US20170299262A1 - Method and device for variably obtaining argon by means of low-temperature separation - Google Patents
Method and device for variably obtaining argon by means of low-temperature separation Download PDFInfo
- Publication number
- US20170299262A1 US20170299262A1 US15/513,180 US201515513180A US2017299262A1 US 20170299262 A1 US20170299262 A1 US 20170299262A1 US 201515513180 A US201515513180 A US 201515513180A US 2017299262 A1 US2017299262 A1 US 2017299262A1
- Authority
- US
- United States
- Prior art keywords
- argon
- column
- gaseous
- stream
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 title claims abstract description 356
- 229910052786 argon Inorganic materials 0.000 title claims abstract description 178
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000000926 separation method Methods 0.000 title abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000004821 distillation Methods 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 31
- 239000000047 product Substances 0.000 claims description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000005194 fractionation Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04703—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04721—Producing pure argon, e.g. recovered from a crude argon column
- F25J3/04727—Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/58—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/58—Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
Definitions
- the invention relates to a method according to the preamble of claim 1 .
- Argon-enriched refers here to a stream having a higher argon concentration than air.
- the crude argon column may have a one-part or multi-part design. It has a top condenser which is cooled with a liquid from the air fractionation method in the narrower sense, especially with bottoms liquid from the high-pressure column.
- the entire liquid pure argon product stream is drawn off from the bottom of the pure argon column as the end product.
- the end product is, for example, obtained directly as the liquid product and introduced into a liquid tank. Alternatively, it is withdrawn in liquid form from the pure argon column or from the tank, compressed in liquid form and warmed in the main heat exchanger and fed directly as compressed gas product to a consumer. In many cases, the argon is sold as a liquid product.
- Sales volumes for liquid argon vary depending on the market.
- the argon demand likewise varies in a cyclical or irregular manner, while the demand for oxygen and/or nitrogen (main product demand) remains the same.
- the crude and pure argon column are correspondingly run up and down, i.e. operated with varying throughput.
- At least one gaseous argon return stream is drawn off from the crude argon column, the top condenser thereof, the pure argon column or the top condenser, in order to reduce or entirely shut down pure argon production.
- the gaseous argon return stream is warmed without mixing with another stream in a separate passage of the main heat exchanger.
- the efficiency of the oxygen production depends on the quality of the argon removal. Therefore, even when the argon product is not required in full, if at all, the invention attempts to keep the argon yield as high as possible. If—as in the prior art—the conversion of the argon columns is run down, only the liquefaction energy for the argon which is not required is gained, but, on the other hand, the oxygen separation loses efficiency.
- the gaseous argon return stream has an argon content at least twice as high as that of the argon-enriched stream from the low-pressure column (measured in molar amounts).
- the refrigeration energy present therein is recovered in the main heat exchanger, specifically by at least one of the following measures:
- the crude argon column or a portion thereof can be run with variable argon production at constant throughput, or at the nominal or maximum throughput for which the process is designed.
- the oxygen yield and the oxygen purity thus remain constantly high.
- the entire volume of pure argon product is removed as the end product.
- the “second mode of operation” may then be constituted by any type of operation in which the end product volume is smaller than in the first mode of operation.
- the excess portion of the volume of pure argon product is then drawn off as the gaseous argon return stream even upstream of the pure argon column or from the pure argon column before it arrives at the bottom of the pure argon column. In the extreme case, no argon end product at all is produced and the pure argon column merely releases tail gas at the top.
- a first volume of argon return stream may already be conducted to the main heat exchanger, in this case, in the “second mode of operation”, the amount of argon return stream to the main heat exchanger is greater than in the “first mode of operation”.
- U.S. Pat. No. 6,269,659 B 1 has already proposed, in the event of reduced argon demand, evaporating at least a portion of the crude argon fraction from the top of the crude argon column, mixing it with a tail gas stream from one of the columns of the air fractionator in the narrower sense and warming it in the main heat exchanger of the air fractionator.
- the portion of the gaseous argon return stream can be mixed with any return stream from the low-pressure column, provided that this is possible in terms of pressure level. Preference is given, however, to choosing one of the following return streams:
- the pure products from the low-pressure column are not contaminated and the argon product can be viably utilized for regeneration of adsorbers or in a vaporization cooler.
- the absolute total volume of argon which is withdrawn from the crude argon column and pure argon column is kept essentially constant.
- Essentially constant is understood here to mean a deviation of less than 5 mol %, especially of less than 2.5%.
- this total volume of argon is composed of the volume of argon product and the volume of argon present in the tail gas from the top of the pure argon column. If, for example, no argon product at all is obtained in the second mode of operation, the argon present in the argon return stream(s) and the argon volume present in the tail gas from the top of the pure argon column add up to the total volume of argon.
- gaseous argon return stream may also be drawn off:
- Atmospheric air is sucked in through a filter 2 from an air compressor 3 .
- the compressed air 4 from the air compressor 3 is cooled in a preliminary cooling unit 5 and cleaned in a cleaning apparatus 6 .
- the cleaned air 7 is fed to a main heat exchanger 8 .
- a first cold air stream 9 is introduced in essentially gaseous form into the high-pressure column 10 .
- the high-pressure column 10 is part of a double column which also includes a low-pressure column 11 and a main condenser 12 . These apparatuses are part of a distillation column system.
- a second cold air stream 13 which has optionally been branched off from stream 7 and compressed to a high pressure is expanded in a valve 14 and introduced ( 15 ) mainly in liquid form into the high-pressure column 10 .
- a portion 16 of this liquid is drawn off again straight away, cooled in a subcooling countercurrent heat exchanger 17 and introduced via conduit 18 into the low-pressure column 11 .
- An oxygen-enriched fraction 19 from the bottom of the high-pressure column 10 is cooled in the subcooling countercurrent heat exchanger 17 .
- a first portion 21 of the cooled oxygen-enriched fraction 20 is guided through the reboiler 91 of the pure argon column 83 and further into the evaporation space of the crude argon column top condenser 90 .
- a second portion 22 flows directly into the evaporation space of the pure argon column top condenser 91 .
- the components that have remained in liquid form and the gaseous components from the top condensers are combined in pairs and fed into the low-pressure column 11 via the conduits 23 and 24 .
- these streams can each be conducted separately into the low-pressure column.
- a portion of the tops nitrogen 25 from the high-pressure column 10 is condensed in the main condenser 12 and a first portion 26 is introduced to the high-pressure column.
- a second portion 27 of the liquid nitrogen flows through the subcooling countercurrent heat exchanger 17 and through conduit 28 to the top of the low-pressure column.
- gaseous oxygen can be fed from the bottom of the low-pressure column 11 into the tail gas conduit 33 .
- An argon-enriched stream 80 from the low-pressure column 11 is introduced into a crude argon column which, in the example, takes the form of a divided crude argon column having two sections 81 , 82 .
- first mode of operation the tops vapor 70 from the first section 81 is introduced completely via conduit 70 a into the second section 82 .
- the top condenser 90 reflux liquid is produced.
- the liquid 87 arriving in the bottom of the second section 82 is applied by means of a pump 88 via conduit 89 to the top of the first section 81 .
- the liquid 84 that accumulates in the bottom of the first section 81 is likewise pumped and returned to the low-pressure column 11 via conduit 6 .
- a gaseous crude argon fraction 71 is withdrawn and introduced in full in gaseous form into the pure argon column 83 .
- a liquid pure argon product stream 72 is withdrawn.
- a tail gas stream 73 is drawn off and discharged into the atmosphere (ATM).
- the drawing shows various variants of the leading-off of an argon return stream according to the invention.
- the gaseous argon return stream or a portion thereof is formed by a portion of the tops vapor 70 of the first section 81 of the crude argon column. It is guided with the aid of conduits 101 , 102 a , 105 , 106 , 107 through the separate passage 108 of the main heat exchanger.
- a portion 102 b can be introduced into the impure nitrogen 32 downstream of the subcooling countercurrent heat exchanger 17 ; alternatively, the introduction can be conducted upstream of the subcooling countercurrent heat exchanger 17 .
- the gaseous argon return stream is formed by a portion of the crude argon fraction 71 or by the entire crude argon fraction 71 and guided via conduits 103 , 104 , 106 into the separate passage 108 of the main heat exchanger.
- a portion can be introduced into the gaseous nitrogen product stream 30 downstream of the subcooling countercurrent heat exchanger 17 (conduits 103 , 104 , 105 ); alternatively, the introduction can be conducted upstream of the subcooling countercurrent heat exchanger 17 .
- argon return stream in the second mode of operation, is not mixed with another stream, it is conducted through a separate passage 108 of the main heat exchanger 8 .
- Passage is understood here to mean a multitude of passes through the main heat exchanger 8 through which the same stream flows.
- the conduit 101 is opened, and 0% to 3.5% of the tops vapor 70 or of the ascending vapor in the crude argon column 81 , 82 is conducted into the main heat exchanger 8 .
- 70% of the maximum possible volume of argon is required as product by the operator.
- the “second volume of pure argon product” is thus 70% of the maximum argon product.
- the argon return stream 101 then comprises, for example, 1% of the tops vapor 70 .
- the rest of the tops vapor 70 from the crude argon column is still introduced via conduit 70 a into the second section 82 of the crude argon column.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
- The invention relates to a method according to the preamble of claim 1.
- This way of obtaining argon is described, for example, in EP 2600090 A1. After a two-column or multi-column method for nitrogen/oxygen separation, in a crude argon column (of a two-part design here), argon and oxygen are separated and, in a further step, the pure argon column, argon and nitrogen. The crude argon from the crude argon column is introduced into the pure argon column in gaseous form.
- “Argon-enriched” refers here to a stream having a higher argon concentration than air.
- The crude argon column may have a one-part or multi-part design. It has a top condenser which is cooled with a liquid from the air fractionation method in the narrower sense, especially with bottoms liquid from the high-pressure column.
- Typically, the entire liquid pure argon product stream is drawn off from the bottom of the pure argon column as the end product. The end product is, for example, obtained directly as the liquid product and introduced into a liquid tank. Alternatively, it is withdrawn in liquid form from the pure argon column or from the tank, compressed in liquid form and warmed in the main heat exchanger and fed directly as compressed gas product to a consumer. In many cases, the argon is sold as a liquid product.
- Sales volumes for liquid argon vary depending on the market. In the case of some direct consumers of argon, the argon demand likewise varies in a cyclical or irregular manner, while the demand for oxygen and/or nitrogen (main product demand) remains the same. Typically, in such cases, the crude and pure argon column are correspondingly run up and down, i.e. operated with varying throughput.
- It is an object of the invention, in a method specified at the outset, to increase the efficiency of the obtaining of oxygen with an argon demand varying relative to the main product demand. “Efficiency” of oxygen separation is understood here to mean the oxygen yield, especially the energy expenditure per m3 (STP) of oxygen produced, with constant purity of the oxygen product.
- This object is achieved by the totality of the features of claim 1. More particularly, in a second mode of operation, with reduced argon demand, at least one gaseous argon return stream is drawn off from the crude argon column, the top condenser thereof, the pure argon column or the top condenser, in order to reduce or entirely shut down pure argon production. The gaseous argon return stream is warmed without mixing with another stream in a separate passage of the main heat exchanger.
- In the context of the invention, it has been found that the efficiency of the oxygen production depends on the quality of the argon removal. Therefore, even when the argon product is not required in full, if at all, the invention attempts to keep the argon yield as high as possible. If—as in the prior art—the conversion of the argon columns is run down, only the liquefaction energy for the argon which is not required is gained, but, on the other hand, the oxygen separation loses efficiency.
- The gaseous argon return stream has an argon content at least twice as high as that of the argon-enriched stream from the low-pressure column (measured in molar amounts). The refrigeration energy present therein is recovered in the main heat exchanger, specifically by at least one of the following measures:
-
- In one variant of the invention, a portion of the gaseous argon return stream is introduced into a return stream from the low-pressure column.
- The gaseous argon return stream is warmed without mixing with another stream in a separate passage of the main heat exchanger.
- In the context of the invention, the crude argon column or a portion thereof can be run with variable argon production at constant throughput, or at the nominal or maximum throughput for which the process is designed. The oxygen yield and the oxygen purity thus remain constantly high.
- In general, in the first mode of operation, the entire volume of pure argon product is removed as the end product. The “second mode of operation” may then be constituted by any type of operation in which the end product volume is smaller than in the first mode of operation. The excess portion of the volume of pure argon product is then drawn off as the gaseous argon return stream even upstream of the pure argon column or from the pure argon column before it arrives at the bottom of the pure argon column. In the extreme case, no argon end product at all is produced and the pure argon column merely releases tail gas at the top.
- In specific cases, however, even in the “first mode of operation”, a first volume of argon return stream may already be conducted to the main heat exchanger, in this case, in the “second mode of operation”, the amount of argon return stream to the main heat exchanger is greater than in the “first mode of operation”.
- U.S. Pat. No. 6,269,659 B 1 has already proposed, in the event of reduced argon demand, evaporating at least a portion of the crude argon fraction from the top of the crude argon column, mixing it with a tail gas stream from one of the columns of the air fractionator in the narrower sense and warming it in the main heat exchanger of the air fractionator.
- However, this solution cannot be applied to processes in which the crude argon fraction is drawn off from the crude argon column in gaseous form and introduced into the pure argon column in gaseous form.
- In principle, the portion of the gaseous argon return stream can be mixed with any return stream from the low-pressure column, provided that this is possible in terms of pressure level. Preference is given, however, to choosing one of the following return streams:
-
- gaseous nitrogen product stream from the top of the low-pressure column,
- impure nitrogen stream from an intermediate point in the low-pressure column.
- In this way, the pure products from the low-pressure column are not contaminated and the argon product can be viably utilized for regeneration of adsorbers or in a vaporization cooler.
- Preferably, during the transition from the first to the second mode of operation, the absolute total volume of argon which is withdrawn from the crude argon column and pure argon column is kept essentially constant.
- “Essentially constant” is understood here to mean a deviation of less than 5 mol %, especially of less than 2.5%.
- In the first mode of operation, this total volume of argon is composed of the volume of argon product and the volume of argon present in the tail gas from the top of the pure argon column. If, for example, no argon product at all is obtained in the second mode of operation, the argon present in the argon return stream(s) and the argon volume present in the tail gas from the top of the pure argon column add up to the total volume of argon.
- There follows a discussion of various options for drawing of the argon return stream. In the context of the invention, there are especially the following sources for the argon return stream:
-
- The gaseous argon return stream is formed by at least a portion of the crude argon fraction.
- The gaseous argon return stream is drawn off from an intermediate point in the crude argon column, i.e. with a higher argon content than the crude argon fraction.
- In the case of a divided crude argon column, the gaseous argon return stream may also be drawn off:
-
- from an intermediate point in the first section of the crude argon column and/or
- the gaseous argon return stream from the top of the first section of the crude argon column.
- In a further variant,
-
- a gaseous stream is drawn off from the pure argon column at any point, for example from the top (optionally from the top condenser of the pure argon column), directly via the bottom or at any intermediate point between the bottom and top.
- The invention and further details of the invention elucidated in detail hereinafter with reference to a working example shown in schematic form in the drawing. In this drawing, the warm part of the plant is particularly depicted schematically; machines such as turbines and recompressors have also been omitted.
- Atmospheric air is sucked in through a
filter 2 from an air compressor 3. The compressed air 4 from the air compressor 3 is cooled in a preliminary cooling unit 5 and cleaned in a cleaning apparatus 6. The cleanedair 7 is fed to amain heat exchanger 8. A first cold air stream 9 is introduced in essentially gaseous form into the high-pressure column 10. The high-pressure column 10 is part of a double column which also includes a low-pressure column 11 and amain condenser 12. These apparatuses are part of a distillation column system. - A second
cold air stream 13 which has optionally been branched off fromstream 7 and compressed to a high pressure is expanded in a valve 14 and introduced (15) mainly in liquid form into the high-pressure column 10. Aportion 16 of this liquid is drawn off again straight away, cooled in a subcoolingcountercurrent heat exchanger 17 and introduced viaconduit 18 into the low-pressure column 11. An oxygen-enriched fraction 19 from the bottom of the high-pressure column 10 is cooled in the subcoolingcountercurrent heat exchanger 17. A first portion 21 of the cooled oxygen-enrichedfraction 20 is guided through the reboiler 91 of thepure argon column 83 and further into the evaporation space of the crude argon column top condenser 90. A second portion 22 flows directly into the evaporation space of the pure argon column top condenser 91. The components that have remained in liquid form and the gaseous components from the top condensers are combined in pairs and fed into the low-pressure column 11 via theconduits 23 and 24. Alternatively, these streams can each be conducted separately into the low-pressure column. - A portion of the
tops nitrogen 25 from the high-pressure column 10 is condensed in themain condenser 12 and afirst portion 26 is introduced to the high-pressure column. Asecond portion 27 of the liquid nitrogen flows through the subcoolingcountercurrent heat exchanger 17 and throughconduit 28 to the top of the low-pressure column. - As products, the following streams leave the double column:
-
- liquid nitrogen (LIN) from the top of the low-pressure column
- gaseous externally compressed nitrogen (GAN-EC) via
conduits - gaseous impure nitrogen via
conduits 32, 34 - internally compressed oxygen (GOX-IC) via
conduits - liquid oxygen (LOX) via
conduit 41 - compressed nitrogen as seal gas via
conduits 39, 40
- In addition, via the conduit X, gaseous oxygen can be fed from the bottom of the low-
pressure column 11 into thetail gas conduit 33. - There now follows a description of the obtaining of argon. An argon-enriched
stream 80 from the low-pressure column 11 is introduced into a crude argon column which, in the example, takes the form of a divided crude argon column having twosections 81, 82. In normal operation (“first mode of operation”), the tops vapor 70 from the first section 81 is introduced completely viaconduit 70 a into thesecond section 82. In the top condenser 90, reflux liquid is produced. The liquid 87 arriving in the bottom of thesecond section 82 is applied by means of apump 88 via conduit 89 to the top of the first section 81. The liquid 84 that accumulates in the bottom of the first section 81 is likewise pumped and returned to the low-pressure column 11 via conduit 6. - From the top of the
second section 82 of the crude argon column, more specifically from the liquefaction space of the top condenser 90, a gaseous crude argon fraction 71 is withdrawn and introduced in full in gaseous form into thepure argon column 83. From the bottom of thepure argon column 83, a liquid pureargon product stream 72 is withdrawn. From the top condenser 91 of the pure argon column, atail gas stream 73 is drawn off and discharged into the atmosphere (ATM). - For the second mode of operation, the drawing shows various variants of the leading-off of an argon return stream according to the invention. In principle, it is also possible in a real plant to implement two or more of the variants simultaneously. In general, however, a single variant will be chosen.
- In one variant, the gaseous argon return stream or a portion thereof is formed by a portion of the tops vapor 70 of the first section 81 of the crude argon column. It is guided with the aid of
conduits separate passage 108 of the main heat exchanger. A portion 102 b can be introduced into theimpure nitrogen 32 downstream of the subcoolingcountercurrent heat exchanger 17; alternatively, the introduction can be conducted upstream of the subcoolingcountercurrent heat exchanger 17. - In a further variant of the invention, the gaseous argon return stream is formed by a portion of the crude argon fraction 71 or by the entire crude argon fraction 71 and guided via
conduits separate passage 108 of the main heat exchanger. In a different option, a portion can be introduced into the gaseousnitrogen product stream 30 downstream of the subcooling countercurrent heat exchanger 17 (conduits countercurrent heat exchanger 17. - If the argon return stream, in the second mode of operation, is not mixed with another stream, it is conducted through a
separate passage 108 of themain heat exchanger 8. “Passage” is understood here to mean a multitude of passes through themain heat exchanger 8 through which the same stream flows. - Of course, it is possible in the context of the invention for the
different withdrawals 101, 103 of the argon return stream each to be combined with any mode of conduction through themain heat exchanger 8. - In a second mode of operation with reduced demand for argon product, the conduit 101 is opened, and 0% to 3.5% of the tops vapor 70 or of the ascending vapor in the
crude argon column 81, 82 is conducted into themain heat exchanger 8. In a specific numerical example, only 70% of the maximum possible volume of argon is required as product by the operator. The “second volume of pure argon product” is thus 70% of the maximum argon product. The argon return stream 101 then comprises, for example, 1% of the tops vapor 70. The rest of the tops vapor 70 from the crude argon column is still introduced viaconduit 70 a into thesecond section 82 of the crude argon column.
Claims (9)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14003544 | 2014-10-16 | ||
EP14003544 | 2014-10-16 | ||
EP14003544.5 | 2014-10-16 | ||
PCT/EP2015/001886 WO2016058666A1 (en) | 2014-10-16 | 2015-09-23 | Method and device for variably obtaining argon by means of low-temperature separation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170299262A1 true US20170299262A1 (en) | 2017-10-19 |
US10690408B2 US10690408B2 (en) | 2020-06-23 |
Family
ID=51751883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/513,180 Active 2036-09-13 US10690408B2 (en) | 2014-10-16 | 2015-09-23 | Method and device for variably obtaining argon by means of low-temperature separation |
Country Status (11)
Country | Link |
---|---|
US (1) | US10690408B2 (en) |
EP (1) | EP3207320B1 (en) |
JP (1) | JP2017536523A (en) |
KR (1) | KR20170070172A (en) |
CN (1) | CN107076512B (en) |
BR (1) | BR112017006788A2 (en) |
CA (1) | CA2963023A1 (en) |
CL (1) | CL2017000874A1 (en) |
PL (1) | PL3207320T3 (en) |
RU (1) | RU2700970C2 (en) |
WO (1) | WO2016058666A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022174976A1 (en) | 2021-02-16 | 2022-08-25 | Linde Gmbh | Providing a nitrogen product |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108731376A (en) * | 2018-04-18 | 2018-11-02 | 衢州杭氧气体有限公司 | A kind of argon gas production technology and its production line |
CN109764638B (en) * | 2018-12-13 | 2021-11-19 | 包头钢铁(集团)有限责任公司 | Load-variable method for argon system of large oxygen generator set |
CN116171366A (en) * | 2020-09-17 | 2023-05-26 | 林德有限责任公司 | Method and apparatus for cryogenic separation of air with a mixed gas turbine |
EP3992560A1 (en) | 2021-05-27 | 2022-05-04 | Linde GmbH | Method for designing a cryogenic separation plant with argon production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482266A1 (en) * | 2003-05-28 | 2004-12-01 | Linde Aktiengesellschaft | Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air |
US20120125045A1 (en) * | 2010-11-18 | 2012-05-24 | Henry Edward Howard | Air separation method and apparatus |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU658372A1 (en) * | 1976-12-20 | 1979-04-25 | Научно-Исследовательский Институт Технологии Криогенного Машиностроения | Air separation unit |
JPS5449978A (en) | 1977-09-28 | 1979-04-19 | Hitachi Ltd | Air separation plant |
US5133790A (en) * | 1991-06-24 | 1992-07-28 | Union Carbide Industrial Gases Technology Corporation | Cryogenic rectification method for producing refined argon |
CA2142317A1 (en) * | 1994-02-24 | 1995-08-25 | Anton Moll | Process and apparatus for the recovery of pure argon |
JPH1082582A (en) | 1996-09-06 | 1998-03-31 | Nippon Sanso Kk | Air liquefaction separation device and start-up method thereof |
AU743283B2 (en) | 1998-04-21 | 2002-01-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and installation for air distillation with production of argon |
FR2943773B1 (en) | 2009-03-27 | 2012-07-20 | Air Liquide | METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
-
2015
- 2015-09-23 KR KR1020177013061A patent/KR20170070172A/en not_active Withdrawn
- 2015-09-23 WO PCT/EP2015/001886 patent/WO2016058666A1/en active Application Filing
- 2015-09-23 EP EP15771022.9A patent/EP3207320B1/en active Active
- 2015-09-23 JP JP2017520373A patent/JP2017536523A/en active Pending
- 2015-09-23 RU RU2017116601A patent/RU2700970C2/en active
- 2015-09-23 BR BR112017006788A patent/BR112017006788A2/en not_active Application Discontinuation
- 2015-09-23 CN CN201580056010.XA patent/CN107076512B/en active Active
- 2015-09-23 CA CA2963023A patent/CA2963023A1/en not_active Abandoned
- 2015-09-23 PL PL15771022T patent/PL3207320T3/en unknown
- 2015-09-23 US US15/513,180 patent/US10690408B2/en active Active
-
2017
- 2017-04-10 CL CL2017000874A patent/CL2017000874A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482266A1 (en) * | 2003-05-28 | 2004-12-01 | Linde Aktiengesellschaft | Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air |
US20120125045A1 (en) * | 2010-11-18 | 2012-05-24 | Henry Edward Howard | Air separation method and apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022174976A1 (en) | 2021-02-16 | 2022-08-25 | Linde Gmbh | Providing a nitrogen product |
Also Published As
Publication number | Publication date |
---|---|
RU2017116601A (en) | 2018-11-19 |
EP3207320B1 (en) | 2021-06-30 |
RU2700970C2 (en) | 2019-09-24 |
CL2017000874A1 (en) | 2017-12-11 |
BR112017006788A2 (en) | 2017-12-26 |
EP3207320A1 (en) | 2017-08-23 |
CN107076512B (en) | 2020-05-19 |
CA2963023A1 (en) | 2016-04-21 |
KR20170070172A (en) | 2017-06-21 |
CN107076512A (en) | 2017-08-18 |
JP2017536523A (en) | 2017-12-07 |
PL3207320T3 (en) | 2021-12-13 |
US10690408B2 (en) | 2020-06-23 |
RU2017116601A3 (en) | 2019-03-28 |
WO2016058666A1 (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101925790B (en) | For the method and apparatus of low temperature air separating | |
US10690408B2 (en) | Method and device for variably obtaining argon by means of low-temperature separation | |
KR102178230B1 (en) | Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant | |
EP1429099A1 (en) | Process and apparatus for the recovery of krypton and/or xenon | |
US12196485B2 (en) | Method and apparatus for obtaining pressurized nitrogen by cryogenic separation of air | |
US6314755B1 (en) | Double column system for the low-temperature fractionation of air | |
US11846468B2 (en) | Method and unit for low-temperature air separation | |
US11118834B2 (en) | Method and device for generating gaseous compressed nitrogen | |
EP2963368B1 (en) | Air separation method and air separation apparatus | |
US20090120128A1 (en) | Low Temperature Air Fractionation with External Fluid | |
EP2634517B1 (en) | Process and apparatus for the separation of air by cryogenic distillation | |
US20170299261A1 (en) | Liquid nitrogen production | |
US20140318179A1 (en) | Process And Apparatus For The Separation Of Air By Cryogenic Distillation | |
JPH05231765A (en) | Air separation | |
EP1258690A1 (en) | Nitrogen rejection method | |
US20170205142A1 (en) | Method for obtaining an air product in an air separation plant and air separation plant | |
US20150168057A1 (en) | Process for producing liquid nitrogen | |
JPH07174460A (en) | Method for producing gaseous oxygen product at feed pressure to contain low concentrations of heavy impurities | |
KR101947112B1 (en) | Method and device for generating two purified partial air streams | |
US6837071B2 (en) | Nitrogen rejection method and apparatus | |
US20220260312A1 (en) | Process and plant for low-temperature fractionation of air | |
US20220228804A1 (en) | Method and system for low-temperature air separation | |
EP2447653A1 (en) | Process for cryogenic air separation using a side condenser | |
US20240393043A1 (en) | Method for the low-temperature separation of air and air separation plant | |
US10018414B2 (en) | Method for the production of low pressure gaseous oxygen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LINDE AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOCHNER, STEFAN;REEL/FRAME:041820/0700 Effective date: 20170323 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: EX PARTE QUAYLE ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: EX PARTE QUAYLE ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO EX PARTE QUAYLE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |