US20160289199A1 - TRPV1 Vanilloid Receptor Antagonists With A Bicyclic Portion - Google Patents
TRPV1 Vanilloid Receptor Antagonists With A Bicyclic Portion Download PDFInfo
- Publication number
- US20160289199A1 US20160289199A1 US14/976,882 US201514976882A US2016289199A1 US 20160289199 A1 US20160289199 A1 US 20160289199A1 US 201514976882 A US201514976882 A US 201514976882A US 2016289199 A1 US2016289199 A1 US 2016289199A1
- Authority
- US
- United States
- Prior art keywords
- urea
- trifluoromethyl
- oxo
- dihydro
- benzyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 102000003566 TRPV1 Human genes 0.000 title claims abstract description 36
- 101150016206 Trpv1 gene Proteins 0.000 title claims abstract description 7
- 125000002619 bicyclic group Chemical group 0.000 title description 2
- 239000000085 vanilloid receptor antagonist Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 99
- 208000002193 Pain Diseases 0.000 claims abstract description 23
- 230000005764 inhibitory process Effects 0.000 claims abstract description 9
- 108010062740 TRPV Cation Channels Proteins 0.000 claims abstract description 6
- 102000011040 TRPV Cation Channels Human genes 0.000 claims abstract description 6
- 230000001668 ameliorated effect Effects 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 279
- -1 morpholino, piperidino, pyrrolidino Chemical group 0.000 claims description 81
- 125000003282 alkyl amino group Chemical group 0.000 claims description 60
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 45
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 30
- 229910052757 nitrogen Inorganic materials 0.000 claims description 30
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 229910052736 halogen Inorganic materials 0.000 claims description 15
- 125000005842 heteroatom Chemical group 0.000 claims description 15
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 15
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 15
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 13
- 150000002367 halogens Chemical group 0.000 claims description 12
- 208000003556 Dry Eye Syndromes Diseases 0.000 claims description 10
- 206010013774 Dry eye Diseases 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 10
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 9
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims description 9
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 8
- 206010011224 Cough Diseases 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 125000000623 heterocyclic group Chemical group 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- JOUCFWVBBXSFJZ-UHFFFAOYSA-N n-[[2-morpholin-4-yl-4-(trifluoromethyl)phenyl]methyl]-2-oxo-3h-1,3-benzoxazole-4-carboxamide Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)C=2C=3NC(=O)OC=3C=CC=2)C=1N1CCOCC1 JOUCFWVBBXSFJZ-UHFFFAOYSA-N 0.000 claims description 6
- 210000003932 urinary bladder Anatomy 0.000 claims description 6
- MPUPEQVKZLRZAX-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-7-yl)-3-[[5-(trifluoromethyl)furan-2-yl]methyl]urea Chemical compound O1C(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OC(=O)N2 MPUPEQVKZLRZAX-UHFFFAOYSA-N 0.000 claims description 5
- DQOGUFZXYQKPDQ-UHFFFAOYSA-N 1-[[2-[2-(dimethylamino)ethoxy]-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)CCOC1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 DQOGUFZXYQKPDQ-UHFFFAOYSA-N 0.000 claims description 5
- FJKFTTCVCCLGFZ-UHFFFAOYSA-N 1-[[2-fluoro-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound FC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 FJKFTTCVCCLGFZ-UHFFFAOYSA-N 0.000 claims description 5
- GVOGMMQHGUVEMI-UHFFFAOYSA-N 2-oxo-n-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]-3h-1,3-benzoxazole-4-carboxamide Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)C=2C=3NC(=O)OC=3C=CC=2)C=1N1CCCCC1 GVOGMMQHGUVEMI-UHFFFAOYSA-N 0.000 claims description 5
- 206010046543 Urinary incontinence Diseases 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- HVKMRUZRSDUEIW-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-piperidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound N=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCCC1 HVKMRUZRSDUEIW-UHFFFAOYSA-N 0.000 claims description 4
- 201000004384 Alopecia Diseases 0.000 claims description 4
- 208000019901 Anxiety disease Diseases 0.000 claims description 4
- 206010006298 Breast pain Diseases 0.000 claims description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 4
- 208000011231 Crohn disease Diseases 0.000 claims description 4
- 201000004624 Dermatitis Diseases 0.000 claims description 4
- 206010019233 Headaches Diseases 0.000 claims description 4
- 206010020112 Hirsutism Diseases 0.000 claims description 4
- 208000006662 Mastodynia Diseases 0.000 claims description 4
- 208000019695 Migraine disease Diseases 0.000 claims description 4
- 208000008589 Obesity Diseases 0.000 claims description 4
- 206010033645 Pancreatitis Diseases 0.000 claims description 4
- 208000000450 Pelvic Pain Diseases 0.000 claims description 4
- 208000004550 Postoperative Pain Diseases 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- 208000003728 Vulvodynia Diseases 0.000 claims description 4
- 206010069055 Vulvovaginal pain Diseases 0.000 claims description 4
- 231100000360 alopecia Toxicity 0.000 claims description 4
- 230000036506 anxiety Effects 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 4
- 208000021302 gastroesophageal reflux disease Diseases 0.000 claims description 4
- 231100000869 headache Toxicity 0.000 claims description 4
- 208000002551 irritable bowel syndrome Diseases 0.000 claims description 4
- 206010027599 migraine Diseases 0.000 claims description 4
- 208000031225 myocardial ischemia Diseases 0.000 claims description 4
- JWLMNTLXFHODKR-UHFFFAOYSA-N n-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-2-[4-(trifluoromethyl)phenyl]acetamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CC(=O)NC1=CC=CC2=C1NC(=O)N2 JWLMNTLXFHODKR-UHFFFAOYSA-N 0.000 claims description 4
- HRQOBOPCPHVQBL-UHFFFAOYSA-N n-(2-oxo-3h-1,3-benzoxazol-4-yl)-2-[4-(trifluoromethyl)phenyl]acetamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CC(=O)NC1=CC=CC2=C1NC(=O)O2 HRQOBOPCPHVQBL-UHFFFAOYSA-N 0.000 claims description 4
- ZPIGXRUNOODSLH-UHFFFAOYSA-N n-(2-oxo-3h-1,3-benzoxazol-7-yl)-2-[4-(trifluoromethyl)phenyl]acetamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CC(=O)NC1=CC=CC2=C1OC(=O)N2 ZPIGXRUNOODSLH-UHFFFAOYSA-N 0.000 claims description 4
- 201000001119 neuropathy Diseases 0.000 claims description 4
- 230000007823 neuropathy Effects 0.000 claims description 4
- 235000020824 obesity Nutrition 0.000 claims description 4
- 201000008482 osteoarthritis Diseases 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 4
- 206010039083 rhinitis Diseases 0.000 claims description 4
- 208000009935 visceral pain Diseases 0.000 claims description 4
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 3
- 230000007717 exclusion Effects 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims 3
- 208000033808 peripheral neuropathy Diseases 0.000 claims 3
- BBDLBXOMKKZTOE-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-propan-2-yloxy-4-(trifluoromethyl)phenyl]methyl]urea 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-propan-2-yloxy-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound C(C)(C)OC1=NC(=CC=C1CNC(=O)NC1=CC=CC=2NC(NC21)=O)C(F)(F)F.C(C)(C)OC2=C(C=CC(=C2)C(F)(F)F)CNC(=O)NC2=CC=CC=1NC(NC12)=O BBDLBXOMKKZTOE-UHFFFAOYSA-N 0.000 claims 1
- JSPFCPYLZKVZAU-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methyl]urea 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound O=C1NC2=C(N1)C=CC=C2NC(=O)NCC=2C(=NC(=CC2)C(F)(F)F)N2CCCC2.O=C2NC1=C(N2)C=CC=C1NC(=O)NCC=1C=NC(=CC1)C(F)(F)F JSPFCPYLZKVZAU-UHFFFAOYSA-N 0.000 claims 1
- YTLMATAHNKCCNY-UHFFFAOYSA-N 1-[(4-tert-butylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea 1-[[2-(dimethylamino)-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C(C)(C)(C)C1=CC=C(C=C1)CNC(=O)NC1=CC=CC=2NC(NC21)=O.CN(C2=NC(=CC=C2CNC(=O)NC2=CC=CC=1NC(NC12)=O)C(F)(F)F)C YTLMATAHNKCCNY-UHFFFAOYSA-N 0.000 claims 1
- MTJATVFNOSGZST-UHFFFAOYSA-N 1-[[2-chloro-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea 1-[[2-(dimethylamino)-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound FC(F)(F)c1ccc(CNC(=O)Nc2cccc3[nH]c(=O)[nH]c23)c(Cl)c1.CN(C)c1cc(ccc1CNC(=O)Nc1cccc2[nH]c(=O)[nH]c12)C(F)(F)F MTJATVFNOSGZST-UHFFFAOYSA-N 0.000 claims 1
- WEIRLKNIIDXBIN-UHFFFAOYSA-N 1-[[2-morpholin-4-yl-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-(1,2,4-triazol-1-yl)-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound FC(C1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1N=CN=C1)(F)F.FC(C1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N1CCOCC1)(F)F WEIRLKNIIDXBIN-UHFFFAOYSA-N 0.000 claims 1
- WWWOLZIJQQYGBN-UHFFFAOYSA-N C(C)(C)(C)C1=CC(=C(C=C1)CNC(=O)NC1=CC=CC=2NC(NC21)=O)Cl.CN(CCOC2=C(C=CC(=C2)C(F)(F)F)CNC(=O)NC2=CC=CC=1NC(NC12)=O)C Chemical compound C(C)(C)(C)C1=CC(=C(C=C1)CNC(=O)NC1=CC=CC=2NC(NC21)=O)Cl.CN(CCOC2=C(C=CC(=C2)C(F)(F)F)CNC(=O)NC2=CC=CC=1NC(NC12)=O)C WWWOLZIJQQYGBN-UHFFFAOYSA-N 0.000 claims 1
- VJRXBOZAKUKOAJ-UHFFFAOYSA-N CN(C1=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=CC(=C1)C)C.CC1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 Chemical compound CN(C1=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=CC(=C1)C)C.CC1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 VJRXBOZAKUKOAJ-UHFFFAOYSA-N 0.000 claims 1
- PJKZTIFMXOAAKF-UHFFFAOYSA-N CN(C1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)C.ClC1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N1CCCCC1 Chemical compound CN(C1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)C.ClC1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N1CCCCC1 PJKZTIFMXOAAKF-UHFFFAOYSA-N 0.000 claims 1
- NEIOCPOMMGPVPN-UHFFFAOYSA-N ClC1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CC(CC1)O.ClC1=CC=C(C=N1)CNC(=O)NC1=CC=CC=3NC(NC31)=O Chemical compound ClC1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CC(CC1)O.ClC1=CC=C(C=N1)CNC(=O)NC1=CC=CC=3NC(NC31)=O NEIOCPOMMGPVPN-UHFFFAOYSA-N 0.000 claims 1
- BSUFEYPNKMHZOH-UHFFFAOYSA-N ClC1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CCCC1.ClC1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N(C)C Chemical compound ClC1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CCCC1.ClC1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N(C)C BSUFEYPNKMHZOH-UHFFFAOYSA-N 0.000 claims 1
- IBGXODKHQMZLDE-UHFFFAOYSA-N ClC1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1.FC1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 Chemical compound ClC1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1.FC1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 IBGXODKHQMZLDE-UHFFFAOYSA-N 0.000 claims 1
- RWGUSWWOEPWQRW-UHFFFAOYSA-N FC(C1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CCCCC1)(F)F.FC(C1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N1CCCC1)(F)F Chemical compound FC(C1=CC(=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1)N1CCCCC1)(F)F.FC(C1=CC(=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)N1CCCC1)(F)F RWGUSWWOEPWQRW-UHFFFAOYSA-N 0.000 claims 1
- DUHMDYCNSRPVIU-UHFFFAOYSA-N FC(C1=CC=C(CNC(=O)NC2=CC=CC3=C2NC(O3)=O)C=C1)(F)F.C(C)(C)(C)C1=CC(=C(C=C1)CNC(=O)NC1=CC=CC=3NC(NC31)=O)N3CCCC3 Chemical compound FC(C1=CC=C(CNC(=O)NC2=CC=CC3=C2NC(O3)=O)C=C1)(F)F.C(C)(C)(C)C1=CC(=C(C=C1)CNC(=O)NC1=CC=CC=3NC(NC31)=O)N3CCCC3 DUHMDYCNSRPVIU-UHFFFAOYSA-N 0.000 claims 1
- FTWHYPBNJDMAHP-UHFFFAOYSA-N FC1=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=CC(=C1)C(F)(F)F.FC(C1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)(F)F Chemical compound FC1=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=CC(=C1)C(F)(F)F.FC(C1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1)(F)F FTWHYPBNJDMAHP-UHFFFAOYSA-N 0.000 claims 1
- RXIWVAWIUDDUAC-UHFFFAOYSA-N N1(CCCCC1)C1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1.N1(CCCC1)C1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 Chemical compound N1(CCCCC1)C1=CC=C(CNC(=O)NC2=CC=CC=3NC(NC32)=O)C=C1.N1(CCCC1)C1=CC=C(CNC(=O)NC3=CC=CC=2NC(NC23)=O)C=C1 RXIWVAWIUDDUAC-UHFFFAOYSA-N 0.000 claims 1
- UHNPWVWYLNQQAF-UHFFFAOYSA-N O=C1NC2=C(N1)C=CC=C2NC(=O)NCC2=CC=NC=C2.CC2=CC(=C(CNC(=O)NC1=CC=CC=3NC(NC31)=O)C=C2)N2CCCCC2 Chemical compound O=C1NC2=C(N1)C=CC=C2NC(=O)NCC2=CC=NC=C2.CC2=CC(=C(CNC(=O)NC1=CC=CC=3NC(NC31)=O)C=C2)N2CCCCC2 UHNPWVWYLNQQAF-UHFFFAOYSA-N 0.000 claims 1
- JHGOKDPQRHCDBR-UHFFFAOYSA-N O=C1NC2=C(N1)C=CC=C2NC(=O)NCC2=NC=C(C=C2)C(F)(F)F.CC2=CC=C(C(=N2)N2CCCCC2)CNC(=O)NC2=CC=CC=1NC(NC12)=O Chemical compound O=C1NC2=C(N1)C=CC=C2NC(=O)NCC2=NC=C(C=C2)C(F)(F)F.CC2=CC=C(C(=N2)N2CCCCC2)CNC(=O)NC2=CC=CC=1NC(NC12)=O JHGOKDPQRHCDBR-UHFFFAOYSA-N 0.000 claims 1
- 239000005557 antagonist Substances 0.000 abstract description 13
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 239000004480 active ingredient Substances 0.000 abstract description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 444
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 355
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 293
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 252
- 239000000243 solution Substances 0.000 description 220
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 170
- 238000002360 preparation method Methods 0.000 description 150
- 239000012074 organic phase Substances 0.000 description 149
- 238000005160 1H NMR spectroscopy Methods 0.000 description 147
- 239000007787 solid Substances 0.000 description 144
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 117
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 117
- 229910052938 sodium sulfate Inorganic materials 0.000 description 117
- 239000002904 solvent Substances 0.000 description 105
- 239000003921 oil Substances 0.000 description 92
- 235000019198 oils Nutrition 0.000 description 92
- 238000000746 purification Methods 0.000 description 83
- 239000012267 brine Substances 0.000 description 82
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 82
- 235000019439 ethyl acetate Nutrition 0.000 description 78
- 235000011152 sodium sulphate Nutrition 0.000 description 72
- 238000006243 chemical reaction Methods 0.000 description 60
- 238000004809 thin layer chromatography Methods 0.000 description 58
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 description 54
- 239000012948 isocyanate Substances 0.000 description 51
- 150000002513 isocyanates Chemical class 0.000 description 51
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 48
- 239000007832 Na2SO4 Substances 0.000 description 45
- 239000011541 reaction mixture Substances 0.000 description 45
- 239000003208 petroleum Substances 0.000 description 44
- 229910010084 LiAlH4 Inorganic materials 0.000 description 40
- 239000012280 lithium aluminium hydride Substances 0.000 description 40
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 39
- 150000001412 amines Chemical class 0.000 description 37
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 35
- 239000000047 product Substances 0.000 description 34
- 239000008346 aqueous phase Substances 0.000 description 33
- 238000004587 chromatography analysis Methods 0.000 description 28
- 0 [1*]C.[2*]C.[3*]C(CC(=O)[W][Y])c1[u][u]([U])[u]([U][U])[u]([U][U][U])[u]1[U][U][U][U] Chemical compound [1*]C.[2*]C.[3*]C(CC(=O)[W][Y])c1[u][u]([U])[u]([U][U])[u]([U][U][U])[u]1[U][U][U][U] 0.000 description 26
- 150000003839 salts Chemical class 0.000 description 26
- GVOISEJVFFIGQE-YCZSINBZSA-N n-[(1r,2s,5r)-5-[methyl(propan-2-yl)amino]-2-[(3s)-2-oxo-3-[[6-(trifluoromethyl)quinazolin-4-yl]amino]pyrrolidin-1-yl]cyclohexyl]acetamide Chemical compound CC(=O)N[C@@H]1C[C@H](N(C)C(C)C)CC[C@@H]1N1C(=O)[C@@H](NC=2C3=CC(=CC=C3N=CN=2)C(F)(F)F)CC1 GVOISEJVFFIGQE-YCZSINBZSA-N 0.000 description 23
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 22
- 241000700159 Rattus Species 0.000 description 21
- 239000000706 filtrate Substances 0.000 description 20
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 18
- 150000002825 nitriles Chemical class 0.000 description 17
- 208000004454 Hyperalgesia Diseases 0.000 description 14
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 12
- 238000002425 crystallisation Methods 0.000 description 12
- 230000008025 crystallization Effects 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- 229960002504 capsaicin Drugs 0.000 description 11
- 235000017663 capsaicin Nutrition 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- HBENZIXOGRCSQN-VQWWACLZSA-N (1S,2S,6R,14R,15R,16R)-5-(cyclopropylmethyl)-16-[(2S)-2-hydroxy-3,3-dimethylpentan-2-yl]-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol Chemical compound N1([C@@H]2CC=3C4=C(C(=CC=3)O)O[C@H]3[C@@]5(OC)CC[C@@]2([C@@]43CC1)C[C@@H]5[C@](C)(O)C(C)(C)CC)CC1CC1 HBENZIXOGRCSQN-VQWWACLZSA-N 0.000 description 10
- VAVHMEQFYYBAPR-ITWZMISCSA-N (e,3r,5s)-7-[4-(4-fluorophenyl)-1-phenyl-2-propan-2-ylpyrrol-3-yl]-3,5-dihydroxyhept-6-enoic acid Chemical compound CC(C)C1=C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)C(C=2C=CC(F)=CC=2)=CN1C1=CC=CC=C1 VAVHMEQFYYBAPR-ITWZMISCSA-N 0.000 description 10
- 235000013877 carbamide Nutrition 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 235000019502 Orange oil Nutrition 0.000 description 7
- PRDBLLIPPDOICK-UHFFFAOYSA-N [4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1 PRDBLLIPPDOICK-UHFFFAOYSA-N 0.000 description 7
- 239000006196 drop Substances 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 239000010502 orange oil Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- GEHMLBFNZKJDQM-UHFFFAOYSA-N 2-chloro-4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(Cl)=C1 GEHMLBFNZKJDQM-UHFFFAOYSA-N 0.000 description 6
- CDSFASYGONAHHN-UHFFFAOYSA-N 2-chloro-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(Cl)=N1 CDSFASYGONAHHN-UHFFFAOYSA-N 0.000 description 6
- WJXSWCUQABXPFS-UHFFFAOYSA-N 3-hydroxyanthranilic acid Chemical compound NC1=C(O)C=CC=C1C(O)=O WJXSWCUQABXPFS-UHFFFAOYSA-N 0.000 description 6
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- HYJMTPJULXTVGC-UHFFFAOYSA-N 1-[(4-methyl-2-piperidin-1-ylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C=1C(C)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCCC1 HYJMTPJULXTVGC-UHFFFAOYSA-N 0.000 description 5
- DUWZUVAONCMRTQ-UHFFFAOYSA-N 1-[(4-methyl-2-pyrrolidin-1-ylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C=1C(C)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCC1 DUWZUVAONCMRTQ-UHFFFAOYSA-N 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000003070 anti-hyperalgesia Effects 0.000 description 5
- 230000036760 body temperature Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 231100000252 nontoxic Toxicity 0.000 description 5
- 230000003000 nontoxic effect Effects 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 5
- 229920000053 polysorbate 80 Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VUHYMDOCCFZHOD-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-(pyridin-4-ylmethyl)urea Chemical compound C=1C=CC=2NC(=O)NC=2C=1NC(=O)NCC1=CC=NC=C1 VUHYMDOCCFZHOD-UHFFFAOYSA-N 0.000 description 4
- KCIONCZYHYPAMJ-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[(4-piperidin-1-ylphenyl)methyl]urea Chemical compound C=1C=CC=2NC(=O)NC=2C=1NC(=O)NCC(C=C1)=CC=C1N1CCCCC1 KCIONCZYHYPAMJ-UHFFFAOYSA-N 0.000 description 4
- ADZOSNHUZIFBSV-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[(4-pyrrolidin-1-ylphenyl)methyl]urea Chemical compound C=1C=CC=2NC(=O)NC=2C=1NC(=O)NCC(C=C1)=CC=C1N1CCCC1 ADZOSNHUZIFBSV-UHFFFAOYSA-N 0.000 description 4
- CAARSMVGTLYSTJ-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-(1,2,4-triazol-1-yl)-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1C=NC=N1 CAARSMVGTLYSTJ-UHFFFAOYSA-N 0.000 description 4
- ILFYSMXXQODUJS-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCCC1 ILFYSMXXQODUJS-UHFFFAOYSA-N 0.000 description 4
- VMJYGCMQBOEMDH-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-propan-2-yloxy-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound CC(C)OC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 VMJYGCMQBOEMDH-UHFFFAOYSA-N 0.000 description 4
- ZOUXKVCKDZWXCW-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-propan-2-yloxy-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound CC(C)OC1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 ZOUXKVCKDZWXCW-UHFFFAOYSA-N 0.000 description 4
- GUWJRCUFOIXCMK-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCC1 GUWJRCUFOIXCMK-UHFFFAOYSA-N 0.000 description 4
- ZLHCAPJNKBBOCE-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound N=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCC1 ZLHCAPJNKBBOCE-UHFFFAOYSA-N 0.000 description 4
- SLJVYORYMLGTQA-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 SLJVYORYMLGTQA-UHFFFAOYSA-N 0.000 description 4
- QQLLJYJREZRQQA-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound C1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 QQLLJYJREZRQQA-UHFFFAOYSA-N 0.000 description 4
- BBUOZZNNUZNYTB-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-4-yl)-3-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)OC=3C=CC=2)C=1N1CCCCC1 BBUOZZNNUZNYTB-UHFFFAOYSA-N 0.000 description 4
- HAFOAIDDPYEACS-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-4-yl)-3-[[2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)OC=3C=CC=2)C=1N1CCCC1 HAFOAIDDPYEACS-UHFFFAOYSA-N 0.000 description 4
- OOSCCEZWZVNAKL-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-4-yl)-3-[[4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 OOSCCEZWZVNAKL-UHFFFAOYSA-N 0.000 description 4
- GTKOJBPHEBVXCG-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-7-yl)-3-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OC(=O)NC=3C=CC=2)C=1N1CCCCC1 GTKOJBPHEBVXCG-UHFFFAOYSA-N 0.000 description 4
- GQAJQZYKEYWOFV-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-7-yl)-3-[[2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OC(=O)NC=3C=CC=2)C=1N1CCCC1 GQAJQZYKEYWOFV-UHFFFAOYSA-N 0.000 description 4
- UTHNCDZJJQPTIA-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-7-yl)-3-[[4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OC(=O)N2 UTHNCDZJJQPTIA-UHFFFAOYSA-N 0.000 description 4
- TYDDAZMQEIABGF-UHFFFAOYSA-N 1-(2-oxo-3h-1,3-benzoxazol-7-yl)-3-[[6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound C1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OC(=O)N2 TYDDAZMQEIABGF-UHFFFAOYSA-N 0.000 description 4
- QGMWMIIBPPTWAS-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-5-yl)-3-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)COC=3C=CC=2)C=1N1CCCCC1 QGMWMIIBPPTWAS-UHFFFAOYSA-N 0.000 description 4
- JILKPFJBUKZJSJ-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-5-yl)-3-[[2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)COC=3C=CC=2)C=1N1CCCC1 JILKPFJBUKZJSJ-UHFFFAOYSA-N 0.000 description 4
- GLHBOSDHZDKMKS-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-5-yl)-3-[[4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)CO2 GLHBOSDHZDKMKS-UHFFFAOYSA-N 0.000 description 4
- FSBAINYERQVPNQ-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 FSBAINYERQVPNQ-UHFFFAOYSA-N 0.000 description 4
- ABNCWKBVNWSWPZ-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCC1 ABNCWKBVNWSWPZ-UHFFFAOYSA-N 0.000 description 4
- RDTFUOQVWKABQL-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[4-(trifluoromethyl)phenyl]methyl]urea Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 RDTFUOQVWKABQL-UHFFFAOYSA-N 0.000 description 4
- BBNXIIFQQAKQKJ-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[5-(trifluoromethyl)furan-2-yl]methyl]urea Chemical compound O1C(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 BBNXIIFQQAKQKJ-UHFFFAOYSA-N 0.000 description 4
- KPJPNJYKOBIPMK-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound C1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 KPJPNJYKOBIPMK-UHFFFAOYSA-N 0.000 description 4
- UDSQXLZVIWKXME-UHFFFAOYSA-N 1-[(4-chloro-2-piperidin-1-ylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C=1C(Cl)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCCC1 UDSQXLZVIWKXME-UHFFFAOYSA-N 0.000 description 4
- NGEOGLAZBITJIL-UHFFFAOYSA-N 1-[(4-chloro-2-piperidin-1-ylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C=1C(Cl)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 NGEOGLAZBITJIL-UHFFFAOYSA-N 0.000 description 4
- HZDOWKSLUNQEPU-UHFFFAOYSA-N 1-[(4-chloro-2-pyrrolidin-1-ylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C=1C(Cl)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCC1 HZDOWKSLUNQEPU-UHFFFAOYSA-N 0.000 description 4
- IMKHWDHGNGTOSD-UHFFFAOYSA-N 1-[(4-chloro-2-pyrrolidin-1-ylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C=1C(Cl)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCC1 IMKHWDHGNGTOSD-UHFFFAOYSA-N 0.000 description 4
- KNSXMVRVSHUCBK-UHFFFAOYSA-N 1-[(4-chlorophenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 KNSXMVRVSHUCBK-UHFFFAOYSA-N 0.000 description 4
- UOSZAOOXWXVOIY-UHFFFAOYSA-N 1-[(4-chlorophenyl)methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 UOSZAOOXWXVOIY-UHFFFAOYSA-N 0.000 description 4
- RHPLHWXALHFFEE-UHFFFAOYSA-N 1-[(4-chlorophenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 RHPLHWXALHFFEE-UHFFFAOYSA-N 0.000 description 4
- XWTVTFWHPPLARO-UHFFFAOYSA-N 1-[(4-fluorophenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=CC(F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 XWTVTFWHPPLARO-UHFFFAOYSA-N 0.000 description 4
- HACBCVMJDGAQJA-UHFFFAOYSA-N 1-[(4-methyl-2-piperidin-1-ylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C=1C(C)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 HACBCVMJDGAQJA-UHFFFAOYSA-N 0.000 description 4
- AGILILPUWWEPFR-UHFFFAOYSA-N 1-[(4-methyl-2-propan-2-yloxyphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CC(C)OC1=CC(C)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 AGILILPUWWEPFR-UHFFFAOYSA-N 0.000 description 4
- XCCAWJNNMWXRNA-UHFFFAOYSA-N 1-[(4-methylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=CC(C)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 XCCAWJNNMWXRNA-UHFFFAOYSA-N 0.000 description 4
- ZSGGWWWHRDVKCL-UHFFFAOYSA-N 1-[(4-tert-butyl-2-chlorophenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound ClC1=CC(C(C)(C)C)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 ZSGGWWWHRDVKCL-UHFFFAOYSA-N 0.000 description 4
- NLLPAJAWVIAVHL-UHFFFAOYSA-N 1-[(4-tert-butylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C1=CC(C(C)(C)C)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 NLLPAJAWVIAVHL-UHFFFAOYSA-N 0.000 description 4
- LLWIDOFCVKQFHW-UHFFFAOYSA-N 1-[(6-chloropyridin-3-yl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=NC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 LLWIDOFCVKQFHW-UHFFFAOYSA-N 0.000 description 4
- ZMYFZERDLGEQTH-UHFFFAOYSA-N 1-[(6-chloropyridin-3-yl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C1=NC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 ZMYFZERDLGEQTH-UHFFFAOYSA-N 0.000 description 4
- KCKSEHWHCPQXIM-UHFFFAOYSA-N 1-[(6-methyl-2-piperidin-1-ylpyridin-3-yl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound N=1C(C)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCCC1 KCKSEHWHCPQXIM-UHFFFAOYSA-N 0.000 description 4
- SJSPWHAHNQXXCJ-UHFFFAOYSA-N 1-[(6-methyl-2-propan-2-yloxypyridin-3-yl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CC(C)OC1=NC(C)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 SJSPWHAHNQXXCJ-UHFFFAOYSA-N 0.000 description 4
- GUTYAMHQYWODRM-UHFFFAOYSA-N 1-[[2-(dimethylamino)-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 GUTYAMHQYWODRM-UHFFFAOYSA-N 0.000 description 4
- CRGGRWGZQVELDX-UHFFFAOYSA-N 1-[[2-(dimethylamino)-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound CN(C)C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 CRGGRWGZQVELDX-UHFFFAOYSA-N 0.000 description 4
- NEPJFAHBBJEELA-UHFFFAOYSA-N 1-[[2-(dimethylamino)-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CN(C)C1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 NEPJFAHBBJEELA-UHFFFAOYSA-N 0.000 description 4
- GBYKHCLJYMBYHA-UHFFFAOYSA-N 1-[[2-(dimethylamino)-4-methylphenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)C1=CC(C)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 GBYKHCLJYMBYHA-UHFFFAOYSA-N 0.000 description 4
- QKABHGWRVVUIIM-UHFFFAOYSA-N 1-[[2-(dimethylamino)-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)C1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 QKABHGWRVVUIIM-UHFFFAOYSA-N 0.000 description 4
- AAQDZCCXGMWEGA-UHFFFAOYSA-N 1-[[2-[2-(dimethylamino)ethoxy]-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)CCOC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 AAQDZCCXGMWEGA-UHFFFAOYSA-N 0.000 description 4
- CBHDVIBAUVJHLS-UHFFFAOYSA-N 1-[[2-[2-(dimethylamino)ethoxy]-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CN(C)CCOC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 CBHDVIBAUVJHLS-UHFFFAOYSA-N 0.000 description 4
- QFLDZPHTVUNDLX-UHFFFAOYSA-N 1-[[2-chloro-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound ClC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 QFLDZPHTVUNDLX-UHFFFAOYSA-N 0.000 description 4
- GWNZITDFOJDCNM-UHFFFAOYSA-N 1-[[2-imidazol-1-yl-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1C=CN=C1 GWNZITDFOJDCNM-UHFFFAOYSA-N 0.000 description 4
- WSIWYWMFEATCIX-UHFFFAOYSA-N 1-[[2-methoxy-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound COC1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 WSIWYWMFEATCIX-UHFFFAOYSA-N 0.000 description 4
- IFTQRZZHLQXHQR-UHFFFAOYSA-N 1-[[4-(dimethylamino)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=CC(N(C)C)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 IFTQRZZHLQXHQR-UHFFFAOYSA-N 0.000 description 4
- KCESWUHPHJMESS-UHFFFAOYSA-N 1-[[4-chloro-2-(3-hydroxypyrrolidin-1-yl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1C(O)CCN1C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 KCESWUHPHJMESS-UHFFFAOYSA-N 0.000 description 4
- LCUCKPXLAHFKPF-UHFFFAOYSA-N 1-[[4-chloro-2-(dimethylamino)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound CN(C)C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 LCUCKPXLAHFKPF-UHFFFAOYSA-N 0.000 description 4
- LJLBEELMLUNPSE-UHFFFAOYSA-N 1-[[4-chloro-2-(dimethylamino)phenyl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CN(C)C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 LJLBEELMLUNPSE-UHFFFAOYSA-N 0.000 description 4
- VPSFONIVAQKMBE-UHFFFAOYSA-N 1-[[4-chloro-2-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound FC(F)(F)C1=CC(Cl)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 VPSFONIVAQKMBE-UHFFFAOYSA-N 0.000 description 4
- KUWNMCBORADKJC-UHFFFAOYSA-N 1-[[4-fluoro-2-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound FC(F)(F)C1=CC(F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)O2 KUWNMCBORADKJC-UHFFFAOYSA-N 0.000 description 4
- HNORVZDAANCHAY-UHFFFAOYSA-N 2-[4-(trifluoromethyl)phenyl]acetic acid Chemical compound OC(=O)CC1=CC=C(C(F)(F)F)C=C1 HNORVZDAANCHAY-UHFFFAOYSA-N 0.000 description 4
- WCGNLBCJPBKXCN-UHFFFAOYSA-N 2-fluoro-4-methylbenzonitrile Chemical compound CC1=CC=C(C#N)C(F)=C1 WCGNLBCJPBKXCN-UHFFFAOYSA-N 0.000 description 4
- BHUOYWFKNMUNNR-UHFFFAOYSA-N 2-oxo-3h-1,3-benzoxazole-4-carboxylic acid Chemical compound OC(=O)C1=CC=CC2=C1NC(=O)O2 BHUOYWFKNMUNNR-UHFFFAOYSA-N 0.000 description 4
- JRJISNJZXHVAFK-UHFFFAOYSA-N 2-oxo-n-[[4-(trifluoromethyl)phenyl]methyl]-3h-1,3-benzoxazole-4-carboxamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)C1=CC=CC2=C1NC(=O)O2 JRJISNJZXHVAFK-UHFFFAOYSA-N 0.000 description 4
- YZVUVFQGSCGCTO-UHFFFAOYSA-N 3-oxo-n-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]-4h-1,4-benzoxazine-5-carboxamide Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)C=2C=3NC(=O)COC=3C=CC=2)C=1N1CCCCC1 YZVUVFQGSCGCTO-UHFFFAOYSA-N 0.000 description 4
- RLEOFYOEYOFOJH-UHFFFAOYSA-N 3-oxo-n-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]-4h-1,4-benzoxazine-8-carboxamide Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)C=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 RLEOFYOEYOFOJH-UHFFFAOYSA-N 0.000 description 4
- NRUYSQSEDCSCFE-UHFFFAOYSA-N 3-oxo-n-[[4-(trifluoromethyl)phenyl]methyl]-4h-1,4-benzoxazine-5-carboxamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)C1=CC=CC2=C1NC(=O)CO2 NRUYSQSEDCSCFE-UHFFFAOYSA-N 0.000 description 4
- JRDMGVGCATYZPW-UHFFFAOYSA-N 4-chloro-2-fluorobenzonitrile Chemical compound FC1=CC(Cl)=CC=C1C#N JRDMGVGCATYZPW-UHFFFAOYSA-N 0.000 description 4
- VGCXGMAHQTYDJK-UHFFFAOYSA-N Chloroacetyl chloride Chemical compound ClCC(Cl)=O VGCXGMAHQTYDJK-UHFFFAOYSA-N 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- 206010020853 Hypertonic bladder Diseases 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 208000009722 Overactive Urinary Bladder Diseases 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- MMOMFJIMQXUJMQ-UHFFFAOYSA-N [5-(trifluoromethyl)furan-2-yl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)O1 MMOMFJIMQXUJMQ-UHFFFAOYSA-N 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 210000000548 hind-foot Anatomy 0.000 description 4
- 150000002431 hydrogen Chemical group 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 210000005036 nerve Anatomy 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 208000020629 overactive bladder Diseases 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- GGDMSGAICKBJHA-UHFFFAOYSA-N (3-oxo-4h-1,4-benzoxazin-5-yl) n-[[4-(trifluoromethyl)phenyl]methyl]carbamate Chemical compound C1=CC(C(F)(F)F)=CC=C1CNC(=O)OC1=CC=CC2=C1NC(=O)CO2 GGDMSGAICKBJHA-UHFFFAOYSA-N 0.000 description 3
- PHDIJLFSKNMCMI-ITGJKDDRSA-N (3R,4S,5R,6R)-6-(hydroxymethyl)-4-(8-quinolin-6-yloxyoctoxy)oxane-2,3,5-triol Chemical compound OC[C@@H]1[C@H]([C@@H]([C@H](C(O1)O)O)OCCCCCCCCOC=1C=C2C=CC=NC2=CC=1)O PHDIJLFSKNMCMI-ITGJKDDRSA-N 0.000 description 3
- YMVFJGSXZNNUDW-UHFFFAOYSA-N (4-chlorophenyl)methanamine Chemical compound NCC1=CC=C(Cl)C=C1 YMVFJGSXZNNUDW-UHFFFAOYSA-N 0.000 description 3
- JNPGUXGVLNJQSQ-BGGMYYEUSA-M (e,3r,5s)-7-[4-(4-fluorophenyl)-1,2-di(propan-2-yl)pyrrol-3-yl]-3,5-dihydroxyhept-6-enoate Chemical compound CC(C)N1C(C(C)C)=C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)C(C=2C=CC(F)=CC=2)=C1 JNPGUXGVLNJQSQ-BGGMYYEUSA-M 0.000 description 3
- XHDRIQKTFWHSBR-UHFFFAOYSA-N 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[5-(trifluoromethyl)pyridin-2-yl]methyl]urea Chemical compound N1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 XHDRIQKTFWHSBR-UHFFFAOYSA-N 0.000 description 3
- JRAUXBKPLFTZGI-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[2-piperidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound N=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 JRAUXBKPLFTZGI-UHFFFAOYSA-N 0.000 description 3
- OIJAHEZPHHNMLW-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[2-propan-2-yloxy-4-(trifluoromethyl)phenyl]methyl]urea Chemical compound CC(C)OC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 OIJAHEZPHHNMLW-UHFFFAOYSA-N 0.000 description 3
- WIVOYDWOOOADHP-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methyl]urea Chemical compound N=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCC1 WIVOYDWOOOADHP-UHFFFAOYSA-N 0.000 description 3
- LVCIOZUQSYCYGT-UHFFFAOYSA-N 1-(3-oxo-4h-1,4-benzoxazin-8-yl)-3-[[5-(trifluoromethyl)pyridin-2-yl]methyl]urea Chemical compound N1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 LVCIOZUQSYCYGT-UHFFFAOYSA-N 0.000 description 3
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- PCUVFTOJHPUBEC-UHFFFAOYSA-N 1-[(4-methylphenyl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound C1=CC(C)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 PCUVFTOJHPUBEC-UHFFFAOYSA-N 0.000 description 3
- ZCDLCESRZHKZLM-UHFFFAOYSA-N 1-[(4-tert-butyl-2-pyrrolidin-1-ylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C=1C(C(C)(C)C)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCCC1 ZCDLCESRZHKZLM-UHFFFAOYSA-N 0.000 description 3
- FWRWCDKQMZOKMK-UHFFFAOYSA-N 1-[(4-tert-butylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C1=CC(C(C)(C)C)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 FWRWCDKQMZOKMK-UHFFFAOYSA-N 0.000 description 3
- OAEZGDUYPDUUQM-UHFFFAOYSA-N 1-[(6-methyl-2-piperidin-1-ylpyridin-3-yl)methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound N=1C(C)=CC=C(CNC(=O)NC=2C=3OCC(=O)NC=3C=CC=2)C=1N1CCCCC1 OAEZGDUYPDUUQM-UHFFFAOYSA-N 0.000 description 3
- OBJZNGUSQOJOEA-UHFFFAOYSA-N 1-[[2-(dimethylamino)-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CN(C)C1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 OBJZNGUSQOJOEA-UHFFFAOYSA-N 0.000 description 3
- KRQLFSKPOBGZQP-UHFFFAOYSA-N 1-[[2-[2-(dimethylamino)ethoxy]-6-(trifluoromethyl)pyridin-3-yl]methyl]-3-(3-oxo-4h-1,4-benzoxazin-8-yl)urea Chemical compound CN(C)CCOC1=NC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1OCC(=O)N2 KRQLFSKPOBGZQP-UHFFFAOYSA-N 0.000 description 3
- AAIVDTONKNMKNB-UHFFFAOYSA-N 1-[[2-chloro-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound ClC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 AAIVDTONKNMKNB-UHFFFAOYSA-N 0.000 description 3
- HQIZQBLPHSIMLU-UHFFFAOYSA-N 1-[[2-fluoro-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound FC1=CC(C(F)(F)F)=CC=C1CNC(=O)NC1=CC=CC2=C1NC(=O)N2 HQIZQBLPHSIMLU-UHFFFAOYSA-N 0.000 description 3
- JLTYVTXTSOYXMX-UHFFFAOYSA-N 2-fluoro-4-(trifluoromethyl)benzonitrile Chemical compound FC1=CC(C(F)(F)F)=CC=C1C#N JLTYVTXTSOYXMX-UHFFFAOYSA-N 0.000 description 3
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 3
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 229910020323 ClF3 Inorganic materials 0.000 description 3
- 244000110556 Cyclopia subternata Species 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010065390 Inflammatory pain Diseases 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 229940035676 analgesics Drugs 0.000 description 3
- 239000000730 antalgic agent Substances 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 230000003185 calcium uptake Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 210000002683 foot Anatomy 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- AABVZDRPSWVKAT-UHFFFAOYSA-N n-(3-oxo-4h-1,4-benzoxazin-5-yl)-2-[4-(trifluoromethyl)phenyl]acetamide Chemical compound C1=CC(C(F)(F)F)=CC=C1CC(=O)NC1=CC=CC2=C1NC(=O)CO2 AABVZDRPSWVKAT-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 210000001044 sensory neuron Anatomy 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 210000003594 spinal ganglia Anatomy 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 210000003741 urothelium Anatomy 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- HMTSWYPNXFHGEP-UHFFFAOYSA-N (4-methylphenyl)methanamine Chemical compound CC1=CC=C(CN)C=C1 HMTSWYPNXFHGEP-UHFFFAOYSA-N 0.000 description 2
- WROBJEHXMLQDQP-UHFFFAOYSA-N (4-piperidin-1-ylphenyl)methanamine Chemical compound C1=CC(CN)=CC=C1N1CCCCC1 WROBJEHXMLQDQP-UHFFFAOYSA-N 0.000 description 2
- OCVQUKOCFUOCBM-UHFFFAOYSA-N (4-pyrrolidin-1-ylphenyl)methanamine Chemical compound C1=CC(CN)=CC=C1N1CCCC1 OCVQUKOCFUOCBM-UHFFFAOYSA-N 0.000 description 2
- MPWSRGAWRAYBJK-UHFFFAOYSA-N (4-tert-butylphenyl)methanamine Chemical compound CC(C)(C)C1=CC=C(CN)C=C1 MPWSRGAWRAYBJK-UHFFFAOYSA-N 0.000 description 2
- XPARFBOWIYMLMY-UHFFFAOYSA-N (6-chloropyridin-3-yl)methanamine Chemical compound NCC1=CC=C(Cl)N=C1 XPARFBOWIYMLMY-UHFFFAOYSA-N 0.000 description 2
- VQDXBPBWHWHLBS-UHFFFAOYSA-N 1-[2-(aminomethyl)-5-chlorophenyl]pyrrolidin-3-ol Chemical compound NCC1=CC=C(Cl)C=C1N1CC(O)CC1 VQDXBPBWHWHLBS-UHFFFAOYSA-N 0.000 description 2
- AZLUBMYJSASGNU-UHFFFAOYSA-N 1-[[2-morpholin-4-yl-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)NC=3C=CC=2)C=1N1CCOCC1 AZLUBMYJSASGNU-UHFFFAOYSA-N 0.000 description 2
- SJTMBEKHUWRWOL-UHFFFAOYSA-N 1-[[2-morpholin-4-yl-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-3h-1,3-benzoxazol-4-yl)urea Chemical compound C=1C(C(F)(F)F)=CC=C(CNC(=O)NC=2C=3NC(=O)OC=3C=CC=2)C=1N1CCOCC1 SJTMBEKHUWRWOL-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- GHWLNSXDGVMROU-UHFFFAOYSA-N 2-amino-3-hydroxy-n-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound NC1=C(O)C=CC=C1C(=O)NCC1=CC=C(C(F)(F)F)C=C1N1CCCCC1 GHWLNSXDGVMROU-UHFFFAOYSA-N 0.000 description 2
- YMYIYPDQNLLADS-UHFFFAOYSA-N 2-amino-3-hydroxy-n-[[4-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound NC1=C(O)C=CC=C1C(=O)NCC1=CC=C(C(F)(F)F)C=C1 YMYIYPDQNLLADS-UHFFFAOYSA-N 0.000 description 2
- KUCWUAFNGCMZDB-UHFFFAOYSA-N 2-amino-3-nitrophenol Chemical compound NC1=C(O)C=CC=C1[N+]([O-])=O KUCWUAFNGCMZDB-UHFFFAOYSA-N 0.000 description 2
- MHAFRUMLQZZSIN-UHFFFAOYSA-N 2-amino-4-chloro-6-nitrophenol Chemical compound NC1=CC(Cl)=CC([N+]([O-])=O)=C1O MHAFRUMLQZZSIN-UHFFFAOYSA-N 0.000 description 2
- YSBNBAYNISAUIT-UHFFFAOYSA-N 2-chloro-6-methylpyridine-3-carbonitrile Chemical compound CC1=CC=C(C#N)C(Cl)=N1 YSBNBAYNISAUIT-UHFFFAOYSA-N 0.000 description 2
- HYNNXJAGTNJKHW-UHFFFAOYSA-N 2-imidazol-1-yl-4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(N2C=NC=C2)=C1 HYNNXJAGTNJKHW-UHFFFAOYSA-N 0.000 description 2
- IQGMRVWUTCYCST-UHFFFAOYSA-N 3-Aminosalicylic acid Chemical compound NC1=CC=CC(C(O)=O)=C1O IQGMRVWUTCYCST-UHFFFAOYSA-N 0.000 description 2
- WUPFJEAYIWOOAS-UHFFFAOYSA-N 3-amino-2-hydroxy-n-[[2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound NC1=CC=CC(C(=O)NCC=2C(=CC(=CC=2)C(F)(F)F)N2CCCCC2)=C1O WUPFJEAYIWOOAS-UHFFFAOYSA-N 0.000 description 2
- PDJZOFLRRJQYBF-UHFFFAOYSA-N 4-(aminomethyl)-n,n-dimethylaniline Chemical compound CN(C)C1=CC=C(CN)C=C1 PDJZOFLRRJQYBF-UHFFFAOYSA-N 0.000 description 2
- GJNGXPDXRVXSEH-UHFFFAOYSA-N 4-chlorobenzonitrile Chemical compound ClC1=CC=C(C#N)C=C1 GJNGXPDXRVXSEH-UHFFFAOYSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- ARRNQFIGYPLSLZ-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)C2.CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)CC2.CC(C)(C)C1=CC=CC2=C1CC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1CCC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1[K]C(=O)CC2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)C2.CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)CC2.CC(C)(C)C1=CC=CC2=C1CC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1CCC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1[K]C(=O)CC2 ARRNQFIGYPLSLZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 208000035154 Hyperesthesia Diseases 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229920003091 Methocel™ Polymers 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- ODSDBUOMHSEMBS-UHFFFAOYSA-N [2-chloro-4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1Cl ODSDBUOMHSEMBS-UHFFFAOYSA-N 0.000 description 2
- MQTBAGAVFDZXKF-UHFFFAOYSA-N [2-fluoro-4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1F MQTBAGAVFDZXKF-UHFFFAOYSA-N 0.000 description 2
- PVRQGSUUDGYNJZ-UHFFFAOYSA-N [2-propan-2-yloxy-4-(trifluoromethyl)phenyl]methanamine Chemical compound CC(C)OC1=CC(C(F)(F)F)=CC=C1CN PVRQGSUUDGYNJZ-UHFFFAOYSA-N 0.000 description 2
- HVQOLQUEKRHKKJ-UHFFFAOYSA-N [5-(trifluoromethyl)pyridin-2-yl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=N1 HVQOLQUEKRHKKJ-UHFFFAOYSA-N 0.000 description 2
- XPXVAYGVYBQKDE-UHFFFAOYSA-N [6-(trifluoromethyl)pyridin-3-yl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)N=C1 XPXVAYGVYBQKDE-UHFFFAOYSA-N 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 230000000202 analgesic effect Effects 0.000 description 2
- 150000001448 anilines Chemical class 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 238000003304 gavage Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 2
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 2
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- 208000021722 neuropathic pain Diseases 0.000 description 2
- 230000003040 nociceptive effect Effects 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 210000000664 rectum Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- ZCAWVUFGHZFSIP-UHFFFAOYSA-N (4-chloro-2-piperidin-1-ylphenyl)methanamine Chemical compound NCC1=CC=C(Cl)C=C1N1CCCCC1 ZCAWVUFGHZFSIP-UHFFFAOYSA-N 0.000 description 1
- WJUQQBXOOOGLKB-UHFFFAOYSA-N (4-chloro-2-pyrrolidin-1-ylphenyl)methanamine Chemical compound NCC1=CC=C(Cl)C=C1N1CCCC1 WJUQQBXOOOGLKB-UHFFFAOYSA-N 0.000 description 1
- IIFVWLUQBAIPMJ-UHFFFAOYSA-N (4-fluorophenyl)methanamine Chemical compound NCC1=CC=C(F)C=C1 IIFVWLUQBAIPMJ-UHFFFAOYSA-N 0.000 description 1
- QLYPLCHRCHPMCL-UHFFFAOYSA-N (4-methyl-2-piperidin-1-ylphenyl)methanamine Chemical compound CC1=CC=C(CN)C(N2CCCCC2)=C1 QLYPLCHRCHPMCL-UHFFFAOYSA-N 0.000 description 1
- ZGDWZVJGBUZLEV-UHFFFAOYSA-N (4-methyl-2-pyrrolidin-1-ylphenyl)methanamine Chemical compound CC1=CC=C(CN)C(N2CCCC2)=C1 ZGDWZVJGBUZLEV-UHFFFAOYSA-N 0.000 description 1
- SCAKUFHVEVEDMO-UHFFFAOYSA-N (4-tert-butyl-2-chlorophenyl)methanamine Chemical compound CC(C)(C)C1=CC=C(CN)C(Cl)=C1 SCAKUFHVEVEDMO-UHFFFAOYSA-N 0.000 description 1
- RJLZVARYSMPSJE-UHFFFAOYSA-N (4-tert-butyl-2-pyrrolidin-1-ylphenyl)methanamine Chemical compound CC(C)(C)C1=CC=C(CN)C(N2CCCC2)=C1 RJLZVARYSMPSJE-UHFFFAOYSA-N 0.000 description 1
- VIMMECPCYZXUCI-MIMFYIINSA-N (4s,6r)-6-[(1e)-4,4-bis(4-fluorophenyl)-3-(1-methyltetrazol-5-yl)buta-1,3-dienyl]-4-hydroxyoxan-2-one Chemical compound CN1N=NN=C1C(\C=C\[C@@H]1OC(=O)C[C@@H](O)C1)=C(C=1C=CC(F)=CC=1)C1=CC=C(F)C=C1 VIMMECPCYZXUCI-MIMFYIINSA-N 0.000 description 1
- CWDAEZRBLPVPHE-UHFFFAOYSA-N (6-methyl-2-piperidin-1-ylpyridin-3-yl)methanamine Chemical compound CC1=CC=C(CN)C(N2CCCCC2)=N1 CWDAEZRBLPVPHE-UHFFFAOYSA-N 0.000 description 1
- AMLMWIFRNHCWTC-UHFFFAOYSA-N (6-methyl-2-propan-2-yloxypyridin-3-yl)methanamine Chemical compound CC(C)OC1=NC(C)=CC=C1CN AMLMWIFRNHCWTC-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- MJKADKZSYQWGLL-UHFFFAOYSA-N 1-(4-aminophenyl)-7,8-dimethoxy-3,5-dihydro-2,3-benzodiazepin-4-one Chemical compound C1=2C=C(OC)C(OC)=CC=2CC(=O)NN=C1C1=CC=C(N)C=C1 MJKADKZSYQWGLL-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QNJHYXKCFXXSCS-UHFFFAOYSA-N 2-(1,2,4-triazol-1-yl)-4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(N2N=CN=C2)=C1 QNJHYXKCFXXSCS-UHFFFAOYSA-N 0.000 description 1
- NDMOGOREWZRKMC-UHFFFAOYSA-N 2-(aminomethyl)-5-chloro-n,n-dimethylaniline Chemical compound CN(C)C1=CC(Cl)=CC=C1CN NDMOGOREWZRKMC-UHFFFAOYSA-N 0.000 description 1
- JKNGZNBZHCLBNX-UHFFFAOYSA-N 2-(aminomethyl)-n,n,5-trimethylaniline Chemical compound CN(C)C1=CC(C)=CC=C1CN JKNGZNBZHCLBNX-UHFFFAOYSA-N 0.000 description 1
- SKIPJYMWQMKWND-UHFFFAOYSA-N 2-(aminomethyl)-n,n-dimethyl-5-(trifluoromethyl)aniline Chemical compound CN(C)C1=CC(C(F)(F)F)=CC=C1CN SKIPJYMWQMKWND-UHFFFAOYSA-N 0.000 description 1
- OMGYFCWOUMODTJ-UHFFFAOYSA-N 2-(dimethylamino)-4-(trifluoromethyl)benzonitrile Chemical compound CN(C)C1=CC(C(F)(F)F)=CC=C1C#N OMGYFCWOUMODTJ-UHFFFAOYSA-N 0.000 description 1
- COXIZQAUWQIRJZ-UHFFFAOYSA-N 2-(dimethylamino)-4-methylbenzonitrile Chemical compound CN(C)C1=CC(C)=CC=C1C#N COXIZQAUWQIRJZ-UHFFFAOYSA-N 0.000 description 1
- GVVVSFXIBCARIU-UHFFFAOYSA-N 2-(dimethylamino)-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound CN(C)C1=NC(C(F)(F)F)=CC=C1C#N GVVVSFXIBCARIU-UHFFFAOYSA-N 0.000 description 1
- SBJQFUYPTDZOBL-UHFFFAOYSA-N 2-[2-(aminomethyl)-5-(trifluoromethyl)phenoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOC1=CC(C(F)(F)F)=CC=C1CN SBJQFUYPTDZOBL-UHFFFAOYSA-N 0.000 description 1
- IBPGKBKXCPXUGN-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-4-(trifluoromethyl)benzonitrile Chemical compound CN(C)CCOC1=CC(C(F)(F)F)=CC=C1C#N IBPGKBKXCPXUGN-UHFFFAOYSA-N 0.000 description 1
- GUXNWLWGYDTOOC-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound CN(C)CCOC1=NC(C(F)(F)F)=CC=C1C#N GUXNWLWGYDTOOC-UHFFFAOYSA-N 0.000 description 1
- DOJADQBEYKCIDL-UHFFFAOYSA-N 2-[3-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxy-n,n-dimethylethanamine Chemical compound CN(C)CCOC1=NC(C(F)(F)F)=CC=C1CN DOJADQBEYKCIDL-UHFFFAOYSA-N 0.000 description 1
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 1
- JEPCLNGRAIMPQV-UHFFFAOYSA-N 2-aminobenzene-1,3-diol Chemical compound NC1=C(O)C=CC=C1O JEPCLNGRAIMPQV-UHFFFAOYSA-N 0.000 description 1
- QSOSJQGBTVGIEN-UHFFFAOYSA-N 2-methoxy-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound COC1=NC(C(F)(F)F)=CC=C1C#N QSOSJQGBTVGIEN-UHFFFAOYSA-N 0.000 description 1
- LYQJFLPAUMRRAG-UHFFFAOYSA-N 2-piperidin-1-yl-4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(N2CCCCC2)=C1 LYQJFLPAUMRRAG-UHFFFAOYSA-N 0.000 description 1
- SVFDWQLHHVJXSI-UHFFFAOYSA-N 2-piperidin-1-yl-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(N2CCCCC2)=N1 SVFDWQLHHVJXSI-UHFFFAOYSA-N 0.000 description 1
- IOACXLDKMROEQG-UHFFFAOYSA-N 2-propan-2-yloxy-4-(trifluoromethyl)benzonitrile Chemical compound CC(C)OC1=CC(C(F)(F)F)=CC=C1C#N IOACXLDKMROEQG-UHFFFAOYSA-N 0.000 description 1
- QKEGTIYQBWIVKY-UHFFFAOYSA-N 2-propan-2-yloxy-6-(trifluoromethyl)pyridine-3-carbonitrile Chemical compound CC(C)OC1=NC(C(F)(F)F)=CC=C1C#N QKEGTIYQBWIVKY-UHFFFAOYSA-N 0.000 description 1
- NMZGJVURVQNSHR-UHFFFAOYSA-N 2-pyrrolidin-1-yl-4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C(N2CCCC2)=C1 NMZGJVURVQNSHR-UHFFFAOYSA-N 0.000 description 1
- CVGSHCMEZJGAMG-UHFFFAOYSA-N 3-(aminomethyl)-n,n-dimethyl-6-(trifluoromethyl)pyridin-2-amine Chemical compound CN(C)C1=NC(C(F)(F)F)=CC=C1CN CVGSHCMEZJGAMG-UHFFFAOYSA-N 0.000 description 1
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 1
- IOCXBXZBNOYTLQ-UHFFFAOYSA-N 3-nitrobenzene-1,2-diamine Chemical compound NC1=CC=CC([N+]([O-])=O)=C1N IOCXBXZBNOYTLQ-UHFFFAOYSA-N 0.000 description 1
- JYMNQRQQBJIMCV-UHFFFAOYSA-N 4-(dimethylamino)benzonitrile Chemical compound CN(C)C1=CC=C(C#N)C=C1 JYMNQRQQBJIMCV-UHFFFAOYSA-N 0.000 description 1
- BCUSTVNWMJXDSE-UHFFFAOYSA-N 4-amino-1,3-dihydrobenzimidazol-2-one Chemical compound NC1=CC=CC2=C1NC(=O)N2 BCUSTVNWMJXDSE-UHFFFAOYSA-N 0.000 description 1
- VGLGTAGWVRMFQF-UHFFFAOYSA-N 4-amino-3h-1,3-benzoxazol-2-one Chemical compound NC1=CC=CC2=C1NC(=O)O2 VGLGTAGWVRMFQF-UHFFFAOYSA-N 0.000 description 1
- RIMBJGDWJCXNTE-UHFFFAOYSA-N 4-chloro-2-(3-hydroxypyrrolidin-1-yl)benzonitrile Chemical compound C1C(O)CCN1C1=CC(Cl)=CC=C1C#N RIMBJGDWJCXNTE-UHFFFAOYSA-N 0.000 description 1
- ITRZFSSOMOWKTF-UHFFFAOYSA-N 4-chloro-2-(dimethylamino)benzonitrile Chemical compound CN(C)C1=CC(Cl)=CC=C1C#N ITRZFSSOMOWKTF-UHFFFAOYSA-N 0.000 description 1
- RCDRDHWZPRRGDW-UHFFFAOYSA-N 4-chloro-2-piperidin-1-ylbenzonitrile Chemical compound ClC1=CC=C(C#N)C(N2CCCCC2)=C1 RCDRDHWZPRRGDW-UHFFFAOYSA-N 0.000 description 1
- OZYMGTDNBLRFKS-UHFFFAOYSA-N 4-chloro-2-pyrrolidin-1-ylbenzonitrile Chemical compound ClC1=CC=C(C#N)C(N2CCCC2)=C1 OZYMGTDNBLRFKS-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- YXLNARARXZVMFT-UHFFFAOYSA-N 4-methyl-2-piperidin-1-ylbenzonitrile Chemical compound CC1=CC=C(C#N)C(N2CCCCC2)=C1 YXLNARARXZVMFT-UHFFFAOYSA-N 0.000 description 1
- JPRDSJPGAMYBOR-UHFFFAOYSA-N 4-methyl-2-propan-2-yloxybenzonitrile Chemical compound CC(C)OC1=CC(C)=CC=C1C#N JPRDSJPGAMYBOR-UHFFFAOYSA-N 0.000 description 1
- FEASDUINZLIENX-UHFFFAOYSA-N 4-methyl-2-pyrrolidin-1-ylbenzonitrile Chemical compound CC1=CC=C(C#N)C(N2CCCC2)=C1 FEASDUINZLIENX-UHFFFAOYSA-N 0.000 description 1
- NEXYNHXFBYYIHI-UHFFFAOYSA-N 4-nitro-1,3-dihydrobenzimidazol-2-one Chemical compound [O-][N+](=O)C1=CC=CC2=C1NC(=O)N2 NEXYNHXFBYYIHI-UHFFFAOYSA-N 0.000 description 1
- IXZMRVOOBBPFIZ-UHFFFAOYSA-N 4-nitro-3h-1,3-benzoxazol-2-one Chemical compound [O-][N+](=O)C1=CC=CC2=C1NC(=O)O2 IXZMRVOOBBPFIZ-UHFFFAOYSA-N 0.000 description 1
- ZEPXHFFGXQFUDP-UHFFFAOYSA-N 4-piperidin-1-ylbenzonitrile Chemical compound C1=CC(C#N)=CC=C1N1CCCCC1 ZEPXHFFGXQFUDP-UHFFFAOYSA-N 0.000 description 1
- ZNMSYUCZLWETII-UHFFFAOYSA-N 4-pyrrolidin-1-ylbenzonitrile Chemical compound C1=CC(C#N)=CC=C1N1CCCC1 ZNMSYUCZLWETII-UHFFFAOYSA-N 0.000 description 1
- KRHLSNRCNAJQIM-UHFFFAOYSA-N 4-tert-butyl-2-chlorobenzonitrile Chemical compound CC(C)(C)C1=CC=C(C#N)C(Cl)=C1 KRHLSNRCNAJQIM-UHFFFAOYSA-N 0.000 description 1
- CEYRBBZXPBKUIF-UHFFFAOYSA-N 4-tert-butyl-2-pyrrolidin-1-ylbenzonitrile Chemical compound CC(C)(C)C1=CC=C(C#N)C(N2CCCC2)=C1 CEYRBBZXPBKUIF-UHFFFAOYSA-N 0.000 description 1
- FBXGQDUVJBKEAJ-UHFFFAOYSA-N 4h-oxazin-3-one Chemical compound O=C1CC=CON1 FBXGQDUVJBKEAJ-UHFFFAOYSA-N 0.000 description 1
- CRZGVTHVMCEWRC-UHFFFAOYSA-N 5-chloro-7-nitro-3h-1,3-benzoxazol-2-one Chemical compound [O-][N+](=O)C1=CC(Cl)=CC2=C1OC(=O)N2 CRZGVTHVMCEWRC-UHFFFAOYSA-N 0.000 description 1
- RVBZJDZYVVGTTH-UHFFFAOYSA-N 5-hydroxy-4h-1,4-benzoxazin-3-one Chemical compound O1CC(=O)NC2=C1C=CC=C2O RVBZJDZYVVGTTH-UHFFFAOYSA-N 0.000 description 1
- MJMKRYIJNBIITM-UHFFFAOYSA-N 5-nitro-4h-1,4-benzoxazin-3-one Chemical compound O1CC(=O)NC2=C1C=CC=C2[N+](=O)[O-] MJMKRYIJNBIITM-UHFFFAOYSA-N 0.000 description 1
- PHVYJBIAHFOQLG-UHFFFAOYSA-N 6-chloro-8-nitro-4h-1,4-benzoxazin-3-one Chemical compound N1C(=O)COC2=C1C=C(Cl)C=C2[N+](=O)[O-] PHVYJBIAHFOQLG-UHFFFAOYSA-N 0.000 description 1
- VTWDWNJFJYQSHU-UHFFFAOYSA-N 6-methyl-2-piperidin-1-ylpyridine-3-carbonitrile Chemical compound CC1=CC=C(C#N)C(N2CCCCC2)=N1 VTWDWNJFJYQSHU-UHFFFAOYSA-N 0.000 description 1
- UKZURBTZCDXTCD-UHFFFAOYSA-N 6-methyl-2-propan-2-yloxypyridine-3-carbonitrile Chemical compound CC(C)OC1=NC(C)=CC=C1C#N UKZURBTZCDXTCD-UHFFFAOYSA-N 0.000 description 1
- CLCPWTXGFUIRJE-UHFFFAOYSA-N 7-amino-3h-1,3-benzoxazol-2-one Chemical compound NC1=CC=CC2=C1OC(=O)N2 CLCPWTXGFUIRJE-UHFFFAOYSA-N 0.000 description 1
- ACJWMXHKIDYANL-UHFFFAOYSA-N 8-amino-4h-1,4-benzoxazin-3-one Chemical compound N1C(=O)COC2=C1C=CC=C2N ACJWMXHKIDYANL-UHFFFAOYSA-N 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OJCUYFMOMSTGCF-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)C2.CC(C)(C)C1=CC=CC2=C1CC(=O)[K]2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)C2.CC(C)(C)C1=CC=CC2=C1CC(=O)[K]2 OJCUYFMOMSTGCF-UHFFFAOYSA-N 0.000 description 1
- ZERNBWGMKRXGRF-UHFFFAOYSA-N CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)CC2.CC(C)(C)C1=CC=CC2=C1CCC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1[K]C(=O)CC2 Chemical compound CC(C)(C)C1=CC2=C(C=C1)[K]C(=O)CC2.CC(C)(C)C1=CC=CC2=C1CCC(=O)[K]2.CC(C)(C)C1=CC=CC2=C1[K]C(=O)CC2 ZERNBWGMKRXGRF-UHFFFAOYSA-N 0.000 description 1
- OMVBIJGFDXUTCS-UHFFFAOYSA-N CC(C)(C)C1=CC=C(CNC(=O)NC2=C3NC(=O)NC3=CC=C2)C(N2CCCC2)=N1 Chemical compound CC(C)(C)C1=CC=C(CNC(=O)NC2=C3NC(=O)NC3=CC=C2)C(N2CCCC2)=N1 OMVBIJGFDXUTCS-UHFFFAOYSA-N 0.000 description 1
- LZUJPCMIIRVSIE-UHFFFAOYSA-N CC1=CC=CC([N+](=O)[O-])=C1N.NC1=C2NC(=O)CC2=CC=C1.O=C1CC2=CC=CC([N+](=O)[O-])=C2N1 Chemical compound CC1=CC=CC([N+](=O)[O-])=C1N.NC1=C2NC(=O)CC2=CC=C1.O=C1CC2=CC=CC([N+](=O)[O-])=C2N1 LZUJPCMIIRVSIE-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- IKYCZSUNGFRBJS-UHFFFAOYSA-N Euphorbia factor RL9 = U(1) = Resiniferatoxin Natural products COC1=CC(O)=CC(CC(=O)OCC=2CC3(O)C(=O)C(C)=CC3C34C(C)CC5(OC(O4)(CC=4C=CC=CC=4)OC5C3C=2)C(C)=C)=C1 IKYCZSUNGFRBJS-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- POBINBWGZOGOKQ-UHFFFAOYSA-N NC1=C([N+](=O)[O-])C=CC=C1O.NC1=C2NC(=O)COC2=CC=C1.O=C1COC2=CC=CC([N+](=O)[O-])=C2N1 Chemical compound NC1=C([N+](=O)[O-])C=CC=C1O.NC1=C2NC(=O)COC2=CC=C1.O=C1COC2=CC=CC([N+](=O)[O-])=C2N1 POBINBWGZOGOKQ-UHFFFAOYSA-N 0.000 description 1
- WIELWJFAGVVLPS-UHFFFAOYSA-N NC1=C2OC(=O)NC2=CC=C1.NC1=CC(Cl)=CC([N+](=O)[O-])=C1O.O=C1NC2=CC(Cl)=CC([N+](=O)[O-])=C2O1 Chemical compound NC1=C2OC(=O)NC2=CC=C1.NC1=CC(Cl)=CC([N+](=O)[O-])=C1O.O=C1NC2=CC(Cl)=CC([N+](=O)[O-])=C2O1 WIELWJFAGVVLPS-UHFFFAOYSA-N 0.000 description 1
- MIJTVZQQILXFTJ-UHFFFAOYSA-N NC1=C2OCC(=O)NC2=CC=C1.NC1=CC(Cl)=CC([N+](=O)[O-])=C1O.O=C1COC2=C([N+](=O)[O-])C=C(Cl)C=C2N1 Chemical compound NC1=C2OCC(=O)NC2=CC=C1.NC1=CC(Cl)=CC([N+](=O)[O-])=C1O.O=C1COC2=C([N+](=O)[O-])C=C(Cl)C=C2N1 MIJTVZQQILXFTJ-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- WJHAYXJDTPIMCE-UHFFFAOYSA-N O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)CO2 Chemical compound O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)CO2 WJHAYXJDTPIMCE-UHFFFAOYSA-N 0.000 description 1
- MNICZKQIYWOXCI-UHFFFAOYSA-N O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)N2 Chemical compound O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)N2 MNICZKQIYWOXCI-UHFFFAOYSA-N 0.000 description 1
- XFXSOSMAQQDHLD-UHFFFAOYSA-N O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)O2 Chemical compound O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1NC(=O)O2 XFXSOSMAQQDHLD-UHFFFAOYSA-N 0.000 description 1
- WSLLBPZAOBFIKK-UHFFFAOYSA-N O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1OC(=O)N2 Chemical compound O=C(CC1=CC=C(C(F)(F)F)C=C1)CC1=CC=CC2=C1OC(=O)N2 WSLLBPZAOBFIKK-UHFFFAOYSA-N 0.000 description 1
- ADCWQNAQWKSJGC-UHFFFAOYSA-N O=C(NCC1=CC=C(C(F)(F)F)O1)NC1=C2NC(=O)NC2=CC=C1 Chemical compound O=C(NCC1=CC=C(C(F)(F)F)O1)NC1=C2NC(=O)NC2=CC=C1 ADCWQNAQWKSJGC-UHFFFAOYSA-N 0.000 description 1
- DNEPUINSBNHVIA-UHFFFAOYSA-N O=C1COC2=C(N1)C(OC(=O)CCC1=CC=C(C(F)(F)F)C=C1)=CC=C2 Chemical compound O=C1COC2=C(N1)C(OC(=O)CCC1=CC=C(C(F)(F)F)C=C1)=CC=C2 DNEPUINSBNHVIA-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-M Pentobarbital sodium Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)[N-]C1=O QGMRQYFBGABWDR-UHFFFAOYSA-M 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 208000002200 Respiratory Hypersensitivity Diseases 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 244000052585 Rosa centifolia Species 0.000 description 1
- 235000016588 Rosa centifolia Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000000921 Urge Urinary Incontinence Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- SLWSQIWDWDFXEY-UHFFFAOYSA-N [2-(1,2,4-triazol-1-yl)-4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1N1N=CN=C1 SLWSQIWDWDFXEY-UHFFFAOYSA-N 0.000 description 1
- PPGYPFSRFLIJHQ-UHFFFAOYSA-N [2-methoxy-6-(trifluoromethyl)pyridin-3-yl]methanamine Chemical compound COC1=NC(C(F)(F)F)=CC=C1CN PPGYPFSRFLIJHQ-UHFFFAOYSA-N 0.000 description 1
- AWVCSIFSRYPIQA-UHFFFAOYSA-N [2-piperidin-1-yl-4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1N1CCCCC1 AWVCSIFSRYPIQA-UHFFFAOYSA-N 0.000 description 1
- OWNPERSWIUWLAA-UHFFFAOYSA-N [2-piperidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)N=C1N1CCCCC1 OWNPERSWIUWLAA-UHFFFAOYSA-N 0.000 description 1
- PKDIEHLNBLBBKC-UHFFFAOYSA-N [2-propan-2-yloxy-6-(trifluoromethyl)pyridin-3-yl]methanamine Chemical compound CC(C)OC1=NC(C(F)(F)F)=CC=C1CN PKDIEHLNBLBBKC-UHFFFAOYSA-N 0.000 description 1
- OAVWAEPHSJRCQB-UHFFFAOYSA-N [2-pyrrolidin-1-yl-4-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)C=C1N1CCCC1 OAVWAEPHSJRCQB-UHFFFAOYSA-N 0.000 description 1
- PLNWWFYNAQIBJS-UHFFFAOYSA-N [2-pyrrolidin-1-yl-6-(trifluoromethyl)pyridin-3-yl]methanamine Chemical compound NCC1=CC=C(C(F)(F)F)N=C1N1CCCC1 PLNWWFYNAQIBJS-UHFFFAOYSA-N 0.000 description 1
- VPKIGWHSTBKRTA-UHFFFAOYSA-N [4-chloro-2-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(Cl)C=C1C(F)(F)F VPKIGWHSTBKRTA-UHFFFAOYSA-N 0.000 description 1
- BLQGRYYLPWCHMA-UHFFFAOYSA-N [4-fluoro-2-(trifluoromethyl)phenyl]methanamine Chemical compound NCC1=CC=C(F)C=C1C(F)(F)F BLQGRYYLPWCHMA-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 210000003766 afferent neuron Anatomy 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000010085 airway hyperresponsiveness Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000954 anitussive effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001022 anti-muscarinic effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940124584 antitussives Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940125846 compound 25 Drugs 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- PCHPORCSPXIHLZ-UHFFFAOYSA-N diphenhydramine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(OCC[NH+](C)C)C1=CC=CC=C1 PCHPORCSPXIHLZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000003779 hair growth Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- YBHKBMJREUZHOV-QGZVFWFLSA-N n-(2-hydroxyethyl)-n,2-dimethyl-8-[[(4r)-5-methyl-3,4-dihydro-2h-chromen-4-yl]amino]imidazo[1,2-a]pyridine-6-carboxamide Chemical compound C1COC2=CC=CC(C)=C2[C@@H]1NC1=CC(C(=O)N(CCO)C)=CN2C=C(C)N=C21 YBHKBMJREUZHOV-QGZVFWFLSA-N 0.000 description 1
- RMUYDDKCUZHVHY-UHFFFAOYSA-N n-(4-tert-butylphenyl)acetamide Chemical compound CC(=O)NC1=CC=C(C(C)(C)C)C=C1 RMUYDDKCUZHVHY-UHFFFAOYSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 206010029446 nocturia Diseases 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229940127240 opiate Drugs 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000008052 pain pathway Effects 0.000 description 1
- 230000008533 pain sensitivity Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 230000007479 persistent immune response Effects 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 235000019633 pungent taste Nutrition 0.000 description 1
- TXQWFIVRZNOPCK-UHFFFAOYSA-N pyridin-4-ylmethanamine Chemical compound NCC1=CC=NC=C1 TXQWFIVRZNOPCK-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- RWWYLEGWBNMMLJ-YSOARWBDSA-N remdesivir Chemical compound NC1=NC=NN2C1=CC=C2[C@]1([C@@H]([C@@H]([C@H](O1)CO[P@](=O)(OC1=CC=CC=C1)N[C@H](C(=O)OCC(CC)CC)C)O)O)C#N RWWYLEGWBNMMLJ-YSOARWBDSA-N 0.000 description 1
- DSDNAKHZNJAGHN-UHFFFAOYSA-N resinferatoxin Natural products C1=C(O)C(OC)=CC(CC(=O)OCC=2CC3(O)C(=O)C(C)=CC3C34C(C)CC5(OC(O4)(CC=4C=CC=CC=4)OC5C3C=2)C(C)=C)=C1 DSDNAKHZNJAGHN-UHFFFAOYSA-N 0.000 description 1
- DSDNAKHZNJAGHN-MXTYGGKSSA-N resiniferatoxin Chemical compound C1=C(O)C(OC)=CC(CC(=O)OCC=2C[C@]3(O)C(=O)C(C)=C[C@H]3[C@@]34[C@H](C)C[C@@]5(O[C@@](O4)(CC=4C=CC=CC=4)O[C@@H]5[C@@H]3C=2)C(C)=C)=C1 DSDNAKHZNJAGHN-MXTYGGKSSA-N 0.000 description 1
- 229940073454 resiniferatoxin Drugs 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 210000003497 sciatic nerve Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000000273 spinal nerve root Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- KRRBFUJMQBDDPR-UHFFFAOYSA-N tetrabutylazanium;cyanide Chemical compound N#[C-].CCCC[N+](CCCC)(CCCC)CCCC KRRBFUJMQBDDPR-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 102000042565 transient receptor (TC 1.A.4) family Human genes 0.000 description 1
- 108091053409 transient receptor (TC 1.A.4) family Proteins 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 206010046494 urge incontinence Diseases 0.000 description 1
- 230000001515 vagal effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4184—1,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/30—Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
- C07D209/32—Oxygen atoms
- C07D209/34—Oxygen atoms in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D235/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
- C07D235/02—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
- C07D235/04—Benzimidazoles; Hydrogenated benzimidazoles
- C07D235/24—Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D235/26—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/52—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
- C07D263/54—Benzoxazoles; Hydrogenated benzoxazoles
- C07D263/58—Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/28—1,4-Oxazines; Hydrogenated 1,4-oxazines
- C07D265/34—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
- C07D265/36—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- the present invention concerns TRPV1 antagonists characterized by a bicyclic portion and, when possible, pharmaceutically acceptable salts thereof along with the formulations containing them.
- the pharmaceutical compositions of the invention are useful in the treatment of pain and other conditions ameliorated by the inhibition of the vanilloid receptor TRPV1.
- the transient receptor potential vanilloid 1 (TRPV1) is a member of ion channels mainly localized on primary afferent neurons. Activation of TRPV1 on sensory neurons by chemical stimulants including capsaicin and resiniferatoxin, as well as low pH ( ⁇ 6), heat (>42° C.), and nucleosides such as ATP, leads to an influx of Ca 2+ and Na + ions through the channel, causing depolarization of the cell and transmission of painful stimuli. Unlike traditional analgesic drugs that either suppress inflammation (e.g. NSAIDs and COX-2 inhibitors) or block pain transmission (e.g. opiates), TRPV1 channel inhibitors aim to prevent pain by blocking a receptor where pain is generated.
- NSAIDs and COX-2 inhibitors e.g. opiates
- TRPV1 In patients, the expression of TRPV1 is up-regulated in a number of painful inflammatory disorders. TRPV1 as a pain target has been validated by genetic deletion and pharmacological inhibition experiments. The pungency of capsaicin and many other agonists at the vanilloid receptor clearly defines TRPV1 as a key transducer in the pain pathway. Characterization of TRPV1 mice, which lack both copies of the TRPV1 gene, shows a complete absence of thermal hyperalgesia associated with inflammation demonstrating the key role of TRPV1 in disease and providing impetus to develop selective TRPV1 antagonists as a novel pain therapy with the potential for an improved side effect profile compared to existing therapies.
- TRPV1 antagonists Many novel selective and chemically distinct TRPV1 antagonists have been identified and a number of these have been assessed in preclinical models of pain. Some of them reverse mechanical hyperalgesia in the Freund's complete adjuvant model of inflammatory pain in rodents. Others show efficacy in neuropathic pain models, in post-operative pain and in cancer pain. These data provide robust validation of this approach for the treatment of a broad range of pain conditions in humans.
- TRPV1 In the bladder, the presence of TRPV1 was demonstrated in various cell types, including urothelium, detrusor muscle and fibroblasts. There is good evidence that TRPV1 in urothelium is functional. Capsaicin evokes an inward current similar to that seen in DRG neurons in patch-clamped human urothelial cells. Furthermore capsaicin induces calcium uptake in human urothelial cells culture which is blocked by the TRPV1 antagonists implying that the regulation of TRPV1 is similar in sensory neurons and urothelial cells.
- Overactive bladder is a syndrome characterised by urgency (with or without urge incontinence), usually with frequency and nocturia, in the absence of other pathologic or metabolic conditions that might explain the symptoms.
- TRPV1 antagonists acting on sensory nerves or on urothelium, are effective in diverse experimental models of cystitis/overactive bladder without interfere with the physiological volume-induced avoiding contractions (VIVC) and distention of the urinary bladder in healthy animals.
- VIVC physiological volume-induced avoiding contractions
- Dry Eye is a chronic dysfunction on tear and ocular surface epithelium.
- TRPV1 signal induces pro-inflammatory cytokine secretion in the corneal epithelial cells and hyper osmolarity-induced cytokine production is prevented by TRPV1 antagonists in corneal epithelial cells.
- the present invention relates to TRPV1 inhibitors of formula (I)
- Y is a group of formula A, B, C, D, or E:
- J and K are independently NH or O;
- W is NH, O, a bond or CH 2 ;
- Q is NH, O, a bond or CH 2 ;
- n 0 or 1
- U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent.
- the aromatic ring is optionally substituted with one or both R1 and R2 groups.
- the general formula I also includes mono or bi-substituted five membered heterocyclic rings (e.g. furan, imidazole, thiazole, triazole, oxazole, isoxazole, thiophene, pyrazole).
- heterocyclic rings e.g. furan, imidazole, thiazole, triazole, oxazole, isoxazole, thiophene, pyrazole.
- R1 and R2 are independently selected from hydrogen, halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, which can be optionally substituted by OH, phenyl, heterocycle, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4 )alkoxy or
- the disclaimed compounds are known from Biorganic & Medicinal Chemistry letters, 17, (2007), 1302-1306, WO2008/126024 and WO2005/040100.
- a compound of the formula (I) When one asymmetrical carbon is present in a compound of the formula (I), such a compound may exist in optically active form or in the form of mixtures of optical isomers, e. g. in the form of racemic mixtures.
- the present invention refers to all optical isomers and their mixtures, including the racemic mixtures.
- the invention relates to compounds of formula (IA), (IB) or (IC) wherein Y is A, C or E and W and Q are NH
- J and K are independently NH or 0;
- n 0 or 1
- U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent.
- the general formula IA also includes mono or bi-substituted five membered heterocycle rings (e.g. furan, imidazole, thiazole, triazole, oxazole, isoxazole, pyrazole).
- R1 is as defined above, more preferably hydrogen, halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, heterocycle, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the
- R2 as defined above is preferably halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4
- the invention relates to compounds of formula (ID), (1E) or (1F) wherein Y is A or B, W is NH, Q is a bond and R3 is hydrogen
- J and K are independently NH or 0;
- n 0 or 1
- R1 is hydrogen, halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4 )al
- R2 is halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4 )alkoxy
- the invention relates to compounds of formula (IG), (IH) or (IL) wherein Y is A, C or E, Q is NH and R3 is hydrogen
- J and K are independently NH or 0;
- W is O or a bond
- n 0 or 1.
- R1 is hydrogen, halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4 )al
- R2 is halogen, trifluoromethyl, (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis-(C 1 -C 4 )alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C 1 -C 4 )alkyl, (C 1 -C 4 )alkoxy, mono- or bis (C 1 -C 4 )alkylamino, can be optionally substituted with an amino, mono- or bis-(C 1 -C 4 )alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C 1 -C 4 )alkoxy
- the compounds of formula (IA), (IB) and (IC) are ureas that can be prepared by reaction of a compound of formula 1, 1′ or 1′′, respectively,
- R 1 , R 2 , R 3 , U1, U2, U3, U4, U5 and n are as above defined and where one of 1, 1′, 1′′ and 2, more commonly 2, is firstly converted into isocyanate using triphosgene.
- N,N′-carbonyldimidazole (CDI) was used to form the uredyl derivative of one of the two amines and which reacts with the other to give the desired urea.
- Compounds 1, 1′, 1′′ and 2 are prepared by standard procedures.
- the compounds of formula (ID-L) are amides or carbamates that can be prepared by standard procedures.
- compounds of formula I bearing a solubilizing amine may be prepared in the form of a pharmaceutically acceptable salt, especially an acid addition salt.
- the salts of the compounds of formula I will be non-toxic pharmaceutically acceptable salts.
- Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts.
- Suitable pharmaceutically acceptable salts of the compounds of this invention include addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, nitric acid, maleic acid, citric acid, tartaric acid, phosphoric acid, p-toluenesulphonic acid, benzenesulphonic acid.
- Preferred pharmaceutically salts of the compounds of the present invention are those with the inorganic acids.
- the salts may be formed by conventional means, such as by reacting the free base form of the suitable compounds of formula I with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble or in a solvent such as water which is removed under vacuum.
- the present invention also provides pharmaceutical compositions that comprise compounds of the present invention.
- the pharmaceutical compositions comprise compounds of the present invention that may be formulated together with one or more non-toxic pharmaceutically acceptable carriers.
- compositions of this invention can be administered to humans and other mammals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments or drops), buccally or as an oral or nasal spray.
- materials which can serve as pharmaceutically acceptable carriers are sugars such as, but not limited to, lactose, glucose and sucrose; starches such as, but not limited to, corn starch and potato starch;
- cellulose and its derivatives such as, but not limited to, sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt;
- gelatin talc
- excipients such as, but not limited to, cocoa butter and suppository waxes
- oils such as, but not limited to, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil
- glycols such a propylene glycol
- esters such as, but not limited to, ethyl oleate and ethyl laurate
- agar buffering agents such as, but not limited to, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as, but not limited to, sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in
- compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use.
- suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), vegetable oils (such as olive oil), injectable organic esters (such as ethyl oleate) and suitable mixtures thereof.
- Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
- Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride and the like.
- Prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- the absorption of the drug in order to prolong the effect of the drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly (anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
- the active compound may be mixed with at least one inert, pharmaceutically acceptable excipient or carrier, such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol and silicic acid; b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h)
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such carriers as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the solid dosage forms of tablets, dragées, capsules, pills and granules can be prepared with coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They may optionally contain opacifying agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
- coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They may optionally contain opacifying agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
- embedding compositions that can be used include polymeric substances and waxes.
- the active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned carriers.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan and mixtures thereof.
- inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as
- the oral compositions may also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
- Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth and mixtures thereof.
- suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth and mixtures thereof.
- compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating carriers or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- suitable non-irritating carriers or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals, which are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used.
- the present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients and the like.
- the preferred lipids are natural and synthetic phospholipids and phosphatidyl cholines (lecithins) used separately or together.
- Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants.
- the active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants that may be required.
- Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- a suitable indicated dosage level is about 0.1 mg to 2000 mg/day, preferably from about 5 mg to 1000 mg per day.
- the compounds may be administered on a regimen of 1 to 3 times a day.
- the agents of invention are useful vanilloid receptor antagonists for the treatment of pain of various genesis or aetiology and as anti-inflammatory agents for the treatment of inflammatory reactions, diseases or conditions. They are useful for the treatment of inflammatory pain, for the treatment of hyperalgesia, and in particular for the treatment of severe chronic pain. They are, for example, useful for the treatment of pain, inflammation consequential to trauma, e.g. associated with burns or subsequent to surgical intervention, e.g. as post-operative analgesics, as well as for the treatment of inflammatory pain of diverse genesis, e.g. for the treatment of osteoarthritis and rheumatoid arthritis. They are suitable as analgesics for the treatment of pain associated with, e.g. angina or cancer.
- TRPV1 Other forms of pain associated with the activity of TRPV1 are headache, dental pain, pelvic pain, migraine, mastalgia and visceral pain.
- TRPV1 The disorders in which TRPV1 is involved are not limited to pain.
- diseases include: nerve-related diseases, e.g. neuropathies, nerve injury and stroke; irritable bowel syndrome; gastrointestinal disorders, e.g. gastro-oesophageal reflux disease, Crohn's disease; respiratory diseases, e.g. asthma, chronic obstructive pulmonary disease, cough; urinary incontinence; urinary bladder hypersensitiveness; skin diseases, e.g. psoriasis, dermatitis; cardiac diseases e.g. myocardial ischemia; hair growth related disorders e.g. hirsutism, alopecia; rhinitis; pancreatitis; vulvodynia; psychiatric disorders, e.g. anxiety or fear; obesity.
- nerve-related diseases e.g. neuropathies, nerve injury and stroke
- irritable bowel syndrome e.g. gastro-oesophageal reflux disease, Crohn
- the compounds of the present invention have potent analgesic effect and potential anti-inflammatory activity and their pharmaceutically formulations are thought to alleviate or to treat in particular neuropathic pain conditions such as diabetic neuropathy and post-herpetic neuralgia, urinary incontinence and cough.
- the compounds of the invention are also useful as active ingredients of pharmaceutical compositions for the systemic and topical treatment of Dry Eye.
- Amine 2a (1.3 g, 5.9 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.75 g, 5.9 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (860 mg, 5.77 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1 ⁇ 30 ml) and brine.
- Benzonitrile 14b (940 mg, 3.9 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 297 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1 g of a yellow oil.
- Amine 2b (0.5 ml, 2 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (580 mg, 2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (296 mg, 1.99 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine.
- Benzonitrile 14c (1 g, 4 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 305 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 980 mg of a yellow oil.
- Amine 2c (500 mg, 1.9 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (580 mg, 2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (265 mg, 1.78 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine.
- Benzonitrile 14d (6.19 g, 24.2 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 1.83 g) suspended in diethyl ether (60 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 5.3 g of a yellow oil.
- Benzonitrile 16af (1.95 g, 10.8 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 821 mg) suspended in diethyl ether (20 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2 g of a pale yellow oil.
- Benzonitrile 16ag (3.8 g, 18.4 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 1.4 g) suspended in diethyl ether (30 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 4 g of a yellow oil.
- Benzonitrile 16ah (3 g, 13.6 mmol) dissolved in 20 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 1.03 g) suspended in diethyl ether (30 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.92 g of a yellow oil.
- Benzonitrile 16bf (2.9 g, 18.1 mmol) dissolved in 25 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 1.38 g) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.35 g of an oil.
- Benzonitrile 16bh (2.3 g, 11.5 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 873 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.25 g of an oil.
- Benzonitrile 16ai (1.2 g, 5.4 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH 4 (2 equiv., 410 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1.18 g of an oil.
- nitrile 28e (0.88 g) was added in small portion to a mixture of LiAlH 4 (0.26 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 29e as pale yellow oil (0.58 g, 2.3 mmol, 70% Yield) used without further purification.
- nitrile 32b (1.44 g, 7.1 mmol) was added in small portion to a mixture of LiAlH 4 (0.55 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 33b as yellow oil (1.06 g, 5.18 mmol, 74% Yield) used without further purification.
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (260 mg, 1.45 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.260 ml, 1.2 equiv) and 4-chloro-2-trifluorobenzylamine (0.25 ml, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum.
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (560 mg, 3.1 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.55 ml, 1.2 equiv) and amine 2c (964 mg, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum.
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (240 mg, 1.3 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.23 ml, 1.2 equiv) and amine 2d (420 mg, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum.
- N-(4-(trifluoromethyl)benzyl)-2-amino-3-hydroxybenzamide 22a (1 g, 3.2 mmol) was dissolved in 20 ml of DMF and at 0° C.
- TEA 0.9 ml, 2 equiv.
- chloroacetyl chloride 0.3 ml, 1.2 equiv.
- K 2 CO 3 885 mg, 2 equiv.
- the solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine.
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-2-amino-3-hydroxybenzamide 22b (2.5 g, 6.4 mmol) was dissolved in 20 ml of DMF and at 0° C.
- TEA 1.8 ml, 2 equiv.
- chloroacetyl chloride 0.6 ml, 1.2 equiv.
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-amino-2-hydroxybenzamide 24b (830 mg, 2.1 mmol) was dissolved in 10 ml of DMF and at 0° C. TEA (0.58 ml, 2 equiv.) and chloroacetyl chloride (0.2 ml, 1.2 equiv.) were added. The mixture was stirred at rt for 2 hours. K 2 CO 3 (580 mg, 2 equiv.) was added and the reaction was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1 ⁇ 20 ml) and brine.
- nitrile 26a (0.84 g, 3.66 mmol) was added in small portion to a mixture of LiAlH 4 (0.28 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 27a as yellow oil (0.80 g, 3.64 mmol, 96% Yield).
- nitrile 28a (0.45 g, 1.96 mmol) was added in small portion to a mixture of LiAlH 4 (0.15 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 29a as yellow oil (0.42 g, 1.79 mmol, 94% Yield) used for the next reaction without further purification.
- nitrile 28d (1 g, 4.6 mmol) was added in small portion to a mixture of LiAlH 4 (0.5 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 29d as yellow oil (0.78 g, 3.5 mmol, 76% Yield) used without further purifications.
- nitrile 9 (2.2 g, 11.3 mmol) was heated in a steel-bomb with pyrrolidine (3.75 mL, 4 mol eq) at 200° C. for 12 h.
- the reaction mixture was concentrated, water and brine was added and the mixture was extracted three times with EtOAc.
- the recombined organic phases were dried under sodium sulfate and evaporated to dryness to furnish 10a as a red oil (2.6 g, quantitative yield), used for the next step of reaction without further purifications.
- nitrile 28c (0.48 g, 2.33 mmol) was solubilized in MeOH (30 mL) and to the solution was added Pd/C 10% (0.3 g). The mixture was hydrogenated at 70 psi overnight. The reaction mixture was filtered through a celite pad, the filtrate was evaporated at reduce pressure to furnish 29c as yello oil (0.38 g, 1.84 mmol, 79% Yield) used without further purification.
- the 2-fluoro-4-methyl-benzonitrile (0.8 g, 3.99 mmol) was added in small portion to a mixture of NaH 60% (4 mol eq, 0.61 g) in isopropanol (30 mL) The reaction mixture was heated at 50° C. overnight. The solvent was distilled and water was added to the residue. The aqueous solution was extracted with EtOAc (3 ⁇ 25 mL) and the organic phases were evaporated at reduced pressure to give 30a as a deliquescent white solid (1.09 g, 6.22 mmol).
- nitrile 30a (1.09 g, 6.22 mmol) was added in small portion to a mixture of LiAlH 4 (0.47 g, 2 mol eq) in Et 2 O (40 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 31a as yellow oil (0.95 g, 85% Yield) used without further purification.
- nitrile 30b (2.03 g, 10.9 mmol) solubilized in Et 2 O (25 mL) was added in small portion to a mixture of LiAlH 4 (0.83 g, 2 mol eq) in Et 2 O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH 4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et 2 O and the filtrate was separated. The organic phase was anhydrified over Na 2 SO 4 and evaporated to dryness to obtain 31b as a pale yellow oil (2.12, quantitative Yield) used without further purification.
- Drugs and reagents were obtained from the indicated companies: capsaicin, ionomycin, laminin, poly-L-lysine, collagenase, trypsin, L-glutamine, penicillin/streptomycin, DMEM, HBSS, mouse-NGF-7S, ARA-C, HEPES, Tween80, Complete Freund's Adjuvant (CFA) and BSA (Sigma, Italy); FBS and HS (Gibco, Italy); Fura-2-AM-ester (Vinci-Biochem, Italy) and Methylcellulose (Fluka, Switzerland).
- the stock concentration (10 mM) of capsaicin, Fura-2-AM-ester, ionomycin and all tested compounds were prepared in 100% DMSO.
- HBSS Hank's balanced salt solution
- the ganglia placed in cold DMEM supplemented with 10% fetal bovine serum, 10% horse serum, 2 mM L-glutamine, 100 U/ml penicillin and 100 ⁇ g/ml streptomycin, were dissociated in single cells by several passages through a series of syringe needles (23G down to 25G).
- the medium and the ganglia were filtered to remove debris, topped up with 4 ml of DMEM medium and centrifuged (1100 rpm for 6 min). The final cell pellet was re-suspended in DMEM medium [supplemented with 100 ng/ml mouse Nerve Growth Factor (mouse-NGF-7S) and cytosine- ⁇ -D-arabinofuranoside free base (ARA-C) 2.5 ⁇ M].
- the cells were plated on poly-L-lysine (8.3 ⁇ M)- and laminin (5 ⁇ M)-coated 25 mm glass cover slips and kept for 2 days at 37° C.
- Fura-2-AM-ester was excited at 340 nM and 380 nM to indicate relative [Ca 2+ ] i changes by the F 340 /F 380 ratio recorded with a dynamic image analysis system (Laboratory Automation 2.0, RCS, Florence, Italy) and the cells were allowed (at least 10 min) to attain a stable fluorescence before beginning the experiment.
- a calibration curve was set up using buffer containing Fura-2-AM-ester and determinant concentrations of free Ca 2+ . This curve was then used to convert the data obtained from the F 340 /F 380 ratio to [Ca 2+ ] i (nM).
- This method was used for the determination of acute nociceptive thermal threshold and combines a chemical stimulus and heat for measuring pain sensitivity.
- Male SD rats (Charles River, Italy) weighing 100 to 250 gr. were used.
- Anti-hyperalgesic effects were investigated by using the Hargreaves' test.
- Complete Freund's Adjuvant (CFA; Sigma, USA) was used to induce thermal hyperalgesia.
- CFA contains killed Mycobacterium tuberculosis and is designed to provide continuous release of antigens necessary for stimulating a strong, persistent immune response. This effect causes the reduction of the hind paw withdrawal response latency induced by heat during the Hargreaves' test.
- Thermal stimulation was performed 30, 60, 120 and 180 (240 min only if needed) minutes after the oral administration of the antagonists.
- Body temperature was measured by a digital thermometer inserted at a depth of approximately 3 cm into the rectum of each animal (male SD rats, Charles River, Italy, 100 to 250 g). A pre-dose value of body temperature was measured prior to the administration of the test substance or vehicles. Animals were distributed among groups by the manual method to achieve the almost same mean values of body temperature of the groups based on the pre-dose value. All compounds were dissolved in 6% DMSO/6% Tween80 and then intraperitoneally (10 ⁇ mol/Kg/5 ml) administrated to rats.
- Capsaicin (0.3 ⁇ M) caused an increase in [Ca 2+ ] in the vast majority (95%) of dorsal root ganglia neurons, which were thereby identified as TRPV1 expressing neurons. All synthesized derivatives were tested and all were able to inhibit the calcium uptake and several compounds exhibited more than 80% inhibition, e.g. compounds of Examples 1, 3, 4, 5, 6, 10, 11, 12, 13, 16, 19, 23, 31, 32, 35, 36, 39, 41, 45, 46, 47, 48, 51, 53, 67, 68, 69, 70, 71, 74, 75, 78, 80, 81, 82,86, 87 and 89.
- IC 50 values of the compounds of Examples 4, 5, 6, 12, 13, 31, 46, 47, 48, 51, 73, 75 and 78 calculated against capsaicin-evoked [Ca 2+ ] i mobilization were 4.07 nM, 1 nM, 0.51 nM, 6 nM, 1.8 nM, 1.9 nM, 3 nM, 0.7 nM, 0.13 nM, 1.8, 0.1 nM, 0.84 nM and 0.61, respectively.
- Tables 1, 2 and 3 describe the calcium assay data for all exemplified compounds of formula IA-C, ID-E and IF-H, respectively.
- Example 3 Compound % inhibition at of Example 300 nM IC50 (nM) Example 1 84 Example 2 28 Example 3 93 Example 4 100 4.07 Example 5 100 1 Example 6 95 0.51 Example 7 33 Example 8 2 Example 9 18 Example 10 89 79 Example 11 82 12 Example 12 88 6 Example 13 96 1.8 Example 14 32 Example 15 54 Example 16 86 Example 17 44 Example 18 54 Example 19 99 Example 20 18 Example 21 79 Example 22 48 Example 23 82 108 Example 24 40 Example 25 40 Example 26 55 Example 27 45 Example 28 40 Example 29 8 Example 30 44 Example 31 100 1.9 Example 32 93 Example 33 16 Example 34 19 Example 35 90 Example 36 100 Example 39 98 9.5 Example 40 52 Example 41 88 Example 42 30 Example 43 23 Example 44 47 Example 45 100 Example 46 94 3 Example 47 100 0.7 Example 48 100 0.13 Example 49 68 Example 50 52 Example 51 100 0.1 Example 52 98 Example 53 90 Example 54 55 Example 66 71 Example 67 100 20 Example 68 93 Example 69 80 92 Example 70 98 Example 71 100 12 Example 72 40 6 Example 73 25
- the more potent antagonists were orally administered at 30 ⁇ mol/kg.
- the compound of Example 51 was able to counteract the CFA effects producing a maximal reversal activity of 30%.
- the compounds of Examples 5, 12, 13, 23, 31, 46, 47, 48, 49 produced a sustained anti-hyperalgesic effect showing 53%, 65%, 60%, 46%, 47%, 50%, 46%, 45% and 52% of reversion respectively.
- Example 5 The compound of Example 5 (30 ⁇ mol/kg, oral) significantly reversed CFA-induced tactile allodynia (60% of reversal) up to 240 min post-treatment while the same dose of the compound of Example 51 provoked 61% of reversal but showed a shorter duration.
- the compound of Example 12 produced a statistically significant anti-hyperalgesic effect up to 300 min post-treatment. (62% of reversal).
- the compound of example 49 joined 72% of reversal.
- All selected compounds exhibited a significant anti-hyperalgesic effect.
- derivatives the compounds of Examples 1, 5, 6, 31, 13, 46 and 49 induced relevant and long lasting anti-hyperalgesic activity.
- all the above mentioned compounds produced at least 80% reversal of hyperalgesia within the first 2 hours of experimentation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Rheumatology (AREA)
- Ophthalmology & Optometry (AREA)
- Pain & Pain Management (AREA)
- Urology & Nephrology (AREA)
- Dermatology (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
The invention discloses compounds of formula I
wherein Y is a group of formula A, B, C, D, or E:
and W, Q, n, R1, R2, R3, U1-U5, J and K have the meanings given in the description.
The compounds of formula I are TRPV1 antagonists and are useful as active ingredients of pharmaceutical compositions for the treatment of pain and other conditions ameliorated by the inhibition of the vanilloid receptor TRPV1.
Description
- The present invention concerns TRPV1 antagonists characterized by a bicyclic portion and, when possible, pharmaceutically acceptable salts thereof along with the formulations containing them. The pharmaceutical compositions of the invention are useful in the treatment of pain and other conditions ameliorated by the inhibition of the vanilloid receptor TRPV1.
- The transient receptor potential vanilloid 1 (TRPV1) is a member of ion channels mainly localized on primary afferent neurons. Activation of TRPV1 on sensory neurons by chemical stimulants including capsaicin and resiniferatoxin, as well as low pH (<6), heat (>42° C.), and nucleosides such as ATP, leads to an influx of Ca2+ and Na+ ions through the channel, causing depolarization of the cell and transmission of painful stimuli. Unlike traditional analgesic drugs that either suppress inflammation (e.g. NSAIDs and COX-2 inhibitors) or block pain transmission (e.g. opiates), TRPV1 channel inhibitors aim to prevent pain by blocking a receptor where pain is generated. In patients, the expression of TRPV1 is up-regulated in a number of painful inflammatory disorders. TRPV1 as a pain target has been validated by genetic deletion and pharmacological inhibition experiments. The pungency of capsaicin and many other agonists at the vanilloid receptor clearly defines TRPV1 as a key transducer in the pain pathway. Characterization of TRPV1 mice, which lack both copies of the TRPV1 gene, shows a complete absence of thermal hyperalgesia associated with inflammation demonstrating the key role of TRPV1 in disease and providing impetus to develop selective TRPV1 antagonists as a novel pain therapy with the potential for an improved side effect profile compared to existing therapies. Many novel selective and chemically distinct TRPV1 antagonists have been identified and a number of these have been assessed in preclinical models of pain. Some of them reverse mechanical hyperalgesia in the Freund's complete adjuvant model of inflammatory pain in rodents. Others show efficacy in neuropathic pain models, in post-operative pain and in cancer pain. These data provide robust validation of this approach for the treatment of a broad range of pain conditions in humans.
- In the bladder, the presence of TRPV1 was demonstrated in various cell types, including urothelium, detrusor muscle and fibroblasts. There is good evidence that TRPV1 in urothelium is functional. Capsaicin evokes an inward current similar to that seen in DRG neurons in patch-clamped human urothelial cells. Furthermore capsaicin induces calcium uptake in human urothelial cells culture which is blocked by the TRPV1 antagonists implying that the regulation of TRPV1 is similar in sensory neurons and urothelial cells. Overactive bladder (OAB) is a syndrome characterised by urgency (with or without urge incontinence), usually with frequency and nocturia, in the absence of other pathologic or metabolic conditions that might explain the symptoms. Differently from antimuscarinic compounds dominating the market of OAB that only act on the efferent components, TRPV1 antagonists, acting on sensory nerves or on urothelium, are effective in diverse experimental models of cystitis/overactive bladder without interfere with the physiological volume-induced avoiding contractions (VIVC) and distention of the urinary bladder in healthy animals.
- The documented ability of citric acid as well as pungent compounds such as capsaicin to induce cough when delivered to the lungs of experimental animals and humans, combined with the contribution of TRPV1-sensitive nerves to airway hyper responsiveness and bronco constriction has led to a large degree of interest in the potential for targeting TRPV1 for the treatment of a range of respiratory diseases. These effects are thought to derive from the key contribution of TRPV1 which is highly expressed by sensory neurons and vagal afferents that innervate the airways, to the cough reflex. Preclinical studies have now demonstrated antitussive efficacy of a range of TRPV1 antagonists in rodent models.
- Dry Eye is a chronic dysfunction on tear and ocular surface epithelium.
- Changes in corneal osmolarity is a trigger key event in cytokine production and ocular inflammation which are main causes of Dry Eye.
- There are evidences that TRPV1 signal induces pro-inflammatory cytokine secretion in the corneal epithelial cells and hyper osmolarity-induced cytokine production is prevented by TRPV1 antagonists in corneal epithelial cells.
- These data provide a strong rational for the systemic and topical use of TRPV1 antagonists in the treatment of Dry Eye.
- The present invention relates to TRPV1 inhibitors of formula (I)
- wherein:
- Y is a group of formula A, B, C, D, or E:
- in which:
- J and K are independently NH or O;
- W is NH, O, a bond or CH2;
- Q is NH, O, a bond or CH2;
- n is 0 or 1;
- U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent.
- The aromatic ring is optionally substituted with one or both R1 and R2 groups.
- When one of U1-U5 is absent, the general formula I also includes mono or bi-substituted five membered heterocyclic rings (e.g. furan, imidazole, thiazole, triazole, oxazole, isoxazole, thiophene, pyrazole).
- R1 and R2 are independently selected from hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, which can be optionally substituted by OH, phenyl, heterocycle, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- R3 is hydrogen or with n=1 is CH2 and forms a cycle with R1=CH2 or =CH2—CH2.
- With the proviso that when n is 0, Q is NH and W is a bond, then Y is different from A or E, and with the exclusion of the compounds 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-carbamic acid benzyl ester and benzyl (7-oxo)-5,6,7,8-tetrahydronaphthalen-1-yl)carbamate.
- The disclaimed compounds are known from Biorganic & Medicinal Chemistry letters, 17, (2007), 1302-1306, WO2008/126024 and WO2005/040100.
- When one asymmetrical carbon is present in a compound of the formula (I), such a compound may exist in optically active form or in the form of mixtures of optical isomers, e. g. in the form of racemic mixtures. The present invention refers to all optical isomers and their mixtures, including the racemic mixtures.
- According to a first preferred embodiment, the invention relates to compounds of formula (IA), (IB) or (IC) wherein Y is A, C or E and W and Q are NH
- and
- J and K are independently NH or 0;
- n is 0 or 1;
- U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent.
- When one of U1-U5 is absent, the general formula IA also includes mono or bi-substituted five membered heterocycle rings (e.g. furan, imidazole, thiazole, triazole, oxazole, isoxazole, pyrazole).
- R1 is as defined above, more preferably hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, heterocycle, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- R2 as defined above, is preferably halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- R3, as defined above, is preferably hydrogen or when n=1 is CH2 and forms a cycle with R1=CH2.
- Examples of compounds of formula IA are:
- 1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2-fluoro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2-chloro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2-(dimethylamino)-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-morpholinobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-(1H-1,2,4-triazol-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-fluorobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-chlorobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-chloro-2-(dimethylamino)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-chloro-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-chloro-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(dimethylamino)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-methylbenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2-(dimethylamino)-4-methylbenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-methyl-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)-3-((pyridin-4-yl)methyl)urea
- 1-((6-chloropyridin-3-yl)methyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(4-chloro-2-(3-hydroxypyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(5-(trifluoromethyl-furan-2-yl)-methyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
- 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[6-(trifluoromethyl)-3-pyridyl]methyl]urea
- 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoromethyl)-3-pyridyl]methyl]urea
- 1-[[6-methyl-2-(1-piperidyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[5-(trifluoromethyl)-2-pyridyl]methyl]urea
- 1-[[2-isopropoxy-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[[2-isopropoxy-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[[2-dimethylamino-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[(4-tert-butylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-(1-piperidyl)-6-(trifluoromethyl)-3-pyridyl]methyl]urea
- 1-[[2-(2-dimethylaminoethoxy)-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[[2-(2-dimethylaminoethoxy)-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[(4-tert-butyl-2-chloro-phenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-[(4-tert-butyl-2-pyrrolidin-1-yl-phenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
- 1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(2-fluoro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(2-chloro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-fluoro-2-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-chloro-2-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(2-(dimethylamino)-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-(trifluoromethyl)-2-morpholinobenzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-chlorobenzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
- 1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
- 1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
- 1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
- 1-(2-oxo-3H-1,3-benzoxazol-7-yl)-3-[[6-(trifluoromethyl)-3-pyridyl]methyl]urea
- 1-(2-oxo-3H-1,3-benzoxazol-7-yl)-3-[[5-(trifluoromethyl)-2-furyl]methyl]urea.
- Examples of compounds of formula IB are:
- 1-(4-(trifluoromethyl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-5-yl)urea
- 1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-5-yl)urea
- 1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-5-yl)urea.
- Examples of compounds of formula IC are:
- 1-(4-(trifluoromethyl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(2-(dimethylamino)-4-(trifluoromethyl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-chlorobenzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-chloro-2-(dimethylamino)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-chloro-2-(pyrrolidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-chloro-2-(piperidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(4-methyl-2-(piperidin-1-yl)benzyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-((6-chloropyridin-3-yl)methyl)-3-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-8-yl)urea
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-[[5-(trifluoromethyl)-2-furyl]methyl]urea
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-[[6-(trifluoromethyl)-3-pyridyl]methyl]urea)
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-[[2-(1-piperidyl)-6-(trifluoromethyl)-3-pyridyl]methyl]urea
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-(p-tolylmethyl)urea
- 1-[[6-methyl-2-(1-piperidyl)-3-pyridyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[[2-isopropoxy-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[[2-methoxy-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-[[5-(trifluoromethyl)-2-pyridyl]methyl]urea
- 1-[(2-isopropoxy-4-methyl-phenyl)methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[(2-isopropoxy-6-methyl-3-pyridyl)methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[[2-dimethylamino-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-(3-oxo-4H-1,4-benzoxazin-8-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoro methyl)-3-pyridyl]methyl]urea
- 1-[[2-(imidazol-1-yl)-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[(4-tert-butylphenyl)methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[(4-methyl-2-pyrrolidin-1-yl-phenyl)methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[[2-(2-dimethylaminoethoxy)-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea
- 1-[[2-(2-dimethylaminoethoxy)-4-(trifluoromethyl)phenyl]methyl]-3-(3-oxo-4H-1,4-benzoxazin-8-yl)urea.
- According to a second preferred embodiment, the invention relates to compounds of formula (ID), (1E) or (1F) wherein Y is A or B, W is NH, Q is a bond and R3 is hydrogen
- and
- J and K are independently NH or 0;
- n is 0 or 1;
- R1 is hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- R2 is halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- The formula 1D and 1E substantially corresponds to formula I wherein U1=U2=U3=U4=U5 are CH.
- Examples of compounds of formula ID-F are:
- 2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)acetamide
- 2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)acetamide
- 2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)acetamide
- 2-(4-(trifluoromethyl)phenyl)-N-(3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-5-yl)acetamide.
- According to a third preferred embodiment, the invention relates to compounds of formula (IG), (IH) or (IL) wherein Y is A, C or E, Q is NH and R3 is hydrogen
- and
- J and K are independently NH or 0;
- W is O or a bond;
- n is 0 or 1.
- R1 is hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- R2 is halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, in particular pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino, can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
- With the provisio that when n is 0, Q is NH and W is a bond, then Y is different from A or E.
- The formula IC substantially corresponds to formula I wherein U1=U2=U3=U4=U5 are CH.
- Examples of compounds of formula IG-L are:
- N-(4-(trifluoromethyl)benzyl)-2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxamide
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxamide
- N-(4-(trifluoromethyl)-2-morpholinobenzyl)-2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxamide
- N-(4-(trifluoromethyl)benzyl)-3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazine-5-carboxamide
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazine-5-carboxamide
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazine-8-carboxamide
- 3,4-dihydro-3-oxo-2H-benzo[b][1,4]oxazin-5-yl 4-(trifluoromethyl) benzylcarbamate
- The compounds of formula (IA), (IB) and (IC) are ureas that can be prepared by reaction of a compound of formula 1, 1′ or 1″, respectively,
- wherein K and Y are as above defined, with a compound of formula 2
- wherein R1, R2, R3, U1, U2, U3, U4, U5 and n are as above defined and where one of 1, 1′, 1″ and 2, more commonly 2, is firstly converted into isocyanate using triphosgene. Alternatively, N,N′-carbonyldimidazole (CDI) was used to form the uredyl derivative of one of the two amines and which reacts with the other to give the desired urea. Compounds 1, 1′, 1″ and 2 are prepared by standard procedures.
- The compounds of formula (ID-L) are amides or carbamates that can be prepared by standard procedures.
- In a further aspect of the present invention, compounds of formula I bearing a solubilizing amine may be prepared in the form of a pharmaceutically acceptable salt, especially an acid addition salt.
- For use in medicine, the salts of the compounds of formula I will be non-toxic pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, nitric acid, maleic acid, citric acid, tartaric acid, phosphoric acid, p-toluenesulphonic acid, benzenesulphonic acid. Preferred pharmaceutically salts of the compounds of the present invention are those with the inorganic acids.
- The salts may be formed by conventional means, such as by reacting the free base form of the suitable compounds of formula I with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble or in a solvent such as water which is removed under vacuum.
- Compositions of the Invention
- The present invention also provides pharmaceutical compositions that comprise compounds of the present invention. The pharmaceutical compositions comprise compounds of the present invention that may be formulated together with one or more non-toxic pharmaceutically acceptable carriers.
- The pharmaceutical compositions of this invention can be administered to humans and other mammals orally, rectally, parenterally, intracisternally, intravaginally, intraperitoneally, topically (as by powders, ointments or drops), buccally or as an oral or nasal spray.
- Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as, but not limited to, lactose, glucose and sucrose; starches such as, but not limited to, corn starch and potato starch;
- cellulose and its derivatives such as, but not limited to, sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt;
- gelatin; talc; excipients such as, but not limited to, cocoa butter and suppository waxes; oils such as, but not limited to, peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols; such a propylene glycol; esters such as, but not limited to, ethyl oleate and ethyl laurate; agar; buffering agents such as, but not limited to, magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as, but not limited to, sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator.
- Pharmaceutical compositions of this invention for parenteral injection comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions as well as sterile powders for reconstitution into sterile injectable solutions or dispersions just prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol and the like), vegetable oils (such as olive oil), injectable organic esters (such as ethyl oleate) and suitable mixtures thereof. Proper fluidity can be maintained, for example, by the use of coating materials such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of the drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
- Injectable depot forms are made by forming microencapsulated matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly (orthoesters) and poly (anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues.
- The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium just prior to use.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound may be mixed with at least one inert, pharmaceutically acceptable excipient or carrier, such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol and silicic acid; b) binders such as carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose and acacia; c) humectants such as glycerol; d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates and sodium carbonate; e) solution retarding agents such as paraffin; f) absorption accelerators such as quaternary ammonium compounds; g) wetting agents such as cetyl alcohol and glycerol monostearate; h) absorbents such as kaolin and bentonite clay and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such carriers as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- The solid dosage forms of tablets, dragées, capsules, pills and granules can be prepared with coatings and shells such as enteric coatings and other coatings well-known in the pharmaceutical formulating art. They may optionally contain opacifying agents and may also be of a composition such that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
- The active compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned carriers.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan and mixtures thereof.
- Besides inert diluents, the oral compositions may also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
- Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, tragacanth and mixtures thereof.
- Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating carriers or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
- Compounds of the present invention can also be administered in the form of liposomes. As is known in the art, liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals, which are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolizable lipid capable of forming liposomes can be used. The present compositions in liposome form can contain, in addition to a compound of the present invention, stabilizers, preservatives, excipients and the like. The preferred lipids are natural and synthetic phospholipids and phosphatidyl cholines (lecithins) used separately or together.
- Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N. Y. (1976), p. 33 et seq.
- Dosage forms for topical administration of a compound of this invention include powders, sprays, ointments and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives, buffers or propellants that may be required. Ophthalmic formulations, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
- In the treatment of painful conditions such as those listed below, a suitable indicated dosage level is about 0.1 mg to 2000 mg/day, preferably from about 5 mg to 1000 mg per day. The compounds may be administered on a regimen of 1 to 3 times a day.
- It will be appreciated that the amount of a compound of formula I required for use in any treatment will vary not only with the particular compounds or compositions selected but also with the route of administration, the nature of the condition being treated, and the age and condition of the patient.
- The agents of invention are useful vanilloid receptor antagonists for the treatment of pain of various genesis or aetiology and as anti-inflammatory agents for the treatment of inflammatory reactions, diseases or conditions. They are useful for the treatment of inflammatory pain, for the treatment of hyperalgesia, and in particular for the treatment of severe chronic pain. They are, for example, useful for the treatment of pain, inflammation consequential to trauma, e.g. associated with burns or subsequent to surgical intervention, e.g. as post-operative analgesics, as well as for the treatment of inflammatory pain of diverse genesis, e.g. for the treatment of osteoarthritis and rheumatoid arthritis. They are suitable as analgesics for the treatment of pain associated with, e.g. angina or cancer.
- Other forms of pain associated with the activity of TRPV1 are headache, dental pain, pelvic pain, migraine, mastalgia and visceral pain.
- The disorders in which TRPV1 is involved are not limited to pain. Such diseases include: nerve-related diseases, e.g. neuropathies, nerve injury and stroke; irritable bowel syndrome; gastrointestinal disorders, e.g. gastro-oesophageal reflux disease, Crohn's disease; respiratory diseases, e.g. asthma, chronic obstructive pulmonary disease, cough; urinary incontinence; urinary bladder hypersensitiveness; skin diseases, e.g. psoriasis, dermatitis; cardiac diseases e.g. myocardial ischemia; hair growth related disorders e.g. hirsutism, alopecia; rhinitis; pancreatitis; vulvodynia; psychiatric disorders, e.g. anxiety or fear; obesity.
- The compounds of the present invention have potent analgesic effect and potential anti-inflammatory activity and their pharmaceutically formulations are thought to alleviate or to treat in particular neuropathic pain conditions such as diabetic neuropathy and post-herpetic neuralgia, urinary incontinence and cough.
- The compounds of the invention are also useful as active ingredients of pharmaceutical compositions for the systemic and topical treatment of Dry Eye.
- The invention will be now illustrated by means of the following examples.
- All commercially available compounds were purchased from Vendors and were used without further purification. Reaction courses were monitored by thin-layer chromatography on silica gel (precoated F254 Merck plates), the spots were examined with UV light and visualized with aqueous KMnO4. Flash chromatography was performed using Merck silica gel (230-240 mesh). 1H-NMR spectra were recorded on Varian 400 MHz spectrometer or Varian 200 MHz using TMS as internal standard. Mass spectra were obtained with a Waters-Micromass ZMD spectrometer.
-
- To 3-nitro-1,2-phenylenediamine 3a (2 g, 13.06 mmol) dissolved in THF (50 ml) was added in one portion DCI (1.5 equiv., 19.6 mmol, 3.176 g) and the reaction was refluxed for 2 hours. (TLC AcOEt 1/petroleum ether 1). The reaction was filtrated and the yellow solid material was washed with THF and diethyl ether obtaining 2 g of the product that was used for the following step without further purification. Yield=88% 1HNMR (DMSO, 200 MHz) δ 7.11 (1H, t, J=7.6 Hz), 7.31 (1H, dd, J=7.8 Hz, J′=1.2 Hz), 7.74 (1H, dd, J=8.6 Hz, J′=1 Hz), 11.45 (2H, bs)
- To compound 4a (2 g, 11.6 mmol) dissolved in a mixture of 4/1 MeOH/THF (100 ml) was added C/Pd 10% (500 mg) and the reaction was hydrogenated at 60 psi overnight. (TLC AcOEt 9/MeOH 1) The reaction was filtrated through a pad of Celite and the filtrate was evaporated under vacuum. The crude solid was crystallized from ether giving 1.5 g of a white solid. Yield=88%. 1HNMR (DMSO, 200 MHz) δ 4.84 (2H, bs), 6.22 (2H, m), 6.65 (1H, t, J=8 Hz), 9.98 (1H, bs), 10.33 (1H, bs)
- Commercially available 4-trifluoromethylbenzylamine (0.5 ml, 3.5 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1 g, 3.5 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1a (350 mg, 2.33 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 290 mg of a white solid. Yield=36% 1HNMR (DMSO, 400 MHz) δ 4.40 (2H, d, J=6 Hz), 6.62 (1H, d, J=7.2 Hz), 6.84 (2H, m), 6.96 (1H, d, J=8 Hz), 7.54 (2H, d, J=8 Hz), 7.70 (2H, d, J=8.4 Hz), 8.30 (1H, s), 9.99 (1H, bs), 10.60 (1H, bs); [M+1] 351.1 (C16H13F3N4O2 requires 350.3).
-
- Commercially available 2-fluoro-4-trifluoromethylbenzylamine (0.5 ml, 3.7 mmol) was dissolved in 20 ml of AcOEt and at O° C. triphosgene (1.12 g, 3.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1a (360 mg, 2.4 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 210 mg of a white solid. Yield=28% 1HNMR (DMSO, 400 MHz) δ 4.42 (2H, d, J=6 Hz), 6.63 (1H, dd, J=8 Hz, J′=1.2 Hz), 6.85 (2H, m), 6.95 (1H, d, J=8 Hz), 7.62 (3H, m), 8.35 (1H, bs), 9.99 (1H, bs), 10.61 (1H, bs); [M+1] 369.1 (C16H12F4N4O2 requires 368.29).
-
- Commercially available 2-chloro-4-trifluoromethylbenzylamine (700 mg, 3.3 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (989 mg, 3.3 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1a (319 mg, 2.14 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 140 mg of a white solid. Yield=18% 1HNMR (DMSO, 400 MHz) δ 4.44 (2H, d, J=5.6 Hz), 6.64 (1H, d, J=7.2 Hz), 6.84 (1H, t, J=8.4 Hz), 6.89 (1H, t), 6.96 (1H, d, J=8 Hz), 7.64 (1H, d, J=8.4 Hz), 7.74 (1H, d), 7.86 (1H, s), 8.43 (1H, bs), 9.99 (1H, bs), 10.61 (1H, bs); [M+1] 385.0 (C16H12ClF3N4O2 requires 384.74).
-
- To commercially available 2-chloro-4-trifluoromethylbenzonitrile 13 (0.5 ml, 3.6 mmol) dimethylamine (4 equiv., 0.95 ml) was added and the solution was heated in closed vessel at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 730 mg of a pale yellow oil. Yield=94% 1HNMR (CDCl3, 200 MHz) δ 3.13 (6H, s), 7.05 (1H, bs), 7.59 (1H, dd, J=8.4 Hz, J′=0.6 Hz), 7.99 (1H, bs)
- Benzonitrile 14a (730 mg, 3.4 mmol) dissolved in 5 ml of ether was added dropwise at O° C. to LiAlH4 (2 equiv., 260 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 720 mg of a yellow oil. Yield=97% 1HNMR (CDCl3, 200 MHz) δ 2.78 (6H, s), 3.95 (2H, s), 7.36 (2H, m), 7.49 (1H, d)
- Amine 2a (1.3 g, 5.9 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.75 g, 5.9 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (860 mg, 5.77 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 650 mg of a yellow solid. Yield=28% 1HNMR (DMSO, 200 MHz) δ 2.51 (6H, bs), 4.43 (2H, d, J=5.6 Hz), 6.62 (1H, dd, J=7.6 Hz, J′=1 Hz), 6.82 (2H, m), 6.97 (1H, dd, J=8 Hz, J′=1 Hz), 7.32 (1H, s), 7.39 (1H, d), 7.49 (1H, d), 8.35 (1H, bs), 9.99 (1H, bs), 10.59 (1H, bs); [M+1] 394.1 (C18H18F3N5O2 requires 393.36).
-
- To commercially available 2-chloro-4-trifluoromethylbenzonitrile 13 (1 ml, 7.2 mmol) pyrrolidine (4 equiv., 2.38 ml) was added and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 940 mg of a yellow solid. Yield=54% 1HNMR (DMSO, 200 MHz) δ 1.95 (4H, m), 3.58 (4H, m), 6.94 (2H, m), 7.73 (1H, dd, J=8 Hz, J′=0.8 Hz).
- Benzonitrile 14b (940 mg, 3.9 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 297 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1 g of a yellow oil. Yield=99% 1HNMR (DMSO, 200 MHz) δ 1.88 (4H, m), 3.17 (4H, m), 3.76 (2H, s), 7.00 ((1H, s), 7.14 (1H, m), 7.59 (1H, d, J=8.2 Hz)
- Amine 2b (0.5 ml, 2 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (580 mg, 2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (296 mg, 1.99 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 170 mg of a yellow solid. Yield=20% 1HNMR (DMSO, 400 MHz) δ 1.91 (4H, bs), 3.22 (4H, bs), 4.38 (2H, d, J=5.2 Hz), 6.62 (1H, d, J=8 Hz), 6.72 (1H, t), 6.83 (1H, t), 6.95 (1H, d, J=8 Hz), 7.08 (1H, s), 7.18 (1H, d, J=7.6 Hz), 7.45 (1H, d, J=7.6 Hz), 8.35 (1H, bs), 9.98 (1H, bs), 10.60 (1H, bs); [M+1] 420.18 (C20H20F3N5O2 requires 419.4).
-
- To commercially available 2-chloro-4-trifluoromethylbenzonitrile 13 (1 ml, 7.2 mmol) was added piperidine (4 equiv., 2.8 ml) and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 1 g of a yellow oil. Yield=56% 1HNMR (DMSO, 200 MHz) δ 1.60 (6H, m), 3.20 (4H, m), 7.34 (2H, m), 7.89 (1H, dd, J=8.6 Hz, J′=0.4 Hz)
- Benzonitrile 14c (1 g, 4 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 305 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 980 mg of a yellow oil. Yield=95% 1HNMR (DMSO, 200 MHz) δ 1.57 (6H, m), 1.80 (2H, bs), 2.81 (4H, m), 3.78 (2H, s), 7.23 (1H, s), 7.35 (1H, d, J=7.8 Hz), 7.70 (1H, d, J=8.2 Hz)
- Amine 2c (500 mg, 1.9 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (580 mg, 2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (265 mg, 1.78 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 140 mg of a pale yellow solid. Yield=18% 1HNMR (DMSO, 400 MHz) δ 1.54 (2H, m), 1.68 (4H, m), 2.85 (4H, m), 4.42 (2H, d, J=6 Hz), 6.63 (1H, d, J=7.6 Hz), 6.76 (1H, t), 6.84 (1H, t, J=8.4 Hz), 6.95 (1H, d, J=8.4 Hz), 7.31 (1H, s), 7.41 (1H, d), 7.52 (1H, d, J=8.4 Hz), 8.33 (1H, s), 10.01 (1H, bs), 10.60 (1H, bs); [M+1] 434.11 (C21H22F3N5O2 requires 433.43).
-
- To commercially available 2-chloro-4-trifluoromethylbenzonitrile 13 (4 ml, 29 mmol) morpholine (4 equiv., 10 ml) was added and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 6.19 g of a yellow oil. Yield=83% 1HNMR (DMSO, 200 MHz) δ 3.24 (4H, m), 3.75 (4H, m), 7.94 (1H, m), 8.23 (1H, m).
- Benzonitrile 14d (6.19 g, 24.2 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 1.83 g) suspended in diethyl ether (60 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 5.3 g of a yellow oil. Yield=84% 114 NMR (DMSO, 200 MHz) δ 2.88 (4H, m), 3.20 (2H, bs), 3.72 (4H, m), 3.77 (2H, s), 7.27 (1H, s), 7.38 (1H, dd, J=7.8 Hz, J′=1 Hz), 7.72 (1H, d, J=8 Hz)
- Amine 2d (300 mg, 1.15 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (350 mg, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (200 mg, 1.3 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 100 mg of a pale yellow solid. Yield=20% 1HNMR (DMSO, 200 MHz) δ 2.91 (4H, m), 3.76 (4H, m), 4.44 (2H, d, J=5.6 Hz), 6.63 (1H, d, J=7.6 Hz), 6.88 (3H, m), 7.64 (1H, d, J=8.2 Hz), 7.73 (1H, d), 7.85 (1H, bs), 8.44 (1H, bs), 9.99 (1H, bs), 10.60 (1H, bs); [M+1] 436.2 (C20H20F3N5O3 requires 435.4).
-
- To commercially available 2-chloro-4-trifluoromethylbenzonitrile 13 (1 ml, 7.2 mmol) in DMF 1 equiv. of NaH and 1,2,4-tetrazole (4 equiv., 1.98 g) were added and the mixture was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 900 mg of a yellow solid. Yield=53% 1HNMR (DMSO, 200 MHz) δ 8.08 (1H, dd, J=7.6 Hz, J′=1 Hz), 8.33 (3H, m), 9.29 (1H, s).
- Benzonitrile 14e (860 mg, 3.6 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 276 mg) suspended in diethyl ether (20 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 600 mg of a red oil. Yield=70% 1HNMR (DMSO, 200 MHz) δ 3.31 (2H, bs), 3.64 (2H, s), 7.85 (3H, m), 8.28 (1H, s), 9.02 (1H, s).
- Amine 2e (600 mg, 2.48 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (755 mg, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (450 mg, 3 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 110 mg of an orange solid. Yield=10% 1HNMR (DMSO, 200 MHz) δ 4.30 (2H, d, J=6 Hz), 6.64 (1H, dd, J=7.4 Hz, J′=1.2 Hz), 6.79 (2H, m), 6.91 (1H, dd), 7.83 (1H, d), 7.92 (2H, d), 8.33 (1H, bs), 8.42 (1H, bs), 9.07 (1H, bs), 9.94 (1H, bs), 10.59 (1H, bs); 418.2 (C18H14F3N7O2 requires 417.34).
-
- Commercially available p-fluorobenzylamine (0.76 ml, 6.7 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.98 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (900 mg, 6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 420 mg of a white solid. Yield=23% 1HNMR (DMSO, 200 MHz) δ 4.29 (2H, d, J=6 Hz), 6.62 (1H, dd, J=7.6 Hz, J′=1.2 Hz), 6.80 (2H, m), 6.95 (1H, dd, J=8.2 Hz, J′=1.2 Hz), 7.15 (2H, m), 7.35 (2H, m), 8.23 (1H, bs), 9.96 (1H, bs), 10.59 (1H, bs); [M+1] 301.1 (C15H13FN4O2 requires 300.29).
-
- Commercially available p-chlorobenzylamine (846 mg, 6 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.78 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (900 mg, 6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 300 mg of a white solid. Yield=16% 1HNMR (DMSO, 200 MHz) δ 4.30 (2H, d, J=6.2 Hz), 6.62 (1H, dd, J=7.6 Hz, J′=1.2 Hz), 6.83 (2H, m), 6.96 (1H, dd, J=8 Hz, J′=1 Hz), 7.35 (4H, m), 8.27 (1H, bs), 9.98 (1H, bs), 10.59 (1H, bs); [M+1] 317.1 (C15H13ClN4O2 requires 316.74).
-
- To commercially available 2-fluoro-4-chlorobenzonitrile 15a (2 g, 12.8 mmol) dimethylamine (4 equiv., 3.5 ml) was added and the solution was heated in closed vessel at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The residue was purified by chromatographic column using EtOAc 1/petroleum ether 9 as eluant obtaining 1.95 g of a transparent oil. Yield=87% 1HNMR (DMSO, 200 MHz) δ 3.01 (6H, s), 6.91 (1H, dd, J=8.4 Hz, J′=2 Hz), 7.02 (1H, d, J=2 Hz), 7.60 (1H, d, J=8.4 Hz)
- Benzonitrile 16af (1.95 g, 10.8 mmol) dissolved in 5 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 821 mg) suspended in diethyl ether (20 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2 g of a pale yellow oil. Yield=98% 1HNMR (DMSO, 200 MHz) δ 1.72 (2H, bs), 2.61 (6H, s), 3.71 (2H, s), 6.99 (1H, m), 7.05 (1H, d, J=2.2 Hz), 7.46 (1H, d, J=8 Hz)
- Amine 2af (1 g, 5.5 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.63 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (820 mg, 5.5 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 550 mg of a white solid. Yield=28% 1HNMR (DMSO, 200 MHz) δ 2.64 (6H, s), 4.34 (2H, d, J=5.8 Hz), 6.62 (1H, dd, J=7.2 Hz, J′=1 Hz), 6.73 (1H, t), 6.83 (1H, t, J=7.6 Hz), 6.90 (1H, dd, J=8.2 Hz, J′=1 Hz), 7.06 (2H, m), 7.31 (1H, d, J=8.8 Hz), 8.33 (1H, bs), 9.98 (1H, bs), 10.59 (1H, bs); [M+1] 360.7 (C17H18ClN5O2 requires 359.81).
-
- To commercially available 2-fluoro-4-chlorobenzonitrile 15a (3 g, 19.3 mmol) pyrrolidine (4 equiv., 6.38 ml) was added and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The residue was purified by crystallization from water obtaining 3.86 g of a pale yellow solid. Yield=97% 1HNMR (DMSO, 200 MHz) δ 1.93 (4H, m), 3.51 (4H, m), 6.69 (1H, dd, J=8.4 Hz, J′=1.8 Hz), 6.76 (1H, d, J=2 Hz), 7.49 (1H, d, J=8.4 Hz)
- Benzonitrile 16ag (3.8 g, 18.4 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 1.4 g) suspended in diethyl ether (30 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 4 g of a yellow oil. Yield=98% 1HNMR (DMSO, 200 MHz) δ 1.72 (2H, bs), 1.86 (4H, m), 3.14 (4H, m), 3.68 (2H, s), 6.77 (1H, d, J=2 Hz), 6.80 (1H, dd, J=8.2 Hz), 7.36 (1H, d, J=8 Hz)
- Amine 2ag (1 g, 4.76 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.4 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (700 mg, 4.9 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 360 mg of a white solid. Yield=19% 1HNMR (DMSO, 200 MHz) δ 1.89 (4H, m), 3.17 (4H, m), 4.30 (2H, d, J=5.4 Hz), 6.61 (1H, dd, J=7.6 Hz, J′=1 Hz), 6.69 (1H, t), 6.87 (4H, m), 7.24 (1H, d, J=7.8 Hz), 8.38 (1H, bs), 10.00 (1H, bs), 10.59 (1H, bs); [M+1] 386.7 (C19H20ClN5O2 requires 385.85).
-
- To commercially available 2-fluoro-4-chlorobenzonitrile 15a (2.2 g, 12.87 mmol) piperidine (4 equiv., 5.6 ml) was added and the solution was heated at 80° C. overnight. The reaction was evaporated and to the residue water was added and the solid material was filtrated, washed with water and dried obtaining 3 g of a pale yellow solid. Yield=97% 1HNMR (DMSO, 200 MHz) δ 1.54 (2H, m), 1.65 (4H, m), 3.14 (4H, m), 7.09 (1H, dd, J=8.2 Hz, J′=2 Hz), 7.14 (1H, m), 7.69 (1H, d, J=8.4 Hz)
- Benzonitrile 16ah (3 g, 13.6 mmol) dissolved in 20 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 1.03 g) suspended in diethyl ether (30 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.92 g of a yellow oil. Yield=96% 1HNMR (DMSO, 200 MHz) δ 1.52 (2H, m), 1.61 (4H, m), 2.23 (2H, bs), 2.76 (4H, m), 3.69 (2H, s), 6.97 (1H, d, J=2.2 Hz), 7.04 (1H, dd, J=8.2 Hz, J′=2.2 Hz), 7.46 (1H, d, J=8 Hz)
- Amine 2ah (1.34 g, 6 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.78 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (900 mg, 6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×40 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 750 mg of a white solid. Yield=31% 1HNMR (DMSO, 200 MHz) δ 1.58 (2H, m), 1.66 (4H, m), 2.78 (4H, M), 4.32 (2H, d, J=6 Hz), 6.63 (1H, dd), 6.73 (1H, t), 6.94 (1H, t), 6.95 (1H, dd), 7.06 (2H, m), 7.29 (1H, d), 8.35 (1H, bs), 10.05 (1H, bs), 10.60 (1H, bs); [M+1]400.2 (C20H22ClN5O2 requires 399.87)
-
- Commercially available 4-dimetylaminobenzonitrile 18i (2 g, 13.7 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 1 g) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1.85 g of a pale yellow oil. Yield=90% 1HNMR (DMSO, 200 MHz) δ 1.60 (2H, bs), 2.84 (6H, s), 3.57 (2H, s), 6.67 (2H, d, J=8.8 Hz), 7.12 (2H, d, J=8.6 Hz)
- 4-(aminomethyl)-N,N-dimethylbenzenamine 2i (1 g, 6.9 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (2 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (1 g, 6.9 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 350 mg of a white solid. Yield=16% 1HNMR (DMSO, 200 MHz) δ 2.51 (6H, s), 4.18 (2H, d, J=5.6 Hz), 6.58 (2H, m), 6.69 (2H, d, J=8.8 Hz), 6.86 (2H, m), 7.14 (2H, d, J=8.8 Hz), 8.18 (1H, s), 9.98 (1H, bs), 10.58 (1H, bs); [M+1] 326.5 (C17H19N5O2 requires 325.37).
-
- To commercially available 4-chlorobenzonitrile 17 (5 g, 36 mmol) 12 ml of pyrrolidine were added and the reaction was heated at 100° C. for 24 hours in closed vessel. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The purification of the crude residue by chromatographic column using AcOEt 1/Petroleum ether 9 as eluant gave 1.68 g of a pale yellow solid. Yield=33% 1HNMR (DMSO, 200 MHz) δ 1.96 (4H, m), 3.28 (4H, m), 6.58 (2H, d, J=9 Hz), 7.51 (2H, d, J=9 Hz)
- Benzonitrile 18l (1.68 g, 9.76 mmol) dissolved in 10 ml of ether was added drop wise at 0° C. to LiAlH4 (2 equiv., 742 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1.48 g of a yellow oil. Yield=86% 1HNMR (DMSO, 200 MHz) δ 1.60 (2H, bs), 1.93 (4H, m), 3.17 (4H, m), 3.57 (2H, s), 6.46 (2H, d, J=8.6 Hz), 7.09 (2H, d, J=8.4 Hz).
- (4-(pyrrolidin-1-yl)phenyl)methanamine 2l (774 mg, 4.4 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.3 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (660 mg, 4.4 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 250 mg of a white solid. Yield=16% 1HNMR (DMSO, 200 MHz) δ 1.92 (4H, m), 3.17 (4H, m), 4.17 (2H, d, J=5.6 Hz), 6.58 (4H, m), 6.84 (2H, m), 7.12 (2H, d, J=8.6 Hz), 8.16 (1H, bs), 9.93 (1H, bs), 10.58 (1H, bs); [M+1] 352.3 (C19H21N5O2 requires 351.4).
-
- To commercially available 4-chlorobenzonitrile 17 (1 g, 7.26 mmol) 3 ml of piperidine were added and the reaction was heated at 100° C. for 72 hours in closed vessel. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The purification of the crude residue by chromatographic column using AcOEt 1/Petroleum ether 9 as eluant gave 1.2 g of a pale yellow oil. Yield=89% 1HNMR (DMSO, 200 MHz) δ 1.57 (6H, m), 3.34 (4H, m), 6.98 (2H, d, J=9 Hz), 7.53 (2H, d, J=9 Hz)
- Benzonitrile 18m (1.2 g, 6.48 mmol) dissolved in 10 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 493 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1 g of an orange oil. Yield=82%. 1HNMR (DMSO, 200 MHz) δ 1.57 (6H, m), 3.06 (4H, m), 3.58 (2H, s), 6.84 (2H, d, J=8.6 Hz), 7.13 (2H, d, J=8.4 Hz), 7.33 (2H, bs).
- (4-(piperidin-1-yl)phenyl)methanamine 2m (1.47 g, 7.8 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (2.3 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (1.15 g, 7.8 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 520 mg of a pale yellow solid. Yield=18% 1HNMR (DMSO, 200 MHz) δ 1.58 (6H, m), 3.08 (4H, m), 4.19 (2H, d, J=6 Hz), 6.62 (2H, m), 6.86 (4H, m), 7.15 (2H, d, J=8.8 Hz), 8.19 (1H, bs), 9.95 (1H, bs), 10.58 (1H, bs); [M+1] 366.3 (C20H23N5O2 requires 365.43).
-
- Commercially available p-methylbenzylamine (0.88 ml, 6.97 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (2 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added drop wise to a solution in DMF (10 ml) of compound 1a (1 g, 6.97 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 350 mg of a white solid. Yield=17% 1HNMR (DMSO, 200 MHz) δ 6.61 (1H, dd, J=7.6 Hz, J′=1.2 Hz), 6.70 (1H, t), 6.83 (1H, t, J=8 Hz), 6.92 (1H, dd, J=8 Hz, J′=1 Hz), 7.17 (4H, dd, J=15.6 Hz, J′=8.2 Hz), 8.22 (1H, bs), 9.96 (1H, bs), 10.58 (1H, bs); [M+1]297.1 (C16H16N4O2 requires 296.32).
-
- To commercially available 2-fluoro-4-methylbenzonitrile 15b (2.5 g, 18.5 mmol) was added dimethylamine (4 equiv., 4.8 ml) and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 2.96 g of a yellow oil. Yield=99% 1HNMR (DMSO, 200 MHz) δ 2.31 (3H, s), 2.93 (6H, s), 6.74 (1H, dd, J=8 Hz, J′=0.8 Hz), 6.85 (1H, s), 7.47 (1H, d, J=8 Hz)
- Benzonitrile 16bf (2.9 g, 18.1 mmol) dissolved in 25 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 1.38 g) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.35 g of an oil. Yield=80% 1HNMR (DMSO, 200 MHz) δ 2.65 (2H, bs), 2.25 (3H, s), 2.60 (6H, s), 3.70 (2H, s), 6.80 (2H, m), 7.27 (1H, d, J=7.4 Hz)
- Amine 2bf (1.1 g, 6.7 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.93 g, 6.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 15 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (1 g, 6.7 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 450 mg of a pale yellow solid. Yield=19% 1HNMR (DMSO, 200 MHz) δ 2.26 (3H, s), 2.59 (6H, m), 4.33 (2H, d, J=5.6 Hz), 6.60 (2H, m), 6.87 (4H, m), 7.18 (1H, d, J=7.6 Hz), 8.28 (1H, s), 9.96 (1H, bs), 10.60 (1H, bs); [M+1] 339.56 (C18H21N5O2 requires 339.39).
-
- To commercially available 2-fluoro-4-methylbenzonitrile 15b (2.5 g, 18.5 mmol) was added piperidine (4 equiv., 7.3 ml) and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 2.3 g of a white solid. Yield=65% 1HNMR (DMSO, 200 MHz) δ 1.62 (6H, m), 2.32 (3H, s), 3.07 (4H, m), 6.87 (1H, dd, J=7.8 Hz, J′=0.8 Hz), 6.95 (1H, s), 7.53 (1H, d, J=7.8 Hz)
- Benzonitrile 16bh (2.3 g, 11.5 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 873 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 2.25 g of an oil. Yield=96% 1HNMR (DMSO, 200 MHz) δ 1.59 (6H, m), 2.24 (3H, s), 2.76 (4H, m), 3.67 (2H, s), 6.80 (2H, m), 7.27 (1H, d, J=8.4 Hz)
- Amine 2bh (1.1 g, 5.4 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.56 g, 5.4 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 15 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (1 g, 6.7 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 450 mg of a white solid. Yield=22% 1HNMR (DMSO, 200 MHz) δ 1.58 (6H, m), 2.78 (4H, m), 4.34 (2H, d, J=5.8 Hz), 6.59 (2H, m), 6.90 (4H, m), 7.18 (1H, d, J=7.6 Hz), 8.26 (1H, s), 10.01 (1H, bs), 10.60 (1H, bs); [M+1] 379.51 (C21H25N5O2 requires 379.46).
-
- Commercially available 4-aminomethylpyridine (2 g, 20.8 mmol) was dissolved in 60 ml of AcOEt and at 0° C. triphosgene (5.8 g, 21 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (3.16 g, 21 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (80 ml) and washed with water (1×40 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 640 mg of a white solid. Yield=11% 1HNMR (DMSO, 200 MHz) δ 4.34 (2H, d, J=5.8 Hz), 6.62 (1H, dd, J=7.6 Hz, J′=1 Hz), 6.92 (3H, m), 7.31 (2H, dd, J=4.4 Hz, J′=1.4 Hz), 8.49 (3H, m), 10.03 (1H, bs), 10.59 (1H, bs); [M+1] 284.1 (C14H13N5O2 requires 283.29).
-
- Commercially available (6-chloropyridin-3-yl)methanamine (1 g, 7 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.93 g, 7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (1 g, 6.7 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (80 ml) and washed with water (1×40 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 450 mg of a pale yellow solid. Yield=21% 1HNMR (DMSO, 200 MHz) δ 4.32 (2H, d, J=5.8 Hz), 6.62 (1H, d, J=7.2 Hz), 6.85 (3H, m), 7.48 (1H, d, J=8.4 Hz), 7.81 (1H, dd, J=8.2 Hz, J′=2.4 Hz), 8.33 (2H, m), 10.02 (1H, bs), 10.60 (1H, bs); [M+1] 317.8 (C14H12ClN5O2 requires 317.73).
-
- To commercially available 2-fluoro-4-chlorobenzonitrile 15a (1 g, 6.4 mmol) was added 3-pyrrolidin1-ol (2 equiv., 1 g) and the solution was heated at 80° C. overnight. The reaction was evaporated and the residue was dissolved in AcOEt and washed with water and brine. The organic phase was evaporated obtaining 1.2 g of a white solid. Yield=85% 1HNMR (DMSO, 200 MHz) δ 1.91 (2H, m), 3.54 (4H, m), 4.37 (1H, b), 5.06 (1H, bd, J=3.4 Hz), 6.72 (2H, m), 7.50 (1H, d, J=8.2 Hz)
- Benzonitrile 16ai (1.2 g, 5.4 mmol) dissolved in 15 ml of ether was added dropwise at 0° C. to LiAlH4 (2 equiv., 410 mg) suspended in diethyl ether (40 ml). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of water and filtrated and the salts were washed with ether. The organic phase was separated, anhydrified and evaporated giving 1.18 g of an oil. Yield=96% 1HNMR (DMSO, 200 MHz) δ 1.90 (2H, m), 3.34 (4H, m), 3.67 (2H, s), 4.27 (1H, b), 4.90 (1H, b), 6.76 (2H, m), 7.34 (1H, d, J=8 Hz)
- 1-(2-(aminomethyl)-5-chlorophenyl)pyrrolidin-3-ol 2ai (1.18 g, 5.2 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.4 g, 5.2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1a (674 mg, 4.52 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 8/MeOH 2). The solvent was evaporated and the crude was dissolved in AcOEt (80 ml) and washed with water (1×40 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 390 mg of a pale pink solid. Yield=21% 1HNMR (DMSO, 200 MHz) δ 2.20 (2H, m), 3.33 (4H, m), 3.69 (2H, s), 4.29 (1H, b), 5.20 (1H, b), 6.62 (2H, m), 6.90 (4H, m), 7.27 (1H, d, J=8 Hz), 8.29 (1H, s), 9.95 (1H, bs), 10.60 (1H, bs); [M+1] 402.4 (C19H20ClN5O3 requires 401.85).
-
-
-
- a) Procedure Using Triphosgene
- Commercially available 2-(aminomethyl)-5-(trifluoromethyl)furan (1 ml, 7.7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (2.20 g, 7.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added drop wise to a solution in DMF (5 ml) of compound 1a (720 mg, 4.8 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 780 mg of a white solid. Yield=29% 1HNMR (DMSO, 400 MHz) δ 4.38 (2H, d, J=6 Hz), 6.51 (d, 1H, J=2), 6.64 (d, 1H), 6.85 (m, 2H), 6.87 (m, 1H), 7.15 (m, 1H), 8.30 (s, 1H), 9.97 (s, 1H), 10.60 (s, 1H); [M+1] 340.5 (C14H11F4N4O3 requires 340.26).
- b) Procedure Using CDI
- To a solution of 2-aminomethyl-5-trifluoromethylfurane (1 g, 6.1 mmol) in THF (30 mL) was added CDI (2.1 mol eq) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (1.6 g, 5.9 mmol) was dissolved in DMF (30 mL) and the bicyclic amine 1a was added (0.8 mol eq), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by crystallization from a mixture of MeOH/EtOAc to obtain the title compound as white solid (0.78 g, 2.3 mmol, 30% Yield). 1HNMR (DMSO, 200 MHz) δ 4.38 (d, 2H, J=6); 6.49 (d, 1H, J=4), 6.51 (dd, 1H), 6.85 (m, 2H), 6.94 (dd, 1H), 7.16 (m, 1H), 8.03 (s, 1H), 9.97 (bs, 1H), 10.60 (bs, 1H). [M+1] 340.26 (C14H11F3N4O3 requires 340.21).
-
- To 2-amino-3-nitrophenol 3b (2 g, 13.00 mmol) dissolved in THF (50 ml) was added in one portion DCI (1.5 equiv., 19.6 mmol, 3.176 g) and the reaction was refluxed for 4 hours. (TLC AcOEt 1/petroleum ether 1). The reaction was evaporated and the crude material was dissolved in HCL 2N and extracted 3 times with chloroform. The combined organic phases were washed with water, brine, dried over sodium sulfate and concentrated under vacuum. The crude solid was crystallized from ether giving 1.5 g of a beige solid. Yield=65% 1HNMR (DMSO, 200 MHz) δ 7.27 (1H, t, J=7.8 Hz), 7.72 (1H, dd, J=8.2 Hz, J′=1 Hz), 7.93 (1H, dd, J=8.4 Hz, J′=0.6 Hz), 12.64 (1H, bs)
- To compound 4b (1 g, 5.72 mmol) dissolved in a mixture of 4/1 MeOH/THF (50 ml) C/Pd 10% (250 mg) was added and the reaction was hydrogenated at 60 psi overnight. (TLC AcOEt) The reaction was filtrated through a pad of Celite and the filtrate was evaporated under vacuum. The crude solid was crystallized from ether giving 476 mg of a white solid. Yield=55.5%. 1HNMR (DMSO, 200 MHz) δ 5.07 (2H, bs), 6.47 (2H, m), 6.79 (1H, t, J=8 Hz), 10.93 (1H, bs)
- Commercially available 4-trifluoromethylbenzylamine (0.5 ml, 3.5 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1 g, 3.5 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1b (350 mg, 2.33 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 200 mg of a white solid. Yield=24% 1HNMR (DMSO, 400 MHz) δ 4.41 (2H, d, J=6 Hz), 6.98 (3H, m), 7.05 (1H, m), 7.55 (2H, d), 7.70 (2H, d, J=8 Hz), 8.49 (1H, bs), 11.00 (1H, bs); [M+1] 352.1 (C16H12F3N3O3 requires 351.28).
-
- Commercially available 2-fluoro-4-trifluoromethylbenzylamine (0.5 ml, 3.7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.12 g, 3.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added drop wise to a solution in DMF (5 ml) of compound 1b (360 mg, 2.4 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 100 mg of a white solid. Yield=11% 1HNMR (DMSO, 400 MHz) δ 4.43 (2H, d, J=6 Hz), 6.99 (3H, m), 7.05 (1H, m), 7.62 (3H, m), 8.53 (1H, bs), 10.98 (1H, bs); [M+1] 370.1 (C16H11F4N3O3 requires 369.27).
-
- Commercially available 2-chloro-4-trifluoromethylbenzylamine (572 mg, 2.7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (809 mg, 2.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1b (270 mg, 1.8 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 70 mg of a white solid. Yield=10% 1HNMR (DMSO, 400 MHz) δ 4.45 (2H, d, J=6 Hz), 6.97 (2H, d, J=4.4 Hz), 7.07 (2H, m), 7.63 (1H, d, J=8 Hz), 7.74 (2H, d), 7.86 (1H, s), 8.61 (1H, bs), 10.90 (1H, bs); [M+1] 386.6 (C16H11ClF3N3O3 requires 385.7).
-
- Commercially available 4-fluoro-2-trifluoromethylbenzylamine (0.5 ml, 3.7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.12 g, 3.7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1b (360 mg, 2.4 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 4/petroleum ether 6). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 90 mg of a white solid. Yield=10% 1HNMR (DMSO, 200 MHz) δ 4.36 (2H, d, J=5.6 Hz), 6.71 (1H, t, J=6 Hz), 6.98 (2H, m), 7.56 (4H, m), 8.55 (1H, bs), 11.09 (1H, bs); [M+1] 370.2 (C16H11F4N3O3 requires 369.27).
-
- Commercially available 4-chloro-2-trifluoromethylbenzylamine (1 g, 4.77 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.41 g, 4.77 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (5 ml) of compound 1b (475 mg, 3.2 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 4/petroleum ether 6). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 120 mg of a white solid. Yield=9.7% 1HNMR (DMSO, 200 MHz) δ 4.45 (2H, d, J=5.6 Hz), 6.99 (4H, m), 7.65 (1H, d), 7.73 (1H, d), 7.85 (1H, bs), 8.62 (1H, bs), 11.04 (1H, bs); [M+1] 386.6 (C16H11ClF3N3O3 requires 385.73).
-
- Amine 2a (1.2 g, 5.5 mmol) (Scheme 7) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.63 g, 5.5 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1b (820 mg, 5.5 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 7/petroleum ether 3). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 300 mg of a white solid. Yield=14% 1HNMR (DMSO, 200 MHz) δ 2.51 (6H, s), 4.71 (2H, d, J=5.6 Hz), 6.55 (2H, d, J=8.2 Hz), 7.05 (1H, t, J=7.6 Hz), 7.40 (1H, m), 7.51 (1H, d), 10.06 (1H, bt), 11.53 (1H, bs), 11.80 (1H, bs); [M+1] 395.1 (C18H17F3N4O3 requires 394.35).
-
- Amine 2b (289 mg, 1.2 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (356 mg, 1.2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1b (180 mg, 1.2 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 100 mg of a white solid. Yield=20% 1HNMR (DMSO, 200 MHz) δ 1.94 (4H, m), 3.23 (4H, m), 4.67 (2H, d, J=5.6 Hz), 6.55 (2H, dd, J=8.8 Hz, J′=1.2 Hz), 7.05 (1H, t, J=8.2 Hz), 7.17 (2H, d, J=7.2 Hz), 7.46 (1H, d), 9.98 (1H, t), 11.53 (1H, bs), 11.80 (1H, bs); [M+1] 421.2 (C20H19F3N4O3 requires 420.39).
-
- Amine 2c (350 mg, 1.33 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (395 mg, 1.33 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1b (100 mg, 0.66 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 40 mg of a white solid. Yield=14% 1HNMR (DMSO, 400 MHz) δ 1.55 (2H, m), 1.68 (4H, m), 2.85 (4H, m), 4.43 (2H, d, J=5.6 Hz), 6.88 (1H, t), 6.98 (2H, m), 7.05 (1H, m), 7.31 (1H, s), 7.42 (1H, d), 7.52 (1H, d, J=8 Hz), 8.52 (1H, s), 11.00 (1H, bs); [M+1] 435.3 (C21H21F3N4O3 requires 434.41).
-
- Amine 2d (362 mg, 3.8 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.12 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1b (384 mg, 2.56 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 200 mg of a pale rose solid. Yield=18% 1HNMR (DMSO, 400 MHz) δ 2.91 (4H, m), 3.76 (4H, m), 4.46 (2H, d, J=5.6 Hz), 6.97 (3H, m), 7.05 (1H, m), 7.36 (1H, s), 7.46 (1H, d), 7.54 (1H, d), 8.53 (1H, s), 11.00 (1H, bs); [M+1] 437.1 (C20H19F3N4O4 requires 436.4).
-
- Commercially available p-chlorobenzylamine (1.6 g, 11.4 mmol) was dissolved in 60 ml of AcOEt and at 0° C. triphosgene (3.38 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 30 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1b (1.7 g, 11.4 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 7/petroleum ether 3). The solvent was evaporated and the crude was dissolved in AcOEt (80 ml) and washed with water (1×50 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 500 mg of a white solid. Yield=14% 1HNMR (DMSO, 200 MHz) δ 4.57 (2H, d, J=5.8 Hz), 6.53 (2H, m), 7.04 (1H, m), 7.41 (4H, s), 9.88 (1H, t), 11.53 (1H, s), 11.80 (1H, bs); [M+1] 318.5 (C15H12ClN3O3 requires 317.73).
-
- DCI (36.4 mmol, 5.9 g) was added in one portion to 2-amino-4-chloro-6-nitrophenol 5 (5 g, 26.5 mmol) suspended in AcOEt (150 ml) and the reaction was stirred vigorously for 2 hours. 100 ml of water were added to the reaction and then the organic phase was eliminated by evaporation. HCl 20% was added (20 ml) and the resulting solid material was filtered and washed with HCl 1N, cold water, MeOH and ether obtaining 5.6 g of a beige solid. Yield=98% 1HNMR (DMSO, 200 MHz) δ 7.59 (1H, d, J=2.2 Hz), 7.86 (1H, d, J=2.2 Hz), 12.56 (1H, bs)
- To compound 6 (4 g, 18.56 mmol) dissolved in a mixture of 4/1 MeOH/DMF (50 ml) C/Pd 10% (500 mg) was added and the reaction was hydrogenated at 60 psi overnight. (TLC AcOEt 3/petroleum ether 7) The reaction was filtrated through a pad of Celite and the filtrate was evaporated under vacuum. The crude solid was crystallized from ether giving 2.8 g of a beige solid. Yield=99%. 1HNMR (DMSO, 200 MHz) δ 5.31 (2H, bs), 6.26 (1H, dd, J=7.6 Hz, J′=1 Hz), 6.38 (1H, dd, J=8.4 Hz, J′=1.2 Hz), 6.80 (1H, t, J=8 Hz), 11.32 (1H, bs)
- Commercially available 4-trifluoromethylbenzylamine (1 ml, 7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (2 g, 7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1c (700 mg, 4.66 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 4/petroleum ether 6). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 320 mg of a white solid. Yield=19.5% 1HNMR (DMSO, 400 MHz) δ 4.41 (2H, d, J=6 Hz), 6.67 (1H, dd, J=7.6 Hz, J′=1.2 Hz), 7.00 (1H, t, J=8 Hz), 7.09 (1H, t), 7.51 (2H, d, J=8 Hz), 7.70 (3H, m), 8.73 (1H, s), 10.60 (1H, bs); [M+1] 352.1 (C16H12F3N3O3 requires 351.3).
-
- Amine 2b (795 mg, 3.3 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (979 mg, 3.3 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1c (330 mg, 2.2 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 240 mg of a white solid. Yield=26% 1HNMR (DMSO, 200 MHz) δ 1.91 (4H, m), 3.22 (4H, m), 4.38 (2H, d, J=5.4 Hz), 6.66 (1H, dd, J=7.6 Hz, J′=1.2 Hz), 7.00 (3H, m), 7.19 (1H, d, J=8 Hz), 7.39 (1H, d), 7.72 (1H, dd, J=8.6 Hz, J′=1), 8.72 (1H, bs), 11.63 (1H, bs); [M+1] 421.3 (C20H19F3N4O3 requires 420.4).
-
- Amine 2c (1 g, 3.8 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.13 g, 3.8 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1c (390 mg, 2.6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 160 mg of a white solid. Yield=14% 1HNMR (DMSO, 200 MHz) δ 1.56 (2H, bs), 1.69 (4H, bs), 2.85 (4H, m), 4.42 (2H, d, J=5.6 Hz), 6.66 (1H, dd, J=8 Hz, J′=0.8 Hz), 7.01 (2H, m), 7.32 (1H, s), 7.44 (2H, dd, J=7.6 Hz), 7.72 (1H, dd, J=8.6 Hz, J′=1 Hz), 8.73 (1H, bs), 11.68 (1H, bs); [M+1] 435.2 (C21H21F3N4O3 requires 434.4).
-
- To a solution of [6-(trifluoromethyl)-3-pyridyl)]-methanamine (1 g, 4.7 mmol) in THF (30 mL) was added CDI (2.1 mol eq) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (quantitative yield). The oil obtained (0.34 g, 1.2 mmol) was dissolved in DMF (15 mL) and the bicyclic amine 1c (Scheme 3) was added (0.8 mol eq), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to obtain the product as a white solid (0.064 g, 20% Yield). 1HNMR (DMSO, 200 MHz) δ 4.46 (d, 2H, J=6), 6.66 (d, 1H, J=8), 6.96 (t, 1H), 7.04 (bt, 1H), 7.64 (d, 1H, J=8), 7.86 (m, 2H), 8.70 (s, 1H), 8.77 (s, 1H), 11.60 (bs, 1H). [M+1] 358.02 (C15H11F3N4O3 requires 357.27).
-
- To a solution of 2-aminomethyl-5-trifluoromethylfurane (1 g, 6.1 mmol) in THF (30 mL) was added CDI (2.1 mol eq) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (1.6 g, 5.9 mmol). The oil obtained (0.31 g, 1.19 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1c (Scheme 3) was added (0.8 mol eq, 0.15 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as white solid (0.05 g, 13% Yield). 1HNMR (DMSO, 200 MHz) δ 4.37 (d, 2H, J=6), 6.48 (d, 1H, J=2), 6.70 (dd, 1H), 7.01 (m, 2H), 7.16 (m, 1H), 7.70 (dd, 1H, J=2), 8.69 (s, 1H), 11.62 (bs, 1H). [M+1] 341.61 (C14H10F3N3O4 requires 341.24).
-
- To 2-chloro-6-trifluoromethyl-nicotinonitrile (0.5 g, 2.4 mmol) was added pyrrolidine (4 mol eq) and the mixture was heated in neat at 90° C. for 3 h. The mixture was concentrated, water was added and the mixture was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified and evaporated to dryness to obtain 2-(1-pyrrolidin)-6-(trifluoromethyl)nicotinonitrile as pale yellow oil (0.88 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.44 (m, 4H), 2.10 (m, 4H), 7.25 (d, 1H, J=8), 7.54 (d, 1H).
- The nitrile 28e (0.88 g) was added in small portion to a mixture of LiAlH4 (0.26 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 29e as pale yellow oil (0.58 g, 2.3 mmol, 70% Yield) used without further purification.
- To a solution of 2-(1-pirrolidinyl)-6-(trifluoromethyl)-3-aminomethyl-pyridine 29e (0.58 g, 2.3 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 0.77 g) and the mixture was heated for 5 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.9 g, 2.25 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.31 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (9.5:0.5 EtoAc:MeOH) to obtain the product as a pale yellow solid (0.1 g, 0.25 mmol, 12% Yield). 1HNMR (DMSO, 400 MHz) δ 1.89 (m, 4H), 3.56 (m, 4H), 4.43 (d, 2H, J=6), 6.60 (dd, 1H), 6.64 (t, 1H), 6.73 (t, 1H), 6.79 (d, 1H), 7.13 (d, 1H, J=6), 7.72 (d, 1H, J=8), 7.95 (s, 1H), 8.31 (s, 1H), 9.97 (bs, 1H), 10.60 (bs, 1H). [M+1] 421.10 (C19H19F3N6O2 requires 420.39).
-
- To 2-chloro-6-methyl-3-pyridine carbonitrile (1 g, 6.5 mmol) was added piperidine (2.56 mL, 4 mol eq) and the mixture was heated in neat at 90° C. for 4 h. The mixture was concentrated, water was added and the mixture was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified and evaporated to dryness to obtain 32b as pale yellow oil (1.28 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.54 (m, 6H), 2.16 (m, 4H), 3.11 (s, 3H), 7.28 (d, 1H, J=8), 7.64 (d, 1H).
- The nitrile 32b (1.44 g, 7.1 mmol)) was added in small portion to a mixture of LiAlH4 (0.55 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 33b as yellow oil (1.06 g, 5.18 mmol, 74% Yield) used without further purification.
- To a solution of 33b (1.06 g, 5.18 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 1.76 g) and the mixture was heated for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (1.04 g, 3.36 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.40 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtoAc)) to obtain the product as a pale yellow solid (0.30 g, 0.78 mmol, 31% Yield). 1HNMR (DMSO, 400 MHz) δ 1.63 (m, 6H), 2.34 (s, 3H), 2.95 (m, 4H), 4.26 (d, 2H, J=6), 6.60 (m, 2H), 6.87-6.93 (m, 3H), 7.54 (d, 1H, J=8), 8.28 (s, 1H), 9.99 (bs, 1H), 10.59 (bs, 1H). [M+1] 381.5 (C20H24N6O2 requires 380.44).
-
- To a solution of triphosgene (0.148 g, 0.37 mol eq) in anh. CH2Cl2 (10 mL) was slowly added the amine 1a (0.2 g, 1.34 mmol) solubilized in CH2Cl2 (10 mL) and DIEA (2.2 mol eq, 0.5 mL). After the addition was completed, the reaction mixture was stirred at room temp. for 15 min. Then the [5-(trifluoromethyl)-2-pyridyl]methanamine (1 mol eq, 0.23 g) solubilized in CH2Cl2 (10 mL) and DIEA (2.2 mol eq, 0.5 mL) was added in one portion. The mixture obtained was stirred at room temp. for 12 h. The solvent was removed at reduced pressure, water was added and the mixture was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over sodium sulfate and evaporated to dryness. The residue was purified by chromatography (9.5:0.5 EtoAc:MeOH) to obtain the product as yellow solid (0.075 g, 0.22 mmol, 16% Yield). 1HNMR (DMSO, 400 MHz) δ 4.35 (d, 2H, J=6), 6.22 (t, 1H, J=4), 6.65 (d, 1H, J=6), 6.88 (m, 2H), 7.63 (d, 1H, J=8), 8.21 (dd, 1H), 8.48 (s, 1H), 8.91 (m, 1H), 9.99 (bs, 1H), 10.60 (bs, 1H). [M+1] 351.60 (C15H12F3N5O2 requires 351.28).
-
- To a solution of 2-amino-3-nitrophenol (4.62 g, 30 mmol) in DMF (20 ml) ethylbromoacetate (3.3 ml, 30 mmol) and K2CO3 (4.56 g, 33 mmol) were added and the reaction was stirred at room temperature for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by crystallization from ether/hexane gave 4.65 g of a yellow solid. Yield: 80%. 1HNMR (DMSO, 200 MHz) δ 4.74 (2H, s), 7.15 (1H, t, J=8.4 Hz), 7.41 (1H, dd, J=8.2 Hz, J′=1.6 Hz), 7.77 (1H, dd, J=8.4 Hz, J′=1.2 Hz), 10.38 (1H, bs)
- To compound 11 (2.3 g, 11.85 mmol) dissolved in a mixture of 4/1 MeOH/THF (50 ml) C/Pd 10% (500 mg) was added and the reaction was hydrogenated at 60 psi overnight. (TLC AcOEt 3/petroleum ether 7) The reaction was filtrated through a pad of Celite and the filtrate was evaporated under vacuum. The crude solid was crystallized from ether giving 1.75 g of a beige solid. Yield=90%. 1HNMR (DMSO, 200 MHz) δ 4.44 (2H, s), 6.18 (1H, dd, J=8 Hz, J′=1.2 Hz), 6.31 (1H, dd, J=8 Hz, J′=1.2 Hz), 6.64 (1H, t, J=7.8 Hz), 9.96 (1H, bs)
- Commercially available 4-trifluoromethylbenzylamine (1 ml, 7 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (2 g, 7 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1e (766 mg, 4.66 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 550 mg of a white solid. Yield=32% 1HNMR (DMSO, 400 MHz) δ 4.40 (2H, d, J=5.6 Hz), 4.52 (2H, s), 6.70 (1H, dd, J=8 Hz, J′=1.2 Hz), 6.86 (2H, t, J=8 Hz), 7.16 (1H, dd, J=8 Hz, J′=1.2 Hz), 7.54 (2H, d, J=8 Hz), 7.70 (2H, d, J=8.4 Hz), 8.18 (1H, s), 10.11 (1H, bs); [M+1] 366.2 (C17H14F3N3O3 requires 365.31).
-
- Amine 2b (471 mg, 1.94 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (576 mg, 1.94 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1e (213 mg, 1.3 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 120 mg of a white solid. Yield=21% 1HNMR (DMSO, 400 MHz) δ 1.91 (4H, m), 3.21 (4H, m), 4.48 (2H, d, J=6 Hz), 4.63 (2H, s), 6.64 (2H, dd, J=10.8 Hz, J′=8 Hz), 6.88 (1H, t, J=8 Hz), 7.12 (1H, s), 7.19 (1H, d, J=8.8 Hz), 7.34 (1H, d, J=8 Hz), 8.63 (1H, t), 10.68 (1H, bs), 10.90 (1H, bs); [M+1] 435.2 (C21H21F3N4O3 requires 434.4).
-
- Amine 2c (1 g, 3.8 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.13 g, 3.8 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1e (425 mg, 2.6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 530 mg of a white solid. Yield=45% 1HNMR (DMSO, 400 MHz) δ 1.56 (2H, bs), 1.69 (4H, bs), 4.55 (2H, d, J=5.6 Hz), 4.64 (2H, s), 6.64 (2H, dd, J=14 Hz, J′=7.6 Hz), 6.88 (1H, t, J=8 Hz), 7.32 (1H, s), 7.39 (2H, s), 8.64 (1H, t), 10.66 (1H, bs), 10.88 (1H, bs); [M+1] 449.2 (C22H23F3N4O3 requires 448.4).
-
- To a solution of 2-amino-4-chloro-6-nitrophenol (5 g, 26.5 mmol) in DMF (20 ml) ethylbromoacetate (3 ml, 26.5 mmol) and K2CO3 (4 g, 29.15 mmol) were added and the reaction was stirred at room temperature for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with NaOH 5%, water and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by crystallization from ether/AcOEt gave 1.13 g of a beige solid. Yield: 19%. 1HNMR (DMSO, 200 MHz) δ 4.79 (2H, s), 7.15 (1H, d, J=2.6 Hz), 7.66 (1H, d, J=0.2.8 Hz), 11.21 (1H, bs)
- To compound 12 (1.13 g, 4.92 mmol) dissolved in a mixture of 4/1/1 MeOH/THF/DMF (60 ml) C/Pd 10% (500 mg) was added and the reaction was hydrogenated at 60 psi overnight. (TLC AcOEt 3/petroleum ether 7) The reaction was filtrated through a pad of Celite and the filtrate was evaporated under vacuum. The crude solid was crystallized from ether giving 484 mg of a beige solid. Yield=49%. 1HNMR (DMSO, 200 MHz) δ 3.80 (2H, bs), 4.60 (2H, s), 6.63 (1H, dd, J=7.2 Hz, J′=1.4 Hz), 6.83 (2H, m), 10.79 (1H, bs)
- Commercially available 4-trifluoromethylbenzylamine (0.6 ml, 4.2 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.2 g, 4.2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (460 mg, 2.8 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 250 mg of a white solid. Yield=24% 1HNMR (DMSO, 200 MHz) δ 4.31 (2H, d, J=6.2 Hz), 6.46 (1H, dd), 6.70 (2H, t), 6.81 (1H, t), 7.45 (2H, d, J=8 Hz), 7.70 (4H, m), 8.16 (1H, s), 10.72 (1H, bs); [M+1] 366.1 (C17H14F3N3O3 requires 365.3).
-
- Amine 2a (480 mg, 2.2 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (653 mg, 2.2 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (320 mg, 1.6 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 130 mg of a white solid. Yield=19% 1HNMR (DMSO, 200 MHz) δ 2.70 (6H, s), 4.39 (2H, d, J=5.2 Hz), 4.62 (2H, s), 6.48 (1H, dd, J=7.8 Hz, J′=1.2 Hz), 6.81 (1H, t), 7.32 (1H, s), 7.42 (3H, m), 7.72 (1H, dd, J′=1.4 Hz), 8.19 (1H, s), 10.65 (1H, bs); [M+1] 409.1 (C19H19F3N4O3 requires 408.37).
-
- Amine 2b (750 mg, 3.1 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (920 mg, 3.1 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (620 mg, 3.1 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 120 mg of a white solid. Yield=9% 1HNMR (DMSO, 200 MHz) δ 1.89 (4H, m), 3.20 (4H, m), 4.33 (2H, d, J=5.6 Hz), 4.60 (2H, s), 6.45 (1H, dd, J=8 Hz, J′=1.2 Hz), 6.79 (1H, t, J=8.4 Hz), 7.04 (1H, bs), 7.16 (1H, d), 7.23 (1H, t), 7.35 (1H, d), 7.72 (1H, dd, J=8.2 Hz, J′=1.4 Hz), 8.16 (1H, bs), 10.63 (1H, bs); [M+1] 435.1 (C21H21F3N4O3 requires 434.41).
-
- Amine 2c (420 mg, 1.6 mmol) (Scheme 7) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (475 mg, 1.6 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and dissolved in 5 ml of DMF. The solution of the isocyanate was added drop wise to a solution in DMF (10 ml) of compound 1f (180 mg, 1.1 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 160 mg of a white solid. Yield=32% 1HNMR (DMSO, 200 MHz) δ 1.57 (2H, bs), 1.68 (4H, bs), 2.85 (4H, m), 4.39 (2H, d, J=5.6 Hz), 4.62 (2H, s), 6.47 (1H, dd, J=7.8 Hz, J′=1.2 Hz), 6.81 (1H, t, J=8 Hz), 7.31 (2H, m), 7.43 (2H, m), 7.74 (1H, dd, J=8.4 Hz, J′=1.2 Hz), 8.18 (1H, bs), 10.65 (1H, bs); [M+1] 449.2 (C22H23F3N4O3 requires 448.4).
-
- Commercially available p-chlorobenzylamine (0.98 ml, 8 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (2.37 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 20 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (1.42 g, 7.11 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and to the crude 5% HCl was added. The solid was filtrated, washed with water, MeOH and diethyl ether obtaining 1.6 g of a white product. Yield=68% 1HNMR (DMSO, 200 MHz) δ 4.27 (2H, d, J=5.6 Hz), 4.61 (2H, s), 6.47 (1H, dd, J=7.8 Hz, J′=1.2 Hz), 6.81 (1H, t, J=8.2 Hz), 7.35 (5H, m), 7.73 (1H, dd, J=8.2 Hz, J′=1.2 Hz), 8.10 (1H, bs), 10.65 (1H, bs); [M+1] 332.4 (C16H14ClN3O3 requires 331.75).
-
- Amine 2af (1 g, 5.5 mmol) (Scheme 8) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1.63 g, 1 equiv.) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (860 mg, 4.31 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1 petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 450 mg of a white solid. Yield=28% 1HNMR (DMSO, 200 MHz) δ 2.63 (6H, m), 4.31 (2H, d, J=5.6 Hz), 4.61 (2H, s), 6.47 (1H, dd, J=7.8 Hz, J′=1.6 Hz), 6.81 (1H, t, J=8.4 Hz), 7.07 (2H, m), 7.25 (2H, m), 7.75 (1H, dd, J=8.4 Hz, J′=1.4 Hz), 8.14 (1H, bs), 10.65 (1H, bs); [M+1] 374.8 (C17H18ClN4O3 requires 374.82).
-
- Amine 2ag (1 g, 4.9 mmol) (Scheme 8) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.46 g, 4.9 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (20 ml) of compound 1f (980 mg, 4.9 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 250 mg of a white solid. Yield=13% 1HNMR (DMSO, 200 MHz) δ 1.89 (4H, m), 3.17 (4H, m), 4.35 (2H, d), 4.61 (2H, s), 6.47 (1H, dd), 6.80 (3H, m), 7.17 (2H, m), 7.82 (1H, dd), 8.15 (1H, bs), 10.75 (1H, bs); [M+1] 401.2 (C20H21ClN4O3 requires 400.86).
-
- Amine 2ah (1.7 g, 7.59 mmol) (Scheme 8) was dissolved in 50 ml of AcOEt and at 0° C. triphosgene (2.26 g, 7.59 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (20 ml) of compound 1f (1.5 g, 7.51 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 210 mg of a white solid. Yield=7% 1HNMR (DMSO, 200 MHz) δ 1.54 (2H, m), 1.66 (4H, m), 2.78 (4H, m), 4.29 (2H, d, J=5.6 Hz), 4.35 (2H, d), 4.61 (2H, s), 6.47 (1H, dd, J=7.8 Hz, J′=1.2 Hz), 6.81 (1H, t, J=8 Hz), 7.13 (4H, m), 7.75 (1H, dd, J=8.2 Hz, J′=1.4 Hz), 8.14 (1H, bs), 10.66 (1H, bs); [M+1] 414.9 (C21H23ClN4O3 requires 414.89).
-
- Amine 2bh (1.08 g, 5.3 mmol) (Scheme 8) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.56 g, 5.4 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 15 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (1 g, 5.46 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 1/petroleum ether 9). The solvent was evaporated and the crude was dissolved in AcOEt (50 ml) and washed with water (1×30 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 150 mg of a white solid. Yield=7% 1HNMR (DMSO, 200 MHz) δ 1.63 (6H, m), 2.25 (3H,$), 2.76 (4H, m), 4.28 (2H, d, J=5.4 Hz), 4.61 (2H, s), 6.46 (1H, dd, J=7.8 Hz, J′=1.4 Hz), 6.81 (3H, m), 7.12 (2H, m), 7.75 (1H, dd, J=8.2 Hz, J′=1.6 Hz), 8.11 (1H, s), 10.66 (1H, bs); [M+1] 395.0 (C22H26N4O3 requires 394.5).
-
- Commercially available (6-chloropyridin-3-yl)methanamine (800 mg, 5.61 mmol) was dissolved in 40 ml of AcOEt and at 0° C. triphosgene (1.54 g, 5.6 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 10 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 1f (900 mg, 4.51 mmol) and the mixture was warmed at 80° C. for 8 hours. (TLC AcOEt 9.5/MeOH 0.5). The solvent was evaporated and the crude was dissolved in AcOEt (80 ml) and washed with water (1×40 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 180 mg of a beige solid. Yield=12% 1HNMR (DMSO, 200 MHz) δ 4.31 (2H, d, J=5.6 Hz), 4.60 (2H, s), 6.47 (1H, dd), 6.81 (1H, t), 7.40 (1H, t), 7.50 (1H, d, J=8.2 Hz), 7.72 (2H, m), 8.13 (1H, bs), 8.34 (1H, bs), 10.66 (1H, bs); [M+1] 332.8 (C15H13ClN4O3 requires 332.74).
-
- 4-trifluoromethylphenylacetic acid (300 mg, 1.47 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.28 ml, 1.3 equiv) and amine 1a (260 mg, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt as eluant gave 150 mg of a white solid. Yield=30% 1HNMR (DMSO, 400 MHz) δ 3.78 (2H, s), 6.75 (1H, d), 6.84 (1H, t), 7.05 (1H, d), 7.56 (2H, d, J=8 Hz), 7.70 (2H, d, J=8 Hz), 9.80 (1H, bs), 10.18 (1H, bs), 10.64 (1H, bs); [M+1] 336.1 (C16H12F3N3O2 requires 335.3).
-
- 4-trifluoromethylphenylacetic acid (453 mg, 2.2 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.43 ml, 1.3 equiv) and amine 1b (400 mg, 2.66 mmol) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt as eluant gave 360 mg of a white solid. Yield=48% 1HNMR (DMSO, 200 MHz) δ 3.80 (2H, s), 7.10 (3H, m), 7.58 (2H, d, J=8.4 Hz), 7.70 (2H, d, J=8.2 Hz), 10.06 (1H, bs), 11.14 (1H, bs); [M+1] 336.9 (C16H11F3N2O3 requires 336.3).
-
- 4-trifluoromethylphenylacetic acid (453 mg, 2.2 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.43 ml, 1.3 equiv) and amine 1c (400 mg, 2.66 mmol) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 3/petroleum ether 7 as eluant gave 340 mg of a white solid. Yield=46% 1HNMR (DMSO, 200 MHz) δ 3.86 (2H, s), 6.86 (1H, d), 7.06 (1H, t), 7.58 (3H, m), 7.70 (2H, d, J=8.4 Hz), 10.32 (1H, bs), 8.73 (1H, bs), 11.80 (1H, bs); [M+1] 337.2 (C16H11F3N2O3 requires 336.3).
-
- 4-trifluoromethylphenylacetic acid (408 mg, 2 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.358 ml, 1.2 equiv) and amine 1d (427 mg, 2.6 mmol) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt as eluant gave 550 mg of a white solid. Yield=78.5% 1HNMR (DMSO, 200 MHz) δ 3.81 (2H, s), 4.55 (2H, s), 6.87 (2H, m), 7.05 (1H, dd, J=7.6 Hz, J′=6 Hz), 7.56 (2H, d, J=8.2 Hz), 7.70 (2H, d, J=8 Hz), 9.69 (1H, bs), 10.38 (1H, bs); [M+1] 351.2 (C17H13F3N2O3 requires 350.3).
-
- 2-amino-3-hydroxybenzoic acid (1.2 g, 7.8 mmol) was suspended in 20 ml of THF and at 0° C. CDI (1.9 g, 1.5 equiv.) was added. The mixture was warmed at 80° C. for 5 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by crystallization from EtOAc/ether gave 520 mg of an orange solid. Yield=37% 1HNMR (DMSO, 200 MHz) δ 7.45 (3H, m), 10.40 (1H, bs), 12.00 (1H, bs)
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (260 mg, 1.45 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.260 ml, 1.2 equiv) and 4-chloro-2-trifluorobenzylamine (0.25 ml, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 3/petroleum ether 7 as eluant gave 110 mg of a white solid. Yield=22.5% 1HNMR (DMSO, 200 MHz) δ 4.58 (2H, d, J=5.8 Hz), 7.16 (1H, t, J=8 Hz), 7.42 (1H, dd, J=8.2 Hz, J′=1 Hz), 7.55 (2H, d, J=8.2 Hz), 7.65 (3H, m), 9.29 (1H, bt), 11.60 (1H, bs); [M+1] 336.9 (C16H11F3N2O3 requires 336.3).
-
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (560 mg, 3.1 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.55 ml, 1.2 equiv) and amine 2c (964 mg, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 4/petroleum ether 6 as eluant gave 250 mg of a pale yellow solid. Yield=19% 1HNMR (DMSO, 200 MHz) δ 4.58 (2H, d, J=5.8 Hz), 7.14 (1H, t, J=8 Hz), 7.41 (4H, m), 7.68 (1H, dd, J=8 Hz, J′=0.8 Hz), 9.20 (1H, bt), 11.59 (1H, bs); [M+1] 420.2 (C21H20F3N3O3 requires 419.4).
-
- 2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxylic acid 2l (240 mg, 1.3 mmol) was dissolved in 20 ml of THF and at 0° C. DEPC (0.23 ml, 1.2 equiv) and amine 2d (420 mg, 1.2 equiv.) were added to the solution. The mixture was warmed at 80° C. overnight, then evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 4/petroleum ether 6 as eluant gave 100 mg of a white solid. Yield=18% 1HNMR (DMSO, 200 MHz) δ 2.94 (4H, bs), 3.78 (4H, bs), 4.64 (2H, d, J=5.6 Hz), 7.18 (1H, t), 7.43 (4H, m), 7.66 (1H, d), 9.35 (1H, bs), 11.60 (1H, bs); [M+1] 422.2 (C20H18F3N3O4 requires 421.37).
-
- 2-amino-3-hydroxybenzoic acid (2 g, 13 mmol) was dissolved in 20 ml of DMF and at 0° C. EDCI (2.7 g, 1.2 equiv.), hydroxybenzotriazole (1.9 g, 1.2 equiv.) and 4-trifluoromethylbenzylamine (2 ml, 1.2 equiv.) were added. The mixture was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by crystallization from EtOAc/ether gave 3.5 g of a beige solid. Yield=86% 1HNMR (DMSO, 200 MHz) δ 4.49 (2H, d, J=5.6 Hz), 6.00 (2H, bs), 6.41 (1H, t, J=8 Hz), 6.76 (1H, d, J=7.6 Hz), 7.11 (1H, d, J=8.2 Hz), 7.51 (2H, d, J=8 Hz), 7.69 (2H, d, J=8 Hz), 8.81 (1H, bt), 9.58 (1H, bs); [M+1] 311.1 (C15H13F3N2O2 requires 310.27).
- N-(4-(trifluoromethyl)benzyl)-2-amino-3-hydroxybenzamide 22a (1 g, 3.2 mmol) was dissolved in 20 ml of DMF and at 0° C. TEA (0.9 ml, 2 equiv.) and chloroacetyl chloride (0.3 ml, 1.2 equiv.) were added. The mixture was stirred at rt for 2 hours. K2CO3 (885 mg, 2 equiv.) was added and the reaction was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 1/petroleum ether 1 as eluant gave 500 mg of a white solid. Yield=44% 1HNMR (DMSO, 200 MHz) δ 4.56 (2H, d, J=5.4 Hz), 4.65 (2H, s), 7.04 (2H, t), 7.17 (1H, d, J=7.8 Hz), 7.55 (2H, d, J=8 Hz), 7.71 (2H, d, J=8.2 Hz), 9.52 (1H, bs), 10.96 (1H, bs); [M+1] 351.1 (C17H13F3N2O3 requires 350.3).
-
- 2-amino-3-hydroxybenzoic acid (1 g, 6.5 mmol) was dissolved in 20 ml of DMF and at 0° C. EDCI (1.4 g, 1.2 equiv.), hydroxybenzotriazole (1 g, 1.2 equiv.) and amine 2c (2 g, 1.2 equiv.) were added. The mixture was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by crystallization from EtOAc/ether gave 1.6 g of a beige solid. Yield=62.5% [M+1] 393.4 (C20H22F3N3O2 requires 393.4).
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-2-amino-3-hydroxybenzamide 22b (2.5 g, 6.4 mmol) was dissolved in 20 ml of DMF and at 0° C. TEA (1.8 ml, 2 equiv.) and chloroacetyl chloride (0.6 ml, 1.2 equiv.) were added. The mixture was stirred at rt for 2 hours. K2CO3 (1.77 g, 2 equiv.) was added and the reaction was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 1/petroleum ether 1 as eluant gave 1 g of a white solid. Yield=36% 1HNMR (DMSO, 200 MHz) δ 1.57 (2H, bs), 1.69 (4H, bs), 2.82 (4H, m), 4.60 (2H, d, J=5.4 Hz), 4.67 (2H, s), 7.09 (1H, t, J=7.8 Hz), 7.20 (1H, dd, J=8 Hz, J′=1.2 Hz), 7.33 (1H, m), 7.41 (2H, m), 7.57 (1H, m), 9.38 (1H, bt), 11.02 (1H, bs); [M+1] 434.3 (C22H22F3N3O3 requires 433.4).
-
- 3-amino-2-hydroxybenzoic acid (1 g, 6.5 mmol) was dissolved in 20 ml of DMF and at 0° C. EDCI (1.4 g, 1.2 equiv.), hydroxybenzotriazole (1 g, 1.2 equiv.) and amine 2c (2 g, 1.2 equiv.) were added. The mixture was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 1/petroleum ether 9 as eluant gave 1.3 g of a beige solid. Yield=51% [M+1]393.4 (C20H22F3N3O2 requires 393.4).
- N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-amino-2-hydroxybenzamide 24b (830 mg, 2.1 mmol) was dissolved in 10 ml of DMF and at 0° C. TEA (0.58 ml, 2 equiv.) and chloroacetyl chloride (0.2 ml, 1.2 equiv.) were added. The mixture was stirred at rt for 2 hours. K2CO3 (580 mg, 2 equiv.) was added and the reaction was stirred at rt for 20 hours. The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column using AcOEt 1/petroleum ether 1 as eluant gave 460 mg of a white solid. Yield=50% 1HNMR (DMSO, 200 MHz) δ 1.57 (2H, bs), 1.69 (4H, bs), 2.84 (4H, m), 4.58 (2H, d, J=5.2 Hz), 4.69 (2H, s), 7.03 (2H, m), 7.30 (2H, m), 7.45 (2H, m), 8.70 (1H, bt), 10.85 (1H, bs); [M+1] 434.1 (C22H22F3N3O3 requires 433.4).
-
- TEA (3.34 ml, 2 equiv.) and after chloroacetyl chloride (1.15 ml, 1.2 equiv.) were added dropwise to a solution of commercially available 2-aminobenzene-1,3-diol (1.5 g, 11.99 mmol) in 20 ml of DMF. After one hours of stirring at room temperature, K2CO3 (3.3 g, 2 equiv.) was added and the reaction was stirred at room temperature overnight. The solvent was evaporated and to the residue water was added. After filtration, the solid material was washed with MeOH and diethyl ether giving 410 mg of a grey solid. Yield=21% 1HNMR (DMSO, 200 MHz) δ 3.47 (1H, bs), 4.47 (2H, s), 6.44 (2H, m), 6.72 (1H, t, J=8 Hz)
- 4-trifluoromethylbenzylamine (0.52 ml, 3.6 mmol) was dissolved in 20 ml of AcOEt and at 0° C. triphosgene (1 g, 3.6 mmol) was added to the solution. The mixture was warmed at 80° C. for 4 hours then evaporated and the residue was dissolved in 5 ml of DMF. The solution of the isocyanate was added dropwise to a solution in DMF (10 ml) of compound 25 (400 mg, 2.42 mmol) and TEA (0.34 ml, 1 equiv.) and the mixture was stirred at rt for 8 hours. (TLC AcOEt 1/petroleum ether 1). The solvent was evaporated and the crude was dissolved in AcOEt (30 ml) and washed with water (1×20 ml) and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum. The purification of the crude residue by chromatographic column gave 400 mg of a white solid. Yield=45% 1HNMR (DMSO, 200 MHz) δ 4.38 (2H, d, J=6.4 Hz), 4.57 (2H, s), 6.85 (3H, m), 7.59 (2H, d, J=8.2 Hz), 7.72 (2H, d, J=8.4 Hz), 8.15 (1H, bt), 10.61 (1H, bs); [M+1] 367.1 (C17H13F3N2O4 requires 366.3).
-
- To a solution of 3-aminomethyl-6-trifluoromethylpyridine (1 g, 4.7 mmol) in THF (30 mL) was added CDI (2.1 mol eq) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL). The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.96 g, 3.5 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by crystallization from a mixture of MeOH/EtOAc to obtain the product as a pale yellow solid (0.42 g, 1.2 mmol, 34% Yield). 1HNMR (DMSO, 400 MHz) δ 4.43 (bs, 2H), 6.64 (d, 1H, J=6), 6.83 (t, 1H, J=8), 6.96 (d, 2H, J=8), 7.89 (d, 1H), 8.03 (d, 1H), 8.42 (bs, 1H), 8.72 (s, 1H), 10.07 (bs, 1H), 10.59 (bs, 1H). [M+1] 351.80 (C15H12F3N5O2 requires 351.28).
-
- The 2-fluoro-4-(trifluoromethyl)-benzonitrile (0.5 mL, 3.59 mmol) was added in small portion to a mixture of NaH 60% (4 mol eq) in isopropanol (10 mL) The reaction mixture was heated at 50° C. overnight. The solvent was distilled and water was added to the residue. The aqueous solution was extracted with EtOAc (3×25 mL) and the organic phases were evaporated at reduced pressure to give e as a white solid (0.84 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.23 (s, 3H), 1.34 (s, 3H), 4.99 (m, 1H), 7.44 (m, 2H), 8.01 (d, 1H, J=8).
- The nitrile 26a (0.84 g, 3.66 mmol)) was added in small portion to a mixture of LiAlH4 (0.28 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 27a as yellow oil (0.80 g, 3.64 mmol, 96% Yield).
- To a solution of 27a (0.85 g, 3.6 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 1.24 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, 1.25 g, quantitative yield). The oil obtained (0.59 g) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.21 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a white crystal solid (0.15 g, 0.4 mmol, 36% Yield). 1HNMR (DMSO, 400 MHz) δ 1.29 (s, 3H), 1.32 (s, 3H), 4.32 (d, 2H, J=6), 4.79 (m, 1H), 6.60 (m, 2H), 6.79-6.96 (m, 2H), 7.28 (d, 2H), 7.46 (d, 1H, J=6), 8.37 (s, 1H), 10.0 (bs, 1H), 10.60 (bs, 1H). [M+1] 409.1 (C19H19F3N4O3 requires 408.37).
-
- The 2-chloro-6-trifluoromethyl-nicotinonitrile (0.5 g, 2.4 mmol) was added in small portion to a mixture of NaH 60% (4 mol eq) in isopropanol (20 mL) The reaction mixture was heated at 50° C. overnight. The solvent was distilled and water was added to the residue. The aqueous solution was extracted with EtOAc (3×25 mL) and the organic phases were evaporated at reduced pressure to give e as a yellow solid (0.45 g, 82% Yield, 1.96 mmol). 1HNMR (DMSO, 200 MHz) δ 1.35 (s, 3H), 1.38 (s, 3H), 5.33 (m, 1H), 7.55 (d, 1H, J=6), 8.26 (d, 1H, J=6).
- The nitrile 28a (0.45 g, 1.96 mmol)) was added in small portion to a mixture of LiAlH4 (0.15 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 29a as yellow oil (0.42 g, 1.79 mmol, 94% Yield) used for the next reaction without further purification.
- To a solution of 29a (0.42 g, 1.8 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 0.61 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, 0.52 g, quantitative yield). The oil obtained (0.25 g) was dissolved in DMF (15 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.09 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a pale yellow solid (0.08 g, 0.4 mmol, 27% Yield). 1HNMR (DMSO, 400 MHz) δ 1.33 (s, 3H), 1.36 (s, 3H), 4.28 (d, 2H, J=6), 5.28 (m, 1H), 6.64 (m, 2H), 6.87-6.93 (m, 2H), 7.46 (d, 1H, J=8), 7.78 (d, 1H), 8.41 (s, 1H), 9.99 (bs, 1H), 10.62 (bs, 1H). [M+1] 409.7 (C18H18F3N5O3 requires 409.36).
-
- To 2-chloro-6-(trifluoromethyl)nicotinonitrile (0.8 g, 3.8 mmol) was added hexamethylphosphoramide (6 mol eq, 4.16 mL) and the mixture was heated at 150° C. for 48 h. The reaction mixture was cooled at room temperature, water and brine were added and the mixture was extracted with EtOAc (4×35 mL) The recombined organic phases were dried over sodium sulfate and evaporated to dryness to obtain 28d as yellow oil (1.01 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.33 (s, 3H), 1.38 (s, 3H), 7.41 (d, 1H, J=6), 7.55 (d, 1H, J=6).
- The nitrile 28d (1 g, 4.6 mmol)) was added in small portion to a mixture of LiAlH4 (0.5 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 29d as yellow oil (0.78 g, 3.5 mmol, 76% Yield) used without further purifications.
- To a solution of 29d (0.78 g, 3.5 mmol) in THF (35 mL) was added CDI (2.1 mol eq, 1.21 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale orange oil, quantitative yield). The oil obtained (0.7 g, 2.4 mmol) was dissolved in DMF (30 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.26 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (9.5:0.5 EtOAc:MeOH) to obtain the product as a pale yellow solid (0.08 g, 0.2 mmol, 20% Yield). 1HNMR (DMSO, 400 MHz) δ 2.84 (s, 6H), 4.38 (d, 2H, J=6), 6.60 (dd, 1H), 6.79 (m, 2H), 6.99 (m, 1H), 7.37 (d, 1H, J=6), 7.84 (d, 1H, J=8), 8.37 (s, 1H), 10.0 (bs, 1H), 10.60 (bs, 1H). [M+1] 394.9 (C17H17F3N6O2 requires 394.35).
-
- To a solution of 4-tert-butylbenzylamine (2 mL, 11.36 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 3.86 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, quantitative yield). The oil obtained (1.6 g, 6.2 mmol)) was dissolved in DMF (25 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.74 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by crystallization from MeOH to obtain the product as a white solid (0.54 g, 1.59 mmol, 26% Yield). 1HNMR (DMSO, 400 MHz) δ 1.26 (s, 9H), 4.28 (d, 2H, J=6), 6.34 (dd, 1H), 6.36 (t, 1H), 6.83-6.91 (m, 2H), 7.26 (d, 2H, J=8), 7.37 (d, 2H, J=8), 8.20 (s, 1H9, 9.89 (bs, 1H), 10.61 (bs, 1H). [M+1] 338.82 (C19H22N4O2 requires 338.40).
-
- To 2-chloro-6-trifluoromethyl-nicotinonitrile (0.5 g, 2.42 mmol) in EtOH abs (20 mL) was added piperidine (4 mol eq, 1 mL) and the mixture was heated at 90° C. for 3 h. The mixture was concentrated, water was added and the mixture was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified and evaporated to dryness to obtain 2-(1-piperidyl)-6-trifluoromethyl)-pyridine-3-carbonitrile as pale yellow oil (0.67 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 3.33 (m, 4H), 3.56 (m, 4H), 7.25 (d, 1H), 7.36 (d, 1H, J=6).
- The nitrile 28f (0.67 g, 2.66 mmol) solubilized in Et2O (20 mL) was added in small portion to a mixture of LiAlH4 (0.202 g, 2 mol eq) in Et2O (25 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 29f as yellow oil (0.48 g, 1.85 mmol, 69% Yield) used without further purifications.
- To a solution of 29f (0.48 g, 1.85 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 0.63 g) and the mixture was heated for 5 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.78 g, quantitative yield) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.26 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (9.5:0.5 EtoAc:MeOH) to obtain the product as a pale yellow solid (0.14 g, 0.32 mmol, 15% Yield). 1HNMR (DMSO, 400 MHz) δ 1.63 (m, 6H), 3.09 (m, 4H), 4.36 (d, 2H, J=6), 6.61 (d, 1H, J=8), 6.84 (t, 2H), 6.95 (d, 1H, J=6), 7.42 (d, 1H, J=8), 7.87 (d, 1H, J=6), 8.37 (s, 1H), 10.01 (bs, 1H), 10.59 (bs, 1H). [M+1] 434.91 (C20H21F3N6O2 requires 434.41).
-
- To N,N-dimethylaminoethanol (25 mL) at 0° C. was added in small portion NaH 60% (4 mol eq, 0.465 g, 11.62 mmol) and after 10 min 2-chloro-6-trifluoromethyl-nicotinonitrile (0.6 g, 2.90 mmol) was slowly added. The mixture was heated at 65° C. for 4 h. Then the solvent was removed at reduced pressure, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were washed with brine, anhydrified over Na2SO4 and evaporated at reduced pressure to obtain a pale yellow oil (0.69 g, 2.66 mmol, 92% Yield) used for the next step of reaction without further purification.
- The nitrile 28b (2.66 mmol) was dissolved in EtOH abs (30 mL), C/Pd 10% (0.25 mg) was added and the mixture was hydrogenated at 70 psi overnight. The reaction mixture was filtered through a celite pad and the filtrate was evaporated at reduced pressure to give 29b as brown oil (0.6 g, 2.28 mmol, 86% Yield) 1HNMR (DMSO, 200 MHz) δ 2.20 (s, 6H), 2.65 (t, 2H), 3.23 (m, 2H), 4.01 (m, 2H), 7.60 (d, 1H), 7.99 (bs, 2H), 8.38 (d, 1H, J=8).
- To a solution of 29b (0.6 g, 2.28 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 0.78 g) and the mixture was heated at 70° C. for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 0.72 g, 88% yield). The oil obtained was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.24 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (8:2 EtOAc:MeOH) to obtain the product as a pale yellow solid (0.088 g, 0.158 mmol, 10% Yield). 1HNMR (DMSO, 400 MHz) δ 2.27 (s, 6H), 2.73 (t, 2H), 4.25 (d, 2H, J=6), 4.46 (t, 2H), 6.60 (d, 1H), 6.83 (m, 2H), 7.01 (d, 1H), 7.43 (d, 1H), 7.80 (d, 1H), 8.60 (s, 1H), 10.02 (bs, 1H), 10.62 (bs, 1H). [M+1] 439.02 (C19H21F3N6O3 requires 438.40).
-
- To N,N-dimethylaminoethanol (15 mL) cooled at 0° C. was added NaH 60% (1.15 g, 4 mol eq) and then 2-fluoro-4-trifluoromethyl-benzonitrile (1 mL, 7.18 mmol). The mixture was heated at 60° C. for 4 h then the solvent was removed at reduced pressure and water was added to the residue. The aqueous phase was extracted with EtOAc (3×30 mL), the organic phases were dried over sodium sulfate and evaporated to dryness to give 26b as pale yellow oil (2.1 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.21 (s, 3H), 1.31 (s, 3H), 2.21 (t, 2H, J=8), 2.48 (t, 2H, J=8), 6.54 (dd, 1H, J=2), 6.82 (m, 2H).
- The nitrile 26b (2.15 g, 8.33 mmol) solubilized in Et2O (20 mL) was added in small portion to a mixture of LiAlH4 (0.63 g, 2 mol eq) in Et2O (25 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 27b as yellow oil (1.48 g, 5.64 mmol, 67% Yield) used without further purifications.
- To a solution of 27b (1.48 g, 5.64 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 1.92 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, 1.91 g, 95% yield). The oil obtained (0.95 g, 2.68 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.32 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (8:2 EtOAc:MeOH) to obtain the product as a white solid (0.17 g, 20% Yield). 1HNMR (DMSO, 400 MHz) δ 2.24 (s, 6H), 2.68 (t, 2H, J=6), 4.19 (t, 2H, J=6), 4.32 (d, 2H, J=6), 6.60 (m, 2H), 6.67 (t, 1H), 6.93 (d, 1H, J=4), 7.28 (m, 2H), 7.43 (d, 1H), 8.40 (s, 1H), 9.98 (s, 1H), 10.60 (s, 1H). [M+1] 438.01 (C20H22F3N5O3 requires 437.42).
-
-
-
- To a solution of 4-tert-butylacetanilide 7 (5 g, 26.1 mmol) in DMF (30 mL) was added at 0° C. NCS (1.5 mol eq, 5.23 g) and the mixture was stirred at room temperature overnight. Water was added and the solid formed was filtered off to furnish 8 as pale yellow solid (quantitative yield, 5.8 g).
- The acetyl 8 was deprotected by treatment with aqueous HCl 20% overnight to furnish the aniline derivative as red oil (75% Yield).
- The aniline derivative of 8 (5 g, 5.43 mmol) was solubilized in 10:6 HOAc:water (35 mL). To this solution was added conc. H2SO4 (4.5 mL) and this solution was cooled at 10° C. and treated with a solution of NaNO2 (2.1 g, 1.1 mol eq) in water (5 mL) After this addition was completed the reaction mixture was stirred at 10° C. for 1 h. During this time a solution of tetra-butylammonium cyanide (36.4 g, 5 mol eq) in water (25 mL) was added to a cold stirred solution of CuSO4×5H2O (8.2 g, 1.2 mol eq) in water (25 mL) To this mixture was added NaHCO3 (18.15 g) and toluene (50 mL) and the resulting mixture was heated at 55° C. to dissolve the solid formed. To this solution was added drop wise the solution of the diazonium salt under N2 at 55° C. The reaction mixture was kept for 30 min. at 55° C. and then was cooled and extracted three times with toluene. The combined organic extracts were washed with 1N NaOH and brine, then dried and evaporated to dryness to obtain a red-brown oil purified by chromatography (9.5:0.5 petroleum ether:EtOAc) to furnish the nitrile 9 as a red oil (2.2 g, 43% Yield). 1HNMR (DMSO, 200 MHz) δ 1.28 (s, 9H), 7.54 (dd, 1H, J=2), 7.71 (d, 1H, J=2), 7.96 (d, 1H, J=8).
- The nitrile 9 (0.97 g, 4 mmol) solubilized in Et2O (30 mL) was added in small portion to a mixture of LiAlH4 (0.3 g, 2 mol eq) in Et2O (25 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 11c as orange oil (1 g, quantitative Yield), used for the next step of reaction without further purification.
- To a solution of 11c (1 g, 4.6 mmol) in THF (40 mL) was added CDI (2.1 mol eq, 1.4 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (red oil, 1.36 g, 98% yield). The oil obtained (1.36 g, 3.99 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.47 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a white solid (0.29 g, 21% Yield). 1HNMR (DMSO, 200 MHz) δ 1.26 (s, 9H), 4.35 (d, 2H, J=6), 6.64 (d, 1H, J=8), 6.87 (m, 3H), 7.40 (m, 3H), 8.31 (s, 1H), 9.94 (bs, 1H), 10.59 (bs, 1H). [M+1] 373.05 (C19H21ClN4O2 requires 372.85).
-
- The nitrile 9 (2.2 g, 11.3 mmol) was heated in a steel-bomb with pyrrolidine (3.75 mL, 4 mol eq) at 200° C. for 12 h. The reaction mixture was concentrated, water and brine was added and the mixture was extracted three times with EtOAc. The recombined organic phases were dried under sodium sulfate and evaporated to dryness to furnish 10a as a red oil (2.6 g, quantitative yield), used for the next step of reaction without further purifications.
- The nitrile 10a (2.6 g, 11.4 mmol) solubilized in Et2O (30 mL) was added in small portion to a mixture of LiAlH4 (0.87 g, 2 mol eq) in Et2O (25 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 11a as orange oil (2.7 g, quantitative Yield). 1HNMR (DMSO, 200 MHz) δ 1.25 (s, 9H), 1.82 (m, 4H), 2.49 (m, 4H), 3.09 (m, 2H), 3.67 (m, 2H), 6.86 (dd, 1H), 7.35 (m, 2H).
- To a solution of 11a (2.7 g, 11.6 mmol) in THF (40 mL) was added CDI (2.1 mol eq, 3.96 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (red oil, 3.6 g, 95% yield). The oil obtained (1.8 g, 5.52 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.65 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a white solid (0.17 g, 20% Yield). 1HNMR (DMSO, 200 MHz) δ 1.26 (s, 9H), 1.88 (m, 4H), 3.13 (m, 4H), 4.31 (d, 2H, J=6), 6.52 (bt, 1H), 6.59 (d, 1H, J=8), 6.93 (m, 4H), 7.19 (d, 1H, J=8), 8.26 (s, 1H), 9.93 (bs, 1H), 10.59 (bs, 1H). [M+1] 408.03 (C23H29N5O2 requires 407.51).
-
- To a solution of [5-(trifluoromethyl)-2-furyl]methanamine (0.48 g, 2.91 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 0.99 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 1.68 g, quantitative yield). The oil obtained was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.57 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by crystallization from a mixture of MeOH/EtOAc to afford the product as a pale yellow solid (0.088 g, 10% Yield). 1HNMR (DMSO, 400 MHz) δ 4.37 (d, 2H, J=6), 4.60 (s, 2H), 6.46 (m, 2H), 6.77 (t, 1H, J=8), 7.16 (m, 1H), 7.37 (t, 1H), 7.72 (dd, 1H, J=2), 8.16 (s, 1H), 10.64 (bs, 1H).
-
- To a solution of 3-aminomethyl-6-trifluoromethylpyridine (1 g, 4.7 mmol) in THF (30 mL) was added CDI (2.1 mol eq) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.8 g, 2.96 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.47 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a pale yellow solid (0.37 g, 42% Yield). 1HNMR (DMSO, 200 MHz) δ 4.39 (d, 2H, J=6), 4.61 (s, 2H), 6.46 (dd, 1H, J=2), 6.81 (t, 1H, J=8), 7.43 (t, 1H), 7.68 (dd, 1H, J=2), 7.90 (m, 2H), 8.18 (s, 1H), 8.69 (s, 1H), 10.66 (s, 1H). [M+1] 355.88 (C15H13F3N3O3 requires 355.27).
-
- To a solution of 29f (0.48 g, 1.85 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 0.63 g) and the mixture was heated for 5 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.78 g, quantitative yield) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.23 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtoAc:petroleum ether) to obtain the product as a pale yellow solid (0.067 g, 13% Yield). 1HNMR (DMSO, 400 MHz) δ 1.62 (m, 6H), 3.09 (m, 4H), 4.33 (d, 2H, J=6), 4.62 (s, 2H), 6.46 (dd, 1H, J=2), 6.81 (t, 1H, J=8), 7.42 (bt, 1H), 4.46 (d, 1H, J=8), 7.74 (m, 2H), 8.20 (s, 1H), 10.66 (s, 1H). [M+1] 450.02 (C21H22F3N5O3 requires 449.43).
-
- To a solution of 4-methylbenzylamine (1.5 mL, 11.8 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 3.8 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure to give a white solid (11.78 mmol, 2.53 g, quantitative yield). The solid obtained (0.83 g, 3.88 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.62 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by crystallization from hot MeOH to give the product as pale yellow solid (0.078 g, 8% Yield). 1HNMR (DMSO, 200 MHz) δ 2.27 (s, 3H), 4.24 (d, 2H, J=6), 4.59 (s, 2H), 6.28 (t, 1H), 4.47 (dd, 1H), 6.80 (t, 1H, J=8), 7.11-7.21 (m, 4H), 7.77 (dd, 1H, J=2), 8.07 (s, 1H), 10.63 (bs, 1H). [M+1] 311.99 (C17H17N3O3 requires 311.34).
-
- To a solution of 33b (1.06 g, 5.18 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 1.76 g) and the mixture was heated for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure to give an oil (1.04 g, 3.36 mmol). One portion (0.5 g, 1.67 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.25 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to obtain the product as a white solid (0.13 g, 28% Yield). 1HNMR (DMSO, 400 MHz) δ 1.63 (m, 6H), 2.48 (s, 3H), 2.94 (m, 4H), 4.24 (d, 2H, J=6), 4.61 (s, 2H), 6.45 (dd, 1H, J=2), 6.83 (m, 2H), 7.21 (bt, 1H), 7.48 (d, 1H, J=8), 7.76 (dd, 1H, J=2), 8.12 (s, 1H), 10.65 (s, 1H). [M+1] 396.03 (C21H25N5O3 requires 395.45).
-
- To a solution of 27a (0.85 g, 3.6 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 1.24 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, 1.25 g, quantitative yield). The oil obtained (0.6 g, 1.82 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.29 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to obtain the product as a white solid (0.121 g, 0.29 mmol, 16% Yield). 1HNMR (DMSO, 400 MHz) δ 1.29 (s, 3H), 1.32 (s, 3H), 4.28 (d, 2H, J=6), 4.62 (s, 2H), 4.79 (m, 1H), 6.49 (dd, 1H, J=2), 6.80 (t, 1H, J=8), 7.25 (m, 4H), 7.71 (dd, 1H), 8.21 (s, 1H), 10.65 (s, 1H). [M+1] 423.97 (C20H20F3N3O4 requires 423.38).
-
- To 2-chloro-6-trifluoromethyl-nicotinonitrile (0.5 g, 2.4 mmol) in methanol (30 mL) was added sodium methylate in small portion (2 mol eq, 0.26 g). The reaction mixture was heated at 60° C. overnight. The solvent was distilled under reduced pressure and water was added to the residue. The aqueous solution was extracted with EtOAc (3×25 mL) and the organic phases were evaporated at reduced pressure to give 28c as a pale yellow oil (0.48 g, 2.33 mmol, 97% Yield). 1HNMR (DMSO, 200 MHz) δ 4.04 (s, 3H), 7.71 (d, 1H, J=6), 8.59 (d, 1H, J=6).
- The nitrile 28c (0.48 g, 2.33 mmol) was solubilized in MeOH (30 mL) and to the solution was added Pd/C 10% (0.3 g). The mixture was hydrogenated at 70 psi overnight. The reaction mixture was filtered through a celite pad, the filtrate was evaporated at reduce pressure to furnish 29c as yello oil (0.38 g, 1.84 mmol, 79% Yield) used without further purification.
- To a solution of 29c (0.38 g, 1.84 mmol) in THF (15 mL) was added CDI (2.1 mol eq, 0.63 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 0.62 g, quantitative yield). The oil obtained was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.21 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to afford the product as a white solid (0.1 g, 14% Yield). 1HNMR (DMSO, 400 MHz) δ 3.96 (s, 3H), 4.29 (d, 2H, J=6), 4.62 (s, 2H), 6.46 (dd, 1H, J=2), 6.80 (t, 1H, J=8), 7.34 (bt, 1H), 7.51 (d, 1H, J=8), 7.72 (m, 2H), 8.24 (s, 1H), 10.66 (s, 1H). [M+1] 396.99 (C17H15F3N4O4 requires 396.32).
-
- To a solution of triphosgene (0.07 g, 0.37 mol eq) in anh. CH2Cl2 (10 mL) was slowly added the amine 1f (0.2 g, 1 mmol) solubilized in CH2Cl2 (10 mL) and DIEA (2.2 mol eq, 0.4 mL) After the addition was completed, the reaction mixture was stirred at room temp. for 15 min. Then the [5-(trifluoromethyl)-2-pyridyl]methanamine (1 mol eq, 0.18 g) solubilized in CH2Cl2 (10 mL) and DIEA (2.2 mol eq, 0.4 mL) was added in one portion. The mixture obtained was stirred at room temp. for 12 h. The solvent was removed at reduced pressure, water was added and the mixture was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over sodium sulfate and evaporated to dryness. The residue was purified by crystallization from EtOAc to obtain the product as yellow solid (0.132 g, 37% Yield). 1HNMR (DMSO, 400 MHz) δ 4.47 (d, 2H, J=6), 4.63 (s, 2H), 6.46 (dd, 1H, J=2), 6.80 (t, 1H, J=8), 7.57m, 2H), 7.72 (dd, 1H, J=2), 8.18 (dd, 1H, J=2), 8.22 (s, 1H), 8.90 (m, 1H), 10.66 (s, 1H). [M+1] 366.94 (C16H13F3N4O3 requires 366.29).
-
- The 2-fluoro-4-methyl-benzonitrile (0.8 g, 3.99 mmol) was added in small portion to a mixture of NaH 60% (4 mol eq, 0.61 g) in isopropanol (30 mL) The reaction mixture was heated at 50° C. overnight. The solvent was distilled and water was added to the residue. The aqueous solution was extracted with EtOAc (3×25 mL) and the organic phases were evaporated at reduced pressure to give 30a as a deliquescent white solid (1.09 g, 6.22 mmol). 1HNMR (DMSO, 200 MHz) δ 1.21 (s, 3H), 1.28 (s, 3H), 2.10 (s, 3H), 4.89 (m, 1H), 7.41 (d, 1H), 7.55 (s, 1H), 7.89 (m, 1H).
- The nitrile 30a (1.09 g, 6.22 mmol) was added in small portion to a mixture of LiAlH4 (0.47 g, 2 mol eq) in Et2O (40 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 31a as yellow oil (0.95 g, 85% Yield) used without further purification.
- To a solution of 31a (0.95 g, 5.20 mmol) in THF (20 mL) was added CDI (2.1 mol eq, 1.80 g) and the mixture was heated at 70° C. for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×35 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 1.4 g, 97% yield). The oil obtained (0.7 g, 2.56 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.24 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:Petroleum ether) to obtain the product as a white solid (0.104 g, 24% Yield). 1HNMR (DMSO, 400 MHz) δ 1.26 (s, 3H), 1.29 (s, 3H), 2.26 (s, 3H), 4.18 (d, 2H, J=6), 4.60 (m, 3H), 6.44 (dd, 1H), 6.76 (m, 2H), 6.99 (m, 3H), 7.76 (dd, 1H), 8.13 (s, 1H), 10.64 (s, 1H). [M+1] 370.00 (C20H23N3O4 requires 369.41).
-
- The 2-chloro-6-methyl-nicotinonitrile (0.8 g, 5.2 mmol) was added in small portion to a mixture of NaH 60% (4 mol eq, 0.8 g) in isopropanol (30 mL) The reaction mixture was heated at 50° C. overnight. The solvent was distilled and water was added to the residue. The aqueous solution was extracted with EtOAc (3×30 mL) and the organic phases were evaporated at reduced pressure to give 32a as a pale yellow deliquescent solid (1.25 g, quantitative yield). 1HNMR (DMSO, 200 MHz) δ 1.24 (s, 3H), 1.32 (s, 3H), 2.25 (s, 3H), 5.02 (m, 1H), 7.31 (d, 1H), 7.69 (m, 1H).
- The nitrile 32a (1.25 g, 7.12 mmol) solubilized in Et2O (20 mL) and THF (10 mL) was added in small portion to a mixture of LiAlH4 (0.54 g, 2 mol eq) in Et2O (50 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 33a as yellow oil (1.14 g, 6.35 mmol, 89% Yield) used without further purification.
- To a solution of 33a (1.14 g, 6.35 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 2.16 g) and the mixture was heated at 70° C. for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×35 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 1.61 g, 93% yield). The oil obtained (0.34 g, 1.25 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.20 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:Petroleum ether) to obtain the product as a white solid (0.07 g, 21% Yield). 1HNMR (DMSO, 400 MHz) δ 1.28 (s, 3H), 1.31 (s, 3H), 2.34 (s, 3H), 4.14 (d, 2H, J=6), 4.60 (s, 2H), 5.25 (m, 1H), 6.48 (dd, 1H), 6.77 (m, 2H), 7.11 (t, 1H), 7.44 (d, 1H, J=8), 7.71 (dd, 1H), 8.16 (s, 1H), 10.64 (bs, 1H). [M+1] 370.95 (C19H22N4O4 requires 370.40).
-
- To a solution of 29d (0.78 g, 3.5 mmol) in THF (35 mL) was added CDI (2.1 mol eq, 1.21 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale orange oil, quantitative yield). The oil obtained (0.46 g) was dissolved in DMF (25 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.2 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (7:3 EtOAc:petroleum ether) to obtain the product as a pale yellow solid (0.12 g, 21% Yield). 1HNMR (DMSO, 400 MHz) δ 2.84 (s, 6H), 4.36 (d, 2H, J=6), 4.62 (s, 2H), 6.49 (dd, 1H), 6.80 (t, 1H), 7.36 (m, 2H), 7.73 (m, 2H), 8.20 (s, 1H), 10.66 (bs, 1H). [M+1] 410.02 (C19H18F3N5O3 requires 409.36).
-
- To a solution of 2-(1-pyrrolidinyl)-6-(trifluoromethyl)-3-aminomethyl-pyridine 29e (0.58 g, 2.3 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 0.77 g) and the mixture was heated for 5 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×20 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure. The oil obtained (0.51 g, 1.52 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.20 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtoAc:Petroleum ether) to obtain the product as a white solid (0.12 g, 24% Yield). 1HNMR (DMSO, 400 MHz) δ 1.89 (m, 4H), 3.56 (m, 4H), 4.41 (d, 2H, J=6), 4.61 8s, 2H), 6.46 (dd, 1H, J=2), 6.80 (t, 1H, J=8), 7.12 (d, 1H, J=8), 7.25 (t, 1H), 7.70 (m, 2H), 8.17 (bs, 1H), 10.66 (bs, 1H). [M+1] 436.03 (C20H20F3N5O3 requires 435.40).
-
- To a suspension of NaH 60% (0.09 g, 3.97 mmol) in DMF (20 mL) at 0° C. was added in one portion 1H-imidazole (2.5 mol eq, 0.61 g). After 10 min 2-chloro-4-(trifluoromethyl)-benzonitrile (0.5 mL, 3.61 mmol) was added and the reaction mixture was heated at 100° C. for 2 h. The reaction was cooled at room temperature, water was added and the aqueous solution was extracted with EtOAc (3×25 mL) The recombined organic phases were dried over sodium sulfate and evaporated to dryness to give the 2-imidazol-1-yl-4-(trifluoromethyl)benzonitrile as pale yellow oil (0.63 g, 73% Yield) used for the reduction without further purification.
- The nitrile above described (0.63 g, 2.66 mmol) solubilized in Et2O (20 mL) was added in small portion to a mixture of LiAlH4 (0.202 g, 2 mol eq) in Et2O (20 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain [2-(imidazol-1-yl)-4-(trifluoromethyl)]benzenemethanamine as orange oil (0.53 g, 83% Yield). 1HNMR (DMSO, 200 MHz) δ 4.32 (bs, 2H), 7.23 (s, 1H), 7.89 (s, 1H), 8.21 (d, 1H, J=8), 8.41 (m, 1H), 8.94 (dd, 1H, J=2).
- To a solution of [2-(imidazol-1-yl)-4-trifluoromethyl)]benzenemethanamine (0.53 g, 2.2 mmol) in THF (35 mL) was added CDI (2.1 mol eq, 0.75 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×25 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale orange oil, quantitative yield). The oil obtained (0.51 g, 1.52 mmol)) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.2 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (100% EtOAc) to obtain the product as a white solid (0.14 g, 28% Yield). 1HNMR (DMSO, 400 MHz) δ 4.20 (d, 2H, J=6), 4.62 (s, 2H), 6.46 (dd, 1H, J=2), 6.79 (t, 1H, J=8), 7.15 (s, 1H), 7.38 (t, 1H), 7.55 (s, 1H), 7.69 (m, 3H), 7.87 (m, 2H), 8.20 (bs, 1H), 10.66 (bs, 1H). [M+1] 432.01 (C20H16F3N5O3 requires 431.37).
-
- To a solution of 4-tert-butylbenzylamine (2 mL, 11.36 mmol) in THF (30 mL) was added CDI (2.1 mol eq, 3.86 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, quantitative yield). The oil obtained (0.58 g, 2.28 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.30 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to obtain the product as a white solid (0.17 g, 27% Yield). 1HNMR (DMSO, 400 MHz) δ 1.26 (s, 9H), 4.24 (d, 2H, J=6), 4.60 (s, 2H), 4.45 (dd, 1H, J=2), 6.81 (t, 1H, J=10), 7.18 (d, 2H, J=8), 7.36 (d, 2H, J=8), 7.76 (dd, 1H), 8.06 (bs, 1H), 10.64 (bs, 1H). [M+1] 353.98 (C20H23N3O3 requires 353.41).
-
- To 2-fluoro-4-methyl-benzonitrile (1.5 g, 11.1 mmol) was added pyrrolidine (3.67 mL, 4 mol eq) and the mixture was heated in neat at 90° C. overnight. The mixture was concentrated, water was added and the mixture was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified and evaporated to dryness to obtain 30b as pale yellow crystals (2.03 g, 98% yield). 1HNMR (DMSO, 200 MHz) δ 1.21 (m, 4H), 2.10 (m, 4H), 3.89 (s, 3H), 7.31 (d, 1H), 7.45 (s, 1H), 7.79 (m, 1H).
- The nitrile 30b (2.03 g, 10.9 mmol) solubilized in Et2O (25 mL) was added in small portion to a mixture of LiAlH4 (0.83 g, 2 mol eq) in Et2O (30 mL) stirred at 0° C. Then the mixture was stirred at room temperature overnight. The excess of LiAlH4 was decomposed by water addition at 0° C., the solid formed was filtered, washed with Et2O and the filtrate was separated. The organic phase was anhydrified over Na2SO4 and evaporated to dryness to obtain 31b as a pale yellow oil (2.12, quantitative Yield) used without further purification.
- To a solution of 31b (2.1 g, 11 mmol) in THF (50 mL) was added CDI (2.1 mol eq, 3.79 g) and the mixture was heated for 5 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure to obtain a pale yellow oil (3.5 g). One portion of this oil (0.7 g, 2.46 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.25 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (1:1 EtOAc:petroleum ether) to obtain the product as a pale yellow solid (0.30 g, 0.78 mmol, 31% Yield). 1HNMR (DMSO, 400 MHz) δ 1.87 (m, 4H), 2.23 (s, 3H), 3.10 (m, 4H), 4.26 (d, 2H, J=6), 4.60 (s, 2H), 6.44 (dd, 1H), 6.76 (m, 3H), 7.1 (d, 2H), 7.74 (dd, 1H), 8.13 (s, 1H), 10.64 (bs, 1H).
-
- To a solution of 29b (1.21 g, 4.6 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 1.6 g) and the mixture was heated at 70° C. for 6 h. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (yellow oil, 1.17 g, 71% yield). The oil obtained was dissolved in DMF (20 mL) and the bicyclic amine 1a was added (0.8 mol eq, 0.35 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (8:2 EtOAc:MeOH) to obtain the product as a pale yellow solid (0.23 g, 24% Yield). 1HNMR (DMSO, 400 MHz) δ 2.33 (s, 6H), 2.83 (t, 2H), 4.30 (d, 2H, J=6), 4.45 (t, 2H, J=6), 4.61 (s, 2H), 6.46 (dd, 1H), 6.80 (t, 1H, J=8), 7.36 (t, 1H), 7.47 (d, 1H, J=8), 7.76 (m, 2H), 8.25 (s, 1H), 10.67 (bs, 1H). [M+1] 454.02 (C20H22F3N5O4 requires 453.41).
-
- To a solution of 27b (1.48 g, 5.64 mmol) in THF (25 mL) was added CDI (2.1 mol eq, 1.92 g) and the mixture was heated at 70° C. overnight. The reaction mixture was evaporated, water was added and the aqueous phase was extracted with EtOAc (3×30 mL) The recombined organic phases were anhydrified over Na2SO4 and evaporated at reduced pressure (pale yellow oil, 1.91 g, 95% yield). The oil obtained (0.95 g, 2.68 mmol) was dissolved in DMF (20 mL) and the bicyclic amine 1f was added (0.8 mol eq, 0.35 g), then the mixture obtained was heated at 100° C. overnight. The solvent was removed at reduced pressure and the residue was purified by chromatography (8:2 EtOAc:MeOH) to obtain the product as a white solid (0.33 g, 35% Yield). 1HNMR (DMSO, 400 MHz) δ 2.27 (s, 6H), 2.71 (t, 2H), 4.20 (t, 2H), 4.32 (d, 2H, J=6), 4.62 (s, 2H), 6.50 (dd, 1H), 6.80 (t, 1H), 7.29 (m, 3H), 7.40 (d, 1H), 7.70 (dd, 1H), 8.18 (s, 1H), 10.65 (bs, 1H). [M+1] 452.91 (C21H23F3N4O4 requires 452.43).
- Pharmacology
- Drugs and reagents were obtained from the indicated companies: capsaicin, ionomycin, laminin, poly-L-lysine, collagenase, trypsin, L-glutamine, penicillin/streptomycin, DMEM, HBSS, mouse-NGF-7S, ARA-C, HEPES, Tween80, Complete Freund's Adjuvant (CFA) and BSA (Sigma, Italy); FBS and HS (Gibco, Italy); Fura-2-AM-ester (Vinci-Biochem, Italy) and Methylcellulose (Fluka, Switzerland). The stock concentration (10 mM) of capsaicin, Fura-2-AM-ester, ionomycin and all tested compounds were prepared in 100% DMSO.
- Ca2+ Fluorescence Measurements in Cultured Rat Dorsal Root
- Male SD rats (˜50 g, Charles River, Italy) were terminally anaesthetized and decapitated. Dorsal root ganglia were removed and placed in cold Hank's balanced salt solution (HBSS) before being transferred to collagenase (2 mg/ml) and trypsin (1 mg/ml) for 35 min at 37° C. The ganglia, placed in cold DMEM supplemented with 10% fetal bovine serum, 10% horse serum, 2 mM L-glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin, were dissociated in single cells by several passages through a series of syringe needles (23G down to 25G). The medium and the ganglia were filtered to remove debris, topped up with 4 ml of DMEM medium and centrifuged (1100 rpm for 6 min). The final cell pellet was re-suspended in DMEM medium [supplemented with 100 ng/ml mouse Nerve Growth Factor (mouse-NGF-7S) and cytosine-β-D-arabinofuranoside free base (ARA-C) 2.5 μM]. The cells were plated on poly-L-lysine (8.3 μM)- and laminin (5 μM)-coated 25 mm glass cover slips and kept for 2 days at 37° C. in a humidified incubator gassed with 5% CO2 and air, then treated with Fura-2-AM-ester (5 μM) in a Ca2+ buffer solution having the following composition (mM): CaCl2 1.4, KCl 5.4, MgSO4 0.4, NaCl 135, D-glucose 5, HEPES 10 with BSA (0.1%), at pH 7.4, for 40 min at 37° C. The cells were then washed twice with the Ca2+ buffer solution and transferred to a chamber on the stage of a Nikon eclipse TE300 microscope. Fura-2-AM-ester was excited at 340 nM and 380 nM to indicate relative [Ca2+]i changes by the F340/F380 ratio recorded with a dynamic image analysis system (Laboratory Automation 2.0, RCS, Florence, Italy) and the cells were allowed (at least 10 min) to attain a stable fluorescence before beginning the experiment. A calibration curve was set up using buffer containing Fura-2-AM-ester and determinant concentrations of free Ca2+. This curve was then used to convert the data obtained from the F340/F380 ratio to [Ca2+]i (nM).
- All exemplified compounds were tested at the concentration of 300 nM against the calcium uptake induced by 30 nM capsaicin. For selected molecules, the IC50 value was calculated.
- CFA-Induced Thermal Hyperalgesia in Rats
- This method was used for the determination of acute nociceptive thermal threshold and combines a chemical stimulus and heat for measuring pain sensitivity. Male SD rats (Charles River, Italy) weighing 100 to 250 gr. were used. Anti-hyperalgesic effects were investigated by using the Hargreaves' test. Complete Freund's Adjuvant (CFA; Sigma, USA) was used to induce thermal hyperalgesia. CFA contains killed Mycobacterium tuberculosis and is designed to provide continuous release of antigens necessary for stimulating a strong, persistent immune response. This effect causes the reduction of the hind paw withdrawal response latency induced by heat during the Hargreaves' test. Thermal stimulation was performed 30, 60, 120 and 180 (240 min only if needed) minutes after the oral administration of the antagonists. During the CFA-induced thermal hyperalgesia experiments two different solubilization protocols were used: when items presented an amino group, a pH=2 aqueous solution of HCl and 2.5% Tween80 was used; otherwise molecules were suspended in 0.5% Methocel and 2.5% Tween80. Compounds were orally administrated (30 μmol/kg/10 ml) to rats 24 hours after the CFA treatment. CFA was injected into the plantar surface of a rat's hind paw at a fixed dose of 50 μl by the use of a micro syringe.
- CFA-Induced Tactile Allodynia in Rats
- Male SD rats (Charles River, Italy) weighing 100 to 250 g were put into a clean plastic cage on an elevated glass plate for 30 min before the test. This lets the animals accommodate to their new environment before testing. Complete Freund's adjuvant (CFA, 50 μl) was injected into the plantar surface of the right hind paw. Tactile stimulation was performed with von Frey filaments (from 0.07 to 26 g). All antagonists were orally administered 22 hours after to the CFA administration. Von Frey filaments were applied 30, 60, 120, 180, 240, 300 and 360 min after compound administrations. Median 50% (EG50) threshold of von Frey filaments was calculated by using the up-down method as previously described. All tested compounds were suspended in 0.5% Methocel and 2.5% Tween80 and orally administrated (30 μmol/kg/10 ml) to rats by gavage 24 hours after the CFA treatment. CFA was injected into the plantar surface of a rat's hind paw at a fixed dose of 50 μl by the use of a micro syringe.
- Rectal Temperature Measurements in Rats
- Body temperature was measured by a digital thermometer inserted at a depth of approximately 3 cm into the rectum of each animal (male SD rats, Charles River, Italy, 100 to 250 g). A pre-dose value of body temperature was measured prior to the administration of the test substance or vehicles. Animals were distributed among groups by the manual method to achieve the almost same mean values of body temperature of the groups based on the pre-dose value. All compounds were dissolved in 6% DMSO/6% Tween80 and then intraperitoneally (10 μmol/Kg/5 ml) administrated to rats.
- CCI-Induced Mechanical Hyperalgesia
- Male SD rats (Charles River, Italy) weighing 250 g were anaesthetized with sodium pentobarbital (60 mg/kg, intraperitoneal (i.p.), 0.1 ml/10 g) and, under a dissecting microscope, the right common sciatic nerve was exposed at the level of the mid thigh and, proximal to the trifurcation of the nerve; four ligatures (4/0 chromic silk, Ethicon) were loosely tied around it, at about 0.5 mm spacing, until they elicited a brief twitch in the respective hind, taking care to preserve epineural circulation. Sham-operated animals (sciatic exposure without ligation) were used as controls. 14 days after the surgery, mechanical hyperalgesia was assessed using an analgesimeter (Ugo Basile, Italy, Randall-Selitto analgesic apparatus). This device generated a mechanical force on the affected paw and the nociceptive threshold was defined as the force (in g) at which the rat withdraws the paw (with a cut-off of 450 g). Two baseline measurement values were obtained 75 and 45 min before the actual test. After the second baseline measurement, animals were randomly allocated to the different treatment groups. Paw pressure test was performed 0, 75, 120, 165, 210 and 300 min after the oral administration of the compounds. All tested compounds were orally administrated (30 μmol/kg/10 ml) to rats by gavage.
- Results
- Ca2+ Fluorescence Measurements in Cultured Rat Dorsal Root Ganglia Neurons
- Capsaicin (0.3 μM) caused an increase in [Ca2+] in the vast majority (95%) of dorsal root ganglia neurons, which were thereby identified as TRPV1 expressing neurons. All synthesized derivatives were tested and all were able to inhibit the calcium uptake and several compounds exhibited more than 80% inhibition, e.g. compounds of Examples 1, 3, 4, 5, 6, 10, 11, 12, 13, 16, 19, 23, 31, 32, 35, 36, 39, 41, 45, 46, 47, 48, 51, 53, 67, 68, 69, 70, 71, 74, 75, 78, 80, 81, 82,86, 87 and 89. Among them, derivatives such as compounds of Examples 4, 5, 6, 13, 19, 31, 36, 39, 45, 46, 47, 48, 51, 52, 53, 67, 70, 71, 74, 75, 78, 80, 81, 86 and 87, appeared the most potent TRPV1 antagonists exhibiting a complete abolition of capsaicin response (around 100%) at 300 nM.
- The IC50 values of the compounds of Examples 4, 5, 6, 12, 13, 31, 46, 47, 48, 51, 73, 75 and 78 calculated against capsaicin-evoked [Ca2+]i mobilization were 4.07 nM, 1 nM, 0.51 nM, 6 nM, 1.8 nM, 1.9 nM, 3 nM, 0.7 nM, 0.13 nM, 1.8, 0.1 nM, 0.84 nM and 0.61, respectively.
- Tables 1, 2 and 3 describe the calcium assay data for all exemplified compounds of formula IA-C, ID-E and IF-H, respectively.
-
TABLE 1 Compound % inhibition at of Example 300 nM IC50 (nM) Example 1 84 Example 2 28 Example 3 93 Example 4 100 4.07 Example 5 100 1 Example 6 95 0.51 Example 7 33 Example 8 2 Example 9 18 Example 10 89 79 Example 11 82 12 Example 12 88 6 Example 13 96 1.8 Example 14 32 Example 15 54 Example 16 86 Example 17 44 Example 18 54 Example 19 99 Example 20 18 Example 21 79 Example 22 48 Example 23 82 108 Example 24 40 Example 25 40 Example 26 55 Example 27 45 Example 28 40 Example 29 8 Example 30 44 Example 31 100 1.9 Example 32 93 Example 33 16 Example 34 19 Example 35 90 Example 36 100 Example 39 98 9.5 Example 40 52 Example 41 88 Example 42 30 Example 43 23 Example 44 47 Example 45 100 Example 46 94 3 Example 47 100 0.7 Example 48 100 0.13 Example 49 68 Example 50 52 Example 51 100 0.1 Example 52 98 Example 53 90 Example 54 55 Example 66 71 Example 67 100 20 Example 68 93 Example 69 80 92 Example 70 98 Example 71 100 12 Example 72 40 6 Example 73 25 1.8 Example 74 100 Example 75 100 0.84 Example 76 40 Example 77 71 Example 78 100 0.61 Example 79 54 Example 80 95 Example 81 100 Example 82 90 54 Example 83 57 Example 84 61 Example 85 79 Example 86 100 17 Example 87 100 9 Example 88 75 Example 89 92 19.8 Example 90 47 Example 91 40 Example 92 12 -
TABLE 2 Compound % inhibition at of Example 300 nM Example 55 10 Example 56 31 Example 57 7 Example 58 43 -
TABLE 3 Compound % inhibition at of Example 300 nM Example 59 5 Example 60 8 Example 61 15 Example 62 8 Example 63 79 Example 64 65 Example 65 4 - CFA-Induced Thermal Hyperalgesia in Rats
- The more potent antagonists were orally administered at 30 μmol/kg. The compound of Example 51 was able to counteract the CFA effects producing a maximal reversal activity of 30%. In contrast, the compounds of Examples 5, 12, 13, 23, 31, 46, 47, 48, 49 produced a sustained anti-hyperalgesic effect showing 53%, 65%, 60%, 46%, 47%, 50%, 46%, 45% and 52% of reversion respectively.
- CFA-Induced Tactile Allodynia in Rats
- The compound of Example 5 (30 μmol/kg, oral) significantly reversed CFA-induced tactile allodynia (60% of reversal) up to 240 min post-treatment while the same dose of the compound of Example 51 provoked 61% of reversal but showed a shorter duration. The compound of Example 12 produced a statistically significant anti-hyperalgesic effect up to 300 min post-treatment. (62% of reversal). The compound of example 49 joined 72% of reversal.
- Rectal Temperature Measurement in Rats
- None of the more potent compounds affected rectal rat body temperature apart from the compound of Example 31 which induced hypothermia (−1.5° C.), and the compound of Example 46 which caused hyperthermia. (+0.8° C.).
- CCI-Induced Mechanical Hyperalgesia
- All selected compounds exhibited a significant anti-hyperalgesic effect. Particularly, derivatives the compounds of Examples 1, 5, 6, 31, 13, 46 and 49 induced relevant and long lasting anti-hyperalgesic activity. Moreover, all the above mentioned compounds produced at least 80% reversal of hyperalgesia within the first 2 hours of experimentation.
-
- (1) Cortright, D. N. and Szallasi, A. TRP channels and pain Current Pharmaceutical Design 2009, 15, 1736-1749.
- (2) Gunthorpe M. J. and Szallasi, A. Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms Current Pharmaceutical Design 2008, 14, 32-41.
- (3) Nachman R. J. 1,1-carbonyldiimidazole Journal of Heterocyclic Chemistry 1982, 19, 1545-1547.
- (4) Eijgendaal, I.; Klein, G.; Terhorst-Van Amstel, M. J. L.; Zwier, K.; Bruins, N.; Rigter, H. T.; Gout, E.; Boon, C.; De Vries, M. H. Stable crystalline form of bifeprunox mesylate, dosage forms thereof and therapeutic uses for CNS disorders. WO 2006087369 Solvay Pharmaceuticals B.V.
- (5) Kath, J. C.; Luzzio, M. J. Pyrimidine derivatives for the treatment of abnormal cell growth, their preparation and pharmaceutical compositions. US 2005256125 Pfizer Inc.
- (6) Singh, J.; Gurney, M.; Hategan, G.; Yu, P.; Zembower, D.; Zhou, N.; Polozov, A.; Zeller, W. Carboxylic acid peri-substituted bicyclics and their preparation, pharmaceutical compositions, and prostanoid EP3 receptor binding activity for treatment of occlusive artery disease. WO 2006044415 Decode Chemistry, Inc.
- (7) Ceccarelli, S. M.; Jaeschke, G.; Buettelmann, B.; Huwyler, J.; Kolczewski, S.; Peters, J.-U.; Prinssen, E.; Porte, R.; Spooren, W. and Vieira, E. Rational design, synthesis, and structure-activity relationship of benzoxazolones: new potent mglu5 receptor antagonists based on the fenobam structure Bioorganic & Medicinal Chemistry Letters 2007, 17, 1302-1306.
- (8) Hossain, N.; Ivanova, S.; Mensonides-Harsema, M. Preparation of spiroheterocyclic-piperidine or -pyrrolidine derivatives as chemokine receptor modulators. WO 2005054249 Astrazeneca AB.
- (9) Kudo, Y.; Ozaki, K.; Miyakawa, A.; Amano, T.; Ogura, A. Monitoring of intracellular Ca2+ elevation in a single neural cell using a fluorescence microscope/video-camera system. Japanese Journal of Pharmacology 1986, 41, 345-351.
- (10) Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32, 77-88.
- (11) Galbraith, J. A.; Mrosko, B. J.; Myers, R. R. A system to measure thermal nociception. Journal of Neuroscience Methods 1993, 49, 63-68.
- (12) Chaplan, S. R.; Bach, F. W.; Pogrel, J. W.; Chung, J. M.; Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods. 1994, 53, 55-63.
- (13) Leighton, G. E.; Rodriguez, R. E.; Hill, R. G.; Hughes, J. kappa-Opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat. British Journal of Pharmacology 1988, 93, 553-560.
Claims (21)
1. A compound of formula (I)
wherein:
J and K are independently NH or O; and
wherein:
W is NH, O, a bond or CH2;
Q is NH, O, a bond or CH2;
n is 0 or 1;
U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent;
R1 and R2 are independently selected from hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, which can be optionally substituted by OH, phenyl, heterocycle, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino, or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R3 is hydrogen or with n=1 is CH2 and forms a cycle with R1═CH2 or ═CH2—CH2,
With the proviso that when n is 0, Q is NH and W is a bond, then Y is not A, and with the exclusion of the compounds 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-carbamic acid benzyl ester and benzyl (7-oxo)-5,6,7,8-tetrahydronaphthalen-1-yl)carbamate.
2. The compound according to claim 1 wherein Y is A and W and Q are NH, said compound having formula (IA)
wherein:
J and K are independently NH or 0;
n is 0 or 1;
U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent;
R1 is hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, heterocycle, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R2 is halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R3 is hydrogen or when n=1 is CH2 and forms a cycle with R1═CH2.
3. The compound according to claim 2 wherein R1 and R2 are independently pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, or 2-(dimethylamino)ethoxy.
4. A compound selected from:
1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2-fluoro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2-chloro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2-(dimethylamino)-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(trifluoromethyl)-2-morpholinobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(trifluoromethyl)-2-(1H-1,2,4-triazol-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-fluorobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-chlorobenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-chloro-2-(dimethylamino)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-chloro-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-chloro-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(dimethylamino)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-methylbenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2-(dimethylamino)-4-methylbenzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-methyl-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)-3-((pyridin-4-yl)methyl)urea
1-((6-chloropyridin-3-yl)methyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(4-chloro-2-(3-hydroxypyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(5-(trifluoromethyl-furan-2-yl)-methyl)-3-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)urea
1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[6-(trifluoromethyl)-3-pyridyl]methyl]urea
1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-pyrrolidin-1-yl-6-(trifluoromethyl)-3-pyridyl]methyl]urea
1-[[6-methyl-2-(1-piperidyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[5-(trifluoromethyl)-2-pyridyl]methyl]urea
1-[[2-isopropoxy-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[[2-isopropoxy-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[[2-dimethylamino-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[(4-tert-butylphenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-(2-oxo-1,3-dihydrobenzimidazol-4-yl)-3-[[2-(1-piperidyl)-6-(trifluoromethyl)-3-pyridyl]methyl]urea
1-[[2-(2-dimethylaminoethoxy)-6-(trifluoromethyl)-3-pyridyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[[2-(2-dimethylaminoethoxy)-4-(trifluoromethyl)phenyl]methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[(4-tert-butyl-2-chloro-phenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-[(4-tert-butyl-2-pyrrolidin-1-yl-phenyl)methyl]-3-(2-oxo-1,3-dihydrobenzimidazol-4-yl)urea
1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(2-fluoro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(2-chloro-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-fluoro-2-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-chloro-2-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(2-(dimethylamino)-4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-(trifluoromethyl)-2-morpholinobenzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-chlorobenzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)urea
1-(4-(trifluoromethyl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
1-(4-(trifluoromethyl)-2-(pyrrolidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
1-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-3-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)urea
1-(2-oxo-3H-1,3-benzoxazol-7-yl)-3-[[6-(trifluoromethyl)-3-pyridyl]methyl]urea
1-(2-oxo-3H-1,3-benzoxazol-7-yl)-3-[[5-(trifluoromethyl)-2-furyl]methyl]urea
5. The compound according to claim 1 wherein Y is A or B, W is NH, Q is a bond and R3 is hydrogen, said compounds having formula (ID) or (IE),
wherein:
J and K are independently NH or O;
n is 0 or 1;
R1 is hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl,
(C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R2 is halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino.
6. The compound according to claim 5 wherein R1 and R2 are independently pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, or 2-(dimethylamino)ethoxy.
7. The compound according to claim 1 , 5 or 6 selected from:
2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxo-1H-benzo[d]imidazol-4-yl)acetamide;
2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxobenzo[d]oxazol-4-yl)acetamide; and
2-(4-(trifluoromethyl)phenyl)-N-(2,3-dihydro-2-oxobenzo[d]oxazol-7-yl)acetamide.
8. The compound according to claim 1 wherein Y is A Q is NH and R3 is hydrogen, said compounds having formula (IG)
wherein:
J and K are independently NH or
W is O or a bond;
n is 0 or 1;
R1 is hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl,
(C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R2 is halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
with the proviso that when n is 0, Q is NH and W is a bond, then Y is not A.
9. The compound according to claim 8 wherein R1 and R2 are independently pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl, or 2-(dimethylamino)ethoxy.
10. A compound according to claim 1 , selected from:
N-(4-(trifluoromethyl)-2-(piperidin-1-yl)benzyl)-2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxamide; and
N-(4-(trifluoromethyl)-2-morpholinobenzyl)-2,3-dihydro-2-oxobenzo[d]oxazole-4-carboxamide.
11-13. (canceled)
14. A method of treating a disease or condition ameliorated by inhibition of the vanilloid receptor TRPV1 selected from: pain associated with burns, post-operative pain, osteoarthritis, rheumatoid arthritis, headaches, dental pain, pelvic pain, migraine, mastalgia, visceral pain, neuropathy, irritable bowel syndrome, gastro-esophageal reflux disease, Crohn's disease, asthma, chronic obstructive pulmonary disease, cough, urinary incontinence, urinary bladder hypersensitiveness, psoriasis, dermatitis, myocardial ischemia, hirsutism, alopecia, rhinitis, pancreatitis, vulvodynia, dry eye, anxiety or obesity, the method comprising administering an effective amount of a compound of claim 1 , to a subject in need thereof.
15. A method of treating Dry Eye comprising administering an effective amount of a compound of claim 1 , to a subject in need thereof.
16. A compound of formula (I)
wherein:
J and K are O; and
wherein:
W is NH, O, a bond or CH2;
Q is NH, O, a bond or CH2;
n is 0 or 1;
U1, U2, U3, U4 and U5 form an aromatic ring and are independently CH, N, O, S, or one of them may be absent;
R1 and R2 are independently selected from hydrogen, halogen, trifluoromethyl, (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis-(C1-C4)alkylamino, monocyclic ring system containing 0-4 heteroatoms independently selected from N and O, which can be optionally substituted by OH, phenyl, heterocycle, and wherein the alkyl chains of said (C1-C4)alkyl, (C1-C4)alkoxy, mono- or bis (C1-C4)alkylamino can be optionally substituted with an amino, mono- or bis-(C1-C4)alkylamino, morpholino, piperidino, pyrrolidino, or piperazino group, provided that there are at least two carbon atoms between the nitrogen atom of said group and the oxygen atom of the (C1-C4)alkoxy or the nitrogen atom of said mono- or bis-(C1-C4)alkylamino;
R3 is hydrogen or with n=1 is CH2 and forms a cycle with R1═CH2 or ═CH2—CH2; with the proviso that when n is 0, Q is NH and W is a bond, then Y is not E, and with the exclusion of benzyl (7-oxo)-5,6,7,8-tetrahydronaphthalen-1-yl)carbamate.
17. A method of treating a disease or condition ameliorated by inhibition of the vanilloid receptor TRPV1 selected from: pain associated with burns, post-operative pain, osteoarthritis, rheumatoid arthritis, headaches, dental pain, pelvic pain, migraine, mastalgia, visceral pain, neuropathy, irritable bowel syndrome, gastro-esophageal reflux disease, Crohn's disease, asthma, chronic obstructive pulmonary disease, cough, urinary incontinence, urinary bladder hypersensitiveness, psoriasis, dermatitis, myocardial ischemia, hirsutism, alopecia, rhinitis, pancreatitis, vulvodynia, dry eye, anxiety or obesity, the method comprising administering an effective amount of a compound of claim 4 , to a subject in need thereof.
18. A method of treating dry eye comprising administering an effective amount of a compound of claim 4 , to a subject in need thereof.
19. A method of treating a disease or condition ameliorated by inhibition of the vanilloid receptor TRPV1 selected from: pain associated with burns, post-operative pain, osteoarthritis, rheumatoid arthritis, headaches, dental pain, pelvic pain, migraine, mastalgia, visceral pain, neuropathy, irritable bowel syndrome, gastro-esophageal reflux disease, Crohn's disease, asthma, chronic obstructive pulmonary disease, cough, urinary incontinence, urinary bladder hypersensitiveness, psoriasis, dermatitis, myocardial ischemia, hirsutism, alopecia, rhinitis, pancreatitis, vulvodynia, dry eye, anxiety or obesity, the method comprising administering an effective amount of a compound of claim 16 , to a subject in need thereof.
20. A method of treating dry eye comprising administering an effective amount of a compound of claim 16 , to a subject in need thereof.
21. A composition comprising the compound of claim 1 ; and a pharmaceutically acceptable carrier.
22. A composition comprising the compound of claim 4 ; and a pharmaceutically acceptable carrier.
23. A composition comprising the compound of claim 16 ; and a pharmaceutically acceptable carrier.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/976,882 US20160289199A1 (en) | 2010-03-30 | 2015-12-21 | TRPV1 Vanilloid Receptor Antagonists With A Bicyclic Portion |
US15/431,265 US10233177B2 (en) | 2010-03-30 | 2017-02-13 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10158292A EP2377850A1 (en) | 2010-03-30 | 2010-03-30 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
EP10158292.2 | 2010-03-30 | ||
PCT/EP2010/070538 WO2011120604A1 (en) | 2010-03-30 | 2010-12-22 | "trpv1 vanilloid receptor antagonists with a bicyclic portion" |
US201213636898A | 2012-11-29 | 2012-11-29 | |
US14/976,882 US20160289199A1 (en) | 2010-03-30 | 2015-12-21 | TRPV1 Vanilloid Receptor Antagonists With A Bicyclic Portion |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/636,898 Division US9216975B2 (en) | 2010-03-30 | 2010-12-22 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
PCT/EP2010/070538 Division WO2011120604A1 (en) | 2010-03-30 | 2010-12-22 | "trpv1 vanilloid receptor antagonists with a bicyclic portion" |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/431,265 Continuation US10233177B2 (en) | 2010-03-30 | 2017-02-13 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160289199A1 true US20160289199A1 (en) | 2016-10-06 |
Family
ID=42320777
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/636,898 Active 2031-05-08 US9216975B2 (en) | 2010-03-30 | 2010-12-22 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
US14/976,882 Abandoned US20160289199A1 (en) | 2010-03-30 | 2015-12-21 | TRPV1 Vanilloid Receptor Antagonists With A Bicyclic Portion |
US15/431,265 Active US10233177B2 (en) | 2010-03-30 | 2017-02-13 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/636,898 Active 2031-05-08 US9216975B2 (en) | 2010-03-30 | 2010-12-22 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/431,265 Active US10233177B2 (en) | 2010-03-30 | 2017-02-13 | TRPV1 vanilloid receptor antagonists with a bicyclic portion |
Country Status (11)
Country | Link |
---|---|
US (3) | US9216975B2 (en) |
EP (2) | EP2377850A1 (en) |
JP (1) | JP5927174B2 (en) |
KR (1) | KR20130065634A (en) |
CN (1) | CN102858742B (en) |
BR (1) | BR112012024712A2 (en) |
CA (1) | CA2794773A1 (en) |
EA (1) | EA201290840A1 (en) |
IL (1) | IL222153A0 (en) |
MX (1) | MX2012011244A (en) |
WO (1) | WO2011120604A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2641648C1 (en) | 2009-12-04 | 2018-01-19 | Суновион Фармасьютикалз, Инк. | Polycyclic compounds and methods for their use |
AU2013355220B2 (en) * | 2012-12-06 | 2018-08-02 | Baruch S. Blumberg Institute | Functionalized benzamide derivatives as antiviral agents against HBV infection |
CN107108593B (en) * | 2014-11-24 | 2020-03-24 | 美迪福伦Dbt有限公司 | Substituted oxazole and thiazole-based carboxamide and urea derivatives as vanilloid receptor ligands II |
MA45857A (en) | 2016-07-29 | 2021-05-19 | Sunovion Pharmaceuticals Inc | COMPOUNDS AND COMPOSITIONS, AND ASSOCIATED USES |
AU2017301767A1 (en) | 2016-07-29 | 2019-02-14 | Pgi Drug Discovery Llc | Compounds and compositions and uses thereof |
JP7146782B2 (en) | 2017-02-16 | 2022-10-04 | サノビオン ファーマシューティカルズ インク | Methods of treating schizophrenia |
AU2018312559B2 (en) | 2017-08-02 | 2022-06-02 | Pgi Drug Discovery Llc | Isochroman compounds and uses thereof |
EA202091945A1 (en) | 2018-02-16 | 2021-01-18 | Суновион Фармасьютикалз Инк. | SALTS, CRYSTALLINE FORMS AND METHODS OF THEIR PRODUCTION |
JP6994061B2 (en) | 2019-02-15 | 2022-01-14 | ノバルティス アーゲー | Preparation of 4- (7-hydroxy-2-isopropyl-4-oxo-4H-quinazoline-3-yl) -benzonitrile |
MX2021009702A (en) | 2019-02-15 | 2021-09-14 | Novartis Ag | Methods for treating ocular surface pain. |
US11136304B2 (en) | 2019-03-14 | 2021-10-05 | Sunovion Pharmaceuticals Inc. | Salts of a heterocyclic compound and crystalline forms, processes for preparing, therapeutic uses, and pharmaceutical compositions thereof |
CN114585357A (en) * | 2019-10-04 | 2022-06-03 | 千寿制药株式会社 | Medicine containing heterocyclic subunit acetamide derivative |
CN111362878B (en) * | 2020-03-18 | 2023-09-19 | 湖南复瑞生物医药技术有限责任公司 | A kind of preparation method of 4-amino-1,3-dihydro-benzimidazole-2-one |
JP2023523569A (en) | 2020-04-14 | 2023-06-06 | サノビオン ファーマシューティカルズ インク | Methods of treating neurological and psychiatric disorders |
KR102334947B1 (en) | 2020-04-22 | 2021-12-06 | 주식회사 제이맥켐 | Benzimidazolone based cinnamamide derivatives as TRPV1 antagonists and a pharmaceutical composition for treating or preventing pain containing the same as an active ingredient |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975531A (en) * | 1973-10-02 | 1976-08-17 | A. H. Robins Company, Incorporated | 4-(5- And 7-)benzoylindolin-2-ones and pharmaceutical uses thereof |
CH577461A5 (en) * | 1975-08-13 | 1976-07-15 | Robins Co Inc A H | |
US4503073A (en) * | 1981-01-07 | 1985-03-05 | A. H. Robins Company, Incorporated | 2-Amino-3-(alkylthiobenzoyl)-phenylacetic acids |
US4582909A (en) * | 1984-02-02 | 1986-04-15 | Warner-Lambert Company | Benzobicyclic lactam acids and derivatives as cognition activators |
US4644005A (en) * | 1984-10-31 | 1987-02-17 | Pfizer Inc. | Oxindole antiinflammatory agents |
CO5190696A1 (en) * | 1999-06-16 | 2002-08-29 | Smithkline Beecham Corp | ANTAGONISTS OF IL-8 RECEIVERS |
EP1294688A2 (en) * | 2000-06-02 | 2003-03-26 | Sugen, Inc. | Indolinone derivatives as protein kinase/phosphatase inhibitors |
DE60208630T2 (en) | 2001-05-11 | 2006-08-17 | Pfizer Products Inc., Groton | Thiazole derivatives and their use as cdk inhibitors |
JP2003192587A (en) * | 2001-12-26 | 2003-07-09 | Bayer Ag | Urea derivative |
GB0206876D0 (en) * | 2002-03-22 | 2002-05-01 | Merck Sharp & Dohme | Therapeutic agents |
SE0302546D0 (en) * | 2003-09-24 | 2003-09-24 | Astrazeneca Ab | New compounds |
US6933311B2 (en) * | 2003-02-11 | 2005-08-23 | Abbott Laboratories | Fused azabicyclic compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor |
EP1628661A2 (en) * | 2003-06-05 | 2006-03-01 | Vertex Pharmaceuticals Incorporated | Modulators of vr1 receptor |
KR20060027338A (en) * | 2003-06-12 | 2006-03-27 | 아스텔라스세이야쿠 가부시키가이샤 | Benzamide derivatives or salts thereof |
GB0322016D0 (en) * | 2003-09-19 | 2003-10-22 | Merck Sharp & Dohme | New compounds |
WO2005040100A1 (en) * | 2003-10-15 | 2005-05-06 | Bayer Healthcare Ag | Tetrahydro-naphthalene and urea derivatives |
US7683076B2 (en) * | 2003-11-08 | 2010-03-23 | Bayer Schering Pharma Aktiengesellschaft | Tetrahydro-quinolinylurea derivatives |
SE0303280D0 (en) | 2003-12-05 | 2003-12-05 | Astrazeneca Ab | Novel compounds |
CA2563494A1 (en) * | 2004-04-20 | 2005-11-03 | Bayer Healthcare Ag | Urea derivatives as antagonists of the vanilloid receptor (vr1) |
CA2566332A1 (en) | 2004-05-14 | 2005-11-24 | Pfizer Products Inc. | Pyrimidine derivatives for the treatment of abnormal cell growth |
CA2583828A1 (en) | 2004-10-12 | 2006-04-27 | Decode Genetics, Inc. | Carboxylic acid peri-substituted bicyclics for occlusive artery disease |
US7423040B2 (en) | 2005-02-18 | 2008-09-09 | Irene Eijgendaal | Stable crystalline form of bifeprunox mesylate, dosage forms thereof and methods for using same |
CA2680173A1 (en) * | 2007-03-07 | 2008-09-12 | Alantos Pharmaceuticals Holding, Inc. | Metalloprotease inhibitors containing a heterocyclic moiety |
CL2008001003A1 (en) * | 2007-04-11 | 2008-10-17 | Actelion Pharmaceuticals Ltd | COMPOUNDS DERIVED FROM OXAZOLIDINONA; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUNDS; AND ITS USE TO PREPARE A MEDICINAL PRODUCT TO TREAT A BACTERIAL INFECTION. |
EP2181108A2 (en) * | 2007-06-12 | 2010-05-05 | Boehringer Ingelheim International GmbH | 3-hetrocyclylidene-indolinone derivatives as inhibitors of specific cell cycle kinases |
US8969342B2 (en) | 2009-03-20 | 2015-03-03 | Brandeis University | Compounds and methods for treating mammalian gastrointestinal microbial infections |
-
2010
- 2010-03-30 EP EP10158292A patent/EP2377850A1/en not_active Withdrawn
- 2010-12-22 BR BR112012024712A patent/BR112012024712A2/en not_active Application Discontinuation
- 2010-12-22 CN CN201080065940.9A patent/CN102858742B/en not_active Expired - Fee Related
- 2010-12-22 EP EP10799032.7A patent/EP2552888B1/en active Active
- 2010-12-22 KR KR1020127025495A patent/KR20130065634A/en not_active Application Discontinuation
- 2010-12-22 US US13/636,898 patent/US9216975B2/en active Active
- 2010-12-22 CA CA2794773A patent/CA2794773A1/en not_active Abandoned
- 2010-12-22 EA EA201290840A patent/EA201290840A1/en unknown
- 2010-12-22 JP JP2013501648A patent/JP5927174B2/en not_active Expired - Fee Related
- 2010-12-22 WO PCT/EP2010/070538 patent/WO2011120604A1/en active Application Filing
- 2010-12-22 MX MX2012011244A patent/MX2012011244A/en not_active Application Discontinuation
-
2012
- 2012-09-27 IL IL222153A patent/IL222153A0/en unknown
-
2015
- 2015-12-21 US US14/976,882 patent/US20160289199A1/en not_active Abandoned
-
2017
- 2017-02-13 US US15/431,265 patent/US10233177B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
MX2012011244A (en) | 2013-02-07 |
CN102858742A (en) | 2013-01-02 |
CA2794773A1 (en) | 2011-10-06 |
JP5927174B2 (en) | 2016-06-01 |
EP2552888B1 (en) | 2018-09-26 |
EP2552888A1 (en) | 2013-02-06 |
US9216975B2 (en) | 2015-12-22 |
US20170152252A1 (en) | 2017-06-01 |
KR20130065634A (en) | 2013-06-19 |
WO2011120604A1 (en) | 2011-10-06 |
JP2013523663A (en) | 2013-06-17 |
EA201290840A1 (en) | 2013-04-30 |
US10233177B2 (en) | 2019-03-19 |
US20130079339A1 (en) | 2013-03-28 |
IL222153A0 (en) | 2012-12-02 |
CN102858742B (en) | 2015-05-27 |
EP2377850A1 (en) | 2011-10-19 |
BR112012024712A2 (en) | 2016-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10233177B2 (en) | TRPV1 vanilloid receptor antagonists with a bicyclic portion | |
US10351514B2 (en) | Benzimidazole inhibitors of the sodium channel | |
US9238647B2 (en) | P2X3 receptor antagonists for treatment of pain | |
EP2358371B1 (en) | P2x3, receptor antagonists for treatment of pain | |
AU2002364549B2 (en) | Vanilloid receptor ligands and their use in treatments | |
US8946231B2 (en) | P2X3, receptor antagonists for treatment of pain | |
TWI837169B (en) | Thyroid hormone receptor beta agonist compounds | |
JP6197125B2 (en) | Composition of compounds and uses thereof | |
US20120101099A1 (en) | Histone deacetylase inhibitors | |
US20180194767A1 (en) | 5-aromatic alkynyl substituted benzamide compound and preparation method, pharmaceutical composition, and use thereof | |
US10221169B2 (en) | Substituted aminothiazoles for the treatment of tuberculosis | |
EA013748B1 (en) | N-(heteroaryl)-1-heteroarylalkyl-1h-indole-2-carboxamide derivatives, preparation and use thereof | |
US20220242861A1 (en) | Imidazopyridinyl compounds and use thereof for treatment of proliferative disorders | |
EP2627324A2 (en) | Substituted benzamides and their uses | |
JPH11322729A (en) | Dithiocarbamic acid derivative | |
KR102473680B1 (en) | Novel pyrazole derivatives | |
US9376421B2 (en) | Compounds and methods for myotonic dystrophy therapy | |
KR20130096639A (en) | Modulators of fatty acid amide hydrolase | |
KR101293384B1 (en) | Novel pyridyl benzoxazine derivatives, pharmaceutical composition comprising the same, and use thereof | |
US20230321086A1 (en) | Methods and materials for inhibiting nicotinamide phosphoribosyltransferase activity | |
US20250051282A1 (en) | Compounds for treating polyq-related neurodegenerative disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |