US20200263044A1 - Cleaning of equipment used with cementitious materials - Google Patents
Cleaning of equipment used with cementitious materials Download PDFInfo
- Publication number
- US20200263044A1 US20200263044A1 US16/867,326 US202016867326A US2020263044A1 US 20200263044 A1 US20200263044 A1 US 20200263044A1 US 202016867326 A US202016867326 A US 202016867326A US 2020263044 A1 US2020263044 A1 US 2020263044A1
- Authority
- US
- United States
- Prior art keywords
- cementitious material
- composition
- equipment
- cured
- drum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 98
- 238000004140 cleaning Methods 0.000 title description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 239000008119 colloidal silica Substances 0.000 claims abstract description 34
- 239000004567 concrete Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 26
- 239000004568 cement Substances 0.000 claims description 18
- 239000003381 stabilizer Substances 0.000 claims description 8
- 239000003082 abrasive agent Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005299 abrasion Methods 0.000 claims 1
- 230000003116 impacting effect Effects 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 abstract description 50
- 238000002156 mixing Methods 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 235000011167 hydrochloric acid Nutrition 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 238000002203 pretreatment Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- -1 but not limited to Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 1
- 241000333074 Eucalyptus occidentalis Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C11/00—Selection of abrasive materials or additives for abrasive blasts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- C11D11/0041—
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/14—Fillers; Abrasives ; Abrasive compositions; Suspending or absorbing agents not provided for in one single group of C11D3/12; Specific features concerning abrasives, e.g. granulometry or mixtures
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/20—Industrial or commercial equipment, e.g. reactors, tubes or engines
Definitions
- Provisional Patent Application 61/929,355, titled PRETREATMENT AND CLEANING OF EQUIPMENT USED WITH UNCURED CEMENTITIOUS MATERIALS (“the '355 Provisional application”) was made under 35 U.S.C. ⁇ 119(e).
- the entire disclosures of the '355 Provisional Application, the '526 Provisional Application, the '198 application, the '164 application, and the '380 application are hereby incorporated herein by reference.
- This disclosure relates generally to techniques and systems for pretreating equipment for use in mixing, placing, and/or finishing cementitious materials, including, but not limited to, cement, concrete, and mortar. More specifically, this disclosure relates to the use of aqueous solutions that include colloidal silica to pretreat surfaces of equipment for mixing, placing, and/or finishing cementitious materials to reduce or eliminate the adhesion of cementitious materials to pretreated surfaces. In addition, this disclosure relates to the use of abrasive materials and aqueous solutions that include colloidal silica to clean cured cementitious materials from surfaces of equipment used for mixing, placing, and/or finishing cementitious materials, such as concrete, mortar, or cement.
- Cementitious materials often include two components: (1) paste and (2) aggregates.
- the paste which typically includes cement (e.g., Portland cement, etc.) and water, binds the aggregates (e.g., sand, gravel, crushed stone, combinations thereof, etc.) together.
- the paste hardens (e.g., due to a chemical hydration reaction between cement and water, etc.) the paste and the aggregate form a rock-like mass.
- cementitious materials e.g., cement, concrete, mortar, etc.
- equipment that is configured for use with uncured cementitious materials e.g., cement mixers, forms, finishing tools, etc.
- the cementitious material that remains on equipment hardens and cures. With repeated use, this residue builds up over time, resulting in relatively thick layers of cured cement, concrete or other cementitious materials on the equipment.
- Such build-up impairs mixing, performance of the equipment (e.g., discharge performance of a mixing drum, capacity of a mixing drum, etc.). Eventually, the build-up may accumulate and prevent the equipment from functioning properly.
- Removal of cured cementitious material from equipment typically requires the use of caustic chemicals, such as strong acids, and appropriate measures for disposing of the acidic waste.
- caustic chemicals such as strong acids
- the strong acids that are typically used to remove concrete, such as hydrochloric acid or muriatic acid, are typically expensive, are not environmentally friendly, are corrosive and can damage surfaces to which they are applied, can be harmful to individuals who are cleaning the equipment, and can adversely affect future loads of concrete.
- tools e.g., chisels and hammers or mallets, jackhammers, etc.
- tools e.g., chisels and hammers or mallets, jackhammers, etc.
- the use of tools to remove cured concrete can be labor-intensive. Because of the likelihood of flying debris and dust (which can cause silicosis or even lung cancer) generated by mechanical removal of cementitious materials, the use of tools, as well as the frequent use of strong acids in conjunction with mechanical removal processes, can be dangerous. Accordingly, safety equipment is also frequently needed.
- a method for pre-treating equipment for use with uncured cementitious material includes applying an aqueous solution that includes colloidal silica, amorphous silica or a similar material to a surface of the equipment before uncured cementitious material comes into contact with the surface.
- the aqueous solution may include a sufficient concentration of colloidal silica and/or amorphous silica to reduce or eliminate the amount of uncured cementitious material that sticks or adheres to the surface and, thus, may subsequently have to be removed from the surface of the equipment.
- a composition for pre-treating equipment that is to be used with uncured cementitious materials may comprise colloidal silica.
- aqueous solutions that comprise, consist essentially of and consist of colloidal silica are disclosed in U.S. Pat. No. 8,852,334 (“the '334 patent”), the entire disclosure of which is hereby incorporated herein.
- Such an aqueous solution may comprise an aqueous solution with silica (i.e., silicon dioxide, or SiO 2 ) particles making up about 2% to about 30% (or, more specifically, about 4% to about 7%) of the weight of the aqueous solution.
- silica solids content of such a composition may be about 2% to about 30%.
- a composition for pre-treating equipment that is to be used with uncured cementitious materials may comprise amorphous silica.
- other materials with properties similar to colloidal silica and/or amorphous silica may be used to pre-treat equipment that is to be used with uncured cementitious materials.
- the composition for pre-treating equipment may be applied to surfaces of the equipment that are to be contacted by a cementitious material (e.g., internal surfaces, external surfaces, both internal and external surfaces, etc.).
- a colloidal silica, an amorphous silica and/or any other suitable material according to or used in accordance with this disclosure may have a particle size (e.g., a diameter, etc.) of about 9 nm to about 300 nm. In some embodiments, the particle sizes may be substantially the same as one another, or they may vary.
- the silica particles may be coated with a stabilizer, such as a metal or a metal-containing material (e.g., aluminum; an aluminum-containing material, such as alumina (i.e., aluminum oxide, or Al 2 O 3 ); etc.), which enables the silica particles to remain in solution at relatively low pH (e.g., 10 or less, 8.5 or less, 8 or less, 7 or less, about 3 to about 8, about 4 to about 7, about 3 to about 5, etc.).
- a stabilizer on the silica particles may, in some embodiments, enable the colloidal silica to be used in conjunction with an acid (e.g., hydrochloric acid, muriatic acid, etc.).
- the hardener/densifier available from Global Polishing Systems, LLC of Henderson, Nev., as CDH-100 is a specific example of a colloidal silica that may be used in accordance with a pre-treatment process according to this disclosure.
- the surface may be permitted to dry (i.e., the water may evaporate from it) and, thus, a coating of dried colloidal silica, amorphous silica or the like may remain on and coat the surface before it comes into contact with uncured concrete or another uncured cementitious material.
- the surface may remain wetted with the composition before the surface contacts the uncured cementitious material.
- such an aqueous solution may be applied to a surface of equipment for mixing cementitious materials (e.g., an interior surface of a drum of a cement mixer, etc.), equipment for placing cementitious materials, equipment for finishing cementitious materials (e.g., trowels, blades of power trowels, etc.), or any other equipment that will come into contact with an uncured cementitious material.
- the aqueous solution may be introduced into a drum of mixing equipment (e.g., a cement mixer, etc.), and the drum may be rotated in a manner that enables the aqueous solution, and the colloidal silica, to coat interior surfaces of the drum.
- the aqueous solution may be removed before a concrete mix or any other mix for forming a cementitious material is introduced into the drum, or it may remain in place while a mix is introduced into the drum and, thus, form part of the mix.
- an aqueous solution that comprises colloidal silica may be applied to a surface of equipment for placing or finishing cementitious materials.
- non-aqueous compositions according to this disclosure are also within the scope of this disclosure. Such methods may include the application of non-aqueous compositions, such as powders, etc., to surfaces that may contact uncured concrete.
- Equipment may be pre-treated in accordance with teachings of this disclosure when it is new or after it has been cleaned.
- techniques and systems for removing cured cementitious material, such as cement, concrete, or mortar, from surfaces of equipment include applying an aqueous solution that comprises colloidal silica, amorphous silica, or another suitable material to the cured cementitious material.
- the aqueous composition may penetrate into the cured cementitious material.
- application of the aqueous composition may be accompanied by chemically etching or mechanically abrading the cured cementitious material (e.g., with a chemical etchant, an abrasive element, etc.) while it is wetted with an aqueous form of a composition according to this disclosure.
- the silica particles may be coated with a stabilizer, such as a metal or a metal-containing material (e.g., aluminum; an aluminum-containing material, such as alumina (i.e., aluminum oxide, or Al 2 O 3 ); etc.), which enables the silica particles to remain in solution at relatively low pH (e.g., 10 or less, 8.5 or less, 8 or less, 7 or less, about 3 to about 8, about 4 to about 7, about 3 to about 5, etc.).
- a stabilizer on the silica particles may, in some embodiments, enable the colloidal silica to be used in conjunction with an acid (e.g., hydrochloric acid, muriatic acid, etc.).
- the hardener/densifier available from Global Polishing Systems, LLC of Henderson, Nev. as CDH-100 is a specific example of a colloidal silica that may be used as an aqueous solution to remove cured cementitious material from equipment that is configured for use with an uncured, or wet, cementitious material.
- a suitable aqueous solution may include about 10% colloidal silica, by weight of the aqueous solution, to about 20% colloidal silica, by weight of the aqueous solution. Since colloidal silica is not harmful to the environment, the disclosed pre-treatment and cleaning processes may be carried out without the requirement of special disposal measures (e.g., those required for disposing of strong acids, which are considered to be a hazardous waste, etc.). Further, it has been discovered that the extent to which aqueous solutions comprising colloidal silica soften cured cement and concrete exceeds the extents to which strong hydrochloric acid and muriatic acid soften the same types of cured cementitious material. The selection of an abrasive element to abrade the surface may be based on the surface or the type of equipment from which the cured cementitious material is being removed.
- the aqueous solution may be pressurized and directed into (e.g., in a spray, a jetted stream, etc.) the cured cementitious material under pressure.
- the pressurized aqueous solution may act as the abrasive element.
- a particulate material may be used to abrade cured cementitious material that has been wetted with an aqueous solution that comprises colloidal silica.
- particulate abrasive elements include sand, coal slag, metallic slag, mineral abrasives, metallic abrasives, synthetic abrasives and rock. Such abrasive elements may be directed onto the cured cementitious material in any manner that will facilitate removal of the cured cementitious material from the surface without damaging the surface.
- a particulate abrasive element may be applied under pressure (e.g., by a so-called “blasting” process, etc.).
- the application of a particulate abrasive element may occur while the aqueous solution is being applied to the cured cementitious material (i.e., simultaneously with application of the aqueous solution). Simultaneous application of the aqueous solution and the abrasive element may include mixing the aqueous solution and the abrasive element and delivering them together (i.e., from a common delivery source), or it may include delivering the aqueous solution and the abrasive element from separate delivery sources. Alternatively, a particulate abrasive element may be used to abrade cured cementitious material that was previously wetted, and remains wetted, with an aqueous solution that comprises colloidal silica.
- larger abrasive elements may be useful for removing cured cementitious material from surfaces of equipment configured for use with uncured cementitious materials.
- Such a circumstance may include the removal of cured cementitious material from a surface configured to withstand repeated impact, such as the interior of a drum of equipment for mixing concrete (i.e., a cement mixer).
- a cement mixer When cured cementitious material builds up on the interior surfaces of a drum of a cement mixer, an aqueous solution that comprises colloidal silica and gravel may be introduced into the interior of the drum. The drum may then be rotated in a direction that keeps the aqueous solution and the gravel in the drum as the colloidal silica and the gravel chemically and mechanically remove the cured cementitious material from interior surfaces of the drum.
- abrasive elements may be used as alternatives to the use of a particulate material as an abrasive element to assist in the removal of cured cementitious material from one or more surfaces of equipment configured for use with uncured cementitious materials.
- abrasive elements that may be used in conjunction with an aqueous solution that comprises colloidal silica to remove cured cementitious material include abrasive pads, abrasive brushes (e.g., wire brushes), grinding elements, and the like. These and other types of abrasive elements may be used to assist in the removal of cured cementitious material that has been wetted with the aqueous solution, during and/or after application of the aqueous solution to the cured cementitious material.
- cleaning processes may be effected about once a week (e.g., when cement mixing trucks are parked for the weekend, to minimize any disruption in their use, etc.). Although more frequent cleaning and less frequent cleaning are also within the scope of the disclosed subject matter. Other equipment may be scheduled for cleaning in a similar manner.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 16/162,380, filed Oct. 16, 2018 and titled PRE-TREATMENT AND CLEANING OF EQUIPMENT USED WITH UNCURED CEMENTITIOUS MATERIALS (“the '380 application), now U.S. Pat. No. 10,640,659, issued on May 5, 2020, which is a continuation of U.S. patent application Ser. No. 14/708,164, filed on May 8, 2015 and titled PRE-TREATMENT AND CLEANING OF EQUIPMENT USED WITH UNCURED CEMENTITIOUS MATERIALS (“the '164 application), now U.S. Pat. No. 10,100,206 issued Oct. 1, 2019. A claim for the benefit of priority to the May 8, 2014, filing date of U.S. Provisional Patent Application 61/990,526, titled CONCRETE REMOVAL METHODS AND SYSTEMS (the “526 Provisional application”) was made pursuant to 35 U.S.C. § 119(e) in the '164 application. In addition, the '164 application is a continuation-in-part of U.S. patent application Ser. No. 14/601,198, filed on Jan. 20, 2015 and titled PRE-TREATMENT AND CLEANING OF EQUIPMENT USED WITH UNCURED CEMENTITIOUS MATERIALS (“the '198 application”), now U.S. Pat. No. 10,100,206, issued on Oct. 16, 2018, in which a claim for the benefit of priority to the Jan. 20, 2014, filing date of U.S. Provisional Patent Application 61/929,355, titled PRETREATMENT AND CLEANING OF EQUIPMENT USED WITH UNCURED CEMENTITIOUS MATERIALS (“the '355 Provisional application”) was made under 35 U.S.C. § 119(e). The entire disclosures of the '355 Provisional Application, the '526 Provisional Application, the '198 application, the '164 application, and the '380 application are hereby incorporated herein by reference.
- This disclosure relates generally to techniques and systems for pretreating equipment for use in mixing, placing, and/or finishing cementitious materials, including, but not limited to, cement, concrete, and mortar. More specifically, this disclosure relates to the use of aqueous solutions that include colloidal silica to pretreat surfaces of equipment for mixing, placing, and/or finishing cementitious materials to reduce or eliminate the adhesion of cementitious materials to pretreated surfaces. In addition, this disclosure relates to the use of abrasive materials and aqueous solutions that include colloidal silica to clean cured cementitious materials from surfaces of equipment used for mixing, placing, and/or finishing cementitious materials, such as concrete, mortar, or cement.
- Cementitious materials often include two components: (1) paste and (2) aggregates. The paste, which typically includes cement (e.g., Portland cement, etc.) and water, binds the aggregates (e.g., sand, gravel, crushed stone, combinations thereof, etc.) together. As the paste hardens (e.g., due to a chemical hydration reaction between cement and water, etc.) the paste and the aggregate form a rock-like mass.
- Because of the high viscosities of uncured, or wet, cementitious materials (e.g., cement, concrete, mortar, etc.), the cementitious materials often build up on the surfaces they contact. As a result, equipment that is configured for use with uncured cementitious materials (e.g., cement mixers, forms, finishing tools, etc.) often remains coated with the cementitious materials after use—even when efforts are taken to clean the equipment. The cementitious material that remains on equipment hardens and cures. With repeated use, this residue builds up over time, resulting in relatively thick layers of cured cement, concrete or other cementitious materials on the equipment. Such build-up impairs mixing, performance of the equipment (e.g., discharge performance of a mixing drum, capacity of a mixing drum, etc.). Eventually, the build-up may accumulate and prevent the equipment from functioning properly.
- Additionally, previously hardened cementitious materials may break off into fresh, not-yet-hardened cementitious materials, detrimentally affecting their performance. Because of this problem, Department of Transportation (DOT)-certified batch plants must frequently clean and maintain mixing trucks.
- Removal of cured cementitious material from equipment typically requires the use of caustic chemicals, such as strong acids, and appropriate measures for disposing of the acidic waste. The strong acids that are typically used to remove concrete, such as hydrochloric acid or muriatic acid, are typically expensive, are not environmentally friendly, are corrosive and can damage surfaces to which they are applied, can be harmful to individuals who are cleaning the equipment, and can adversely affect future loads of concrete.
- While strong acids may soften the cured concrete, tools (e.g., chisels and hammers or mallets, jackhammers, etc.) are often still needed to mechanically remove the cured concrete from surfaces of the equipment. The use of tools to remove cured concrete can be labor-intensive. Because of the likelihood of flying debris and dust (which can cause silicosis or even lung cancer) generated by mechanical removal of cementitious materials, the use of tools, as well as the frequent use of strong acids in conjunction with mechanical removal processes, can be dangerous. Accordingly, safety equipment is also frequently needed.
- When the cleaning process is complete, the waste materials, which are hazardous, must be properly disposed of, which may increase the expense of the cleaning process.
- To avoid these issues, concrete build-up on equipment used with cementitious materials is often manually removed. In order to clean cement mixers, an individual may have to enter the drum of the cement mixer with a chipping hammer or a similar device. The process is tedious, difficult and time-consuming.
- A method for pre-treating equipment for use with uncured cementitious material, such as concrete, mortar, cement or the like, includes applying an aqueous solution that includes colloidal silica, amorphous silica or a similar material to a surface of the equipment before uncured cementitious material comes into contact with the surface. The aqueous solution may include a sufficient concentration of colloidal silica and/or amorphous silica to reduce or eliminate the amount of uncured cementitious material that sticks or adheres to the surface and, thus, may subsequently have to be removed from the surface of the equipment.
- Without limitation, a composition (e.g., an aqueous solution, etc.) for pre-treating equipment that is to be used with uncured cementitious materials may comprise colloidal silica. Various embodiments of aqueous solutions that comprise, consist essentially of and consist of colloidal silica are disclosed in U.S. Pat. No. 8,852,334 (“the '334 patent”), the entire disclosure of which is hereby incorporated herein. Such an aqueous solution may comprise an aqueous solution with silica (i.e., silicon dioxide, or SiO2) particles making up about 2% to about 30% (or, more specifically, about 4% to about 7%) of the weight of the aqueous solution. Stated another way, the silica solids content of such a composition may be about 2% to about 30%.
- As an alternative, a composition for pre-treating equipment that is to be used with uncured cementitious materials may comprise amorphous silica. In other alternatives, other materials with properties similar to colloidal silica and/or amorphous silica may be used to pre-treat equipment that is to be used with uncured cementitious materials. More specifically, the composition for pre-treating equipment may be applied to surfaces of the equipment that are to be contacted by a cementitious material (e.g., internal surfaces, external surfaces, both internal and external surfaces, etc.).
- In some embodiments, a colloidal silica, an amorphous silica and/or any other suitable material according to or used in accordance with this disclosure may have a particle size (e.g., a diameter, etc.) of about 9 nm to about 300 nm. In some embodiments, the particle sizes may be substantially the same as one another, or they may vary.
- In some embodiments, the silica particles may be coated with a stabilizer, such as a metal or a metal-containing material (e.g., aluminum; an aluminum-containing material, such as alumina (i.e., aluminum oxide, or Al2O3); etc.), which enables the silica particles to remain in solution at relatively low pH (e.g., 10 or less, 8.5 or less, 8 or less, 7 or less, about 3 to about 8, about 4 to about 7, about 3 to about 5, etc.). The presence of a stabilizer on the silica particles may, in some embodiments, enable the colloidal silica to be used in conjunction with an acid (e.g., hydrochloric acid, muriatic acid, etc.).
- The hardener/densifier available from Global Polishing Systems, LLC of Henderson, Nev., as CDH-100 is a specific example of a colloidal silica that may be used in accordance with a pre-treatment process according to this disclosure.
- After a composition according to this disclosure has been applied to a surface of equipment configured for use with uncured cementitious materials, the surface may be permitted to dry (i.e., the water may evaporate from it) and, thus, a coating of dried colloidal silica, amorphous silica or the like may remain on and coat the surface before it comes into contact with uncured concrete or another uncured cementitious material. Alternatively, the surface may remain wetted with the composition before the surface contacts the uncured cementitious material.
- Without limitation, such an aqueous solution may be applied to a surface of equipment for mixing cementitious materials (e.g., an interior surface of a drum of a cement mixer, etc.), equipment for placing cementitious materials, equipment for finishing cementitious materials (e.g., trowels, blades of power trowels, etc.), or any other equipment that will come into contact with an uncured cementitious material. In a specific embodiment, the aqueous solution may be introduced into a drum of mixing equipment (e.g., a cement mixer, etc.), and the drum may be rotated in a manner that enables the aqueous solution, and the colloidal silica, to coat interior surfaces of the drum. The aqueous solution may be removed before a concrete mix or any other mix for forming a cementitious material is introduced into the drum, or it may remain in place while a mix is introduced into the drum and, thus, form part of the mix. In other embodiments, an aqueous solution that comprises colloidal silica may be applied to a surface of equipment for placing or finishing cementitious materials. Various examples of the manner in which such an aqueous solution may be applied to such a surface include, but are not limited to, spraying the aqueous solution onto the surface, brushing or otherwise wiping the aqueous solution onto the surface and dipping the equipment, or at least the surface(s) that is (are) to be pre-treated, into the aqueous solution, introducing a volume of the aqueous solution into the equipment, and then operating the equipment to enable the aqueous solution to spread onto the surface(s) to which the aqueous solution is to be applied.
- Of course, methods for applying non-aqueous compositions according to this disclosure to equipment that will contact uncured cementitious material are also within the scope of this disclosure. Such methods may include the application of non-aqueous compositions, such as powders, etc., to surfaces that may contact uncured concrete.
- Equipment may be pre-treated in accordance with teachings of this disclosure when it is new or after it has been cleaned.
- In another aspect, techniques and systems for removing cured cementitious material, such as cement, concrete, or mortar, from surfaces of equipment include applying an aqueous solution that comprises colloidal silica, amorphous silica, or another suitable material to the cured cementitious material. The aqueous composition may penetrate into the cured cementitious material. In some such embodiments, application of the aqueous composition may be accompanied by chemically etching or mechanically abrading the cured cementitious material (e.g., with a chemical etchant, an abrasive element, etc.) while it is wetted with an aqueous form of a composition according to this disclosure.
- The aqueous solution may comprise, consist essentially of, or consist of colloidal silica, such as the aqueous solutions disclosed by the '334 patent. Such an aqueous solution may comprise an aqueous solution with silica (i.e., silicon dioxide, or SiO2) particles making up about 2% to about 30% (or, more specifically, about 4% to about 7%) of the weight of the aqueous solution. Stated another way, the silica solids content of such a composition may be about 2% to about 30%.
- In some embodiments, the silica particles may be coated with a stabilizer, such as a metal or a metal-containing material (e.g., aluminum; an aluminum-containing material, such as alumina (i.e., aluminum oxide, or Al2O3); etc.), which enables the silica particles to remain in solution at relatively low pH (e.g., 10 or less, 8.5 or less, 8 or less, 7 or less, about 3 to about 8, about 4 to about 7, about 3 to about 5, etc.). The presence of a stabilizer on the silica particles may, in some embodiments, enable the colloidal silica to be used in conjunction with an acid (e.g., hydrochloric acid, muriatic acid, etc.).
- The hardener/densifier available from Global Polishing Systems, LLC of Henderson, Nev. as CDH-100 is a specific example of a colloidal silica that may be used as an aqueous solution to remove cured cementitious material from equipment that is configured for use with an uncured, or wet, cementitious material.
- In some embodiments, a suitable aqueous solution may include about 10% colloidal silica, by weight of the aqueous solution, to about 20% colloidal silica, by weight of the aqueous solution. Since colloidal silica is not harmful to the environment, the disclosed pre-treatment and cleaning processes may be carried out without the requirement of special disposal measures (e.g., those required for disposing of strong acids, which are considered to be a hazardous waste, etc.). Further, it has been discovered that the extent to which aqueous solutions comprising colloidal silica soften cured cement and concrete exceeds the extents to which strong hydrochloric acid and muriatic acid soften the same types of cured cementitious material. The selection of an abrasive element to abrade the surface may be based on the surface or the type of equipment from which the cured cementitious material is being removed.
- Without limitation, in specific embodiments, the aqueous solution may be pressurized and directed into (e.g., in a spray, a jetted stream, etc.) the cured cementitious material under pressure. In such embodiments, the pressurized aqueous solution may act as the abrasive element.
- In other embodiments, a particulate material may be used to abrade cured cementitious material that has been wetted with an aqueous solution that comprises colloidal silica. Some non-limiting examples of particulate abrasive elements include sand, coal slag, metallic slag, mineral abrasives, metallic abrasives, synthetic abrasives and rock. Such abrasive elements may be directed onto the cured cementitious material in any manner that will facilitate removal of the cured cementitious material from the surface without damaging the surface. A particulate abrasive element may be applied under pressure (e.g., by a so-called “blasting” process, etc.). The application of a particulate abrasive element may occur while the aqueous solution is being applied to the cured cementitious material (i.e., simultaneously with application of the aqueous solution). Simultaneous application of the aqueous solution and the abrasive element may include mixing the aqueous solution and the abrasive element and delivering them together (i.e., from a common delivery source), or it may include delivering the aqueous solution and the abrasive element from separate delivery sources. Alternatively, a particulate abrasive element may be used to abrade cured cementitious material that was previously wetted, and remains wetted, with an aqueous solution that comprises colloidal silica.
- Under some circumstances, larger abrasive elements may be useful for removing cured cementitious material from surfaces of equipment configured for use with uncured cementitious materials. Such a circumstance may include the removal of cured cementitious material from a surface configured to withstand repeated impact, such as the interior of a drum of equipment for mixing concrete (i.e., a cement mixer). When cured cementitious material builds up on the interior surfaces of a drum of a cement mixer, an aqueous solution that comprises colloidal silica and gravel may be introduced into the interior of the drum. The drum may then be rotated in a direction that keeps the aqueous solution and the gravel in the drum as the colloidal silica and the gravel chemically and mechanically remove the cured cementitious material from interior surfaces of the drum.
- As alternatives to the use of a particulate material as an abrasive element to assist in the removal of cured cementitious material from one or more surfaces of equipment configured for use with uncured cementitious materials, a variety of other types of abrasive elements may be used. Some non-limiting examples of abrasive elements that may be used in conjunction with an aqueous solution that comprises colloidal silica to remove cured cementitious material include abrasive pads, abrasive brushes (e.g., wire brushes), grinding elements, and the like. These and other types of abrasive elements may be used to assist in the removal of cured cementitious material that has been wetted with the aqueous solution, during and/or after application of the aqueous solution to the cured cementitious material.
- In embodiments where teachings of this disclosure are used to remove cured cementitious materials from mixing equipment, it is envisioned that cleaning processes may be effected about once a week (e.g., when cement mixing trucks are parked for the weekend, to minimize any disruption in their use, etc.). Although more frequent cleaning and less frequent cleaning are also within the scope of the disclosed subject matter. Other equipment may be scheduled for cleaning in a similar manner.
- Other aspects, as well as features and advantages, of the disclosed subject matter will become apparent to those of ordinary skill in the art through consideration of the disclosure and the appended claims.
- Although the foregoing disclosure provides many specifics, these should not be construed as limiting the scope of any of the ensuing claims. Other embodiments may be devised which do not depart from the scopes of the claims. Features from different embodiments may be employed in combination. The scope of each claim is, therefore, indicated and limited only by its plain language and the full scope of available legal equivalents to its elements.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/867,326 US20200263044A1 (en) | 2014-01-20 | 2020-05-05 | Cleaning of equipment used with cementitious materials |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461929355P | 2014-01-20 | 2014-01-20 | |
US201461990526P | 2014-05-08 | 2014-05-08 | |
US14/601,198 US10100206B1 (en) | 2014-01-20 | 2015-01-20 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US14/708,164 US10428228B1 (en) | 2014-01-20 | 2015-05-08 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US16/162,380 US10640659B2 (en) | 2014-01-20 | 2018-10-16 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US16/867,326 US20200263044A1 (en) | 2014-01-20 | 2020-05-05 | Cleaning of equipment used with cementitious materials |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/162,380 Continuation US10640659B2 (en) | 2014-01-20 | 2018-10-16 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200263044A1 true US20200263044A1 (en) | 2020-08-20 |
Family
ID=65274805
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/708,164 Active 2035-04-06 US10428228B1 (en) | 2014-01-20 | 2015-05-08 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US16/162,380 Active US10640659B2 (en) | 2014-01-20 | 2018-10-16 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US16/867,326 Pending US20200263044A1 (en) | 2014-01-20 | 2020-05-05 | Cleaning of equipment used with cementitious materials |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/708,164 Active 2035-04-06 US10428228B1 (en) | 2014-01-20 | 2015-05-08 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
US16/162,380 Active US10640659B2 (en) | 2014-01-20 | 2018-10-16 | Pre-treatment and cleaning of equipment used with uncured cementitious materials |
Country Status (1)
Country | Link |
---|---|
US (3) | US10428228B1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5507875A (en) * | 1994-07-29 | 1996-04-16 | Hailey; Jeff | Method for cleaning concrete delivery trucks |
US6418948B1 (en) * | 1998-10-30 | 2002-07-16 | Thomas G. Harmon | Apparatus and method for removing concrete from interior surfaces of a concrete mixing drum |
US20030077984A1 (en) * | 2001-10-19 | 2003-04-24 | Eastman Kodak Company | Method of removing material from an external surface using core/shell particles |
US20050202989A1 (en) * | 2002-05-30 | 2005-09-15 | Wilson Paul A. | Cleaning compositions and methods of treating equipment |
US20100225026A1 (en) * | 2006-09-15 | 2010-09-09 | Sika Technology Ag | Mould release composition |
WO2013073961A2 (en) * | 2011-08-31 | 2013-05-23 | 1M2 Design Limited | Method and apparatus for cleaning |
US20140113850A1 (en) * | 2011-05-27 | 2014-04-24 | Societe D'exploitation De Produits Pour Les Industries Chimique Seppic | Novel use of heptylpolyglycosides for solubilising non-ionic surfactants in aqueous acidic cleaning compositions, and aqueous acidic cleaning compositions comprising same |
US20140220867A1 (en) * | 2013-02-01 | 2014-08-07 | Global Polishing Systems LLC | Concrete Cutting, Polishing and Coloring Treatment Solutions and Methods |
US8852334B1 (en) * | 2008-02-05 | 2014-10-07 | Arris Technologies, LLC | Low pH compositions for hardening concrete and associated methods |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8079746B2 (en) * | 2009-03-16 | 2011-12-20 | Derald Lundberg | Concrete containment and washout apparatus |
-
2015
- 2015-05-08 US US14/708,164 patent/US10428228B1/en active Active
-
2018
- 2018-10-16 US US16/162,380 patent/US10640659B2/en active Active
-
2020
- 2020-05-05 US US16/867,326 patent/US20200263044A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5507875A (en) * | 1994-07-29 | 1996-04-16 | Hailey; Jeff | Method for cleaning concrete delivery trucks |
US6418948B1 (en) * | 1998-10-30 | 2002-07-16 | Thomas G. Harmon | Apparatus and method for removing concrete from interior surfaces of a concrete mixing drum |
US20030077984A1 (en) * | 2001-10-19 | 2003-04-24 | Eastman Kodak Company | Method of removing material from an external surface using core/shell particles |
US20050202989A1 (en) * | 2002-05-30 | 2005-09-15 | Wilson Paul A. | Cleaning compositions and methods of treating equipment |
US20100225026A1 (en) * | 2006-09-15 | 2010-09-09 | Sika Technology Ag | Mould release composition |
US8852334B1 (en) * | 2008-02-05 | 2014-10-07 | Arris Technologies, LLC | Low pH compositions for hardening concrete and associated methods |
US20140113850A1 (en) * | 2011-05-27 | 2014-04-24 | Societe D'exploitation De Produits Pour Les Industries Chimique Seppic | Novel use of heptylpolyglycosides for solubilising non-ionic surfactants in aqueous acidic cleaning compositions, and aqueous acidic cleaning compositions comprising same |
WO2013073961A2 (en) * | 2011-08-31 | 2013-05-23 | 1M2 Design Limited | Method and apparatus for cleaning |
US20140220867A1 (en) * | 2013-02-01 | 2014-08-07 | Global Polishing Systems LLC | Concrete Cutting, Polishing and Coloring Treatment Solutions and Methods |
Non-Patent Citations (1)
Title |
---|
WO2013073961 - Machine Translation (Year: 2013) * |
Also Published As
Publication number | Publication date |
---|---|
US10640659B2 (en) | 2020-05-05 |
US20190048213A1 (en) | 2019-02-14 |
US10428228B1 (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8852334B1 (en) | Low pH compositions for hardening concrete and associated methods | |
US10343254B2 (en) | Concrete cutting, polishing, and coloring treatment solutions and methods | |
KR101135175B1 (en) | Protective mortar using calcium aluminate and oraganic-inorganic hybrid coating agent | |
US20190270176A1 (en) | Concrete Cleaning and Polishing Method and Solution | |
US9579764B1 (en) | Low pH compositions for hardening concrete and associated methods | |
KR100916277B1 (en) | Remodeling construction method of deteriorated floor finishing material and floor finishing material of building constructed by the method | |
CN108425692A (en) | A kind of tunnel outer waterproofing layer construction method | |
CN108081151B (en) | Nondestructive physical cleaning method for surface of metal part | |
KR101646235B1 (en) | Repairing method for cross-section restoration of concrete structures | |
US10100206B1 (en) | Pre-treatment and cleaning of equipment used with uncured cementitious materials | |
US10640659B2 (en) | Pre-treatment and cleaning of equipment used with uncured cementitious materials | |
JP2632141B2 (en) | Cleaning method | |
US11471998B2 (en) | Tools for polishing and refinishing concrete and methods for using the same | |
JP2016169592A (en) | Concrete pavement slip resistance improving method | |
CN109025352A (en) | A kind of building wall cracks in plaster processing method | |
JP6924480B2 (en) | Steel bridge maintenance method | |
US20150321230A1 (en) | Concrete removal methods and systems | |
TWI768329B (en) | Physical dry surface treatment method of semiconductor wafer and composition for surface treatment thereof | |
US11904353B2 (en) | Use of hardeners/densifiers in cutting or otherwise removing material from inorganic substrates | |
US20220411341A1 (en) | Method and system for treating a calcium-based stone for corrosion and stain resistance | |
JP2004307695A (en) | Abrasive for blast processing | |
CN111749484B (en) | Cover cleaning method | |
JP6960107B2 (en) | How to make roughened roadway pavement concrete | |
CN1601026A (en) | Integral seamless floor on grade prepared from environmental protection type epoxy resin grindstones in high intensity | |
JP6885577B2 (en) | Steel bridge maintenance method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
AS | Assignment |
Owner name: ARRIS TECHNOLOGIES, LLC, WYOMING Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WETHERELL, MARK;REEL/FRAME:053490/0671 Effective date: 20150722 |
|
AS | Assignment |
Owner name: KAYNE SENIOR CREDIT III LOANCO, LLC, AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: ASSIGNMENT FOR SECURITY - PATENTS;ASSIGNOR:ADHESIVES TECHNOLOGY CORPORATION;REEL/FRAME:055382/0510 Effective date: 20210201 |
|
AS | Assignment |
Owner name: ADHESIVES TECHNOLOGY CORPORATION, FLORIDA Free format text: RELEASE OF SECURITY INTEREST : RECORDED AT REEL/FRAME - 055382/0510;ASSIGNOR:KAYNE SENIOR CREDIT III LOANCO, LLC;REEL/FRAME:057262/0139 Effective date: 20210722 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: ADHESIVES TECHNOLOGY CORPORATION, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS TECHNOLOGIES, LLC;REEL/FRAME:059896/0275 Effective date: 20210201 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:ASP METEOR ACQUISITION CO LLC;ADHESIVES TECHNOLOGY CORPORATION;AMERICAN SEALANTS, INC.;AND OTHERS;REEL/FRAME:061113/0895 Effective date: 20220901 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |