US20160352834A1 - Locally providing cloud storage array services - Google Patents
Locally providing cloud storage array services Download PDFInfo
- Publication number
- US20160352834A1 US20160352834A1 US14/736,549 US201514736549A US2016352834A1 US 20160352834 A1 US20160352834 A1 US 20160352834A1 US 201514736549 A US201514736549 A US 201514736549A US 2016352834 A1 US2016352834 A1 US 2016352834A1
- Authority
- US
- United States
- Prior art keywords
- storage array
- cloud
- services
- local storage
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000977 initiatory effect Effects 0.000 claims abstract description 27
- 238000003491 array Methods 0.000 claims description 75
- 238000004891 communication Methods 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 50
- 238000004590 computer program Methods 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 9
- 230000004931 aggregating effect Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000013500 data storage Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
- H04L67/1097—Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/067—Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3034—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3051—Monitoring arrangements for monitoring the configuration of the computing system or of the computing system component, e.g. monitoring the presence of processing resources, peripherals, I/O links, software programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3065—Monitoring arrangements determined by the means or processing involved in reporting the monitored data
- G06F11/3086—Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves the use of self describing data formats, i.e. metadata, markup languages, human readable formats
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0604—Improving or facilitating administration, e.g. storage management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0614—Improving the reliability of storage systems
- G06F3/0617—Improving the reliability of storage systems in relation to availability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0634—Configuration or reconfiguration of storage systems by changing the state or mode of one or more devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0653—Monitoring storage devices or systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/06—Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
Definitions
- the write buffer device may maintain the data to be written during a retry of the write or during failover of the storage device to another location. That is, the write buffer device may provide redundancy for the storage devices.
- the method of FIG. 5 includes providing ( 506 ), by the remote cloud-based storage array services provider ( 176 ), the cloud storage array services.
- the cloud-based storage array services provider ( 176 ) may provide many different types of cloud storage array services ( 184 ) in many different ways.
- the cloud-based storage array services provider ( 176 ) may expose an API to the primary storage array (and other storage arrays) where the API enables the performance of the cloud storage array services.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Quality & Reliability (AREA)
- Computing Systems (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Library & Information Science (AREA)
- Mathematical Physics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
- This application is a continuation application of and claims priority from U.S. patent application Ser. No. 14/721,571, filed on May 26, 2015.
- 1. Field of Technology
- The field of technology is data processing, or, more specifically, methods, apparatus, and products for providing cloud storage array services for a storage array of a data center when the storage array is not connected to a remote cloud-based storage array services provider.
- 2. Description of Related Art
- Data centers may include many computing components including servers, network devices, and storage arrays. As the need for storage of large amounts of data and efficient access to that data increases, storage array technology is advancing. Such storage arrays may provide persistent storage for any number of computing devices in a data center. Given that many data centers provide services to many different users, various considerations must be taken into account to provide efficient, useful, and secure access to and administration of storage arrays. Various management tools, reporting services, and the like may be implemented for storage array through cloud-based service providers. In some implementations, however, such cloud-based service providers may be unavailable, either by design or through a loss of connection.
- Methods, apparatus, and products for locally providing cloud storage array services for a storage array of a data center when the storage array is not connected to a remote cloud-based storage array services provider are disclosed in this specification. Providing such cloud storage array services in accordance with embodiments of the present invention includes: initiating, by a primary storage array, one or more cloud storage array services; and locally providing the cloud storage array services including: generating, by the cloud storage array services, metadata describing one or more real-time storage array characteristics; and presenting the metadata to a user through a local area network.
- The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the invention.
-
FIG. 1 sets forth a block diagram of a system configured for providing storage array services first in the cloud then locally according to embodiments of the present invention. -
FIG. 2 sets forth a block diagram of several example computers useful for providing cloud storage array services according first in the cloud then locally according to embodiments of the present invention. -
FIG. 3 sets forth a block diagram of an example storage controller of a storage array useful for locally providing cloud storage array services. -
FIG. 4 sets forth an example block diagram of a system that locally provides cloud storage array services in accordance with embodiments of the present invention. -
FIG. 5 sets forth a flow chart illustrating an exemplary method of locally providing cloud storage array services according to embodiments of the present invention -
FIG. 6 sets forth a flow chart illustrating another method of locally providing cloud storage array services in accordance with embodiments of the present invention. -
FIG. 7 sets forth a flow chart illustrating another method of locally providing cloud storage array services in accordance with embodiments of the present invention. - Exemplary methods, apparatus, and products for providing cloud storage array services for a storage array of a data center when the storage array is not connected to a remote cloud-based storage array services provider in accordance with the present invention are described with reference to the accompanying drawings, beginning with
FIG. 1 . The term ‘cloud’ as used in this specification refers to systems and computing environments that provide services to user devices through the sharing of computing resources through a network. Generally, the user device is unaware of the exact computing resources utilized by the cloud system to provide the services. - Although in many cases such ‘cloud’ environments or systems are accessible via the Internet, readers of skill in the art will recognize that any system that abstracts the use of shared resources to provide services to a user through any network may be considered a cloud-based system.
-
FIG. 1 sets forth a block diagram of a system configured for locally providing cloud storage array services according to embodiments of the present invention. The system ofFIG. 1 includes a number of computing devices (164, 166, 168, 170). Such computing devices may be implemented in a number of different ways. For example, a computing device may be a server in a data center, a workstation, a personal computer, a notebook, or the like. - The computing devices (164-170) in the example of
FIG. 1 are coupled for data communications to a number of storage arrays (102, 104) through a storage area network (SAN) (158) as well as a local area network (160) (LAN). The SAN (158) may be implemented with a variety of data communications fabrics, devices, and protocols. Example fabrics for such a SAN may include Fibre Channel, Ethernet, Infiniband, SAS (Serial Attached Small Computer System Interface), and the like. Example data communications protocols for use in such a SAN (158) may include ATA (Advanced Technology Attachment), Fibre Channel Protocol, SCSI, iSCSI, HyperSCSI, and others. Readers of skill in the art will recognize that a SAN is just one among many possible data communications couplings which may be implemented between a computing device and a storage array. Any other such data communications coupling is well within the scope of embodiments of the present invention. - The local area network (160) of
FIG. 1 may also be implemented with a variety of fabrics and protocols. Examples of such fabrics include Ethernet (802.3), wireless (802.11), and the like. Examples of such data communications protocols include TCP (Transmission Control Protocol), UDP (User Datagram Protocol), IP (Internet Protocol), HTTP (HyperText Transfer Protocol), WAP (Wireless Access Protocol), HDTP (Handheld Device Transport Protocol), SIP (Session Initiation Protocol), RTP (Real Time Protocol) and others as will occur to those of skill in the art. - The example storage arrays (102, 104) of
FIG. 1 provide persistent data storage for the computing devices. Each storage array (102, 104) includes a storage controller (106, 112). The storage controller is a module of automated computing machinery comprising computer hardware, computer software, or a combination of computer hardware and software. The storage controller may be configured to carry out various storage-related tasks. Such tasks may include writing data received from a computing device to storage, erasing data from storage, retrieving data from storage to provide to a computing device, monitoring and reporting of disk utilization and performance, performing RAID (Redundant Array of Independent Drives) or RAID-like data redundancy operations, compressing data, encrypting data, and so on. - Each storage controller (106, 112) may be implemented in a variety of ways, including as an FPGA (Field Programmable Gate Array), a PLC (Programmable Logic Chip), an ASIC (Application Specific Integrated Circuit), or computing device that includes discrete components such as a central processing unit, computer memory, and various adapters. Each storage controller (106, 112) may, for example, include a data communications adapter configured to support communications via the SAN (158) and the LAN (160). For clarity, only one of the storage controllers (112) in the example of
FIG. 1 is depicted as coupled to the LAN (160) for data communications. Readers should understand that both storage controllers (106, 112) are independently coupled to the LAN (160). Each storage controller (106, 112) may also, for example, include an I/O controller or the like that couples the storage controller (106, 112) for data communications, through a midplane (114), to a number of storage devices (146, 150), and a number of write buffer (148, 152) devices. - Each write buffer device (148, 152) may be configured to receive, from the storage controller (106, 112), data to be stored in the storage devices (146). Such data may originate from any one of the computing devices (164-170). In the example of
FIG. 1 , writing data to the write buffer device may be carried out more quickly than writing data to the storage device. The storage controller (106, 112) may be configured to effectively utilize the write buffer devices (148, 152) as a quickly accessible redundant buffer for data destined to be written to storage. In this way, if the storage device to which the data is to be written fails or if the write does not complete, the write buffer device may maintain the data to be written during a retry of the write or during failover of the storage device to another location. That is, the write buffer device may provide redundancy for the storage devices. - A ‘storage device’ as the term is used in this specification refers to any device configured to record data persistently. The term ‘persistently’ as used here refers to a device's ability to maintain recorded data after loss of a power source. Examples of storage devices may include mechanical, spinning hard disk drives, Solid-state drives (“Flash drives”), and the like.
- In addition to being coupled to the computing devices through the SAN (158), the storage arrays may also be coupled to the computing devices through the LAN (160) and to one or more cloud service providers through the Internet (172). One example cloud service in
FIG. 1 is a storage array services provider (176). The storage array service provider (176) may be configured to provide various storage array services (184) such as reporting of storage array performance characteristics, configuration control of the storage arrays, and the like. The storage array services provider may rely on modules executing on the storage array itself to gather or process such data. - In some instances, the storage arrays (102, 104) may be disconnected from the storage array services provider (176). Various reasons may exist for such a disconnect. For example, a loss of data communications connection between the storage array and the storage array services provider (176) may occur. In high-security data centers, as another example, the storage arrays (102, 104) may never be connected to the storage array services provider at all. In such situations, users may still desire the services provided by the storage array services provider. To that end, the system of
FIG. 1 may be configured, according to embodiments of the present invention, to locally provide cloud storage array services for a storage array of a data center when the storage array is not connected to a remote cloud-based storage array services provider. Such local providing of the cloud storage array services may be carried out by a storage array services module (182) of one of the storage arrays (102, 104), referred to here as the ‘primary’ storage array (180). The storage array services module (182) is a module of automated computing machinery comprising computer hardware, computer software, or a combination of computer hardware and software. The storage array services module (182) may locally provide the cloud storage array services by, initiating one or more cloud storage array services (184) and locally providing the cloud storage array services. Providing the cloud storage array services locally may include generating, by the cloud storage array services (184), metadata describing one or more real-time storage array characteristics and presenting the metadata to a user through a local area network (160). ‘Metadata’ as the term is used in this specification refers to data that describes various characteristics of the storage array. Such data may take on various forms in dependence upon the types of cloud storage array services executing on the storage array. Some examples of such services may include a service that tracks and reports the rate and type of access of the storage devices of the storage array, a service that tracks and reports throughput of the storage array, a service that monitors and reports memory wear leveling of the storage devices, a service that reports capacity utilization of the storage devices, a service that reports deduplication statistics, a service that reports RAID (Redundant Array of Independent Drives) statistics, a service that reports logical volume statistics, a service that monitors and reports power consumption of the storage array, and other services as will occur to readers of skill in the art. - Prior to presentation, the metadata may be processed and analyzed. Such analysis processing and analysis may also be included in the presentation of the metadata to the user through the LAN (160). That is, ‘presenting the metadata’ is not limited to presenting the metadata in its original form. The metadata may be formatted, processed, analyzed, and otherwise altered for purposes of presentation.
- As mentioned above, one example in which cloud storage array services are provided locally in accordance with embodiments of the present invention includes when a loss of data communications occurs. To that end, the primary storage array (180), through the storage array services module (182) may be configured to detect a data communications connection between the primary storage array (180) and a remote cloud-based storage array services provider (176). Here, a ‘heartbeat’ signal may be used to ensure that the data communications connection between the primary storage array (180) and the cloud-based storage array services provider (176) is maintained. Such a ‘heartbeat’ may be a periodic ping of the storage array services provider. As long as the ping is returned, the storage array services module (182) may infer that the data communications connection between the storage array services provider (176) and the primary storage array (180) has not been lost. In such an embodiment, the cloud-based storage array services provider (176) may provide the cloud storage array services remotely, rather than the storage array services module (182).
- Further, while the data communications connection between the primary storage array (180) and the storage array services provider (176) is active, the storage array services module (182) may periodically retrieve, from the remote cloud-based storage array services provider (176), a current configuration of the cloud storage array services and the a current configuration of the plurality of storage arrays (102, 104) in the data center. The term ‘current configuration of the cloud storage array services’ may include any data related to the execution of the services including, for example, a list of the types of services to be executed, the executable computer program instructions of the services themselves, updates to the executable computer program instructions of the services, data used to seed the services, data describing the format of presenting the results of the services, and so on. The term ‘current configuration of the plurality of storage arrays’ refers to any data describing each of the storage arrays of the data center including: storage capabilities of each storage array; data communications capabilities, endpoints, and present connectivity of each storage array; one or more identifiers of the storage array or the array's components; a listing of components of the storage array; an identification of logical volumes maintained by the storage array; and the like. By periodically updating these current configurations, the storage array services module (182) may be primed to locally provide the cloud storage array services upon a loss of data communications between the primary storage array (180) and the storage array services provider (176).
- The storage array services module (182) may later detect loss of the data communications connection between the primary storage array and the remote cloud-based storage array services provider. The storage array services module (182) may detect such a loss of communications when a predefined number of pings of the heartbeat signal are not returned. Responsive to detecting the loss of communications between the primary storage array (180) and the storage array services provider (176), the storage array services provider may then initiate the cloud storage array services (184).
- In embodiments in which multiple storage arrays are included in the data center, each storage array may be independently coupled for data communications to the cloud-based storage array services provider (176). In such embodiments, each storage array is generally unaware of the other storage arrays at least for purposes of participating in storage array services offered by the cloud-based storage array services provider (176). In such an embodiment, the cloud-based storage array services provider may expose a REST (Representational State Transition) API (Application Programming Interface), or the like, to the storage arrays to carry out data communications between a storage array service and a storage array. REST APIs generally utilize HTTP commands and a domain as the basis for data communications to between two endpoints. To that end, upon a loss of communications with the cloud-based storage array services provider (176), the primary storage array (180) may initiate the one or more cloud storage array services (184) by altering a local DNS (Domain Name Service) record such that the domain originally utilized by the cloud-based storage array services provider (176) redirects to an IP address of the primary storage array. In this way, any communications that would normally be addressed to the cloud-based storage array services provider from any storage array in the data center are now redirected to the primary storage array (180).
- In such an embodiment in which multiple storage arrays are located within a single data center, generating metadata describing one or more real-time storage array characteristics may also include generating metadata describing one or more real-time storage array characteristics of each of the plurality of the storage arrays; and aggregating, for presentation to the user, the metadata of each of the plurality of storage arrays.
- Although the example of
FIG. 1 depicts the primary storage array (180) as the host of the cloud storage array services (184), other storage arrays may host the services in various circumstances. In this way, initiating the one or more cloud storage array services may also include selecting, by the primary storage array through the storage array services module (182) one of the plurality of storage arrays in the data center to host the one or more cloud storage array services in dependence upon workload characteristics of each of the plurality of storage arrays. The term ‘workload characteristics’ here refers to any metric that may be utilized to infer availability of processing capabilities. Examples of such workload characteristics may include processing capabilities of each storage array (CPU speed, memory bus speed, and the like), a history of storage access operations over a predefined period of time, status of a job queue directed to accessing a volume hosted on a storage array, and so on as will occur to readers of skill in the art. That is, a storage array with less workload than all other storage arrays may be utilized to host the cloud storage array services (184) so that primary data storage operations are unaffected. - In embodiments in which workload characteristics are utilized to select a host for the cloud-based storage array services, the primary storage array (180) may also be configured to detect a change in workload characteristics of each of the plurality of storage arrays. Such a change may be detected in a variety of ways including, for example, by detecting a failure of a storage array, by periodically retrieving workload characteristics, and so on. Upon detecting the change, the primary storage array (180) may then re-select one of the storage arrays to host the one or more cloud storage array services in dependence upon the changed workload characteristics. In this way, hosting of the services may be dynamically reassigned when workload changes amongst the storage arrays.
- In embodiments in which a storage array other than the primary storage array (180) is selected to host the cloud-based storage array services, the primary storage array may operate as a proxy for the selected storage array. In such an embodiment, presenting the metadata to a user through a local area network may include presenting the metadata through the proxy of the primary storage array. The primary storage array (180) may operate as a proxy in different ways. In one way, the primary storage array receives only the final aggregated results for presentation to the user through the local area network (160). That is, the selected storage array actually hosting the cloud-based storage array services (184) may perform the services, collecting metadata from all storage arrays, aggregate the metadata into a single result and pass that result on to the primary storage array for presentation to a user. In another example, the selected storage array may execute the cloud-based storage array services and each storage array may pass its metadata directly to the primary storage array. In such an embodiment, the primary storage array may aggregate and process the metadata of each storage array prior to presenting the aggregated and processed metadata to a user through the LAN (160).
- The arrangement of computing devices, storage arrays, cloud-based service providers, networks and other devices making up the exemplary system illustrated in
FIG. 1 are for explanation, not for limitation. Systems useful according to various embodiments of the present invention may include different configurations of servers, routers, switches, computing devices, and network architectures, not shown inFIG. 1 , as will occur to those of skill in the art. - Locally providing cloud storage array services in accordance with embodiments of the present invention is generally implemented with computers. In the system of
FIG. 1 , for example, all the computing devices (164-170), storage arrays (102, 104), and storage array services provider (176) may be implemented to some extent at least as computers. For further explanation, therefore,FIG. 2 sets forth a block diagram several example computers useful for locally providing cloud storage array services according to embodiments of the present invention. The example computers inFIG. 2 include a primary storage array (202), a client-side computer (204), and a storage array services provider (176). For clarity, only one computer, the primary storage array (202), in the example ofFIG. 2 is depicted with a number of various computing components which are described below in greater detail. Readers will understand that the client-side user computer (204) and storage array services provider (176) may include similar components that operate in a similar manner. - The primary storage array (202) of
FIG. 2 includes at least one computer processor (210) or ‘CPU’ as well as random access memory (214) (RAM') which is connected through a high speed memory bus and bus adapter (212) to processor (210) and to other components of the primary storage array (202). Stored in RAM (214) is a storage array services module (182), a module of computer program instructions that, when executed, causes the primary storage array (202) ofFIG. 2 to locally provide cloud storage array services when the storage array (202) is not connected to a remote cloud-based storage array services provider (172) by initiating one or more cloud storage array services (184) and locally providing the cloud storage array services including: generating, by the cloud storage array services, metadata (226) describing one or more real-time storage array characteristics; and presenting the metadata to a user through a local area network. - Here, the user may receive or view the metadata (226) through a client-side array services module (228) stored in RAM (238) of a client-side user computer (204). In the example of
FIG. 2 , the client-side user computer (204) is depicted as being coupled through the SAN (158) to the storage array (202) for use in storing data in the storage array. Alternatively, the client-side user computer (204) may be a device that is not connected to the storage array (202) for purposes of storing data but rather may be connected only via a LAN for purposes of receiving results of the cloud storage array services. Consider, for example, a client-side user computer that is implemented as a mobile device that is carried by a system administrator. Although the mobile device is not coupled to the storage array for purposes of data storage, the system administrator may utilize the mobile device to request and receive results from various reporting services that indicate storage array performance characteristics, errors, alerts, and the like. - In some embodiments, prior to the storage array services module (182) initiating cloud storage array services (184) locally, such cloud storage array services may be provided remotely via the storage array services provider (176). In such an embodiment, the cloud storage array services (184) may be stored in RAM (24) of the storage array services provider (176) and be accessible via an API exposed by the storage array services provider via data communications over the Internet (172) or some other wide-area network.
- Turning back to the components of the primary storage array (202), also stored in RAM (214) is an operating system (234). Examples of operating systems useful in primary storage arrays configured for locally providing cloud storage array services according to embodiments of the present invention include UNIX™, Linux™, Microsoft Windows™, and others as will occur to those of skill in the art. The operating system (234), the storage array services module (182), the cloud storage array services (184) and the metadata (226) in the example of
FIG. 2 are shown in RAM (168), but many components of such software typically are stored in non-volatile memory also, such as, for example, on a disk drive (224). Likewise, the modules depicted in RAM (238, 240) of the client-side user computer (204) and the storage array services provider (176) may be stored in non-volatile memory. - The primary storage array (202) of
FIG. 2 also includes disk drive adapter (222) coupled through an expansion bus and bus adapter (212) to the processor (210) and other components of the primary storage array (202). Disk drive adapter (222) connects non-volatile data storage to the primary storage array (202) in the form of disk drive (224). Disk drive adapters may be implemented in a variety of ways including as SATA (Serial Advanced Technology Attachment) adapters, PATA (Parallel ATA) adapters, Integrated Drive Electronics (‘IDE’) adapters, Small Computer System Interface (‘SCSI’) adapters, and others as will occur to those of skill in the art. Non-volatile computer memory also may be implemented as an optical disk drive, electrically erasable programmable read-only memory (so-called ‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as will occur to those of skill in the art. - The example primary storage array (202) of
FIG. 2 includes one or more input/output (‘I/O’) adapters (216). I/O adapters implement user-oriented input/output through, for example, software drivers and computer hardware for controlling output to display devices such as computer display screens, as well as user input from user input devices (220) such as keyboards and mice. The example primary storage array (202) ofFIG. 2 also includes a video adapter (208), which is an example of an I/O adapter specially designed for graphic output to a display device (206) such as a display screen or computer monitor. Video adapter (208) is connected to the processor (210) through a high speed video bus. - The exemplary primary storage array (202) of
FIG. 2 includes a communications adapter (218) for data communications with other computers (204, 176) through the Internet (172). Such data communications may be carried out through data communications networks such as IP data communications networks, and in other ways as will occur to those of skill in the art. Communications adapters implement the hardware level of data communications through which one computer sends data communications to another computer, directly or through a data communications network. Examples of such communications adapters useful include modems for wired dial-up communications, Ethernet (IEEE 802.3) adapters for wired data communications, and 802.11 adapters for wireless data communications. - The example of
FIG. 2 depicts a storage array implemented as one type of example computer. Readers of skill in the art will immediately recognize, however, that such a storage array useful for locally providing cloud storage array services in accordance with embodiments of the present invention may be implemented in a variety of different ways and include a variety of different components. To that end and for further explanation,FIG. 3 sets forth a block diagram of an example storage controller (106) of a primary storage array (202) configured for locally providing cloud storage array services in accordance with embodiments of the present invention. The example storage controller includes a computer processor (314). The computer processor is coupled to RAM (214) through a DDR4 (Double-Data Rate 4) bus. Stored in RAM (214) is a storage array services module (182) that operates as described above to locally provide one or more cloud storage array services (184) including the generation and presentation, to a user, of metadata (226) describing real-time storage array characteristics. - The processor (314) is also coupled for data communications through PCIe (Peripheral Component Interface express) links (308, 310, 312, 322) to several Fibre Channel host bus adapters (302, 304), an Ethernet adapter (306), and a PCIe switch (324). The Fibre Channel host bus adapters (308, 310) may couple the storage controller to a storage area network, such the SAN (158) depicted in the example of
-
FIGS. 1 and 2 . The Ethernet adapter (306) may couple the storage controller to a local area network such as the LAN (160) depicted in the example ofFIGS. 1 and 2 . The PCIe switch (324) may provide data communications across other PCI links through the midplane to PCI endpoints, such as storage devices or write buffer devices. Likewise, the processor (314) is also coupled through a SAS (Serial Attached SCSI) host bus adapter (316) to a SAS expander (320). The SAS expander may provide SAS connections between the computer processor (314) and other devices through the midplane. - Readers of skill in the art will recognize that these components, protocols, adapters, and architectures are for illustration only, not limitation. Such a storage controller may be implemented in a variety of different ways. Each such way is well within the scope of the present invention.
- For further explanation,
FIG. 5 sets forth a flow chart illustrating an exemplary method for locally providing cloud storage array services according to embodiments of the present invention. The method ofFIG. 5 includes initiating (402), by a primary storage array (202), one or more cloud storage array services (184). Initiating (402) one or more cloud storage array services (184) may include deploying and executing one or more modules of computer program instructions. - The method of
FIG. 5 also includes locally providing (404) the cloud storage array services (184). In the method ofFIG. 5 , locally providing (404) the cloud storage array services (184) is carried out by generating (406), by the cloud storage array services (184), metadata (226) describing one or more real-time storage array characteristics; and presenting (408) the metadata to a user through a local area network. Generating (406) such metadata may be carried out in various ways depending upon the type of service performed. In embodiments in which a service reports throughput of a storage array, the service may monitor a number of data storage write operations completed over a predefined period time. Such a number is metadata describing real-time storage array characteristic. - Presenting (408) metadata (226) locally to a user may be carried out by sending the data through the local area network (160) to a client-side array services module for presentation in a GUI (Graphical User Interface) (410). A client-side array services module (228) is a module of automated computing machinery comprising computer hardware, computer software, or a combination of computer hardware and software that is configured to receive and present in a GUI metadata from cloud storage array services. One example of a client-side array services module (228) may be a web browser and the GUI (410) may be a webpage hosted by the primary storage array (202). In another example, the client-side array services module (228) may be implemented as an application for a mobile device. These are but a few of many possible implementations of a client-side array services module (228) that may be configured to receive and present metadata to a user.
- For further explanation,
FIG. 5 sets forth a flow chart illustrating another method of locally providing cloud storage array services in accordance with embodiments of the present invention. The method ofFIG. 5 is similar to the method ofFIG. 4 including, as it does: initiating (402) one or more cloud storage array services (184) and locally providing (404) the cloud storage array services including: generating (406) metadata; and presenting (408) the metadata to a user through a local area network (160). - The method of
FIG. 5 differs from the method ofFIG. 5 , however, in that the method ofFIG. 5 also includes detecting (502), by the primary storage array (202) prior to initiating (402) the cloud storage array services (184), a data communications connection (512) between the primary storage array (202) and a remote cloud-based storage array services provider (176). Detecting (502) a data communications connection (512) between the primary storage array (202) and the remote cloud-based storage array services provider (176) may be carried out in a variety of manners. In one example, the primary storage array (202) may periodically ping the cloud-based storage array services provider (176). Each ping is returned by the cloud-based storage array services provider as long as a data communications connection over the wide area network (WAN) (512) is active. - While the data communications connection is active, the method of
FIG. 5 includes providing (506), by the remote cloud-based storage array services provider (176), the cloud storage array services. The cloud-based storage array services provider (176) may provide many different types of cloud storage array services (184) in many different ways. In one example, the cloud-based storage array services provider (176) may expose an API to the primary storage array (and other storage arrays) where the API enables the performance of the cloud storage array services. - Also while the data communications connection between the primary storage array (202) and the remote cloud based storage array services provider (176) is active, the method of
FIG. 5 may optionally include periodically retrieving (504), by the primary storage array from the remote cloud-based storage array services provider, a current configuration (508) of the cloud storage array services and a current configuration (508) of the plurality of storage arrays. The configuration of cloud storage array services may be updated over time by developers of the cloud storage array services and the configuration of the storage arrays in the data center may updated by system administrators of the storage arrays or data center. - The method of
FIG. 5 also includes detecting (508), by the primary storage array (202), loss of the data communications connection (514) between the primary storage array (202) and the remote cloud-based storage array services provider (176). Continuing with the heartbeat example described above, upon a predefined number of un-returned pings, the primary storage array (202) may infer a loss of data communications connection between the primary storage array (202) and the cloud-based storage area service provider (176). In an embodiment in which the a data communication connection was previous active then is lost, the primary storage array (202) may be configured to initiate (402) the one or more cloud storage array services by the primary storage array only in response to detecting the loss of the data communications connection between the primary storage array and the remote, cloud-based storage array services provider. - For further explanation,
FIG. 6 sets forth a flow chart illustrating another method of locally providing cloud storage array services in accordance with embodiments of the present invention. The method ofFIG. 6 is similar to the method ofFIG. 4 including, as it does: initiating (402) one or more cloud storage array services (184) and locally providing (404) the cloud storage array services including: generating (406) metadata; and presenting (408) the metadata to a user through a local area network (160). - The method of
FIG. 6 differs from the method ofFIG. 5 , however, in that in the method ofFIG. 6 , the data center includes a plurality of storage arrays (602, 604), including the primary storage array (202). Also in the method ofFIG. 5 generating (406) metadata (226) describing one or more real-time storage array characteristics includes: generating (606) metadata describing one or more real-time storage array characteristics of each of the plurality of the storage arrays (602, 604, 402) and aggregating (608), for presentation to the user, the metadata (226) of each of the plurality of storage arrays. In this way, cloud storage array services may be performed for a plurality of storage arrays in a single data center and all results are aggregated for presentation of a user. - For further explanation,
FIG. 7 sets forth a flow chart illustrating another method of locally providing cloud storage array services in accordance with embodiments of the present invention. The method ofFIG. 7 is similar to the method ofFIG. 4 including, as it does: initiating (402) one or more cloud storage array services (184) and locally providing (404) the cloud storage array services including: generating (406) metadata; and presenting (408) the metadata to a user through a local area network (160). - The method of
FIG. 6 differs from the method ofFIG. 5 , however, in that in the method ofFIG. 6 , the data center includes a plurality of storage arrays (702, 704), including the primary storage array (202). The method ofFIG. 7 differs from the method ofFIG. 5 in that in the method ofFIG. 7 initiating (402), by the primary storage array, one or more cloud storage array services (402) includes selecting (706), by the primary storage array (202) in dependence upon workload characteristics of each of the plurality of storage arrays (702, 704), one of the plurality of storage arrays to host the one or more cloud storage array services (184). Selecting a storage array to host the cloud storage array services in dependence upon workload characteristics may include retrieving from each of the storage arrays one or more metrics useful for inferring availability of processing capabilities and selecting the storage array with the greatest inferred availability of processing capabilities. - The method of
FIG. 7 also includes detecting (708), by the primary storage array (202), a change in workload characteristics of each of the plurality of storage arrays and re-selecting (710) one of the plurality of storage arrays to host the one or more cloud storage array services in dependence upon the changed workload characteristics. The primary storage array (202) may be configured to periodically request workload characteristics from each of the plurality of storage arrays and determine if a change in the workload characteristics necessitates a change in selection of the storage array hosting the cloud storage array services (184). - The method of
FIG. 7 also includes operating (714), by the primary storage array (202), as a proxy for the selected storage array (716) when the selected storage array (716) is not the primary storage array (202). Operating (714) as a proxy may take various forms. As mentioned above, the primary storage array (202) may operate as a proxy by receiving a final aggregated result of the performance of the cloud storage array services or may operate as a proxy by receiving, from each storage array independently, metadata streams generated as a result of the execution of the cloud storage array services by the selected storage array (716). In the latter example, the primary storage array (202) may process, analyze, and aggregated the various independent streams of metadata. To that end, presenting (408) the metadata to a user through a local area network in the method ofFIG. 7 is carried out by presenting (712) the metadata through the proxy of the primary storage array (714). - Exemplary embodiments of the present invention are described largely in the context of a fully functional computer system. Readers of skill in the art will recognize, however, that the present invention also may be embodied in a computer program product disposed upon computer readable media for use with any suitable data processing system. Such computer readable storage media may be any transitory or non-transitory media. Examples of such media include storage media for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media also include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the exemplary embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware, as hardware, or as an aggregation of hardware and software are well within the scope of embodiments of the present invention.
- It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/736,549 US9521200B1 (en) | 2015-05-26 | 2015-06-11 | Locally providing cloud storage array services |
PCT/US2016/020410 WO2016190938A1 (en) | 2015-05-26 | 2016-03-02 | Locally providing cloud storage array services |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/721,571 US9716755B2 (en) | 2015-05-26 | 2015-05-26 | Providing cloud storage array services by a local storage array in a data center |
US14/736,549 US9521200B1 (en) | 2015-05-26 | 2015-06-11 | Locally providing cloud storage array services |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/721,571 Continuation US9716755B2 (en) | 2015-05-26 | 2015-05-26 | Providing cloud storage array services by a local storage array in a data center |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160352834A1 true US20160352834A1 (en) | 2016-12-01 |
US9521200B1 US9521200B1 (en) | 2016-12-13 |
Family
ID=55861132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/736,549 Active US9521200B1 (en) | 2015-05-26 | 2015-06-11 | Locally providing cloud storage array services |
Country Status (2)
Country | Link |
---|---|
US (1) | US9521200B1 (en) |
WO (1) | WO2016190938A1 (en) |
Cited By (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9716755B2 (en) | 2015-05-26 | 2017-07-25 | Pure Storage, Inc. | Providing cloud storage array services by a local storage array in a data center |
US9740414B2 (en) | 2015-10-29 | 2017-08-22 | Pure Storage, Inc. | Optimizing copy operations |
US9760297B2 (en) | 2016-02-12 | 2017-09-12 | Pure Storage, Inc. | Managing input/output (‘I/O’) queues in a data storage system |
US9760479B2 (en) | 2015-12-02 | 2017-09-12 | Pure Storage, Inc. | Writing data in a storage system that includes a first type of storage device and a second type of storage device |
US9804779B1 (en) | 2015-06-19 | 2017-10-31 | Pure Storage, Inc. | Determining storage capacity to be made available upon deletion of a shared data object |
US9811264B1 (en) | 2016-04-28 | 2017-11-07 | Pure Storage, Inc. | Deploying client-specific applications in a storage system utilizing redundant system resources |
US9817603B1 (en) | 2016-05-20 | 2017-11-14 | Pure Storage, Inc. | Data migration in a storage array that includes a plurality of storage devices |
US9841921B2 (en) | 2016-04-27 | 2017-12-12 | Pure Storage, Inc. | Migrating data in a storage array that includes a plurality of storage devices |
US9851762B1 (en) | 2015-08-06 | 2017-12-26 | Pure Storage, Inc. | Compliant printed circuit board (‘PCB’) within an enclosure |
US9882913B1 (en) | 2015-05-29 | 2018-01-30 | Pure Storage, Inc. | Delivering authorization and authentication for a user of a storage array from a cloud |
US9886314B2 (en) | 2016-01-28 | 2018-02-06 | Pure Storage, Inc. | Placing workloads in a multi-array system |
US9892071B2 (en) | 2015-08-03 | 2018-02-13 | Pure Storage, Inc. | Emulating a remote direct memory access (‘RDMA’) link between controllers in a storage array |
US9910618B1 (en) | 2017-04-10 | 2018-03-06 | Pure Storage, Inc. | Migrating applications executing on a storage system |
US9959043B2 (en) | 2016-03-16 | 2018-05-01 | Pure Storage, Inc. | Performing a non-disruptive upgrade of data in a storage system |
US10007459B2 (en) | 2016-10-20 | 2018-06-26 | Pure Storage, Inc. | Performance tuning in a storage system that includes one or more storage devices |
US10021170B2 (en) | 2015-05-29 | 2018-07-10 | Pure Storage, Inc. | Managing a storage array using client-side services |
US10146585B2 (en) | 2016-09-07 | 2018-12-04 | Pure Storage, Inc. | Ensuring the fair utilization of system resources using workload based, time-independent scheduling |
US10162835B2 (en) | 2015-12-15 | 2018-12-25 | Pure Storage, Inc. | Proactive management of a plurality of storage arrays in a multi-array system |
US10162566B2 (en) | 2016-11-22 | 2018-12-25 | Pure Storage, Inc. | Accumulating application-level statistics in a storage system |
US10198205B1 (en) | 2016-12-19 | 2019-02-05 | Pure Storage, Inc. | Dynamically adjusting a number of storage devices utilized to simultaneously service write operations |
US10198194B2 (en) | 2015-08-24 | 2019-02-05 | Pure Storage, Inc. | Placing data within a storage device of a flash array |
US10235229B1 (en) | 2016-09-07 | 2019-03-19 | Pure Storage, Inc. | Rehabilitating storage devices in a storage array that includes a plurality of storage devices |
US10275285B1 (en) | 2017-10-19 | 2019-04-30 | Pure Storage, Inc. | Data transformation caching in an artificial intelligence infrastructure |
US10284232B2 (en) | 2015-10-28 | 2019-05-07 | Pure Storage, Inc. | Dynamic error processing in a storage device |
US10296258B1 (en) | 2018-03-09 | 2019-05-21 | Pure Storage, Inc. | Offloading data storage to a decentralized storage network |
US10296236B2 (en) | 2015-07-01 | 2019-05-21 | Pure Storage, Inc. | Offloading device management responsibilities from a storage device in an array of storage devices |
US10303390B1 (en) | 2016-05-02 | 2019-05-28 | Pure Storage, Inc. | Resolving fingerprint collisions in flash storage system |
US10318196B1 (en) | 2015-06-10 | 2019-06-11 | Pure Storage, Inc. | Stateless storage system controller in a direct flash storage system |
US10326836B2 (en) | 2015-12-08 | 2019-06-18 | Pure Storage, Inc. | Partially replicating a snapshot between storage systems |
US10331588B2 (en) | 2016-09-07 | 2019-06-25 | Pure Storage, Inc. | Ensuring the appropriate utilization of system resources using weighted workload based, time-independent scheduling |
US10346043B2 (en) | 2015-12-28 | 2019-07-09 | Pure Storage, Inc. | Adaptive computing for data compression |
US10353777B2 (en) | 2015-10-30 | 2019-07-16 | Pure Storage, Inc. | Ensuring crash-safe forward progress of a system configuration update |
US10360214B2 (en) | 2017-10-19 | 2019-07-23 | Pure Storage, Inc. | Ensuring reproducibility in an artificial intelligence infrastructure |
US10365982B1 (en) | 2017-03-10 | 2019-07-30 | Pure Storage, Inc. | Establishing a synchronous replication relationship between two or more storage systems |
US10374868B2 (en) | 2015-10-29 | 2019-08-06 | Pure Storage, Inc. | Distributed command processing in a flash storage system |
US10417092B2 (en) | 2017-09-07 | 2019-09-17 | Pure Storage, Inc. | Incremental RAID stripe update parity calculation |
US10452444B1 (en) | 2017-10-19 | 2019-10-22 | Pure Storage, Inc. | Storage system with compute resources and shared storage resources |
US10454810B1 (en) | 2017-03-10 | 2019-10-22 | Pure Storage, Inc. | Managing host definitions across a plurality of storage systems |
US10459664B1 (en) | 2017-04-10 | 2019-10-29 | Pure Storage, Inc. | Virtualized copy-by-reference |
US10459652B2 (en) | 2016-07-27 | 2019-10-29 | Pure Storage, Inc. | Evacuating blades in a storage array that includes a plurality of blades |
US10467107B1 (en) | 2017-11-01 | 2019-11-05 | Pure Storage, Inc. | Maintaining metadata resiliency among storage device failures |
US10474363B1 (en) | 2016-07-29 | 2019-11-12 | Pure Storage, Inc. | Space reporting in a storage system |
US10484174B1 (en) | 2017-11-01 | 2019-11-19 | Pure Storage, Inc. | Protecting an encryption key for data stored in a storage system that includes a plurality of storage devices |
US10489307B2 (en) | 2017-01-05 | 2019-11-26 | Pure Storage, Inc. | Periodically re-encrypting user data stored on a storage device |
US10503700B1 (en) | 2017-01-19 | 2019-12-10 | Pure Storage, Inc. | On-demand content filtering of snapshots within a storage system |
US10503427B2 (en) | 2017-03-10 | 2019-12-10 | Pure Storage, Inc. | Synchronously replicating datasets and other managed objects to cloud-based storage systems |
US10509581B1 (en) | 2017-11-01 | 2019-12-17 | Pure Storage, Inc. | Maintaining write consistency in a multi-threaded storage system |
US10514978B1 (en) | 2015-10-23 | 2019-12-24 | Pure Storage, Inc. | Automatic deployment of corrective measures for storage arrays |
US10521151B1 (en) | 2018-03-05 | 2019-12-31 | Pure Storage, Inc. | Determining effective space utilization in a storage system |
US10552090B2 (en) | 2017-09-07 | 2020-02-04 | Pure Storage, Inc. | Solid state drives with multiple types of addressable memory |
US10572460B2 (en) | 2016-02-11 | 2020-02-25 | Pure Storage, Inc. | Compressing data in dependence upon characteristics of a storage system |
US10599536B1 (en) | 2015-10-23 | 2020-03-24 | Pure Storage, Inc. | Preventing storage errors using problem signatures |
US10613791B2 (en) | 2017-06-12 | 2020-04-07 | Pure Storage, Inc. | Portable snapshot replication between storage systems |
US10671439B1 (en) | 2016-09-07 | 2020-06-02 | Pure Storage, Inc. | Workload planning with quality-of-service (‘QOS’) integration |
US10671494B1 (en) | 2017-11-01 | 2020-06-02 | Pure Storage, Inc. | Consistent selection of replicated datasets during storage system recovery |
US10671302B1 (en) | 2018-10-26 | 2020-06-02 | Pure Storage, Inc. | Applying a rate limit across a plurality of storage systems |
US10691567B2 (en) | 2016-06-03 | 2020-06-23 | Pure Storage, Inc. | Dynamically forming a failure domain in a storage system that includes a plurality of blades |
US10761759B1 (en) | 2015-05-27 | 2020-09-01 | Pure Storage, Inc. | Deduplication of data in a storage device |
US10789020B2 (en) | 2017-06-12 | 2020-09-29 | Pure Storage, Inc. | Recovering data within a unified storage element |
US10795598B1 (en) | 2017-12-07 | 2020-10-06 | Pure Storage, Inc. | Volume migration for storage systems synchronously replicating a dataset |
US10817392B1 (en) | 2017-11-01 | 2020-10-27 | Pure Storage, Inc. | Ensuring resiliency to storage device failures in a storage system that includes a plurality of storage devices |
US10834188B2 (en) * | 2016-03-23 | 2020-11-10 | International Business Machines Corporation | Distribution of data in cloud storage based on policies maintained in metadata |
US10834086B1 (en) | 2015-05-29 | 2020-11-10 | Pure Storage, Inc. | Hybrid cloud-based authentication for flash storage array access |
US10838833B1 (en) | 2018-03-26 | 2020-11-17 | Pure Storage, Inc. | Providing for high availability in a data analytics pipeline without replicas |
US10853148B1 (en) | 2017-06-12 | 2020-12-01 | Pure Storage, Inc. | Migrating workloads between a plurality of execution environments |
US10871922B2 (en) | 2018-05-22 | 2020-12-22 | Pure Storage, Inc. | Integrated storage management between storage systems and container orchestrators |
US10884636B1 (en) | 2017-06-12 | 2021-01-05 | Pure Storage, Inc. | Presenting workload performance in a storage system |
US10908966B1 (en) | 2016-09-07 | 2021-02-02 | Pure Storage, Inc. | Adapting target service times in a storage system |
US10917471B1 (en) | 2018-03-15 | 2021-02-09 | Pure Storage, Inc. | Active membership in a cloud-based storage system |
US10917470B1 (en) | 2018-11-18 | 2021-02-09 | Pure Storage, Inc. | Cloning storage systems in a cloud computing environment |
US10924548B1 (en) | 2018-03-15 | 2021-02-16 | Pure Storage, Inc. | Symmetric storage using a cloud-based storage system |
US10929226B1 (en) | 2017-11-21 | 2021-02-23 | Pure Storage, Inc. | Providing for increased flexibility for large scale parity |
US10936238B2 (en) | 2017-11-28 | 2021-03-02 | Pure Storage, Inc. | Hybrid data tiering |
US10942650B1 (en) | 2018-03-05 | 2021-03-09 | Pure Storage, Inc. | Reporting capacity utilization in a storage system |
US10963189B1 (en) | 2018-11-18 | 2021-03-30 | Pure Storage, Inc. | Coalescing write operations in a cloud-based storage system |
US10976962B2 (en) | 2018-03-15 | 2021-04-13 | Pure Storage, Inc. | Servicing I/O operations in a cloud-based storage system |
US10992533B1 (en) | 2018-01-30 | 2021-04-27 | Pure Storage, Inc. | Policy based path management |
US10990282B1 (en) | 2017-11-28 | 2021-04-27 | Pure Storage, Inc. | Hybrid data tiering with cloud storage |
US10992598B2 (en) | 2018-05-21 | 2021-04-27 | Pure Storage, Inc. | Synchronously replicating when a mediation service becomes unavailable |
US11003369B1 (en) | 2019-01-14 | 2021-05-11 | Pure Storage, Inc. | Performing a tune-up procedure on a storage device during a boot process |
US11016824B1 (en) | 2017-06-12 | 2021-05-25 | Pure Storage, Inc. | Event identification with out-of-order reporting in a cloud-based environment |
US11036677B1 (en) | 2017-12-14 | 2021-06-15 | Pure Storage, Inc. | Replicated data integrity |
US11042452B1 (en) | 2019-03-20 | 2021-06-22 | Pure Storage, Inc. | Storage system data recovery using data recovery as a service |
US11048590B1 (en) | 2018-03-15 | 2021-06-29 | Pure Storage, Inc. | Data consistency during recovery in a cloud-based storage system |
US11068162B1 (en) | 2019-04-09 | 2021-07-20 | Pure Storage, Inc. | Storage management in a cloud data store |
US11089105B1 (en) | 2017-12-14 | 2021-08-10 | Pure Storage, Inc. | Synchronously replicating datasets in cloud-based storage systems |
US11086553B1 (en) | 2019-08-28 | 2021-08-10 | Pure Storage, Inc. | Tiering duplicated objects in a cloud-based object store |
US11095706B1 (en) | 2018-03-21 | 2021-08-17 | Pure Storage, Inc. | Secure cloud-based storage system management |
US11093139B1 (en) | 2019-07-18 | 2021-08-17 | Pure Storage, Inc. | Durably storing data within a virtual storage system |
US11102298B1 (en) | 2015-05-26 | 2021-08-24 | Pure Storage, Inc. | Locally providing cloud storage services for fleet management |
US11112990B1 (en) | 2016-04-27 | 2021-09-07 | Pure Storage, Inc. | Managing storage device evacuation |
US11126364B2 (en) | 2019-07-18 | 2021-09-21 | Pure Storage, Inc. | Virtual storage system architecture |
US11146564B1 (en) | 2018-07-24 | 2021-10-12 | Pure Storage, Inc. | Login authentication in a cloud storage platform |
US11150834B1 (en) | 2018-03-05 | 2021-10-19 | Pure Storage, Inc. | Determining storage consumption in a storage system |
US11163624B2 (en) | 2017-01-27 | 2021-11-02 | Pure Storage, Inc. | Dynamically adjusting an amount of log data generated for a storage system |
US11169727B1 (en) | 2017-03-10 | 2021-11-09 | Pure Storage, Inc. | Synchronous replication between storage systems with virtualized storage |
US11171950B1 (en) | 2018-03-21 | 2021-11-09 | Pure Storage, Inc. | Secure cloud-based storage system management |
US11210009B1 (en) | 2018-03-15 | 2021-12-28 | Pure Storage, Inc. | Staging data in a cloud-based storage system |
US11210133B1 (en) | 2017-06-12 | 2021-12-28 | Pure Storage, Inc. | Workload mobility between disparate execution environments |
US11221778B1 (en) | 2019-04-02 | 2022-01-11 | Pure Storage, Inc. | Preparing data for deduplication |
US11231858B2 (en) | 2016-05-19 | 2022-01-25 | Pure Storage, Inc. | Dynamically configuring a storage system to facilitate independent scaling of resources |
US11288138B1 (en) | 2018-03-15 | 2022-03-29 | Pure Storage, Inc. | Recovery from a system fault in a cloud-based storage system |
US11294588B1 (en) | 2015-08-24 | 2022-04-05 | Pure Storage, Inc. | Placing data within a storage device |
US11301152B1 (en) | 2020-04-06 | 2022-04-12 | Pure Storage, Inc. | Intelligently moving data between storage systems |
US11321006B1 (en) | 2020-03-25 | 2022-05-03 | Pure Storage, Inc. | Data loss prevention during transitions from a replication source |
US11327676B1 (en) | 2019-07-18 | 2022-05-10 | Pure Storage, Inc. | Predictive data streaming in a virtual storage system |
US11340800B1 (en) | 2017-01-19 | 2022-05-24 | Pure Storage, Inc. | Content masking in a storage system |
US11340939B1 (en) | 2017-06-12 | 2022-05-24 | Pure Storage, Inc. | Application-aware analytics for storage systems |
US11340837B1 (en) | 2018-11-18 | 2022-05-24 | Pure Storage, Inc. | Storage system management via a remote console |
US11349917B2 (en) | 2020-07-23 | 2022-05-31 | Pure Storage, Inc. | Replication handling among distinct networks |
US11347697B1 (en) | 2015-12-15 | 2022-05-31 | Pure Storage, Inc. | Proactively optimizing a storage system |
US11360689B1 (en) | 2019-09-13 | 2022-06-14 | Pure Storage, Inc. | Cloning a tracking copy of replica data |
US11360844B1 (en) | 2015-10-23 | 2022-06-14 | Pure Storage, Inc. | Recovery of a container storage provider |
US11379132B1 (en) | 2016-10-20 | 2022-07-05 | Pure Storage, Inc. | Correlating medical sensor data |
US11392553B1 (en) | 2018-04-24 | 2022-07-19 | Pure Storage, Inc. | Remote data management |
US11392555B2 (en) | 2019-05-15 | 2022-07-19 | Pure Storage, Inc. | Cloud-based file services |
US11397545B1 (en) | 2021-01-20 | 2022-07-26 | Pure Storage, Inc. | Emulating persistent reservations in a cloud-based storage system |
US11403000B1 (en) | 2018-07-20 | 2022-08-02 | Pure Storage, Inc. | Resiliency in a cloud-based storage system |
US11416298B1 (en) | 2018-07-20 | 2022-08-16 | Pure Storage, Inc. | Providing application-specific storage by a storage system |
US11422731B1 (en) | 2017-06-12 | 2022-08-23 | Pure Storage, Inc. | Metadata-based replication of a dataset |
US11431488B1 (en) | 2020-06-08 | 2022-08-30 | Pure Storage, Inc. | Protecting local key generation using a remote key management service |
US11436344B1 (en) | 2018-04-24 | 2022-09-06 | Pure Storage, Inc. | Secure encryption in deduplication cluster |
US11442652B1 (en) | 2020-07-23 | 2022-09-13 | Pure Storage, Inc. | Replication handling during storage system transportation |
US11442669B1 (en) | 2018-03-15 | 2022-09-13 | Pure Storage, Inc. | Orchestrating a virtual storage system |
US11442825B2 (en) | 2017-03-10 | 2022-09-13 | Pure Storage, Inc. | Establishing a synchronous replication relationship between two or more storage systems |
US11455409B2 (en) | 2018-05-21 | 2022-09-27 | Pure Storage, Inc. | Storage layer data obfuscation |
US11455168B1 (en) | 2017-10-19 | 2022-09-27 | Pure Storage, Inc. | Batch building for deep learning training workloads |
US11461273B1 (en) | 2016-12-20 | 2022-10-04 | Pure Storage, Inc. | Modifying storage distribution in a storage system that includes one or more storage devices |
US11477280B1 (en) | 2017-07-26 | 2022-10-18 | Pure Storage, Inc. | Integrating cloud storage services |
US11481261B1 (en) | 2016-09-07 | 2022-10-25 | Pure Storage, Inc. | Preventing extended latency in a storage system |
US11487715B1 (en) | 2019-07-18 | 2022-11-01 | Pure Storage, Inc. | Resiliency in a cloud-based storage system |
US11494267B2 (en) | 2020-04-14 | 2022-11-08 | Pure Storage, Inc. | Continuous value data redundancy |
US11494692B1 (en) | 2018-03-26 | 2022-11-08 | Pure Storage, Inc. | Hyperscale artificial intelligence and machine learning infrastructure |
US11503031B1 (en) | 2015-05-29 | 2022-11-15 | Pure Storage, Inc. | Storage array access control from cloud-based user authorization and authentication |
US11526405B1 (en) | 2018-11-18 | 2022-12-13 | Pure Storage, Inc. | Cloud-based disaster recovery |
US11526408B2 (en) | 2019-07-18 | 2022-12-13 | Pure Storage, Inc. | Data recovery in a virtual storage system |
US11531577B1 (en) | 2016-09-07 | 2022-12-20 | Pure Storage, Inc. | Temporarily limiting access to a storage device |
US11531487B1 (en) | 2019-12-06 | 2022-12-20 | Pure Storage, Inc. | Creating a replica of a storage system |
US11550514B2 (en) | 2019-07-18 | 2023-01-10 | Pure Storage, Inc. | Efficient transfers between tiers of a virtual storage system |
US11561714B1 (en) | 2017-07-05 | 2023-01-24 | Pure Storage, Inc. | Storage efficiency driven migration |
US11573864B1 (en) | 2019-09-16 | 2023-02-07 | Pure Storage, Inc. | Automating database management in a storage system |
US11588716B2 (en) | 2021-05-12 | 2023-02-21 | Pure Storage, Inc. | Adaptive storage processing for storage-as-a-service |
US11592991B2 (en) | 2017-09-07 | 2023-02-28 | Pure Storage, Inc. | Converting raid data between persistent storage types |
US11609718B1 (en) | 2017-06-12 | 2023-03-21 | Pure Storage, Inc. | Identifying valid data after a storage system recovery |
US11616834B2 (en) | 2015-12-08 | 2023-03-28 | Pure Storage, Inc. | Efficient replication of a dataset to the cloud |
US11620075B2 (en) | 2016-11-22 | 2023-04-04 | Pure Storage, Inc. | Providing application aware storage |
US11625181B1 (en) | 2015-08-24 | 2023-04-11 | Pure Storage, Inc. | Data tiering using snapshots |
US11630598B1 (en) | 2020-04-06 | 2023-04-18 | Pure Storage, Inc. | Scheduling data replication operations |
US11632360B1 (en) | 2018-07-24 | 2023-04-18 | Pure Storage, Inc. | Remote access to a storage device |
US11630585B1 (en) | 2016-08-25 | 2023-04-18 | Pure Storage, Inc. | Processing evacuation events in a storage array that includes a plurality of storage devices |
US11637896B1 (en) | 2020-02-25 | 2023-04-25 | Pure Storage, Inc. | Migrating applications to a cloud-computing environment |
US11650749B1 (en) | 2018-12-17 | 2023-05-16 | Pure Storage, Inc. | Controlling access to sensitive data in a shared dataset |
US11669386B1 (en) | 2019-10-08 | 2023-06-06 | Pure Storage, Inc. | Managing an application's resource stack |
US11675503B1 (en) | 2018-05-21 | 2023-06-13 | Pure Storage, Inc. | Role-based data access |
US11675520B2 (en) | 2017-03-10 | 2023-06-13 | Pure Storage, Inc. | Application replication among storage systems synchronously replicating a dataset |
US11693713B1 (en) | 2019-09-04 | 2023-07-04 | Pure Storage, Inc. | Self-tuning clusters for resilient microservices |
US11706895B2 (en) | 2016-07-19 | 2023-07-18 | Pure Storage, Inc. | Independent scaling of compute resources and storage resources in a storage system |
US11709636B1 (en) | 2020-01-13 | 2023-07-25 | Pure Storage, Inc. | Non-sequential readahead for deep learning training |
US11714723B2 (en) | 2021-10-29 | 2023-08-01 | Pure Storage, Inc. | Coordinated snapshots for data stored across distinct storage environments |
US11720497B1 (en) | 2020-01-13 | 2023-08-08 | Pure Storage, Inc. | Inferred nonsequential prefetch based on data access patterns |
US11733901B1 (en) | 2020-01-13 | 2023-08-22 | Pure Storage, Inc. | Providing persistent storage to transient cloud computing services |
US11762764B1 (en) | 2015-12-02 | 2023-09-19 | Pure Storage, Inc. | Writing data in a storage system that includes a first type of storage device and a second type of storage device |
US11762781B2 (en) | 2017-01-09 | 2023-09-19 | Pure Storage, Inc. | Providing end-to-end encryption for data stored in a storage system |
US11782614B1 (en) | 2017-12-21 | 2023-10-10 | Pure Storage, Inc. | Encrypting data to optimize data reduction |
US11797569B2 (en) | 2019-09-13 | 2023-10-24 | Pure Storage, Inc. | Configurable data replication |
US11803453B1 (en) | 2017-03-10 | 2023-10-31 | Pure Storage, Inc. | Using host connectivity states to avoid queuing I/O requests |
US11809727B1 (en) | 2016-04-27 | 2023-11-07 | Pure Storage, Inc. | Predicting failures in a storage system that includes a plurality of storage devices |
US11816129B2 (en) | 2021-06-22 | 2023-11-14 | Pure Storage, Inc. | Generating datasets using approximate baselines |
US11847071B2 (en) | 2021-12-30 | 2023-12-19 | Pure Storage, Inc. | Enabling communication between a single-port device and multiple storage system controllers |
US11853285B1 (en) | 2021-01-22 | 2023-12-26 | Pure Storage, Inc. | Blockchain logging of volume-level events in a storage system |
US11853266B2 (en) | 2019-05-15 | 2023-12-26 | Pure Storage, Inc. | Providing a file system in a cloud environment |
US11860820B1 (en) | 2018-09-11 | 2024-01-02 | Pure Storage, Inc. | Processing data through a storage system in a data pipeline |
US11860780B2 (en) | 2022-01-28 | 2024-01-02 | Pure Storage, Inc. | Storage cache management |
US11861170B2 (en) | 2018-03-05 | 2024-01-02 | Pure Storage, Inc. | Sizing resources for a replication target |
US11861221B1 (en) | 2019-07-18 | 2024-01-02 | Pure Storage, Inc. | Providing scalable and reliable container-based storage services |
US11861423B1 (en) | 2017-10-19 | 2024-01-02 | Pure Storage, Inc. | Accelerating artificial intelligence (‘AI’) workflows |
US11868629B1 (en) | 2017-05-05 | 2024-01-09 | Pure Storage, Inc. | Storage system sizing service |
US11868622B2 (en) | 2020-02-25 | 2024-01-09 | Pure Storage, Inc. | Application recovery across storage systems |
US11886922B2 (en) | 2016-09-07 | 2024-01-30 | Pure Storage, Inc. | Scheduling input/output operations for a storage system |
US11886295B2 (en) | 2022-01-31 | 2024-01-30 | Pure Storage, Inc. | Intra-block error correction |
US11893263B2 (en) | 2021-10-29 | 2024-02-06 | Pure Storage, Inc. | Coordinated checkpoints among storage systems implementing checkpoint-based replication |
US11914867B2 (en) | 2021-10-29 | 2024-02-27 | Pure Storage, Inc. | Coordinated snapshots among storage systems implementing a promotion/demotion model |
US11922052B2 (en) | 2021-12-15 | 2024-03-05 | Pure Storage, Inc. | Managing links between storage objects |
US11921670B1 (en) | 2020-04-20 | 2024-03-05 | Pure Storage, Inc. | Multivariate data backup retention policies |
US11921908B2 (en) | 2017-08-31 | 2024-03-05 | Pure Storage, Inc. | Writing data to compressed and encrypted volumes |
US11941279B2 (en) | 2017-03-10 | 2024-03-26 | Pure Storage, Inc. | Data path virtualization |
US11954238B1 (en) | 2018-07-24 | 2024-04-09 | Pure Storage, Inc. | Role-based access control for a storage system |
US11954220B2 (en) | 2018-05-21 | 2024-04-09 | Pure Storage, Inc. | Data protection for container storage |
US11960777B2 (en) | 2017-06-12 | 2024-04-16 | Pure Storage, Inc. | Utilizing multiple redundancy schemes within a unified storage element |
US11960348B2 (en) | 2016-09-07 | 2024-04-16 | Pure Storage, Inc. | Cloud-based monitoring of hardware components in a fleet of storage systems |
US11972134B2 (en) | 2018-03-05 | 2024-04-30 | Pure Storage, Inc. | Resource utilization using normalized input/output (‘I/O’) operations |
US11989429B1 (en) | 2017-06-12 | 2024-05-21 | Pure Storage, Inc. | Recommending changes to a storage system |
US11995315B2 (en) | 2016-03-16 | 2024-05-28 | Pure Storage, Inc. | Converting data formats in a storage system |
US12001355B1 (en) | 2019-05-24 | 2024-06-04 | Pure Storage, Inc. | Chunked memory efficient storage data transfers |
US12001300B2 (en) | 2022-01-04 | 2024-06-04 | Pure Storage, Inc. | Assessing protection for storage resources |
US12014065B2 (en) | 2020-02-11 | 2024-06-18 | Pure Storage, Inc. | Multi-cloud orchestration as-a-service |
US12026061B1 (en) | 2018-11-18 | 2024-07-02 | Pure Storage, Inc. | Restoring a cloud-based storage system to a selected state |
US12026060B1 (en) | 2018-11-18 | 2024-07-02 | Pure Storage, Inc. | Reverting between codified states in a cloud-based storage system |
US12026381B2 (en) | 2018-10-26 | 2024-07-02 | Pure Storage, Inc. | Preserving identities and policies across replication |
US12038881B2 (en) | 2020-03-25 | 2024-07-16 | Pure Storage, Inc. | Replica transitions for file storage |
US12045252B2 (en) | 2019-09-13 | 2024-07-23 | Pure Storage, Inc. | Providing quality of service (QoS) for replicating datasets |
US12056383B2 (en) | 2017-03-10 | 2024-08-06 | Pure Storage, Inc. | Edge management service |
US12061822B1 (en) | 2017-06-12 | 2024-08-13 | Pure Storage, Inc. | Utilizing volume-level policies in a storage system |
US12067466B2 (en) | 2017-10-19 | 2024-08-20 | Pure Storage, Inc. | Artificial intelligence and machine learning hyperscale infrastructure |
US12066900B2 (en) | 2018-03-15 | 2024-08-20 | Pure Storage, Inc. | Managing disaster recovery to cloud computing environment |
US12079498B2 (en) | 2014-10-07 | 2024-09-03 | Pure Storage, Inc. | Allowing access to a partially replicated dataset |
US12079520B2 (en) | 2019-07-18 | 2024-09-03 | Pure Storage, Inc. | Replication between virtual storage systems |
US12079222B1 (en) | 2020-09-04 | 2024-09-03 | Pure Storage, Inc. | Enabling data portability between systems |
US12086030B2 (en) | 2010-09-28 | 2024-09-10 | Pure Storage, Inc. | Data protection using distributed intra-device parity and inter-device parity |
US12086431B1 (en) | 2018-05-21 | 2024-09-10 | Pure Storage, Inc. | Selective communication protocol layering for synchronous replication |
US12086651B2 (en) | 2017-06-12 | 2024-09-10 | Pure Storage, Inc. | Migrating workloads using active disaster recovery |
US12086650B2 (en) | 2017-06-12 | 2024-09-10 | Pure Storage, Inc. | Workload placement based on carbon emissions |
US12093414B1 (en) * | 2019-12-09 | 2024-09-17 | Amazon Technologies, Inc. | Efficient detection of in-memory data accesses and context information |
US12099741B2 (en) | 2013-01-10 | 2024-09-24 | Pure Storage, Inc. | Lightweight copying of data using metadata references |
US12101378B2 (en) * | 2022-12-08 | 2024-09-24 | Hewlett Packard Enterprise Development Lp | Storage array fleet management |
US20240330414A1 (en) * | 2023-03-27 | 2024-10-03 | Vmware, Inc. | Cloud connectivity management for cloud-managed on-premises software |
US12111729B2 (en) | 2010-09-28 | 2024-10-08 | Pure Storage, Inc. | RAID protection updates based on storage system reliability |
US12124725B2 (en) | 2020-03-25 | 2024-10-22 | Pure Storage, Inc. | Managing host mappings for replication endpoints |
US12131056B2 (en) | 2020-05-08 | 2024-10-29 | Pure Storage, Inc. | Providing data management as-a-service |
US12131044B2 (en) | 2020-09-04 | 2024-10-29 | Pure Storage, Inc. | Intelligent application placement in a hybrid infrastructure |
US12141058B2 (en) | 2011-08-11 | 2024-11-12 | Pure Storage, Inc. | Low latency reads using cached deduplicated data |
US12159145B2 (en) | 2021-10-18 | 2024-12-03 | Pure Storage, Inc. | Context driven user interfaces for storage systems |
US12166820B2 (en) | 2019-09-13 | 2024-12-10 | Pure Storage, Inc. | Replicating multiple storage systems utilizing coordinated snapshots |
US12175076B2 (en) | 2014-09-08 | 2024-12-24 | Pure Storage, Inc. | Projecting capacity utilization for snapshots |
US12184776B2 (en) | 2019-03-15 | 2024-12-31 | Pure Storage, Inc. | Decommissioning keys in a decryption storage system |
US12182014B2 (en) | 2015-11-02 | 2024-12-31 | Pure Storage, Inc. | Cost effective storage management |
US12182113B1 (en) | 2022-11-03 | 2024-12-31 | Pure Storage, Inc. | Managing database systems using human-readable declarative definitions |
US12181981B1 (en) | 2018-05-21 | 2024-12-31 | Pure Storage, Inc. | Asynchronously protecting a synchronously replicated dataset |
US12231413B2 (en) | 2012-09-26 | 2025-02-18 | Pure Storage, Inc. | Encrypting data in a storage device |
US12229405B2 (en) | 2017-06-12 | 2025-02-18 | Pure Storage, Inc. | Application-aware management of a storage system |
US12244603B2 (en) * | 2016-03-23 | 2025-03-04 | International Business Machines Corporation | Encryption and decryption of data in a cloud storage based on indications in metadata |
US12254199B2 (en) | 2019-07-18 | 2025-03-18 | Pure Storage, Inc. | Declarative provisioning of storage |
US12254206B2 (en) | 2020-05-08 | 2025-03-18 | Pure Storage, Inc. | Non-disruptively moving a storage fleet control plane |
US12253990B2 (en) | 2016-02-11 | 2025-03-18 | Pure Storage, Inc. | Tier-specific data compression |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210019067A1 (en) * | 2019-07-18 | 2021-01-21 | Pure Storage, Inc. | Data deduplication across storage systems |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5651133A (en) | 1995-02-01 | 1997-07-22 | Hewlett-Packard Company | Methods for avoiding over-commitment of virtual capacity in a redundant hierarchic data storage system |
US5933598A (en) | 1996-07-17 | 1999-08-03 | Digital Equipment Corporation | Method for sharing variable-grained memory of workstations by sending particular block including line and size of the block to exchange shared data structures |
US6643641B1 (en) | 2000-04-27 | 2003-11-04 | Russell Snyder | Web search engine with graphic snapshots |
US6728738B2 (en) | 2002-04-03 | 2004-04-27 | Sun Microsystems, Inc. | Fast lifetime analysis of objects in a garbage-collected system |
US7072905B2 (en) | 2002-12-06 | 2006-07-04 | Sun Microsystems, Inc. | Better placement of objects reachable from outside a generation managed by the train algorithm |
US7437530B1 (en) | 2003-04-24 | 2008-10-14 | Network Appliance, Inc. | System and method for mapping file block numbers to logical block addresses |
US7089272B1 (en) | 2003-06-18 | 2006-08-08 | Sun Microsystems, Inc. | Specializing write-barriers for objects in a garbage collected heap |
US7434214B2 (en) | 2004-01-21 | 2008-10-07 | International Business Machines Corporation | Method for determining a close approximate benefit of reducing memory footprint of a Java application |
US7366825B2 (en) | 2005-04-26 | 2008-04-29 | Microsoft Corporation | NAND flash memory management |
ITVA20050061A1 (en) | 2005-11-08 | 2007-05-09 | St Microelectronics Srl | METHOD OF MANAGEMENT OF A NON-VOLATILE MEMORY AND RELATIVE MEMORY DEVICE |
US7710777B1 (en) | 2006-12-20 | 2010-05-04 | Marvell International Ltd. | Semi-volatile NAND flash memory |
US7991942B2 (en) | 2007-05-09 | 2011-08-02 | Stmicroelectronics S.R.L. | Memory block compaction method, circuit, and system in storage devices based on flash memories |
US9134922B2 (en) | 2009-03-12 | 2015-09-15 | Vmware, Inc. | System and method for allocating datastores for virtual machines |
US8250324B2 (en) | 2009-11-30 | 2012-08-21 | International Business Machines Corporation | Method to efficiently locate meta-data structures on a flash-based storage device |
US8452932B2 (en) * | 2010-01-06 | 2013-05-28 | Storsimple, Inc. | System and method for efficiently creating off-site data volume back-ups |
US20120023144A1 (en) | 2010-07-21 | 2012-01-26 | Seagate Technology Llc | Managing Wear in Flash Memory |
US20120054264A1 (en) * | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | Techniques for Migrating Active I/O Connections with Migrating Servers and Clients |
US8566546B1 (en) | 2010-09-27 | 2013-10-22 | Emc Corporation | Techniques for enforcing capacity restrictions of an allocation policy |
US8812860B1 (en) | 2010-12-03 | 2014-08-19 | Symantec Corporation | Systems and methods for protecting data stored on removable storage devices by requiring external user authentication |
US8527544B1 (en) | 2011-08-11 | 2013-09-03 | Pure Storage Inc. | Garbage collection in a storage system |
US9116812B2 (en) | 2012-01-27 | 2015-08-25 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for a de-duplication cache |
US10474584B2 (en) | 2012-04-30 | 2019-11-12 | Hewlett Packard Enterprise Development Lp | Storing cache metadata separately from integrated circuit containing cache controller |
US9317223B2 (en) * | 2012-12-17 | 2016-04-19 | International Business Machines Corporation | Method and apparatus for automated migration of data among storage centers |
US9075529B2 (en) * | 2013-01-04 | 2015-07-07 | International Business Machines Corporation | Cloud based data migration and replication |
US9052917B2 (en) * | 2013-01-14 | 2015-06-09 | Lenovo (Singapore) Pte. Ltd. | Data storage for remote environment |
US8898346B1 (en) * | 2013-06-20 | 2014-11-25 | Qlogic, Corporation | Method and system for configuring network devices |
WO2015047347A1 (en) * | 2013-09-27 | 2015-04-02 | Intel Corporation | Determination of a suitable target for an initiator by a control plane processor |
-
2015
- 2015-06-11 US US14/736,549 patent/US9521200B1/en active Active
-
2016
- 2016-03-02 WO PCT/US2016/020410 patent/WO2016190938A1/en active Application Filing
Cited By (445)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12111729B2 (en) | 2010-09-28 | 2024-10-08 | Pure Storage, Inc. | RAID protection updates based on storage system reliability |
US12086030B2 (en) | 2010-09-28 | 2024-09-10 | Pure Storage, Inc. | Data protection using distributed intra-device parity and inter-device parity |
US12141058B2 (en) | 2011-08-11 | 2024-11-12 | Pure Storage, Inc. | Low latency reads using cached deduplicated data |
US12231413B2 (en) | 2012-09-26 | 2025-02-18 | Pure Storage, Inc. | Encrypting data in a storage device |
US12099741B2 (en) | 2013-01-10 | 2024-09-24 | Pure Storage, Inc. | Lightweight copying of data using metadata references |
US12175076B2 (en) | 2014-09-08 | 2024-12-24 | Pure Storage, Inc. | Projecting capacity utilization for snapshots |
US12079498B2 (en) | 2014-10-07 | 2024-09-03 | Pure Storage, Inc. | Allowing access to a partially replicated dataset |
US11102298B1 (en) | 2015-05-26 | 2021-08-24 | Pure Storage, Inc. | Locally providing cloud storage services for fleet management |
US10652331B1 (en) | 2015-05-26 | 2020-05-12 | Pure Storage, Inc. | Locally providing highly available cloud-based storage system services |
US11711426B2 (en) | 2015-05-26 | 2023-07-25 | Pure Storage, Inc. | Providing storage resources from a storage pool |
US9716755B2 (en) | 2015-05-26 | 2017-07-25 | Pure Storage, Inc. | Providing cloud storage array services by a local storage array in a data center |
US10027757B1 (en) | 2015-05-26 | 2018-07-17 | Pure Storage, Inc. | Locally providing cloud storage array services |
US11360682B1 (en) | 2015-05-27 | 2022-06-14 | Pure Storage, Inc. | Identifying duplicative write data in a storage system |
US11921633B2 (en) | 2015-05-27 | 2024-03-05 | Pure Storage, Inc. | Deduplicating data based on recently reading the data |
US10761759B1 (en) | 2015-05-27 | 2020-09-01 | Pure Storage, Inc. | Deduplication of data in a storage device |
US11503031B1 (en) | 2015-05-29 | 2022-11-15 | Pure Storage, Inc. | Storage array access control from cloud-based user authorization and authentication |
US9882913B1 (en) | 2015-05-29 | 2018-01-30 | Pure Storage, Inc. | Delivering authorization and authentication for a user of a storage array from a cloud |
US10021170B2 (en) | 2015-05-29 | 2018-07-10 | Pure Storage, Inc. | Managing a storage array using client-side services |
US10834086B1 (en) | 2015-05-29 | 2020-11-10 | Pure Storage, Inc. | Hybrid cloud-based authentication for flash storage array access |
US11201913B1 (en) | 2015-05-29 | 2021-12-14 | Pure Storage, Inc. | Cloud-based authentication of a storage system user |
US10560517B1 (en) | 2015-05-29 | 2020-02-11 | Pure Storage, Inc. | Remote management of a storage array |
US11936719B2 (en) | 2015-05-29 | 2024-03-19 | Pure Storage, Inc. | Using cloud services to provide secure access to a storage system |
US11936654B2 (en) | 2015-05-29 | 2024-03-19 | Pure Storage, Inc. | Cloud-based user authorization control for storage system access |
US10318196B1 (en) | 2015-06-10 | 2019-06-11 | Pure Storage, Inc. | Stateless storage system controller in a direct flash storage system |
US11137918B1 (en) | 2015-06-10 | 2021-10-05 | Pure Storage, Inc. | Administration of control information in a storage system |
US11868625B2 (en) | 2015-06-10 | 2024-01-09 | Pure Storage, Inc. | Alert tracking in storage |
US10866744B1 (en) | 2015-06-19 | 2020-12-15 | Pure Storage, Inc. | Determining capacity utilization in a deduplicating storage system |
US9804779B1 (en) | 2015-06-19 | 2017-10-31 | Pure Storage, Inc. | Determining storage capacity to be made available upon deletion of a shared data object |
US10082971B1 (en) | 2015-06-19 | 2018-09-25 | Pure Storage, Inc. | Calculating capacity utilization in a storage system |
US10310753B1 (en) | 2015-06-19 | 2019-06-04 | Pure Storage, Inc. | Capacity attribution in a storage system |
US11586359B1 (en) | 2015-06-19 | 2023-02-21 | Pure Storage, Inc. | Tracking storage consumption in a storage array |
US11385801B1 (en) | 2015-07-01 | 2022-07-12 | Pure Storage, Inc. | Offloading device management responsibilities of a storage device to a storage controller |
US10296236B2 (en) | 2015-07-01 | 2019-05-21 | Pure Storage, Inc. | Offloading device management responsibilities from a storage device in an array of storage devices |
US12175091B2 (en) | 2015-07-01 | 2024-12-24 | Pure Storage, Inc. | Supporting a stateless controller in a storage system |
US9892071B2 (en) | 2015-08-03 | 2018-02-13 | Pure Storage, Inc. | Emulating a remote direct memory access (‘RDMA’) link between controllers in a storage array |
US10540307B1 (en) | 2015-08-03 | 2020-01-21 | Pure Storage, Inc. | Providing an active/active front end by coupled controllers in a storage system |
US11681640B2 (en) | 2015-08-03 | 2023-06-20 | Pure Storage, Inc. | Multi-channel communications between controllers in a storage system |
US9910800B1 (en) | 2015-08-03 | 2018-03-06 | Pure Storage, Inc. | Utilizing remote direct memory access (‘RDMA’) for communication between controllers in a storage array |
US9851762B1 (en) | 2015-08-06 | 2017-12-26 | Pure Storage, Inc. | Compliant printed circuit board (‘PCB’) within an enclosure |
US11625181B1 (en) | 2015-08-24 | 2023-04-11 | Pure Storage, Inc. | Data tiering using snapshots |
US11868636B2 (en) | 2015-08-24 | 2024-01-09 | Pure Storage, Inc. | Prioritizing garbage collection based on the extent to which data is deduplicated |
US10198194B2 (en) | 2015-08-24 | 2019-02-05 | Pure Storage, Inc. | Placing data within a storage device of a flash array |
US11294588B1 (en) | 2015-08-24 | 2022-04-05 | Pure Storage, Inc. | Placing data within a storage device |
US11874733B2 (en) | 2015-10-23 | 2024-01-16 | Pure Storage, Inc. | Recovering a container storage system |
US11593194B2 (en) | 2015-10-23 | 2023-02-28 | Pure Storage, Inc. | Cloud-based providing of one or more corrective measures for a storage system |
US10599536B1 (en) | 2015-10-23 | 2020-03-24 | Pure Storage, Inc. | Preventing storage errors using problem signatures |
US11061758B1 (en) | 2015-10-23 | 2021-07-13 | Pure Storage, Inc. | Proactively providing corrective measures for storage arrays |
US11934260B2 (en) | 2015-10-23 | 2024-03-19 | Pure Storage, Inc. | Problem signature-based corrective measure deployment |
US11360844B1 (en) | 2015-10-23 | 2022-06-14 | Pure Storage, Inc. | Recovery of a container storage provider |
US10514978B1 (en) | 2015-10-23 | 2019-12-24 | Pure Storage, Inc. | Automatic deployment of corrective measures for storage arrays |
US10432233B1 (en) | 2015-10-28 | 2019-10-01 | Pure Storage Inc. | Error correction processing in a storage device |
US11784667B2 (en) | 2015-10-28 | 2023-10-10 | Pure Storage, Inc. | Selecting optimal responses to errors in a storage system |
US10284232B2 (en) | 2015-10-28 | 2019-05-07 | Pure Storage, Inc. | Dynamic error processing in a storage device |
US11836357B2 (en) | 2015-10-29 | 2023-12-05 | Pure Storage, Inc. | Memory aligned copy operation execution |
US10268403B1 (en) | 2015-10-29 | 2019-04-23 | Pure Storage, Inc. | Combining multiple copy operations into a single copy operation |
US11422714B1 (en) | 2015-10-29 | 2022-08-23 | Pure Storage, Inc. | Efficient copying of data in a storage system |
US10374868B2 (en) | 2015-10-29 | 2019-08-06 | Pure Storage, Inc. | Distributed command processing in a flash storage system |
US9740414B2 (en) | 2015-10-29 | 2017-08-22 | Pure Storage, Inc. | Optimizing copy operations |
US10956054B1 (en) | 2015-10-29 | 2021-03-23 | Pure Storage, Inc. | Efficient performance of copy operations in a storage system |
US11032123B1 (en) | 2015-10-29 | 2021-06-08 | Pure Storage, Inc. | Hierarchical storage system management |
US10929231B1 (en) | 2015-10-30 | 2021-02-23 | Pure Storage, Inc. | System configuration selection in a storage system |
US10353777B2 (en) | 2015-10-30 | 2019-07-16 | Pure Storage, Inc. | Ensuring crash-safe forward progress of a system configuration update |
US12182014B2 (en) | 2015-11-02 | 2024-12-31 | Pure Storage, Inc. | Cost effective storage management |
US10255176B1 (en) | 2015-12-02 | 2019-04-09 | Pure Storage, Inc. | Input/output (‘I/O’) in a storage system that includes multiple types of storage devices |
US10970202B1 (en) | 2015-12-02 | 2021-04-06 | Pure Storage, Inc. | Managing input/output (‘I/O’) requests in a storage system that includes multiple types of storage devices |
US9760479B2 (en) | 2015-12-02 | 2017-09-12 | Pure Storage, Inc. | Writing data in a storage system that includes a first type of storage device and a second type of storage device |
US11762764B1 (en) | 2015-12-02 | 2023-09-19 | Pure Storage, Inc. | Writing data in a storage system that includes a first type of storage device and a second type of storage device |
US10986179B1 (en) | 2015-12-08 | 2021-04-20 | Pure Storage, Inc. | Cloud-based snapshot replication |
US11616834B2 (en) | 2015-12-08 | 2023-03-28 | Pure Storage, Inc. | Efficient replication of a dataset to the cloud |
US10326836B2 (en) | 2015-12-08 | 2019-06-18 | Pure Storage, Inc. | Partially replicating a snapshot between storage systems |
US11836118B2 (en) | 2015-12-15 | 2023-12-05 | Pure Storage, Inc. | Performance metric-based improvement of one or more conditions of a storage array |
US11030160B1 (en) | 2015-12-15 | 2021-06-08 | Pure Storage, Inc. | Projecting the effects of implementing various actions on a storage system |
US10162835B2 (en) | 2015-12-15 | 2018-12-25 | Pure Storage, Inc. | Proactive management of a plurality of storage arrays in a multi-array system |
US11347697B1 (en) | 2015-12-15 | 2022-05-31 | Pure Storage, Inc. | Proactively optimizing a storage system |
US11281375B1 (en) | 2015-12-28 | 2022-03-22 | Pure Storage, Inc. | Optimizing for data reduction in a storage system |
US10346043B2 (en) | 2015-12-28 | 2019-07-09 | Pure Storage, Inc. | Adaptive computing for data compression |
US9886314B2 (en) | 2016-01-28 | 2018-02-06 | Pure Storage, Inc. | Placing workloads in a multi-array system |
US10929185B1 (en) | 2016-01-28 | 2021-02-23 | Pure Storage, Inc. | Predictive workload placement |
US12008406B1 (en) | 2016-01-28 | 2024-06-11 | Pure Storage, Inc. | Predictive workload placement amongst storage systems |
US11748322B2 (en) | 2016-02-11 | 2023-09-05 | Pure Storage, Inc. | Utilizing different data compression algorithms based on characteristics of a storage system |
US12253990B2 (en) | 2016-02-11 | 2025-03-18 | Pure Storage, Inc. | Tier-specific data compression |
US10572460B2 (en) | 2016-02-11 | 2020-02-25 | Pure Storage, Inc. | Compressing data in dependence upon characteristics of a storage system |
US11392565B1 (en) | 2016-02-11 | 2022-07-19 | Pure Storage, Inc. | Optimizing data compression in a storage system |
US10884666B1 (en) | 2016-02-12 | 2021-01-05 | Pure Storage, Inc. | Dynamic path selection in a storage network |
US10001951B1 (en) | 2016-02-12 | 2018-06-19 | Pure Storage, Inc. | Path selection in a data storage system |
US11561730B1 (en) | 2016-02-12 | 2023-01-24 | Pure Storage, Inc. | Selecting paths between a host and a storage system |
US10289344B1 (en) | 2016-02-12 | 2019-05-14 | Pure Storage, Inc. | Bandwidth-based path selection in a storage network |
US9760297B2 (en) | 2016-02-12 | 2017-09-12 | Pure Storage, Inc. | Managing input/output (‘I/O’) queues in a data storage system |
US9959043B2 (en) | 2016-03-16 | 2018-05-01 | Pure Storage, Inc. | Performing a non-disruptive upgrade of data in a storage system |
US11995315B2 (en) | 2016-03-16 | 2024-05-28 | Pure Storage, Inc. | Converting data formats in a storage system |
US11340785B1 (en) | 2016-03-16 | 2022-05-24 | Pure Storage, Inc. | Upgrading data in a storage system using background processes |
US10768815B1 (en) | 2016-03-16 | 2020-09-08 | Pure Storage, Inc. | Upgrading a storage system |
US12244603B2 (en) * | 2016-03-23 | 2025-03-04 | International Business Machines Corporation | Encryption and decryption of data in a cloud storage based on indications in metadata |
US10834188B2 (en) * | 2016-03-23 | 2020-11-10 | International Business Machines Corporation | Distribution of data in cloud storage based on policies maintained in metadata |
US10564884B1 (en) | 2016-04-27 | 2020-02-18 | Pure Storage, Inc. | Intelligent data migration within a flash storage array |
US11934681B2 (en) | 2016-04-27 | 2024-03-19 | Pure Storage, Inc. | Data migration for write groups |
US9841921B2 (en) | 2016-04-27 | 2017-12-12 | Pure Storage, Inc. | Migrating data in a storage array that includes a plurality of storage devices |
US11809727B1 (en) | 2016-04-27 | 2023-11-07 | Pure Storage, Inc. | Predicting failures in a storage system that includes a plurality of storage devices |
US11112990B1 (en) | 2016-04-27 | 2021-09-07 | Pure Storage, Inc. | Managing storage device evacuation |
US12086413B2 (en) | 2016-04-28 | 2024-09-10 | Pure Storage, Inc. | Resource failover in a fleet of storage systems |
US9811264B1 (en) | 2016-04-28 | 2017-11-07 | Pure Storage, Inc. | Deploying client-specific applications in a storage system utilizing redundant system resources |
US10545676B1 (en) | 2016-04-28 | 2020-01-28 | Pure Storage, Inc. | Providing high availability to client-specific applications executing in a storage system |
US11461009B2 (en) | 2016-04-28 | 2022-10-04 | Pure Storage, Inc. | Supporting applications across a fleet of storage systems |
US10996859B1 (en) | 2016-04-28 | 2021-05-04 | Pure Storage, Inc. | Utilizing redundant resources in a storage system |
US10303390B1 (en) | 2016-05-02 | 2019-05-28 | Pure Storage, Inc. | Resolving fingerprint collisions in flash storage system |
US10620864B1 (en) | 2016-05-02 | 2020-04-14 | Pure Storage, Inc. | Improving the accuracy of in-line data deduplication |
US11231858B2 (en) | 2016-05-19 | 2022-01-25 | Pure Storage, Inc. | Dynamically configuring a storage system to facilitate independent scaling of resources |
US10642524B1 (en) | 2016-05-20 | 2020-05-05 | Pure Storage, Inc. | Upgrading a write buffer in a storage system that includes a plurality of storage devices and a plurality of write buffer devices |
US10078469B1 (en) | 2016-05-20 | 2018-09-18 | Pure Storage, Inc. | Preparing for cache upgrade in a storage array that includes a plurality of storage devices and a plurality of write buffer devices |
US9817603B1 (en) | 2016-05-20 | 2017-11-14 | Pure Storage, Inc. | Data migration in a storage array that includes a plurality of storage devices |
US10691567B2 (en) | 2016-06-03 | 2020-06-23 | Pure Storage, Inc. | Dynamically forming a failure domain in a storage system that includes a plurality of blades |
US11706895B2 (en) | 2016-07-19 | 2023-07-18 | Pure Storage, Inc. | Independent scaling of compute resources and storage resources in a storage system |
US10459652B2 (en) | 2016-07-27 | 2019-10-29 | Pure Storage, Inc. | Evacuating blades in a storage array that includes a plurality of blades |
US10474363B1 (en) | 2016-07-29 | 2019-11-12 | Pure Storage, Inc. | Space reporting in a storage system |
US11630585B1 (en) | 2016-08-25 | 2023-04-18 | Pure Storage, Inc. | Processing evacuation events in a storage array that includes a plurality of storage devices |
US11921567B2 (en) | 2016-09-07 | 2024-03-05 | Pure Storage, Inc. | Temporarily preventing access to a storage device |
US10908966B1 (en) | 2016-09-07 | 2021-02-02 | Pure Storage, Inc. | Adapting target service times in a storage system |
US11481261B1 (en) | 2016-09-07 | 2022-10-25 | Pure Storage, Inc. | Preventing extended latency in a storage system |
US10671439B1 (en) | 2016-09-07 | 2020-06-02 | Pure Storage, Inc. | Workload planning with quality-of-service (‘QOS’) integration |
US10963326B1 (en) | 2016-09-07 | 2021-03-30 | Pure Storage, Inc. | Self-healing storage devices |
US11914455B2 (en) | 2016-09-07 | 2024-02-27 | Pure Storage, Inc. | Addressing storage device performance |
US10585711B2 (en) | 2016-09-07 | 2020-03-10 | Pure Storage, Inc. | Crediting entity utilization of system resources |
US11531577B1 (en) | 2016-09-07 | 2022-12-20 | Pure Storage, Inc. | Temporarily limiting access to a storage device |
US11886922B2 (en) | 2016-09-07 | 2024-01-30 | Pure Storage, Inc. | Scheduling input/output operations for a storage system |
US11449375B1 (en) | 2016-09-07 | 2022-09-20 | Pure Storage, Inc. | Performing rehabilitative actions on storage devices |
US11803492B2 (en) | 2016-09-07 | 2023-10-31 | Pure Storage, Inc. | System resource management using time-independent scheduling |
US10146585B2 (en) | 2016-09-07 | 2018-12-04 | Pure Storage, Inc. | Ensuring the fair utilization of system resources using workload based, time-independent scheduling |
US10353743B1 (en) | 2016-09-07 | 2019-07-16 | Pure Storage, Inc. | System resource utilization balancing in a storage system |
US10896068B1 (en) | 2016-09-07 | 2021-01-19 | Pure Storage, Inc. | Ensuring the fair utilization of system resources using workload based, time-independent scheduling |
US10534648B2 (en) | 2016-09-07 | 2020-01-14 | Pure Storage, Inc. | System resource utilization balancing |
US10853281B1 (en) | 2016-09-07 | 2020-12-01 | Pure Storage, Inc. | Administration of storage system resource utilization |
US10235229B1 (en) | 2016-09-07 | 2019-03-19 | Pure Storage, Inc. | Rehabilitating storage devices in a storage array that includes a plurality of storage devices |
US11789780B1 (en) | 2016-09-07 | 2023-10-17 | Pure Storage, Inc. | Preserving quality-of-service (‘QOS’) to storage system workloads |
US10331588B2 (en) | 2016-09-07 | 2019-06-25 | Pure Storage, Inc. | Ensuring the appropriate utilization of system resources using weighted workload based, time-independent scheduling |
US11520720B1 (en) | 2016-09-07 | 2022-12-06 | Pure Storage, Inc. | Weighted resource allocation for workload scheduling |
US11960348B2 (en) | 2016-09-07 | 2024-04-16 | Pure Storage, Inc. | Cloud-based monitoring of hardware components in a fleet of storage systems |
US10331370B2 (en) | 2016-10-20 | 2019-06-25 | Pure Storage, Inc. | Tuning a storage system in dependence upon workload access patterns |
US10007459B2 (en) | 2016-10-20 | 2018-06-26 | Pure Storage, Inc. | Performance tuning in a storage system that includes one or more storage devices |
US11379132B1 (en) | 2016-10-20 | 2022-07-05 | Pure Storage, Inc. | Correlating medical sensor data |
US11016700B1 (en) | 2016-11-22 | 2021-05-25 | Pure Storage, Inc. | Analyzing application-specific consumption of storage system resources |
US10162566B2 (en) | 2016-11-22 | 2018-12-25 | Pure Storage, Inc. | Accumulating application-level statistics in a storage system |
US10416924B1 (en) | 2016-11-22 | 2019-09-17 | Pure Storage, Inc. | Identifying workload characteristics in dependence upon storage utilization |
US12189975B2 (en) | 2016-11-22 | 2025-01-07 | Pure Storage, Inc. | Preventing applications from overconsuming shared storage resources |
US11620075B2 (en) | 2016-11-22 | 2023-04-04 | Pure Storage, Inc. | Providing application aware storage |
US10198205B1 (en) | 2016-12-19 | 2019-02-05 | Pure Storage, Inc. | Dynamically adjusting a number of storage devices utilized to simultaneously service write operations |
US11061573B1 (en) | 2016-12-19 | 2021-07-13 | Pure Storage, Inc. | Accelerating write operations in a storage system |
US11687259B2 (en) | 2016-12-19 | 2023-06-27 | Pure Storage, Inc. | Reconfiguring a storage system based on resource availability |
US11461273B1 (en) | 2016-12-20 | 2022-10-04 | Pure Storage, Inc. | Modifying storage distribution in a storage system that includes one or more storage devices |
US12008019B2 (en) | 2016-12-20 | 2024-06-11 | Pure Storage, Inc. | Adjusting storage delivery in a storage system |
US12135656B2 (en) | 2017-01-05 | 2024-11-05 | Pure Storage, Inc. | Re-keying the contents of a storage device |
US10574454B1 (en) | 2017-01-05 | 2020-02-25 | Pure Storage, Inc. | Current key data encryption |
US11146396B1 (en) | 2017-01-05 | 2021-10-12 | Pure Storage, Inc. | Data re-encryption in a storage system |
US10489307B2 (en) | 2017-01-05 | 2019-11-26 | Pure Storage, Inc. | Periodically re-encrypting user data stored on a storage device |
US11762781B2 (en) | 2017-01-09 | 2023-09-19 | Pure Storage, Inc. | Providing end-to-end encryption for data stored in a storage system |
US10503700B1 (en) | 2017-01-19 | 2019-12-10 | Pure Storage, Inc. | On-demand content filtering of snapshots within a storage system |
US11861185B2 (en) | 2017-01-19 | 2024-01-02 | Pure Storage, Inc. | Protecting sensitive data in snapshots |
US11340800B1 (en) | 2017-01-19 | 2022-05-24 | Pure Storage, Inc. | Content masking in a storage system |
US12216524B2 (en) | 2017-01-27 | 2025-02-04 | Pure Storage, Inc. | Log data generation based on performance analysis of a storage system |
US11726850B2 (en) | 2017-01-27 | 2023-08-15 | Pure Storage, Inc. | Increasing or decreasing the amount of log data generated based on performance characteristics of a device |
US11163624B2 (en) | 2017-01-27 | 2021-11-02 | Pure Storage, Inc. | Dynamically adjusting an amount of log data generated for a storage system |
US11422730B1 (en) | 2017-03-10 | 2022-08-23 | Pure Storage, Inc. | Recovery for storage systems synchronously replicating a dataset |
US11169727B1 (en) | 2017-03-10 | 2021-11-09 | Pure Storage, Inc. | Synchronous replication between storage systems with virtualized storage |
US10613779B1 (en) | 2017-03-10 | 2020-04-07 | Pure Storage, Inc. | Determining membership among storage systems synchronously replicating a dataset |
US10671408B1 (en) | 2017-03-10 | 2020-06-02 | Pure Storage, Inc. | Automatic storage system configuration for mediation services |
US11210219B1 (en) | 2017-03-10 | 2021-12-28 | Pure Storage, Inc. | Synchronously replicating a dataset across a plurality of storage systems |
US10680932B1 (en) | 2017-03-10 | 2020-06-09 | Pure Storage, Inc. | Managing connectivity to synchronously replicated storage systems |
US10365982B1 (en) | 2017-03-10 | 2019-07-30 | Pure Storage, Inc. | Establishing a synchronous replication relationship between two or more storage systems |
US11237927B1 (en) | 2017-03-10 | 2022-02-01 | Pure Storage, Inc. | Resolving disruptions between storage systems replicating a dataset |
US11698844B2 (en) | 2017-03-10 | 2023-07-11 | Pure Storage, Inc. | Managing storage systems that are synchronously replicating a dataset |
US10585733B1 (en) | 2017-03-10 | 2020-03-10 | Pure Storage, Inc. | Determining active membership among storage systems synchronously replicating a dataset |
US10558537B1 (en) | 2017-03-10 | 2020-02-11 | Pure Storage, Inc. | Mediating between storage systems synchronously replicating a dataset |
US12204787B2 (en) | 2017-03-10 | 2025-01-21 | Pure Storage, Inc. | Replication among storage systems hosting an application |
US11803453B1 (en) | 2017-03-10 | 2023-10-31 | Pure Storage, Inc. | Using host connectivity states to avoid queuing I/O requests |
US12181986B2 (en) | 2017-03-10 | 2024-12-31 | Pure Storage, Inc. | Continuing to service a dataset after prevailing in mediation |
US11687423B2 (en) | 2017-03-10 | 2023-06-27 | Pure Storage, Inc. | Prioritizing highly performant storage systems for servicing a synchronously replicated dataset |
US11687500B1 (en) | 2017-03-10 | 2023-06-27 | Pure Storage, Inc. | Updating metadata for a synchronously replicated dataset |
US11675520B2 (en) | 2017-03-10 | 2023-06-13 | Pure Storage, Inc. | Application replication among storage systems synchronously replicating a dataset |
US10454810B1 (en) | 2017-03-10 | 2019-10-22 | Pure Storage, Inc. | Managing host definitions across a plurality of storage systems |
US11789831B2 (en) | 2017-03-10 | 2023-10-17 | Pure Storage, Inc. | Directing operations to synchronously replicated storage systems |
US10990490B1 (en) | 2017-03-10 | 2021-04-27 | Pure Storage, Inc. | Creating a synchronous replication lease between two or more storage systems |
US11941279B2 (en) | 2017-03-10 | 2024-03-26 | Pure Storage, Inc. | Data path virtualization |
US11829629B2 (en) | 2017-03-10 | 2023-11-28 | Pure Storage, Inc. | Synchronously replicating data using virtual volumes |
US11347606B2 (en) | 2017-03-10 | 2022-05-31 | Pure Storage, Inc. | Responding to a change in membership among storage systems synchronously replicating a dataset |
US11954002B1 (en) | 2017-03-10 | 2024-04-09 | Pure Storage, Inc. | Automatically provisioning mediation services for a storage system |
US11442825B2 (en) | 2017-03-10 | 2022-09-13 | Pure Storage, Inc. | Establishing a synchronous replication relationship between two or more storage systems |
US10521344B1 (en) | 2017-03-10 | 2019-12-31 | Pure Storage, Inc. | Servicing input/output (‘I/O’) operations directed to a dataset that is synchronized across a plurality of storage systems |
US11500745B1 (en) | 2017-03-10 | 2022-11-15 | Pure Storage, Inc. | Issuing operations directed to synchronously replicated data |
US11645173B2 (en) | 2017-03-10 | 2023-05-09 | Pure Storage, Inc. | Resilient mediation between storage systems replicating a dataset |
US11379285B1 (en) | 2017-03-10 | 2022-07-05 | Pure Storage, Inc. | Mediation for synchronous replication |
US11716385B2 (en) | 2017-03-10 | 2023-08-01 | Pure Storage, Inc. | Utilizing cloud-based storage systems to support synchronous replication of a dataset |
US12056025B2 (en) | 2017-03-10 | 2024-08-06 | Pure Storage, Inc. | Updating the membership of a pod after detecting a change to a set of storage systems that are synchronously replicating a dataset |
US11797403B2 (en) | 2017-03-10 | 2023-10-24 | Pure Storage, Inc. | Maintaining a synchronous replication relationship between two or more storage systems |
US10884993B1 (en) | 2017-03-10 | 2021-01-05 | Pure Storage, Inc. | Synchronizing metadata among storage systems synchronously replicating a dataset |
US12056383B2 (en) | 2017-03-10 | 2024-08-06 | Pure Storage, Inc. | Edge management service |
US11086555B1 (en) | 2017-03-10 | 2021-08-10 | Pure Storage, Inc. | Synchronously replicating datasets |
US10503427B2 (en) | 2017-03-10 | 2019-12-10 | Pure Storage, Inc. | Synchronously replicating datasets and other managed objects to cloud-based storage systems |
US10459664B1 (en) | 2017-04-10 | 2019-10-29 | Pure Storage, Inc. | Virtualized copy-by-reference |
US12086473B2 (en) | 2017-04-10 | 2024-09-10 | Pure Storage, Inc. | Copying data using references to the data |
US11126381B1 (en) | 2017-04-10 | 2021-09-21 | Pure Storage, Inc. | Lightweight copy |
US11656804B2 (en) | 2017-04-10 | 2023-05-23 | Pure Storage, Inc. | Copy using metadata representation |
US10534677B2 (en) | 2017-04-10 | 2020-01-14 | Pure Storage, Inc. | Providing high availability for applications executing on a storage system |
US9910618B1 (en) | 2017-04-10 | 2018-03-06 | Pure Storage, Inc. | Migrating applications executing on a storage system |
US11868629B1 (en) | 2017-05-05 | 2024-01-09 | Pure Storage, Inc. | Storage system sizing service |
US12229405B2 (en) | 2017-06-12 | 2025-02-18 | Pure Storage, Inc. | Application-aware management of a storage system |
US11567810B1 (en) | 2017-06-12 | 2023-01-31 | Pure Storage, Inc. | Cost optimized workload placement |
US12061822B1 (en) | 2017-06-12 | 2024-08-13 | Pure Storage, Inc. | Utilizing volume-level policies in a storage system |
US11960777B2 (en) | 2017-06-12 | 2024-04-16 | Pure Storage, Inc. | Utilizing multiple redundancy schemes within a unified storage element |
US11989429B1 (en) | 2017-06-12 | 2024-05-21 | Pure Storage, Inc. | Recommending changes to a storage system |
US12229588B2 (en) | 2017-06-12 | 2025-02-18 | Pure Storage | Migrating workloads to a preferred environment |
US10853148B1 (en) | 2017-06-12 | 2020-12-01 | Pure Storage, Inc. | Migrating workloads between a plurality of execution environments |
US11422731B1 (en) | 2017-06-12 | 2022-08-23 | Pure Storage, Inc. | Metadata-based replication of a dataset |
US11340939B1 (en) | 2017-06-12 | 2022-05-24 | Pure Storage, Inc. | Application-aware analytics for storage systems |
US11593036B2 (en) | 2017-06-12 | 2023-02-28 | Pure Storage, Inc. | Staging data within a unified storage element |
US12086650B2 (en) | 2017-06-12 | 2024-09-10 | Pure Storage, Inc. | Workload placement based on carbon emissions |
US11016824B1 (en) | 2017-06-12 | 2021-05-25 | Pure Storage, Inc. | Event identification with out-of-order reporting in a cloud-based environment |
US10884636B1 (en) | 2017-06-12 | 2021-01-05 | Pure Storage, Inc. | Presenting workload performance in a storage system |
US11609718B1 (en) | 2017-06-12 | 2023-03-21 | Pure Storage, Inc. | Identifying valid data after a storage system recovery |
US10789020B2 (en) | 2017-06-12 | 2020-09-29 | Pure Storage, Inc. | Recovering data within a unified storage element |
US12086651B2 (en) | 2017-06-12 | 2024-09-10 | Pure Storage, Inc. | Migrating workloads using active disaster recovery |
US11210133B1 (en) | 2017-06-12 | 2021-12-28 | Pure Storage, Inc. | Workload mobility between disparate execution environments |
US12260106B2 (en) | 2017-06-12 | 2025-03-25 | Pure Storage, Inc. | Tiering snapshots across different storage tiers |
US10613791B2 (en) | 2017-06-12 | 2020-04-07 | Pure Storage, Inc. | Portable snapshot replication between storage systems |
US11561714B1 (en) | 2017-07-05 | 2023-01-24 | Pure Storage, Inc. | Storage efficiency driven migration |
US11477280B1 (en) | 2017-07-26 | 2022-10-18 | Pure Storage, Inc. | Integrating cloud storage services |
US11921908B2 (en) | 2017-08-31 | 2024-03-05 | Pure Storage, Inc. | Writing data to compressed and encrypted volumes |
US10552090B2 (en) | 2017-09-07 | 2020-02-04 | Pure Storage, Inc. | Solid state drives with multiple types of addressable memory |
US10417092B2 (en) | 2017-09-07 | 2019-09-17 | Pure Storage, Inc. | Incremental RAID stripe update parity calculation |
US11392456B1 (en) | 2017-09-07 | 2022-07-19 | Pure Storage, Inc. | Calculating parity as a data stripe is modified |
US10891192B1 (en) | 2017-09-07 | 2021-01-12 | Pure Storage, Inc. | Updating raid stripe parity calculations |
US11592991B2 (en) | 2017-09-07 | 2023-02-28 | Pure Storage, Inc. | Converting raid data between persistent storage types |
US11714718B2 (en) | 2017-09-07 | 2023-08-01 | Pure Storage, Inc. | Performing partial redundant array of independent disks (RAID) stripe parity calculations |
US10360214B2 (en) | 2017-10-19 | 2019-07-23 | Pure Storage, Inc. | Ensuring reproducibility in an artificial intelligence infrastructure |
US10671434B1 (en) | 2017-10-19 | 2020-06-02 | Pure Storage, Inc. | Storage based artificial intelligence infrastructure |
US10275176B1 (en) | 2017-10-19 | 2019-04-30 | Pure Storage, Inc. | Data transformation offloading in an artificial intelligence infrastructure |
US10671435B1 (en) | 2017-10-19 | 2020-06-02 | Pure Storage, Inc. | Data transformation caching in an artificial intelligence infrastructure |
US11455168B1 (en) | 2017-10-19 | 2022-09-27 | Pure Storage, Inc. | Batch building for deep learning training workloads |
US10275285B1 (en) | 2017-10-19 | 2019-04-30 | Pure Storage, Inc. | Data transformation caching in an artificial intelligence infrastructure |
US11210140B1 (en) | 2017-10-19 | 2021-12-28 | Pure Storage, Inc. | Data transformation delegation for a graphical processing unit (‘GPU’) server |
US11861423B1 (en) | 2017-10-19 | 2024-01-02 | Pure Storage, Inc. | Accelerating artificial intelligence (‘AI’) workflows |
US10452444B1 (en) | 2017-10-19 | 2019-10-22 | Pure Storage, Inc. | Storage system with compute resources and shared storage resources |
US12067466B2 (en) | 2017-10-19 | 2024-08-20 | Pure Storage, Inc. | Artificial intelligence and machine learning hyperscale infrastructure |
US11556280B2 (en) | 2017-10-19 | 2023-01-17 | Pure Storage, Inc. | Data transformation for a machine learning model |
US10649988B1 (en) * | 2017-10-19 | 2020-05-12 | Pure Storage, Inc. | Artificial intelligence and machine learning infrastructure |
US12008404B2 (en) | 2017-10-19 | 2024-06-11 | Pure Storage, Inc. | Executing a big data analytics pipeline using shared storage resources |
US11803338B2 (en) | 2017-10-19 | 2023-10-31 | Pure Storage, Inc. | Executing a machine learning model in an artificial intelligence infrastructure |
US11768636B2 (en) | 2017-10-19 | 2023-09-26 | Pure Storage, Inc. | Generating a transformed dataset for use by a machine learning model in an artificial intelligence infrastructure |
US11307894B1 (en) | 2017-10-19 | 2022-04-19 | Pure Storage, Inc. | Executing a big data analytics pipeline using shared storage resources |
US11403290B1 (en) | 2017-10-19 | 2022-08-02 | Pure Storage, Inc. | Managing an artificial intelligence infrastructure |
US10509581B1 (en) | 2017-11-01 | 2019-12-17 | Pure Storage, Inc. | Maintaining write consistency in a multi-threaded storage system |
US10671494B1 (en) | 2017-11-01 | 2020-06-02 | Pure Storage, Inc. | Consistent selection of replicated datasets during storage system recovery |
US11263096B1 (en) | 2017-11-01 | 2022-03-01 | Pure Storage, Inc. | Preserving tolerance to storage device failures in a storage system |
US12248379B2 (en) | 2017-11-01 | 2025-03-11 | Pure Storage, Inc. | Using mirrored copies for data availability |
US11451391B1 (en) | 2017-11-01 | 2022-09-20 | Pure Storage, Inc. | Encryption key management in a storage system |
US12069167B2 (en) | 2017-11-01 | 2024-08-20 | Pure Storage, Inc. | Unlocking data stored in a group of storage systems |
US10484174B1 (en) | 2017-11-01 | 2019-11-19 | Pure Storage, Inc. | Protecting an encryption key for data stored in a storage system that includes a plurality of storage devices |
US10817392B1 (en) | 2017-11-01 | 2020-10-27 | Pure Storage, Inc. | Ensuring resiliency to storage device failures in a storage system that includes a plurality of storage devices |
US10467107B1 (en) | 2017-11-01 | 2019-11-05 | Pure Storage, Inc. | Maintaining metadata resiliency among storage device failures |
US11663097B2 (en) | 2017-11-01 | 2023-05-30 | Pure Storage, Inc. | Mirroring data to survive storage device failures |
US11847025B2 (en) | 2017-11-21 | 2023-12-19 | Pure Storage, Inc. | Storage system parity based on system characteristics |
US11500724B1 (en) | 2017-11-21 | 2022-11-15 | Pure Storage, Inc. | Flexible parity information for storage systems |
US10929226B1 (en) | 2017-11-21 | 2021-02-23 | Pure Storage, Inc. | Providing for increased flexibility for large scale parity |
US10936238B2 (en) | 2017-11-28 | 2021-03-02 | Pure Storage, Inc. | Hybrid data tiering |
US11604583B2 (en) | 2017-11-28 | 2023-03-14 | Pure Storage, Inc. | Policy based data tiering |
US10990282B1 (en) | 2017-11-28 | 2021-04-27 | Pure Storage, Inc. | Hybrid data tiering with cloud storage |
US10795598B1 (en) | 2017-12-07 | 2020-10-06 | Pure Storage, Inc. | Volume migration for storage systems synchronously replicating a dataset |
US11579790B1 (en) | 2017-12-07 | 2023-02-14 | Pure Storage, Inc. | Servicing input/output (‘I/O’) operations during data migration |
US12105979B2 (en) | 2017-12-07 | 2024-10-01 | Pure Storage, Inc. | Servicing input/output (‘I/O’) operations during a change in membership to a pod of storage systems synchronously replicating a dataset |
US12135685B2 (en) | 2017-12-14 | 2024-11-05 | Pure Storage, Inc. | Verifying data has been correctly replicated to a replication target |
US11036677B1 (en) | 2017-12-14 | 2021-06-15 | Pure Storage, Inc. | Replicated data integrity |
US11089105B1 (en) | 2017-12-14 | 2021-08-10 | Pure Storage, Inc. | Synchronously replicating datasets in cloud-based storage systems |
US11782614B1 (en) | 2017-12-21 | 2023-10-10 | Pure Storage, Inc. | Encrypting data to optimize data reduction |
US10992533B1 (en) | 2018-01-30 | 2021-04-27 | Pure Storage, Inc. | Policy based path management |
US12143269B2 (en) | 2018-01-30 | 2024-11-12 | Pure Storage, Inc. | Path management for container clusters that access persistent storage |
US11296944B2 (en) | 2018-01-30 | 2022-04-05 | Pure Storage, Inc. | Updating path selection as paths between a computing device and a storage system change |
US11474701B1 (en) | 2018-03-05 | 2022-10-18 | Pure Storage, Inc. | Determining capacity consumption in a deduplicating storage system |
US10521151B1 (en) | 2018-03-05 | 2019-12-31 | Pure Storage, Inc. | Determining effective space utilization in a storage system |
US11972134B2 (en) | 2018-03-05 | 2024-04-30 | Pure Storage, Inc. | Resource utilization using normalized input/output (‘I/O’) operations |
US12079505B2 (en) | 2018-03-05 | 2024-09-03 | Pure Storage, Inc. | Calculating storage utilization for distinct types of data |
US11836349B2 (en) | 2018-03-05 | 2023-12-05 | Pure Storage, Inc. | Determining storage capacity utilization based on deduplicated data |
US10942650B1 (en) | 2018-03-05 | 2021-03-09 | Pure Storage, Inc. | Reporting capacity utilization in a storage system |
US11150834B1 (en) | 2018-03-05 | 2021-10-19 | Pure Storage, Inc. | Determining storage consumption in a storage system |
US11861170B2 (en) | 2018-03-05 | 2024-01-02 | Pure Storage, Inc. | Sizing resources for a replication target |
US11614881B2 (en) | 2018-03-05 | 2023-03-28 | Pure Storage, Inc. | Calculating storage consumption for distinct client entities |
US10296258B1 (en) | 2018-03-09 | 2019-05-21 | Pure Storage, Inc. | Offloading data storage to a decentralized storage network |
US12216927B2 (en) | 2018-03-09 | 2025-02-04 | Pure Storage, Inc. | Storing data for machine learning and artificial intelligence applications in a decentralized storage network |
US11112989B2 (en) | 2018-03-09 | 2021-09-07 | Pure Storage, Inc. | Utilizing a decentralized storage network for data storage |
US10924548B1 (en) | 2018-03-15 | 2021-02-16 | Pure Storage, Inc. | Symmetric storage using a cloud-based storage system |
US11210009B1 (en) | 2018-03-15 | 2021-12-28 | Pure Storage, Inc. | Staging data in a cloud-based storage system |
US11539793B1 (en) | 2018-03-15 | 2022-12-27 | Pure Storage, Inc. | Responding to membership changes to a set of storage systems that are synchronously replicating a dataset |
US11533364B1 (en) | 2018-03-15 | 2022-12-20 | Pure Storage, Inc. | Maintaining metadata associated with a replicated dataset |
US11048590B1 (en) | 2018-03-15 | 2021-06-29 | Pure Storage, Inc. | Data consistency during recovery in a cloud-based storage system |
US12164393B2 (en) | 2018-03-15 | 2024-12-10 | Pure Storage, Inc. | Taking recovery actions for replicated datasets |
US12066900B2 (en) | 2018-03-15 | 2024-08-20 | Pure Storage, Inc. | Managing disaster recovery to cloud computing environment |
US12210778B2 (en) | 2018-03-15 | 2025-01-28 | Pure Storage, Inc. | Sizing a virtual storage system |
US12210417B2 (en) | 2018-03-15 | 2025-01-28 | Pure Storage, Inc. | Metadata-based recovery of a dataset |
US11442669B1 (en) | 2018-03-15 | 2022-09-13 | Pure Storage, Inc. | Orchestrating a virtual storage system |
US10917471B1 (en) | 2018-03-15 | 2021-02-09 | Pure Storage, Inc. | Active membership in a cloud-based storage system |
US11704202B2 (en) | 2018-03-15 | 2023-07-18 | Pure Storage, Inc. | Recovering from system faults for replicated datasets |
US11288138B1 (en) | 2018-03-15 | 2022-03-29 | Pure Storage, Inc. | Recovery from a system fault in a cloud-based storage system |
US11838359B2 (en) | 2018-03-15 | 2023-12-05 | Pure Storage, Inc. | Synchronizing metadata in a cloud-based storage system |
US10976962B2 (en) | 2018-03-15 | 2021-04-13 | Pure Storage, Inc. | Servicing I/O operations in a cloud-based storage system |
US11698837B2 (en) | 2018-03-15 | 2023-07-11 | Pure Storage, Inc. | Consistent recovery of a dataset |
US11171950B1 (en) | 2018-03-21 | 2021-11-09 | Pure Storage, Inc. | Secure cloud-based storage system management |
US11888846B2 (en) | 2018-03-21 | 2024-01-30 | Pure Storage, Inc. | Configuring storage systems in a fleet of storage systems |
US11729251B2 (en) | 2018-03-21 | 2023-08-15 | Pure Storage, Inc. | Remote and secure management of a storage system |
US11095706B1 (en) | 2018-03-21 | 2021-08-17 | Pure Storage, Inc. | Secure cloud-based storage system management |
US11714728B2 (en) | 2018-03-26 | 2023-08-01 | Pure Storage, Inc. | Creating a highly available data analytics pipeline without replicas |
US10838833B1 (en) | 2018-03-26 | 2020-11-17 | Pure Storage, Inc. | Providing for high availability in a data analytics pipeline without replicas |
US11263095B1 (en) | 2018-03-26 | 2022-03-01 | Pure Storage, Inc. | Managing a data analytics pipeline |
US11494692B1 (en) | 2018-03-26 | 2022-11-08 | Pure Storage, Inc. | Hyperscale artificial intelligence and machine learning infrastructure |
US11392553B1 (en) | 2018-04-24 | 2022-07-19 | Pure Storage, Inc. | Remote data management |
US11436344B1 (en) | 2018-04-24 | 2022-09-06 | Pure Storage, Inc. | Secure encryption in deduplication cluster |
US12067131B2 (en) | 2018-04-24 | 2024-08-20 | Pure Storage, Inc. | Transitioning leadership in a cluster of nodes |
US12086431B1 (en) | 2018-05-21 | 2024-09-10 | Pure Storage, Inc. | Selective communication protocol layering for synchronous replication |
US10992598B2 (en) | 2018-05-21 | 2021-04-27 | Pure Storage, Inc. | Synchronously replicating when a mediation service becomes unavailable |
US11677687B2 (en) | 2018-05-21 | 2023-06-13 | Pure Storage, Inc. | Switching between fault response models in a storage system |
US11954220B2 (en) | 2018-05-21 | 2024-04-09 | Pure Storage, Inc. | Data protection for container storage |
US11757795B2 (en) | 2018-05-21 | 2023-09-12 | Pure Storage, Inc. | Resolving mediator unavailability |
US12160372B2 (en) | 2018-05-21 | 2024-12-03 | Pure Storage, Inc. | Fault response model management in a storage system |
US12181981B1 (en) | 2018-05-21 | 2024-12-31 | Pure Storage, Inc. | Asynchronously protecting a synchronously replicated dataset |
US11675503B1 (en) | 2018-05-21 | 2023-06-13 | Pure Storage, Inc. | Role-based data access |
US11455409B2 (en) | 2018-05-21 | 2022-09-27 | Pure Storage, Inc. | Storage layer data obfuscation |
US11128578B2 (en) | 2018-05-21 | 2021-09-21 | Pure Storage, Inc. | Switching between mediator services for a storage system |
US11748030B1 (en) | 2018-05-22 | 2023-09-05 | Pure Storage, Inc. | Storage system metric optimization for container orchestrators |
US10871922B2 (en) | 2018-05-22 | 2020-12-22 | Pure Storage, Inc. | Integrated storage management between storage systems and container orchestrators |
US11403000B1 (en) | 2018-07-20 | 2022-08-02 | Pure Storage, Inc. | Resiliency in a cloud-based storage system |
US12061929B2 (en) | 2018-07-20 | 2024-08-13 | Pure Storage, Inc. | Providing storage tailored for a storage consuming application |
US11416298B1 (en) | 2018-07-20 | 2022-08-16 | Pure Storage, Inc. | Providing application-specific storage by a storage system |
US11632360B1 (en) | 2018-07-24 | 2023-04-18 | Pure Storage, Inc. | Remote access to a storage device |
US11954238B1 (en) | 2018-07-24 | 2024-04-09 | Pure Storage, Inc. | Role-based access control for a storage system |
US11146564B1 (en) | 2018-07-24 | 2021-10-12 | Pure Storage, Inc. | Login authentication in a cloud storage platform |
US11860820B1 (en) | 2018-09-11 | 2024-01-02 | Pure Storage, Inc. | Processing data through a storage system in a data pipeline |
US10990306B1 (en) | 2018-10-26 | 2021-04-27 | Pure Storage, Inc. | Bandwidth sharing for paired storage systems |
US11586365B2 (en) | 2018-10-26 | 2023-02-21 | Pure Storage, Inc. | Applying a rate limit across a plurality of storage systems |
US10671302B1 (en) | 2018-10-26 | 2020-06-02 | Pure Storage, Inc. | Applying a rate limit across a plurality of storage systems |
US12026381B2 (en) | 2018-10-26 | 2024-07-02 | Pure Storage, Inc. | Preserving identities and policies across replication |
US12039369B1 (en) | 2018-11-18 | 2024-07-16 | Pure Storage, Inc. | Examining a cloud-based storage system using codified states |
US11928366B2 (en) | 2018-11-18 | 2024-03-12 | Pure Storage, Inc. | Scaling a cloud-based storage system in response to a change in workload |
US11379254B1 (en) | 2018-11-18 | 2022-07-05 | Pure Storage, Inc. | Dynamic configuration of a cloud-based storage system |
US12056019B2 (en) | 2018-11-18 | 2024-08-06 | Pure Storage, Inc. | Creating cloud-based storage systems using stored datasets |
US10917470B1 (en) | 2018-11-18 | 2021-02-09 | Pure Storage, Inc. | Cloning storage systems in a cloud computing environment |
US11907590B2 (en) | 2018-11-18 | 2024-02-20 | Pure Storage, Inc. | Using infrastructure-as-code (‘IaC’) to update a cloud-based storage system |
US11861235B2 (en) | 2018-11-18 | 2024-01-02 | Pure Storage, Inc. | Maximizing data throughput in a cloud-based storage system |
US11455126B1 (en) | 2018-11-18 | 2022-09-27 | Pure Storage, Inc. | Copying a cloud-based storage system |
US11340837B1 (en) | 2018-11-18 | 2022-05-24 | Pure Storage, Inc. | Storage system management via a remote console |
US11768635B2 (en) | 2018-11-18 | 2023-09-26 | Pure Storage, Inc. | Scaling storage resources in a storage volume |
US11526405B1 (en) | 2018-11-18 | 2022-12-13 | Pure Storage, Inc. | Cloud-based disaster recovery |
US12026060B1 (en) | 2018-11-18 | 2024-07-02 | Pure Storage, Inc. | Reverting between codified states in a cloud-based storage system |
US11023179B2 (en) | 2018-11-18 | 2021-06-01 | Pure Storage, Inc. | Cloud-based storage system storage management |
US12026061B1 (en) | 2018-11-18 | 2024-07-02 | Pure Storage, Inc. | Restoring a cloud-based storage system to a selected state |
US11941288B1 (en) | 2018-11-18 | 2024-03-26 | Pure Storage, Inc. | Servicing write operations in a cloud-based storage system |
US10963189B1 (en) | 2018-11-18 | 2021-03-30 | Pure Storage, Inc. | Coalescing write operations in a cloud-based storage system |
US11184233B1 (en) | 2018-11-18 | 2021-11-23 | Pure Storage, Inc. | Non-disruptive upgrades to a cloud-based storage system |
US12001726B2 (en) | 2018-11-18 | 2024-06-04 | Pure Storage, Inc. | Creating a cloud-based storage system |
US11822825B2 (en) | 2018-11-18 | 2023-11-21 | Pure Storage, Inc. | Distributed cloud-based storage system |
US11650749B1 (en) | 2018-12-17 | 2023-05-16 | Pure Storage, Inc. | Controlling access to sensitive data in a shared dataset |
US11003369B1 (en) | 2019-01-14 | 2021-05-11 | Pure Storage, Inc. | Performing a tune-up procedure on a storage device during a boot process |
US11947815B2 (en) | 2019-01-14 | 2024-04-02 | Pure Storage, Inc. | Configuring a flash-based storage device |
US12184776B2 (en) | 2019-03-15 | 2024-12-31 | Pure Storage, Inc. | Decommissioning keys in a decryption storage system |
US11042452B1 (en) | 2019-03-20 | 2021-06-22 | Pure Storage, Inc. | Storage system data recovery using data recovery as a service |
US11221778B1 (en) | 2019-04-02 | 2022-01-11 | Pure Storage, Inc. | Preparing data for deduplication |
US12008255B2 (en) | 2019-04-02 | 2024-06-11 | Pure Storage, Inc. | Aligning variable sized compressed data to fixed sized storage blocks |
US11068162B1 (en) | 2019-04-09 | 2021-07-20 | Pure Storage, Inc. | Storage management in a cloud data store |
US11640239B2 (en) | 2019-04-09 | 2023-05-02 | Pure Storage, Inc. | Cost conscious garbage collection |
US11392555B2 (en) | 2019-05-15 | 2022-07-19 | Pure Storage, Inc. | Cloud-based file services |
US11853266B2 (en) | 2019-05-15 | 2023-12-26 | Pure Storage, Inc. | Providing a file system in a cloud environment |
US12001355B1 (en) | 2019-05-24 | 2024-06-04 | Pure Storage, Inc. | Chunked memory efficient storage data transfers |
US11797197B1 (en) | 2019-07-18 | 2023-10-24 | Pure Storage, Inc. | Dynamic scaling of a virtual storage system |
US12032530B2 (en) | 2019-07-18 | 2024-07-09 | Pure Storage, Inc. | Data storage in a cloud-based storage system |
US11126364B2 (en) | 2019-07-18 | 2021-09-21 | Pure Storage, Inc. | Virtual storage system architecture |
US11861221B1 (en) | 2019-07-18 | 2024-01-02 | Pure Storage, Inc. | Providing scalable and reliable container-based storage services |
US11487715B1 (en) | 2019-07-18 | 2022-11-01 | Pure Storage, Inc. | Resiliency in a cloud-based storage system |
US11327676B1 (en) | 2019-07-18 | 2022-05-10 | Pure Storage, Inc. | Predictive data streaming in a virtual storage system |
US11093139B1 (en) | 2019-07-18 | 2021-08-17 | Pure Storage, Inc. | Durably storing data within a virtual storage system |
US12254199B2 (en) | 2019-07-18 | 2025-03-18 | Pure Storage, Inc. | Declarative provisioning of storage |
US11526408B2 (en) | 2019-07-18 | 2022-12-13 | Pure Storage, Inc. | Data recovery in a virtual storage system |
US12039166B2 (en) | 2019-07-18 | 2024-07-16 | Pure Storage, Inc. | Leveraging distinct storage tiers in a virtual storage system |
US12079520B2 (en) | 2019-07-18 | 2024-09-03 | Pure Storage, Inc. | Replication between virtual storage systems |
US11550514B2 (en) | 2019-07-18 | 2023-01-10 | Pure Storage, Inc. | Efficient transfers between tiers of a virtual storage system |
US11086553B1 (en) | 2019-08-28 | 2021-08-10 | Pure Storage, Inc. | Tiering duplicated objects in a cloud-based object store |
US11693713B1 (en) | 2019-09-04 | 2023-07-04 | Pure Storage, Inc. | Self-tuning clusters for resilient microservices |
US12045252B2 (en) | 2019-09-13 | 2024-07-23 | Pure Storage, Inc. | Providing quality of service (QoS) for replicating datasets |
US11797569B2 (en) | 2019-09-13 | 2023-10-24 | Pure Storage, Inc. | Configurable data replication |
US11360689B1 (en) | 2019-09-13 | 2022-06-14 | Pure Storage, Inc. | Cloning a tracking copy of replica data |
US11704044B2 (en) | 2019-09-13 | 2023-07-18 | Pure Storage, Inc. | Modifying a cloned image of replica data |
US12166820B2 (en) | 2019-09-13 | 2024-12-10 | Pure Storage, Inc. | Replicating multiple storage systems utilizing coordinated snapshots |
US12131049B2 (en) | 2019-09-13 | 2024-10-29 | Pure Storage, Inc. | Creating a modifiable cloned image of a dataset |
US11625416B1 (en) | 2019-09-13 | 2023-04-11 | Pure Storage, Inc. | Uniform model for distinct types of data replication |
US11573864B1 (en) | 2019-09-16 | 2023-02-07 | Pure Storage, Inc. | Automating database management in a storage system |
US11669386B1 (en) | 2019-10-08 | 2023-06-06 | Pure Storage, Inc. | Managing an application's resource stack |
US11868318B1 (en) | 2019-12-06 | 2024-01-09 | Pure Storage, Inc. | End-to-end encryption in a storage system with multi-tenancy |
US11531487B1 (en) | 2019-12-06 | 2022-12-20 | Pure Storage, Inc. | Creating a replica of a storage system |
US11930112B1 (en) | 2019-12-06 | 2024-03-12 | Pure Storage, Inc. | Multi-path end-to-end encryption in a storage system |
US11943293B1 (en) | 2019-12-06 | 2024-03-26 | Pure Storage, Inc. | Restoring a storage system from a replication target |
US11947683B2 (en) | 2019-12-06 | 2024-04-02 | Pure Storage, Inc. | Replicating a storage system |
US12093402B2 (en) | 2019-12-06 | 2024-09-17 | Pure Storage, Inc. | Replicating data to a storage system that has an inferred trust relationship with a client |
US12093414B1 (en) * | 2019-12-09 | 2024-09-17 | Amazon Technologies, Inc. | Efficient detection of in-memory data accesses and context information |
US11733901B1 (en) | 2020-01-13 | 2023-08-22 | Pure Storage, Inc. | Providing persistent storage to transient cloud computing services |
US11720497B1 (en) | 2020-01-13 | 2023-08-08 | Pure Storage, Inc. | Inferred nonsequential prefetch based on data access patterns |
US11709636B1 (en) | 2020-01-13 | 2023-07-25 | Pure Storage, Inc. | Non-sequential readahead for deep learning training |
US12229428B2 (en) | 2020-01-13 | 2025-02-18 | Pure Storage, Inc. | Providing non-volatile storage to cloud computing services |
US12164812B2 (en) | 2020-01-13 | 2024-12-10 | Pure Storage, Inc. | Training artificial intelligence workflows |
US12014065B2 (en) | 2020-02-11 | 2024-06-18 | Pure Storage, Inc. | Multi-cloud orchestration as-a-service |
US11868622B2 (en) | 2020-02-25 | 2024-01-09 | Pure Storage, Inc. | Application recovery across storage systems |
US11637896B1 (en) | 2020-02-25 | 2023-04-25 | Pure Storage, Inc. | Migrating applications to a cloud-computing environment |
US11625185B2 (en) | 2020-03-25 | 2023-04-11 | Pure Storage, Inc. | Transitioning between replication sources for data replication operations |
US12124725B2 (en) | 2020-03-25 | 2024-10-22 | Pure Storage, Inc. | Managing host mappings for replication endpoints |
US12210762B2 (en) | 2020-03-25 | 2025-01-28 | Pure Storage, Inc. | Transitioning between source data repositories for a dataset |
US11321006B1 (en) | 2020-03-25 | 2022-05-03 | Pure Storage, Inc. | Data loss prevention during transitions from a replication source |
US12038881B2 (en) | 2020-03-25 | 2024-07-16 | Pure Storage, Inc. | Replica transitions for file storage |
US11630598B1 (en) | 2020-04-06 | 2023-04-18 | Pure Storage, Inc. | Scheduling data replication operations |
US11301152B1 (en) | 2020-04-06 | 2022-04-12 | Pure Storage, Inc. | Intelligently moving data between storage systems |
US11853164B2 (en) | 2020-04-14 | 2023-12-26 | Pure Storage, Inc. | Generating recovery information using data redundancy |
US11494267B2 (en) | 2020-04-14 | 2022-11-08 | Pure Storage, Inc. | Continuous value data redundancy |
US11921670B1 (en) | 2020-04-20 | 2024-03-05 | Pure Storage, Inc. | Multivariate data backup retention policies |
US12254206B2 (en) | 2020-05-08 | 2025-03-18 | Pure Storage, Inc. | Non-disruptively moving a storage fleet control plane |
US12131056B2 (en) | 2020-05-08 | 2024-10-29 | Pure Storage, Inc. | Providing data management as-a-service |
US11431488B1 (en) | 2020-06-08 | 2022-08-30 | Pure Storage, Inc. | Protecting local key generation using a remote key management service |
US12063296B2 (en) | 2020-06-08 | 2024-08-13 | Pure Storage, Inc. | Securely encrypting data using a remote key management service |
US11349917B2 (en) | 2020-07-23 | 2022-05-31 | Pure Storage, Inc. | Replication handling among distinct networks |
US11882179B2 (en) | 2020-07-23 | 2024-01-23 | Pure Storage, Inc. | Supporting multiple replication schemes across distinct network layers |
US11442652B1 (en) | 2020-07-23 | 2022-09-13 | Pure Storage, Inc. | Replication handling during storage system transportation |
US11789638B2 (en) | 2020-07-23 | 2023-10-17 | Pure Storage, Inc. | Continuing replication during storage system transportation |
US12254205B1 (en) | 2020-09-04 | 2025-03-18 | Pure Storage, Inc. | Utilizing data transfer estimates for active management of a storage environment |
US12079222B1 (en) | 2020-09-04 | 2024-09-03 | Pure Storage, Inc. | Enabling data portability between systems |
US12131044B2 (en) | 2020-09-04 | 2024-10-29 | Pure Storage, Inc. | Intelligent application placement in a hybrid infrastructure |
US11397545B1 (en) | 2021-01-20 | 2022-07-26 | Pure Storage, Inc. | Emulating persistent reservations in a cloud-based storage system |
US11693604B2 (en) | 2021-01-20 | 2023-07-04 | Pure Storage, Inc. | Administering storage access in a cloud-based storage system |
US11853285B1 (en) | 2021-01-22 | 2023-12-26 | Pure Storage, Inc. | Blockchain logging of volume-level events in a storage system |
US11588716B2 (en) | 2021-05-12 | 2023-02-21 | Pure Storage, Inc. | Adaptive storage processing for storage-as-a-service |
US12086649B2 (en) | 2021-05-12 | 2024-09-10 | Pure Storage, Inc. | Rebalancing in a fleet of storage systems using data science |
US11822809B2 (en) | 2021-05-12 | 2023-11-21 | Pure Storage, Inc. | Role enforcement for storage-as-a-service |
US11816129B2 (en) | 2021-06-22 | 2023-11-14 | Pure Storage, Inc. | Generating datasets using approximate baselines |
US12159145B2 (en) | 2021-10-18 | 2024-12-03 | Pure Storage, Inc. | Context driven user interfaces for storage systems |
US11714723B2 (en) | 2021-10-29 | 2023-08-01 | Pure Storage, Inc. | Coordinated snapshots for data stored across distinct storage environments |
US11893263B2 (en) | 2021-10-29 | 2024-02-06 | Pure Storage, Inc. | Coordinated checkpoints among storage systems implementing checkpoint-based replication |
US11914867B2 (en) | 2021-10-29 | 2024-02-27 | Pure Storage, Inc. | Coordinated snapshots among storage systems implementing a promotion/demotion model |
US11922052B2 (en) | 2021-12-15 | 2024-03-05 | Pure Storage, Inc. | Managing links between storage objects |
US11847071B2 (en) | 2021-12-30 | 2023-12-19 | Pure Storage, Inc. | Enabling communication between a single-port device and multiple storage system controllers |
US12001300B2 (en) | 2022-01-04 | 2024-06-04 | Pure Storage, Inc. | Assessing protection for storage resources |
US11860780B2 (en) | 2022-01-28 | 2024-01-02 | Pure Storage, Inc. | Storage cache management |
US11886295B2 (en) | 2022-01-31 | 2024-01-30 | Pure Storage, Inc. | Intra-block error correction |
US12182113B1 (en) | 2022-11-03 | 2024-12-31 | Pure Storage, Inc. | Managing database systems using human-readable declarative definitions |
US12101378B2 (en) * | 2022-12-08 | 2024-09-24 | Hewlett Packard Enterprise Development Lp | Storage array fleet management |
US20240330414A1 (en) * | 2023-03-27 | 2024-10-03 | Vmware, Inc. | Cloud connectivity management for cloud-managed on-premises software |
Also Published As
Publication number | Publication date |
---|---|
WO2016190938A1 (en) | 2016-12-01 |
US9521200B1 (en) | 2016-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10652331B1 (en) | Locally providing highly available cloud-based storage system services | |
US9521200B1 (en) | Locally providing cloud storage array services | |
US10599536B1 (en) | Preventing storage errors using problem signatures | |
US10929185B1 (en) | Predictive workload placement | |
US20230362250A1 (en) | Performance-Driven Storage Provisioning | |
US11868625B2 (en) | Alert tracking in storage | |
US20160294992A1 (en) | Highly Resilient Protocol Servicing in Network-Attached Storage | |
US10929231B1 (en) | System configuration selection in a storage system | |
US20170115878A1 (en) | Proactively tuning a storage array | |
US10691357B2 (en) | Consideration of configuration-based input/output predictions in multi-tiered data storage system management | |
US20210281643A1 (en) | Method for a network of storage devices | |
US12079143B2 (en) | Dynamically managing protection groups | |
US20170109055A1 (en) | Capacity planning in a multi-array storage system | |
US11836118B2 (en) | Performance metric-based improvement of one or more conditions of a storage array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PURE STORAGE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOROWIEC, BENJAMIN P.;NOONAN, TERENCE W.;REEL/FRAME:035822/0425 Effective date: 20150526 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |