[go: up one dir, main page]

US20160358278A1 - Electronic medical record exchange system - Google Patents

Electronic medical record exchange system Download PDF

Info

Publication number
US20160358278A1
US20160358278A1 US12/893,384 US89338410A US2016358278A1 US 20160358278 A1 US20160358278 A1 US 20160358278A1 US 89338410 A US89338410 A US 89338410A US 2016358278 A1 US2016358278 A1 US 2016358278A1
Authority
US
United States
Prior art keywords
medical record
electronic medical
legacy
appliance
identifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/893,384
Inventor
Marc Willard
James Gough
Pranay Varma
Rahul Somasunderam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Certify Data Systems Inc
Original Assignee
Certify Data Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Certify Data Systems Inc filed Critical Certify Data Systems Inc
Priority to US12/893,384 priority Critical patent/US20160358278A1/en
Assigned to CERTIFY DATA SYSTEMS, INC. reassignment CERTIFY DATA SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOUGH, JAMES, SOMASUNDERAM, RAHUL, VARMA, PRANAY, WILLARD, MARC
Priority to US13/587,728 priority patent/US20160358287A1/en
Priority to US14/491,181 priority patent/US20160357914A1/en
Priority to US14/491,427 priority patent/US20160357916A1/en
Priority to US14/491,260 priority patent/US20160357915A1/en
Priority to US14/491,232 priority patent/US20160357932A1/en
Publication of US20160358278A1 publication Critical patent/US20160358278A1/en
Priority to US16/817,156 priority patent/US11557396B2/en
Priority to US18/080,284 priority patent/US11967427B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records

Definitions

  • This invention relates generally to electronic medical records. More particularly, this invention relates to an electronic medical record exchange system to provide universal message exchange between disparate legacy electronic medical record systems.
  • An electronic medical record is a collection of health information in electronic form.
  • the health information may relate to an individual's medical history, medications consumed, allergies, immunization status, laboratory test results, radiology images, billing information and the like.
  • An electronic medical record (EMR) is sometimes referred to as an electronic health record (EHR), electronic patient record (EPR) or computerized patient record.
  • EMRs are used to facilitate the automation and streamlining of the workflow in health care settings.
  • it is a goal to use EMRs to improve healthcare through evidence-based decision support, quality management and outcome reporting. While this is a laudable goal, it remains illusive in view of the capital costs, training costs and maintenance costs of new systems.
  • Legacy systems are typically incompatible with one another.
  • a physician's office may have a first legacy system that is incompatible with a second legacy system at a hospital. Consequently, a doctor that works at both the physician's office and the hospital may not be able to exchange records between these two venues. In other words, the doctor may be able to use the first legacy system at the physician's office and the second legacy system at the hospital, but the two systems operate in separate silos and are otherwise not integrated.
  • a central data server may be used to store the different records, but this represents an entirely new system with significant capital costs.
  • legacy systems It is desirable to allow health care professionals to continue to use their legacy systems. However, it is also desirable to integrate such legacy systems with other legacy systems that have incompatible formats. For an integration to be practical, it must be relatively inexpensive. In addition, it must overcome challenges related to disparate doctor identifiers and patient identifiers used in the different systems. Further, it must support message exchanges between legacy systems that require different message formats. In addition, such a solution should provide a comprehensive audit trail of messages that traverse between legacy systems.
  • An electronic medical record exchange system includes an electronic medical record appliance to interface with a first legacy electronic medical record system.
  • An electronic medical record gateway server interfaces with the electronic medical record appliance and a second legacy electronic medical record system.
  • the electronic medical record appliance and the electronic medical record gateway server communicate utilizing assigned doctor identifiers and patient identifiers that are different than assigned doctor identifiers and patient identifiers utilized by the first legacy electronic medical record system and the second legacy electronic medical record system.
  • FIG. 1 illustrates an electronic medical record exchange system configured in accordance with an embodiment of the invention.
  • FIG. 2 illustrates an appliance or gateway configured in accordance with an embodiment of the invention.
  • FIG. 3 illustrates the establishment of master indices in accordance with an embodiment of the invention.
  • FIG. 4 illustrates record audit trail and normalization operations performed in accordance with an embodiment of the invention.
  • FIG. 5 illustrates a record audit trail supplied in accordance with an embodiment of the invention.
  • FIG. 6 illustrates a record audit trail supplied in accordance with another embodiment of the invention.
  • FIG. 1 illustrates an electronic medical record (EMR) exchange system 100 configured in accordance with an embodiment of the invention.
  • the system 100 includes a set of EMR appliances 102 .
  • Each EMR appliance 102 is a hardware platform designed to provide an EMR computing resource.
  • An appliance is a closed and sealed system that is not serviceable by a user. Thus, it stands in contrast to a general purpose computer, where a user can modify the hardware configuration and load any type of software desired.
  • An appliance has a limited interface, usually a terminal console or web-based, to allow limited configuration operations.
  • the EMR appliance is desirable because it effectively runs on its own, thereby reducing IT expenses. Automated back-up, software control and maintenance are done behind the scenes, eliminating headaches like software installation, conflicts and updates.
  • the EMR appliance also provides protection from viruses, hackers or other threats to security. Thus, the EMR appliance reduces initial capital costs and ongoing maintenance costs.
  • Each EMR appliance 102 is connected to an EMR gateway server 104 .
  • the EMR gateway server 104 is a general purpose computer implementing operations of the invention.
  • the EMR appliances 102 and EMR gateway server 104 operate as an EMR exchange system 100 to provide interoperability with legacy EMR systems.
  • a first EMR appliance may be connected to a legacy physician's office EMR system 106
  • another EMR appliance 102 may be connected to a legacy medical clinic EMR system 108 .
  • the EMR gateway server 104 may be connected to a legacy hospital EMR system.
  • an EMR appliance 102 is used in connection with a relatively small legacy EMR system
  • an EMR gateway 104 is used in connection with a relatively large legacy EMR system.
  • the system 100 may be configured with additional EMR appliances and EMR gateways 104 .
  • the EMR exchange system 100 uses its internal components ( 102 , 104 ) to communicate in a domain with common doctor and patient identifiers that are different than the doctor and patient identifiers utilized in the legacy EMR systems.
  • the EMR exchange system 100 also provides an end-to-end audit trail of messages exchanged between legacy EMR systems.
  • the EMR exchange system 100 transforms incompatible message formats utilized by different EMR legacy systems to provide compatibility between the different EMR legacy systems.
  • FIG. 2 illustrates a computation device 200 configured in accordance with an embodiment of the invention.
  • the computation device 200 may be configured as an EMR appliance 102 or an EMR gateway server 104 .
  • EMR gateway server 104 standard server components are used, such as a central processing unit 202 and input/output devices 206 connected by a bus.
  • the input/output devices 206 may include a keyboard, mouse, display, printer and the like.
  • a memory 208 is also connected to the bus.
  • the memory 208 includes executable instructions to implement operations of the invention.
  • the memory 208 includes an exchange index module 210 .
  • the exchange index module 210 includes executable instructions to assign doctor and patient identifiers that are used within the EMR exchange system 100 . This allows the EMR exchange system 100 to efficiently identify and process doctor and patient records within the system 100 , while still being compatible with legacy systems that use different doctor and patient identifiers.
  • the memory 208 also includes an audit trail module 212 .
  • the audit trail module 212 includes executable instructions to provide end-to-end tracking of a message passed through the EMR exchange 100 , as discussed below.
  • the memory 208 also includes a message processing module 214 .
  • the message processing module 214 includes executable instructions to transform in incompatible message formats from different legacy systems into a format that can be used by different legacy systems, as discussed below.
  • modules 210 , 212 and 214 are also implemented in each EMR appliance 102 .
  • an EMR appliance 102 may have a similar configuration to device 200 .
  • the appliance 102 will typically omit the input/output devices 206 .
  • the appliance 102 may implement its operations through an Application Specific Integrated Circuit or other custom hardware instead of a general purpose central processing unit. Regardless of the appliance configuration, it operates in conjunction with the EMR gateway 104 to provide patient and doctor identifiers, audit trail tracking and message processing. These operations are distributed between an EMR appliance 102 and an EMR gateway 104 , as discussed below.
  • FIG. 3 illustrates operations associated with assigning master doctor and patient identifiers in accordance with an embodiment of the invention.
  • the figure illustrates operations performed across various machines, including a legacy system, an EMR appliance 102 and an EMR gateway 104 .
  • a legacy system such as a system at a hospital or a clinic, includes a physician and patient database.
  • the identifier for a patient or a physician at one legacy system e.g., a hospital
  • could be different than the identifier at another legacy system e.g., a clinic.
  • the EMR appliance 102 When the EMR appliance 102 is initially activated, it generates a registration request 300 .
  • the registration request 300 initiates an access to a list of doctors 304 in a legacy system.
  • the list of doctors is then routed 302 to the EMR gateway 104 .
  • the EMR gateway 104 assigns a master doctor identifier to each doctor on the list.
  • This master doctor identifier is used within the medical record exchange system 100 .
  • a clinic identifier may also be assigned to the doctor so that a doctor operating at different clinics can be uniquely identified and coordinated with appropriate patients.
  • the master doctor identifier is then returned 308 to the EMR appliance 102 .
  • the EMR appliance 102 associates doctors and patient 314 .
  • the EMR appliance 102 assigns master patient identifiers 316 to each patient.
  • Each master patient identifier is used within the EMR exchange system 100 .
  • any received EMR can be mapped from a legacy system identifier to a master identifier utilized within the EMR exchange system 100 .
  • a master identifier utilized within the EMR exchange system 100 For example, an EMR message utilizing the doctor identifier and patient identifier of legacy Physician Office EMR system 106 is mapped to the master doctor identifier and master patient identifier of the electronic medical record exchange system 100 .
  • the master doctor identifier and/or master patient identifier may then be mapped to a doctor or patient at legacy clinic EMR system 108 .
  • Each master identifier is a unique value that has an associated list of values for legacy systems.
  • the master doctor identifier has a unique value. This unique value is associated with a list of doctor identifiers used for the same doctor at different offices, clinics, or hospitals. The same approach is used with the master patient identifier.
  • the term “master” indicates a prevailing identifier in the electronic medical record exchange systems 100 . However, it is not a “master” identifier across an entire EMR system. The use of a single “master” identifier across an entire EMR system implies centralized control, which is expensive and otherwise meets resistance for a variety of reasons. In contrast, the invention provides a distributed system that allows incompatible legacy systems to operate with one another.
  • a message is received at the gateway 104 , it is routed to an appliance 102 associated with a clinic or office that the doctor practices at. In other words, the message is routed in accordance with the master doctor identifier and clinic identifier.
  • the appliance 102 can then link the master patient identifier with the patient identifier used by the legacy system. Consequently, the EMR exchange system 100 provides interoperability between legacy systems without synchronization between different databases.
  • FIG. 4 illustrates audit trail processing performed in accordance with an embodiment of the invention.
  • a legacy system generates electronic health information (EHI) 400 , which is passed to the EMR appliance 102 .
  • the electronic health information may be in form of an EMR. Receipt of the EHI at the EMR appliance 102 initiates an audit trail 402 .
  • the message may be normalized 404 for compatibility with another legacy system. That is, a sender (e.g., a hospital) and a receiver (e.g., a clinic) may require different message formats. The sender and receiver can ignore these incompatibilities since they are handled by the EMR exchange system 100 .
  • the EMR appliance 102 or the EMR gateway 104 identifies the target system and then evaluates data conformance rules utilized by the target system. For example, a sent message may be in HL7 2.3 form. However, the recipient requires a 2.5 format. In this case, the appliance 102 invokes a script to convert the message from 2.3 to 2.5 before passing it on. Alternately, an HL7 message may have an outpatient code of “OP”. The receiving system may require a single character outpatient code. The appliance 102 utilizes a script to provide the appropriate format. Alternately, a message may have a segment unrecognized by the target system. In this case, the appliance deletes such a segment so that it can be processed at the target system.
  • the message is then exchanged 406 with the EMR gateway 104 .
  • the message is audited 408 at the EMR gateway 104 .
  • the message would typically be directed toward another legacy system through another exchange 410 .
  • An acknowledgement from the legacy system may then be audited 412 .
  • an EHI 420 may be generated at another legacy system and be initially passed to the EMR gateway 104 .
  • the EMR gateway 104 initiates an audit trail 422 .
  • the message is normalized 444 .
  • the message is then exchanged 426 to the EMR appliance 102 , where it is audited 428 .
  • the message is then exchanged 430 to another legacy system.
  • An acknowledgement from the legacy system may then be audited 432 .
  • the audit trail allows for the tracking of the progress of messages.
  • the audit trail can be used to certify that a message was properly acknowledged by a target receiving entity.
  • the appliance 102 and gateway 104 may keep separate audit trails. Alternately, their audit trail information may be exchanged to produce comprehensive audit trail information.
  • the system generates a unique message identifier for each outgoing message.
  • One message may be sent to several recipients.
  • the unique identifier of the incoming message is associated with the outgoing message identifier for correlation.
  • An incoming message may not result in an outgoing message.
  • a doctor identifier and clinic identifier may be used for audit purposes.
  • a legacy system may require a doctor to be of a fixed type (e.g., attending physician) to receive a message.
  • the EMR exchange system 100 may transform a doctor to a fixed type (e.g., from referring to attending) to enable receipt of a message.
  • the audit trail may be used to preserve the original doctor type.
  • FIG. 5 illustrates an audit trail formed in accordance with an embodiment of the invention.
  • Window 500 displays message information, including status information, incoming message ID, outgoing message ID, message type, physician, patient and time.
  • Window 502 illustrates tracking of an individual message.
  • a patient result is generated by a legacy system (Lutheran General) and is passed to EMR appliance 102 (Healthdock). The message is queued and then sent to the associated clinic legacy system (EMR). The receipt of the message is then acknowledged by the legacy system.
  • EMR clinic legacy system
  • FIG. 6 illustrates a window with an audit trail that uses different shading or coloring to represent the status of a message. For example, one shade may be used for receipt of a message, another for queuing a message, another for sending a message, another for an initial acknowledgment and another for a final acknowledgment.
  • An embodiment of the present invention relates to a computer storage product with a computer readable storage medium having computer code thereon for performing various computer-implemented operations.
  • the media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts.
  • Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs, DVDs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices.
  • ASICs application-specific integrated circuits
  • PLDs programmable logic devices
  • Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter.
  • machine code such as produced by a compiler
  • files containing higher-level code that are executed by a computer using an interpreter.
  • an embodiment of the invention may be implemented using JAVA®, C++, or other object-oriented programming language and development tools.
  • Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Tourism & Hospitality (AREA)
  • Child & Adolescent Psychology (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

An electronic medical record exchange system includes an electronic medical record appliance to interface with a first legacy electronic medical record system. An electronic medical record gateway server interfaces with the electronic medical record appliance and a second legacy electronic medical record system. The electronic medical record appliance and the electronic medical record gateway server communicate utilizing assigned doctor identifiers and patient identifiers that are different than assigned doctor identifiers and patient identifiers utilized by the first legacy electronic medical record system and the second legacy electronic medical record system.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to electronic medical records. More particularly, this invention relates to an electronic medical record exchange system to provide universal message exchange between disparate legacy electronic medical record systems.
  • BACKGROUND OF THE INVENTION
  • An electronic medical record is a collection of health information in electronic form. The health information may relate to an individual's medical history, medications consumed, allergies, immunization status, laboratory test results, radiology images, billing information and the like. An electronic medical record (EMR) is sometimes referred to as an electronic health record (EHR), electronic patient record (EPR) or computerized patient record.
  • EMRs are used to facilitate the automation and streamlining of the workflow in health care settings. In addition, it is a goal to use EMRs to improve healthcare through evidence-based decision support, quality management and outcome reporting. While this is a laudable goal, it remains illusive in view of the capital costs, training costs and maintenance costs of new systems.
  • Legacy systems are typically incompatible with one another. For example a physician's office may have a first legacy system that is incompatible with a second legacy system at a hospital. Consequently, a doctor that works at both the physician's office and the hospital may not be able to exchange records between these two venues. In other words, the doctor may be able to use the first legacy system at the physician's office and the second legacy system at the hospital, but the two systems operate in separate silos and are otherwise not integrated.
  • A central data server may be used to store the different records, but this represents an entirely new system with significant capital costs. In addition, there are challenges associated with normalizing disparate records and then loading them into a single repository. This solution also raises confidentiality concerns.
  • It is desirable to allow health care professionals to continue to use their legacy systems. However, it is also desirable to integrate such legacy systems with other legacy systems that have incompatible formats. For an integration to be practical, it must be relatively inexpensive. In addition, it must overcome challenges related to disparate doctor identifiers and patient identifiers used in the different systems. Further, it must support message exchanges between legacy systems that require different message formats. In addition, such a solution should provide a comprehensive audit trail of messages that traverse between legacy systems.
  • SUMMARY OF THE INVENTION
  • An electronic medical record exchange system includes an electronic medical record appliance to interface with a first legacy electronic medical record system. An electronic medical record gateway server interfaces with the electronic medical record appliance and a second legacy electronic medical record system. The electronic medical record appliance and the electronic medical record gateway server communicate utilizing assigned doctor identifiers and patient identifiers that are different than assigned doctor identifiers and patient identifiers utilized by the first legacy electronic medical record system and the second legacy electronic medical record system.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates an electronic medical record exchange system configured in accordance with an embodiment of the invention.
  • FIG. 2 illustrates an appliance or gateway configured in accordance with an embodiment of the invention.
  • FIG. 3 illustrates the establishment of master indices in accordance with an embodiment of the invention.
  • FIG. 4 illustrates record audit trail and normalization operations performed in accordance with an embodiment of the invention.
  • FIG. 5 illustrates a record audit trail supplied in accordance with an embodiment of the invention.
  • FIG. 6 illustrates a record audit trail supplied in accordance with another embodiment of the invention.
  • Like reference numerals refer to corresponding parts throughout the several views of the drawings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 illustrates an electronic medical record (EMR) exchange system 100 configured in accordance with an embodiment of the invention. The system 100 includes a set of EMR appliances 102. Each EMR appliance 102 is a hardware platform designed to provide an EMR computing resource. An appliance is a closed and sealed system that is not serviceable by a user. Thus, it stands in contrast to a general purpose computer, where a user can modify the hardware configuration and load any type of software desired. An appliance has a limited interface, usually a terminal console or web-based, to allow limited configuration operations. The EMR appliance is desirable because it effectively runs on its own, thereby reducing IT expenses. Automated back-up, software control and maintenance are done behind the scenes, eliminating headaches like software installation, conflicts and updates. The EMR appliance also provides protection from viruses, hackers or other threats to security. Thus, the EMR appliance reduces initial capital costs and ongoing maintenance costs.
  • Each EMR appliance 102 is connected to an EMR gateway server 104. The EMR gateway server 104 is a general purpose computer implementing operations of the invention. The EMR appliances 102 and EMR gateway server 104 operate as an EMR exchange system 100 to provide interoperability with legacy EMR systems. For example, a first EMR appliance may be connected to a legacy physician's office EMR system 106, while another EMR appliance 102 may be connected to a legacy medical clinic EMR system 108. The EMR gateway server 104 may be connected to a legacy hospital EMR system. In general, an EMR appliance 102 is used in connection with a relatively small legacy EMR system, while an EMR gateway 104 is used in connection with a relatively large legacy EMR system. The system 100 may be configured with additional EMR appliances and EMR gateways 104.
  • The EMR exchange system 100 uses its internal components (102, 104) to communicate in a domain with common doctor and patient identifiers that are different than the doctor and patient identifiers utilized in the legacy EMR systems. The EMR exchange system 100 also provides an end-to-end audit trail of messages exchanged between legacy EMR systems. In addition, the EMR exchange system 100 transforms incompatible message formats utilized by different EMR legacy systems to provide compatibility between the different EMR legacy systems.
  • FIG. 2 illustrates a computation device 200 configured in accordance with an embodiment of the invention. The computation device 200 may be configured as an EMR appliance 102 or an EMR gateway server 104. In the case of an EMR gateway server 104, standard server components are used, such as a central processing unit 202 and input/output devices 206 connected by a bus. The input/output devices 206 may include a keyboard, mouse, display, printer and the like. A memory 208 is also connected to the bus. The memory 208 includes executable instructions to implement operations of the invention. In one embodiment, the memory 208 includes an exchange index module 210. The exchange index module 210 includes executable instructions to assign doctor and patient identifiers that are used within the EMR exchange system 100. This allows the EMR exchange system 100 to efficiently identify and process doctor and patient records within the system 100, while still being compatible with legacy systems that use different doctor and patient identifiers.
  • The memory 208 also includes an audit trail module 212. The audit trail module 212 includes executable instructions to provide end-to-end tracking of a message passed through the EMR exchange 100, as discussed below.
  • The memory 208 also includes a message processing module 214. The message processing module 214 includes executable instructions to transform in incompatible message formats from different legacy systems into a format that can be used by different legacy systems, as discussed below.
  • The operations of modules 210, 212 and 214 are also implemented in each EMR appliance 102. Thus, an EMR appliance 102 may have a similar configuration to device 200. However, the appliance 102 will typically omit the input/output devices 206. Further, the appliance 102 may implement its operations through an Application Specific Integrated Circuit or other custom hardware instead of a general purpose central processing unit. Regardless of the appliance configuration, it operates in conjunction with the EMR gateway 104 to provide patient and doctor identifiers, audit trail tracking and message processing. These operations are distributed between an EMR appliance 102 and an EMR gateway 104, as discussed below.
  • FIG. 3 illustrates operations associated with assigning master doctor and patient identifiers in accordance with an embodiment of the invention. The figure illustrates operations performed across various machines, including a legacy system, an EMR appliance 102 and an EMR gateway 104.
  • A legacy system, such as a system at a hospital or a clinic, includes a physician and patient database. The identifier for a patient or a physician at one legacy system (e.g., a hospital) could be different than the identifier at another legacy system (e.g., a clinic).
  • When the EMR appliance 102 is initially activated, it generates a registration request 300. The registration request 300 initiates an access to a list of doctors 304 in a legacy system. The list of doctors is then routed 302 to the EMR gateway 104. The EMR gateway 104 assigns a master doctor identifier to each doctor on the list. This master doctor identifier is used within the medical record exchange system 100. A clinic identifier may also be assigned to the doctor so that a doctor operating at different clinics can be uniquely identified and coordinated with appropriate patients. The master doctor identifier is then returned 308 to the EMR appliance 102. This causes the EMR appliance 102 to access 310 a patient list 312 within the legacy system. The EMR appliance 102 associates doctors and patient 314. Thereafter, the EMR appliance 102 assigns master patient identifiers 316 to each patient. Each master patient identifier is used within the EMR exchange system 100. Each master patient identifier is typically different than the patient identifier used in the legacy system.
  • From this point forward, any received EMR can be mapped from a legacy system identifier to a master identifier utilized within the EMR exchange system 100. For example, an EMR message utilizing the doctor identifier and patient identifier of legacy Physician Office EMR system 106 is mapped to the master doctor identifier and master patient identifier of the electronic medical record exchange system 100. The master doctor identifier and/or master patient identifier may then be mapped to a doctor or patient at legacy clinic EMR system 108.
  • Each master identifier is a unique value that has an associated list of values for legacy systems. For example, the master doctor identifier has a unique value. This unique value is associated with a list of doctor identifiers used for the same doctor at different offices, clinics, or hospitals. The same approach is used with the master patient identifier. The term “master” indicates a prevailing identifier in the electronic medical record exchange systems 100. However, it is not a “master” identifier across an entire EMR system. The use of a single “master” identifier across an entire EMR system implies centralized control, which is expensive and otherwise meets resistance for a variety of reasons. In contrast, the invention provides a distributed system that allows incompatible legacy systems to operate with one another.
  • If a message is received at the gateway 104, it is routed to an appliance 102 associated with a clinic or office that the doctor practices at. In other words, the message is routed in accordance with the master doctor identifier and clinic identifier. The appliance 102 can then link the master patient identifier with the patient identifier used by the legacy system. Consequently, the EMR exchange system 100 provides interoperability between legacy systems without synchronization between different databases.
  • FIG. 4 illustrates audit trail processing performed in accordance with an embodiment of the invention. For example, a legacy system generates electronic health information (EHI) 400, which is passed to the EMR appliance 102. The electronic health information may be in form of an EMR. Receipt of the EHI at the EMR appliance 102 initiates an audit trail 402. Optionally, the message may be normalized 404 for compatibility with another legacy system. That is, a sender (e.g., a hospital) and a receiver (e.g., a clinic) may require different message formats. The sender and receiver can ignore these incompatibilities since they are handled by the EMR exchange system 100. The EMR appliance 102 or the EMR gateway 104 identifies the target system and then evaluates data conformance rules utilized by the target system. For example, a sent message may be in HL7 2.3 form. However, the recipient requires a 2.5 format. In this case, the appliance 102 invokes a script to convert the message from 2.3 to 2.5 before passing it on. Alternately, an HL7 message may have an outpatient code of “OP”. The receiving system may require a single character outpatient code. The appliance 102 utilizes a script to provide the appropriate format. Alternately, a message may have a segment unrecognized by the target system. In this case, the appliance deletes such a segment so that it can be processed at the target system.
  • After any required normalization, the message is then exchanged 406 with the EMR gateway 104. The message is audited 408 at the EMR gateway 104. At this point, the message would typically be directed toward another legacy system through another exchange 410. An acknowledgement from the legacy system may then be audited 412.
  • Alternately, an EHI 420 may be generated at another legacy system and be initially passed to the EMR gateway 104. In this case, the EMR gateway 104 initiates an audit trail 422. If necessary, the message is normalized 444. The message is then exchanged 426 to the EMR appliance 102, where it is audited 428. The message is then exchanged 430 to another legacy system. An acknowledgement from the legacy system may then be audited 432.
  • The audit trail allows for the tracking of the progress of messages. The audit trail can be used to certify that a message was properly acknowledged by a target receiving entity. The appliance 102 and gateway 104 may keep separate audit trails. Alternately, their audit trail information may be exchanged to produce comprehensive audit trail information.
  • The system generates a unique message identifier for each outgoing message. One message may be sent to several recipients. As a result, there is a 1-to-N mapping from an outgoing message identifier to an incoming message identifier. The unique identifier of the incoming message is associated with the outgoing message identifier for correlation.
  • An incoming message may not result in an outgoing message. In this case, a doctor identifier and clinic identifier may be used for audit purposes. A legacy system may require a doctor to be of a fixed type (e.g., attending physician) to receive a message. The EMR exchange system 100 may transform a doctor to a fixed type (e.g., from referring to attending) to enable receipt of a message. The audit trail may be used to preserve the original doctor type.
  • FIG. 5 illustrates an audit trail formed in accordance with an embodiment of the invention. Window 500 displays message information, including status information, incoming message ID, outgoing message ID, message type, physician, patient and time. Window 502 illustrates tracking of an individual message. In this example, a patient result is generated by a legacy system (Lutheran General) and is passed to EMR appliance 102 (Healthdock). The message is queued and then sent to the associated clinic legacy system (EMR). The receipt of the message is then acknowledged by the legacy system.
  • FIG. 6 illustrates a window with an audit trail that uses different shading or coloring to represent the status of a message. For example, one shade may be used for receipt of a message, another for queuing a message, another for sending a message, another for an initial acknowledgment and another for a final acknowledgment.
  • An embodiment of the present invention relates to a computer storage product with a computer readable storage medium having computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs, DVDs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter. For example, an embodiment of the invention may be implemented using JAVA®, C++, or other object-oriented programming language and development tools. Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.
  • The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.

Claims (12)

1. A de-centralized electronic medical record exchange system, comprising:
a first electronic medical record appliance, separate from but in electronic communication with a first legacy electronic medical record system, where the first electronic medical record appliance is adapted to convert data in a first format from the first legacy electronic medical records system to a common format shared with a second electronic medical record appliance;
said second electronic medical record appliance in communication with the first electronic medical record appliance and said second appliance separate from but in electronic communication with a second legacy electronic medical record system, where the second electronic medical record appliance is adapted to convert data from the common format shared with the first electronic medical record appliance to a third format used by the second legacy electronic medical record system, wherein the first electronic medical record appliance and the second electronic medical record appliance form a closed network that exchanges patient electronic medical record data using the common format among said first and second legacy systems utilizing assigned closed network doctor identifiers and closed network patient identifiers that are different than assigned legacy doctor identifiers and legacy patient identifiers utilized by the first legacy electronic medical record system and the second legacy electronic medical record system;
each of the first electronic medical record appliance and the second electronic medical record appliance having a limited interface that inhibits user inputted operation after setup, said first and second electronic record appliances being dedicated, closed and sealed systems; and
wherein the closed network doctor identifiers and the closed network patient identifiers are unique within the closed network and distinct from the legacy doctor identifiers and legacy patient identifiers utilized by the first legacy electronic medical record system and the second legacy electronic medical record system; and, wherein the closed network is operative with the first legacy electronic medical record system and the second legacy electronic medical record system without synchronization of databases between the first legacy electronic medical record system and the second legacy electronic medical record system.
2. The de-centralized electronic medical record system of claim 1 wherein the first electronic medical record appliance maintains an audit trail of an electronic medical record message exchanged between legacy electronic medical record systems.
3. The de-centralized electronic medical record system of claim 1 wherein the second electronic medical record appliance maintains an audit trail of an electronic medical record message exchanged between legacy electronic medical record systems.
4. The de-centralized electronic medical record system of claim 1 wherein the first electronic medical record appliance provides compatibility between legacy electronic medical record systems utilizing different message formats.
5. The de-centralized electronic medical record system of claim 1 wherein the second electronic medical record appliance provides compatibility between legacy electronic medical record systems utilizing different message formats.
6. The de-centralized electronic medical record system of claim 1, wherein the first electronic medical record appliance processes a registration request by securing a doctor list from the first legacy electronic medical record system.
7. The de-centralized electronic medical record system of claim 6, wherein the first electronic medical record appliance routes the doctor list to the second electronic medical record appliance.
8. The de-centralized electronic medical record system of claim 7, wherein the second electronic medical record appliance assigns the closed network doctor identifiers.
9. The de-centralized electronic medical record system of claim 8, wherein the second electronic medical record appliance returns the closed network doctor identifiers to the first electronic medical record appliance.
10. The de-centralized electronic medical record system of claim 9, wherein the first electronic medical record appliance associates patients of the first legacy electronic medical record system with the closed network doctor identifiers.
11. The de-centralized electronic medical record system of claim 10, wherein the first electronic medical record appliance assigns the closed network patient identifiers.
12-14. (canceled)
US12/893,384 2010-09-29 2010-09-29 Electronic medical record exchange system Abandoned US20160358278A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/893,384 US20160358278A1 (en) 2010-09-29 2010-09-29 Electronic medical record exchange system
US13/587,728 US20160358287A1 (en) 2010-09-29 2012-08-16 Apparatus and Method for Medical Information Exchange Consent Policy Data Filtering
US14/491,181 US20160357914A1 (en) 2010-09-29 2014-09-19 System and method for display and management of distributed electronic medical record data
US14/491,427 US20160357916A1 (en) 2010-09-29 2014-09-19 System and method for managing patient consent
US14/491,260 US20160357915A1 (en) 2010-09-29 2014-09-19 System and method for analyzing distributed electronic medical record data to determine standards compliance
US14/491,232 US20160357932A1 (en) 2010-09-29 2014-09-19 System and method for analysis of distributed electronic medical record data to detect potential health concerns
US16/817,156 US11557396B2 (en) 2010-09-29 2020-03-12 Electronic medical record exchange
US18/080,284 US11967427B2 (en) 2010-09-29 2022-12-13 Electronic medical record exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/893,384 US20160358278A1 (en) 2010-09-29 2010-09-29 Electronic medical record exchange system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/893,384 Continuation-In-Part US20160358278A1 (en) 2010-09-29 2010-09-29 Electronic medical record exchange system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/893,384 Continuation-In-Part US20160358278A1 (en) 2010-09-29 2010-09-29 Electronic medical record exchange system
US13/587,728 Continuation-In-Part US20160358287A1 (en) 2010-09-29 2012-08-16 Apparatus and Method for Medical Information Exchange Consent Policy Data Filtering
US16/817,156 Continuation US11557396B2 (en) 2010-09-29 2020-03-12 Electronic medical record exchange

Publications (1)

Publication Number Publication Date
US20160358278A1 true US20160358278A1 (en) 2016-12-08

Family

ID=57451192

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/893,384 Abandoned US20160358278A1 (en) 2010-09-29 2010-09-29 Electronic medical record exchange system
US16/817,156 Active 2031-11-01 US11557396B2 (en) 2010-09-29 2020-03-12 Electronic medical record exchange
US18/080,284 Active US11967427B2 (en) 2010-09-29 2022-12-13 Electronic medical record exchange

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/817,156 Active 2031-11-01 US11557396B2 (en) 2010-09-29 2020-03-12 Electronic medical record exchange
US18/080,284 Active US11967427B2 (en) 2010-09-29 2022-12-13 Electronic medical record exchange

Country Status (1)

Country Link
US (3) US20160358278A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938950B2 (en) * 2017-11-14 2021-03-02 General Electric Company Hierarchical data exchange management system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080235358A1 (en) * 2007-03-20 2008-09-25 Hirotaka Moribe Proxy Device, Network System, and Communication Method
US20110001605A1 (en) * 2009-03-04 2011-01-06 Masimo Corporation Medical monitoring system

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5664109A (en) 1995-06-07 1997-09-02 E-Systems, Inc. Method for extracting pre-defined data items from medical service records generated by health care providers
US5729734A (en) 1995-11-03 1998-03-17 Apple Computer, Inc. File privilege administration apparatus and methods
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
US5924074A (en) 1996-09-27 1999-07-13 Azron Incorporated Electronic medical records system
US5784635A (en) 1996-12-31 1998-07-21 Integration Concepts, Inc. System and method for the rationalization of physician data
US20020072911A1 (en) 1997-01-10 2002-06-13 Ramsey Foundation System and method for interactively tracking a patient in a medical facility
HUP0100603A2 (en) 1997-01-13 2001-06-28 John Overton Universal system for image archiving and method for universally tracking images
US7734656B2 (en) * 1998-02-24 2010-06-08 Luc Bessette System and method for electronically managing medical data files in order to facilitate genetic research
AU4805400A (en) 1999-04-28 2000-11-10 San Diego State University Foundation Electronic medical record registry including data replication
US20020116227A1 (en) 2000-06-19 2002-08-22 Dick Richard S. Method and apparatus for requesting, retrieving, and obtaining de-identified medical informatiion
US7440904B2 (en) 2000-10-11 2008-10-21 Malik M. Hanson Method and system for generating personal/individual health records
US8260635B2 (en) 2000-10-11 2012-09-04 Healthtrio Llc System for communication of health care data
US8321239B2 (en) 2000-10-11 2012-11-27 Healthtrio Llc System for communication of health care data
US20060106644A1 (en) 2001-05-30 2006-05-18 Koo Charles C Patient referral and physician-to-physician marketing method and system
US20030191669A1 (en) 2002-04-09 2003-10-09 Fitzgerald David System for providing consumer access to healthcare related information
US7743065B2 (en) 2002-06-27 2010-06-22 Siebel Systems, Inc. System and method for cross-referencing information in an enterprise system
US7260480B1 (en) 2003-04-07 2007-08-21 Health Hero Network, Inc. Method and system for integrating feedback loops in medical knowledge development and healthcare management
US20050086527A1 (en) 2003-10-17 2005-04-21 Jackson Miles R. System and method for tracking distribution of digital content
US7904315B2 (en) 2004-01-16 2011-03-08 Sullivan Robert J Rules-based health care referral method and system
WO2005093613A1 (en) 2004-03-26 2005-10-06 Crystallon Systems Inc. Referral management method, apparatus and system
JP2005293273A (en) 2004-03-31 2005-10-20 Fujitsu Ltd Personal information disclosure system, medical record information disclosure system, personal information disclosure method, and computer program
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US20060106645A1 (en) 2004-11-17 2006-05-18 Adhd Systems, Llc System and methods for tracking medical encounters
US20060122865A1 (en) 2004-11-24 2006-06-08 Erik Preiss Procedural medicine workflow management
US20060155581A1 (en) 2005-01-10 2006-07-13 George Eisenberger Systems with user selectable data attributes for automated electronic search, identification and publication of relevant data from electronic data records at multiple data sources
US8949137B2 (en) 2005-05-03 2015-02-03 Medicity, Inc. Managing patient consent in a master patient index
US7438228B2 (en) 2005-05-05 2008-10-21 Scott Robertson Systems and methods for managing electronic prescriptions
CA2630962A1 (en) 2005-07-27 2007-02-01 Medecision, Inc. System and method for health care data integration and management
EP1994484B1 (en) 2006-01-17 2015-03-25 Accenture Global Services Limited Platform for interoperable healthcare data exchange
WO2007084955A2 (en) * 2006-01-19 2007-07-26 Oliver Charles Lawless Integrated prescription management and compliance system
SE532378C2 (en) 2006-11-23 2009-12-29 Mawell Svenska Ab Method and system for sharing data between different radiology information systems
US20080154642A1 (en) 2006-12-21 2008-06-26 Susan Marble Healthcare Core Measure Tracking Software and Database
US20080215627A1 (en) * 2007-01-04 2008-09-04 Imetrikus, Inc. Standardized health data hub
US20080177576A1 (en) 2007-01-18 2008-07-24 Tom Jennings System and method for interactive integration of electronic medical health records
US20090070136A1 (en) 2007-09-11 2009-03-12 General Electric Company Systems and methods for medication management using multiple software applications
US8850057B2 (en) 2007-09-20 2014-09-30 Intel Corporation Healthcare semantic interoperability platform
EP2211688A4 (en) 2007-10-08 2012-01-11 Univ California Ucla Office Of Intellectual Property GENERATION AND DIFFUSION OF CLINICAL NOTES PRE-FILLED AUTOMATICALLY
US8249895B2 (en) 2008-02-22 2012-08-21 Epic Systems Corporation Electronic health record system utilizing disparate record sources
US20090254375A1 (en) 2008-04-08 2009-10-08 The Quantum Group, Inc. System and methods for automated healthcare patient record search, extraction, and creation
US20100094650A1 (en) 2008-09-05 2010-04-15 Son Nam Tran Methods and system for capturing and managing patient consents to prescribed medical procedures
US20100114607A1 (en) 2008-11-04 2010-05-06 Sdi Health Llc Method and system for providing reports and segmentation of physician activities
US20100131293A1 (en) 2008-11-26 2010-05-27 General Electric Company Interactive multi-axis longitudinal health record systems and methods of use
US8250026B2 (en) 2009-03-06 2012-08-21 Peoplechart Corporation Combining medical information captured in structured and unstructured data formats for use or display in a user application, interface, or view
US20100299155A1 (en) 2009-05-19 2010-11-25 Myca Health, Inc. System and method for providing a multi-dimensional contextual platform for managing a medical practice
US8468033B2 (en) 2009-07-21 2013-06-18 Carexgen, Inc. Cloud-based healthcare information exchange
WO2011133917A2 (en) * 2010-04-23 2011-10-27 Datcard Systems, Inc. Event notification in interconnected content-addressable storage systems
US8645165B2 (en) 2010-06-03 2014-02-04 General Electric Company Systems and methods for value-based decision support
CA2815487A1 (en) 2010-10-22 2012-04-26 Medicity, Inc. Managing healthcare information in a distributed system
US9032544B2 (en) 2010-12-22 2015-05-12 Private Access, Inc. System and method for controlling communication of private information over a network
US20120254320A1 (en) 2011-04-04 2012-10-04 Microsoft Corporation Distributing collected information to data consumers based on global user consent information
US9064033B2 (en) 2011-07-05 2015-06-23 International Business Machines Corporation Intelligent decision support for consent management
US20130197940A1 (en) 2012-01-26 2013-08-01 Reliant Medical Group, Inc. System for Automated Health Information Exchange
US20130282397A1 (en) 2012-04-20 2013-10-24 Cerner Innovation, Inc. Provider management of referral orders
US20130325505A1 (en) 2012-05-31 2013-12-05 General Electric Company Systems and methods for population health management
US20140214450A1 (en) 2013-01-30 2014-07-31 Athenahealth, Inc. Data reconciliation from trusted sources
US9129046B2 (en) 2013-02-25 2015-09-08 4medica, Inc. Systems and methods for managing a master patient index including duplicate record detection
US20140324476A1 (en) 2013-12-19 2014-10-30 Jericho Systems Corporation Automated Patient Consent and Reduced Information Leakage Using Patient Consent Directives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080235358A1 (en) * 2007-03-20 2008-09-25 Hirotaka Moribe Proxy Device, Network System, and Communication Method
US20110001605A1 (en) * 2009-03-04 2011-01-06 Masimo Corporation Medical monitoring system

Also Published As

Publication number Publication date
US11557396B2 (en) 2023-01-17
US20200211138A1 (en) 2020-07-02
US20230108244A1 (en) 2023-04-06
US11967427B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
US11538593B2 (en) Cloud-based clincial information systems and methods of use
US9961156B2 (en) Healthcare semantic interoperability platform
JP6054040B2 (en) Method and apparatus for correlating healthcare information
US8015256B2 (en) Method and apparatus for parallel sequencing of messages between disparate information systems
US20170091388A1 (en) Systems and methods supporting interoperability among health record applications and data sources
US20130091106A1 (en) Auditing database access in a distributed medical computing environment
US9704207B2 (en) Administering medical digital images in a distributed medical digital image computing environment with medical image caching
US20130185092A1 (en) Dynamically Allocating Business Workflows
US20120221346A1 (en) Administering Medical Digital Images In A Distributed Medical Digital Image Computing Environment
CA2815487A1 (en) Managing healthcare information in a distributed system
US20160055314A1 (en) Method, system, and apparatus for electronic prior authorization accelerator
US10120978B2 (en) Method and process for transporting health information
US11967427B2 (en) Electronic medical record exchange
Perugu et al. Pragmatic approaches to interoperability–surmounting barriers to healthcare data and information across organizations and political boundaries
CA2900718A1 (en) Method, system, and apparatus for electronic prior authorization accelerator
US20140249859A1 (en) Data exchange with personal health record service
US20170255671A1 (en) Method and system for approving a submission of information
US20160358287A1 (en) Apparatus and Method for Medical Information Exchange Consent Policy Data Filtering
US11455690B2 (en) Payer provider connect engine
Indrajit et al. DICOM, HL7 and IHE: A basic primer on Healthcare Standards for Radiologists
KR20120105992A (en) Medical information management network and method thereof
US20180358116A1 (en) Dynamic data exchange platform for emergency medical services
Genereaux Standards and Interoperability
Agarwal et al. A Cloud Computing Based Patient Centric Medical Information System
Napa An evaluation of the insidious consequences of clinical computing infrastructure failures at a large academic medical center

Legal Events

Date Code Title Description
AS Assignment

Owner name: CERTIFY DATA SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLARD, MARC;GOUGH, JAMES;VARMA, PRANAY;AND OTHERS;REEL/FRAME:025207/0112

Effective date: 20101021

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION