US20180156588A1 - Frangible Projectile and Method of Manufacture - Google Patents
Frangible Projectile and Method of Manufacture Download PDFInfo
- Publication number
- US20180156588A1 US20180156588A1 US15/828,716 US201715828716A US2018156588A1 US 20180156588 A1 US20180156588 A1 US 20180156588A1 US 201715828716 A US201715828716 A US 201715828716A US 2018156588 A1 US2018156588 A1 US 2018156588A1
- Authority
- US
- United States
- Prior art keywords
- projectile
- particles
- magnet
- attracted
- homogenous mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/34—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect expanding before or on impact, i.e. of dumdum or mushroom type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/36—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
- F42B12/367—Projectiles fragmenting upon impact without the use of explosives, the fragments creating a wounding or lethal effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/72—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
- F42B12/74—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
- F42B12/745—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body the core being made of plastics; Compounds or blends of plastics and other materials, e.g. fillers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B6/00—Projectiles or missiles specially adapted for projection without use of explosive or combustible propellant charge, e.g. for blow guns, bows or crossbows, hand-held spring or air guns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B6/00—Projectiles or missiles specially adapted for projection without use of explosive or combustible propellant charge, e.g. for blow guns, bows or crossbows, hand-held spring or air guns
- F42B6/10—Air gun pellets ; Ammunition for air guns, e.g. propellant-gas containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B8/00—Practice or training ammunition
- F42B8/12—Projectiles or missiles
- F42B8/14—Projectiles or missiles disintegrating in flight or upon impact
- F42B8/16—Projectiles or missiles disintegrating in flight or upon impact containing an inert filler in powder or granular form
Definitions
- This invention pertains generally to a low ricochet, non-toxic projectile, such as an air gun or slingshot projectile, that can be attracted and retained by a magnet, and a method of manufacturing the same.
- low ricochet, non-toxic projectiles such as air gun or slingshot projectiles
- air gun projectiles must have enough integrity in their composition that they will not materially deteriorate or break part while passing through the barrel of an air gun or its magazine.
- low ricochet, non-toxic air gun projectiles to have the capability of being attracted and retained by a magnet in order to function in air guns that depend upon a magnet to hold the projectile in position prior to firing.
- projectiles such as BBs
- BBs many projectiles, such as BBs, are made of steel, iron or lead.
- the steel or iron projectiles tend to ricochet when striking a hard surface which can be dangerous, and lead projectiles do not function in air guns that use a magnet to keep the projectile in place prior to firing.
- Lead projectiles may also expose the shooter or others to high levels of lead if the shooting area is not properly ventilated or maintained. Further, lead poisoning may result if a young shooter, pet or other animal were to place a lead BB in their mouth or otherwise ingest the same, as they are known to do.
- the subject matter disclosed and claimed herein in one aspect thereof, comprises a low ricochet, non-toxic air gun or slingshot projectile that is capable of being attracted and retained by a magnet and that is comprised of a plurality of particles that are attracted by said magnet and one or more of the following: (a) a plurality of metal particles that are not attracted by said magnet; (b) an elastomer; (c) an elastomer adhesive; (d) a polymer; (e) an organic material; and (f) an inorganic material.
- Also disclosed herein is a method for manufacturing a lead free, frangible air gun projectile comprising the steps of: (a) blending a plurality of metal particles with a flow agent to form a homogenous mixture; and (b) placing said homogenous mixture in a die.
- the method may further comprise one or more of the following steps of (c) swaging the homogenous mixture in said die with a punch to form said air gun projectile; (d) sintering the air gun projectile; and (e) tumbling the air gun projectile.
- FIG. 1 is a perspective view of a projectile capable of being attracted by a magnet mixed with metal particles that are not attracted by a magnet.
- FIG. 2A is a perspective view of a projectile comprised of particles capable of being attracted by a magnet and a dried liquid elastomer.
- FIG. 2B is a perspective view of the projectile of FIG. 2A , with the belly band partially removed.
- FIG. 3 is a perspective view of a tumbled projectile without a center band.
- FIG. 4 is a perspective view of a single stage press and associated die/punch with the homogenous mixture filling the cavity of the die.
- FIG. 5 is a perspective view of a single stage press and associated die/punch with the lower punch being at its lowest point and excess homogenous mixture ready to be removed.
- FIG. 6 is a perspective view of a projectile being formed in the single stage press of FIG. 5 .
- FIG. 7A is a front perspective view of a frangible slingshot projectile of the present invention.
- FIG. 7B is a side perspective view of the frangible projectile of FIG. 7A .
- FIG. 1 is a perspective view of a projectile 100 having a belly band 105 and that is capable of being attracted by a magnet (not shown) mixed with metal particles that are not attracted by a magnet.
- a low ricochet, non-toxic projectile 100 such as an air gun BB or a slingshot projectile, that can be attracted and retained by a magnet (not shown), is comprised of particles 110 that are attracted by both a magnet and by other particles 110 and one or more of the following: (a) metal particles 120 that are not attracted by a magnet; (b) one or more elastomers 130 ; (c) one or more polymers 140 ; (d) one or more elastomer adhesives 150 ; (e) one or more organic materials 160 ; and (f) one or more inorganic materials 170 . Notwithstanding, it is also contemplated that projectile 100 could be comprised solely of materials that are not attracted to a magnet.
- Particles 110 may be magnetic, such as magnetized iron.
- Particles 100 are preferably substantially spherical in shape with a preferred diameter of between 100-150 microns.
- Metal particles 120 that are not attracted by a magnet may include zinc, tin and/or copper particles.
- Metal particles 120 are preferably greater than 100 microns in diameter.
- Elastomers 130 such as silicone or natural rubber, may be in liquid and/or powdered form. In liquid form, elastomers 130 should have a viscosity of approximately between 2 and 14 centipoise. In powder form, elastomer particles 130 should have a particle size of between 50-75 microns.
- Polymers 140 such as latex, high density polyethylene (HDPE) and high density polyethylene (LDPE), may be in liquid and/or powdered form. In liquid form, polymers 140 should have a viscosity of approximately between 2 and 14 centipoise. In powder form, polymer particles 140 should have a particle size of between 50-75 microns.
- HDPE high density polyethylene
- LDPE high density polyethylene
- Elastomer adhesives 150 such as Chloroprene Rubber Cemedine 575 or Master Bond X17, may be used and should have a viscosity of approximately between 2 and 14 centipoise.
- Organic material 160 such as honey or maple syrup, may be in liquid and/or powdered form. In liquid form, organic material 160 should have a viscosity of approximately between 2 and 14 centipoise. In powder form, organic material 160 should have a particle size of between 50-75 microns. It is also contemplated that other non-toxic organic materials that decrease fines within a mixture can be used.
- Inorganic material 170 such as salt, may be in liquid and/or powdered form. For example, if salt is dissolved in a suitable liquid such as water, the viscosity of the resulting liquid should be approximately between 2 and 14 centipoise. It is also contemplated that other non-toxic inorganic materials that decrease fines within a mixture can be used. Further, nonmetallic particles will preferably have low temperature sintering properties.
- the particles should be small enough so that they mix evenly with the magnetic metal particles 110 and/or non-magnetic metal materials 120 . It was found that the size of these particles should be between 50-75 microns in diameter.
- the viscosity should be approximately 3.0 centipoise. It was further determined that additives, such as water or xylene, may be added as to make said liquid versions of elastomers 130 , polymers 140 , organic materials 160 and inorganic materials 170 less viscous.
- Projectiles 100 may also be swaged to a desired size and hardness and tumbled using suitable equipment known in the art for accomplishing said tasks.
- projectiles 100 for use with air guns preferably have a diameter of between 0.169 to 0.5 of an inch and a preferred hardness that is capable of withstanding between 32 and 40 Kp of force, as measured by a tablet hardness tester.
- a desired liquid and/or solid component(s) or combinations thereof are mixed with suitable particles and the mixture is then dried or hardened by tumbling, it was found that the dried mixture would need to be roller compacted and processed accordingly in order to achieve the flow rate required for high speed production of projectile 100 . More specifically, the homogeneous mixture is tumbled until all of the liquids have evaporated and/or solidified, and the metal particles are suspended within the residue of the evaporated liquids.
- the desired flow rate for high speed production is 35 seconds for 50 grams to flow through a Hall flowmeter (ASTM B213, MPIF No. 4, ISO No. 39231 with a 0.1 inch diameter calibrated orifice).
- magnesium stearate may be added to roller compacted mixtures and non-roller compacted mixtures in order to increase the flow rate of the mixtures if need be. More specifically, it is contemplated that magnesium stearate in powdered form that is 0.001% to 35% of the homogenous mixture by weight could be used.
- materials in liquid and/or powdered form(s) such as: (a) elastomers 130 ; (b) polymers 140 ; (c) elastomer adhesives 150 ; (d) organic materials 160 ; and (e) inorganic materials 170 help reduce particle fines when mixed with particles that have a high percentage of fines. Particle fines can accumulate on the tooling and cause serious damage to expensive equipment.
- the above listed materials, when mixed with particles 110 and metal particles 120 also help reduce the density of air gun projectiles 100 ; if so desired.
- Iron (93.5% by weight), zinc (4% by weight) and copper powders (2% by weight) are combined with 0.5% magnesium stearate (by weight) and mixed.
- the mixture is converted into suitable air gun projectiles 100 using a single stage or rotary press (not shown).
- the resulting projectiles 100 may also be tumbled to increase their roundness and lubricated with a non-toxic rust preventative as is well known in the art.
- the product of this example would be best suited for an air gun having a less powerful spring.
- Iron (94.15% by weight), tin (4% by weight), HDPE powder (0.75% by weight), liquid latex (1%) and N, N′ Ethylene Bisstearamide (0.1% by weight) are combined and mixed, and the resulting mixture is processed through a commercial roller compactor in order to increase the flow rate of the mixture.
- the desired flow rate for high speed production is 35 seconds for 50 grams to flow through a Hall flowmeter.
- the roller compacted mixture is then converted into suitable air gun or sling shot projectiles 100 using a single stage press or rotary press (not shown).
- the projectiles 100 may also be tumbled to increase their roundness and lubricated with a non-toxic rust preventative as is well known in the art.
- projectiles 100 suitable for air guns made by the methods of this invention should have a resulting diameter of between 0.169 to 0.5 of an inch.
- the air gun projectiles 100 may also be plated with copper or zinc after the tumbling phase if desired. Plating increases the hardness of the projectiles 100 , and improves their aesthetics. If harder projectiles 100 are required, projectiles 100 may be swaged or compressed to a desired hardness using a suitable die or other tools or processes currently known in the art. Projectiles 100 may also be sintered by processes known in the art, and plated with copper or zinc if desired.
- sintering the frangible projectile of the present invention will help prevent rust, and is similar to a cold bluing process.
- Sintering temperatures for both air gun and slingshot projectiles should be in a range of between 200-1,600° F., though sintering of slingshot projectiles is not necessarily preferred.
- projectiles 100 are lead free, and metal particles 120 may be from one type of metal or a combination of particles of various metal types. Copper, bronze, brass, tin, zinc, steel, tungsten, tungsten carbide, ferrotungsten, aluminum and bismuth are examples of suitable metal particles 120 .
- Metal particles 120 may be in the form or shape of a powder, granules, flake, chip, or other compactable particulate forms or a combination thereof.
- metal particles 120 may be mixed with a suitable non-toxic (meaning pharmaceutical grade) flow agent 200 and mixed until a homogenous mixture 220 is obtained.
- Flow agent 200 is preferably N, N′ Ethylene Bisstearamide, but other types of flow agents may also be used without affecting the overall concept of the present invention.
- the amount of flow agent 200 added to the metal particles 120 will depend on the preferred rate of flow the mixture 220 requires for maximum production rate efficiency, and also the desired frangibility of the resulting air gun or slingshot projectile 100 .
- An addition of 0.2% (weight of the total weight of the particles) of flow agent 200 is a good starting point.
- a suitable flow rate would be less than 35 seconds for 50 grams of homogenous mixture 220 flowing through a professional flow meter.
- FIG. 2A is a perspective view of the projectile of FIG. 2A with belly band 205 partially removed.
- a pre-measured amount of homogenous mixture 220 is then placed inside of a suitable die (not shown) having the dimensions of the desired resulting projectile 100 .
- Homogenous mixture 220 is then swaged or compressed inside the die using corresponding internal and external punches (also not shown).
- One or more dies may be used in the swaging process.
- a single stage press may be used or a press having multiple dies may also be used, such as a rotary table press.
- the resultant projectile 100 such as a BB, pellet or slingshot projectile, breaks apart into small pieces when striking a hard surface such as a rock, a steel plate or concrete.
- the minimum diameter of the preferred embodiment of projectile 100 such as a BB or pellet, will be 4.3 MM or 0.171 of an inch, and the maximum diameter of the preferred embodiment of BB or pellet 100 will be 12.7 MM or 0.5 of an inch.
- Air gun BB or pellet 100 may have the shape of a conventional copper or zinc plated iron BB or any pellet shape commonly known in the art.
- the preferred size of the slingshot projectiles will be 0.25 of an inch up to 0.75 of an inch, and the shape will be similar to BB or air gun projectiles.
- the slingshot projectiles may be sintered if desired but tumbling is not recommended, as a sharp belly band will create more trauma if these projectiles are used for hunting.
- FIG. 4 is a perspective view of a single stage press comprised of an upper punch 400 , a die 410 , a homogenous mixture 420 (which includes the flow agent) and a lower punch 430 .
- FIG. 5 illustrates the single stage press of FIG. 4 , but with lower punch 430 being at its lowest point and excess homogenous mixture 420 ready to be removed from said press.
- FIG. 6 is a perspective view of projectile 100 being formed in the single stage press of FIG. 5 .
- the single stage press will impart 4.8 Kn to 6 Kn of force with minimal dwell time to create an air gun projectile and 4.8 Kn to 6 Kn of force with minimal dwell time to create a slingshot projectile.
- FIG. 7A is a front perspective view of a frangible slingshot projectile 700 of the present invention.
- Projectile 700 is generally spherical, but comprises a belly band 702 and at least one fracture, notch or groove 704 in an outer surface 706 of projectile 700 .
- Belly band 702 may extend along the circumference of projectile 700 .
- Fractures 704 aid in the disintegration of projectile 700 upon impact with its target, and are preferably comprised of a groove or series of grooves, as best shown in FIG. 7B , which is a side perspective view of the frangible projectile 700 of FIG. 7A .
- Amount Recovered Percentage of Total Sieve size Microns (grams) Amount 60 250 50.5 68.6% 80 177 22.9 31.1% 100 150 0.12 0.16% 150 100 0.09 0.14%
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Toys (AREA)
- Walking Sticks, Umbrellas, And Fans (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A projectile, such as a low ricochet, non-toxic, air gun BB, pellet or slingshot projectile, that breaks apart into small pieces or fragments when striking a hard surface, and that is lead free. A method of manufacturing the projectile of the present invention is also disclosed.
Description
- The present application claims priority from U.S. Provisional Patent Application Ser. No. 62/431,003 filed on Dec. 7, 2016, which is incorporated herein by reference in its entirety.
- This invention pertains generally to a low ricochet, non-toxic projectile, such as an air gun or slingshot projectile, that can be attracted and retained by a magnet, and a method of manufacturing the same.
- It is desirable to manufacture low ricochet, non-toxic projectiles, such as air gun or slingshot projectiles, that break apart into small pieces when striking a hard surface, such as a rock, a steel plate or a concrete wall upon impact. For example, air gun projectiles must have enough integrity in their composition that they will not materially deteriorate or break part while passing through the barrel of an air gun or its magazine. It is also desirable for low ricochet, non-toxic air gun projectiles to have the capability of being attracted and retained by a magnet in order to function in air guns that depend upon a magnet to hold the projectile in position prior to firing.
- Currently, many projectiles, such as BBs, are made of steel, iron or lead. The steel or iron projectiles tend to ricochet when striking a hard surface which can be dangerous, and lead projectiles do not function in air guns that use a magnet to keep the projectile in place prior to firing. Lead projectiles may also expose the shooter or others to high levels of lead if the shooting area is not properly ventilated or maintained. Further, lead poisoning may result if a young shooter, pet or other animal were to place a lead BB in their mouth or otherwise ingest the same, as they are known to do.
- Consequently, there exists a long felt need in the art for a low ricochet, non-toxic projectile that can be attracted and retained by a magnet until fired. There is also a long felt need in the art for a projectile that breaks apart into small pieces or fragments when striking a hard surface such as a rock, a steel plate or a concrete wall upon impact. Finally, there is a long felt need in the art for a frangible, low ricochet projectile that accomplishes all of the forgoing objectives, is lead-free, and that is relatively inexpensive to manufacture and safe and easy to use.
- The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosed innovation. This summary is not an extensive overview, and it is not intended to identify key/critical elements or to delineate the scope thereof. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
- The subject matter disclosed and claimed herein, in one aspect thereof, comprises a low ricochet, non-toxic air gun or slingshot projectile that is capable of being attracted and retained by a magnet and that is comprised of a plurality of particles that are attracted by said magnet and one or more of the following: (a) a plurality of metal particles that are not attracted by said magnet; (b) an elastomer; (c) an elastomer adhesive; (d) a polymer; (e) an organic material; and (f) an inorganic material.
- Also disclosed herein is a method for manufacturing a lead free, frangible air gun projectile comprising the steps of: (a) blending a plurality of metal particles with a flow agent to form a homogenous mixture; and (b) placing said homogenous mixture in a die. In a further preferred embodiment of the present invention, the method may further comprise one or more of the following steps of (c) swaging the homogenous mixture in said die with a punch to form said air gun projectile; (d) sintering the air gun projectile; and (e) tumbling the air gun projectile.
- To the accomplishment of the foregoing and related ends, certain illustrative aspects of the disclosed innovation are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles disclosed herein can be employed and is intended to include all such aspects and their equivalents. Other advantages and novel features will become apparent from the following detailed description when considered in conjunction with the drawings.
-
FIG. 1 is a perspective view of a projectile capable of being attracted by a magnet mixed with metal particles that are not attracted by a magnet. -
FIG. 2A is a perspective view of a projectile comprised of particles capable of being attracted by a magnet and a dried liquid elastomer. -
FIG. 2B is a perspective view of the projectile ofFIG. 2A , with the belly band partially removed. -
FIG. 3 is a perspective view of a tumbled projectile without a center band. -
FIG. 4 is a perspective view of a single stage press and associated die/punch with the homogenous mixture filling the cavity of the die. -
FIG. 5 is a perspective view of a single stage press and associated die/punch with the lower punch being at its lowest point and excess homogenous mixture ready to be removed. -
FIG. 6 is a perspective view of a projectile being formed in the single stage press ofFIG. 5 . -
FIG. 7A is a front perspective view of a frangible slingshot projectile of the present invention. -
FIG. 7B is a side perspective view of the frangible projectile ofFIG. 7A . - The innovation is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the innovation can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate a description thereof.
-
FIG. 1 is a perspective view of aprojectile 100 having abelly band 105 and that is capable of being attracted by a magnet (not shown) mixed with metal particles that are not attracted by a magnet. More specifically, a low ricochet,non-toxic projectile 100, such as an air gun BB or a slingshot projectile, that can be attracted and retained by a magnet (not shown), is comprised ofparticles 110 that are attracted by both a magnet and byother particles 110 and one or more of the following: (a)metal particles 120 that are not attracted by a magnet; (b) one ormore elastomers 130; (c) one ormore polymers 140; (d) one ormore elastomer adhesives 150; (e) one or moreorganic materials 160; and (f) one or moreinorganic materials 170. Notwithstanding, it is also contemplated thatprojectile 100 could be comprised solely of materials that are not attracted to a magnet. -
Particles 110 may be magnetic, such as magnetized iron.Particles 100 are preferably substantially spherical in shape with a preferred diameter of between 100-150 microns.Metal particles 120 that are not attracted by a magnet may include zinc, tin and/or copper particles.Metal particles 120 are preferably greater than 100 microns in diameter. -
Elastomers 130, such as silicone or natural rubber, may be in liquid and/or powdered form. In liquid form,elastomers 130 should have a viscosity of approximately between 2 and 14 centipoise. In powder form,elastomer particles 130 should have a particle size of between 50-75 microns. -
Polymers 140, such as latex, high density polyethylene (HDPE) and high density polyethylene (LDPE), may be in liquid and/or powdered form. In liquid form,polymers 140 should have a viscosity of approximately between 2 and 14 centipoise. In powder form,polymer particles 140 should have a particle size of between 50-75 microns. - Elastomer adhesives 150, such as Chloroprene Rubber Cemedine 575 or Master Bond X17, may be used and should have a viscosity of approximately between 2 and 14 centipoise.
-
Organic material 160, such as honey or maple syrup, may be in liquid and/or powdered form. In liquid form,organic material 160 should have a viscosity of approximately between 2 and 14 centipoise. In powder form,organic material 160 should have a particle size of between 50-75 microns. It is also contemplated that other non-toxic organic materials that decrease fines within a mixture can be used.Inorganic material 170, such as salt, may be in liquid and/or powdered form. For example, if salt is dissolved in a suitable liquid such as water, the viscosity of the resulting liquid should be approximately between 2 and 14 centipoise. It is also contemplated that other non-toxic inorganic materials that decrease fines within a mixture can be used. Further, nonmetallic particles will preferably have low temperature sintering properties. - Additionally, with regard to the powdered versions of
elastomers 130,polymers 140,organic materials 160 andinorganic materials 170, the particles should be small enough so that they mix evenly with themagnetic metal particles 110 and/ornon-magnetic metal materials 120. It was found that the size of these particles should be between 50-75 microns in diameter. With regard to the liquid versions ofelastomers 130,polymers 140,organic materials 160 andinorganic materials 170, it was determined through experimental testing that the viscosity should be approximately 3.0 centipoise. It was further determined that additives, such as water or xylene, may be added as to make said liquid versions ofelastomers 130,polymers 140,organic materials 160 andinorganic materials 170 less viscous. -
Projectiles 100 may also be swaged to a desired size and hardness and tumbled using suitable equipment known in the art for accomplishing said tasks. For example,projectiles 100 for use with air guns preferably have a diameter of between 0.169 to 0.5 of an inch and a preferred hardness that is capable of withstanding between 32 and 40 Kp of force, as measured by a tablet hardness tester. - When a desired liquid and/or solid component(s) or combinations thereof are mixed with suitable particles and the mixture is then dried or hardened by tumbling, it was found that the dried mixture would need to be roller compacted and processed accordingly in order to achieve the flow rate required for high speed production of
projectile 100. More specifically, the homogeneous mixture is tumbled until all of the liquids have evaporated and/or solidified, and the metal particles are suspended within the residue of the evaporated liquids. The desired flow rate for high speed production is 35 seconds for 50 grams to flow through a Hall flowmeter (ASTM B213, MPIF No. 4, ISO No. 39231 with a 0.1 inch diameter calibrated orifice). - Agents such as magnesium stearate (not shown) may be added to roller compacted mixtures and non-roller compacted mixtures in order to increase the flow rate of the mixtures if need be. More specifically, it is contemplated that magnesium stearate in powdered form that is 0.001% to 35% of the homogenous mixture by weight could be used.
- It should be noted that materials in liquid and/or powdered form(s) such as: (a)
elastomers 130; (b)polymers 140; (c)elastomer adhesives 150; (d)organic materials 160; and (e)inorganic materials 170 help reduce particle fines when mixed with particles that have a high percentage of fines. Particle fines can accumulate on the tooling and cause serious damage to expensive equipment. The above listed materials, when mixed withparticles 110 andmetal particles 120, also help reduce the density ofair gun projectiles 100; if so desired. - The following examples are offered solely to better explain the present invention and nothing contained therein should be construed as a limitation.
- Iron (93.5% by weight), zinc (4% by weight) and copper powders (2% by weight) are combined with 0.5% magnesium stearate (by weight) and mixed. The mixture is converted into suitable
air gun projectiles 100 using a single stage or rotary press (not shown). The resultingprojectiles 100 may also be tumbled to increase their roundness and lubricated with a non-toxic rust preventative as is well known in the art. The product of this example would be best suited for an air gun having a less powerful spring. - Iron (94.15% by weight), tin (4% by weight), HDPE powder (0.75% by weight), liquid latex (1%) and N, N′ Ethylene Bisstearamide (0.1% by weight) are combined and mixed, and the resulting mixture is processed through a commercial roller compactor in order to increase the flow rate of the mixture. The desired flow rate for high speed production is 35 seconds for 50 grams to flow through a Hall flowmeter. The roller compacted mixture is then converted into suitable air gun or sling shot
projectiles 100 using a single stage press or rotary press (not shown). Theprojectiles 100 may also be tumbled to increase their roundness and lubricated with a non-toxic rust preventative as is well known in the art. - It should be noted that
projectiles 100 suitable for air guns made by the methods of this invention should have a resulting diameter of between 0.169 to 0.5 of an inch. Theair gun projectiles 100 may also be plated with copper or zinc after the tumbling phase if desired. Plating increases the hardness of theprojectiles 100, and improves their aesthetics. Ifharder projectiles 100 are required,projectiles 100 may be swaged or compressed to a desired hardness using a suitable die or other tools or processes currently known in the art.Projectiles 100 may also be sintered by processes known in the art, and plated with copper or zinc if desired. - More specifically, sintering the frangible projectile of the present invention will help prevent rust, and is similar to a cold bluing process. Sintering temperatures for both air gun and slingshot projectiles should be in a range of between 200-1,600° F., though sintering of slingshot projectiles is not necessarily preferred.
- In a further preferred embodiment of the present invention,
projectiles 100 are lead free, andmetal particles 120 may be from one type of metal or a combination of particles of various metal types. Copper, bronze, brass, tin, zinc, steel, tungsten, tungsten carbide, ferrotungsten, aluminum and bismuth are examples ofsuitable metal particles 120.Metal particles 120 may be in the form or shape of a powder, granules, flake, chip, or other compactable particulate forms or a combination thereof. - Having now generally described the preferred composition of
projectiles 100, a preferred method of manufacture will now be described. More specifically, as shown inFIG. 2A ,metal particles 120 may be mixed with a suitable non-toxic (meaning pharmaceutical grade)flow agent 200 and mixed until ahomogenous mixture 220 is obtained.Flow agent 200 is preferably N, N′ Ethylene Bisstearamide, but other types of flow agents may also be used without affecting the overall concept of the present invention. The amount offlow agent 200 added to themetal particles 120 will depend on the preferred rate of flow themixture 220 requires for maximum production rate efficiency, and also the desired frangibility of the resulting air gun or slingshot projectile 100. An addition of 0.2% (weight of the total weight of the particles) offlow agent 200 is a good starting point. By way of example, a suitable flow rate would be less than 35 seconds for 50 grams ofhomogenous mixture 220 flowing through a professional flow meter. - Like the projectile shown in
FIG. 1 , the projectile ofFIG. 2A also has abelly band 205 that may extend around the circumference of the projectile.FIG. 2B is a perspective view of the projectile ofFIG. 2A withbelly band 205 partially removed. - A pre-measured amount of
homogenous mixture 220 is then placed inside of a suitable die (not shown) having the dimensions of the desired resulting projectile 100.Homogenous mixture 220 is then swaged or compressed inside the die using corresponding internal and external punches (also not shown). One or more dies (not shown) may be used in the swaging process. As described more fully below, a single stage press may be used or a press having multiple dies may also be used, such as a rotary table press. Theresultant projectile 100, such as a BB, pellet or slingshot projectile, breaks apart into small pieces when striking a hard surface such as a rock, a steel plate or concrete. - The minimum diameter of the preferred embodiment of
projectile 100, such as a BB or pellet, will be 4.3 MM or 0.171 of an inch, and the maximum diameter of the preferred embodiment of BB orpellet 100 will be 12.7 MM or 0.5 of an inch. Air gun BB orpellet 100 may have the shape of a conventional copper or zinc plated iron BB or any pellet shape commonly known in the art. The preferred size of the slingshot projectiles will be 0.25 of an inch up to 0.75 of an inch, and the shape will be similar to BB or air gun projectiles. The slingshot projectiles may be sintered if desired but tumbling is not recommended, as a sharp belly band will create more trauma if these projectiles are used for hunting. -
FIG. 4 is a perspective view of a single stage press comprised of anupper punch 400, adie 410, a homogenous mixture 420 (which includes the flow agent) and alower punch 430.FIG. 5 illustrates the single stage press ofFIG. 4 , but withlower punch 430 being at its lowest point and excesshomogenous mixture 420 ready to be removed from said press.FIG. 6 is a perspective view ofprojectile 100 being formed in the single stage press ofFIG. 5 . Ideally, the single stage press will impart 4.8 Kn to 6 Kn of force with minimal dwell time to create an air gun projectile and 4.8 Kn to 6 Kn of force with minimal dwell time to create a slingshot projectile. -
FIG. 7A is a front perspective view of afrangible slingshot projectile 700 of the present invention.Projectile 700 is generally spherical, but comprises abelly band 702 and at least one fracture, notch or groove 704 in anouter surface 706 ofprojectile 700.Belly band 702 may extend along the circumference ofprojectile 700.Fractures 704 aid in the disintegration ofprojectile 700 upon impact with its target, and are preferably comprised of a groove or series of grooves, as best shown inFIG. 7B , which is a side perspective view of thefrangible projectile 700 ofFIG. 7A . - With respect to air gun projectiles, it has been determined through testing that the resulting projectiles will be frangible enough to break apart into smaller pieces when striking a hard surface (such as a steel plate) from approximately 15 feet away at velocities as low as 150 feet per second, but durable enough to withstand a reasonably strong air gun magazine spring. By comparison, conventional air gun projectiles tend to stay intact and ricochet off a hard surface, oftentimes striking the air gun user, when fired from a similar distance and at a similar velocity.
- By way of example, the following fragment size analysis was conducted on projectiles of the present invention striking a steel plate having a thickness of approximately 0.092 of an inch from a distance of approximately 15 feet at velocities ranging from 235-550 feet per second:
-
Amount Recovered Percentage of Total Sieve size Microns (grams) Amount 60 250 50.5 68.6% 80 177 22.9 31.1% 100 150 0.12 0.16% 150 100 0.09 0.14% - What has been described above includes examples of the claimed subject matter. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the claimed subject matter are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Claims (20)
1. A projectile that is capable of being attracted and retained by a magnet and that is comprised of a plurality of particles that are attracted by said magnet.
2. The projectile of claim 1 , wherein said plurality of particles are mixed with a plurality of metal particles that are not attracted by a magnet.
3. The projectile of claim 1 , wherein said plurality of particles are mixed with an elastomer.
4. The projectile of claim 1 , wherein said plurality of particles are mixed with a polymer.
5. The projectile of claim 1 , wherein said plurality of particles are mixed with an organic material.
6. The projectile of claim 1 , wherein said plurality of particles are mixed with an inorganic material.
7. A low ricochet, non-toxic projectile that is capable of being attracted and retained by a magnet and that is comprised of a plurality of particles that are attracted by said magnet and one or more of the following:
a plurality of metal particles that are not attracted by a magnet;
ail elastomer;
an elastomer adhesive;
a polymer;
an organic material; and
an inorganic material.
8. The projectile of claim 7 wherein said elastomer is silicone.
9. The projectile of claim 7 wherein said polymer is latex.
10. The projectile of claim 7 further comprising a belly band.
11. The projectile of claim 7 further comprising at least one fracture in an outer surface of said projectile.
12. A method for manufacturing a projectile comprising the steps of:
blending a plurality of metal particles with a flow agent to form a homogenous mixture;
placing said homogenous mixture in a die; and
operating said die to form said projectile.
13. The method of claim 12 further comprising at least one of the following steps:
swaging the homogenous mixture in said die with a punch to form said projectile;
sintering the projectile; and
tumbling the projectile after it has been removed from said die.
14. The method of claim 12 wherein said plurality of metal particles are comprised of one or more of the following metals: copper, bronze, brass, tin, zinc, steel, tungsten, tungsten carbide, ferrotungsten, aluminum and bismuth.
15. The method of claim 12 wherein said plurality of metal particles are in the form of a powder, granule, flake, chip or a combination thereof.
16. The method of claim 12 wherein said air gun projectile breaks apart when it strikes a hard surface.
17. The method of claim 12 wherein said homogenous mixture further comprises an elastomer or an elastomer adhesive.
18. The method of claim 12 wherein said homogenous mixture further comprises a polymer.
19. The method of claim 12 wherein said homogenous mixture further comprises an organic material or an inorganic material.
20. The method of claim 12 wherein said flow agent is N, N′ Ethylene Bisstearamide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/828,716 US20180156588A1 (en) | 2016-12-07 | 2017-12-01 | Frangible Projectile and Method of Manufacture |
US16/278,461 US10598472B2 (en) | 2016-12-07 | 2019-02-18 | Frangible projectile and method of manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662431003P | 2016-12-07 | 2016-12-07 | |
US15/828,716 US20180156588A1 (en) | 2016-12-07 | 2017-12-01 | Frangible Projectile and Method of Manufacture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/278,461 Division US10598472B2 (en) | 2016-12-07 | 2019-02-18 | Frangible projectile and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180156588A1 true US20180156588A1 (en) | 2018-06-07 |
Family
ID=60629491
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/828,716 Abandoned US20180156588A1 (en) | 2016-12-07 | 2017-12-01 | Frangible Projectile and Method of Manufacture |
US16/278,461 Active US10598472B2 (en) | 2016-12-07 | 2019-02-18 | Frangible projectile and method of manufacture |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/278,461 Active US10598472B2 (en) | 2016-12-07 | 2019-02-18 | Frangible projectile and method of manufacture |
Country Status (3)
Country | Link |
---|---|
US (2) | US20180156588A1 (en) |
EP (1) | EP3333532B1 (en) |
HK (1) | HK1249573A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190120603A1 (en) * | 2017-10-19 | 2019-04-25 | Richard C. Cole | Projectile with radial grooves |
US10323918B2 (en) * | 2014-07-29 | 2019-06-18 | Polywad, Inc. | Auto-segmenting spherical projectile |
US20190186880A1 (en) * | 2016-12-07 | 2019-06-20 | Russell LeBlanc | Frangible Projectile and Method of Manufacture |
DE102020105266A1 (en) | 2020-02-28 | 2021-09-02 | Ruag Ammotec Gmbh | Projectile, diabolo, ammunition and methods of making a projectile |
CN115121791A (en) * | 2022-08-29 | 2022-09-30 | 北京煜鼎增材制造研究院有限公司 | Multi-scale particle composite reinforced warhead and additive manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6551375B2 (en) * | 2001-03-06 | 2003-04-22 | Kennametal Inc. | Ammunition using non-toxic metals and binders |
US20050006684A1 (en) * | 2003-02-09 | 2005-01-13 | Matsushita Electric Industrial Co., Ltd | Capacitive element and semiconductor memory device |
US20120308426A1 (en) * | 2011-05-08 | 2012-12-06 | Martin Gerardo Perez | Frangible projectile and method for making same |
US20170008241A1 (en) * | 2003-03-06 | 2017-01-12 | 3M Innovative Properties Company | Cube corner retroreflective sheeting having channels |
Family Cites Families (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1385392A (en) * | 1963-08-12 | 1965-01-15 | Haut Rhin Manufacture Machines | Improved belted projectiles, particularly for small caliber automatic weapons |
US3786760A (en) * | 1972-06-01 | 1974-01-22 | Pacific Technica Corp | Rotating band for projectile |
CA985954A (en) * | 1974-03-07 | 1976-03-23 | Joseph F.L.J. Pichard | Projectiles for air arms |
DE3248011C1 (en) * | 1982-12-24 | 1984-09-20 | Karl Schmidt Gmbh, 7107 Neckarsulm | Guide tape for projectiles |
US4603637A (en) * | 1984-10-31 | 1986-08-05 | The United States Of America As Represented By The Secretary Of The Air Force | Variable density frangible projectile |
DE3617460C1 (en) * | 1986-05-23 | 1987-10-01 | Nwm De Kruithoorn Bv | Decay bullet for cartridge maneuvering |
US4850278A (en) * | 1986-09-03 | 1989-07-25 | Coors Porcelain Company | Ceramic munitions projectile |
US4939996A (en) * | 1986-09-03 | 1990-07-10 | Coors Porcelain Company | Ceramic munitions projectile |
US5108677A (en) * | 1988-10-17 | 1992-04-28 | John Ayres | Method of forming a sand base article using a decomposable binder and the article formed thereby |
US5145512A (en) * | 1989-01-03 | 1992-09-08 | Gte Products Corporation | Tungsten nickel iron alloys |
US5078054A (en) * | 1989-03-14 | 1992-01-07 | Olin Corporation | Frangible projectile |
US5214237A (en) * | 1990-07-09 | 1993-05-25 | Bruce D. McArthur | Fluorocarbon resin bullet and method of making same |
US5353712A (en) * | 1991-12-31 | 1994-10-11 | Olson Christy L | Marking pellet gun and rigid, fracturable pellet therefor |
US5174581A (en) * | 1992-01-15 | 1992-12-29 | Goodson Deborah A | Biodegradable clay pigeon |
US5237930A (en) * | 1992-02-07 | 1993-08-24 | Snc Industrial Technologies, Inc. | Frangible practice ammunition |
US5877437A (en) * | 1992-04-29 | 1999-03-02 | Oltrogge; Victor C. | High density projectile |
US5831188A (en) * | 1992-05-05 | 1998-11-03 | Teledyne Industries, Inc. | Composite shots and methods of making |
US5471719A (en) * | 1993-05-10 | 1995-12-05 | Sawyers; William L. | Air gun pellet forming method |
US6158351A (en) * | 1993-09-23 | 2000-12-12 | Olin Corporation | Ferromagnetic bullet |
US5399187A (en) * | 1993-09-23 | 1995-03-21 | Olin Corporation | Lead-free bullett |
AU2951995A (en) * | 1994-07-06 | 1996-01-25 | Lockheed Martin Energy Systems, Inc. | Non-lead, environmentally safe projectiles and method of making same |
US5679920A (en) * | 1995-08-03 | 1997-10-21 | Federal Hoffman, Inc. | Non-toxic frangible bullet |
AUPN554295A0 (en) * | 1995-09-20 | 1996-02-01 | Australian Defence Industries Limited | Frangible ammunition |
US20030047105A1 (en) * | 1996-11-18 | 2003-03-13 | Jaycor Tactical Systems, Inc. | Non-lethal projectile systems |
US7194960B2 (en) * | 1996-11-18 | 2007-03-27 | Pepperball Technologies, Inc. | Non-lethal projectiles for delivering an inhibiting substance to a living target |
US20050188886A1 (en) * | 1996-11-18 | 2005-09-01 | Pepperball Technologies, Inc. | Non-lethal projectile systems |
US6543365B1 (en) * | 1996-11-18 | 2003-04-08 | Jaycor Tactical Systems, Inc. | Non-lethal projectile systems |
US6317946B1 (en) * | 1997-01-30 | 2001-11-20 | Harold F. Beal | Method for the manufacture of a multi-part projectile for gun ammunition and product produced thereby |
US6457417B1 (en) * | 1997-04-16 | 2002-10-01 | Doris Nebel Beal Inter Vivos Patent Trust | Method for the manufacture of a frangible nonsintered powder-based projectile for use in gun ammunition and product obtained thereby |
CA2361502A1 (en) * | 1998-12-23 | 2000-06-29 | Harold F. Beal | Small bore frangible ammunition projectile |
US20010050020A1 (en) * | 1999-04-02 | 2001-12-13 | Davis George B. | Jacketed frangible bullets |
US6199311B1 (en) * | 1999-05-10 | 2001-03-13 | Wes Foster | Scent pellet and method |
US6045601A (en) * | 1999-09-09 | 2000-04-04 | Advanced Materials Technologies, Pte, Ltd. | Non-magnetic, high density alloy |
US6581523B2 (en) * | 2000-01-26 | 2003-06-24 | Doris Nebel Beal Intervivos Patent Trust | Powder-based disc having solid outer skin for use in a multi-component ammunition projectile |
US6371029B1 (en) * | 2000-01-26 | 2002-04-16 | Harold F. Beal | Powder-based disc for gun ammunition having a projectile which includes a frangible powder-based core disposed within a metallic jacket |
US6526893B2 (en) * | 2000-01-31 | 2003-03-04 | Thomas R. May | Polymer ballistic tip pellets |
WO2002086412A1 (en) * | 2001-04-24 | 2002-10-31 | Anthony Joseph Cesaroni | Lead-free projectiles |
NZ532694A (en) * | 2001-10-16 | 2005-03-24 | Internat Non Toxic Composites | High density non-toxic composites comprising tungsten, another metal and polymer powder |
US6644294B2 (en) * | 2001-11-09 | 2003-11-11 | Robert N. Christensen | Air cannon |
WO2003064961A1 (en) * | 2002-01-30 | 2003-08-07 | Amick Darryl D | Tungsten-containing articles and methods for forming the same |
US7353756B2 (en) * | 2002-04-10 | 2008-04-08 | Accutec Usa | Lead free reduced ricochet limited penetration projectile |
CA2437515A1 (en) * | 2002-08-21 | 2004-02-21 | Christopher R. Mcmurray | Lead attached sabot slug |
CA2520274A1 (en) * | 2003-04-11 | 2004-10-28 | Darryl D. Amick | System and method for processing ferrotungsten and other tungsten alloys articles formed therefrom and methods for detecting the same |
CA2432820A1 (en) * | 2003-06-19 | 2004-12-19 | Green-Kore Inc. | Composition for production of non-toxic projectiles and method of manufacturing thereof |
DE102004035385A1 (en) * | 2003-08-05 | 2005-03-03 | Ruag Ammotec Gmbh | Partial decomposition projectile with solid core and core of pressed powder |
EP1706700A2 (en) * | 2003-11-12 | 2006-10-04 | National Paintball Supply, Inc. | Projectile, projectile core, and method of making |
US7150233B1 (en) * | 2004-04-26 | 2006-12-19 | Olin Corporation | Jacketed boat-tail bullet |
US7690312B2 (en) * | 2004-06-02 | 2010-04-06 | Smith Timothy G | Tungsten-iron projectile |
BRPI0500226B1 (en) * | 2005-01-26 | 2017-09-12 | Condor S/A Indústria Química | PROJECTILE FOR NON-LETHAL AMMUNITION |
US7222573B2 (en) * | 2005-04-01 | 2007-05-29 | Pontieri James M | Aerodynamic air gun projectile |
US7428871B2 (en) * | 2005-07-08 | 2008-09-30 | Dodson L Carl | Pellet for pneumatic and spring-piston operated weapons |
CN101227940A (en) * | 2005-07-25 | 2008-07-23 | 纳米技术维多利亚有限公司 | Microarray device |
US20070071781A1 (en) * | 2005-09-19 | 2007-03-29 | Nelson Technologies, Inc. | Compositions for rupturable capsules and methods of making the same |
EP1780494A3 (en) * | 2005-10-04 | 2008-02-27 | Alliant Techsystems Inc. | Reactive material enhanced projectiles and related methods |
US7654202B2 (en) * | 2006-02-03 | 2010-02-02 | Stresau West, Inc. | Frangible slug |
US20070240601A1 (en) * | 2006-04-14 | 2007-10-18 | Ming Cherng Chou | Biodegradable BB Pellet |
US8122832B1 (en) * | 2006-05-11 | 2012-02-28 | Spherical Precision, Inc. | Projectiles for shotgun shells and the like, and methods of manufacturing the same |
US8250985B2 (en) * | 2006-06-06 | 2012-08-28 | Lockheed Martin Corporation | Structural metallic binders for reactive fragmentation weapons |
US20100269723A1 (en) * | 2006-08-16 | 2010-10-28 | Lockheed Martin Corporation | Metal binders for thermobaric weapons |
US7748369B2 (en) * | 2006-10-16 | 2010-07-06 | Tyson Chee | Launching apparatus and assembly |
US20090013892A1 (en) * | 2007-07-11 | 2009-01-15 | Sjs Paintball, Lp | Casing for soft projectile and method for making same |
US7975616B2 (en) * | 2007-08-02 | 2011-07-12 | Andrew Wayne Hill | Bullet for black powder firearms |
FR2921474A1 (en) * | 2007-09-21 | 2009-03-27 | David Delhaye | MARKING PAINT BALL AND METHOD OF MANUFACTURING THE SAME |
ES2304898B1 (en) * | 2008-03-03 | 2009-10-09 | Industrias El Gamo, S.A. | PROCEDURE FOR THE MANUFACTURE OF A CARBIN BALL OR SPORTS GUN AND CARBIN BALL OR SPORTS GUN OBTAINED. |
US8312815B1 (en) * | 2008-10-08 | 2012-11-20 | United States Metal Powders Incorporated | Lead free frangible bullets |
US8365672B2 (en) * | 2009-03-25 | 2013-02-05 | Aleaciones De Metales Sinterizados, S.A. | Frangible bullet and its manufacturing method |
US8171851B2 (en) * | 2009-04-01 | 2012-05-08 | Kennametal Inc. | Kinetic energy penetrator |
US8028626B2 (en) * | 2010-01-06 | 2011-10-04 | Ervin Industries, Inc. | Frangible, ceramic-metal composite objects and methods of making the same |
US8186275B1 (en) * | 2010-05-17 | 2012-05-29 | The United States Of America As Represented By The Secretary Of The Navy | Non-lethal projectile for dispersing payload upon target impact |
US8141493B1 (en) * | 2010-11-02 | 2012-03-27 | Todd Kuchman | Projectile for use with a rifled barrel |
US10041770B2 (en) * | 2010-11-10 | 2018-08-07 | True Velocity, Inc. | Metal injection molded ammunition cartridge |
US9377278B2 (en) * | 2012-05-02 | 2016-06-28 | Darren Rubin | Biological active bullets, systems, and methods |
US9228814B2 (en) * | 2012-06-15 | 2016-01-05 | Real Achon Paintball, Inc. (RAP4) | Delivery shell using gyroscopic guiding system and methods of making the same |
US9115961B2 (en) * | 2012-07-19 | 2015-08-25 | Amick Family Revocable Living Trust | Corrosion-inhibited projectiles, and shot shells including the same |
ES2486065A1 (en) * | 2013-01-14 | 2014-08-14 | Bioplast Future S.L. | Long-range aerodynamic pellet for airsoft and military training |
US8689696B1 (en) * | 2013-02-21 | 2014-04-08 | Caneel Associates, Inc. | Composite projectile and cartridge with composite projectile |
US9188416B1 (en) * | 2013-10-17 | 2015-11-17 | Ervin Industries, Inc. | Lead-free, corrosion-resistant projectiles and methods of manufacture |
US9157712B2 (en) * | 2014-01-10 | 2015-10-13 | Minima Technology Co., Ltd. | Environmentally friendly biodegradable BB pellet and manufacturing method thereof |
US9816791B2 (en) * | 2014-02-13 | 2017-11-14 | The Boeing Company | Fire-retarding artillery shell |
FR3018268B1 (en) * | 2014-03-07 | 2016-03-11 | Polytek Innovations | METHOD AND SYSTEM FOR MANUFACTURING CAPSULE |
US9528805B2 (en) * | 2014-04-07 | 2016-12-27 | Einstein Noodles, Llc | Providing spin to composite projectile |
US10323918B2 (en) * | 2014-07-29 | 2019-06-18 | Polywad, Inc. | Auto-segmenting spherical projectile |
US10082374B2 (en) * | 2014-08-01 | 2018-09-25 | James Nicholas Marshall | Magnetic ammunition for air guns and biodegradable magnetic ammunition for airguns |
US9797696B2 (en) * | 2014-08-14 | 2017-10-24 | OATH Corporation | Conic taper tip fracturing projectiles |
US20160091290A1 (en) * | 2014-09-29 | 2016-03-31 | Pm Ballistics Llc | Lead free frangible iron bullets |
LU92734B1 (en) * | 2015-06-05 | 2016-12-06 | Securinov Sa | HIGH ELASTIC DEFORMATION KINETIC PROJECTILE |
US20170234660A1 (en) * | 2015-06-26 | 2017-08-17 | Shooting Edge Technology, LLC | Air Driven Projectile |
DK3321627T3 (en) * | 2015-07-10 | 2020-07-27 | Lopez Pozas Lanuza Luis Enrique | Biodegradable ammunition for firearms |
FR3041503B1 (en) * | 2015-09-25 | 2017-10-20 | Melchior Material & Life Science France | OXODEGRADABLE PROJECTILES CONTAINING PHEROMONES |
US20170121039A1 (en) * | 2015-10-30 | 2017-05-04 | Paul M. Ciesiun | Seamless Paintball and Encapsulation Method |
US10209045B2 (en) * | 2016-01-15 | 2019-02-19 | Continuous Metal Technology, Inc. | Non-jacketed expandable bullet and method of manufacturing a non-jacketed expandable bullet |
EP3405743A1 (en) * | 2016-01-20 | 2018-11-28 | Sinterfire, Inc. | Bullet comprising a compacted mixture of copper powder |
GB2547002B (en) * | 2016-02-04 | 2019-04-10 | Kenneth Cooper David | An ammunition device |
US9574845B1 (en) * | 2016-02-10 | 2017-02-21 | Robert Wyne | Hunting scent and call pneumatic gun |
WO2017156309A1 (en) * | 2016-03-09 | 2017-09-14 | Msato, Llc | Pellet shaped marking round for air rifles and pistols |
AU2017230163B2 (en) * | 2016-03-10 | 2020-09-24 | Nissan Chemical Corporation | Condensed heterocyclic compounds and pesticides |
US10260850B2 (en) * | 2016-03-18 | 2019-04-16 | Environ-Metal, Inc. | Frangible firearm projectiles, methods for forming the same, and firearm cartridges containing the same |
KR101864940B1 (en) * | 2016-09-21 | 2018-06-05 | 국방과학연구소 | Thermal insulation foams for high explosive |
US9879948B1 (en) * | 2016-11-27 | 2018-01-30 | John M. Puckett | Edible target disk device |
US20180156588A1 (en) * | 2016-12-07 | 2018-06-07 | Russell LeBlanc | Frangible Projectile and Method of Manufacture |
US20180164069A1 (en) * | 2016-12-09 | 2018-06-14 | Kien Well Toy Industrial Co., Ltd. | Toy gun magazine module |
US10267606B2 (en) * | 2017-08-24 | 2019-04-23 | Dmd Systems, Llc | Debris-free combustible aerial shell |
CA3079214A1 (en) * | 2017-10-17 | 2019-04-25 | Smart Nanos, Llc | Multifunctional composite projectiles and methods of manufacturing the same |
-
2017
- 2017-12-01 US US15/828,716 patent/US20180156588A1/en not_active Abandoned
- 2017-12-06 EP EP17205757.2A patent/EP3333532B1/en active Active
-
2018
- 2018-07-10 HK HK18108918.2A patent/HK1249573A1/en unknown
-
2019
- 2019-02-18 US US16/278,461 patent/US10598472B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6551375B2 (en) * | 2001-03-06 | 2003-04-22 | Kennametal Inc. | Ammunition using non-toxic metals and binders |
US20050006684A1 (en) * | 2003-02-09 | 2005-01-13 | Matsushita Electric Industrial Co., Ltd | Capacitive element and semiconductor memory device |
US20170008241A1 (en) * | 2003-03-06 | 2017-01-12 | 3M Innovative Properties Company | Cube corner retroreflective sheeting having channels |
US20120308426A1 (en) * | 2011-05-08 | 2012-12-06 | Martin Gerardo Perez | Frangible projectile and method for making same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323918B2 (en) * | 2014-07-29 | 2019-06-18 | Polywad, Inc. | Auto-segmenting spherical projectile |
US20190186880A1 (en) * | 2016-12-07 | 2019-06-20 | Russell LeBlanc | Frangible Projectile and Method of Manufacture |
US10598472B2 (en) * | 2016-12-07 | 2020-03-24 | Russell LeBlanc | Frangible projectile and method of manufacture |
US20190120603A1 (en) * | 2017-10-19 | 2019-04-25 | Richard C. Cole | Projectile with radial grooves |
DE102020105266A1 (en) | 2020-02-28 | 2021-09-02 | Ruag Ammotec Gmbh | Projectile, diabolo, ammunition and methods of making a projectile |
DE102020105266B4 (en) | 2020-02-28 | 2021-09-30 | Ruag Ammotec Gmbh | Projectile, diabolo, ammunition and methods of making a projectile |
CN115121791A (en) * | 2022-08-29 | 2022-09-30 | 北京煜鼎增材制造研究院有限公司 | Multi-scale particle composite reinforced warhead and additive manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3333532B1 (en) | 2020-04-15 |
EP3333532A3 (en) | 2018-08-22 |
HK1249573A1 (en) | 2018-11-02 |
US10598472B2 (en) | 2020-03-24 |
EP3333532A2 (en) | 2018-06-13 |
US20190186880A1 (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10598472B2 (en) | Frangible projectile and method of manufacture | |
US11015908B2 (en) | Method of making a bullet comprising a compacted mixture of copper powder | |
US7059233B2 (en) | Tungsten-containing articles and methods for forming the same | |
JP3634367B2 (en) | Lead free bullet | |
US7217389B2 (en) | Tungsten-containing articles and methods for forming the same | |
US6551375B2 (en) | Ammunition using non-toxic metals and binders | |
US8312815B1 (en) | Lead free frangible bullets | |
US8225718B2 (en) | Lead free frangible bullets | |
US20060283314A1 (en) | Bismuth projectile | |
US7685942B1 (en) | Frangible powdered iron projectiles | |
US20020005137A1 (en) | Lead-free frangible projectile | |
US11674781B2 (en) | Lead free frangible iron bullets | |
US20100043662A1 (en) | Diffusion alloyed iron powder | |
US20160298946A1 (en) | Shotshell with reduced dispersion of projectiles | |
US9702679B2 (en) | Frangible projectile | |
US20050066850A1 (en) | Non-lead composition and method of manufacturing non-lead projectiles and projectile cores therewith | |
US20050188890A1 (en) | Composition and method for making frangible bullet | |
CA2940677A1 (en) | A low ricochet, non-toxic air gun bb that can be attracted and retained by a magnet and method of making same | |
CA2901657A1 (en) | An accurate lead free frangible airgun pellet and method of making same | |
JP2006337007A (en) | Slug material for gun | |
CZ2011391A3 (en) | Frangible shell with enhanced effect in target | |
CA2498306A1 (en) | Lead-free composition and method of manufacturing lead-free projectiles and projectile cores therewith | |
CZ2010237A3 (en) | Frangible-type projectile | |
CA2613696A1 (en) | Accurate non-lead frangible bullet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |