US20200067002A1 - Photodetectors Based on Two-Dimensional Quantum Dots - Google Patents
Photodetectors Based on Two-Dimensional Quantum Dots Download PDFInfo
- Publication number
- US20200067002A1 US20200067002A1 US16/544,181 US201916544181A US2020067002A1 US 20200067002 A1 US20200067002 A1 US 20200067002A1 US 201916544181 A US201916544181 A US 201916544181A US 2020067002 A1 US2020067002 A1 US 2020067002A1
- Authority
- US
- United States
- Prior art keywords
- qds
- photoabsorbing
- layer
- photodetector
- vol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 11
- 239000010410 layer Substances 0.000 claims abstract description 246
- 239000000463 material Substances 0.000 claims abstract description 206
- 239000011229 interlayer Substances 0.000 claims abstract description 27
- 239000002135 nanosheet Substances 0.000 claims description 71
- 230000007704 transition Effects 0.000 claims description 28
- 230000005684 electric field Effects 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 description 68
- 230000000737 periodic effect Effects 0.000 description 54
- -1 MoSe2 Chemical compound 0.000 description 31
- 239000002904 solvent Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- 239000003446 ligand Substances 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 21
- 238000004299 exfoliation Methods 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910021389 graphene Inorganic materials 0.000 description 15
- 239000000138 intercalating agent Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 11
- 238000009830 intercalation Methods 0.000 description 11
- 230000002687 intercalation Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 11
- 239000011572 manganese Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000011701 zinc Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 239000011162 core material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229910003090 WSe2 Inorganic materials 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 description 7
- 238000010992 reflux Methods 0.000 description 6
- 229910002899 Bi2Te3 Inorganic materials 0.000 description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 4
- 229910003373 AgInS2 Inorganic materials 0.000 description 4
- 229910004613 CdTe Inorganic materials 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 229910000673 Indium arsenide Inorganic materials 0.000 description 4
- 229910016021 MoTe2 Inorganic materials 0.000 description 4
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- 229910002665 PbTe Inorganic materials 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229910052961 molybdenite Inorganic materials 0.000 description 4
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 4
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 4
- 239000002064 nanoplatelet Substances 0.000 description 4
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 4
- 238000002525 ultrasonication Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910016384 Al4C3 Inorganic materials 0.000 description 3
- 229910017115 AlSb Inorganic materials 0.000 description 3
- 229910004813 CaTe Inorganic materials 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910005228 Ga2S3 Inorganic materials 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 3
- 229910005542 GaSb Inorganic materials 0.000 description 3
- 229910004262 HgTe Inorganic materials 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- 229910017680 MgTe Inorganic materials 0.000 description 3
- 229920000144 PEDOT:PSS Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229910017629 Sb2Te3 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910005642 SnTe Inorganic materials 0.000 description 3
- 229910004411 SrTe Inorganic materials 0.000 description 3
- 229910007379 Zn3N2 Inorganic materials 0.000 description 3
- 229910007709 ZnTe Inorganic materials 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 2
- LGDCSNDMFFFSHY-UHFFFAOYSA-N 4-butyl-n,n-diphenylaniline Polymers C1=CC(CCCC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 LGDCSNDMFFFSHY-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 229910015808 BaTe Inorganic materials 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical class [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 229910005543 GaSe Inorganic materials 0.000 description 2
- 229910005900 GeTe Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910002328 LaMnO3 Inorganic materials 0.000 description 2
- 239000002879 Lewis base Substances 0.000 description 2
- 229910011173 Li7MnP4 Inorganic materials 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 229910020042 NbS2 Inorganic materials 0.000 description 2
- 229910020039 NbSe2 Inorganic materials 0.000 description 2
- 229910020046 NbTe2 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910021543 Nickel dioxide Inorganic materials 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 229910004211 TaS2 Inorganic materials 0.000 description 2
- 229910004214 TaSe2 Inorganic materials 0.000 description 2
- 229910003092 TiS2 Inorganic materials 0.000 description 2
- 229910008483 TiSe2 Inorganic materials 0.000 description 2
- 229910006247 ZrS2 Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 150000001787 chalcogens Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001413 far-infrared spectroscopy Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000007527 lewis bases Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910000473 manganese(VI) oxide Inorganic materials 0.000 description 2
- 229910052960 marcasite Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000002060 nanoflake Substances 0.000 description 2
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 2
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 2
- 229910052683 pyrite Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910021428 silicene Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 2
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical group CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- PDQRQJVPEFGVRK-UHFFFAOYSA-N 2,1,3-benzothiadiazole Chemical compound C1=CC=CC2=NSN=C21 PDQRQJVPEFGVRK-UHFFFAOYSA-N 0.000 description 1
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical group C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- WYYXDSQOPIGZPU-UHFFFAOYSA-N 6-aminohexane-1-thiol Chemical compound NCCCCCCS WYYXDSQOPIGZPU-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- BWUPKMHSAHUZGN-UHFFFAOYSA-N 8-aminooctane-1-thiol Chemical compound NCCCCCCCCS BWUPKMHSAHUZGN-UHFFFAOYSA-N 0.000 description 1
- UQXNEWQGGVUVQA-UHFFFAOYSA-N 8-aminooctanoic acid Chemical compound NCCCCCCCC(O)=O UQXNEWQGGVUVQA-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910017612 Cu(In,Ga)Se2 Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VPIAKHNXCOTPAY-UHFFFAOYSA-N Heptane-1-thiol Chemical compound CCCCCCCS VPIAKHNXCOTPAY-UHFFFAOYSA-N 0.000 description 1
- 229910015221 MoCl5 Inorganic materials 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- OSOKRZIXBNTTJX-UHFFFAOYSA-N [O].[Ca].[Cu].[Sr].[Bi] Chemical compound [O].[Ca].[Cu].[Sr].[Bi] OSOKRZIXBNTTJX-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 125000005365 aminothiol group Chemical group 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 1
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004820 halides Chemical group 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- UDWXLZLRRVQONG-UHFFFAOYSA-M sodium hexanoate Chemical compound [Na+].CCCCCC([O-])=O UDWXLZLRRVQONG-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H01L51/426—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
- C09K11/68—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
- C09K11/681—Chalcogenides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/588—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/0229—Optical fibres with cladding with or without a coating characterised by nanostructures, i.e. structures of size less than 100 nm, e.g. quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1433—Quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/114—Poly-phenylenevinylene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H01L51/0043—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention generally relates to semiconductor nanoparticles commonly called “quantum dots” (QDs). More particularly, it relates to quantum dots comprised of two-dimensional material and their use in photodetectors.
- QDs quantum dots
- a photodetector is a device that produces an electrical signal in response to incident photons. Photodetectors or photosensors are responsive to the intensity of light or other electromagnetic energy incident upon them. A solid-state photodetector has a p-n junction that converts photons of light into an electrical current. The absorbed photons make electron-hole pairs in the depletion region. Photodiodes, photoconductors and phototransistors are examples of photodetectors. In a sense, solar cells are photodetectors inasmuch as they convert some of the light energy they absorb into electrical energy, the quantity of which may be sensed by appropriate circuitry.
- a photodiode is typically based on a p-n junction.
- a photodiode when a photon of sufficient energy strikes the device, an electron-hole pair is created. If the absorption occurs in the junction's depletion region, or one diffusion length away from it, the built-in electric field of the depletion region leads to the carriers being swept from the junction, with holes moving towards the anode and electrons towards the cathode, producing a photocurrent.
- a photoconductor is a device that detects a temporary change in conductivity of a semiconductor that results from the illumination with light. Photons generate photoexcited carriers, which are extracted by an electric field generated through a voltage bias that is applied between the electrodes.
- a phototransistor is similar to a photodiode, with the addition of a further n-type region.
- the phototransistor includes a photodiode with internal gain. It can be represented as a bipolar transistor enclosed in a transparent case such that photons can reach the base-collector junction. Electrons that are generated from photons in the base-collector junction are injected into the base, amplifying the current.
- Phototransistors and photodiodes detect at a similar rate, but phototransistors have a slower response time (microseconds vs. nanoseconds for a photodiode). Phototransistors have a higher gain, while photodiodes vary less with temperature.
- Photodetectors may be used in different configurations. Single sensors may detect overall light levels. A 1-D array of photodetectors, as in a spectrophotometer or a line scanner, may be used to measure the distribution of light along a line. A 2-D array of photodetectors may be used as an image sensor to form images from the pattern of light incident upon it.
- a photodetector or array is typically covered by an illumination window which may have an anti-reflective coating.
- One performance metric is spectral response (the response of a photodetector as a function of photon frequency).
- Another performance metric is quantum efficiency (QE; the number of carriers (electrons or holes) generated per photon).
- QE quantum efficiency
- Yet another performance metric is dark current (Id; the current flowing through a photodetector even in the absence of light). Yet another performance metric is response time ( ⁇ ; the time needed for a photodetector to go from 10% to 90% of final output). Yet another performance metric is noise spectrum (the intrinsic noise voltage or current as a function of frequency; this can be represented in the form of a noise spectral density). Yet another performance metric is nonlinearity (the RF-output is limited by the nonlinearity of the photodetector). Yet another performance metric is spectral selectivity (the cut-off wavelength beyond which the response signal is comparable or smaller to the noise level.
- UV ultraviolet
- NIR near-infrared
- QDs colloidal quantum dots
- TMDCs transition metal dichalcogenides
- Photodetectors based on graphene have been extensively investigated and shown to exhibit high carrier mobility, excellent stability, high mechanical strength, and a spectral response spanning the visible to the far-IR.
- CMOS complementary metal-oxide-semiconductor
- colloidal QDs have been used as sensitizers in combination with TMDC sheets to realize sensitive, fast and broadband photodetectors.
- PbS QDs have been used in combination with WSe 2 nanosheets
- CdS/ZnS QDs have been combined with WS 2 monolayers.
- nanosheets Compared with QDs, nanosheets have a larger contact area, so hybrid devices with 2D nanosheets of materials such as graphene and other layered materials in conjunction with TMDCs have been investigated.
- formation of the Schottky barrier at the heterostructure interface can result in an inherent electronic field to provide efficient charge transfer at the interface.
- both colloidal QDs and 2D nanosheets can provide advantages for photodetector applications.
- Crystalline silicon has traditionally been used for photodetection applications. However, its absorption is limited to below 1.1 ⁇ m, which means that it fails to absorb the majority of the IR spectrum. In addition, its absorption is weak within its spectral range, only exceeding 104 cm′ at 500 nm. Within the UV region, at wavelengths relevant for the detection of skin cancer, the ultrashort absorption wavelengths in silicon lead to the generation of electron-hole pairs near to the highly recombinative surface states. This limits the UV sensitivity in standard silicon devices. There has therefore been great interest in materials that can absorb light beyond the range of silicon.
- QD photodiode devices can be tuned into the near infrared range, beyond the spectral range of organic semiconductors, but a major concern has been the reliance on QDs based on toxic heavy metals such as lead or cadmium.
- Photodetectors may comprise a plurality of semiconductor nanoparticles with lateral dimensions in the quantum confinement regime and having a thickness between 1 and 5 atomic or molecular monolayers, inclusive (“2D quantum dots” or “2D QDs”).
- Some of the advantages of using QDs in photodetector applications include a strong, tunable absorption spectrum and solution processability. Some of the advantages of using 2D materials include a high contact area and surface flatness, tuneability of the absorption via the thickness of the material, high mobility and high transparency.
- 2D QDs rather than other conventional forms of QDs (i.e., 0D spherical QDs, 1D QDs, for example nanorods, or 3D QDs, for example nanocubes, nanotetrapods, nanopyramids, etc.) and/or 2D layered materials, the combined advantages of QDs and 2D materials can be realized. Additional absorption tuneability may be achieved by modifying the QD thickness and 2D QDs may be composed of non-toxic materials, alleviating the concerns over the toxicity of QDs based on heavy metals such as cadmium and lead.
- Solution-processable photodetectors have particular benefits in sensor applications.
- FIG. 1 illustrates chemical structures of various charge-transporting polymers which may be combined with 2D QDs to produce a 2D QD-sensitized organic photodiode in accordance with various aspects of the disclosure.
- FIG. 2 is a schematic depiction of a photodetector device comprising 2D QDs within an organic photodiode in accordance with various aspects of the disclosure.
- FIG. 3 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D QDs and a second layer of 2D nanosheets in accordance with various aspects of the disclosure.
- FIG. 4 is a schematic depiction of a heterostructure photodiode comprising a first layer of 2D QDs and a second layer of 2D QDs in accordance with various aspects of the disclosure.
- FIG. 5 is a schematic depiction of a heterostructure photodetector comprising a first layer of conventional QDs and a second layer of 2D QDs in accordance with various aspects of the disclosure.
- FIG. 6 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D QDs and a second layer of conventional QDs in accordance with various aspects of the disclosure.
- FIG. 7 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D nanosheets and a second layer of 2D QDs in accordance with various aspects of the disclosure.
- ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight.
- the terms “comprise” (as well as forms, derivatives, or variations thereof, such as “comprising” and “comprises”), “include” (as well as forms, derivatives, or variations thereof, such as “including” and “includes”) and “has” (as well as forms, derivatives, or variations thereof, such as “having” and “have”) are inclusive (i.e., open-ended) and do not exclude additional elements or steps. Accordingly, these terms are intended to not only cover the recited element(s) or step(s), but may also include other elements or steps not expressly recited.
- a “2D quantum dot” or “2D QD” refers to a semiconductor nanoparticle with a thickness of about 1-5 atomic or molecular monolayers and lateral dimensions that result in the nanoparticle being in the quantum confinement regime—i.e. the electronic properties of the nanoparticle differ from those of the bulk material.
- the lateral dimensions that provide a nanoparticle with electronic properties indicative of the quantum confinement regime may vary between nanoparticles of different compositions.
- lateral dimensions can be between 1 and 100 nm.
- the term “2D nanosheet” is used to describe a particle having a thickness between 1 to 10 atomic or molecular monolayers, and wherein the lateral dimensions are sufficiently large that they extend beyond the quantum confinement regime.
- a “single-layered quantum dot” or “single-layered QD” refers to a semiconductor nanoparticle whose thickness is a single monolayer and having lateral dimensions that result in the nanoparticle being in the quantum confinement regime. Compared with conventional zero-dimensional (0D) QDs, 2D QDs have a much higher surface area-to-volume ratio, which increases as the number of monolayers is decreased.
- the photodetector is a photodiode.
- a photodiode is typically based on a p-n junction. In a photodiode, when a photon of sufficient energy strikes the device, an electron-hole pair is created. If the absorption occurs in the junction's depletion region, or one diffusion length away from it, the built-in electric field of the depletion region leads to the carriers being swept from the junction, with holes moving towards the anode and electrons towards the cathode, producing a photocurrent.
- the photodetector is a photoconductor.
- a photoconductor is a device that detects a temporary change in conductivity of a semiconductor that results from illumination with light. Photons generate photo-excited carriers, which are extracted by an electric field generated by a voltage bias applied between the anode and cathode electrodes of the photodetector.
- the photodetector is a phototransistor having a base-collector junction.
- a phototransistor is similar to a photodiode, with the addition of a further n-type region.
- the phototransistor includes a photodiode with internal gain. It can be represented as a bipolar transistor enclosed in a transparent case such that photons can reach the base-collector junction. Electrons that are generated from photons in the base-collector junction are injected into the base, amplifying the current.
- Phototransistors and photodiodes detect at a similar rate, but phototransistors have a slower response time (microseconds vs. nanoseconds for a photodiode). Phototransistors have a higher gain, while photodiodes exhibit less variation with temperature.
- a 2D QD-sensitized organic photodiode is employed.
- a heterostructure photodetector comprising a 2D QD and a 2D nanosheet layer, i.e. with lateral dimensions considerably beyond the quantum confinement regime, is used.
- a heterostructure photodetector comprising a first 2D QD layer and a second layer of 2D QDs of another material is used.
- a heterostructure photodetector comprising a conventional QD layer and a 2D QD layer is used.
- FIG. 2 is a schematic illustration of a photodetector 200 in accordance with various aspects of the disclosure.
- the photodetector 200 comprises a bottom electrode 210 , an interlayer 220 disposed on the bottom electrode 210 , a layer 230 comprising 2D QDs dispersed in a charge transport material disposed on the interlayer 220 , and a top electrode 240 disposed on the 2D QD-containing layer 230 .
- one or more of the top and bottom electrodes 210 , 240 may be transparent to allow light to pass therethrough.
- the bottom electrode 210 may include a transparent conducting oxide, such as indium tin oxide (ITO), and aluminum-doped zinc oxide (AZO).
- the top electrode 240 may comprise one or more low-workfunction metals, such as aluminum, and silver.
- the interlayer 220 serves to improve the electrical contact with the underlying bottom electrode 210 .
- the interlayer 220 can be made of any suitable material such as, for example, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), MoO 3 , and metal oxides having zinc, titanium, vanadium or nickel.
- the thickness of the interlayer 220 can range from about 1 nm to about 1000 nm, alternatively from about 10 nm to about 1000 nm, and alternatively from about 100 nm to about 1000 nm.
- the layer 230 comprising 2D QDs dispersed in a charge transport material, may be produced by dispersing (by blending or mixing) 2D QDs in one or more organic charge transporting materials (electron- and/or hole-accepting and transporting organic materials) to form a heterojunction.
- organic charge transporting materials electrostatic and/or hole-accepting and transporting organic materials
- charge transporting materials include, but are not restricted to, [6,6]-phenyl-C61-butylic acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), poly(N-octyldithieno[3,2-b:2′3′d]pyrrole-alt-5,6-bis(octyloxy)benzo[c][1,2,5]thiadiazole) (PDTPBT), poly[(9,9-dioctylfluorenyl-2,7-diyl-co(4,40-(N-4-sec-butylphenyl))diphenylamine)] (TFB), poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzidine) (poly-TPD), poly(2-methoxy-5(2′-ethylhexyloxy)-1,4-phenylethlenevinylene) (ME)
- the number average molar mass, M n , for PDTPBT can range between about 17 kg mol ⁇ 1 and about 19 kg mol ⁇ 1 .
- the M n for PDBF can range between about 11 kg mol ⁇ 1 and about 13 kg mol ⁇ 1 .
- the M n for PDTD can range between about 30 kg mol ⁇ 1 and about 35 kg mol ⁇ 1 .
- the M n for PDTT can range between about 30 kg mol ⁇ 1 and about 35 kg mol ⁇ 1 .
- FIG. 1 the number average molar mass, for PDTPBT can range between about 17 kg mol ⁇ 1 and about 19 kg mol ⁇ 1 .
- the M n for PDBF can range between about 11 kg mol ⁇ 1 and about 13 kg mol ⁇ 1 .
- the M n for PDTD can range between about 30 kg mol ⁇ 1 and about 35 kg mol ⁇ 1 .
- the M n for PDTT can range between about
- the M n for PDFT can range between about 35 kg mol ⁇ 1 and about 40 kg mol ⁇ 1 .
- the M n for PBDTTPD can range between about 10 kg mol ⁇ 1 and about 35 kg mol ⁇ 1 .
- the M n for PBDT-T8-TPD can range between about 35 kg mol ⁇ 1 and about 40 kg mol ⁇ 1 .
- the M n for P3HT can range between about 50 kg mol ⁇ 1 about 80 kg mol ⁇ 1 .
- the M n for PBDT-T-FDP can range between about 50 kg mol ⁇ 1 and about 60 kg mol ⁇ 1 .
- spiro-OMeTAD Another material suitable for use as an organic material in a 2D-sensitized organic photodiode is spiro-OMeTAD, which may offer both UV detection and hole transporting properties (see Guo et al., J Mater. Chem. C, 2018, 6, 2573).
- an interlayer such as, but not restricted to, poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS), may be used to improve the electrical connection to the bottom contact.
- Alternative suitable materials may include solution-processable MoO 3 or V 2 O x in the place of PEDOT.
- the 2D QD-containing layer 230 includes from about 10 vol % to about 95 vol % of the 2D QDs and from about 5 vol % to about 90 vol % of the one or more charge transport materials. In some instances, 2D QD-containing layer 230 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the 2D QDs.
- 2D QD-containing layer 230 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials.
- the thickness of the 2D QD-containing layer 230 can range from about 10 nm to about 2 microns, alternatively from about 50 nm to about 1 micron, and alternatively from about 100 nm to about 750 nm, and alternatively from about 200 nm to about 500 nm.
- FIG. 3 is a schematic depiction of a heterostructure photodetector 300 in accordance with various aspects of the disclosure.
- the heterostructure photodetector 300 comprises a bottom electrode 310 , and first layer 320 having 2D nanosheets disposed on the bottom electrode 310 , a second layer 330 having 2D QDs disposed on the 2D nanosheet-containing first layer 320 , and a top electrode 340 disposed on the 2D QD-containing second layer 330 .
- one or more of the top and bottom electrodes 310 , 340 may be transparent to allow light to pass therethrough.
- the 2D QDs and the 2D nanosheets in layers 320 , 330 are chosen such that the conduction band and valence band of the 2D QDs is offset from the conduction band and valence band of the 2D nanosheets, to create a built-in electric field.
- the junction width can control the wavelengths of light absorbed.
- each of the 2D nanosheet-containing layer 320 and the 2D QD-containing layer 330 can independently range from about 10 nm to about 1 micron, alternatively from about 25 nm to about 750 nm, alternatively from about 50 nm to about 500 nm, alternatively from about 75 nm to about 400 nm, and alternatively from about 100 nm to about 300 nm.
- the combined thickness of the 2D nanosheet-containing layer 320 and the 2D QD-containing layer 330 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm.
- the 2D nanosheet-containing layer 320 and the 2D QD-containing layer 330 has the same or substantially the same thickness. In other instances, the 2D QD-containing layer 330 is thicker than the 2D nanosheet-containing layer 320 . In other instances, the 2D nanosheet-containing layer 320 is thicker than the 2D QD-containing layer 330 .
- the 2D QD-containing layer 330 can be made to have a composition the same as, or substantially similar to 2D QD-containing layer 230 .
- the 2D nanosheet-containing layer 320 from about 10 vol % to about 95 vol % of the 2D nanosheets and from about 5 vol % to about 90 vol % of the one or more charge transport materials.
- 2D nanosheet-containing layer 320 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the 2D nanosheets. In some instances, 2D nanosheet-containing layer 320 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials.
- the heterostructure photodetector 300 can further include an interlayer (not shown) disposed between the bottom electrode 310 and the 2D nanosheet-containing layer 320 .
- the interlayer can be made of the same materials as interlayer 220 of photodetector 200 .
- the 2D nanosheet-containing layer 320 and the 2D QD-containing layer 330 are shown as separate layers.
- a transition layer (not shown) can be disposed between the 2D nanosheet-containing layer 320 and the 2D QD-containing layer 330 , the transition layer having a combination of 2D nanosheets and 2D QDs.
- the relative amounts of 2D nanosheets and 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer.
- the transition layer can exhibit a gradient wherein the amount of 2D nanosheets decreases from the 2D nanosheet-containing layer 320 to the 2D QD-containing layer 330 .
- the transition layer can exhibit a gradient wherein the amount of 2D QDs increases from the 2D nanosheet-containing layer 320 to the 2D QD-containing layer 330 .
- FIG. 4 is a schematic depiction of another heterostructure photodetector 400 in accordance with various aspects of the disclosure.
- the heterostructure photodetector 400 comprises a bottom electrode 410 , and first layer 420 having 2D QDs disposed on the bottom electrode 410 , a second layer 430 having 2D QDs disposed on the 2D QD-containing first layer 420 , and a top electrode 440 disposed on the 2D QD-containing second layer 430 .
- one or more of the top and bottom electrodes 410 , 420 may be transparent to allow light to enter into the device.
- the 2D QDs of the first layer 420 and the 2D QDs of the second layer 430 are chosen such that the conduction band and the valence band of the 2D QDs in the first layer 420 are offset from the conduction band and valence band of the 2D QDs in the second layer 430 .
- This can be achieved either through selection of first and second 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the lateral dimensions of the first and second 2D QDs, and/or tailoring of the thickness of the first and second 2D QDs, and/or by functionalizing the surface of one or both of the first and second 2D QDs with different ligands that modify the band gaps of the materials.
- the chemical composition of each of the first and second 2D QDs can be the same or substantially the same, but the first and second 2D QDs are differ in one or more of lateral dimensions, thicknesses and surface functionalization.
- the junction width can control the wavelengths of light absorbed.
- each 2D QD-containing layer 420 , 430 can be varied as described above for 2D QD-containing layer 230 .
- the combined thickness of the 2D QD-containing layers 420 , 430 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm.
- each 2D QD-containing layer 420 , 430 has the same or substantially the same thickness.
- the 2D QD-containing layer 420 is thicker than the 2D QD-containing layer 430 .
- the 2D QD-containing layer 430 is thicker than the 2D QD-containing layer 420 .
- the heterostructure photodetector 400 can further include an interlayer (not shown) disposed between the bottom electrode 410 and the 2D QD-containing layer 420 .
- the interlayer can be made of the same materials as interlayer 220 of photodetector 200 .
- the 2D QD-containing layer 420 and the 2D QD-containing layer 430 are shown as separate layers.
- a transition layer (not shown) can be disposed between the 2D QD-containing layer 420 and the 2D QD-containing layer 430 , the transition layer having a combination of first 2D QDs (i.e., the 2D QDs of layer 420 ) and second 2D QDs (i.e., the 2D QDs of layer 430 ).
- the relative amounts of first 2D QDs and second 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer.
- the transition layer can exhibit a gradient wherein the amount of first 2D QDs decreases from the 2D QD-containing layer 420 to the 2D QD-containing layer 430 .
- the transition layer can exhibit a gradient wherein the amount of second 2D QDs increases from the 2D QD-containing layer 420 to the 2D QD-containing layer 430 .
- FIG. 5 is a schematic depiction of yet another heterostructure photodetector 500 in accordance with various aspects of the disclosure.
- the heterostructure photodetector 500 comprises a bottom electrode 510 , a first layer 520 having 2D QDs disposed on the bottom electrode 510 , and a second layer 530 having conventional QDs disposed on the 2D QD-containing first layer 520 , and a top electrode 540 disposed on the conventional QD-containing second layer 530 .
- one or more of the top and bottom electrodes 510 , 540 may be transparent to allow light to enter into the device.
- the first 2D QD layer 520 and the second conventional QD layer 530 are chosen such that the conduction band and valence band of the first 2D QD layer is offset from the conduction band and valence band of the second conventional QD layer.
- This can be achieved either through selection of conventional QDs and 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the diameter of the conventional QDs, and/or tailoring the lateral dimensions of the 2D QDs, and/or tailoring the thickness of the 2D QDs, and/or by functionalizing the surface one or both of the 2D QDs and conventional 2D QDs with different ligands that modify the band gaps of the materials.
- the junction width can control the wavelengths of light absorbed.
- the 2D QD-containing layer 520 can be made to have a composition the same as, or substantially similar to 2D QD-containing layer 230 .
- the 2D nanosheet-containing layer 520 from about 10 vol % to about 95 vol % of the 2D nanosheets and from about 5 vol % to about 90 vol % of the one or more charge transport materials.
- conventional QD-containing layer 530 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the conventional QDs.
- conventional QD-containing layer 530 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials.
- the heterostructure photodetector 500 can further include an interlayer (not shown) disposed between the bottom electrode 510 and the 2D QD-containing layer 520 .
- the interlayer can be made of the same materials as interlayer 220 of photodetector 200 .
- the 2D QD-containing layer 520 and the conventional QD-containing layer 530 are shown as separate layers.
- a transition layer (not shown) can be disposed between the 2D QD-containing layer 520 and the conventional QD-containing layer 530 , the transition layer having a combination of 2D QDs (i.e., the 2D QDs of layer 520 ) and conventional QDs (i.e., the conventional QDs of layer 530 ).
- the relative amounts of 2D QDs and conventional QDs can be uniform or substantially uniform throughout the thickness of the transition layer.
- the transition layer can exhibit a gradient wherein the amount of 2D QDs decreases from the 2D QD-containing layer 520 to the conventional QD-containing layer 530 .
- the transition layer can exhibit a gradient wherein the amount of conventional QDs increases from the 2D QD-containing layer 520 to the conventional QD-containing layer 530 .
- FIG. 6 is a schematic depiction of yet another heterostructure photodetector 600 in accordance with various aspects of the disclosure.
- the heterostructure photodetector 600 comprises a bottom electrode 610 , a first layer 620 having conventional QDs disposed on the bottom electrode 610 , and a second layer 630 having 2D QDs disposed on the conventional QD-containing first layer 620 , and a top electrode 640 disposed on the 2D QD-containing second layer 630 .
- one or more of the top and bottom electrodes 610 , 640 may be transparent to allow light to enter into the device.
- the conventional QD-containing first layer 620 and the 2D QD-containing second layer 630 are chosen such that the conduction band and valence band of the conventional QDs are offset from the conduction band and valence band of the 2D QDs.
- This can be achieved either through selection of conventional QDs and 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the diameter of the conventional QDs, and/or tailoring the lateral dimensions of the 2D QDs, and/or tailoring the thickness of the 2D QDs, and/or by functionalizing the surface one or both of the 2D QDs and conventional 2D QDs with different ligands that modify the band gaps of the materials.
- the junction width can control the wavelengths of light absorbed.
- the composition and/or thickness of the conventional QD-containing layer 620 and the 2D QD-containing layer 630 can be varied as described above for the conventional QD-containing layer 520 and the 2D QD-containing layer 520 , respectively.
- the combined thickness of the conventional QD-containing layer 620 and the 2D QD-containing layer 630 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm.
- each of the conventional QD-containing layer 620 and the 2D QD-containing layer 630 has the same or substantially the same thickness.
- the QD-containing layer 620 is thicker than the 2D QD-containing layer 630 .
- the 2D QD-containing layer 630 is thicker than the QD-containing layer 620 .
- the heterostructure photodetector 600 can further include an interlayer (not shown) disposed between the bottom electrode 610 and the conventional QD-containing layer 620 .
- the interlayer can be made of the same materials as interlayer 220 of photodetector 200 .
- the conventional QD-containing layer 620 and the 2D QD-containing layer 630 are shown as separate layers.
- a transition layer (not shown) can be disposed between the conventional QD-containing layer 620 and the 2D QD-containing layer 630 , the transition layer having a combination of conventional QDs (i.e., the conventional QDs of layer 620 ) and 2D QDs (i.e., the 2D QDs of layer 630 ).
- the relative amounts of conventional QDs and 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer.
- the transition layer can exhibit a gradient wherein the amount of conventional QDs decreases from the conventional QD-containing layer 620 to the 2D QD-containing layer 630 .
- the transition layer can exhibit a gradient wherein the amount of 2D QDs increases from the conventional QD-containing layer 620 to the 2D QD-containing layer 630 .
- FIG. 7 is a schematic depiction of a heterostructure photodetector 700 in accordance with various aspects of the disclosure.
- the heterostructure photodetector 700 comprises a bottom electrode 710 , and first layer 720 having 2D QDs disposed on the bottom electrode 710 , a second layer 730 having 2D nanosheets disposed on the 2D QD-containing first layer 720 , and a top electrode 740 disposed on the 2D nanosheet-containing second layer 730 .
- one or more of the top and bottom electrodes 710 , 740 may be transparent to allow light to enter into the device.
- the 2D QDs and the 2D nanosheets in layers 720 , 730 are chosen such that the conduction band and valence band of the 2D QDs is offset from the conduction band and valence band of the 2D nanosheets, to create a built-in electric field.
- the junction width can control the wavelengths of light absorbed.
- the composition and/or thickness of the 2D QD-containing layer 720 and the 2D nanosheet-containing layer 730 can be varied as described above for the 2D QD-containing layer 330 and the 2D nanosheet-containing layer 320 , respectively.
- the combined thickness of the 2D QD-containing layer 720 and the 2D nanosheet-containing layer 730 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm.
- each of the 2D QD-containing layer 720 and the 2D nanosheet-containing layer 730 has the same or substantially the same thickness.
- the 2D QD-containing layer 720 is thicker than the 2D nanosheet-containing layer 730 .
- the 2D nanosheet-containing layer 730 is thicker than the 2D QD-containing layer 720 .
- the heterostructure photodetector 700 can further include an interlayer (not shown) disposed between the bottom electrode 710 and the 2D QD-containing layer 720 .
- the interlayer can be made of the same materials as interlayer 220 of photodetector 200 .
- the 2D QD-containing layer 720 and the 2D nanosheet-containing layer 730 are shown as separate layers.
- a transition layer (not shown) can be disposed between the 2D QD-containing layer 720 and the 2D nanosheet-containing layer 730 , the transition layer having a combination of 2D QDs (i.e., the 2D QDs of layer 720 ) and 2D nanosheets (i.e., the 2D nanosheets of layer 730 ).
- the relative amounts of 2D QDs and 2D nanosheets can be uniform or substantially uniform throughout the thickness of the transition layer.
- the transition layer can exhibit a gradient wherein the amount of 2D QDs decreases from the 2D QD-containing layer 720 to the 2D nanosheet-containing layer 730 .
- the transition layer can exhibit a gradient wherein the amount of 2D nanosheets increases from the 2D QD-containing layer 720 to the 2D nanosheet-containing layer 730 .
- 2D QDs in accordance with various aspects of the disclosure may be synthesized colloidally and deposited via solution processing.
- Suitable 2D QD materials include, but are not restricted to:
- TMDCs such as, for example, WO 2 ; WS 2 ; WSe 2 ; WTe 2 ; MnO 2 ; MoO 2 ; MoS 2 ; MoSe 2 ; MoTe 2 ; NiO 2 ; NiTe 2 ; NiSe 2 ; VO 2 ; VS 2 ; VSe 2 ; TaS 2 ; TaSe 2 ; RuO 2 ; RhTe 2 ; PdTe 2 ; HfS 2 ; NbS 2 ; NbSe 2 ; NbTe 2 ; FeS 2 ; TiO 2 ; TiS 2 ; TiSe 2 ; and ZrS 2 ;
- transition metal trichalcogenides such as, for example, TaO 3 ; MnO 3 ; WO 3 ; ZrS 3 ; ZrSe 3 ; HfS 3 ; and HfSe 3 ;
- Group 13-16 (III-VI) compounds such as, for example, InS; InSe; GaS; GaSe; and GaTe;
- Group 15-16 (IV-VI) compounds such as, for example, Bi 2 Se 3 ; and Bi 2 Te 3 ;
- nitrides such as, for example, h-BN;
- oxides such as, for example, LaVO 3 ; LaMnO 3 ; V 2 O 5 ; LaNbO 7 ; Ca 2 Nb 3 O 10 ; Ni(OH) 2 ; and Eu(OH) 2 ; layered copper oxides; micas; and bismuth strontium calcium copper oxide (BSCCO);
- phosphides such as, for example, Li 7 MnP 4 ; and MnP 4 ; and
- 2D allotropes of Group 14 elements such as, for example, silicene; germanene; and stanene.
- the 2D QDs may comprise semiconductor materials that are not traditionally layered, including, but not restricted to:
- Group 12-16 (II-VI) semiconductors such as, for example, ZnS; ZnSe; CdS; CdSe; CdTe;
- Group 13-15 (III-V) materials such as, for example, AN, AlP, AlAs, GaN; GaP; GaAs; InN; InP; InAs;
- V-VI materials such as, for example, PbS, PbSe, PbTe;
- Group materials such as, for example, CuGaS 2 ; CuGaSe 2 ; CuGa(S,Se) 2 ; CuInS 2 , CuInSe 2 ; CuIn(S, Se) 2 ; Cu(In,Ga)S 2 ; Cu(In,Ga)Se 2 ; Cu(In,Ga)(S,Se) 2 ; CuInTe 2 ; AgInS 2 ; and AgInSe 2 including doped species and alloys thereof.
- the 2D QDs of the aforementioned materials may be formed, for example, via a physical or chemical cutting process. Specifically, zero-dimensional (0D), one-dimensional (1D) or three-dimensional (3D) of a desired shape, size and composition mat be formed, followed by treatment, such as chemical treatment, e.g. reflux, LPE and reflux, or intercalation and exfoliation, to form 2D QDs of uniform size as dictated by the intrinsic shape of the 3D or 0D nanoparticles.
- the process is scalable and can be used to produce 2D QDs with uniform properties in large volumes.
- the “cutting” of a nanoparticle means the separation of the nanoparticle into two or more parts.
- the term is not intended to imply any restriction on the method of separation, and can include physical and chemical methods of separation.
- Physical separation methods may include, but are not restricted to: mechanical exfoliation (the so-called “Scotch tape method”), delamination, grinding, and milling.
- the “chemical cutting” of a nanoparticle means the separation of the nanoparticle into two or more parts, wherein the separation is effected by a chemical treatment.
- a chemical treatment may include: the application of heat, pressure, vacuum, ultrasonication, and/or agitation to a solution or dispersion of nanoparticles; chemical etching; and intercalation.
- Non-limiting examples of chemical cutting methods include: refluxing the nanoparticles in solution; LPE of the nanoparticles followed by reflux; or intercalation and exfoliation of the nanoparticles.
- the cutting of the 0D, 1D or 3D nanoparticles into 2D QDs can be performed using any suitable technique. Suitable examples include chemical and physical exfoliation processes.
- the cutting of the prefabricated nanoparticles is performed by a chemical method, such as LPE, which comprises the ultrasonication of the prefabricated nanoparticles in a solvent.
- the surface tension of the solvent may be chosen to match that of the material being exfoliated.
- the exfoliated nanoparticles are subsequently refluxed in solution.
- the cutting of 0D, 1D or 3D nanoparticles may be carried out by refluxing the prefabricated nanoparticles in solution without prior exfoliation.
- the temperature at which the 0D, 1D or 3D nanoparticle solution is refluxed will depend on the boiling point of the solvent in which the solution is formed. Without wishing to be bound by any particular theory, one possible mechanism is that the application of heat may thermally expand the layers within the 0D, 1D or 3D nanoparticles; refluxing the solution may form a gas which chemically cuts the layers apart.
- the solution comprises a coordinating solvent.
- Suitable coordinating solvents include, but are not restricted to: saturated alkyl amines such as, for example, C 6 -C 50 alkyl amines; unsaturated fatty amines such as, for example, oleylamine; fatty acids such as, for example, myristic acid, palmitic acid, and oleic acid; phosphines such as, for example, trioctylphosphine (TOP); phosphine oxides such as, for example, trioctylphosphine oxide (TOPO); alcohols such as, for example hexadecanol, benzylalcohol, ethylene glycol, propylene glycol; and may include primary, secondary, tertiary and branched solvents.
- saturated alkyl amines such as, for example, C 6 -C 50 alkyl amines
- unsaturated fatty amines such as, for example, oleylamine
- fatty acids such as, for example, myristic
- the solution comprises a non-coordinating solvent, such as, but not restricted to, a C 11 -C 50 alkane.
- a non-coordinating solvent such as, but not restricted to, a C 11 -C 50 alkane.
- the boiling point of the solvent is between 150° C. to 600° C., for example, 160° C. to 400° C., or more particularly 180° C. to 360° C.
- the solvent is hexadecylamine.
- the cutting of prefabricated nanoparticles is performed by an intercalation and exfoliation process.
- Intercalation and exfoliation of TMDC multi-layered nanostructures can be accomplished using Lewis base intercalates.
- a first intercalation and exfoliation process may be carried out by stirring the prefabricated nanoparticles in a first solvent in the presence of a first intercalating agent and a second intercalating agent for a first time period.
- a second solvent may subsequently be added, followed by stirring for a second time period.
- a second intercalation and exfoliation process is carried out by mixing the product of a first intercalation and exfoliation process with a third intercalating agent and a third solvent and stirring for a third time period.
- a fourth solvent may subsequently be added, followed by stirring for a fourth time period.
- the first intercalating agent and the second intercalating agent may comprise hydrocarbons wherein the hydrocarbon chain length of the first intercalating agent is different to the hydrocarbon chain length of the second intercalating agent.
- Lewis bases such as amines such as, for example, propylamine, hexylamine; alkoxides such as, for example, sodium methoxide, sodium ethoxide; carboxylates such as, for example, sodium hexanoate; and amino alcohols such as, for example, 3-amino-1-propanol;
- aminothiols such as, for example, cysteamine, 6-amino-1-hexanethiol, and 8-amino-1-octanethiol;
- amino acids including alkyl amino acids, such as, for example, 3-aminopropanoic acid ( ⁇ -alanine), 6-aminohexanoic acid, 8-aminooctanoic acid; and
- metal salts such as, for example, those having the general formula MX n where M is Mo, Cd, Zn, or In, and X is a halide (especially Cl ⁇ , Br ⁇ , and I ⁇ ), acetate, caprylate, palimatate, laurate, myristate or oleate.
- MX n Mo, Cd, Zn, or In
- X is a halide (especially Cl ⁇ , Br ⁇ , and I ⁇ ), acetate, caprylate, palimatate, laurate, myristate or oleate.
- Another suitable metal salt is [MoCl 5 ] 2 .
- the choice of solvent(s) in which the intercalation and exfoliation process is carried out will depend on the choice of nanoparticles and intercalating agents. During intercalation and exfoliation, it is desirable that the nanoparticles are well dispersed or dissolved in the solvent(s). It is further desirable that the intercalating agent(s) are soluble in the solvent(s).
- the second solvent may be different from the first solvent.
- the third solvent may be the same as the first solvent or the second solvent, or may be different from both the first solvent and the second solvent.
- suitable solvents include polar aprotic solvents such as, for example, dimethyl sulfoxide (DMSO), N-methylformamide (NMF) and acetonitrile.
- suitable solvents include polar protic solvents such as, for example, propanol and isopropanol.
- the first time period may range from about 1 hour to about 1 month, alternatively from about 2 hours to about 2 weeks, and alternatively from about 4 hours to about 3 days.
- the second time period may range from about 1 hour to about 2 months, alternatively from about 2 days to about 2 weeks, and alternatively from about 1 week to about 3 weeks.
- the third time period may range from about 1 hour to about 1 month, alternatively from about 2 hours to about 2 weeks, and alternatively from about 4 hours to about 3 days.
- the fourth time period may range from about 1 hour to about 2 months, alternatively from about 2 days to about 2 weeks, and alternatively from about 1 week to about 3 weeks.
- the time period will depend on factors such as the choice of solvent(s) and intercalating agent(s), the strength of the bonding within the nanoparticles, and the concentration of nanoparticles to intercalating agents in solution, and that a longer time period may lead to a higher yield of 2D nanoflakes.
- the first and/or second and/or subsequent intercalation and exfoliation processes may be effected using ultrasonication.
- ultrasonication in the place of stirring may facilitate a reduction in the time period(s) required to effect the chemical cutting process.
- 2D QDs may then be isolated from solution by techniques such as, but not limited to: centrifugation; filtration; dialysis or column chromatography.
- the resulting 2D nanoflakes may be dispersed in a solvent to form an ink that may be deposited to form a thin film using conventional solution-based deposition techniques such as, but not restricted to: drop-casting, spin-coating, slit coating, spray coating, slot dye coating, inkjet printing or doctor blading.
- Inherent uniformity in the properties of the 2D QDs may result in a high degree of uniformity in the resulting thin film.
- the film thickness may be controlled by, for example, altering the concentration of the ink and/or by changing the size of the 2D QDs.
- Layers of 2D nanosheets may be formed using techniques, such as, but not restricted to, mechanical exfoliation, chemical vapor deposition (CVD), atomic layer deposition (ALD); molecular beam epitaxy (MBE); lateral heteroepitaxy; and vapor-solid growth.
- Suitable 2D nanosheets for 2D nanosheet-containing layers include, but are not restricted to:
- TMDCs such as, for example, WO 2 ; WS 2 ; WSe 2 ; WTe 2 ; MnO 2 ; MoO 2 ; MoS 2 ; MoSe 2 ; MoTe 2 ; NiO 2 ; NiTe 2 ; NiSe 2 ; VO 2 ; VS 2 ; VSe 2 ; TaS 2 ; TaSe 2 ; RuO 2 ; RhTe 2 ; PdTe 2 ; HfS 2 ; NbS 2 ; NbSe 2 ; NbTe 2 ; FeS 2 ; TiO 2 ; TiS 2 ; TiSe 2 ; and ZrS 2 ;
- transition metal trichalcogenides such as, for example, TaO 3 ; MnO 3 ; WO 3 ; ZrS 3 ; ZrSe 3 ; HfS 3 ; and HfSe 3 ;
- Group 13-16 (III-VI) compounds such as, for example, InS; InSe; GaS; GaSe; and GaTe;
- Group 15-16 (IV-VI) compounds such as, for example, Bi 2 Se 3 ; and Bi 2 Te 3 ;
- nitrides such as, for example, h-BN;
- oxides such as, for example, LaVO 3 ; LaMnO 3 ; V 2 O 5 ; LaNbO 7 ; Ca 2 Nb 3 O 10 ; Ni(OH) 2 ; and Eu(OH) 2 ; layered copper oxides; micas; and BSCCO;
- phosphides such as, for example, Li 7 MnP 4 ; and MnP 4 ; and
- 2D allotropes of Group 14 elements such as, for example, silicene; germanene; and stanene.
- the QD layer may be formed from materials including, but not restricted to:
- Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe;
- Nanoparticle material includes but is not restricted to: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- Nanoparticle material includes but is not restricted to: Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , Zn 3 N 2 ;
- Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- Nanoparticle material includes but is not restricted to: B 4 C, Al 4 C 3 , Ga 4 C;
- Nanoparticle material includes but is not restricted to: Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , GeTe; In 2 S 3 , In 2 Se 3 , Ga 2 Te 3 , In 2 Te 3 , InTe;
- Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: Bi 2 Te 3 , Bi 2 Se 3 , Sb 2 Se 3 , Sb 2 Te 3 ; and
- Nanoparticle material consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS 2 , AgInS 2 .
- the relative band gaps of the semiconductor materials may be selected to form a Type I heterostructure, for example WSe 2 2D QDs with a layer of MoTe 2 2D QDs or a MoTe 2 2D nanosheet layer.
- the relative band gaps of the semiconductor materials may be chosen to form a Type II heterostructure, for example PbS QDs with a WSe 2 2D QD layer, or MoS 2 2D QDs with either a layer WSe 2 2D QDs or a WSe 2 nanosheet layer.
- one or more of the 2D layers may be a single monolayer in thickness. Making the sensitizer as thin as possible may be advantageous to maximize the charge screening effect, flexibility and device transparency. Thickness approaching the absorption depth may be desirable to maximize the absorption of incoming light. However, thicker devices may also be desirable for stronger absorption. Tuning the thickness of the material also provides a means to control its band gap. Therefore, in some instances, one or more of the 2D layers may be between 1-5 monolayers. In some instances, the 2D nanosheet layers may be a monolayer. Monolayers may provide advantageous properties over few-layer or bulk material. For example, transition metal dichalcogenides display a transition from an indirect to a direct band gap upon monolayer formation.
- a “short-chain ligand” refers to a ligand having a hydrocarbon chain of eight carbons or fewer.
- Suitable short-chain ligands include, but are not restricted to: alkane thiols such as 1-octanethiol, 1-heptanethiol, 1-hexanethiol, 1-pentanethiol, 1-butanethiol, 1-propanethiol; alkylamines such as methylamine, ethylamine, propylamine, butylamine, octylamine, allylamine; and carboxylic acids such as octanoic acid, heptanoic acid, hexanoic acid, pentanoic acid, butanoic acid, and propanoic acid.
- alkane thiols such as 1-octanethiol, 1-heptanethiol, 1-hexanethiol, 1-pentanethiol, 1-butanethiol, 1-propanethiol
- alkylamines such as methylamine, ethy
- Suitable ligands may include pyridines and pyrrolidones.
- bridging ligands may be used to improve the connectivity between adjacent 2D QDs. Suitable examples include, but are not restricted to, bidentate ligands such as ethanedithiol or 3-mercaptopropionic acid.
- a further strategy to improve the connectivity between 2D QDs may include the use of chalcogen ligands.
- QDs may be “necked” by removing the organic surface ligands and passivating the QD surface with chalcogen ligands.
- adjacent QDs may be fused.
- fused 2D QDs a film may be formed, wherein the 2D QDs include ligands on portions of their outer surface that have not been fused. Fusing may lead to the 2D QDs substantially maintaining their individual properties while being joined by regions through which current can readily flow.
- as-synthesized 2D QDs may be subjected to ligand exchange, to replace the inherent ligands with shorter, more volatile ligands.
- the ligand-exchanged 2D QDs may then be solution deposited, then the short-chain ligands removed to bring the 2D QDs into close proximity so that some of the 2D QDs contact their neighbors. This is known as “necking”.
- the necked 2D QDs may subsequently be annealed to fuse the 2D QDs together.
- fused 2D QDs, and the connection between them will not contain defect states, which enables current to flow readily between them.
- the conventional QDs can be core, core-shell or core-multishell QDs having sizes ranging from 2-100 nm.
- the material of the core can comprise:
- Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe;
- Nanoparticle material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- Nanoparticle material includes but is not restricted to: Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , Zn 3 N 2 ;
- Nanoparticle material consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- Nanoparticle material consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: B 4 C, Al 4 C 3 , Ga 4 C;
- Nanoparticle material includes but is not restricted to: Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , GeTe; In 2 S 3 , In 2 Se 3 , Ga 2 Te 3 , In 2 Te 3 , InTe;
- Nanoparticle material consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: Bi 2 Te 3 , Bi 2 Se 3 , Sb 2 Se 3 , Sb 2 Te 3 ; and
- Nanoparticle material consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS 2 , AgInS 2 .
- doped nanoparticle refers to nanoparticles of the above and a dopant comprised of one or more main group or rare earth elements, this most often is a transition metal or rare earth element, such as but not limited to zinc sulfide with manganese, such as ZnS nanoparticles doped with M n + .
- a transition metal or rare earth element such as but not limited to zinc sulfide with manganese, such as ZnS nanoparticles doped with M n + .
- ternary material refers to QDs of the above but a three component material.
- the three components are usually compositions of elements from the as mentioned groups Example being (Zn x Cd x-1 S) m L n nanocrystal (where L is a capping agent).
- the four components are usually compositions of elements from the as mentioned groups Example being (Zn x Cd x-1 S y Se y-1 ) m L n nanocrystal (where L is a capping agent).
- any shell or subsequent numbers of shells grown onto the conventional QD core in most cases will be of a similar lattice type material to the core material i.e. have close lattice match to the core material so that it can be epitaxially grown on to the core, but is not necessarily restricted to materials of this compatibility.
- the material used on any shell or subsequent numbers of shells grown on to the core present in most cases will have a wider bandgap then the core material but is not necessarily restricted to materials of this compatibility.
- the materials of any shell or subsequent numbers of shells grown on to the core can include material comprising:
- Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe;
- Nanoparticle material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- Nanoparticle material includes but is not restricted to: Zn 3 P 2 , Zn 3 As 2 , Cd 3 P 2 , Cd 3 As 2 , Cd 3 N 2 , Zn 3 N 2 ;
- Nanoparticle material consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- Nanoparticle material consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: B 4 C, Al 4 C 3 , Ga 4 C;
- Nanoparticle material includes but is not restricted to: Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , In 2 S 3 , In 2 Se 3 , Ga 2 Te 3 , In 2 Te 3 ;
- Nanoparticle material consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: Bi 2 Te 3 , Bi 2 Se 3 , Sb 2 Se 3 , Sb 2 Te 3 ; and
- Nanoparticle material consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials.
- Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS 2 , AgInS 2 .
- the aforementioned strategies for increasing the connectivity within the 2D QD layer may also be applied to a conventional QD layer.
- Photodetector devices in accordance with various aspects of the present disclosure may be integrated with complementary metal-oxide-semiconductor (CMOS) circuitry.
- CMOS complementary metal-oxide-semiconductor
- Devices comprising 2D QDs may be fabricated using CMOS techniques, for example by spin-coating a 2D QD layer onto a prefabricated CMOS electronic read-out circuit. Integration into CMOS circuitry may be desirable to form small pixels, to enable high resolution sensors.
- a number of pixels that have spectral sensitivity in different regions may be monolithically integrated.
- the spectral sensitivity of each pixel may be tuned by modifying the lateral dimensions and/or thickness of the 2D QDs.
- a phototransistor device in accordance with various aspects of the present disclosure may be gated. Gating acts as a control mechanism and allows increased functionality as the gate voltage can be varied to act as either a switch or as an amplifier.
- the high carrier mobility of 2D materials may be advantageous as the gain is directly proportional to the carrier mobility.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Urology & Nephrology (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 62/722,006 filed Aug. 23, 2018, the entire contents of which are incorporated by reference herein.
- The present invention generally relates to semiconductor nanoparticles commonly called “quantum dots” (QDs). More particularly, it relates to quantum dots comprised of two-dimensional material and their use in photodetectors.
- A photodetector is a device that produces an electrical signal in response to incident photons. Photodetectors or photosensors are responsive to the intensity of light or other electromagnetic energy incident upon them. A solid-state photodetector has a p-n junction that converts photons of light into an electrical current. The absorbed photons make electron-hole pairs in the depletion region. Photodiodes, photoconductors and phototransistors are examples of photodetectors. In a sense, solar cells are photodetectors inasmuch as they convert some of the light energy they absorb into electrical energy, the quantity of which may be sensed by appropriate circuitry.
- A photodiode is typically based on a p-n junction. In a photodiode, when a photon of sufficient energy strikes the device, an electron-hole pair is created. If the absorption occurs in the junction's depletion region, or one diffusion length away from it, the built-in electric field of the depletion region leads to the carriers being swept from the junction, with holes moving towards the anode and electrons towards the cathode, producing a photocurrent.
- A photoconductor is a device that detects a temporary change in conductivity of a semiconductor that results from the illumination with light. Photons generate photoexcited carriers, which are extracted by an electric field generated through a voltage bias that is applied between the electrodes.
- A phototransistor is similar to a photodiode, with the addition of a further n-type region. The phototransistor includes a photodiode with internal gain. It can be represented as a bipolar transistor enclosed in a transparent case such that photons can reach the base-collector junction. Electrons that are generated from photons in the base-collector junction are injected into the base, amplifying the current.
- The three types of photodetector each have different properties, so are useful for different applications. Phototransistors and photodiodes detect at a similar rate, but phototransistors have a slower response time (microseconds vs. nanoseconds for a photodiode). Phototransistors have a higher gain, while photodiodes vary less with temperature.
- Photodetectors may be used in different configurations. Single sensors may detect overall light levels. A 1-D array of photodetectors, as in a spectrophotometer or a line scanner, may be used to measure the distribution of light along a line. A 2-D array of photodetectors may be used as an image sensor to form images from the pattern of light incident upon it.
- A photodetector or array is typically covered by an illumination window which may have an anti-reflective coating.
- There are a number of performance metrics (so-called “figures of merit”) by which photodetectors may be characterized and compared. One performance metric is spectral response (the response of a photodetector as a function of photon frequency). Another performance metric is quantum efficiency (QE; the number of carriers (electrons or holes) generated per photon). Yet another performance metric is responsivity (R; The output current divided by total light power falling upon the photodetector. R=QE/Ephoton, where Ephoton is the photon energy in eV). Yet another performance metric is noise-equivalent power (NEP; the minimum detectable power, i.e., the optical signal at which the electrical signal-to-noise ratio in the detector is equal to unity (0 dB), when the bandwidth is limited to 1 Hz). Yet another performance metric is specific detectivity (D*; the square root of the detector area, A, multiplied by the frequency bandwidth, B, divided by the noise equivalent power; D*=[√(AB)]/NEP). Yet another performance metric is gain (G; the output current of a photodetector divided by the current directly produced by the photons incident on the detectors, i.e., the built-in current gain). Yet another performance metric is dark current (Id; the current flowing through a photodetector even in the absence of light). Yet another performance metric is response time (τ; the time needed for a photodetector to go from 10% to 90% of final output). Yet another performance metric is noise spectrum (the intrinsic noise voltage or current as a function of frequency; this can be represented in the form of a noise spectral density). Yet another performance metric is nonlinearity (the RF-output is limited by the nonlinearity of the photodetector). Yet another performance metric is spectral selectivity (the cut-off wavelength beyond which the response signal is comparable or smaller to the noise level.
- To achieve photodetector high performance, a combination of a high responsivity, short response time, high specific density, and a broad spectral selectivity wavelength range is desirable.
- There is increasing interest in solution-processable photodetectors with sensitivity spanning the ultraviolet (UV) to the near-infrared (NIR) range, for applications such as imaging sensors. Of particular interest is the 1-1.8 μm range, where water absorption is low.
- The potential use of colloidal quantum dots (QDs) as photoabsorbers for photodetection applications has been recognized, with research largely focusing on PbS QDs containing toxic lead.
- 2D materials, including graphene and transition metal dichalcogenides (TMDCs), have been investigated as photoabsorbers for photodetection applications, due to a combination of their optical properties and mechanical flexibility. Photodetectors based on graphene have been extensively investigated and shown to exhibit high carrier mobility, excellent stability, high mechanical strength, and a spectral response spanning the visible to the far-IR. However, difficulties in opening up graphene's band gap have led to a high dark current, limiting its applicability to photodetection. Layered TMDCs offer many advantages, including a band gap that can be tuned by the number of layers. They are also compatible with complementary metal-oxide-semiconductor (CMOS) technology, which can be used to construct integrated circuits, enabling the development of multifunctional, high performance photodetectors with low power consumption.
- Photodetectors with a high responsivity, broadband spectral and high detectivity are currently difficult to produce using a single TMDC due to their narrow thickness, which limits light absorption. Use of a highly absorbing sensitizer can help to improve the light absorption efficiency, yet the sensitizer needs to be sufficiently thin to retain the merits of a 2D material. High carrier mobility and a band structure aligning well with that of the TMDCs is also desirable for efficient charge separation and transfer.
- Colloidal QDs have been used as sensitizers in combination with TMDC sheets to realize sensitive, fast and broadband photodetectors. For example, PbS QDs have been used in combination with WSe2 nanosheets, [C. Hu et al., Adv. Funct. Mater. 2017, 27, 1603605] and CdS/ZnS QDs have been combined with WS2 monolayers. [A. Baulesbaa, K. Wang, M. Mahjouri-Somani, M. Tian, A. A. Puretzky, I. Ivanov, C. M. Rouleau, K. Xiao, B. G. Sumpter and D. B. Grohegan, J. Am. Chem. Soc., 2016, 138, 14713]
- Compared with QDs, nanosheets have a larger contact area, so hybrid devices with 2D nanosheets of materials such as graphene and other layered materials in conjunction with TMDCs have been investigated. For devices with a 2D heterostructure as the sensitizer, formation of the Schottky barrier at the heterostructure interface can result in an inherent electronic field to provide efficient charge transfer at the interface.
- Thus, both colloidal QDs and 2D nanosheets can provide advantages for photodetector applications.
- Crystalline silicon has traditionally been used for photodetection applications. However, its absorption is limited to below 1.1 μm, which means that it fails to absorb the majority of the IR spectrum. In addition, its absorption is weak within its spectral range, only exceeding 104 cm′ at 500 nm. Within the UV region, at wavelengths relevant for the detection of skin cancer, the ultrashort absorption wavelengths in silicon lead to the generation of electron-hole pairs near to the highly recombinative surface states. This limits the UV sensitivity in standard silicon devices. There has therefore been great interest in materials that can absorb light beyond the range of silicon.
- Epitaxially grown QDs have been used for photodetection applications but can be difficult to process. All-organic semiconductors may offer ease of handling for photodetection applications. However, until recently there have been few small organic molecules or polymers available with narrow bandgaps suitable for the manufacture of photodiodes in the near infrared range.
- QD photodiode devices can be tuned into the near infrared range, beyond the spectral range of organic semiconductors, but a major concern has been the reliance on QDs based on toxic heavy metals such as lead or cadmium.
- Photodetectors incorporating photoabsorbers based on 2D materials, such as graphene and TMDCs, have been explored. Advantages include their unique optical characteristics and mechanical flexibility. Other desirable properties include high carrier mobility, chemical stability, mechanical strength, and a spectral response that can be tuned from the visible to the far-IR regions. In particular, photodetectors based on TMDCs can be tuned by varying the number of layers. Heterostructures of two different layered materials have also been explored. The weak van der Waals interaction between two favorably disposed materials may create a high-quality heterojunction without introducing problems due to lattice mismatch between the two materials.
- A heterostructure device comprising CdSe-based 2D nanoplatelets and graphene, has been described. [A. Robin, E. Lhuillier and B. Dubertret, MRS Adv., 2016, 2187; A. Robin, E. Lhuillier, X. Z. Xu, S. Ithurria, H. Aubin, A. Ouerghi and B. Dubertret, Sci. Rep., 2016, 6, 24909]. This device takes advantage of the strong absorbance of the nanoplatelets and the high carrier mobility of graphene. The 2D nanoplatelets have thicknesses between 1-5 nm and lateral dimensions up to 1 μm, such that the lateral dimensions are much larger than the Bohr radius. A disadvantage of these nanoplatelets is that they fail to offer bandgap tuneability.
- For photodetectors incorporating layers of 2D materials, one issue which must be addressed is the elimination of deep-level trap states, which are detrimental to response speed.
- Though a number of photodetector devices incorporating 2D materials have been reported, the prior art relies upon exfoliation or CVD-deposition processes that are difficult to scale.
- Photodetectors according to various aspects of the disclosure may comprise a plurality of semiconductor nanoparticles with lateral dimensions in the quantum confinement regime and having a thickness between 1 and 5 atomic or molecular monolayers, inclusive (“2D quantum dots” or “2D QDs”).
- Some of the advantages of using QDs in photodetector applications include a strong, tunable absorption spectrum and solution processability. Some of the advantages of using 2D materials include a high contact area and surface flatness, tuneability of the absorption via the thickness of the material, high mobility and high transparency.
- By using 2D QDs, rather than other conventional forms of QDs (i.e., 0D spherical QDs, 1D QDs, for example nanorods, or 3D QDs, for example nanocubes, nanotetrapods, nanopyramids, etc.) and/or 2D layered materials, the combined advantages of QDs and 2D materials can be realized. Additional absorption tuneability may be achieved by modifying the QD thickness and 2D QDs may be composed of non-toxic materials, alleviating the concerns over the toxicity of QDs based on heavy metals such as cadmium and lead.
- Solution-processable photodetectors have particular benefits in sensor applications.
-
FIG. 1 illustrates chemical structures of various charge-transporting polymers which may be combined with 2D QDs to produce a 2D QD-sensitized organic photodiode in accordance with various aspects of the disclosure. -
FIG. 2 is a schematic depiction of a photodetector device comprising 2D QDs within an organic photodiode in accordance with various aspects of the disclosure. -
FIG. 3 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D QDs and a second layer of 2D nanosheets in accordance with various aspects of the disclosure. -
FIG. 4 is a schematic depiction of a heterostructure photodiode comprising a first layer of 2D QDs and a second layer of 2D QDs in accordance with various aspects of the disclosure. -
FIG. 5 is a schematic depiction of a heterostructure photodetector comprising a first layer of conventional QDs and a second layer of 2D QDs in accordance with various aspects of the disclosure. -
FIG. 6 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D QDs and a second layer of conventional QDs in accordance with various aspects of the disclosure. -
FIG. 7 is a schematic depiction of a heterostructure photodetector comprising a first layer of 2D nanosheets and a second layer of 2D QDs in accordance with various aspects of the disclosure. - The following description of the embodiments is merely exemplary in nature and is in no way intended to limit the subject matter of the present disclosure, their application, or uses.
- As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. Unless otherwise specified, all percentages and amounts expressed herein and elsewhere in the specification should be understood to refer to percentages by weight.
- For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” The use of the term “about” applies to all numeric values, whether or not explicitly indicated. This term generally refers to a range of numbers that one of ordinary skill in the art would consider as a reasonable amount of deviation to the recited numeric values (i.e., having the equivalent function or result). For example, this term can be construed as including a deviation of ±10 percent, alternatively ±5 percent, and alternatively ±1 percent of the given numeric value provided such a deviation does not alter the end function or result of the value. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present invention.
- It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural references unless expressly and unequivocally limited to one referent. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items. For example, as used in this specification and the following claims, the terms “comprise” (as well as forms, derivatives, or variations thereof, such as “comprising” and “comprises”), “include” (as well as forms, derivatives, or variations thereof, such as “including” and “includes”) and “has” (as well as forms, derivatives, or variations thereof, such as “having” and “have”) are inclusive (i.e., open-ended) and do not exclude additional elements or steps. Accordingly, these terms are intended to not only cover the recited element(s) or step(s), but may also include other elements or steps not expressly recited. Furthermore, as used herein, the use of the terms “a” or “an” when used in conjunction with an element may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” Therefore, an element preceded by “a” or “an” does not, without more constraints, preclude the existence of additional identical elements.
- Research into the properties of colloidal QDs and the development of optoelectronic devices thereof have been of major interest for over 20 years. More recently, there has been increasing interest in the unusual properties of two-dimensional quantum dots (2D QDs). As used herein, a “2D quantum dot” or “2D QD” refers to a semiconductor nanoparticle with a thickness of about 1-5 atomic or molecular monolayers and lateral dimensions that result in the nanoparticle being in the quantum confinement regime—i.e. the electronic properties of the nanoparticle differ from those of the bulk material. As may be appreciated, the lateral dimensions that provide a nanoparticle with electronic properties indicative of the quantum confinement regime may vary between nanoparticles of different compositions. In general, however, such lateral dimensions can be between 1 and 100 nm. As used herein, the term “2D nanosheet” is used to describe a particle having a thickness between 1 to 10 atomic or molecular monolayers, and wherein the lateral dimensions are sufficiently large that they extend beyond the quantum confinement regime. As used herein, a “single-layered quantum dot” or “single-layered QD” refers to a semiconductor nanoparticle whose thickness is a single monolayer and having lateral dimensions that result in the nanoparticle being in the quantum confinement regime. Compared with conventional zero-dimensional (0D) QDs, 2D QDs have a much higher surface area-to-volume ratio, which increases as the number of monolayers is decreased. The highest surface area-to-volume ratio is seen for single-layered QDs. This may lead to 2D QDs having very different surface chemistry from conventional QDs, which may be exploited for many applications. Thus far, the majority of research into 2D QDs has centered around layered materials, such as carbon-based materials (e.g. graphene and graphene oxide) and QDs of TMDCs, especially MoS2, MoSe2, WS2 and WSe2. However, more recently, there has been interest in the synthesis of 2D nanoparticles of conventional semiconductor materials such as II-VI semiconductors [E. Lhuillier et al., Acc. Chem. Res., 2015, 48, 22; A. Riedinger et al., Nat. Mater., 2017, 16, 743].
- In some embodiments, the photodetector is a photodiode. A photodiode is typically based on a p-n junction. In a photodiode, when a photon of sufficient energy strikes the device, an electron-hole pair is created. If the absorption occurs in the junction's depletion region, or one diffusion length away from it, the built-in electric field of the depletion region leads to the carriers being swept from the junction, with holes moving towards the anode and electrons towards the cathode, producing a photocurrent.
- In some embodiments, the photodetector is a photoconductor. A photoconductor is a device that detects a temporary change in conductivity of a semiconductor that results from illumination with light. Photons generate photo-excited carriers, which are extracted by an electric field generated by a voltage bias applied between the anode and cathode electrodes of the photodetector.
- In some embodiments, the photodetector is a phototransistor having a base-collector junction. A phototransistor is similar to a photodiode, with the addition of a further n-type region. The phototransistor includes a photodiode with internal gain. It can be represented as a bipolar transistor enclosed in a transparent case such that photons can reach the base-collector junction. Electrons that are generated from photons in the base-collector junction are injected into the base, amplifying the current.
- The three types of photodetectors each have different properties, and thus are useful in different applications. Phototransistors and photodiodes detect at a similar rate, but phototransistors have a slower response time (microseconds vs. nanoseconds for a photodiode). Phototransistors have a higher gain, while photodiodes exhibit less variation with temperature.
- In at least one embodiment, a 2D QD-sensitized organic photodiode is employed. In at least one embodiment, a heterostructure photodetector comprising a 2D QD and a 2D nanosheet layer, i.e. with lateral dimensions considerably beyond the quantum confinement regime, is used. In at least one embodiment, a heterostructure photodetector comprising a first 2D QD layer and a second layer of 2D QDs of another material is used. In at least one embodiment, a heterostructure photodetector comprising a conventional QD layer and a 2D QD layer is used.
-
FIG. 2 is a schematic illustration of aphotodetector 200 in accordance with various aspects of the disclosure. Thephotodetector 200 comprises abottom electrode 210, aninterlayer 220 disposed on thebottom electrode 210, alayer 230 comprising 2D QDs dispersed in a charge transport material disposed on theinterlayer 220, and atop electrode 240 disposed on the 2D QD-containinglayer 230. In the device configuration shown inFIG. 2 , one or more of the top andbottom electrodes bottom electrode 210 may include a transparent conducting oxide, such as indium tin oxide (ITO), and aluminum-doped zinc oxide (AZO). Thetop electrode 240 may comprise one or more low-workfunction metals, such as aluminum, and silver. - The
interlayer 220 serves to improve the electrical contact with the underlyingbottom electrode 210. Theinterlayer 220 can be made of any suitable material such as, for example, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), MoO3, and metal oxides having zinc, titanium, vanadium or nickel. The thickness of theinterlayer 220 can range from about 1 nm to about 1000 nm, alternatively from about 10 nm to about 1000 nm, and alternatively from about 100 nm to about 1000 nm. - Shown schematically in
FIG. 2 , thelayer 230, comprising 2D QDs dispersed in a charge transport material, may be produced by dispersing (by blending or mixing) 2D QDs in one or more organic charge transporting materials (electron- and/or hole-accepting and transporting organic materials) to form a heterojunction. Examples of suitable charge transporting materials include, but are not restricted to, [6,6]-phenyl-C61-butylic acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), poly(N-octyldithieno[3,2-b:2′3′d]pyrrole-alt-5,6-bis(octyloxy)benzo[c][1,2,5]thiadiazole) (PDTPBT), poly[(9,9-dioctylfluorenyl-2,7-diyl-co(4,40-(N-4-sec-butylphenyl))diphenylamine)] (TFB), poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)-benzidine) (poly-TPD), poly(2-methoxy-5(2′-ethylhexyloxy)-1,4-phenylethlenevinylene) (MEH-PPV), poly(2,5-di(2′-ethylehexyloxy)-1,4-phenylenevinylene) (DEH-PPV), poly[2,6-(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole-alt-4,7(2,1,3-benzothiadiazole) (PSBTBT), poly[2,6-(4,4-bis(2-ethylhexyl)4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothoadiazole)] (PCPDTBT), poly(2,3-didecyl-quinoxaline-5,8-diyl-alt-N-octyldithieno[3,2-b:2′3′-d]pyrrole) (PDTPQx), dithieno[3,2-b:2,3-d]pyrrole (DTP), poly(9,9-n-dihexyl-2,7-fluorenylenevinylene-alt-2,5-thienylenevinylene (PFT), ethoxylated polyethyleneimine (PEIE), 1-1-bis[(di-4-tolylamino phenyl]cyclohexane (TAPC), C60, multiwall carbon nanotubes, and other polymers, some of which the structures are shown inFIG. 1 . InFIG. 1 , the number average molar mass, Mn, for PDTPBT can range between about 17 kg mol−1 and about 19 kg mol−1. Also, inFIG. 1 , the Mn for PDBF can range between about 11 kg mol−1 and about 13 kg mol−1. Also, inFIG. 1 , the Mn for PDTD can range between about 30 kg mol−1 and about 35 kg mol−1. Also, inFIG. 1 , the Mn for PDTT can range between about 30 kg mol−1 and about 35 kg mol−1. Also, inFIG. 1 , the Mn for PDFT can range between about 35 kg mol−1 and about 40 kg mol−1. Also, inFIG. 1 , the Mn for PBDTTPD can range between about 10 kg mol−1 and about 35 kg mol−1. Also, inFIG. 1 , the Mn for PBDT-T8-TPD can range between about 35 kg mol−1 and about 40 kg mol−1. Also, inFIG. 1 , the Mn for P3HT can range between about 50 kg mol−1 about 80 kg mol−1. Finally, inFIG. 1 , the Mn for PBDT-T-FDP can range between about 50 kg mol−1 and about 60 kg mol−1. - Another material suitable for use as an organic material in a 2D-sensitized organic photodiode is spiro-OMeTAD, which may offer both UV detection and hole transporting properties (see Guo et al., J Mater. Chem. C, 2018, 6, 2573). As discussed above, an interlayer, such as, but not restricted to, poly(3,4-ethylenedioxythiophene):poly(styrenesulphonate) (PEDOT:PSS), may be used to improve the electrical connection to the bottom contact. Alternative suitable materials may include solution-processable MoO3 or V2Ox in the place of PEDOT.
- In some instances, the 2D QD-containing
layer 230 includes from about 10 vol % to about 95 vol % of the 2D QDs and from about 5 vol % to about 90 vol % of the one or more charge transport materials. In some instances, 2D QD-containinglayer 230 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the 2D QDs. In some instances, 2D QD-containinglayer 230 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials. - The thickness of the 2D QD-containing
layer 230 can range from about 10 nm to about 2 microns, alternatively from about 50 nm to about 1 micron, and alternatively from about 100 nm to about 750 nm, and alternatively from about 200 nm to about 500 nm. -
FIG. 3 is a schematic depiction of aheterostructure photodetector 300 in accordance with various aspects of the disclosure. Theheterostructure photodetector 300 comprises abottom electrode 310, andfirst layer 320 having 2D nanosheets disposed on thebottom electrode 310, asecond layer 330 having 2D QDs disposed on the 2D nanosheet-containingfirst layer 320, and atop electrode 340 disposed on the 2D QD-containingsecond layer 330. In this configuration, one or more of the top andbottom electrodes layers - The thickness of each of the 2D nanosheet-containing
layer 320 and the 2D QD-containinglayer 330 can independently range from about 10 nm to about 1 micron, alternatively from about 25 nm to about 750 nm, alternatively from about 50 nm to about 500 nm, alternatively from about 75 nm to about 400 nm, and alternatively from about 100 nm to about 300 nm. Preferably, the combined thickness of the 2D nanosheet-containinglayer 320 and the 2D QD-containinglayer 330 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm. In some instances, the 2D nanosheet-containinglayer 320 and the 2D QD-containinglayer 330 has the same or substantially the same thickness. In other instances, the 2D QD-containinglayer 330 is thicker than the 2D nanosheet-containinglayer 320. In other instances, the 2D nanosheet-containinglayer 320 is thicker than the 2D QD-containinglayer 330. - The 2D QD-containing
layer 330 can be made to have a composition the same as, or substantially similar to 2D QD-containinglayer 230. Like the 2D QD-containinglayer 230, the 2D nanosheet-containinglayer 320 from about 10 vol % to about 95 vol % of the 2D nanosheets and from about 5 vol % to about 90 vol % of the one or more charge transport materials. In some instances, 2D nanosheet-containinglayer 320 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the 2D nanosheets. In some instances, 2D nanosheet-containinglayer 320 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials. - In some instances, the
heterostructure photodetector 300 can further include an interlayer (not shown) disposed between thebottom electrode 310 and the 2D nanosheet-containinglayer 320. The interlayer can be made of the same materials asinterlayer 220 ofphotodetector 200. InFIG. 3 , the 2D nanosheet-containinglayer 320 and the 2D QD-containinglayer 330 are shown as separate layers. In some instances, a transition layer (not shown) can be disposed between the 2D nanosheet-containinglayer 320 and the 2D QD-containinglayer 330, the transition layer having a combination of 2D nanosheets and 2D QDs. In some instances, the relative amounts of 2D nanosheets and 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D nanosheets decreases from the 2D nanosheet-containinglayer 320 to the 2D QD-containinglayer 330. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D QDs increases from the 2D nanosheet-containinglayer 320 to the 2D QD-containinglayer 330. -
FIG. 4 is a schematic depiction of anotherheterostructure photodetector 400 in accordance with various aspects of the disclosure. Theheterostructure photodetector 400 comprises abottom electrode 410, andfirst layer 420 having 2D QDs disposed on thebottom electrode 410, asecond layer 430 having 2D QDs disposed on the 2D QD-containingfirst layer 420, and atop electrode 440 disposed on the 2D QD-containingsecond layer 430. In this configuration, one or more of the top andbottom electrodes first layer 420 and the 2D QDs of thesecond layer 430 are chosen such that the conduction band and the valence band of the 2D QDs in thefirst layer 420 are offset from the conduction band and valence band of the 2D QDs in thesecond layer 430. This can be achieved either through selection of first and second 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the lateral dimensions of the first and second 2D QDs, and/or tailoring of the thickness of the first and second 2D QDs, and/or by functionalizing the surface of one or both of the first and second 2D QDs with different ligands that modify the band gaps of the materials. In some instances, the chemical composition of each of the first and second 2D QDs can be the same or substantially the same, but the first and second 2D QDs are differ in one or more of lateral dimensions, thicknesses and surface functionalization. The junction width can control the wavelengths of light absorbed. - The composition and/or thickness of each 2D QD-containing
layer layer 230. Preferably, the combined thickness of the 2D QD-containinglayers layer layer 420 is thicker than the 2D QD-containinglayer 430. In other instances, the 2D QD-containinglayer 430 is thicker than the 2D QD-containinglayer 420. - In some instances, the
heterostructure photodetector 400 can further include an interlayer (not shown) disposed between thebottom electrode 410 and the 2D QD-containinglayer 420. The interlayer can be made of the same materials asinterlayer 220 ofphotodetector 200. InFIG. 4 , the 2D QD-containinglayer 420 and the 2D QD-containinglayer 430 are shown as separate layers. In some instances, a transition layer (not shown) can be disposed between the 2D QD-containinglayer 420 and the 2D QD-containinglayer 430, the transition layer having a combination of first 2D QDs (i.e., the 2D QDs of layer 420) and second 2D QDs (i.e., the 2D QDs of layer 430). In some instances, the relative amounts of first 2D QDs and second 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer. In some instances, the transition layer can exhibit a gradient wherein the amount of first 2D QDs decreases from the 2D QD-containinglayer 420 to the 2D QD-containinglayer 430. In some instances, the transition layer can exhibit a gradient wherein the amount of second 2D QDs increases from the 2D QD-containinglayer 420 to the 2D QD-containinglayer 430. -
FIG. 5 is a schematic depiction of yet anotherheterostructure photodetector 500 in accordance with various aspects of the disclosure. Theheterostructure photodetector 500 comprises abottom electrode 510, afirst layer 520 having 2D QDs disposed on thebottom electrode 510, and asecond layer 530 having conventional QDs disposed on the 2D QD-containingfirst layer 520, and atop electrode 540 disposed on the conventional QD-containingsecond layer 530. In this configuration, one or more of the top andbottom electrodes 2D QD layer 520 and the secondconventional QD layer 530 are chosen such that the conduction band and valence band of the first 2D QD layer is offset from the conduction band and valence band of the second conventional QD layer. This can be achieved either through selection of conventional QDs and 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the diameter of the conventional QDs, and/or tailoring the lateral dimensions of the 2D QDs, and/or tailoring the thickness of the 2D QDs, and/or by functionalizing the surface one or both of the 2D QDs and conventional 2D QDs with different ligands that modify the band gaps of the materials. The junction width can control the wavelengths of light absorbed. - The 2D QD-containing
layer 520 can be made to have a composition the same as, or substantially similar to 2D QD-containinglayer 230. Like the 2D QD-containinglayer 230, the 2D nanosheet-containinglayer 520 from about 10 vol % to about 95 vol % of the 2D nanosheets and from about 5 vol % to about 90 vol % of the one or more charge transport materials. In some instances, conventional QD-containinglayer 530 includes from about 20 vol % to about 90 vol %, alternatively from about 30 vol % to about 85 vol %, alternatively from about 40 vol % to about 80 vol %, alternatively from about 50 vol % to about 75 vol %, and alternatively from about 60 vol % to about 70 vol % of the conventional QDs. In some instances, conventional QD-containinglayer 530 includes from about 10 vol % to about 80 vol %, alternatively from about 15 vol % to about 70 vol %, alternatively from about 20 vol % to about 60 vol %, alternatively from about 25 vol % to about 50 vol %, and alternatively from about 30 vol % to about 40 vol % of the one or more charge transport materials. - In some instances, the
heterostructure photodetector 500 can further include an interlayer (not shown) disposed between thebottom electrode 510 and the 2D QD-containinglayer 520. The interlayer can be made of the same materials asinterlayer 220 ofphotodetector 200. InFIG. 5 , the 2D QD-containinglayer 520 and the conventional QD-containinglayer 530 are shown as separate layers. In some instances, a transition layer (not shown) can be disposed between the 2D QD-containinglayer 520 and the conventional QD-containinglayer 530, the transition layer having a combination of 2D QDs (i.e., the 2D QDs of layer 520) and conventional QDs (i.e., the conventional QDs of layer 530). In some instances, the relative amounts of 2D QDs and conventional QDs can be uniform or substantially uniform throughout the thickness of the transition layer. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D QDs decreases from the 2D QD-containinglayer 520 to the conventional QD-containinglayer 530. In some instances, the transition layer can exhibit a gradient wherein the amount of conventional QDs increases from the 2D QD-containinglayer 520 to the conventional QD-containinglayer 530. -
FIG. 6 is a schematic depiction of yet anotherheterostructure photodetector 600 in accordance with various aspects of the disclosure. Theheterostructure photodetector 600 comprises abottom electrode 610, afirst layer 620 having conventional QDs disposed on thebottom electrode 610, and asecond layer 630 having 2D QDs disposed on the conventional QD-containingfirst layer 620, and atop electrode 640 disposed on the 2D QD-containingsecond layer 630. In this configuration, one or more of the top andbottom electrodes first layer 620 and the 2D QD-containingsecond layer 630 are chosen such that the conduction band and valence band of the conventional QDs are offset from the conduction band and valence band of the 2D QDs. This can be achieved either through selection of conventional QDs and 2D QDs of materials having different semiconductor band gaps, and/or tailoring of the diameter of the conventional QDs, and/or tailoring the lateral dimensions of the 2D QDs, and/or tailoring the thickness of the 2D QDs, and/or by functionalizing the surface one or both of the 2D QDs and conventional 2D QDs with different ligands that modify the band gaps of the materials. The junction width can control the wavelengths of light absorbed. - The composition and/or thickness of the conventional QD-containing
layer 620 and the 2D QD-containinglayer 630 can be varied as described above for the conventional QD-containinglayer 520 and the 2D QD-containinglayer 520, respectively. Preferably, the combined thickness of the conventional QD-containinglayer 620 and the 2D QD-containinglayer 630 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm. In some instances, each of the conventional QD-containinglayer 620 and the 2D QD-containinglayer 630 has the same or substantially the same thickness. In other instances, the QD-containinglayer 620 is thicker than the 2D QD-containinglayer 630. In other instances, the 2D QD-containinglayer 630 is thicker than the QD-containinglayer 620. - In some instances, the
heterostructure photodetector 600 can further include an interlayer (not shown) disposed between thebottom electrode 610 and the conventional QD-containinglayer 620. The interlayer can be made of the same materials asinterlayer 220 ofphotodetector 200. InFIG. 6 , the conventional QD-containinglayer 620 and the 2D QD-containinglayer 630 are shown as separate layers. In some instances, a transition layer (not shown) can be disposed between the conventional QD-containinglayer 620 and the 2D QD-containinglayer 630, the transition layer having a combination of conventional QDs (i.e., the conventional QDs of layer 620) and 2D QDs (i.e., the 2D QDs of layer 630). In some instances, the relative amounts of conventional QDs and 2D QDs can be uniform or substantially uniform throughout the thickness of the transition layer. In some instances, the transition layer can exhibit a gradient wherein the amount of conventional QDs decreases from the conventional QD-containinglayer 620 to the 2D QD-containinglayer 630. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D QDs increases from the conventional QD-containinglayer 620 to the 2D QD-containinglayer 630. -
FIG. 7 is a schematic depiction of aheterostructure photodetector 700 in accordance with various aspects of the disclosure. Theheterostructure photodetector 700 comprises abottom electrode 710, andfirst layer 720 having 2D QDs disposed on thebottom electrode 710, asecond layer 730 having 2D nanosheets disposed on the 2D QD-containingfirst layer 720, and atop electrode 740 disposed on the 2D nanosheet-containingsecond layer 730. In this configuration, one or more of the top andbottom electrodes layers - The composition and/or thickness of the 2D QD-containing
layer 720 and the 2D nanosheet-containinglayer 730 can be varied as described above for the 2D QD-containinglayer 330 and the 2D nanosheet-containinglayer 320, respectively. Preferably, the combined thickness of the 2D QD-containinglayer 720 and the 2D nanosheet-containinglayer 730 is between about 50 nm and about 800 nm, more preferably between about 100 nm and about 700 nm, and even more preferably between about 200 nm and about 600 nm. In some instances, each of the 2D QD-containinglayer 720 and the 2D nanosheet-containinglayer 730 has the same or substantially the same thickness. In other instances, the 2D QD-containinglayer 720 is thicker than the 2D nanosheet-containinglayer 730. In other instances, the 2D nanosheet-containinglayer 730 is thicker than the 2D QD-containinglayer 720. - In some instances, the
heterostructure photodetector 700 can further include an interlayer (not shown) disposed between thebottom electrode 710 and the 2D QD-containinglayer 720. The interlayer can be made of the same materials asinterlayer 220 ofphotodetector 200. InFIG. 7 , the 2D QD-containinglayer 720 and the 2D nanosheet-containinglayer 730 are shown as separate layers. In some instances, a transition layer (not shown) can be disposed between the 2D QD-containinglayer 720 and the 2D nanosheet-containinglayer 730, the transition layer having a combination of 2D QDs (i.e., the 2D QDs of layer 720) and 2D nanosheets (i.e., the 2D nanosheets of layer 730). In some instances, the relative amounts of 2D QDs and 2D nanosheets can be uniform or substantially uniform throughout the thickness of the transition layer. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D QDs decreases from the 2D QD-containinglayer 720 to the 2D nanosheet-containinglayer 730. In some instances, the transition layer can exhibit a gradient wherein the amount of 2D nanosheets increases from the 2D QD-containinglayer 720 to the 2D nanosheet-containinglayer 730. - 2D QDs in accordance with various aspects of the disclosure may be synthesized colloidally and deposited via solution processing. Suitable 2D QD materials include, but are not restricted to:
- graphene, graphene oxide and reduced graphene oxide;
- TMDCs such as, for example, WO2; WS2; WSe2; WTe2; MnO2; MoO2; MoS2; MoSe2; MoTe2; NiO2; NiTe2; NiSe2; VO2; VS2; VSe2; TaS2; TaSe2; RuO2; RhTe2; PdTe2; HfS2; NbS2; NbSe2; NbTe2; FeS2; TiO2; TiS2; TiSe2; and ZrS2;
- transition metal trichalcogenides such as, for example, TaO3; MnO3; WO3; ZrS3; ZrSe3; HfS3; and HfSe3;
- Group 13-16 (III-VI) compounds such as, for example, InS; InSe; GaS; GaSe; and GaTe;
- Group 15-16 (IV-VI) compounds such as, for example, Bi2Se3; and Bi2Te3;
- nitrides such as, for example, h-BN;
- oxides such as, for example, LaVO3; LaMnO3; V2O5; LaNbO7; Ca2Nb3O10; Ni(OH)2; and Eu(OH)2; layered copper oxides; micas; and bismuth strontium calcium copper oxide (BSCCO);
- phosphides such as, for example, Li7MnP4; and MnP4; and
- 2D allotropes of Group 14 elements such as, for example, silicene; germanene; and stanene.
- Within the aforementioned materials, adjacent layers are held together by van der Waals interactions, which can readily be broken by techniques such as exfoliation techniques, for example, liquid phase exfoliation (LPE) to form 2D flakes. In alternative embodiments, the 2D QDs may comprise semiconductor materials that are not traditionally layered, including, but not restricted to:
- Group 12-16 (II-VI) semiconductors such as, for example, ZnS; ZnSe; CdS; CdSe; CdTe;
- Group 13-15 (III-V) materials such as, for example, AN, AlP, AlAs, GaN; GaP; GaAs; InN; InP; InAs;
- Group 15-16 (V-VI) materials such as, for example, PbS, PbSe, PbTe; and
- Group materials such as, for example, CuGaS2; CuGaSe2; CuGa(S,Se)2; CuInS2, CuInSe2; CuIn(S, Se)2; Cu(In,Ga)S2; Cu(In,Ga)Se2; Cu(In,Ga)(S,Se)2; CuInTe2; AgInS2; and AgInSe2 including doped species and alloys thereof.
- The 2D QDs of the aforementioned materials may be formed, for example, via a physical or chemical cutting process. Specifically, zero-dimensional (0D), one-dimensional (1D) or three-dimensional (3D) of a desired shape, size and composition mat be formed, followed by treatment, such as chemical treatment, e.g. reflux, LPE and reflux, or intercalation and exfoliation, to form 2D QDs of uniform size as dictated by the intrinsic shape of the 3D or 0D nanoparticles. The process is scalable and can be used to produce 2D QDs with uniform properties in large volumes. As used herein, the “cutting” of a nanoparticle means the separation of the nanoparticle into two or more parts. The term is not intended to imply any restriction on the method of separation, and can include physical and chemical methods of separation. Physical separation methods may include, but are not restricted to: mechanical exfoliation (the so-called “Scotch tape method”), delamination, grinding, and milling. As used herein, the “chemical cutting” of a nanoparticle means the separation of the nanoparticle into two or more parts, wherein the separation is effected by a chemical treatment. In certain embodiments, a chemical treatment may include: the application of heat, pressure, vacuum, ultrasonication, and/or agitation to a solution or dispersion of nanoparticles; chemical etching; and intercalation. Non-limiting examples of chemical cutting methods include: refluxing the nanoparticles in solution; LPE of the nanoparticles followed by reflux; or intercalation and exfoliation of the nanoparticles.
- The cutting of the 0D, 1D or 3D nanoparticles into 2D QDs can be performed using any suitable technique. Suitable examples include chemical and physical exfoliation processes. In one embodiment, the cutting of the prefabricated nanoparticles is performed by a chemical method, such as LPE, which comprises the ultrasonication of the prefabricated nanoparticles in a solvent. The surface tension of the solvent may be chosen to match that of the material being exfoliated. In some embodiments, the exfoliated nanoparticles are subsequently refluxed in solution.
- In some embodiments, the cutting of 0D, 1D or 3D nanoparticles may be carried out by refluxing the prefabricated nanoparticles in solution without prior exfoliation. One of ordinary skill in the art will recognize that the temperature at which the 0D, 1D or 3D nanoparticle solution is refluxed will depend on the boiling point of the solvent in which the solution is formed. Without wishing to be bound by any particular theory, one possible mechanism is that the application of heat may thermally expand the layers within the 0D, 1D or 3D nanoparticles; refluxing the solution may form a gas which chemically cuts the layers apart. In some embodiments, the solution comprises a coordinating solvent. Examples of suitable coordinating solvents include, but are not restricted to: saturated alkyl amines such as, for example, C6-C50 alkyl amines; unsaturated fatty amines such as, for example, oleylamine; fatty acids such as, for example, myristic acid, palmitic acid, and oleic acid; phosphines such as, for example, trioctylphosphine (TOP); phosphine oxides such as, for example, trioctylphosphine oxide (TOPO); alcohols such as, for example hexadecanol, benzylalcohol, ethylene glycol, propylene glycol; and may include primary, secondary, tertiary and branched solvents. In some embodiments, the solution comprises a non-coordinating solvent, such as, but not restricted to, a C11-C50 alkane. In some embodiments, the boiling point of the solvent is between 150° C. to 600° C., for example, 160° C. to 400° C., or more particularly 180° C. to 360° C. In a particular embodiment, the solvent is hexadecylamine.
- In yet further embodiments, the cutting of prefabricated nanoparticles is performed by an intercalation and exfoliation process. Intercalation and exfoliation of TMDC multi-layered nanostructures can be accomplished using Lewis base intercalates. A first intercalation and exfoliation process may be carried out by stirring the prefabricated nanoparticles in a first solvent in the presence of a first intercalating agent and a second intercalating agent for a first time period. Optionally, a second solvent may subsequently be added, followed by stirring for a second time period. In some embodiments, a second intercalation and exfoliation process is carried out by mixing the product of a first intercalation and exfoliation process with a third intercalating agent and a third solvent and stirring for a third time period. Optionally, a fourth solvent may subsequently be added, followed by stirring for a fourth time period. The first intercalating agent and the second intercalating agent may comprise hydrocarbons wherein the hydrocarbon chain length of the first intercalating agent is different to the hydrocarbon chain length of the second intercalating agent. The third intercalating agent may be the same or different from the first and/or second intercalating agent. Suitable first, second and third intercalating agents may include, but are not restricted to:
- Lewis bases, such as amines such as, for example, propylamine, hexylamine; alkoxides such as, for example, sodium methoxide, sodium ethoxide; carboxylates such as, for example, sodium hexanoate; and amino alcohols such as, for example, 3-amino-1-propanol;
- aminothiols such as, for example, cysteamine, 6-amino-1-hexanethiol, and 8-amino-1-octanethiol;
- amino acids, including alkyl amino acids, such as, for example, 3-aminopropanoic acid (β-alanine), 6-aminohexanoic acid, 8-aminooctanoic acid; and
- metal salts such as, for example, those having the general formula MXn where M is Mo, Cd, Zn, or In, and X is a halide (especially Cl−, Br−, and I−), acetate, caprylate, palimatate, laurate, myristate or oleate. Another suitable metal salt is [MoCl5]2.
- Generally, the choice of solvent(s) in which the intercalation and exfoliation process is carried out will depend on the choice of nanoparticles and intercalating agents. During intercalation and exfoliation, it is desirable that the nanoparticles are well dispersed or dissolved in the solvent(s). It is further desirable that the intercalating agent(s) are soluble in the solvent(s). The second solvent may be different from the first solvent. The third solvent may be the same as the first solvent or the second solvent, or may be different from both the first solvent and the second solvent. In some instances, suitable solvents include polar aprotic solvents such as, for example, dimethyl sulfoxide (DMSO), N-methylformamide (NMF) and acetonitrile. In some instances, suitable solvents include polar protic solvents such as, for example, propanol and isopropanol.
- The first time period may range from about 1 hour to about 1 month, alternatively from about 2 hours to about 2 weeks, and alternatively from about 4 hours to about 3 days. The second time period may range from about 1 hour to about 2 months, alternatively from about 2 days to about 2 weeks, and alternatively from about 1 week to about 3 weeks. The third time period may range from about 1 hour to about 1 month, alternatively from about 2 hours to about 2 weeks, and alternatively from about 4 hours to about 3 days. The fourth time period may range from about 1 hour to about 2 months, alternatively from about 2 days to about 2 weeks, and alternatively from about 1 week to about 3 weeks. Generally, the time period will depend on factors such as the choice of solvent(s) and intercalating agent(s), the strength of the bonding within the nanoparticles, and the concentration of nanoparticles to intercalating agents in solution, and that a longer time period may lead to a higher yield of 2D nanoflakes.
- In some embodiments, the first and/or second and/or subsequent intercalation and exfoliation processes may be effected using ultrasonication. Using ultrasonication in the place of stirring may facilitate a reduction in the time period(s) required to effect the chemical cutting process.
- Other cutting techniques can be used for the cutting of the 0D, 1D or 3D nanoparticles to 2D QDs, such as, but not restricted to, etching techniques. According to certain embodiments, the 2D QDs may then be isolated from solution by techniques such as, but not limited to: centrifugation; filtration; dialysis or column chromatography. The resulting 2D nanoflakes may be dispersed in a solvent to form an ink that may be deposited to form a thin film using conventional solution-based deposition techniques such as, but not restricted to: drop-casting, spin-coating, slit coating, spray coating, slot dye coating, inkjet printing or doctor blading. Inherent uniformity in the properties of the 2D QDs may result in a high degree of uniformity in the resulting thin film. The film thickness may be controlled by, for example, altering the concentration of the ink and/or by changing the size of the 2D QDs.
- Layers of 2D nanosheets may be formed using techniques, such as, but not restricted to, mechanical exfoliation, chemical vapor deposition (CVD), atomic layer deposition (ALD); molecular beam epitaxy (MBE); lateral heteroepitaxy; and vapor-solid growth. Suitable 2D nanosheets for 2D nanosheet-containing layers include, but are not restricted to:
- graphene, graphene oxide and reduced graphene oxide;
- TMDCs such as, for example, WO2; WS2; WSe2; WTe2; MnO2; MoO2; MoS2; MoSe2; MoTe2; NiO2; NiTe2; NiSe2; VO2; VS2; VSe2; TaS2; TaSe2; RuO2; RhTe2; PdTe2; HfS2; NbS2; NbSe2; NbTe2; FeS2; TiO2; TiS2; TiSe2; and ZrS2;
- transition metal trichalcogenides such as, for example, TaO3; MnO3; WO3; ZrS3; ZrSe3; HfS3; and HfSe3;
- Group 13-16 (III-VI) compounds such as, for example, InS; InSe; GaS; GaSe; and GaTe;
- Group 15-16 (IV-VI) compounds such as, for example, Bi2Se3; and Bi2Te3;
- nitrides such as, for example, h-BN;
- oxides such as, for example, LaVO3; LaMnO3; V2O5; LaNbO7; Ca2Nb3O10; Ni(OH)2; and Eu(OH)2; layered copper oxides; micas; and BSCCO;
- phosphides such as, for example, Li7MnP4; and MnP4; and
- 2D allotropes of Group 14 elements such as, for example, silicene; germanene; and stanene.
- For devices containing a layer of conventional QDs, the QD layer may be formed from materials including, but not restricted to:
- IIA-VIB (2-16) material, consisting of a first element from
group 2 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe; - IIB-VIB (12-16) material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- II-V material, consisting of a first element from group 12 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Zn3P2, Zn3As2, Cd3P2, Cd3As2, Cd3N2, Zn3N2;
- III-V material, consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- III-IV material, consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: B4C, Al4C3, Ga4C;
- III-VI material, consisting of a first element from group 13 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials. Nanoparticle material includes but is not restricted to: Al2S3, Al2Se3, Al2Te3, Ga2S3, Ga2Se3, GeTe; In2S3, In2Se3, Ga2Te3, In2Te3, InTe;
- IV-VI material, consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material, consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Bi2Te3, Bi2Se3, Sb2Se3, Sb2Te3; and
- Nanoparticle material, consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS2, AgInS2.
- In some instances, in heterostructure devices according to various aspects of the disclosure, the relative band gaps of the semiconductor materials may be selected to form a Type I heterostructure, for
example WSe 2 2D QDs with a layer ofMoTe 2 2D QDs or aMoTe 2 2D nanosheet layer. In some instances, the relative band gaps of the semiconductor materials may be chosen to form a Type II heterostructure, for example PbS QDs with aWSe 2 2D QD layer, orMoS 2 2D QDs with either alayer WSe 2 2D QDs or a WSe2 nanosheet layer. - In some instances, one or more of the 2D layers may be a single monolayer in thickness. Making the sensitizer as thin as possible may be advantageous to maximize the charge screening effect, flexibility and device transparency. Thickness approaching the absorption depth may be desirable to maximize the absorption of incoming light. However, thicker devices may also be desirable for stronger absorption. Tuning the thickness of the material also provides a means to control its band gap. Therefore, in some instances, one or more of the 2D layers may be between 1-5 monolayers. In some instances, the 2D nanosheet layers may be a monolayer. Monolayers may provide advantageous properties over few-layer or bulk material. For example, transition metal dichalcogenides display a transition from an indirect to a direct band gap upon monolayer formation.
- A number of strategies may be implemented to enhance the charge transport within the 2D QD layer. For example, the inherent 2D QD ligands may be replaced with shorter chain ligands. As used herein, a “short-chain ligand” refers to a ligand having a hydrocarbon chain of eight carbons or fewer. Examples of suitable short-chain ligands include, but are not restricted to: alkane thiols such as 1-octanethiol, 1-heptanethiol, 1-hexanethiol, 1-pentanethiol, 1-butanethiol, 1-propanethiol; alkylamines such as methylamine, ethylamine, propylamine, butylamine, octylamine, allylamine; and carboxylic acids such as octanoic acid, heptanoic acid, hexanoic acid, pentanoic acid, butanoic acid, and propanoic acid. Other suitable ligands may include pyridines and pyrrolidones. In some instances, bridging ligands may be used to improve the connectivity between adjacent 2D QDs. Suitable examples include, but are not restricted to, bidentate ligands such as ethanedithiol or 3-mercaptopropionic acid.
- A further strategy to improve the connectivity between 2D QDs may include the use of chalcogen ligands. In this method, QDs may be “necked” by removing the organic surface ligands and passivating the QD surface with chalcogen ligands. In some instances, adjacent QDs may be fused. Using fused 2D QDs, a film may be formed, wherein the 2D QDs include ligands on portions of their outer surface that have not been fused. Fusing may lead to the 2D QDs substantially maintaining their individual properties while being joined by regions through which current can readily flow. In one embodiment, as-synthesized 2D QDs may be subjected to ligand exchange, to replace the inherent ligands with shorter, more volatile ligands. The ligand-exchanged 2D QDs may then be solution deposited, then the short-chain ligands removed to bring the 2D QDs into close proximity so that some of the 2D QDs contact their neighbors. This is known as “necking”. The necked 2D QDs may subsequently be annealed to fuse the 2D QDs together. In general, fused 2D QDs, and the connection between them, will not contain defect states, which enables current to flow readily between them.
- When conventional QDs are used, such as in the conventional QD-containing
layer 530 ofphotodetector 500 or the conventional QD-containinglayer 620 ofphotodetector 600, the conventional QDs can be core, core-shell or core-multishell QDs having sizes ranging from 2-100 nm. The material of the core can comprise: - IIA-VIA (2-16) material, consisting of a first element from
group 2 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe; - IIB-VIA (12-16) material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- II-V material consisting of a first element from group 12 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Zn3P2, Zn3As2, Cd3P2, Cd3As2, Cd3N2, Zn3N2;
- III-V material consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- III-IV material consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: B4C, Al4C3, Ga4C;
- III-VI material consisting of a first element from group 13 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials. Nanoparticle material includes but is not restricted to: Al2S3, Al2Se3, Al2Te3, Ga2S3, Ga2Se3, GeTe; In2S3, In2Se3, Ga2Te3, In2Te3, InTe;
- IV-VI material consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Bi2Te3, Bi2Se3, Sb2Se3, Sb2Te3; and
- Nanoparticle material consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS2, AgInS2.
- By the term doped nanoparticle for the purposes of specifications and claims, refer to nanoparticles of the above and a dopant comprised of one or more main group or rare earth elements, this most often is a transition metal or rare earth element, such as but not limited to zinc sulfide with manganese, such as ZnS nanoparticles doped with Mn +.
- The term “ternary material,” for the purposes of specifications and claims, refers to QDs of the above but a three component material. The three components are usually compositions of elements from the as mentioned groups Example being (ZnxCdx-1S)mLn nanocrystal (where L is a capping agent).
- The term “quaternary material,” for the purposes of specifications and claims, refer to nanoparticles of the above but a four-component material. The four components are usually compositions of elements from the as mentioned groups Example being (ZnxCdx-1SySey-1)mLn nanocrystal (where L is a capping agent).
- The material used on any shell or subsequent numbers of shells grown onto the conventional QD core in most cases will be of a similar lattice type material to the core material i.e. have close lattice match to the core material so that it can be epitaxially grown on to the core, but is not necessarily restricted to materials of this compatibility. The material used on any shell or subsequent numbers of shells grown on to the core present in most cases will have a wider bandgap then the core material but is not necessarily restricted to materials of this compatibility. The materials of any shell or subsequent numbers of shells grown on to the core can include material comprising:
- IIA-VIA (2-16) material, consisting of a first element from
group 2 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe; - IIB-VIA (12-16) material consisting of a first element from group 12 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe;
- II-V material consisting of a first element from group 12 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Zn3P2, Zn3As2, Cd3P2, Cd3As2, Cd3N2, Zn3N2;
- III-V material consisting of a first element from group 13 of the periodic table and a second element from group 15 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: BP, AlP, AlAs, AlSb; GaN, GaP, GaAs, GaSb; InN, InP, InAs, InSb, BN;
- III-IV material consisting of a first element from group 13 of the periodic table and a second element from group 14 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: B4C, Al4C3, Ga4C;
- III-VI material consisting of a first element from group 13 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials. Nanoparticle material includes but is not restricted to: Al2S3, Al2Se3, Al2Te3, Ga2S3, Ga2Se3, In2S3, In2Se3, Ga2Te3, In2Te3;
- IV-VI material consisting of a first element from group 14 of the periodic table and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: PbS, PbSe, PbTe, SnS, SnSe, SnTe;
- V-VI material consisting of a first element from group 15 of the periodic table and a second element from group 16 of the periodic table, and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: Bi2Te3, Bi2Se3, Sb2Se3, Sb2Te3; and
- Nanoparticle material consisting of a first element from any group in the transition metal of the periodic table, and a second element from group 16 of the periodic table and also including ternary and quaternary materials and doped materials. Nanoparticle material includes but is not restricted to: NiS, CrS, CuInS2, AgInS2.
- The aforementioned strategies for increasing the connectivity within the 2D QD layer may also be applied to a conventional QD layer.
- Photodetector devices in accordance with various aspects of the present disclosure may be integrated with complementary metal-oxide-semiconductor (CMOS) circuitry. Devices comprising 2D QDs may be fabricated using CMOS techniques, for example by spin-coating a 2D QD layer onto a prefabricated CMOS electronic read-out circuit. Integration into CMOS circuitry may be desirable to form small pixels, to enable high resolution sensors.
- In some instances, a number of pixels that have spectral sensitivity in different regions may be monolithically integrated. The spectral sensitivity of each pixel may be tuned by modifying the lateral dimensions and/or thickness of the 2D QDs.
- In some instances, a phototransistor device in accordance with various aspects of the present disclosure may be gated. Gating acts as a control mechanism and allows increased functionality as the gate voltage can be varied to act as either a switch or as an amplifier. In particular, the high carrier mobility of 2D materials may be advantageous as the gain is directly proportional to the carrier mobility.
- The foregoing presents particular embodiments embodying the principles of the invention. Those skilled in the art will be able to devise alternatives and variations which, even if not explicitly disclosed herein, embody those principles and are thus within the scope of the invention. Although particular embodiments of the present invention have been shown and described, they are not intended to limit what this patent covers. One skilled in the art will understand that various changes and modifications may be made without departing from the scope of the present invention as literally and equivalently covered by the following claims.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/544,181 US20200067002A1 (en) | 2018-08-23 | 2019-08-19 | Photodetectors Based on Two-Dimensional Quantum Dots |
US17/703,679 US11903225B2 (en) | 2018-08-23 | 2022-03-24 | Photodetectors based on two-dimensional quantum dots |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862722006P | 2018-08-23 | 2018-08-23 | |
US16/544,181 US20200067002A1 (en) | 2018-08-23 | 2019-08-19 | Photodetectors Based on Two-Dimensional Quantum Dots |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/703,679 Division US11903225B2 (en) | 2018-08-23 | 2022-03-24 | Photodetectors based on two-dimensional quantum dots |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200067002A1 true US20200067002A1 (en) | 2020-02-27 |
Family
ID=67777362
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/544,181 Abandoned US20200067002A1 (en) | 2018-08-23 | 2019-08-19 | Photodetectors Based on Two-Dimensional Quantum Dots |
US17/703,679 Active US11903225B2 (en) | 2018-08-23 | 2022-03-24 | Photodetectors based on two-dimensional quantum dots |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/703,679 Active US11903225B2 (en) | 2018-08-23 | 2022-03-24 | Photodetectors based on two-dimensional quantum dots |
Country Status (7)
Country | Link |
---|---|
US (2) | US20200067002A1 (en) |
EP (1) | EP3841617A1 (en) |
JP (1) | JP2021535600A (en) |
KR (1) | KR20210031731A (en) |
CN (1) | CN112567536B (en) |
TW (1) | TWI729467B (en) |
WO (1) | WO2020039212A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916531A (en) * | 2020-08-19 | 2020-11-10 | 电子科技大学 | A kind of composite material preparation method for photoelectric detection |
CN113205987A (en) * | 2021-04-07 | 2021-08-03 | 清华大学 | Planar photoinduced electron emission source based on multilayer two-dimensional material |
CN115440838A (en) * | 2022-07-21 | 2022-12-06 | 华南师范大学 | A photodetector based on bismuth selenide oxide/indium selenide heterojunction and its preparation method and application |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112909185B (en) * | 2021-01-18 | 2022-08-26 | 西安工业大学 | Preparation method of photoconductive device based on quantum dots and high molecular polymer |
CN113471365B (en) * | 2021-05-13 | 2023-10-27 | 中国计量大学 | Near-infrared organic van der Waals heterojunction photosensitive field effect transistor and preparation method thereof |
CN113675293B (en) * | 2021-08-10 | 2024-04-12 | 东北师范大学 | Preparation method of n-type oxide/p-type graphene heterogeneous pn junction ultraviolet photoelectric detector |
TWI806274B (en) * | 2021-12-06 | 2023-06-21 | 國立臺灣大學 | Photo detector |
EP4456145A1 (en) * | 2021-12-22 | 2024-10-30 | National Institute Of Advanced Industrial Science and Technology | Electronic/optical device and manufacturing method therefor |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19905694A1 (en) | 1998-11-27 | 2000-08-17 | Forschungszentrum Juelich Gmbh | Component |
JP4365247B2 (en) * | 2004-03-17 | 2009-11-18 | 富士フイルム株式会社 | Photoelectric conversion film stack type solid-state imaging device |
JP2005303284A (en) * | 2004-03-17 | 2005-10-27 | Fuji Photo Film Co Ltd | Photoelectric film laminated solid-state imaging device |
KR101322646B1 (en) * | 2005-10-20 | 2013-10-25 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Nanocrystal solar cells processed from solution |
US7968792B2 (en) * | 2007-03-05 | 2011-06-28 | Seagate Technology Llc | Quantum dot sensitized wide bandgap semiconductor photovoltaic devices & methods of fabricating same |
US9382474B2 (en) * | 2010-04-06 | 2016-07-05 | The Governing Council Of The University Of Toronto | Photovoltaic devices with depleted heterojunctions and shell-passivated nanoparticles |
KR101641367B1 (en) * | 2010-05-20 | 2016-07-21 | 엘지디스플레이 주식회사 | Quantum-dot light emitting diode and method for fabrication the same |
US9349888B2 (en) * | 2012-04-09 | 2016-05-24 | Fundacio Institut De Ciencies Fotoniques | Photovoltaic nanocomposite comprising solution processed inorganic bulk nano-heterojunctions, solar cell and photodiode devices comprising the nanocomposite |
KR101491244B1 (en) * | 2012-04-10 | 2015-02-06 | 포항공과대학교 산학협력단 | Organic ight emitting diode including integral and conductive substrate |
WO2014081046A1 (en) * | 2012-11-21 | 2014-05-30 | キヤノン株式会社 | Image forming device and electrophotographic photoreceptor |
US9985153B2 (en) | 2013-08-29 | 2018-05-29 | University Of Florida Research Foundation, Incorporated | Air stable infrared photodetectors from solution-processed inorganic semiconductors |
KR20170023079A (en) * | 2014-06-19 | 2017-03-02 | 윌리엄 마쉬 라이스 유니버시티 | Bandgap engineering of carbon quantum dots |
KR102416112B1 (en) * | 2014-10-02 | 2022-07-04 | 삼성전자주식회사 | Stretchable/foldable optoelectronic device, method of manufacturing the same and apparatus including the optoelectronic device |
EP3460849A1 (en) * | 2014-11-24 | 2019-03-27 | Artilux Inc. | Monolithic integration techniques for fabricating photodetectors with transistors on same substrate |
WO2017054887A1 (en) * | 2015-10-02 | 2017-04-06 | Toyota Motor Europe | All quantum dot based optoelectronic device |
KR102409391B1 (en) * | 2015-10-27 | 2022-06-15 | 삼성전자주식회사 | Optoelectronic device including quantum dot |
WO2017095886A1 (en) * | 2015-12-01 | 2017-06-08 | Alliance For Sustainable Energy, Llc | Nanostructure-containing organic-metal halide perovskites |
EP3184602B1 (en) * | 2015-12-23 | 2018-07-04 | Avantama AG | Luminescent component |
US10059585B2 (en) * | 2016-06-28 | 2018-08-28 | Nanoco Technologies Ltd. | Formation of 2D flakes from chemical cutting of prefabricated nanoparticles and van der Waals heterostructure devices made using the same |
CN116847702A (en) * | 2016-07-20 | 2023-10-03 | 索尼公司 | Semiconductor film manufacturing method |
CN106384756B (en) * | 2016-10-19 | 2017-10-13 | 中国人民解放军国防科学技术大学 | THz single-photon detectors based on graphene quantum dot and preparation method thereof |
KR102650654B1 (en) * | 2016-11-08 | 2024-03-25 | 삼성전자주식회사 | Image sensor for high photoelectric conversion efficiency and low dark current |
EP3346508B1 (en) * | 2017-01-10 | 2023-03-01 | Samsung Electronics Co., Ltd. | Optical sensor and image sensor including graphene quantum dots |
US10883046B2 (en) * | 2017-02-02 | 2021-01-05 | Nanoco 2D Materials Limited | Synthesis of luminescent 2D layered materials using an amine-met al complex and a slow sulfur-releasing precursor |
CN107132660A (en) * | 2017-03-23 | 2017-09-05 | 上海九山电子科技有限公司 | Two-dimentional quantum dot shows system and method |
CN107863416B (en) * | 2017-10-11 | 2019-07-16 | 昆明理工大学 | A kind of preparation method of flexible graphene silicon solar cell |
-
2019
- 2019-08-19 US US16/544,181 patent/US20200067002A1/en not_active Abandoned
- 2019-08-22 TW TW108130050A patent/TWI729467B/en active
- 2019-08-23 KR KR1020217004285A patent/KR20210031731A/en not_active Ceased
- 2019-08-23 EP EP19759719.8A patent/EP3841617A1/en active Pending
- 2019-08-23 JP JP2021510004A patent/JP2021535600A/en active Pending
- 2019-08-23 WO PCT/GB2019/052381 patent/WO2020039212A1/en unknown
- 2019-08-23 CN CN201980053137.4A patent/CN112567536B/en active Active
-
2022
- 2022-03-24 US US17/703,679 patent/US11903225B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916531A (en) * | 2020-08-19 | 2020-11-10 | 电子科技大学 | A kind of composite material preparation method for photoelectric detection |
CN113205987A (en) * | 2021-04-07 | 2021-08-03 | 清华大学 | Planar photoinduced electron emission source based on multilayer two-dimensional material |
CN115440838A (en) * | 2022-07-21 | 2022-12-06 | 华南师范大学 | A photodetector based on bismuth selenide oxide/indium selenide heterojunction and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
WO2020039212A1 (en) | 2020-02-27 |
US20220216438A1 (en) | 2022-07-07 |
US11903225B2 (en) | 2024-02-13 |
TW202023060A (en) | 2020-06-16 |
JP2021535600A (en) | 2021-12-16 |
CN112567536B (en) | 2024-12-20 |
KR20210031731A (en) | 2021-03-22 |
TWI729467B (en) | 2021-06-01 |
EP3841617A1 (en) | 2021-06-30 |
CN112567536A (en) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11903225B2 (en) | Photodetectors based on two-dimensional quantum dots | |
Chu et al. | HgTe nanocrystals for SWIR detection and their integration up to the focal plane array | |
EP2483925B1 (en) | Quantum dot-fullerene junction based photodetectors | |
Wang et al. | Perovskite-based photodetectors: materials and devices | |
García de Arquer et al. | Solution-processed semiconductors for next-generation photodetectors | |
US9349970B2 (en) | Quantum dot-fullerene junction based photodetectors | |
US9349888B2 (en) | Photovoltaic nanocomposite comprising solution processed inorganic bulk nano-heterojunctions, solar cell and photodiode devices comprising the nanocomposite | |
KR101943875B1 (en) | Method for producing quantum dot ink, quantum dot ink prepared therefrom and a solar cell comprising the same | |
US20200083469A1 (en) | Mid and far-infrared nanocrystals based photodetectors with enhanced performances | |
Chetia et al. | A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures | |
Wang et al. | Metal halide perovskite photodetectors: Material features and device engineering | |
Yadav et al. | Review of recent progress, challenges, and prospects of 2D materials-based short wavelength infrared photodetectors | |
US9698192B1 (en) | Two-color barrier photodetector with dilute-nitride active region | |
US20100236614A1 (en) | Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon | |
Fu et al. | Photodetectors based on graphene–semiconductor hybrid structures: recent progress and future outlook | |
Saha et al. | Investigation of Yttrium (Y)-doped ZnO (Y: ZnO)–Ga2O3 core-shell nanowire/Si vertical heterojunctions for high-performance self-biased wideband photodetectors | |
Izadpour et al. | Plasmonic enhancement of colloidal quantum dot infrared photodetector photosensitivity | |
Rogalski | Progress in quantum dot infrared photodetectors | |
Sharma et al. | Recent Advancements in Nanomaterials for Near‐Infrared to Long‐Wave Infrared Photodetectors | |
Jahromi et al. | A pin-hole free architecture for vertical infrared photodetectors based on thin-film organic/inorganic hybrid nanocomposite | |
Xia et al. | Vertical Barrier Heterostructures for Reliable and High-Performance Self-Powered Infrared Detection | |
US20230411544A1 (en) | Binary colloidal quantum dot technology | |
EP4492939A1 (en) | A photodetector device | |
Hafiz | Colloidal quantum dot (cqd) based mid-wavelength infrared optoelectronics | |
de Pina | Engineering Semiconductor Nanostructures for Short-Wave Infrared Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NANOCO 2D MATERIALS LIMITED, GREAT BRITAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PICKETT, NIGEL;STUBBS, STUART;GRESTY, NATHALIE;SIGNING DATES FROM 20190813 TO 20190819;REEL/FRAME:050090/0326 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |