in accelerometer.
- the condition of the user's sleep output by the data processor may indicate whether the user is awake or asleep based on data output by the accelerometer.
- the multi-modal sleep monitoring system comprises a removable adapter for coupling the data processor to a sensor of a first type.
- the data processor may be configured to couple directly to a sensor of a second type without the adapter.
- the multi-modal sleep monitoring system may comprise a remote computing device configured for wireless communication with the data processor for receiving data indicative of the output sleep condition.
- the remote computing device may be configured for presenting sleep condition data based on the data received from the data processor.
- the invention relates to a method of for operating a multi-modal sleep monitoring system in a plurality of modes.
- the method includes a data processor detecting at least one sensor providing data to the data processor and determining a sensor type associated with each of the at least one sensor.
- the data processor selects a mode of operation based on the determined sensor type of the detected at least one sensor and of each of the at least one sensor.
- a first of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types.
- a second of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a second sensor type or combination of sensor types.
- the data processor then receives data from the at least one detected sensor and processes the received data according to the selected mode of operation to output a characterization of a user's sleep.
- FIG. 1 depicts a multi-modal sleep system, according to an illustrative embodiment of the invention
- FIG. 2 depicts the multi-modal sleep system of FIG. 1 operating in a first mode of operation, according to an illustrative embodiment of the invention
- FIG. 3 depicts the multi-modal sleep system of FIG. 1 operating in a second mode of operation, according to an illustrative embodiment of the invention
- FIG. 4 depicts the multi-modal sleep system of FIG. 1 operating in a third mode of operation, according to an illustrative embodiment of the invention.
- FIG. 5 is a flow chart of a method of determining a mode of operation of the multi-modal sleep system, according to an illustrative embodiment of the invention.
- FIG. 1 depicts a multi-model sleep system 100 , according to an illustrative embodiment of the invention.
- the multi-model sleep system 100 includes three modes of operation. In each mode, the system 100 includes a processing component 110 and a user interface device (such as a sleep base station 120 and a mobile device 122 ).
- the three modes of operation include a first mode of operation 102 , a second mode of operation 104 , and a third mode of operation 106 .
- the system 100 operates using a built-in accelerometer and flexible dry conductive electrodes or wet electrodes designed to be in contact with the skin of a user in the forehead region.
- the system 100 operates using a built-in accelerometer and wet or dry conductive electrodes also made to be in direct contact with the skin of a user in the forehead region.
- the system 100 uses only a built-in accelerometer for detecting physical movements of a user while asleep.
- the system 100 may be secured onto the wrist. Details of how the sleep system 100 is configured and operates in each of the three illustrative modes of operation are described in relation to FIGS. 2-4 .
- the processing component 110 receives either a raw electrical signal from the electrodes signals or movement data, or both, depending on the mode of operation.
- the raw electrical signal includes information indicative of one or more of EEG, muscle tone, eye movement and galvanic skin response.
- the processing component 110 then processes the received data, also based on the mode of operation.
- the processing component 110 determines the various sleep stages that the user experienced and the duration associated with each stage. In one embodiment, sleep is classified according to the R&K standard (defined in 1968 Allan Anlagenschaffen and Anthony Kales), which includes sleep stages 1, 2, 3, 4, and REM sleep as well as an awake stage.
- sleep stages may be defined according to other standards, such as the standard specified by the American Academy of Sleep Medicine, which includes wake, N1, N2, N3, and REM sleep stages.
- the processing component 110 classifies a user's sleep into one of wake, REM, light, and deep sleep stages.
- the determination of sleep stages may be based on an analysis of the electrical signal received through the electrodes by itself or in conjunction with data out put by the accelerometer.
- other sensor modalities are incorporated into the sleep stage classification analysis in addition or in the alternative to the EEG and acceleration data.
- the processing component 110 includes a LED/photodiode pair for generating a photoplethysmogrphic signal.
- This signal can be used to determine heart rate, heart rate variability, and respiration rate, one or more of which is then processed to determine sleep stages of a user.
- the processing component 110 performs various signal processing operations on the received signal, such as to increase the signal to noise ratio (SNR), to compute a mathematical transform of the signal for further data manipulation and information extraction, and to amplify the raw input signal.
- processing component 110 is stored with instructions corresponding to different sets of data analysis methods for the different modes of operations. In particular, as described in relation to FIG. 2 , the combination of an EEG signal and movement data indicative of a user's physical movements while asleep require a special set of analysis.
- the processing component 110 wirelessly communicates the processed data to the base station 120 or the mobile device 122 .
- the base station 120 and/or the mobile device 122 can be physically connected to the processing component 110 via various mechanisms.
- the base station 120 and/or the mobile device 122 may include adapters, such as an electrically conductive holder, to enable a direct electrical contact between the processing component 110 and the base station 120 and/or the mobile device 122 .
- the processing component 110 may include an SD card, mini-SD card, micro-SD card or other suitable removable integrated circuit memory device for storing the processed data.
- the removable memory device can then be removed from the processing device and directly inserted into various devices, such as the base station 120 , the mobile device 122 , a computer, a tablet, a television, and/or any other type of device with processing and/or storage capabilities.
- the processing component 110 can wirelessly communicate with one of the above-mentioned devices according, for example, to the BLUETOOTH, ZIGBEE, or WIFI protocols.
- the data received from the processing component 110 can be forwarded to a remote server via a wired or wireless Internet connection.
- the receiving device can perform post-processing on data collected and/or determined by the processing component 110 .
- the base station 120 and the mobile device 122 depict the data processed by the processing component 110 in a user-readable format to a user.
- the various sleep stages and the duration of each may be presented to the user via the base station 120 or the mobile device 122 .
- the sleep stages may be plotted on a time-scale and displayed to the user on a screen of the base station 120 or via an application on the mobile device 122 .
- the base station 120 or an application installed on the mobile device 122 can carry out a portion of the analysis of the raw input signal for the processing component 110 .
- the processing component 110 offloads the entire data analysis process to the base station 120 or an application on the mobile device 122 .
- '196 application may be used in the wet electrode system 104 and are suitable to be used in conjunction with the processing of movement data generated by the accelerometer when both electrodes and accelerometer are used.
- the entirety of the '196 application is incorporated herein by reference.
- the base station 120 and/or the mobile device 122 are connected to the internet.
- Each user of the system 100 may be given a web account allowing the user to store the sleep data in a remote location accessible by a web server.
- the stored data may further be processed or analyzed by any tools provided to the user by a web application associated with the user account. Examples of such web based tools or applications are described in relation to co-pending U.S. patent application Ser. No. 12/387,730, the entirety of which is incorporated herein by reference.
- FIG. 2 depicts the multi-modal sleep system 100 of FIG. 1 operating in a first mode of operation 102 , according to an illustrative embodiment of the invention.
- the multi-modal sleep system 100 includes a headband 202 , dry electrodes 204 , and the processing component 110 , which has an accelerometer.
- the headband 202 , dry electrodes 204 , and processing component 110 are modular and may be assembled according to the diagram illustrated in FIG. 2 .
- the dry electrodes 204 couple to the processing component 110 via three conductive mechanical fasteners.
- the male portions 206 of the mechanical fasteners extend from the dry electrodes, with corresponding female portions 208 of the fasteners built into the rear-facing side of the processing component 110 .
- the processing component 110 receives and processes both the EEG signal sensed by the dry electrodes 204 as well as the movement data generated by the accelerometer.
- the processing of the EEG signal and the movement data are separate and modular.
- the processing of the two sets of data is intertwined in that one set of data may be used to adjust the other set.
- the movement data may be fed as input to the processing of the EEG signal, or vice versa.
- the processing component 110 may determine that a user is in REM sleep from 2 a.m. to 5 a.m. based on the EEG signal received during that time period.
- the movement data collected during the same time period may indicate a higher confidence in this assessment if the movement data indicates less tossing and turning during the same time period.
- the movement data may indicate a lower confidence in the assessment determined based on the processing of the EEG signal.
- the movement data may be interjected into the processing of the EEG signal before an assessment or a conclusion based on the EEG signal is determined.
- the processing component 110 includes a neural network that outputs for each sleep time interval a score indicative of the likelihood that the user is in each stage of sleep the processing component 110 considers. The processing component then classifies the sleep time interval the sleep stage having the highest score.
- initial scores are calculated solely based on EEG data. Then, based on movement data obtained from the accelerometer, one or more of the scores may be increased or decreased prior to a final classification of the sleep time interval. For example, if the processing component detects relatively frequent movements during a time interval, the scores for the light sleep and/or wake stages may be increased or the scores for deep and/or REM sleep may be decreased.
- acceleration day may be used to alter the initial scoring algorithm.
- an EEG signal detected by dry electrodes may be processed to determine sleep data, e.g., sleep stages, are further described in co-pending U.S. patent application Ser. No. 11/586,196, the entirety of which is incorporated herein by reference.
- An additional example of an EEG-based sleep staging algorithm suitable for use with the above-described system includes the algorithm disclosed in “Automatic Sleep Stage Scoring System Using Genetic Algorithms and Neural Network,” Engineering in Medicient and Biology Society, 2000, Proceedings of the 22.sup.nd Annual Internation Coverence of the IEEE, 2000. Details of how an EEG signal detected by dry, wet, or any other forms of electrodes may be processed in conjunction with movement data as detected by an accelerometer are discussed below in relation to FIG. 4 .
- FIG. 3 depicts the multi-modal sleep system 100 of FIG. 1 operating in a second mode of operation 104 , according to an illustrative embodiment of the invention.
- the multi-modal sleep system 100 includes wet electrodes 302 , an adapter 304 , and a processing component 110 .
- the processing methods used in connection with the wet electrodes conform substantially to the processing methods used in connection with the dry electrodes as described above.
- the wet electrodes 302 may include any wet electrodes.
- the wet electrodes 302 may be applied directly to the skin near the forehead region of a user if direct contact can be made between the wet electrodes 302 and skin.
- the application of the wet electrodes 302 may include the use of gel, adhesives, or any other forms of attachment.
- the headband 202 is used to strap the wet electrodes 302 around one's head.
- the wet electrodes 302 may have a differential pair of electrodes or any number of electrodes being placed in variable distance from each other, as long as the distance is suitable for measuring EEG signals.
- the adapter 304 is used to ensure that the same processing component 110 can process sleep sensor data collected from either types of electrodes (i.e., to work with both the dry electrodes 202 and the wet electrodes 302 , even if they have different electrodes placement or arrangement).
- the adapter includes mechanical fasteners on both its rear-facing and front facing surfaces.
- the rear-facing surface of the adapter includes female portions of mechanical fasteners corresponding to male portions extending from the front-facing surface of the wet electrodes.
- the front-facing surface of the adapter includes male portions of mechanical fasteners positioned to snap into the female portions of the mechanical fasteners built into the rear surface of the processing component 110 .
- the adapter 304 includes conducting material, such as thin wires or bus lines, connecting the female fastener portions on its rear side to the male fastener portions on its front side.
- conducting material such as thin wires or bus lines, connecting the female fastener portions on its rear side to the male fastener portions on its front side.
- all of the mechanical fasteners are conductive and made of a material suitable for conducting EEG signals without introducing and undesirable amount or noise or overly attenuating the signals.
- Providing a user with the flexibility to select the desired wearing mode is advantageous. For example, while wet electrodes provide more accurate EEG recordings than dry electrodes and are more likely to stay on, dry electrodes are reusable and some users find them to be more comfortable to wear. Thus, a user may wish to use the dry electrodes on some nights. However, on other nights, the user may decide to use an eye mask, which may conflict with the use of the headband for the dry electrodes. Thus, the user might prefer a wet electrode system that simply attaches itself to the user either on the forehead or other parts of the user's head or elsewhere where the wet electrodes can detect an EEG signal.
- FIG. 4 depicts the multi-modal sleep system 100 of FIG. 1 operating in the third mode of operation 106 , according to an illustrative embodiment of the invention.
- the system 100 only requires use of the processing component 110 and a wristband 402 .
- the wristband 402 includes a pouch 404 for housing the processing component 110 .
- the wristband 402 includes male mechanical fastener portions for snapping into female mechanical fastener portions built into the rear surface of the processing component 110 .
- the male mechanical fastener portions can, but need not, be conductive, as they are merely included for securely holding the processing component 110 in place.
- the processing component may take galvanic skin response at the user's wrist into account in its sleep stage processing.
- suitable electrodes can be built into the wristband 402 and the male mechanical fastener portions would be constructed of or coated with a conductive material to convey the detected signals to the processing component 110 for analysis.
- a photoplethysmographic signal may be generated by illuminating and measuring the light reflected from the wrist. This signal can then be processed to determine heart rate, heart rate variability and/or respiration rate, one or more of which is incorporated into the sleep staging algorithm.
- the system 100 utilizes a built-in accelerometer of the processing component 110 for measuring the physical movements of a user while asleep.
- the user wears the wristband 402 with the processing component 110 around his/her wrist.
- the wristband 402 is adjustable so that the user can wear the processing components 110 on or around any parts of his/her body, such as the ankle, legs, neck, waste, and arms.
- the movements of a user while asleep can also be detected by placing the processing components 110 in or under one's pillow or on other parts of one's bed.
- the processing component 110 comprises a 3-axis (or triaxial) accelerometer capable of measuring the x-y-z angle tilts relative to the gravity vector.
- the processing component 110 comprises one or more single or dual-axial accelerometers, instead of a single triaxial accelerometer.
- an x/y-axis accelerometer may be used with a z-axis accelerometer.
- the processing component 110 can track the physical movements of a user while asleep, such as tossing and turning.
- the processing component 110 can determine whether the user is awake or asleep, which may be indicated by the amount of detected movement exceeding a pre-determined threshold amount.
- Various types of algorithms may be used to process movement data collected by an accelerometer, such as the algorithms identified in “Comparing Different Methodologies Used in Wrist Actigraphy”, by Stephen W. and Jennifer R. Spiro, Sleep Review, Summer 2001, available at http://www.sleepreviewmag.com/issues/articles/2001-07.sub.-04.asp.
- the movement data is then processed and plotted in a user-friendly and readable format to a user on an interface device, such as the base station 120 or mobile device 122 as described above. Quality of sleep may also be estimated based on the movement data.
- the movement data may be tracked and stored so that an animation of the physical movements experienced by a user is depicted to the user.
- the movement data is analyzed to determine an activity value for a series of pre-determined time periods, such as every 30 seconds, to determine the extent of the user's movement moved during the pre-determined time period.
- the time periods range from approximately 2 seconds up to about 1 minute.
- the movement period is synchronized with a sleep stage analysis period.
- the activity value moved may be inferred from or indicated by the change in the movement vector as determined by the built-in accelerometer.
- the processing component may sample the movement data at various sampling rates, such as 50 Hz, depending on the sensitivity of the built-in accelerometer (e.g., higher sensitivity may require a lower sampling rate).
- Each directional component of a movement vector (e.g., x component, y component, and z component) at a sampled time period is digitally filtered with a filter having pre-determined filter lengths (i.e., number of samples included in the filter) and coefficients.
- Test data may be gathered to experimentally determine optimal filter coefficients and filter lengths for each vector component of a movement vector based on the specific accelerometer used.
- Suitable filters include bandpass filters having frequency ranges from less than 1.0 Hz (e.g., 0.5 or 0.025 Hz) up to about 10 or 11 Hz.
- the activity value during a pre-determined time period is determined based on an integration of magnitudes of filtered movement vectors with respect to time.
- activity values are derived based on a number of zero-crossings in the accelerometer data.
- the activity value is based on an amount of time that the accelerometer output exceeds a threshold value. The activity value for a specified period of time is then compared to a threshold value. In the case that an activity value for a time period exceeds the threshold value, the user is determined to have made substantial movement during that period.
- the threshold value may be gathered from experimental test data and may differ depending on the gender, age, historical sleep data, or other type of user information.
- Various additional processing techniques can be applied to the activity value determination process. For example, movement data collected from adjacent time periods (e.g., from 0 to 30 seconds and 31-60 seconds) may be processed collectively to smooth out the transition point between two adjacent time periods or time windows (e.g., between 30 second and 31 second).
- the processing component 110 has an algorithm that determines whether a user is in a vertical position, such as sitting down or standing up. This may be determined based on the magnitude of the accelerometer output associated with the longitudinal axis of the body. If the user is lying down, the accelerometer should detect little acceleration in this direction. If the user is vertical, the accelerometer output will reflect the force of gravity. being sitting or standing. If the processing component detects a vertical user orientation, the processing component 110 either determines that the user is awake or introduces a strong presumption that the user is awake—strong EEG data to the contrary may suggest sleep walking. As described above, this can be accomplished by using the vertical user determination as an input to the sleep stage determination algorithm, thereby heavily weighting the algorithm towards outputting a sleep stage of “awake”.
- the processing component is configured to identify occurrences of a user sleeping in various positions. For example, accelerometer data can be analyzed to determine if the user is sleeping on their back versus their side or stomach by determining the orientation and/or movement of their head.
- FIG. 5 is a flow chart of a method 500 of determining a mode of operation of the multi-modal sleep system, according to an illustrative embodiment of the invention.
- the method 500 begins with receiving sensor data (step 502 ) by the dry electrodes 202 , wet electrodes 302 , and/or an accelerometer.
- the processing component 110 With the received sensor data, including EEG and/or movement data, the processing component 110 first determines sensor modalities before it begins analyzing the sensor data to extract sleep information from the data (step 504 ). In one embodiment, the processing component 110 makes such a determination based on a user indication of the mode of operation.
- the processing component 110 is built to include one or more buttons, switches, or other simple mechanical user input mechanisms for allowing a user to indicate whether the user is going to use only the accelerometer in the processing component 110 , wet electrodes, or dry electrodes, or a combination of one or more types of sleep sensors.
- a user may indicate the selected modality for the sleep session using a software application or other user interface element on the base station 120 or mobile device 122 .
- the processing component 110 makes a modality determination without any user input. For example, the processing component 110 measures the impedance of the signal received at the mechanical fasteners built into the processing component 110 . In one embodiment, the processing component 110 stores a single impedance threshold value. If the input impedance 110 exceeds the threshold, for example a threshold value representative of infinite impedance, the processing 110 component determines that it is not connected to any electrodes, and thus operates solely using accelerometer data. If the processing component 110 detects a lower impedance, the processing component 110 determines that electrodes are connected and processes data obtained via the electrodes as well output by the accelerometer. In this embodiment, no distinction is made between data output by wet electrodes versus dry electrodes.
- the processing component 110 stores multiple impedance values, one corresponding to each sensor type that might be coupled to the processing component 110 , and one value representing an infinite impedance.
- the processing component 110 processing received sensor data differently depending on the specific type of sensor detected.
- the processing component 110 may store one or more configuration parameters associated with each impedance value which is then used to process the received sensor data.
- the processing component 110 executes different processing algorithms based on the type of sensor detected.
- the processing component 110 includes additional sensing circuitry for sending test signals to electrodes to obtain a read-out of the input impedance. For example, a small electrical pulse may be generated and sent to the skin of a user via one electrode and measured at a second electrode. The measurement is then used to calculate input impedance of the skin according to Ohm's law.
- Noise in an input signal is another parameter that may be used to determine sensor modality.
- Wet electrodes are less susceptible to noise than dry electrodes.
- the processing component 110 determines the noise levels in the signal or the Signal to Noise Ratio (SNR) of the signal and compares both the noise frequency (such as the 60 Hz power line noise) and amplitude with pre-stored threshold values to determine whether the user is wearing the dry or wet electrodes.
- SNR Signal to Noise Ratio
- Testing data may be gathered on the usage of wet electrodes and dry electrodes to create signal profiles for both electrodes.
- a signal profile contains information idiosyncratic to a particular type of electrode and may be stored in the memory of the processing component 110 . With the stored signal profile, the processing component 110 first generates a signal profile of an input signal and then compares the generated signal profile with the stored signal profiles to determine which one of the two types of electrodes is currently being used by the user.
- signal profiles of different sleep stages may be experimentally collected and compared to actual signal profiles generated for the EEG signals detected while a user is asleep. The comparison between the signal profiles of different sleep stages and the actual EEG signal profile of a user enables the processing component 110 to better process the received input signal to more precisely determine sleep states, such as sleep stages that a user may have experienced and any duration associated therewith.
- the processing component 110 invokes the appropriate processing method or algorithm for processing the received input signal at step 506 (i.e., an EEG signal, movement data, or a combination of both).
- the appropriate processing method or algorithm for processing the received input signal at step 506 i.e., an EEG signal, movement data, or a combination of both.
- Each type of sleep sensor or each combination of sleep sensors, such as wet electrodes, dry electrodes, or an accelerometer, may be associated with its particular processing method or algorithm dedicated to the analysis of data collected by the sleep sensor(s).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Systems and methods are provided for a multi-modal sleep system comprising a data processor for operating in a plurality of operating modes. The data processor may detect at least one sensor providing data to the data processor and determine a sensor type associated with each of the at least one sensor. The data processor may select a mode of operation based on the determined sensor type of the detected at least one sensor and of each of the at least one sensor. A first of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types. The data processor may be configured to receive data from the at least one detected sensor and process the received data according to the selected mode of operation to output a characterization of a user's sleep.
Description
- This application is a continuation of U.S. patent application Ser. No. 14/497,845, filed Sep. 26, 2014, which is a continuation of U.S. patent application Ser. No. 13/226,121, filed Sep. 6, 2011, now U.S. Pat. No. 8,870,764, the disclosure of all of which are incorporated herein by reference.
- This application relates to a multi-modal sleep system operable in one of several modes.
- There are various sleep devices in the market today. Some sleep devices are used in sleep labs for diagnosing sleep-related illnesses or conditions. In those applications, the sleep devices employ wet electrodes for detecting signals such as EEG (Electroencephalography), EMG (Electromyography), and EOG (Electrooculargraph), signals of a user for diagnostics. The application of wet electrodes to skin generally requires a conductive gel on the electrode to secure the attachment of the electrode to skin. These wet electrode based systems are thought to be uncomfortable and not suitable for home use, despite the fact that some wet electrodes provide better EEG signal recordings than certain other competing electrodes. In the consumer market, there are now take-home sleep devices that allow a user to monitor and/or track sleep at home. Many of these take-home sleep devices utilize accelerometers to track the physical movements of a user while asleep, e.g., the tossing and turning experienced by the user. Also available now in the consumer market is a sleep tracking device offered by Zeo Inc., which employs dry electrodes, as opposed to wet electrodes, for sensing EEG signals of a user while asleep. The application of dry electrodes to a user's skin requires a headband to secure the dry electrodes to skin.
- However, the above-described sleep devices are single mode devices as each device relies on a single mechanism for receiving input signals (e.g., wet electrode, accelerometer, or dry electrode). Additionally, users prefer more choices in terms of the different ways of wearing or using a sleep device. For example, a user may prefer wearing a headband on some nights and a wristband on other nights. These single-mode devices in the market today limit a user to only one form of use (e.g., wearing a wristband, wearing a headband, etc.). While some sleep analysis devices include multiple sensor modalities, for example a combination of EEG electrodes and an accelerometer, such devices are not capable of determining which sensor modalities are actually outputting usable data and adjusting their operation accordingly. Thus, there exists a first need in the art for a multi-modal sleep device capable of adjusting its mode of operating based on a determination of which of a plurality of sensors is outputting useful data, thereby providing users flexibility in the way in which they use the device.
- In one aspect, systems and methods are provided for a multi-modal sleep system comprising a data processor. In some embodiments, the data processor is configured to operate in a plurality of operating modes. The data processor may detect at least one sensor providing data to the data processor and determine a sensor type associated with each of the at least one sensor. The data processor may select a mode of operation based on the determined sensor type of the detected at least one sensor. A first of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types. A second of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a second sensor type or combination of sensor types. The data processor may be configured to receive data from the at least one detected sensor. The data processor may process the received data according to the selected mode of operation to output a characterization of a user's sleep.
- In certain embodiments, the data processor is configured to select the first of the plurality of operating modes in response to detecting a single sensor including an accelerometer. The data processor may be configured to select the second of the plurality of operating modes in response to detecting a single sensor including an EEG electrode. In other embodiments, the data processor is configured to select the first of the plurality of operating modes in response to the data processor detecting a single sensor including an accelerometer.
- The data processor may be configured to select the second of the plurality of operating modes in response to the data processor detecting at least two sensors including an accelerometer and at least a sensor of a second sensor type. The second sensor type may comprise a wet EEG electrode or a dry EEG electrode. The second of the plurality of operating modes may comprise an operating mode that collectively processes data output by the accelerometer and the at least one sensor of a second sensor type. The second of the plurality of operating modes may process data output by the accelerometer to weight a sleep condition analysis otherwise executed on data output by the sensor of the second type.
- The data processor may be configured to select the first of the plurality of operating modes in response to the data processor detecting a sensor including a dry EEG electrode. The data processor may be configured to select the second of the plurality of operating modes in response to the data processor detecting a sensor including a wet EEG electrode.
- In some embodiments, the multi-modal sleep monitoring system includes a built-in accelerometer. The condition of the user's sleep output by the data processor may indicate whether the user is awake or asleep based on data output by the accelerometer.
- In certain embodiments, the multi-modal sleep monitoring system comprises a removable adapter for coupling the data processor to a sensor of a first type. In other embodiments, the data processor may be configured to couple directly to a sensor of a second type without the adapter.
- The multi-modal sleep monitoring system may comprise a remote computing device configured for wireless communication with the data processor for receiving data indicative of the output sleep condition. The remote computing device may be configured for presenting sleep condition data based on the data received from the data processor.
- According to another aspect, the invention relates to a method of for operating a multi-modal sleep monitoring system in a plurality of modes. The method includes a data processor detecting at least one sensor providing data to the data processor and determining a sensor type associated with each of the at least one sensor. The data processor then selects a mode of operation based on the determined sensor type of the detected at least one sensor and of each of the at least one sensor. A first of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types. A second of the plurality of operating modes may be selected in response to determining that the at least one detected sensor includes a second sensor type or combination of sensor types. The data processor then receives data from the at least one detected sensor and processes the received data according to the selected mode of operation to output a characterization of a user's sleep.
- The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings wherein:
-
FIG. 1 depicts a multi-modal sleep system, according to an illustrative embodiment of the invention; -
FIG. 2 depicts the multi-modal sleep system ofFIG. 1 operating in a first mode of operation, according to an illustrative embodiment of the invention; -
FIG. 3 depicts the multi-modal sleep system ofFIG. 1 operating in a second mode of operation, according to an illustrative embodiment of the invention; -
FIG. 4 depicts the multi-modal sleep system ofFIG. 1 operating in a third mode of operation, according to an illustrative embodiment of the invention; and -
FIG. 5 is a flow chart of a method of determining a mode of operation of the multi-modal sleep system, according to an illustrative embodiment of the invention. - To provide an overall understanding of the invention, certain illustrative embodiments will now be described. However, it will be understood by one of ordinary skill in the art that the systems and methods described herein may be adapted and modified as is appropriate for the application being addressed and that the systems and methods described herein may be employed in other suitable applications, and that such other additions and modifications will not depart from the scope thereof.
-
FIG. 1 depicts amulti-model sleep system 100, according to an illustrative embodiment of the invention. Themulti-model sleep system 100 includes three modes of operation. In each mode, thesystem 100 includes aprocessing component 110 and a user interface device (such as asleep base station 120 and a mobile device 122). The three modes of operation include a first mode ofoperation 102, a second mode ofoperation 104, and a third mode ofoperation 106. - In the
first mode 102, thesystem 100 operates using a built-in accelerometer and flexible dry conductive electrodes or wet electrodes designed to be in contact with the skin of a user in the forehead region. In thesecond mode 104, thesystem 100 operates using a built-in accelerometer and wet or dry conductive electrodes also made to be in direct contact with the skin of a user in the forehead region. In thethird mode 106, thesystem 100 uses only a built-in accelerometer for detecting physical movements of a user while asleep. In thethird mode 106, thesystem 100 may be secured onto the wrist. Details of how thesleep system 100 is configured and operates in each of the three illustrative modes of operation are described in relation toFIGS. 2-4 . - In operation, the
processing component 110 receives either a raw electrical signal from the electrodes signals or movement data, or both, depending on the mode of operation. The raw electrical signal includes information indicative of one or more of EEG, muscle tone, eye movement and galvanic skin response. Theprocessing component 110 then processes the received data, also based on the mode of operation. Based on the received data monitored during a night of sleep, theprocessing component 110 determines the various sleep stages that the user experienced and the duration associated with each stage. In one embodiment, sleep is classified according to the R&K standard (defined in 1968 Allan Rechtschaffen and Anthony Kales), which includes sleep stages 1, 2, 3, 4, and REM sleep as well as an awake stage. Alternatively sleep stages may be defined according to other standards, such as the standard specified by the American Academy of Sleep Medicine, which includes wake, N1, N2, N3, and REM sleep stages. In yet another alternative, theprocessing component 110 classifies a user's sleep into one of wake, REM, light, and deep sleep stages. The determination of sleep stages may be based on an analysis of the electrical signal received through the electrodes by itself or in conjunction with data out put by the accelerometer. In certain embodiments, other sensor modalities are incorporated into the sleep stage classification analysis in addition or in the alternative to the EEG and acceleration data. For example, in one embodiment, in addition or in the alternative to theprocessing component 110 including wet or dry electrodes, the processing component includes a LED/photodiode pair for generating a photoplethysmogrphic signal. This signal can be used to determine heart rate, heart rate variability, and respiration rate, one or more of which is then processed to determine sleep stages of a user. - In some embodiments, the
processing component 110 performs various signal processing operations on the received signal, such as to increase the signal to noise ratio (SNR), to compute a mathematical transform of the signal for further data manipulation and information extraction, and to amplify the raw input signal. In some embodiments,processing component 110 is stored with instructions corresponding to different sets of data analysis methods for the different modes of operations. In particular, as described in relation toFIG. 2 , the combination of an EEG signal and movement data indicative of a user's physical movements while asleep require a special set of analysis. - In some implementations, after the raw input signal is processed, the
processing component 110 wirelessly communicates the processed data to thebase station 120 or themobile device 122. In addition to communicating wirelessly, thebase station 120 and/or themobile device 122 can be physically connected to theprocessing component 110 via various mechanisms. For example, thebase station 120 and/or themobile device 122 may include adapters, such as an electrically conductive holder, to enable a direct electrical contact between theprocessing component 110 and thebase station 120 and/or themobile device 122. In some embodiments, theprocessing component 110 may include an SD card, mini-SD card, micro-SD card or other suitable removable integrated circuit memory device for storing the processed data. The removable memory device can then be removed from the processing device and directly inserted into various devices, such as thebase station 120, themobile device 122, a computer, a tablet, a television, and/or any other type of device with processing and/or storage capabilities. Alternatively, or additionally, theprocessing component 110 can wirelessly communicate with one of the above-mentioned devices according, for example, to the BLUETOOTH, ZIGBEE, or WIFI protocols. In yet another embodiment, the data received from theprocessing component 110 can be forwarded to a remote server via a wired or wireless Internet connection. In some embodiments, the receiving device can perform post-processing on data collected and/or determined by theprocessing component 110. - In some embodiments, the
base station 120 and themobile device 122 depict the data processed by theprocessing component 110 in a user-readable format to a user. For example, the various sleep stages and the duration of each may be presented to the user via thebase station 120 or themobile device 122. The sleep stages may be plotted on a time-scale and displayed to the user on a screen of thebase station 120 or via an application on themobile device 122. In some implementations, thebase station 120 or an application installed on themobile device 122 can carry out a portion of the analysis of the raw input signal for theprocessing component 110. In other implementations, theprocessing component 110 offloads the entire data analysis process to thebase station 120 or an application on themobile device 122. In particular, the various data processing or analysis techniques described in co-pending U.S. patent application Ser. No. 11/586,196 (“'196 application”) may be used in thewet electrode system 104 and are suitable to be used in conjunction with the processing of movement data generated by the accelerometer when both electrodes and accelerometer are used. The entirety of the '196 application is incorporated herein by reference. - In some embodiments, the
base station 120 and/or themobile device 122 are connected to the internet. Each user of thesystem 100 may be given a web account allowing the user to store the sleep data in a remote location accessible by a web server. The stored data may further be processed or analyzed by any tools provided to the user by a web application associated with the user account. Examples of such web based tools or applications are described in relation to co-pending U.S. patent application Ser. No. 12/387,730, the entirety of which is incorporated herein by reference. -
FIG. 2 depicts themulti-modal sleep system 100 ofFIG. 1 operating in a first mode ofoperation 102, according to an illustrative embodiment of the invention. In thefirst mode 102, themulti-modal sleep system 100 includes aheadband 202,dry electrodes 204, and theprocessing component 110, which has an accelerometer. In some embodiments, theheadband 202,dry electrodes 204, andprocessing component 110 are modular and may be assembled according to the diagram illustrated inFIG. 2 . In the illustrative embodiment depicted inFIG. 2 , thedry electrodes 204 couple to theprocessing component 110 via three conductive mechanical fasteners. The male portions 206 of the mechanical fasteners extend from the dry electrodes, with correspondingfemale portions 208 of the fasteners built into the rear-facing side of theprocessing component 110. In operation, theprocessing component 110 receives and processes both the EEG signal sensed by thedry electrodes 204 as well as the movement data generated by the accelerometer. - In some embodiments, the processing of the EEG signal and the movement data are separate and modular. In other embodiments, the processing of the two sets of data is intertwined in that one set of data may be used to adjust the other set. For example, the movement data may be fed as input to the processing of the EEG signal, or vice versa. For instance, the
processing component 110 may determine that a user is in REM sleep from 2 a.m. to 5 a.m. based on the EEG signal received during that time period. The movement data collected during the same time period may indicate a higher confidence in this assessment if the movement data indicates less tossing and turning during the same time period. Alternatively, the movement data may indicate a lower confidence in the assessment determined based on the processing of the EEG signal. In certain embodiments, the movement data may be interjected into the processing of the EEG signal before an assessment or a conclusion based on the EEG signal is determined. - In one particular example, the
processing component 110 includes a neural network that outputs for each sleep time interval a score indicative of the likelihood that the user is in each stage of sleep theprocessing component 110 considers. The processing component then classifies the sleep time interval the sleep stage having the highest score. In one implementation, initial scores are calculated solely based on EEG data. Then, based on movement data obtained from the accelerometer, one or more of the scores may be increased or decreased prior to a final classification of the sleep time interval. For example, if the processing component detects relatively frequent movements during a time interval, the scores for the light sleep and/or wake stages may be increased or the scores for deep and/or REM sleep may be decreased. In alternative implementations, acceleration day may be used to alter the initial scoring algorithm. - Details of how an EEG signal detected by dry electrodes may be processed to determine sleep data, e.g., sleep stages, are further described in co-pending U.S. patent application Ser. No. 11/586,196, the entirety of which is incorporated herein by reference. An additional example of an EEG-based sleep staging algorithm suitable for use with the above-described system includes the algorithm disclosed in “Automatic Sleep Stage Scoring System Using Genetic Algorithms and Neural Network,” Engineering in Medicient and Biology Society, 2000, Proceedings of the 22.sup.nd Annual Internation Coverence of the IEEE, 2000. Details of how an EEG signal detected by dry, wet, or any other forms of electrodes may be processed in conjunction with movement data as detected by an accelerometer are discussed below in relation to
FIG. 4 . -
FIG. 3 depicts themulti-modal sleep system 100 ofFIG. 1 operating in a second mode ofoperation 104, according to an illustrative embodiment of the invention. In thesecond mode 104, themulti-modal sleep system 100 includeswet electrodes 302, anadapter 304, and aprocessing component 110. The processing methods used in connection with the wet electrodes conform substantially to the processing methods used in connection with the dry electrodes as described above. - The
wet electrodes 302 may include any wet electrodes. Thewet electrodes 302 may be applied directly to the skin near the forehead region of a user if direct contact can be made between thewet electrodes 302 and skin. The application of thewet electrodes 302 may include the use of gel, adhesives, or any other forms of attachment. In some embodiments, to further support the attachment of thewet electrodes 302 to skin, theheadband 202 is used to strap thewet electrodes 302 around one's head. Thewet electrodes 302 may have a differential pair of electrodes or any number of electrodes being placed in variable distance from each other, as long as the distance is suitable for measuring EEG signals. - In the illustrative embodiment depicted in
FIG. 3 , theadapter 304 is used to ensure that thesame processing component 110 can process sleep sensor data collected from either types of electrodes (i.e., to work with both thedry electrodes 202 and thewet electrodes 302, even if they have different electrodes placement or arrangement). To that end, the adapter includes mechanical fasteners on both its rear-facing and front facing surfaces. The rear-facing surface of the adapter includes female portions of mechanical fasteners corresponding to male portions extending from the front-facing surface of the wet electrodes. The front-facing surface of the adapter includes male portions of mechanical fasteners positioned to snap into the female portions of the mechanical fasteners built into the rear surface of theprocessing component 110. Theadapter 304 includes conducting material, such as thin wires or bus lines, connecting the female fastener portions on its rear side to the male fastener portions on its front side. Preferably, all of the mechanical fasteners are conductive and made of a material suitable for conducting EEG signals without introducing and undesirable amount or noise or overly attenuating the signals. - Providing a user with the flexibility to select the desired wearing mode is advantageous. For example, while wet electrodes provide more accurate EEG recordings than dry electrodes and are more likely to stay on, dry electrodes are reusable and some users find them to be more comfortable to wear. Thus, a user may wish to use the dry electrodes on some nights. However, on other nights, the user may decide to use an eye mask, which may conflict with the use of the headband for the dry electrodes. Thus, the user might prefer a wet electrode system that simply attaches itself to the user either on the forehead or other parts of the user's head or elsewhere where the wet electrodes can detect an EEG signal.
-
FIG. 4 depicts themulti-modal sleep system 100 ofFIG. 1 operating in the third mode ofoperation 106, according to an illustrative embodiment of the invention. In this mode of operation, thesystem 100 only requires use of theprocessing component 110 and awristband 402. Thewristband 402 includes apouch 404 for housing theprocessing component 110. In an alternative implementation, thewristband 402 includes male mechanical fastener portions for snapping into female mechanical fastener portions built into the rear surface of theprocessing component 110. The male mechanical fastener portions can, but need not, be conductive, as they are merely included for securely holding theprocessing component 110 in place. - As indicated above, in alternative embodiments, the processing component may take galvanic skin response at the user's wrist into account in its sleep stage processing. In such embodiments, suitable electrodes can be built into the
wristband 402 and the male mechanical fastener portions would be constructed of or coated with a conductive material to convey the detected signals to theprocessing component 110 for analysis. In alternative embodiments of theprocessing component 110 that include a LED/photodiode pair, a photoplethysmographic signal may be generated by illuminating and measuring the light reflected from the wrist. This signal can then be processed to determine heart rate, heart rate variability and/or respiration rate, one or more of which is incorporated into the sleep staging algorithm. - In accelerometer only mode of operation depicted in
FIG. 4 , thesystem 100 utilizes a built-in accelerometer of theprocessing component 110 for measuring the physical movements of a user while asleep. In some embodiments, the user wears thewristband 402 with theprocessing component 110 around his/her wrist. In other embodiments, thewristband 402 is adjustable so that the user can wear theprocessing components 110 on or around any parts of his/her body, such as the ankle, legs, neck, waste, and arms. In certain embodiments, the movements of a user while asleep can also be detected by placing theprocessing components 110 in or under one's pillow or on other parts of one's bed. - In some implementations, the
processing component 110 comprises a 3-axis (or triaxial) accelerometer capable of measuring the x-y-z angle tilts relative to the gravity vector. In other embodiments, theprocessing component 110 comprises one or more single or dual-axial accelerometers, instead of a single triaxial accelerometer. For example, an x/y-axis accelerometer may be used with a z-axis accelerometer. - In operation, as a user wearing the
processing component 110 having the accelerometer moves, forces are exerted on a crystal in the accelerometer by a free-floating mass. Three crystals are needed to detect any force exerted by the free-floating mass in all three directions (x-y-z). Based on the exerted force, which is a vector with direction and magnitude, information about the direction and magnitude of a user's physical movement can be directly inferred to generate movement data. In some implementations, the hysteresis of an accelerometer is factored into the calculation of the movement data. With the movement data, theprocessing component 110 can track the physical movements of a user while asleep, such as tossing and turning. Based on the movement data, theprocessing component 110 can determine whether the user is awake or asleep, which may be indicated by the amount of detected movement exceeding a pre-determined threshold amount. Various types of algorithms may be used to process movement data collected by an accelerometer, such as the algorithms identified in “Comparing Different Methodologies Used in Wrist Actigraphy”, by Stephen W. and Jennifer R. Spiro, Sleep Review, Summer 2001, available at http://www.sleepreviewmag.com/issues/articles/2001-07.sub.-04.asp. The movement data is then processed and plotted in a user-friendly and readable format to a user on an interface device, such as thebase station 120 ormobile device 122 as described above. Quality of sleep may also be estimated based on the movement data. In some embodiments, the movement data may be tracked and stored so that an animation of the physical movements experienced by a user is depicted to the user. - In one particular embodiment, the movement data is analyzed to determine an activity value for a series of pre-determined time periods, such as every 30 seconds, to determine the extent of the user's movement moved during the pre-determined time period. Preferably, the time periods range from approximately 2 seconds up to about 1 minute. Preferably, the movement period is synchronized with a sleep stage analysis period. The activity value moved may be inferred from or indicated by the change in the movement vector as determined by the built-in accelerometer. For example, the processing component may sample the movement data at various sampling rates, such as 50 Hz, depending on the sensitivity of the built-in accelerometer (e.g., higher sensitivity may require a lower sampling rate). Each directional component of a movement vector (e.g., x component, y component, and z component) at a sampled time period is digitally filtered with a filter having pre-determined filter lengths (i.e., number of samples included in the filter) and coefficients. Test data may be gathered to experimentally determine optimal filter coefficients and filter lengths for each vector component of a movement vector based on the specific accelerometer used. Suitable filters include bandpass filters having frequency ranges from less than 1.0 Hz (e.g., 0.5 or 0.025 Hz) up to about 10 or 11 Hz. In some embodiments, the activity value during a pre-determined time period is determined based on an integration of magnitudes of filtered movement vectors with respect to time. In other embodiments, activity values are derived based on a number of zero-crossings in the accelerometer data. In still another embodiment, the activity value is based on an amount of time that the accelerometer output exceeds a threshold value. The activity value for a specified period of time is then compared to a threshold value. In the case that an activity value for a time period exceeds the threshold value, the user is determined to have made substantial movement during that period. The threshold value may be gathered from experimental test data and may differ depending on the gender, age, historical sleep data, or other type of user information. Various additional processing techniques can be applied to the activity value determination process. For example, movement data collected from adjacent time periods (e.g., from 0 to 30 seconds and 31-60 seconds) may be processed collectively to smooth out the transition point between two adjacent time periods or time windows (e.g., between 30 second and 31 second).
- In some embodiments in which the user is wearing the processing component in a predetermined orientation (e.g., attached to the headband on the user's forehead), the
processing component 110 has an algorithm that determines whether a user is in a vertical position, such as sitting down or standing up. This may be determined based on the magnitude of the accelerometer output associated with the longitudinal axis of the body. If the user is lying down, the accelerometer should detect little acceleration in this direction. If the user is vertical, the accelerometer output will reflect the force of gravity. being sitting or standing. If the processing component detects a vertical user orientation, theprocessing component 110 either determines that the user is awake or introduces a strong presumption that the user is awake—strong EEG data to the contrary may suggest sleep walking. As described above, this can be accomplished by using the vertical user determination as an input to the sleep stage determination algorithm, thereby heavily weighting the algorithm towards outputting a sleep stage of “awake”. - In alternative embodiments, the processing component is configured to identify occurrences of a user sleeping in various positions. For example, accelerometer data can be analyzed to determine if the user is sleeping on their back versus their side or stomach by determining the orientation and/or movement of their head.
-
FIG. 5 is a flow chart of amethod 500 of determining a mode of operation of the multi-modal sleep system, according to an illustrative embodiment of the invention. Themethod 500 begins with receiving sensor data (step 502) by thedry electrodes 202,wet electrodes 302, and/or an accelerometer. With the received sensor data, including EEG and/or movement data, theprocessing component 110 first determines sensor modalities before it begins analyzing the sensor data to extract sleep information from the data (step 504). In one embodiment, theprocessing component 110 makes such a determination based on a user indication of the mode of operation. In one such embodiment, theprocessing component 110 is built to include one or more buttons, switches, or other simple mechanical user input mechanisms for allowing a user to indicate whether the user is going to use only the accelerometer in theprocessing component 110, wet electrodes, or dry electrodes, or a combination of one or more types of sleep sensors. In another embodiment, a user may indicate the selected modality for the sleep session using a software application or other user interface element on thebase station 120 ormobile device 122. - In an alternative embodiment, the
processing component 110 makes a modality determination without any user input. For example, theprocessing component 110 measures the impedance of the signal received at the mechanical fasteners built into theprocessing component 110. In one embodiment, theprocessing component 110 stores a single impedance threshold value. If theinput impedance 110 exceeds the threshold, for example a threshold value representative of infinite impedance, theprocessing 110 component determines that it is not connected to any electrodes, and thus operates solely using accelerometer data. If theprocessing component 110 detects a lower impedance, theprocessing component 110 determines that electrodes are connected and processes data obtained via the electrodes as well output by the accelerometer. In this embodiment, no distinction is made between data output by wet electrodes versus dry electrodes. - In other embodiments, the
processing component 110 stores multiple impedance values, one corresponding to each sensor type that might be coupled to theprocessing component 110, and one value representing an infinite impedance. In this embodiment, theprocessing component 110 processing received sensor data differently depending on the specific type of sensor detected. For example, theprocessing component 110 may store one or more configuration parameters associated with each impedance value which is then used to process the received sensor data. Alternatively, theprocessing component 110 executes different processing algorithms based on the type of sensor detected. - In some embodiments, the
processing component 110 includes additional sensing circuitry for sending test signals to electrodes to obtain a read-out of the input impedance. For example, a small electrical pulse may be generated and sent to the skin of a user via one electrode and measured at a second electrode. The measurement is then used to calculate input impedance of the skin according to Ohm's law. - Noise in an input signal is another parameter that may be used to determine sensor modality. Wet electrodes are less susceptible to noise than dry electrodes. The
processing component 110 determines the noise levels in the signal or the Signal to Noise Ratio (SNR) of the signal and compares both the noise frequency (such as the 60 Hz power line noise) and amplitude with pre-stored threshold values to determine whether the user is wearing the dry or wet electrodes. - Testing data may be gathered on the usage of wet electrodes and dry electrodes to create signal profiles for both electrodes. A signal profile contains information idiosyncratic to a particular type of electrode and may be stored in the memory of the
processing component 110. With the stored signal profile, theprocessing component 110 first generates a signal profile of an input signal and then compares the generated signal profile with the stored signal profiles to determine which one of the two types of electrodes is currently being used by the user. In some embodiments, signal profiles of different sleep stages may be experimentally collected and compared to actual signal profiles generated for the EEG signals detected while a user is asleep. The comparison between the signal profiles of different sleep stages and the actual EEG signal profile of a user enables theprocessing component 110 to better process the received input signal to more precisely determine sleep states, such as sleep stages that a user may have experienced and any duration associated therewith. - Once the sensor modality is determined, the
processing component 110 invokes the appropriate processing method or algorithm for processing the received input signal at step 506 (i.e., an EEG signal, movement data, or a combination of both). Each type of sleep sensor or each combination of sleep sensors, such as wet electrodes, dry electrodes, or an accelerometer, may be associated with its particular processing method or algorithm dedicated to the analysis of data collected by the sleep sensor(s). - The foregoing embodiments are merely examples of various configurations of components of dry electrode systems described and disclosed herein and are not to be understood as limiting in any way. Additional configurations can be readily deduced from the foregoing, including combinations thereof, and such configurations and continuations are included within the scope of the invention. Variations, modifications, and other implementations of what is described may be employed without departing from the spirit and the scope of the invention. More specifically, any of the method, system and device features described above or incorporated by reference may be combined with any other suitable method, system, or device features disclosed herein or incorporated by reference, and is within the scope of the contemplated inventions.
Claims (20)
1. A multi-modal sleep monitoring system, comprising:
a data processor configured to operate in a plurality of operating modes, the data processor configured to:
detect at least one sensor providing data to the data processor;
determine a sensor type associated with each of the at least one sensor;
select a mode of operation based on the determined sensor type of the detected at least one sensor, wherein (a) a first of the plurality of operating modes is selected in response to determining that the at least one detected sensor includes a first sensor type or combination of sensor types, and (b) a second of the plurality of operating modes is selected in response to determining that the at least one detected sensor includes a second sensor type or combination of sensor types;
receive data from the at least one detected sensor; and
process the received data according to the selected mode of operation to output a characterization of a user's sleep,
wherein the data processor is configured with the plurality of operating modes to, dependent a selected mode of the plurality of operating modes, determine one or more sleep stages based on (a) an analysis of an electrical signal from electrodes by itself, and (b) an analysis of an electrical signal from electrodes in conjunction with data output by an accelerometer.
2. The multi-modal sleep monitoring system of claim 1 wherein the data processor is configured to receive (i) a raw electrical signal from the electrodes, (ii) movement data, or both (i) and (ii), depending on a selected mode of operation of the plurality of operating modes.
3. The multi-modal sleep monitoring system of claim 2 wherein the raw electrical signal includes information indicative of one or more of EEG, muscle tone, eye movement and galvanic skin response.
4. The multi-modal sleep monitoring system of claim 1 wherein the data processor is further configured to generate a sleep quality estimate based on movement data tracked with the data processor.
5. The multi-modal sleep monitoring system of claim 1 wherein the system is configured to depict physical movements experienced by a user from stored movement data.
6. The multi-modal sleep monitoring system of claim 1 wherein an application for a mobile device configures the mobile device to carry out at least a portion of an analysis of an electrical signal from electrodes.
7. The multi-modal sleep monitoring system of claim 6 wherein the data processor is further configured to wirelessly communicate with the mobile device.
8. The multi-modal sleep monitoring system of claim 7 wherein mobile device is configured to present to a user the determined one or more sleep stages and/or duration of the determined one or more sleep stages.
9. The multi-modal sleep monitoring system of claim 1 further comprising a base station configured to communicate with the data processor, wherein the base station is configured to carry out at least a portion of an analysis of an electrical signal from electrodes.
10. The multi-modal sleep monitoring system of claim 9 wherein base station is configured to present to a user the determined one or more sleep stages and/or duration of the determined one or more sleep stages.
11. The multi-modal sleep monitoring system of claim 1 further comprising an additional sensor, wherein the at least one sensor and the additional sensor comprise electrodes and an accelerometer.
12. The multi-modal sleep monitoring system of claim 1 wherein the data processor is configured with an LED/photodiode pair for generating a photoplethysmographic signal.
13. The multi-modal sleep monitoring system of claim 12 wherein the data processor is configured to determine heart rate, heart rate variability and/or respiration rate from the photoplethysmographic signal, and wherein the determined one or more sleep stages are further based on one or more of the heart rate, heart rate variability and/or respiration rate.
14. The multi-modal sleep monitoring system of claim 1 wherein the data processor is further configured to forward received data to a remote server via a wired or wireless communications connection.
15. The multi-modal sleep monitoring system of claim 1 wherein the data processor is configured with separate processing modules for each of (a) the electrical signal from the electrodes, and (b) movement data output by the accelerometer.
16. The multi-modal sleep monitoring system of claim 1 wherein the data processor is configured with an intertwined processing module for (a) a first data set from the electrical signal from the electrodes, and (b) a second data set of movement data output by the accelerometer,
wherein the intertwined processing module uses one of the first data set and the second data set to adjust the other one of the first data set and the second data set.
17. The multi-modal sleep monitoring system of claim 1 further comprising an accelerometer, wherein a mode of the plurality of operating modes operates to process data output by the accelerometer to weight a sleep condition analysis otherwise executed on data output by a sensor of a different type from the accelerometer.
18. The multi-modal sleep monitoring system of claim 17 wherein the sensor of a different type is an electrode sensor.
19. The multi-modal sleep monitoring system of claim 1 wherein system comprises a built-in accelerometer and conductive electrodes configured to be in direct contact with skin of a user in a forehead region of the user.
20. The multi-modal sleep monitoring system of claim 19 wherein the data processor comprises the built-in accelerometer and is configured for selective coupling to a wristband or a headband, and wherein the headband comprises the conductive electrodes.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/152,263 US20210267529A1 (en) | 2011-09-06 | 2021-01-19 | Multi-modal sleep system |
US17/865,820 US20220346694A1 (en) | 2011-09-06 | 2022-07-15 | Multi-modal sleep system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/226,121 US8870764B2 (en) | 2011-09-06 | 2011-09-06 | Multi-modal sleep system |
US14/497,845 US20150051453A1 (en) | 2011-09-06 | 2014-09-26 | Multi-modal sleep system |
US17/152,263 US20210267529A1 (en) | 2011-09-06 | 2021-01-19 | Multi-modal sleep system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/497,845 Continuation US20150051453A1 (en) | 2011-09-06 | 2014-09-26 | Multi-modal sleep system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/865,820 Continuation US20220346694A1 (en) | 2011-09-06 | 2022-07-15 | Multi-modal sleep system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210267529A1 true US20210267529A1 (en) | 2021-09-02 |
Family
ID=47753652
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/226,121 Active 2031-10-11 US8870764B2 (en) | 2011-09-06 | 2011-09-06 | Multi-modal sleep system |
US14/497,845 Abandoned US20150051453A1 (en) | 2011-09-06 | 2014-09-26 | Multi-modal sleep system |
US17/152,263 Abandoned US20210267529A1 (en) | 2011-09-06 | 2021-01-19 | Multi-modal sleep system |
US17/865,820 Pending US20220346694A1 (en) | 2011-09-06 | 2022-07-15 | Multi-modal sleep system |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/226,121 Active 2031-10-11 US8870764B2 (en) | 2011-09-06 | 2011-09-06 | Multi-modal sleep system |
US14/497,845 Abandoned US20150051453A1 (en) | 2011-09-06 | 2014-09-26 | Multi-modal sleep system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/865,820 Pending US20220346694A1 (en) | 2011-09-06 | 2022-07-15 | Multi-modal sleep system |
Country Status (1)
Country | Link |
---|---|
US (4) | US8870764B2 (en) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10660807B2 (en) | 2012-05-22 | 2020-05-26 | Hill-Rom Services, Inc. | Systems, methods, and devices for the treatment of sleep disorders |
US11071666B2 (en) | 2012-05-22 | 2021-07-27 | Hill-Rom Services, Inc. | Systems, methods, and devices for treatment of sleep disorders |
US11172859B2 (en) | 2014-01-28 | 2021-11-16 | Medibotics | Wearable brain activity device with auditory interface |
US9814426B2 (en) | 2012-06-14 | 2017-11-14 | Medibotics Llc | Mobile wearable electromagnetic brain activity monitor |
US10234942B2 (en) | 2014-01-28 | 2019-03-19 | Medibotics Llc | Wearable and mobile brain computer interface (BCI) device and method |
US11662819B2 (en) | 2015-05-12 | 2023-05-30 | Medibotics | Method for interpreting a word, phrase, and/or command from electromagnetic brain activity |
USD779236S1 (en) | 2013-05-22 | 2017-02-21 | Hill-Rom Services, Inc. | Mattress |
US20160249854A1 (en) * | 2013-06-21 | 2016-09-01 | Hello Inc. | Monitoring device for sleep analysis and detection and caffeine consumption |
US20160183870A1 (en) * | 2013-06-21 | 2016-06-30 | Hello Inc. | Monitoring device for sleep analysis including the effect of light and noise disturbances |
US8983569B2 (en) * | 2013-06-22 | 2015-03-17 | Zinus, Inc. | Comfortably securing physiological sensors onto a person during sleep |
CN105009028A (en) * | 2013-12-06 | 2015-10-28 | 华为终端有限公司 | Method for controlling terminal device, and wearable electronic device |
PL406957A1 (en) | 2014-01-27 | 2015-08-03 | Intelclinic Spółka Z Ograniczoną Odpowiedzialnością | System for managing the multiphase sleep, method of its operation, device for the sleep analysis, method for classification of the current sleep phase and application of the system and the device for the management of multiphase sleep |
US10179064B2 (en) | 2014-05-09 | 2019-01-15 | Sleepnea Llc | WhipFlash [TM]: wearable environmental control system for predicting and cooling hot flashes |
KR20170012459A (en) * | 2014-05-29 | 2017-02-02 | 뉴로버스, 인크. | Physiological signal detection and analysis systems and devices |
US9603566B2 (en) * | 2014-09-23 | 2017-03-28 | Boe Technology Group Co., Ltd. | Sleep awaking system and method |
US10292881B2 (en) | 2014-10-31 | 2019-05-21 | Hill-Rom Services, Inc. | Dynamic apnea therapy surface |
WO2016109807A1 (en) * | 2015-01-02 | 2016-07-07 | Hello, Inc. | Room monitoring device and sleep analysis |
EP3242587A1 (en) * | 2015-01-06 | 2017-11-15 | David Burton | Mobile wearable monitoring systems |
AU2015379572B2 (en) | 2015-01-27 | 2018-09-27 | Apple Inc. | A system for determining the quality of sleep |
AU2016214265A1 (en) * | 2015-02-03 | 2017-08-17 | Apple Inc. | Family sleep monitoring system |
US10232139B1 (en) | 2015-06-12 | 2019-03-19 | Chrona Sleep, Inc. | Smart pillow cover and alarm to improve sleeping and waking |
CN104905795B (en) * | 2015-06-15 | 2017-10-10 | 深圳市奋达科技股份有限公司 | A kind of BLE networkings sleep monitor method and device |
US20180242916A1 (en) * | 2015-09-02 | 2018-08-30 | The General Hospital Corporation | Electroencephalogram monitoring system and method of use of the same |
US11020035B2 (en) | 2016-02-01 | 2021-06-01 | Epitel, Inc. | Self-contained EEG recording system |
US10391010B2 (en) | 2016-02-26 | 2019-08-27 | Hill-Rom Services, Inc. | Sleep disorder treatment devices, systems, and methods |
WO2017184753A1 (en) | 2016-04-19 | 2017-10-26 | Inspire Medical Systems, Inc. | Accelerometer-based sensing for sleep disordered breathing (sdb) care |
CN109561840B (en) | 2016-08-12 | 2021-11-19 | 苹果公司 | Vital sign monitoring system |
US10478590B2 (en) | 2016-09-16 | 2019-11-19 | Bose Corporation | Sleep assistance device for multiple users |
US10963146B2 (en) | 2016-09-16 | 2021-03-30 | Bose Corporation | User interface for a sleep system |
US11594111B2 (en) | 2016-09-16 | 2023-02-28 | Bose Corporation | Intelligent wake-up system |
US10653856B2 (en) | 2016-09-16 | 2020-05-19 | Bose Corporation | Sleep system |
US10561362B2 (en) | 2016-09-16 | 2020-02-18 | Bose Corporation | Sleep assessment using a home sleep system |
US10517527B2 (en) | 2016-09-16 | 2019-12-31 | Bose Corporation | Sleep quality scoring and improvement |
US10434279B2 (en) | 2016-09-16 | 2019-10-08 | Bose Corporation | Sleep assistance device |
US10178969B2 (en) | 2016-09-19 | 2019-01-15 | Intel Corporation | Stress detection method and apparatus |
CN106730232B (en) * | 2016-12-09 | 2018-06-12 | 山东瀚岳智能科技股份有限公司 | A kind of intelligence awakening method and system |
CN106491123A (en) * | 2016-12-22 | 2017-03-15 | 首都师范大学 | Physiological signal record system and its recorder |
US10111615B2 (en) | 2017-03-11 | 2018-10-30 | Fitbit, Inc. | Sleep scoring based on physiological information |
FR3064463B1 (en) | 2017-03-30 | 2024-11-22 | Fivefive | METHOD FOR DETERMINING A SET OF AT LEAST ONE CARDIOVASCULAR-RESPIRATORY DESCRIPTOR OF AN INDIVIDUAL DURING SLEEP AND CORRESPONDING SYSTEM. |
CN110612060B (en) * | 2017-05-22 | 2022-09-02 | 苹果公司 | Multi-element piezoelectric sensor for physiological measurements |
US11007098B2 (en) | 2017-07-13 | 2021-05-18 | Hill-Rom Services, Inc. | Layered graduated lateral rotation apparatus |
US11090208B2 (en) | 2017-07-13 | 2021-08-17 | Hill-Rom Services, Inc. | Actuated graduated lateral rotation apparatus |
US11096500B2 (en) | 2017-07-13 | 2021-08-24 | Hill-Rom Services, Inc. | Floor-supported graduated lateral rotation apparatus |
US11122908B2 (en) | 2017-07-13 | 2021-09-21 | Hill-Rom Services, Inc. | Apparatus for graduated lateral rotation of a sleep surface |
US20210322764A1 (en) * | 2018-09-14 | 2021-10-21 | Cochlear Limited | Implantable components and external devices communicating with same |
US10959534B2 (en) | 2019-02-28 | 2021-03-30 | Hill-Rom Services, Inc. | Oblique hinged panels and bladder apparatus for sleep disorders |
AU2020315918A1 (en) | 2019-07-25 | 2022-03-03 | Inspire Medical Systems, Inc. | Systems and methods for operating an implantable medical device based upon sensed posture information |
US11435827B2 (en) * | 2019-08-30 | 2022-09-06 | AR & NS Investment, LLC | Electronic training system and method for electronic evaluation and feedback of sports performance |
US20210085234A1 (en) * | 2019-09-24 | 2021-03-25 | Sabrina Fashion Industrial Corp. | Brainwave headband structure |
CN111202516B (en) * | 2020-01-19 | 2023-04-07 | 北京道贞健康科技发展有限责任公司 | Method and system for judging sleep depth based on precordial brain waves of sternum |
US20210307672A1 (en) | 2020-04-05 | 2021-10-07 | Epitel, Inc. | Eeg recording and analysis |
CN111504467B (en) * | 2020-04-26 | 2022-07-29 | 熵基华运(厦门)集成电路有限公司 | Environment monitoring method for wearable device and wearable device |
US12120120B2 (en) * | 2020-09-08 | 2024-10-15 | Arris Enterprises Llc | Wi-Fi multiple access point—biometric based improvements |
US20220079521A1 (en) * | 2020-09-14 | 2022-03-17 | Apple Inc. | Wearable Tags |
US11918368B1 (en) | 2022-10-19 | 2024-03-05 | Epitel, Inc. | Systems and methods for electroencephalogram monitoring |
CN115607114B (en) * | 2022-12-14 | 2023-03-17 | 深圳市心流科技有限公司 | Sleep monitoring method and portable sleep monitoring device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040193068A1 (en) * | 2001-06-13 | 2004-09-30 | David Burton | Methods and apparatus for monitoring consciousness |
US8355769B2 (en) * | 2009-03-17 | 2013-01-15 | Advanced Brain Monitoring, Inc. | System for the assessment of sleep quality in adults and children |
WO2017136352A1 (en) * | 2016-02-01 | 2017-08-10 | Verily Life Sciences Llc | Machine learnt model to detect rem sleep periods using a spectral analysis of heart rate and motion |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047930A (en) * | 1987-06-26 | 1991-09-10 | Nicolet Instrument Corporation | Method and system for analysis of long term physiological polygraphic recordings |
DE19538473A1 (en) * | 1995-10-16 | 1997-04-17 | Map Gmbh | Device and method for the quantitative analysis of sleep disorders |
US6306088B1 (en) * | 1998-10-03 | 2001-10-23 | Individual Monitoring Systems, Inc. | Ambulatory distributed recorders system for diagnosing medical disorders |
US6415188B1 (en) * | 1998-12-23 | 2002-07-02 | Dennis Sunga Fernandez | Method and apparatus for multi-sensor processing |
US6496724B1 (en) * | 1998-12-31 | 2002-12-17 | Advanced Brain Monitoring, Inc. | Method for the quantification of human alertness |
US7933646B2 (en) * | 2002-10-15 | 2011-04-26 | Medtronic, Inc. | Clustering of recorded patient neurological activity to determine length of a neurological event |
US7277743B2 (en) * | 2003-02-20 | 2007-10-02 | Ge Medical Systems Information Technologies, Inc. | Patient monitoring system |
US8002553B2 (en) * | 2003-08-18 | 2011-08-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
US20070249952A1 (en) | 2004-02-27 | 2007-10-25 | Benjamin Rubin | Systems and methods for sleep monitoring |
US7542803B2 (en) * | 2004-03-16 | 2009-06-02 | Medtronic, Inc. | Sensitivity analysis for selecting therapy parameter sets |
WO2006006159A1 (en) * | 2004-07-09 | 2006-01-19 | Aerotel Medical Systems (1998) Ltd. | A wearable device, system and method for monitoring physiological and/or environmental parameters |
CN100471464C (en) * | 2004-10-05 | 2009-03-25 | 皇家飞利浦电子股份有限公司 | Skin treatment device with radiation emission protection |
US20080319277A1 (en) * | 2005-06-13 | 2008-12-25 | Braebon Medical Corporation | Sleep disorder monitoring and diagnostic system |
JP4686281B2 (en) * | 2005-07-06 | 2011-05-25 | 株式会社東芝 | Respiratory state determination device, respiratory state measurement method, and respiratory state determination program |
US7942824B1 (en) * | 2005-11-04 | 2011-05-17 | Cleveland Medical Devices Inc. | Integrated sleep diagnostic and therapeutic system and method |
US7668588B2 (en) * | 2006-03-03 | 2010-02-23 | PhysioWave, Inc. | Dual-mode physiologic monitoring systems and methods |
KR100809041B1 (en) * | 2006-06-20 | 2008-03-03 | 삼성전자주식회사 | Sleep state detection device and method |
US8315683B2 (en) * | 2006-09-20 | 2012-11-20 | Masimo Corporation | Duo connector patient cable |
WO2008037020A1 (en) * | 2006-09-27 | 2008-04-03 | Resmed Ltd | Methods and apparatus for assessing sleep quality |
US8029447B2 (en) * | 2006-10-10 | 2011-10-04 | Volcano Corporation | Multipurpose host system for invasive cardiovascular diagnostic measurement acquisition including an enhanced dynamically configured graphical display |
US7880626B2 (en) * | 2006-10-12 | 2011-02-01 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
US9913982B2 (en) * | 2011-01-28 | 2018-03-13 | Cyberonics, Inc. | Obstructive sleep apnea treatment devices, systems and methods |
US20100105993A1 (en) * | 2007-05-23 | 2010-04-29 | Ic Therapeutics, Inc. | Methods and apparatus for noninvasive ischemic conditioning |
JP5073371B2 (en) * | 2007-06-06 | 2012-11-14 | 株式会社タニタ | Sleep evaluation device |
CN101108125B (en) * | 2007-08-02 | 2010-06-16 | 无锡微感科技有限公司 | Dynamic monitoring system of body sign |
US8926509B2 (en) * | 2007-08-24 | 2015-01-06 | Hmicro, Inc. | Wireless physiological sensor patches and systems |
EP2227843B1 (en) * | 2007-10-12 | 2019-03-06 | Masimo Corporation | Connector assembly |
WO2009144598A1 (en) * | 2008-04-14 | 2009-12-03 | Itamar Medical Ltd. | Non-invasive method and apparatus for determining light- sleep and deep-sleep stages |
US8808178B2 (en) * | 2008-04-30 | 2014-08-19 | Welch Allyn, Inc. | On demand help/in-service for a medical device |
US8679012B1 (en) * | 2008-08-13 | 2014-03-25 | Cleveland Medical Devices Inc. | Medical device and method with improved biometric verification |
KR20110076925A (en) * | 2008-09-24 | 2011-07-06 | 비안카메드 리미티드 | Non-contact and minimal contact monitoring of quality of life variables for assessment and adjustment |
US20100099954A1 (en) | 2008-10-22 | 2010-04-22 | Zeo, Inc. | Data-driven sleep coaching system |
WO2010087862A1 (en) * | 2009-02-02 | 2010-08-05 | Victhom Human Bionics Inc. | A method and device for the prevention of sudden unexpected death in epilepsy (sudep) |
EP2236078A1 (en) * | 2009-04-02 | 2010-10-06 | Koninklijke Philips Electronics N.V. | Processing a bio-physiological signal |
GB2471902A (en) * | 2009-07-17 | 2011-01-19 | Sharp Kk | Sleep management system which correlates sleep and performance data |
US8179270B2 (en) * | 2009-07-21 | 2012-05-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Methods and systems for providing sleep conditions |
EP2531103A1 (en) * | 2010-02-02 | 2012-12-12 | Nellcor Puritan Bennett LLC | System and method for diagnosing sleep apnea based on results of multiple approaches to sleep apnea identification |
WO2011109716A2 (en) * | 2010-03-04 | 2011-09-09 | Neumitra LLC | Devices and methods for treating psychological disorders |
US8348841B2 (en) * | 2010-04-09 | 2013-01-08 | The Board Of Trustees Of The University Of Arkansas | Wireless nanotechnology based system for diagnosis of neurological and physiological disorders |
US9380982B2 (en) * | 2010-07-28 | 2016-07-05 | Covidien Lp | Adaptive alarm system and method |
US20130012785A1 (en) * | 2011-07-07 | 2013-01-10 | Lombardi Daniel J | Method and apparatus for enabling continuous data acquisition across multiple stages of care |
-
2011
- 2011-09-06 US US13/226,121 patent/US8870764B2/en active Active
-
2014
- 2014-09-26 US US14/497,845 patent/US20150051453A1/en not_active Abandoned
-
2021
- 2021-01-19 US US17/152,263 patent/US20210267529A1/en not_active Abandoned
-
2022
- 2022-07-15 US US17/865,820 patent/US20220346694A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040193068A1 (en) * | 2001-06-13 | 2004-09-30 | David Burton | Methods and apparatus for monitoring consciousness |
US8355769B2 (en) * | 2009-03-17 | 2013-01-15 | Advanced Brain Monitoring, Inc. | System for the assessment of sleep quality in adults and children |
WO2017136352A1 (en) * | 2016-02-01 | 2017-08-10 | Verily Life Sciences Llc | Machine learnt model to detect rem sleep periods using a spectral analysis of heart rate and motion |
Also Published As
Publication number | Publication date |
---|---|
US20150051453A1 (en) | 2015-02-19 |
US20130060097A1 (en) | 2013-03-07 |
US20220346694A1 (en) | 2022-11-03 |
US8870764B2 (en) | 2014-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210267529A1 (en) | Multi-modal sleep system | |
US10706717B2 (en) | Electronic device and control method thereof | |
CN108042108B (en) | A method and system for monitoring sleep quality based on body shock signals | |
US9711060B1 (en) | Biometric sensor ring for continuous wear mobile data applications | |
US9681840B2 (en) | Wearable mobile device and method of measuring biological signal with the same | |
US9311825B2 (en) | Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications | |
EP3076858B1 (en) | Motion-based seizure detection systems and methods | |
US20160051184A1 (en) | System and method for providing sleep recommendations using earbuds with biometric sensors | |
US20170049335A1 (en) | Earphones with biometric sensors | |
US20140155767A1 (en) | Biological information measurement apparatus, biological information measurement system, biological information measurement method, and program | |
US20150119726A1 (en) | Electronic apparatus and communication control method | |
KR101410989B1 (en) | Methode for ECG and Stress Detection | |
AU2015358290A1 (en) | Apparatus and method for monitoring hypoglycaemia condition | |
JP2009011585A (en) | Apparatus and method for pulse wave processing | |
US20160029974A1 (en) | System and method for tracking biological age over time based upon heart rate variability using earphones with biometric sensors | |
CN109480782A (en) | A kind of sleep state detection method, device and equipment | |
US20170035350A1 (en) | System and method for detecting bruxism | |
US20180146275A1 (en) | Multi-point Multiple Sensor Array for Data Sensing and Processing System and Method | |
WO2016209557A1 (en) | Contextual heart health monitoring with integrated ecg (electrocardiogram) | |
US20210038168A1 (en) | Biological information measurement device and system | |
CN112911989A (en) | Mobile monitoring measurement method, mobile monitoring device, system and storage medium | |
KR20200094344A (en) | Method for calculating recovery index based on rem sleep stage and electonic device therof | |
US20220096002A1 (en) | Biometric detection using multiple sensors | |
CN206491806U (en) | Continuous blood oxygen saturation rhythm of the heart ring with alarm | |
EP3485803B1 (en) | Wearable device capable of recognizing sleep stage and recognition method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |