US20190167839A1 - Absorbable in situ gel-forming system, method of making and use thereof - Google Patents
Absorbable in situ gel-forming system, method of making and use thereof Download PDFInfo
- Publication number
- US20190167839A1 US20190167839A1 US16/253,276 US201916253276A US2019167839A1 US 20190167839 A1 US20190167839 A1 US 20190167839A1 US 201916253276 A US201916253276 A US 201916253276A US 2019167839 A1 US2019167839 A1 US 2019167839A1
- Authority
- US
- United States
- Prior art keywords
- forming composition
- situ gel
- lactide
- glycolide
- absorbable polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title 1
- 239000000203 mixture Substances 0.000 claims abstract description 110
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims abstract description 56
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229920000642 polymer Polymers 0.000 claims abstract description 47
- 239000002904 solvent Substances 0.000 claims abstract description 34
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 33
- 239000007787 solid Substances 0.000 claims abstract description 33
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 31
- 239000012867 bioactive agent Substances 0.000 claims abstract description 24
- 239000000017 hydrogel Substances 0.000 claims abstract description 21
- -1 polyoxyethylene Polymers 0.000 claims description 23
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 19
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- 125000001931 aliphatic group Chemical group 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 17
- 229920001577 copolymer Polymers 0.000 claims description 14
- 229920002635 polyurethane Polymers 0.000 claims description 13
- 239000004814 polyurethane Substances 0.000 claims description 13
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 13
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 claims description 12
- 206010028980 Neoplasm Diseases 0.000 claims description 11
- 238000002399 angioplasty Methods 0.000 claims description 10
- 208000019553 vascular disease Diseases 0.000 claims description 9
- 230000002209 hydrophobic effect Effects 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 7
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 claims description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 6
- 201000011510 cancer Diseases 0.000 claims description 6
- 125000005442 diisocyanate group Chemical group 0.000 claims description 6
- 125000003827 glycol group Chemical group 0.000 claims description 6
- 239000003229 sclerosing agent Substances 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 4
- 229920001281 polyalkylene Polymers 0.000 claims description 4
- 229920000570 polyether Polymers 0.000 claims description 4
- AOLNDUQWRUPYGE-UHFFFAOYSA-N 1,4-dioxepan-5-one Chemical compound O=C1CCOCCO1 AOLNDUQWRUPYGE-UHFFFAOYSA-N 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004472 Lysine Substances 0.000 claims description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 3
- 150000004676 glycans Chemical class 0.000 claims description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 3
- MENOBBYDZHOWLE-UHFFFAOYSA-N morpholine-2,3-dione Chemical compound O=C1NCCOC1=O MENOBBYDZHOWLE-UHFFFAOYSA-N 0.000 claims description 3
- SOWBFZRMHSNYGE-UHFFFAOYSA-N oxamic acid Chemical compound NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 claims description 3
- 229920001184 polypeptide Polymers 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 208000037803 restenosis Diseases 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical group OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- 229920001897 terpolymer Polymers 0.000 claims description 2
- 150000002334 glycols Chemical class 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 34
- 238000011282 treatment Methods 0.000 description 25
- 239000003814 drug Substances 0.000 description 17
- 206010002329 Aneurysm Diseases 0.000 description 16
- 229940079593 drug Drugs 0.000 description 16
- 206010046996 Varicose vein Diseases 0.000 description 10
- 230000008439 repair process Effects 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000001879 gelation Methods 0.000 description 7
- 230000002792 vascular Effects 0.000 description 7
- 229920001661 Chitosan Polymers 0.000 description 6
- 102000008186 Collagen Human genes 0.000 description 6
- 108010035532 Collagen Proteins 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 108010049003 Fibrinogen Proteins 0.000 description 6
- 102000008946 Fibrinogen Human genes 0.000 description 6
- 108090000190 Thrombin Proteins 0.000 description 6
- 230000001567 anti-fibrinolytic effect Effects 0.000 description 6
- 239000000504 antifibrinolytic agent Substances 0.000 description 6
- 229940082620 antifibrinolytics Drugs 0.000 description 6
- 229940045110 chitosan Drugs 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- 229940012952 fibrinogen Drugs 0.000 description 6
- WYWIFABBXFUGLM-UHFFFAOYSA-N oxymetazoline Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C)=C1CC1=NCCN1 WYWIFABBXFUGLM-UHFFFAOYSA-N 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229960004072 thrombin Drugs 0.000 description 6
- 239000005526 vasoconstrictor agent Substances 0.000 description 6
- 208000037997 venous disease Diseases 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 208000027185 varicose disease Diseases 0.000 description 5
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 229920002988 biodegradable polymer Polymers 0.000 description 4
- 239000004621 biodegradable polymer Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 208000034158 bleeding Diseases 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 230000003626 chitosanolytic effect Effects 0.000 description 4
- 208000029078 coronary artery disease Diseases 0.000 description 4
- 238000013161 embolization procedure Methods 0.000 description 4
- 230000001471 fibrinogenolytic effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 4
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 4
- 229960002930 sirolimus Drugs 0.000 description 4
- 208000009056 telangiectasis Diseases 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- 229920000954 Polyglycolide Polymers 0.000 description 3
- 229940121363 anti-inflammatory agent Drugs 0.000 description 3
- 239000002260 anti-inflammatory agent Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 239000012829 chemotherapy agent Substances 0.000 description 3
- 230000003308 immunostimulating effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 3
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 2
- 241000239290 Araneae Species 0.000 description 2
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 229920001363 Polidocanol Polymers 0.000 description 2
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 102000002689 Toll-like receptor Human genes 0.000 description 2
- 108020000411 Toll-like receptor Proteins 0.000 description 2
- 229930003448 Vitamin K Natural products 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000000118 anti-neoplastic effect Effects 0.000 description 2
- 230000002421 anti-septic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 229940064004 antiseptic throat preparations Drugs 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 229940019700 blood coagulation factors Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 229960003722 doxycycline Drugs 0.000 description 2
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229960001528 oxymetazoline Drugs 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 2
- ONJQDTZCDSESIW-UHFFFAOYSA-N polidocanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ONJQDTZCDSESIW-UHFFFAOYSA-N 0.000 description 2
- 229960002226 polidocanol Drugs 0.000 description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000000622 polydioxanone Substances 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229940071643 prefilled syringe Drugs 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 210000003752 saphenous vein Anatomy 0.000 description 2
- 238000007632 sclerotherapy Methods 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 235000019168 vitamin K Nutrition 0.000 description 2
- 239000011712 vitamin K Substances 0.000 description 2
- 150000003721 vitamin K derivatives Chemical class 0.000 description 2
- 229940046010 vitamin k Drugs 0.000 description 2
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 2
- 229950009819 zotarolimus Drugs 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- BOZRCGLDOHDZBP-UHFFFAOYSA-N 2-ethylhexanoic acid;tin Chemical compound [Sn].CCCCC(CC)C(O)=O BOZRCGLDOHDZBP-UHFFFAOYSA-N 0.000 description 1
- GPLIMIJPIZGPIF-UHFFFAOYSA-N 2-hydroxy-1,4-benzoquinone Chemical compound OC1=CC(=O)C=CC1=O GPLIMIJPIZGPIF-UHFFFAOYSA-N 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 208000022211 Arteriovenous Malformations Diseases 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 229940123189 CD40 agonist Drugs 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000018386 EGF Family of Proteins Human genes 0.000 description 1
- 108010066486 EGF Family of Proteins Proteins 0.000 description 1
- 108010049047 Echinocandins Proteins 0.000 description 1
- 208000001750 Endoleak Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102000000521 Immunophilins Human genes 0.000 description 1
- 108010016648 Immunophilins Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 208000000588 Klippel-Trenaunay-Weber Syndrome Diseases 0.000 description 1
- 208000034642 Klippel-Trénaunay syndrome Diseases 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 229920002593 Polyethylene Glycol 800 Polymers 0.000 description 1
- 229920002596 Polyethylene Glycol 900 Polymers 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006593 Urologic Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 201000007538 anal carcinoma Diseases 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 208000012948 angioosteohypertrophic syndrome Diseases 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000005744 arteriovenous malformation Effects 0.000 description 1
- DVQHYTBCTGYNNN-UHFFFAOYSA-N azane;cyclobutane-1,1-dicarboxylic acid;platinum Chemical compound N.N.[Pt].OC(=O)C1(C(O)=O)CCC1 DVQHYTBCTGYNNN-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000010109 chemoembolization Effects 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 102000006834 complement receptors Human genes 0.000 description 1
- 108010047295 complement receptors Proteins 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 239000000409 cytokine receptor agonist Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229960001193 diclofenac sodium Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000010102 embolization Effects 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960003976 etidocaine Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 229960002390 flurbiprofen Drugs 0.000 description 1
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229960004752 ketorolac Drugs 0.000 description 1
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940028395 levophed Drugs 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960002409 mepivacaine Drugs 0.000 description 1
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 208000030940 penile carcinoma Diseases 0.000 description 1
- 201000008174 penis carcinoma Diseases 0.000 description 1
- 201000002628 peritoneum cancer Diseases 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229960001807 prilocaine Drugs 0.000 description 1
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229950000332 pyrrocaine Drugs 0.000 description 1
- OYCGKECKIVYHTN-UHFFFAOYSA-N pyrrocaine Chemical compound CC1=CC=CC(C)=C1NC(=O)CN1CCCC1 OYCGKECKIVYHTN-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 201000003804 salivary gland carcinoma Diseases 0.000 description 1
- 229960000776 sodium tetradecyl sulfate Drugs 0.000 description 1
- JGMJQSFLQWGYMQ-UHFFFAOYSA-M sodium;2,6-dichloro-n-phenylaniline;acetate Chemical compound [Na+].CC([O-])=O.ClC1=CC=CC(Cl)=C1NC1=CC=CC=C1 JGMJQSFLQWGYMQ-UHFFFAOYSA-M 0.000 description 1
- UPUIQOIQVMNQAP-UHFFFAOYSA-M sodium;tetradecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCOS([O-])(=O)=O UPUIQOIQVMNQAP-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000035322 succinylation Effects 0.000 description 1
- 238000010613 succinylation reaction Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 229960004749 tibezonium iodide Drugs 0.000 description 1
- YTSPICCNZMNDQT-UHFFFAOYSA-M tibezonium iodide Chemical compound [I-].C1C(SCC[N+](C)(CC)CC)=NC2=CC=CC=C2N=C1C(C=C1)=CC=C1SC1=CC=CC=C1 YTSPICCNZMNDQT-UHFFFAOYSA-M 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 208000012991 uterine carcinoma Diseases 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 201000009371 venous hemangioma Diseases 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/046—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/075—Ethers or acetals
- A61K31/08—Ethers or acetals acyclic, e.g. paraformaldehyde
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
- A61K31/122—Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/65—Tetracyclines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/716—Glucans
- A61K31/722—Chitin, chitosan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/19—Platelets; Megacaryocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/36—Blood coagulation or fibrinolysis factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/36—Blood coagulation or fibrinolysis factors
- A61K38/363—Fibrinogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/39—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4833—Thrombin (3.4.21.5)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/20—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0015—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0031—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/043—Mixtures of macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/04—Materials for stopping bleeding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21005—Thrombin (3.4.21.5)
Definitions
- This application relates generally to an absorbable gel system and, in particular, to an in situ gel-forming system for various applications, such as vascular applications.
- vascular disease such as coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, as well as vascular conditions caused by medical procedures such as angioplasty and stenting, often require localized treatment.
- In situ gel-forming systems provide an ideal platform for the treatment of vascular diseases and conditions.
- Biodegradable polymers such as polyester copolymers, have been used in gel-forming systems since they present tunable chemical properties, excellent mechanical properties, and good blood compatibility. These polymer compositions, however, are often too viscose to be delivered effectively through a needle or catheter and, therefore, have limited use in vascular applications where delivery through a needle or a catheter is required. Accordingly, there exists a need for an in situ gel-forming system that can be easily delivered through small-gauge needles or catheters.
- the composition comprises one or more absorbable polymers and a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- Another aspect of the present invention relates to a method for treating a vascular disease or condition in a subject.
- the method comprises injecting into the subject, at a treatment site, an effective amount of an in situ gel-forming composition.
- the composition comprises one or more absorbable polymers and a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- the vascular disease is a peripheral venous disease selected from spider veins, spider telangiectasias, reticular veins, reticular varicosities, venulectasias, tributary varicose veins, bulging varicose veins, vein tributaries, varicose saphenous veins, or combinations thereof.
- the vascular disease or condition is a disease or condition selected from the group consisting of coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, and vascular conditions caused by angioplasty or stenting.
- the method comprises injecting into the subject an effective amount of an in situ gel-forming composition.
- the composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more chemotherapy agents, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- the method comprises injecting into the subject, at a treatment site, an effective amount of an in situ gel-forming composition.
- the composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more bioactive agents selected from the group consisting of collagen, thrombin, activated platelets, chitosan, antifibrinolytics, vitamin K, fibrinogen, and blood coagulation factors, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- bioactive agents selected from the group consisting of collagen, thrombin, activated platelets, chitosan,
- the method comprises administering at a site of angioplasty, an effective amount of an in situ gel-forming composition.
- the composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more bioactive agents that inhibits neoplastic growth, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- Another aspect of the present invention relates to a method for endovascular repair of aneurysms to prevent type I and type II leaks.
- the method comprises administering at a site of aneurysm, an effective amount of an in situ gel-forming composition.
- the composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more agents suitable for endovascular repair of aneurysms, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- NMP N-methyl-2-pyrrolidone
- PEG polyethylene glycol
- DMSO dimethyl sulfoxide
- kits comprising the in situ gel-forming composition of the present invention and instructions about how to use the in situ gel-forming composition.
- the kit comprises the in situ gel-forming composition packaged in a pre-filled syringe or vial.
- FIG. 1 is a diagram showing release curves of several bioactive formulations using polyurethane compositions.
- the term “effective amount” denotes the amount of a medicament or of a pharmaceutical active ingredient which causes a biological or medical response in a tissue, system, animal or human which is sought or desired, for example, by a researcher or physician.
- the term “effective amount” denotes an amount which, compared with a corresponding subject who has not taken this amount, has the following consequence: improved treatment, healing, prevention or elimination of a disease, condition, syndrome, disease state, complaint, disorder or prevention of side effects or also the reduction in the progress of a disease, complaint or disorder.
- the term “effective amount” also encompasses the amounts which are effective for increasing normal physiological function.
- One aspect of the present invention relates to an injectable gel-forming composition that comprises one or more absorbable polymers, a solvent such as NMP, polyethylene glycol, DMSO, and optionally one or more bioactive agents.
- the composition is injectable and forms a hydrogel or semi-solid mass on contact with an aqueous environment at the treatment site.
- the composition can be used for the treatment of (1) various vascular diseases, such as coronary and peripheral artery diseases, aneurysms and peripheral venous diseases, (2) vascular conditions caused by medical procedures, such as angioplasty and stenting, and (3) other applications such as localized cancer treatment.
- the one or more absorbable polymers can be any absorbable polyester/polyether copolymer or mixture of polyester/polyether copolymers that is miscible with a solvent such as NMP, polyethylene glycol or DMSO and is capable of forming a hydrogel or semi-solid mass on contact with an aqueous environment.
- a solvent such as NMP, polyethylene glycol or DMSO
- the term “absorbable polymer” or “biodegradable polymer” refers to a polyester copolymer that can be broken down by either chemical or physical process, upon interaction with the physiological environment at the implantation site, and erodes or dissolves within a period of time, e.g., within days, weeks or months.
- An absorbable or biodegradable polymer serves a temporary function in the body, such as closing a varicose vein, supporting or seal a lumen or delivering a drug, and is then degraded or broken into components that are metabolizable or excretable.
- the one or more absorbable polymers can be in linear or branched form.
- the one or more absorbable polymers comprise a molecular chain having a hydrophilic block, designated “Y” herein, and a relatively hydrophobic polyester block, designated “X” herein.
- Hydrophobic block X and hydrophilic block Y more preferably comprises a molecular structure having the following formula: X-Y-X or (X-Y) n , and branched structures thereof.
- hydrophobic block X comprises a polyester formed by grafting a glycolide, lactide, ⁇ -caprolactone, p-dioxanone, trimethylene carbonate or combinations thereof, onto the hydroxylic or amino groups of a hydrophilic polymer precursor i.e., Y; hydrophilic block Y comprises a polyoxyethylene, poly(oxyethylene-b-oxypropylene), polypeptide polyalkylene oxamate, a polysaccharide, and derivatives thereof; or a liquid, high molecular weight polyether glycol interlinked with an oxalate or succinate functionalities in linear or branched form.
- Hydrophobic Block(s) refers to absorbable polyester chain block(s) or segment(s) of variable length which, is present in an isolated form, will produce practically amorphous (with less than 5% crystallinity) or totally amorphous material having a T g of less than 25° C., and preferably, is a viscous liquid at room temperature.
- Hydrophobic block(s) X comprises copolymeric segments of known chemistries in the art, such as, those comprised from cyclic lactones (e.g., glycolide, l-lactide, dl-lactide, ⁇ -caprolactone, p-dioxanone, trimethylene carbonate), polyalkylene oxalate, and the like. More preferably, hydrophobic segment(s) or block(s) X comprises lactide/glycolide copolymer (with 51 to 80% 1- or dl-lactide).
- cyclic lactones e.g., glycolide, l-lactide, dl-lactide, ⁇ -caprolactone, p-dioxanone, trimethylene carbonate
- hydrophobic segment(s) or block(s) X comprises lactide/glycolide copolymer (with 51 to 80% 1- or dl-lactide).
- Hydrophilic Block(s) refers to polymeric blocks or segments which, if present in an isolated form, will be water soluble.
- Hydrophilic block(s) or segment(s) Y comprises poly(oxyethylene), with or without a minor component of a higher homolog, such as, poly(oxypropylene)-polypeptide, polyalkylene oxamate, a polysaccharide, or derivatives thereof.
- the length of the hydrophilic block and its weight fractions can be varied to modulate the rate of gel formation, its modulus, its water content, diffusivity of bioactive drug through it, its adhesiveness to surrounding tissue, and bioabsorbability.
- hydrogel or “hydrogel mass” as used herein, refers to materials which have a high tendency for water absorption and/or retention, and maintain mechanical integrity through physical crosslinks which are reversible in nature.
- solid or “semi-solid mass” as used herein, refers to a material which is similar to a solid in some respects (e.g., it can support its own weight and hold its shape), but also shares some properties of liquids, such as shape conformity to something applying pressure to it, or the ability to flow under pressure.
- the one or more absorbable polymers optionally comprise carboxylic end-groups formed by any known technique in the art, such as, for example, end-group succinylation and end-group acetylation.
- This facilitates ionically binding a biologically active agent or drug to the absorbable polymer such that the drug release can be modulated.
- the biologically active agent or drug is preferably present on the absorbable polymer in an insoluble form, such as, (1) a microparticulate dispersion, (2) a surface-deposited coating onto an absorbable microporous microparticles, and/or (3) ionically bound molecules onto the surfaces of absorbable microporous microparticles.
- the one or more absorbable polymers comprise a segmented, aliphatic polyurethane comprising polyoxyalkylene glycol chains covalently linked to polyester or polyester-carbonate chain segments, interlinked with aliphatic urethane segments.
- the polyoxyalkylene glycol chains comprise at least one type of oxyalkylene sequences selected from the group represented by oxyethylene, oxypropylene, oxytrimethylene, and oxytetramethylene repeat units.
- the polyoxyalkylene glycol chain has an average molecular weight of 200-1200 dalton.
- the polyoxyalkylene glycol chain is PEG 200, PEG 300, PEG 400, PEG 500, PEG 600, PEG 700, PEG 800, PEG 900, PEG 1000, and derivatives thereof.
- the polyester or polyester-carbonate chain segments are derived from at least one cyclic monomer selected from the group represented by ⁇ -caprolactone, trimethylene carbonate, p-dioxanone, 1,5-dioxepan-2-one, l-lactide, dl-lactide, glycolide, morpholinedione, and combinations thereof.
- the aliphatic urethane segments are derived from at least one diisocyanate selected from the group consisting of hexamethylene diisocyanate, lysine-derived diisocyanate, and cyclohexane bis (methylene isocyanate).
- the segmented, aliphatic polyurethane has an ether/ester mass ratios of 20-49/80-51, preferably 25-40/75-55 and, most preferably 30-40/70-60. In other embodiments, the segmented, aliphatic polyurethane has a prepolymer/diisocyante mass ratio in the range of 1:0.5 to 1:1.4. In one embodiment, the segmented, aliphatic polyurethane has a prepolymer/diisocyante mass ratio of 1:0.66, 1:0.8 or 1:1.2.
- the one or more absorbable polymers comprise a relatively slow-absorbing, segmented polyether-carbonate-urethanes (PECU), which possesses one or more of the following features: (a) exhibits ⁇ 20 percent or no solubility in water; (b) is made to be liquids at about 50° C.; (c) has a weight average molecular weight exceeding 10 kDa; (d) swells in an aqueous environment leading to an increase of volume of at least 3 percent, and (e) is miscible in solvents such as NMP, polyethylene glycol or DMSO, to facilitate their use as injectable formulations that undergo gel-formation when introduced to aqueous biological sites.
- PECU segmented polyether-carbonate-urethanes
- the one or more absorbable polymers comprise relatively fast-absorbing segmented aliphatic polyether-ester urethanes (PEEU) and polyether-carbonate-ester urethanes (PECEU).
- PEEU polyether-ester urethanes
- PECEU polyether-carbonate-ester urethanes
- the relatively fast-absorbing segmented aliphatic PEEU and PECEU possess one or more of the following features: (a) exhibit limited ( ⁇ 20 percent) or no solubility in water; (b) are made to be liquids at about 50° C.; (c) have a weight average molecular weight exceeding 10 kDa; (d) swell in an aqueous environment leading to an increase of volume of at least 3 percent; and (e) are miscible in a solvent such as NMP, polyethylene glycol or DMSO, to facilitate their use as injectable formulations that undergo gel-formation when introduced to aqueous biological sites.
- a solvent such as NMP, polyethylene
- the one or more absorbable polymers comprise segmented, aliphatic polyether-ester urethanes (APEEU) and polyether-ester-carbonate urethanes (APEECU).
- APEEUs and APEECUs comprise polyoxyalkylene chains (such as those derived from polyethylene glycol and block or random copolymers of ethylene oxide and propylene oxide) covalently linked to polyester or polyester-carbonate segments (derived from at least one monomer selected from the group represented by trimethylene carbonate, c-caprolactone, lactide, glycolide, p-dioxanone, 1,5-dioxepan-2-one, and a morpholinedione) and interlinked with aliphatic urethane segments derived from 1,6 hexamethylene-, 1-4 cyclohexane-, cyclohexane-bis-methylene-, 1,8 octamethylene- or lysine-derived diisocyan
- the absorbable polymers comprise absorbable polyester copolymers or mixtures thereof.
- Suitable absorbable polyester copolymers include, but are not limited to, lactide/glycolide copolymers, caprolactone/glycolide copolymers, lactide/trimethylene carbonate copolymers, lactide/glycolide/caprolactone tripolymers, lactide/glycolide/trimethylene carbonate tripolymers, lactide/caprolactone/trimethylene carbonate tripolymers, glycolide/caprolactone/trimethylene carbonate tripolymers, and lactide/glycolide/caprolactone/trimethylene carbonate terpolymers.
- the polyester copolymer comprise a lactide/glycolide copolymer with a lactide/glycolide mole ratio of 60-90/40-10.
- the gel-forming polymer is dissolved in a solvent to form an injectable liquid formulation.
- Suitable solvents include, but are not limited to, NMP, polyethylene glycols such as PEG 400 and PEG 200, DMSO, methyl acetate, ethyl acetate, ethanol, and caprolactone monomer.
- the polymer-to-solvent ratio can be modulated in concert with the bioactive agent solubility, its intended release site, and preferred gelation rate and release rate.
- the polymer-to-solvent (w/w) ratio is in the range of about 5:95 to 55:45, preferably in the range of about 20:80 to 50:50 w/w.
- the solvent comprises NMP and the polymer-to-solvent (w/w) ratio is in the range of 10:90 to 50:50, 10:90 to 20:80, or 15:85 to 30:70.
- the solvent comprises PEG and the polymer-to-solvent (w/w) ratio is in the range of 50:50 to 70:30.
- the solvent comprises methyl acetate and/or ethyl acetate, and the polymer-to-solvent (w/w) ratio is in the range of 10:90 to 50:50.
- the solvent comprises caprolactone monomer and the polymer-to-solvent (w/w) ratio is in the range of 40:60 to 60:40.
- the solvent comprises DMSO and the polymer-to-solvent (w/w) ratio is in the range of 70:30 to 90:10.
- the injectable gel-forming composition may be used as vehicles for the controlled release of one or more bioactive agents.
- bioactive agents includes, but are not limited to, antifungal agents, antibacterial agents and antibiotics, anti-inflammatory agents, immunosuppressive agents, immunostimulatory agents, antiseptics, anesthetics, nutritional agents, antioxidants, lipopolysaccharide complexing agents, peroxides, cell/tissue growth factors, antineoplastic and anticancer agents.
- antifungal agents include, but are not limited to, polyene antifungals, azole antifungal drugs, and Echinocandins.
- antibacterial agents and antibiotics include, but are not limited to, erythromycin, penicillins, cephalosporins, doxycycline, gentamicin, vancomycin, tobramycin, clindamycin, and mitomycin.
- anti-inflammatory agents include, but are not limited to, non-steroidal anti-inflammatory drugs such as ketorolac, naproxen, diclofenac sodium and fluribiprofen.
- immunosuppressive agents include, but are not limited to, glucocorticoids, alkylating agents, antimetabolites, and drugs acting on immunophilins such as ciclosporin and tacrolimus.
- immunostimulatory agents include, but are not limited to, antibodies, TNF ⁇ , VEGF, interleukins, interferon, cytokines, toll-like receptor (TLR) agonists, cytokine receptor agonist, CD40 agonist, Fc receptor agonist, CpG-containing immunostimulatory nucleic acid, complement receptor agonist, or an adjuvant.
- TLR toll-like receptor
- antiseptics include, but are not limited to, chlorhexidine and tibezonium iodide.
- anesthetic examples include, but are not limited to, lidocaine, mepivacaine, pyrrocaine, bupivacaine, prilocaine, and etidocaine.
- antioxidants include, but are not limited to, antioxidant vitamins, carotenoids, and flavonoids.
- lipopolysaccharide complexing agents examples include, but are not limited to, polymyxin.
- peroxides examples include, but are not limited to, benzoyl peroxide and hydrogen peroxide.
- cell growth promoting factors include, but are not limited to, epidermal growth factors, human platelet derived TGF- ⁇ , endothelial cell growth factors, thymocyte-activating factors, platelet derived growth factors, fibroblast growth factor, fibronectin or laminin.
- antineoplastic/anti-cancer agents include, but are not limited to, paclitaxel, carboplatin, miconazole, leflunamide, and ciprofloxacin.
- agents/drugs in the same delivery system i.e., the in situ gel-forming system of the present invention
- an antibacterial and an anti-inflammatory agent may be combined in a single copolymer to provide combined effectiveness.
- the in situ gel-forming composition further comprises a sclerosant for the treatment of varicose vein.
- the sclerosant comprises polidocanol, sodium tetradecyl sulfate, or both.
- the in situ gel-forming composition comprises polidocanol in the amount of from 0.2% to 5.0% (w/w), 0.2% to 1.0% (w/w), 0.5% to 1.5% (w/w), 0.5% to 2.5% (w/w), 1.0% to 2.0% (w/w), 2.0% to 3.0% (w/w), 3.0% to 4.0% (w/w) and 4.0% to 5.0% (w/w).
- the composition further comprises a vasoconstrictor.
- vasoconstrictor examples include, but are not limited to, 3-(4,5-dihydro-1H-imidazol-2-ylmethyl)-2,4-dimethyl-6-tert-butyl- phenol (hereinafter, “oxymetazoline”), epinephrine, norepinephrine, levophed, or dopamine.
- oxymetazoline 3-(4,5-dihydro-1H-imidazol-2-ylmethyl)-2,4-dimethyl-6-tert-butyl- phenol
- epinephrine norepinephrine
- levophed levophed
- dopamine dopamine.
- the vasoconstrictor is oxymetazoline.
- the vasoconstrictor is a long acting vasoconstrictor that is effective for at least 8 hours, 10 hours, or 12 hours after administration.
- the composition comprises both a sclerosant and a vasoconstrictor.
- the in situ gel-forming composition further comprises a solid absorbable carrier to carry the one or more bioactive agent.
- the bioactive agent/drug can be deposited, wholly or in part, on the solid absorbable carrier.
- the solid absorbable carrier is an absorbable, microporous low molecular weight polyester which is highly crystalline and practically insoluble in the absorbable polymer of the in situ gel-forming composition.
- the in situ gel-forming composition comprises the solid carrier and the absorbable polymer at a weight ratio of 20/80, with the carrier being a low molecular, microporous polyglycolide with 0.70 to 0.95 solid fraction, average particle size of 0.5-200 micron and carboxyl-bearing chains.
- High concentration of carboxylic groups on the chains can be achieved by preparing the solid carrier using di- or poly-carboxylic acid as initiators.
- the deposited agent on the solid carrier can exhibit a release profile which can be multiphasic, including: (a) simple, fast diffusion of soluble free drug through the in situ hydrogel; (b) slow diffusion of soluble free drug housed in the pores of the solid carrier; and, (c) drug release at the surface (both exterior and pore) of the solid carrier or the chain ends of carboxylated A chains by ion exchange of ionically bound molecules.
- a release profile which can be multiphasic, including: (a) simple, fast diffusion of soluble free drug through the in situ hydrogel; (b) slow diffusion of soluble free drug housed in the pores of the solid carrier; and, (c) drug release at the surface (both exterior and pore) of the solid carrier or the chain ends of carboxylated A chains by ion exchange of ionically bound molecules.
- the absorbable carrier comprises microspheres or nanoparticles, such as biodegradable polylactic acid (PLA) microspheres, for controlled drug delivery.
- biodegradable polymers include, but are not limited to, polyglycolic acid (PGA), lactic acid-glycolic acid copolymer (PLGA), poly- ⁇ -caprolactone (PCL), lactic acid- ⁇ -caprolactone copolymer (PLCL), polydioxanone (PDO), polytrimethylene carbonate (PTMC), poly(amino acid), polyanhydride, polyorthoester and copolymers thereof.
- the microspheres or nanoparticles can be prepared by polymerizing the monomeric mixture under polymerization conditions in the presence of one or more bioactive agents such that the bioactive agent(s) is entrapped in the polymerization product.
- the injectable gel-forming composition may further comprise other components such as stabilizers against premature polymerization (e.g., hydroxyquinone or butylated hydroxyanisole) and buffering agents to maintain desired pH.
- stabilizers against premature polymerization e.g., hydroxyquinone or butylated hydroxyanisole
- buffering agents to maintain desired pH.
- the in situ gel-forming composition of the present invention is in a liquid or semi-liquid form at 37° C., preferably, at 25° C. or room temperature. In certain embodiments, the in situ gel-forming composition is in a liquid at room temperature that can be easily administered through a syringe needle or a catheter that is standard/typical for current sclerotherapy procedures.
- in situ gel-forming composition is an injectable liquid at room temperature.
- injectable liquid refers to a liquid that can be administered into a recipient through an injection device commonly used in medical art, such as needles, syringes and catheters.
- the injectable liquid has viscosity that allows the liquid to be administered through a 10 gauge needle without excessive force. In other embodiments, the injectable liquid has a viscosity that allows the liquid to be administered through a 30 gauge needle without excessive force.
- the injectable liquid has a viscosity in the range of about 1 cP (centiPoise) to about 1000 cP, about 1 cP to about 300 cP, about 1 cP to about 100 cP, about 1 cP to about 30 cP, about 10 cP to about 300 cP, about 10 cP to about 100 cP, about 30 cP to about 300 cP and about 30 cP to about 100 cP.
- centiPoise centiPoise
- the in situ gel-forming composition of the present invention is formulated for rapid gelation at the treatment site.
- the in situ gel-forming composition is capable of forming a hydrogel or semi-solid mass at a treatment site in a period of 1-120 seconds, 1-5 minutes, 5-15 minutes, or 15-30 minutes.
- the in situ gel-forming composition forms a hydrogel or semi-solid mass at a treatment site within 15 seconds, 30 seconds, 60 seconds or 90 seconds.
- the gelation time is determined visually by observing the period between injection and formation of the solid mass. Upon exposure to an aqueous environment, the diluent/solvent portion of the solution precipitates leaving the hardened polymeric hydrogel or semi-solid mass that can be visually detected.
- the rate of gelation may be adjusted by adding one or more gelation accelerators to the in situ gel-forming composition.
- Gelation accelerators include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen and antifibrinolytics.
- the in situ gel-forming composition of the present invention is formulated for slow degradation at the treatment site. In some embodiments, the in situ gel-forming composition of the present invention is formulated for a degradation time of 1-3 weeks, 1-3 months, 3-6 months, or 6-12 months through utilization of different polymer configurations.
- the in situ gel-forming composition can be formulated for various vascular applications.
- the in situ gel-forming composition comprises a sclerosant and is formulated for sclerotherapy of venous obliteration.
- the in situ gel-forming composition comprises collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics and is formulated for use in embolization procedures to control bleeding.
- the in situ gel-forming composition comprises a chemotherapy agent and is formulated for chemo-embolization procedures for localized cancer therapy.
- the in situ gel-forming composition comprises paclitaxel, sirolimus zotarolimus or rapamycin and is formulated for localized release of drug to minimize re-stenosis after angioplasty.
- the in situ gel-forming composition comprises one or more bioactive agents suitable for endovascular repair of aneurysms to prevent type I and type II leaks, and is formulated as an adjunct to endovascular repair of aneurysms to prevent type I and type II leaks.
- bioactive agents suitable for endovascular repair of aneurysms include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics.
- Another aspect of the present invention relates to methods for treating various diseases and conditions using the in situ gel-forming composition of the present invention.
- the method comprises the steps of injecting into a subject in need of such treatment an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as N-methyl-2-pyrrolidone (NMP), polyethylene glycol or DMSO, and optionally one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- NMP N-methyl-2-pyrrolidone
- DMSO polyethylene glycol
- bioactive agents optionally one or more bioactive agents
- the method relates to treatment of a vascular disease or condition.
- vascular diseases and conditions include, but are not limited to, coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, as well as vascular conditions caused by medical procedures such as angioplasty and stenting.
- the method relates to treatment for peripheral venous diseases such as spider veins, spider telangiectasias, reticular veins, reticular varicosities, venulectasias, tributary varicose veins, bulging varicose veins, vein tributaries, varicose saphenous veins, or combinations thereof.
- the treatment prevents or ameliorates symptoms associated with varicose vein disease, such as edema, skin changes, ulcers, sequelae of varicose veins, bruising, staining, thrombus formation, trapped blood, blood clots, or combinations thereof.
- symptoms are prevented or ameliorated without use of compression stockings.
- the method relates to treatment of venous malformations, arteriovenous malformations, Klippel-Trenaunay Syndrome, aneurysms, endoleaks after aneurysm repair, cerebral aneurysms, tumors, acute bleeding (from trauma), cancer, or combinations thereof.
- the method relates to treatment of cancer or tumor using an in situ gel-forming composition that comprises a chemotherapy agent.
- cancer examples include, but are not limited to, lung cancer, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, brain, and associated metastases.
- lung cancer cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney
- the present invention relates to a method for controlling bleeding during an embolization procedure.
- the method comprises the step of administering at a site of embolization, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- Suitable bioactive agents include, but are not limited to, collagen, thrombin, activated platelets, chitosan, antifibrinolytics, vitamin K, fibrinogen, and blood coagulation factors.
- the present invention relates to a method for minimizing re-stenosis following angioplasty.
- the method comprises the step of administering at a site of angioplasty, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as N-methyl-2-pyrrolidone (NMP), polyethylene glycol or DMSO, and one or more bioactive agents, wherein said in situ gel-foaming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- Suitable bioactive agents include, but are not limited to, paclitaxel, sirolimus zotarolimus and rapamycin.
- the present invention relates to a method for endovascular repair of aneurysms to prevent type I and type II leaks.
- the method comprises the step of administering at a site of aneurysm, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and one or more bioactive agents suitable for endovascular repair of aneurysms, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- Bioactive agents suitable for endovascular repair of aneurysms include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics.
- Another aspect of the present invention relates to a method for drug delivery.
- the method comprises the step of administering into a subject, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and biodegradable microspheres or nanoparticles comprising one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- kits comprising the in situ gel-forming composition of the present invention and instructions about how to use the in situ gel-forming composition.
- the kit comprises the in situ gel-forming composition packaged in a pre-filled syringe or vial.
- dl-lactide and glycolide were added and the contents were heated to 135° C. Conditions were maintained until practically complete monomer conversion was achieved.
- the magnetic stir bar was removed and replaced with a stainless steel mechanical stirrer. The polymer was cooled to room temperature.
- 1,6-diisocyanatohexane was added and the contents were stirred until complete mixing was achieved.
- the contents were stirred and heated to 100° C. Conditions were maintained for 1.25 hours.
- the polymer was allowed to cool to room temperature and then dissolved in an equal part of tetrahydrofuran.
- the polymer solution was treated with 5 mL of 2-propanol at 55° C., then precipitated in cold water.
- the purified polymer was dried to a constant weight at 55° C. on a rotary evaporator.
- the purified polymer was characterized for molecular weight by GPC using tetrahydrofuran as the mobile phase. Identity and composition were confirmed by FT-IR and NMR, respectively.
- Example 1 An aliquot of the product of Example 1 (4.5 g) was heated to 50° C. then mixed thoroughly at that temperature with polyethylene glycol (PEG-400) having a molecular weight of 400 Da (4.4 g). The mixed polymers were allowed to reach room temperature and then thoroughly mixed with a second aliquot of PEG-400 (1.1 g) premixed with the drug solution in ethanol. The final formulation was dried under reduced pressure to distill the ethanol prior to conducting the drug release study. The release profile of the specific drug in the respective formulation was conducted using buffered solution and HPLC.
- FIG. 1 shows exemplary release curves of doxycycline from several test formulations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Surgery (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Diabetes (AREA)
- Medicinal Preparation (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
An in situ gel-forming composition is disclosed. The in situ gel-forming composition comprises one or more absorbable polymers, solvents such as N-methyl-2-pyrrolidone, polyethylene glycol or DMSO, and optionally one or more bioactive agent. The composition forms a hydrogel or semi-solid mass on contact with an aqueous environment. The method of using in situ gel-forming composition for various applications is also disclosed.
Description
- This application relates generally to an absorbable gel system and, in particular, to an in situ gel-forming system for various applications, such as vascular applications.
- Vascular disease, such as coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, as well as vascular conditions caused by medical procedures such as angioplasty and stenting, often require localized treatment. In situ gel-forming systems provide an ideal platform for the treatment of vascular diseases and conditions. Biodegradable polymers, such as polyester copolymers, have been used in gel-forming systems since they present tunable chemical properties, excellent mechanical properties, and good blood compatibility. These polymer compositions, however, are often too viscose to be delivered effectively through a needle or catheter and, therefore, have limited use in vascular applications where delivery through a needle or a catheter is required. Accordingly, there exists a need for an in situ gel-forming system that can be easily delivered through small-gauge needles or catheters.
- One aspect of the present invention relates to an in situ gel-forming composition. The composition comprises one or more absorbable polymers and a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- Another aspect of the present invention relates to a method for treating a vascular disease or condition in a subject. The method comprises injecting into the subject, at a treatment site, an effective amount of an in situ gel-forming composition. The composition comprises one or more absorbable polymers and a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment. In certain embodiments, the vascular disease is a peripheral venous disease selected from spider veins, spider telangiectasias, reticular veins, reticular varicosities, venulectasias, tributary varicose veins, bulging varicose veins, vein tributaries, varicose saphenous veins, or combinations thereof. In other embodiments, the vascular disease or condition is a disease or condition selected from the group consisting of coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, and vascular conditions caused by angioplasty or stenting.
- Another aspect of the present invention relates to method for treating a cancer or tumor in a subject. The method comprises injecting into the subject an effective amount of an in situ gel-forming composition. The composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more chemotherapy agents, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- Another aspect of the present invention relates to method for controlling bleeding in a subject during an embolization procedure. The method comprises injecting into the subject, at a treatment site, an effective amount of an in situ gel-forming composition. The composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more bioactive agents selected from the group consisting of collagen, thrombin, activated platelets, chitosan, antifibrinolytics, vitamin K, fibrinogen, and blood coagulation factors, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- Another aspect of the present invention relates to a method for minimizing restenosis following angioplasty. The method comprises administering at a site of angioplasty, an effective amount of an in situ gel-forming composition. The composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more bioactive agents that inhibits neoplastic growth, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- Another aspect of the present invention relates to a method for endovascular repair of aneurysms to prevent type I and type II leaks. The method comprises administering at a site of aneurysm, an effective amount of an in situ gel-forming composition. The composition comprises one or more absorbable polymers, a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, and one or more agents suitable for endovascular repair of aneurysms, wherein the composition has a viscosity in the range of about 1 cP to about 100 cP and forms a hydrogel or semi-solid mass on contact with an aqueous environment.
- Another aspect of the present invention relates to a kit comprising the in situ gel-forming composition of the present invention and instructions about how to use the in situ gel-forming composition. In one embodiment, the kit comprises the in situ gel-forming composition packaged in a pre-filled syringe or vial.
-
FIG. 1 is a diagram showing release curves of several bioactive formulations using polyurethane compositions. - The following detailed description is presented to enable any person skilled in the art to make and use the invention. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required to practice the invention. Descriptions of specific applications are provided only as representative examples. Various modifications to the preferred embodiments will be readily apparent to one skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the scope of the invention.
- In case of conflict, the present specification, including definitions, will control. Following long-standing patent law convention, the terms “a”, “an” and “the” mean “one or more” when used in this application, including in the claims.
- The term “effective amount” denotes the amount of a medicament or of a pharmaceutical active ingredient which causes a biological or medical response in a tissue, system, animal or human which is sought or desired, for example, by a researcher or physician. In addition, the term “effective amount” denotes an amount which, compared with a corresponding subject who has not taken this amount, has the following consequence: improved treatment, healing, prevention or elimination of a disease, condition, syndrome, disease state, complaint, disorder or prevention of side effects or also the reduction in the progress of a disease, complaint or disorder. The term “effective amount” also encompasses the amounts which are effective for increasing normal physiological function.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the presently disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently disclosed subject matter, representative methods, devices, and materials are now described.
- One aspect of the present invention relates to an injectable gel-forming composition that comprises one or more absorbable polymers, a solvent such as NMP, polyethylene glycol, DMSO, and optionally one or more bioactive agents. The composition is injectable and forms a hydrogel or semi-solid mass on contact with an aqueous environment at the treatment site. The composition can be used for the treatment of (1) various vascular diseases, such as coronary and peripheral artery diseases, aneurysms and peripheral venous diseases, (2) vascular conditions caused by medical procedures, such as angioplasty and stenting, and (3) other applications such as localized cancer treatment.
- The one or more absorbable polymers can be any absorbable polyester/polyether copolymer or mixture of polyester/polyether copolymers that is miscible with a solvent such as NMP, polyethylene glycol or DMSO and is capable of forming a hydrogel or semi-solid mass on contact with an aqueous environment.
- As used herein, the term “absorbable polymer” or “biodegradable polymer” refers to a polyester copolymer that can be broken down by either chemical or physical process, upon interaction with the physiological environment at the implantation site, and erodes or dissolves within a period of time, e.g., within days, weeks or months. An absorbable or biodegradable polymer serves a temporary function in the body, such as closing a varicose vein, supporting or seal a lumen or delivering a drug, and is then degraded or broken into components that are metabolizable or excretable.
- The one or more absorbable polymers can be in linear or branched form. In certain embodiments, the one or more absorbable polymers comprise a molecular chain having a hydrophilic block, designated “Y” herein, and a relatively hydrophobic polyester block, designated “X” herein. Hydrophobic block X and hydrophilic block Y more preferably comprises a molecular structure having the following formula: X-Y-X or (X-Y)n, and branched structures thereof. Most preferably, hydrophobic block X comprises a polyester formed by grafting a glycolide, lactide, ε-caprolactone, p-dioxanone, trimethylene carbonate or combinations thereof, onto the hydroxylic or amino groups of a hydrophilic polymer precursor i.e., Y; hydrophilic block Y comprises a polyoxyethylene, poly(oxyethylene-b-oxypropylene), polypeptide polyalkylene oxamate, a polysaccharide, and derivatives thereof; or a liquid, high molecular weight polyether glycol interlinked with an oxalate or succinate functionalities in linear or branched form.
- The term “Hydrophobic Block(s)” as used herein, refers to absorbable polyester chain block(s) or segment(s) of variable length which, is present in an isolated form, will produce practically amorphous (with less than 5% crystallinity) or totally amorphous material having a Tg of less than 25° C., and preferably, is a viscous liquid at room temperature. Hydrophobic block(s) X comprises copolymeric segments of known chemistries in the art, such as, those comprised from cyclic lactones (e.g., glycolide, l-lactide, dl-lactide, ε-caprolactone, p-dioxanone, trimethylene carbonate), polyalkylene oxalate, and the like. More preferably, hydrophobic segment(s) or block(s) X comprises lactide/glycolide copolymer (with 51 to 80% 1- or dl-lactide).
- The term “Hydrophilic Block(s)” as used herein, refers to polymeric blocks or segments which, if present in an isolated form, will be water soluble. Hydrophilic block(s) or segment(s) Y comprises poly(oxyethylene), with or without a minor component of a higher homolog, such as, poly(oxypropylene)-polypeptide, polyalkylene oxamate, a polysaccharide, or derivatives thereof. The length of the hydrophilic block and its weight fractions can be varied to modulate the rate of gel formation, its modulus, its water content, diffusivity of bioactive drug through it, its adhesiveness to surrounding tissue, and bioabsorbability.
- The term “hydrogel” or “hydrogel mass” as used herein, refers to materials which have a high tendency for water absorption and/or retention, and maintain mechanical integrity through physical crosslinks which are reversible in nature.
- The term “semi-solid” or “semi-solid mass” as used herein, refers to a material which is similar to a solid in some respects (e.g., it can support its own weight and hold its shape), but also shares some properties of liquids, such as shape conformity to something applying pressure to it, or the ability to flow under pressure.
- In other embodiments, the one or more absorbable polymers optionally comprise carboxylic end-groups formed by any known technique in the art, such as, for example, end-group succinylation and end-group acetylation. This facilitates ionically binding a biologically active agent or drug to the absorbable polymer such that the drug release can be modulated. The biologically active agent or drug is preferably present on the absorbable polymer in an insoluble form, such as, (1) a microparticulate dispersion, (2) a surface-deposited coating onto an absorbable microporous microparticles, and/or (3) ionically bound molecules onto the surfaces of absorbable microporous microparticles.
- In certain other embodiments, the one or more absorbable polymers comprise a segmented, aliphatic polyurethane comprising polyoxyalkylene glycol chains covalently linked to polyester or polyester-carbonate chain segments, interlinked with aliphatic urethane segments. The polyoxyalkylene glycol chains comprise at least one type of oxyalkylene sequences selected from the group represented by oxyethylene, oxypropylene, oxytrimethylene, and oxytetramethylene repeat units. In certain embodiments, the polyoxyalkylene glycol chain has an average molecular weight of 200-1200 dalton. In other embodiments, the polyoxyalkylene glycol chain is PEG 200, PEG 300, PEG 400, PEG 500, PEG 600, PEG 700, PEG 800, PEG 900, PEG 1000, and derivatives thereof. The polyester or polyester-carbonate chain segments are derived from at least one cyclic monomer selected from the group represented by ε-caprolactone, trimethylene carbonate, p-dioxanone, 1,5-dioxepan-2-one, l-lactide, dl-lactide, glycolide, morpholinedione, and combinations thereof. The aliphatic urethane segments are derived from at least one diisocyanate selected from the group consisting of hexamethylene diisocyanate, lysine-derived diisocyanate, and cyclohexane bis (methylene isocyanate).
- In certain embodiments, the segmented, aliphatic polyurethane has an ether/ester mass ratios of 20-49/80-51, preferably 25-40/75-55 and, most preferably 30-40/70-60. In other embodiments, the segmented, aliphatic polyurethane has a prepolymer/diisocyante mass ratio in the range of 1:0.5 to 1:1.4. In one embodiment, the segmented, aliphatic polyurethane has a prepolymer/diisocyante mass ratio of 1:0.66, 1:0.8 or 1:1.2.
- In other embodiments, the one or more absorbable polymers comprise a relatively slow-absorbing, segmented polyether-carbonate-urethanes (PECU), which possesses one or more of the following features: (a) exhibits <20 percent or no solubility in water; (b) is made to be liquids at about 50° C.; (c) has a weight average molecular weight exceeding 10 kDa; (d) swells in an aqueous environment leading to an increase of volume of at least 3 percent, and (e) is miscible in solvents such as NMP, polyethylene glycol or DMSO, to facilitate their use as injectable formulations that undergo gel-formation when introduced to aqueous biological sites.
- In other embodiments, the one or more absorbable polymers comprise relatively fast-absorbing segmented aliphatic polyether-ester urethanes (PEEU) and polyether-carbonate-ester urethanes (PECEU). In one embodiment, the relatively fast-absorbing segmented aliphatic PEEU and PECEU possess one or more of the following features: (a) exhibit limited (<20 percent) or no solubility in water; (b) are made to be liquids at about 50° C.; (c) have a weight average molecular weight exceeding 10 kDa; (d) swell in an aqueous environment leading to an increase of volume of at least 3 percent; and (e) are miscible in a solvent such as NMP, polyethylene glycol or DMSO, to facilitate their use as injectable formulations that undergo gel-formation when introduced to aqueous biological sites.
- In yet other embodiments, the one or more absorbable polymers comprise segmented, aliphatic polyether-ester urethanes (APEEU) and polyether-ester-carbonate urethanes (APEECU). Typical APEEUs and APEECUs comprise polyoxyalkylene chains (such as those derived from polyethylene glycol and block or random copolymers of ethylene oxide and propylene oxide) covalently linked to polyester or polyester-carbonate segments (derived from at least one monomer selected from the group represented by trimethylene carbonate, c-caprolactone, lactide, glycolide, p-dioxanone, 1,5-dioxepan-2-one, and a morpholinedione) and interlinked with aliphatic urethane segments derived from 1,6 hexamethylene-, 1-4 cyclohexane-, cyclohexane-bis-methylene-, 1,8 octamethylene- or lysine-derived diisocyanate.
- In other embodiments, the absorbable polymers comprise absorbable polyester copolymers or mixtures thereof. Suitable absorbable polyester copolymers include, but are not limited to, lactide/glycolide copolymers, caprolactone/glycolide copolymers, lactide/trimethylene carbonate copolymers, lactide/glycolide/caprolactone tripolymers, lactide/glycolide/trimethylene carbonate tripolymers, lactide/caprolactone/trimethylene carbonate tripolymers, glycolide/caprolactone/trimethylene carbonate tripolymers, and lactide/glycolide/caprolactone/trimethylene carbonate terpolymers.
- In certain embodiments, the polyester copolymer comprise a lactide/glycolide copolymer with a lactide/glycolide mole ratio of 60-90/40-10.
- The gel-forming polymer is dissolved in a solvent to form an injectable liquid formulation. Suitable solvents include, but are not limited to, NMP, polyethylene glycols such as PEG 400 and PEG 200, DMSO, methyl acetate, ethyl acetate, ethanol, and caprolactone monomer.
- The polymer-to-solvent ratio can be modulated in concert with the bioactive agent solubility, its intended release site, and preferred gelation rate and release rate. In one embodiment, the polymer-to-solvent (w/w) ratio is in the range of about 5:95 to 55:45, preferably in the range of about 20:80 to 50:50 w/w. In certain embodiments, the solvent comprises NMP and the polymer-to-solvent (w/w) ratio is in the range of 10:90 to 50:50, 10:90 to 20:80, or 15:85 to 30:70. In other embodiments, the solvent comprises PEG and the polymer-to-solvent (w/w) ratio is in the range of 50:50 to 70:30. In other embodiments, the solvent comprises methyl acetate and/or ethyl acetate, and the polymer-to-solvent (w/w) ratio is in the range of 10:90 to 50:50. In other embodiments, the solvent comprises caprolactone monomer and the polymer-to-solvent (w/w) ratio is in the range of 40:60 to 60:40. In yet other embodiments, the solvent comprises DMSO and the polymer-to-solvent (w/w) ratio is in the range of 70:30 to 90:10.
- The injectable gel-forming composition may be used as vehicles for the controlled release of one or more bioactive agents. Examples of such bioactive agents includes, but are not limited to, antifungal agents, antibacterial agents and antibiotics, anti-inflammatory agents, immunosuppressive agents, immunostimulatory agents, antiseptics, anesthetics, nutritional agents, antioxidants, lipopolysaccharide complexing agents, peroxides, cell/tissue growth factors, antineoplastic and anticancer agents.
- Examples of antifungal agents include, but are not limited to, polyene antifungals, azole antifungal drugs, and Echinocandins.
- Examples of antibacterial agents and antibiotics include, but are not limited to, erythromycin, penicillins, cephalosporins, doxycycline, gentamicin, vancomycin, tobramycin, clindamycin, and mitomycin.
- Examples of anti-inflammatory agents include, but are not limited to, non-steroidal anti-inflammatory drugs such as ketorolac, naproxen, diclofenac sodium and fluribiprofen.
- Examples of immunosuppressive agents include, but are not limited to, glucocorticoids, alkylating agents, antimetabolites, and drugs acting on immunophilins such as ciclosporin and tacrolimus.
- Examples of immunostimulatory agents include, but are not limited to, antibodies, TNFα, VEGF, interleukins, interferon, cytokines, toll-like receptor (TLR) agonists, cytokine receptor agonist, CD40 agonist, Fc receptor agonist, CpG-containing immunostimulatory nucleic acid, complement receptor agonist, or an adjuvant.
- Examples of antiseptics include, but are not limited to, chlorhexidine and tibezonium iodide.
- Examples of anesthetic include, but are not limited to, lidocaine, mepivacaine, pyrrocaine, bupivacaine, prilocaine, and etidocaine.
- Examples of antioxidants include, but are not limited to, antioxidant vitamins, carotenoids, and flavonoids.
- Examples of lipopolysaccharide complexing agents include, but are not limited to, polymyxin.
- Examples of peroxides, include, but are not limited to, benzoyl peroxide and hydrogen peroxide.
- Examples of cell growth promoting factors include, but are not limited to, epidermal growth factors, human platelet derived TGF-β, endothelial cell growth factors, thymocyte-activating factors, platelet derived growth factors, fibroblast growth factor, fibronectin or laminin.
- Examples of antineoplastic/anti-cancer agents include, but are not limited to, paclitaxel, carboplatin, miconazole, leflunamide, and ciprofloxacin.
- It is recognized that in certain forms of therapy, combinations of agents/drugs in the same delivery system i.e., the in situ gel-forming system of the present invention, can be useful in order to obtain an optimal effect. Thus, for example, an antibacterial and an anti-inflammatory agent may be combined in a single copolymer to provide combined effectiveness.
- In certain embodiments, the in situ gel-forming composition further comprises a sclerosant for the treatment of varicose vein. In some embodiments, the sclerosant comprises polidocanol, sodium tetradecyl sulfate, or both. In other embodiments, the in situ gel-forming composition comprises polidocanol in the amount of from 0.2% to 5.0% (w/w), 0.2% to 1.0% (w/w), 0.5% to 1.5% (w/w), 0.5% to 2.5% (w/w), 1.0% to 2.0% (w/w), 2.0% to 3.0% (w/w), 3.0% to 4.0% (w/w) and 4.0% to 5.0% (w/w). In related embodiments, the composition further comprises a vasoconstrictor. Examples of vasoconstrictor include, but are not limited to, 3-(4,5-dihydro-1H-imidazol-2-ylmethyl)-2,4-dimethyl-6-tert-butyl- phenol (hereinafter, “oxymetazoline”), epinephrine, norepinephrine, levophed, or dopamine. In some embodiments, the vasoconstrictor is oxymetazoline. In other embodiments, the vasoconstrictor is a long acting vasoconstrictor that is effective for at least 8 hours, 10 hours, or 12 hours after administration. In yet other related embodiments, the composition comprises both a sclerosant and a vasoconstrictor.
- In some embodiments, the in situ gel-forming composition further comprises a solid absorbable carrier to carry the one or more bioactive agent. The bioactive agent/drug can be deposited, wholly or in part, on the solid absorbable carrier. In certain embodiments, the solid absorbable carrier is an absorbable, microporous low molecular weight polyester which is highly crystalline and practically insoluble in the absorbable polymer of the in situ gel-forming composition.
- In one embodiment, the in situ gel-forming composition comprises the solid carrier and the absorbable polymer at a weight ratio of 20/80, with the carrier being a low molecular, microporous polyglycolide with 0.70 to 0.95 solid fraction, average particle size of 0.5-200 micron and carboxyl-bearing chains. High concentration of carboxylic groups on the chains can be achieved by preparing the solid carrier using di- or poly-carboxylic acid as initiators. The deposited agent on the solid carrier can exhibit a release profile which can be multiphasic, including: (a) simple, fast diffusion of soluble free drug through the in situ hydrogel; (b) slow diffusion of soluble free drug housed in the pores of the solid carrier; and, (c) drug release at the surface (both exterior and pore) of the solid carrier or the chain ends of carboxylated A chains by ion exchange of ionically bound molecules. By varying the concentration of the solid carrier in the in situ gel-forming composition, the flow characteristics and release profile of the agent can be modulated.
- In a certain embodiment, the absorbable carrier comprises microspheres or nanoparticles, such as biodegradable polylactic acid (PLA) microspheres, for controlled drug delivery. Other suitable biodegradable polymers include, but are not limited to, polyglycolic acid (PGA), lactic acid-glycolic acid copolymer (PLGA), poly-ε-caprolactone (PCL), lactic acid-ε-caprolactone copolymer (PLCL), polydioxanone (PDO), polytrimethylene carbonate (PTMC), poly(amino acid), polyanhydride, polyorthoester and copolymers thereof. The microspheres or nanoparticles can be prepared by polymerizing the monomeric mixture under polymerization conditions in the presence of one or more bioactive agents such that the bioactive agent(s) is entrapped in the polymerization product.
- The injectable gel-forming composition may further comprise other components such as stabilizers against premature polymerization (e.g., hydroxyquinone or butylated hydroxyanisole) and buffering agents to maintain desired pH.
- In certain embodiments, the in situ gel-forming composition of the present invention is in a liquid or semi-liquid form at 37° C., preferably, at 25° C. or room temperature. In certain embodiments, the in situ gel-forming composition is in a liquid at room temperature that can be easily administered through a syringe needle or a catheter that is standard/typical for current sclerotherapy procedures.
- In some embodiments, in situ gel-forming composition is an injectable liquid at room temperature. As used hereinafter, the term “injectable liquid” refers to a liquid that can be administered into a recipient through an injection device commonly used in medical art, such as needles, syringes and catheters. In certain embodiments, the injectable liquid has viscosity that allows the liquid to be administered through a 10 gauge needle without excessive force. In other embodiments, the injectable liquid has a viscosity that allows the liquid to be administered through a 30 gauge needle without excessive force. In certain embodiments, the injectable liquid has a viscosity in the range of about 1 cP (centiPoise) to about 1000 cP, about 1 cP to about 300 cP, about 1 cP to about 100 cP, about 1 cP to about 30 cP, about 10 cP to about 300 cP, about 10 cP to about 100 cP, about 30 cP to about 300 cP and about 30 cP to about 100 cP.
- The in situ gel-forming composition of the present invention is formulated for rapid gelation at the treatment site. In certain embodiments, the in situ gel-forming composition is capable of forming a hydrogel or semi-solid mass at a treatment site in a period of 1-120 seconds, 1-5 minutes, 5-15 minutes, or 15-30 minutes. In certain embodiments, the in situ gel-forming composition forms a hydrogel or semi-solid mass at a treatment site within 15 seconds, 30 seconds, 60 seconds or 90 seconds. In certain embodiments, the gelation time is determined visually by observing the period between injection and formation of the solid mass. Upon exposure to an aqueous environment, the diluent/solvent portion of the solution precipitates leaving the hardened polymeric hydrogel or semi-solid mass that can be visually detected. The rate of gelation may be adjusted by adding one or more gelation accelerators to the in situ gel-forming composition. Compounds that may serve as gelation accelerators include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen and antifibrinolytics.
- In other embodiments, the in situ gel-forming composition of the present invention is formulated for slow degradation at the treatment site. In some embodiments, the in situ gel-forming composition of the present invention is formulated for a degradation time of 1-3 weeks, 1-3 months, 3-6 months, or 6-12 months through utilization of different polymer configurations.
- The in situ gel-forming composition can be formulated for various vascular applications. In some embodiments, the in situ gel-forming composition comprises a sclerosant and is formulated for sclerotherapy of venous obliteration. In other embodiments, the in situ gel-forming composition comprises collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics and is formulated for use in embolization procedures to control bleeding. In other embodiments, the in situ gel-forming composition comprises a chemotherapy agent and is formulated for chemo-embolization procedures for localized cancer therapy. In other embodiments, the in situ gel-forming composition comprises paclitaxel, sirolimus zotarolimus or rapamycin and is formulated for localized release of drug to minimize re-stenosis after angioplasty. In yet other embodiments, the in situ gel-forming composition comprises one or more bioactive agents suitable for endovascular repair of aneurysms to prevent type I and type II leaks, and is formulated as an adjunct to endovascular repair of aneurysms to prevent type I and type II leaks. Examples of bioactive agents suitable for endovascular repair of aneurysms include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics.
- Another aspect of the present invention relates to methods for treating various diseases and conditions using the in situ gel-forming composition of the present invention. The method comprises the steps of injecting into a subject in need of such treatment an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as N-methyl-2-pyrrolidone (NMP), polyethylene glycol or DMSO, and optionally one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- In some embodiments, the method relates to treatment of a vascular disease or condition. Examples of the vascular diseases and conditions include, but are not limited to, coronary and peripheral artery diseases, aneurysms, and peripheral venous diseases, as well as vascular conditions caused by medical procedures such as angioplasty and stenting. In another embodiment, the method relates to treatment for peripheral venous diseases such as spider veins, spider telangiectasias, reticular veins, reticular varicosities, venulectasias, tributary varicose veins, bulging varicose veins, vein tributaries, varicose saphenous veins, or combinations thereof. The treatment prevents or ameliorates symptoms associated with varicose vein disease, such as edema, skin changes, ulcers, sequelae of varicose veins, bruising, staining, thrombus formation, trapped blood, blood clots, or combinations thereof. Preferably, the symptoms are prevented or ameliorated without use of compression stockings.
- In other embodiments, the method relates to treatment of venous malformations, arteriovenous malformations, Klippel-Trenaunay Syndrome, aneurysms, endoleaks after aneurysm repair, cerebral aneurysms, tumors, acute bleeding (from trauma), cancer, or combinations thereof.
- In other embodiments, the method relates to treatment of cancer or tumor using an in situ gel-forming composition that comprises a chemotherapy agent.
- Examples of cancer include, but are not limited to, lung cancer, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, brain, and associated metastases.
- In other embodiments, the present invention relates to a method for controlling bleeding during an embolization procedure. The method comprises the step of administering at a site of embolization, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site. Suitable bioactive agents include, but are not limited to, collagen, thrombin, activated platelets, chitosan, antifibrinolytics, vitamin K, fibrinogen, and blood coagulation factors.
- In other embodiments, the present invention relates to a method for minimizing re-stenosis following angioplasty. The method comprises the step of administering at a site of angioplasty, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as N-methyl-2-pyrrolidone (NMP), polyethylene glycol or DMSO, and one or more bioactive agents, wherein said in situ gel-foaming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site. Suitable bioactive agents include, but are not limited to, paclitaxel, sirolimus zotarolimus and rapamycin.
- In yet other embodiments, the present invention relates to a method for endovascular repair of aneurysms to prevent type I and type II leaks. The method comprises the step of administering at a site of aneurysm, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and one or more bioactive agents suitable for endovascular repair of aneurysms, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site. Bioactive agents suitable for endovascular repair of aneurysms include, but are not limited to, collagen, thrombin, activated platelets, chitosan, fibrinogen or antifibrinolytics.
- Another aspect of the present invention relates to a method for drug delivery. The method comprises the step of administering into a subject, an effective amount of an in situ gel-forming composition comprising one or more absorbable polymers, a solvent such as NMP, polyethylene glycol or DMSO, and biodegradable microspheres or nanoparticles comprising one or more bioactive agents, wherein said in situ gel-forming composition forms a hydrogel or semi-solid mass on contact with an aqueous environment at a treatment site.
- Another embodiment of the present invention is directed to a kit comprising the in situ gel-forming composition of the present invention and instructions about how to use the in situ gel-forming composition. In one embodiment, the kit comprises the in situ gel-forming composition packaged in a pre-filled syringe or vial.
- The present invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures are incorporated herein by reference.
- For an initial charge, poly(ethylene glycol) (Mn=400 Da) and tin(II) 2-ethyl hexanoate was added to a 500 mL, 3-neck, round-bottom flask equipped with a PTFE coated magnetic stir bar. The contents were heated to 70° C. and allowed to stir for 10 minutes. For a second charge, dl-lactide and glycolide were added and the contents were heated to 135° C. Conditions were maintained until practically complete monomer conversion was achieved. The magnetic stir bar was removed and replaced with a stainless steel mechanical stirrer. The polymer was cooled to room temperature. For a third charge, 1,6-diisocyanatohexane was added and the contents were stirred until complete mixing was achieved. The contents were stirred and heated to 100° C. Conditions were maintained for 1.25 hours. The polymer was allowed to cool to room temperature and then dissolved in an equal part of tetrahydrofuran. The polymer solution was treated with 5 mL of 2-propanol at 55° C., then precipitated in cold water. The purified polymer was dried to a constant weight at 55° C. on a rotary evaporator. The purified polymer was characterized for molecular weight by GPC using tetrahydrofuran as the mobile phase. Identity and composition were confirmed by FT-IR and NMR, respectively.
- An aliquot of the product of Example 1 (4.5 g) was heated to 50° C. then mixed thoroughly at that temperature with polyethylene glycol (PEG-400) having a molecular weight of 400 Da (4.4 g). The mixed polymers were allowed to reach room temperature and then thoroughly mixed with a second aliquot of PEG-400 (1.1 g) premixed with the drug solution in ethanol. The final formulation was dried under reduced pressure to distill the ethanol prior to conducting the drug release study. The release profile of the specific drug in the respective formulation was conducted using buffered solution and HPLC.
FIG. 1 shows exemplary release curves of doxycycline from several test formulations. - The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following embodiments. The embodiments are intended to cover the components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary. Moreover, Applicant hereby discloses all subranges of all ranges disclosed herein. These subranges are also useful in carrying out the present invention.
Claims (21)
1-32. (canceled)
33. An in situ gel-forming composition, comprising: one or more absorbable polymers; and
a solvent selected from the group consisting of N-methyl-2-pyrrolidone (NMP), polyethylene glycol (PEG), dimethyl sulfoxide (DMSO) and mixtures thereof, wherein said composition is an injectable liquid at a temperature in the range of about 18° C. to about 37° C. and forms a hydrogel or semi-solid mass on contact with an aqueous environment; wherein
the one or more absorbable polymers comprise a molecular chain having a X-Y-X or (X-Y)n structure, wherein X represents a relatively hydrophobic polyester block and Y represents a relatively hydrophilic block; and wherein
the X-Y-X or (X-Y)n structure is formed by grafting hydrophobic X blocks from monomers selected from the group consisting of glycolide, lactide, ε-caprolactone, p-dioxanone, trimethylene carbonate or combinations thereof, to hydrophilic Y blocks selected from the group consisting of polyoxyethylene, poly(oxyethylene-b-oxypropylene), polypeptide polyalkylene oxamate, polysaccharide, derivatives thereof, and liquid, high molecular weight polyether glycols interlinked with an oxalate or succinate functionalities in linear or branched form.
34. The in situ gel-forming composition of claim 33 , further comprising one or more bioactive agent.
35. The in situ gel-forming composition of claim 34 , wherein said one or more bioactive agents comprise a sclerosant.
36. The in situ gel-forming composition of claim 33 , wherein said one or more absorbable polymers comprise a segmented aliphatic polyurethane.
37. The in situ gel-forming composition of claim 36 , wherein said segmented aliphatic polyurethane is a lactide/glycolide based polyurethane.
38. The in situ gel-forming composition of claim 37 , wherein said lactide/glycolide based polyurethane has a lactide:glycolide mole ratio of 70:30 to 85:15.
39. The in situ gel-forming composition of claim 36 , wherein said segmented aliphatic polyurethane comprises polyoxyalkylene glycol chains covalently linked to polyester or polyester-carbonate chain segments, interlinked with aliphatic urethane segments.
40. The in situ gel-forming composition of claim 39 , wherein said polyoxyalkylene glycol chain has an average molecular weight of 200-1200 Dalton.
41. The in situ gel-forming composition of claim 39 , wherein said polyester or polyester-carbonate chain segments are derived from at least one cyclic monomer selected from the group represented by ε-caprolactone, trimethylene carbonate, p-dioxanone, 1,5-dioxepan-2-one, l-lactide, dl-lactide, glycolide, morpholinedione, and combinations thereof
42. The in situ gel-forming composition of claim 39 , wherein said aliphatic urethane segments are derived from at least one diisocyanate selected from the group consisting of hexamethylene diisocyanate, lysine-derived diisocyanate, and cyclohexane bis (methylene isocyanate) at a prepolymer:diisocyanate ratio (w/w) of 1:0.6 to 1:1.4.
43. The in situ gel-forming composition of claim 36 , wherein said one or more absorbable polymers comprise a mixture of a copolymer of caprolactone/glycolide and a copolymer of lactide/glycolide.
44. The in situ gel-forming composition of claim 36 , wherein said one or more absorbable polymers comprise a mixture of a copolymer of lactide/trimethylene carbonate and a copolymer of lactide/glycolide.
45. The in situ gel-forming composition of claim 36 , wherein said one or more absorbable polymers comprise a terpolymer of lactide/carprolactone/trimethylene carbonate/glycolide.
46. The in situ gel-forming composition of claim 33 , wherein said one or more absorbable polymers comprise a molecular chain having a X-Y-X structure.
47. The in situ gel-forming composition of claim 46 , wherein said one or more absorbable polymers comprise a segmented aliphatic polyurethane.
48. The in situ gel-forming composition of claim 33 , wherein said one or more absorbable polymers comprise a molecular chain having a (X-Y)n structure
49. The in situ gel-forming composition of claim 48 , wherein said one or more absorbable polymers comprise a segmented aliphatic polyurethane.
50. Use of an in situ gel-forming composition of claim 33 for treating a vascular disease or condition in a subject.
51. Use of an in situ gel-forming composition of claim 33 for treating a cancer or tumor in a subject.
52. Use of an in situ gel-forming composition of claim 33 for minimizing restenosis following angioplasty.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/253,276 US20190167839A1 (en) | 2011-10-17 | 2019-01-22 | Absorbable in situ gel-forming system, method of making and use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/274,824 US8936784B2 (en) | 2011-10-17 | 2011-10-17 | Absorbable in situ gel-forming system, method of making and use thereof |
US14/455,104 US20140348810A1 (en) | 2011-10-17 | 2014-08-08 | Absorbable in situ gel-forming system, method of making and use thereof |
US16/253,276 US20190167839A1 (en) | 2011-10-17 | 2019-01-22 | Absorbable in situ gel-forming system, method of making and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/455,104 Continuation US20140348810A1 (en) | 2011-10-17 | 2014-08-08 | Absorbable in situ gel-forming system, method of making and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190167839A1 true US20190167839A1 (en) | 2019-06-06 |
Family
ID=48086133
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/274,824 Expired - Fee Related US8936784B2 (en) | 2011-10-17 | 2011-10-17 | Absorbable in situ gel-forming system, method of making and use thereof |
US14/455,104 Abandoned US20140348810A1 (en) | 2011-10-17 | 2014-08-08 | Absorbable in situ gel-forming system, method of making and use thereof |
US16/253,276 Abandoned US20190167839A1 (en) | 2011-10-17 | 2019-01-22 | Absorbable in situ gel-forming system, method of making and use thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/274,824 Expired - Fee Related US8936784B2 (en) | 2011-10-17 | 2011-10-17 | Absorbable in situ gel-forming system, method of making and use thereof |
US14/455,104 Abandoned US20140348810A1 (en) | 2011-10-17 | 2014-08-08 | Absorbable in situ gel-forming system, method of making and use thereof |
Country Status (1)
Country | Link |
---|---|
US (3) | US8936784B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11865205B2 (en) | 2015-11-16 | 2024-01-09 | Medincell S.A. | Method for morselizing and/or targeting pharmaceutically active principles to synovial tissue |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10716573B2 (en) | 2008-05-01 | 2020-07-21 | Aneuclose | Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm |
US10028747B2 (en) | 2008-05-01 | 2018-07-24 | Aneuclose Llc | Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm |
US9358140B1 (en) | 2009-11-18 | 2016-06-07 | Aneuclose Llc | Stent with outer member to embolize an aneurysm |
CN103566842B (en) * | 2013-11-21 | 2015-10-28 | 山东大学 | Selfreparing folic acid gel of a kind of multiple response and preparation method thereof |
US20160151511A1 (en) | 2014-12-02 | 2016-06-02 | Antriabio, Inc. | Proteins and protein conjugates with increased hydrophobicity |
WO2017192753A1 (en) * | 2016-05-03 | 2017-11-09 | Bvw Holding Ag | Multiphase gel |
WO2019006356A1 (en) * | 2017-06-30 | 2019-01-03 | Poly-Med, Inc. | In-situ gel-forming delivery systems, methods and compositions |
KR102031178B1 (en) * | 2017-07-14 | 2019-10-11 | 순천향대학교 산학협력단 | An adhesion prevention agent comprising injectable thermosensitive wood based-oxidized cellulose nanofiber |
WO2020190606A1 (en) * | 2019-03-15 | 2020-09-24 | Poly-Med, Inc. | In situ gel-forming delivery systems, methods and compositions |
US10813882B1 (en) | 2019-11-25 | 2020-10-27 | King Abdulaziz University | In situ gelling formulation for reduced initial drug burst |
CN114369354B (en) * | 2021-08-05 | 2024-06-18 | 上海瑞凝生物科技有限公司 | Injectable hydrogels for vascular embolization |
EP4321552A1 (en) * | 2022-08-09 | 2024-02-14 | Asahi Kasei Kabushiki Kaisha | Carbonate group-containing polyol, polyurethane resin composition, artificial leather, and leather-like sheet |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5320624A (en) * | 1991-02-12 | 1994-06-14 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made therefrom |
US5612052A (en) | 1995-04-13 | 1997-03-18 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
US6413539B1 (en) | 1996-10-31 | 2002-07-02 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
JPH11510837A (en) | 1995-07-28 | 1999-09-21 | フォーカル,インコーポレイテッド | Multi-block biodegradable hydrogels for use as controlled release and tissue treatment agents for drug delivery |
EP1206287B1 (en) | 1999-05-21 | 2008-12-17 | Micro Therapeutics, Inc. | High viscosity embolizing compositions |
US7649023B2 (en) | 2002-06-11 | 2010-01-19 | Novartis Ag | Biodegradable block copolymeric compositions for drug delivery |
CA2503949C (en) * | 2002-10-29 | 2012-10-23 | Toray Industries, Inc. | Embolization material |
AU2003300076C1 (en) * | 2002-12-30 | 2010-03-04 | Angiotech International Ag | Drug delivery from rapid gelling polymer composition |
US20050255091A1 (en) | 2004-05-14 | 2005-11-17 | Loomis Gary L | Hydrogels for biomedical applications |
KR100838809B1 (en) * | 2007-05-03 | 2008-06-17 | 성균관대학교산학협력단 | Temperature- and etch-sensitive block copolymers having excellent gel strength, preparation methods thereof, and drug carriers using the same |
US20090202467A1 (en) * | 2008-02-08 | 2009-08-13 | Bock Richard W | Sclerotherapy for varicose veins |
US8952075B2 (en) | 2008-05-22 | 2015-02-10 | Poly-Med, Inc. | Bioactive polymeric liquid formulations of absorbable, segmented aliphatic polyurethane compositions |
US20100056646A1 (en) | 2008-03-12 | 2010-03-04 | Shalaby Shalaby W | Hydroswellable, segmented, aliphatic polyurethane ureas and intra-articular devices therefrom |
US20090233887A1 (en) | 2008-03-12 | 2009-09-17 | Shalaby Shalaby W | Hydroswellable, Segmented, Aliphatic Polyurethanes and Polyurethane Ureas |
US20100152831A1 (en) * | 2008-12-12 | 2010-06-17 | Medtronic Vascular, Inc. | Implantable Medical Devices Having Multiblock Copolymers |
US8691235B2 (en) | 2009-04-03 | 2014-04-08 | Poly-Med, Inc. | Absorbable crystalline polyether-ester-urethane-based bioactive luminal liner compositions |
-
2011
- 2011-10-17 US US13/274,824 patent/US8936784B2/en not_active Expired - Fee Related
-
2014
- 2014-08-08 US US14/455,104 patent/US20140348810A1/en not_active Abandoned
-
2019
- 2019-01-22 US US16/253,276 patent/US20190167839A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11865205B2 (en) | 2015-11-16 | 2024-01-09 | Medincell S.A. | Method for morselizing and/or targeting pharmaceutically active principles to synovial tissue |
Also Published As
Publication number | Publication date |
---|---|
US20130095087A1 (en) | 2013-04-18 |
US20140348810A1 (en) | 2014-11-27 |
US8936784B2 (en) | 2015-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190167839A1 (en) | Absorbable in situ gel-forming system, method of making and use thereof | |
CA2852386C (en) | Absorbable in situ gel-forming system, method of making and use thereof | |
Singh et al. | In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery | |
Gong et al. | Thermosensitive PEG–PCL–PEG hydrogel controlled drug delivery system: sol–gel–sol transition and in vitro drug release study | |
US20050238722A1 (en) | Multiblock biodegradable hydrogels for drug delivery and tissue treatment | |
US20220152207A1 (en) | Polymeric Paste Compositions for Drug Delivery | |
Guo et al. | Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment | |
CN102068719A (en) | Adhesion prevention material formed by physical crosslinking hydrogel composition and preparation method and application thereof | |
CN103179959A (en) | Pendant hydrophile bearing biodegradable compositions and related devices | |
CN101862454A (en) | A kind of physically cross-linked hydrogel composition and its preparation method and application | |
US20240191040A1 (en) | Application of amino acid-modified polymer for drug delivery | |
JP6403297B2 (en) | Method for producing anti-adhesion material | |
EP2997982A1 (en) | Substance for preventing adhesion and production method therefor | |
JP6176998B2 (en) | Temperature-responsive biodegradable polymer composition and method for producing the same | |
Dong et al. | Preparation of healing promotive alanyl-glutamine-poly (p-dioxanone) electrospun membrane integrated with gentamycin and its application for intestinal anastomosis in rats | |
CN115403760B (en) | Amino acid modified polymer for preventing sticking and application thereof | |
TWI595034B (en) | Hydrogel composition and method for using the same | |
Ohya | Injectable Hydrogels | |
Overstreet | Temperature-responsive hydrogels with controlled water content and their development toward drug delivery and embolization applications | |
CN109966316A (en) | Use of powder formulation and hydrogel composition for preparing medicines for slowing down degenerative joints and repairing tendon ruptures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |