US20160248652A1 - System and method for classifying and managing applications over compressed or encrypted traffic - Google Patents
System and method for classifying and managing applications over compressed or encrypted traffic Download PDFInfo
- Publication number
- US20160248652A1 US20160248652A1 US15/142,302 US201615142302A US2016248652A1 US 20160248652 A1 US20160248652 A1 US 20160248652A1 US 201615142302 A US201615142302 A US 201615142302A US 2016248652 A1 US2016248652 A1 US 2016248652A1
- Authority
- US
- United States
- Prior art keywords
- application
- connection
- network
- traffic
- classifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/04—Protocols for data compression, e.g. ROHC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/12—Discovery or management of network topologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/08—Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
- H04L43/0876—Network utilisation, e.g. volume of load or congestion level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
- H04L47/2441—Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
Definitions
- a method, and associated system, of classifying applications over compressed interfaces comprises the steps of: receiving uncompressed traffic including application data from a connection; determining an application classifier for application data; saving the application classifier for the connection; classifying any consecutive packets from the connection with the same application classifier; and propagating the application classifier to the compressed interfaces.
- a second embodiment provides a method, and associated system, for classifying applications over encrypted interfaces instead of compressed interfaces as in the first embodiment.
- a method, and associated system, for managing applications over compressed interfaces comprises the steps of detecting compressed traffic originating from a first connection; acquiring the application classifier for the compressed traffic; and, executing an application management process on the compressed traffic; and, returning an application management process output to the network.
- the fourth embodiment provides a method, and associated system, for managing applications over encrypted interfaces instead of compressed interfaces as in the third embodiment.
- FIG. 1 is a block diagram of a system according to the various embodiments of the invention.
- FIG. 2 is a flow diagram illustrating the application classification method of the first embodiment of the invention.
- FIG. 3 is a flow diagram illustrating the application classification method of the second embodiment of the invention.
- FIG. 4 is a signaling diagram illustrating the method of the first and second embodiments of the invention.
- FIG. 5 is a signaling diagram illustrating the methods of the first and second embodiments of the invention when a new application is detected,.
- FIG. 6 is a flow diagram illustrating the application management method of the third embodiment of the invention.
- FIG. 7 is a flow diagram illustrating the application management method of the fourth embodiment of the invention.
- FIG. 8 is a signaling diagram illustrating the application management method of the third and fourth embodiments of the invention.
- FIG. 9 is a block diagram illustrating a computer device in accordance with the various embodiments of the invention.
- FIG. 1 is a block diagram of a system according to the various embodiments of the invention.
- Network 100 is a wide area network comprising a network core 102 , which may include one or more routers serving as the backbone of network 100 .
- Network core 102 comprises equipment to provide paths for the exchange of information between a plurality of subnetworks ( 106 and 110 ).
- Each subnetwork includes a router ( 126 and 112 , respectively), which may be coupled to one or more switches ( 114 - 124 ).
- switches 114 - 124
- one or more devices may compress traffic in the network 100 (data compression devices). These devices may comprise, without limitation, a router such as routers 126 and 112 .
- the routers 126 and 112 will be described as comprising the data compression devices in network 100 although other devices in network 100 , such as the switches 114 - 124 may also serve as data compression devices.
- the data compression devices 126 and 112 comprise compression software to compress traffic, which includes one or more packets, from the respective subnetwork.
- the compression software optimizes traffic from each subnetwork ( 106 or 110 ) in the network TOO.
- This compression software (shown as “Compression Software” 905 ) may be stored in a storage system 904 , as will be described further in FIG. 9 .
- the connection point between each router 126 and 112 in network 100 , and the network core 102 is referred to as a “compression interface”.
- Each compression interface includes a connection for transmitting compressed data from one or more end user devices 148 - 162 in the respective subnetwork to the network.
- one or more devices may encrypt traffic in network 100 (data encryption devices).
- these devices may comprise, without limitation, a router such as routers 126 and 112 .
- the routers 126 and 112 will be described as comprising the data encryption devices in network 100 although other devices in network 100 , such as the switches 114 - 124 may also serve as data encryption devices.
- These data encryption devices may include encryption software (shown as 907 in FIG. 9 ) for encrypting traffic in network 100 .
- System 100 further includes one or more end user devices 148 - 162 , wherein each end user device is communicatively coupled to a switch 114 - 124 (depending on the location of the end user device).
- the connection between the end user devices 148 - 162 and switches 114 - 124 may comprise, without limitation, a WIFI connection or Ethernet connection.
- End user devices 148 - 162 in system 100 may utilize one or more applications, such as a Facebook application or a YouTube application, which may generate a plurality of application flows or packets (hereinafter referred to as “traffic” or “packets”).
- Application recognition module (ARM) 104 may comprise a computer device (as described in FIG. 9 ) configured to perform various functions on compressed or encrypted traffic on network communication interface 108 . These various functions may involve reporting or quality of service functions relating to the type of application(s) being utilized in the network.
- This application recognition module may include any type of software developed for analyzing applications in a network environment, including without limitation, the CISCO® Application Visibility and Control (AVC) Solution.
- the application recognition module (ARM) is configured to utilize the application classifier for the connection which originates the compressed or encrypted traffic, rather than trying to execute application classification methods on the compressed or encrypted traffic.
- the ARM is described in greater detail in the description of FIGS. 7 and 8 .
- FIG. 2 is a flow diagram illustrating the application classification method of the second embodiment of the invention.
- Method 200 could be executed by any computer device operating in the uncompressed interface of network 100 , including without limitation a router tasked with traffic compression shown as router 126 or 112 in FIG. 1 .
- another router or switch such as switches 114 - 124 , could also execute method 200 within the spirit and scope of the invention.
- Method 200 begins at step 202 , and receives uncompressed traffic including application data for a connection in the subnetwork 106 or 110 .
- the application data may comprise any information that would help identify the application, including without limitation, application name, size, path, run time information, code sections, source IP address, destination IP address, ports or protocols.
- the application data could also comprise the name, version, or producing company of the application.
- step 204 determines an application classifier for the application data.
- This step 204 involves utilizing techniques used in application recognition modules, such as but without limitation, the Cisco® Application Visibility and Control technology, to identify which application is originating the packets based on the application data.
- This step 204 may also involve utilizing a cloud-based application classification service which is communicatively coupled to network MO.
- the cloud-based application classification service may receive the application data, and after processing the application data, return an application classifier based on the cloud-based application classification service's algorithms and databases.
- method 200 saves the application classifier for the connection.
- the application classifier and any related L7 information, such as sub-classification information, is saved per connection. If an end user device is originating the uncompressed traffic, then the application classifier would be stored in the routers ( 126 or 112 in FIG. 1 ) or switches ( 114 - 124 in FIG. 1 ) in network 100 . However, this application classifier may be saved in any memory accessible by, or included in, network 100 .
- a router (such as router 126 or 112 in FIG. 1 , with components as shown in FIG. 9 ) may store the application identifier in the storage system 904 .
- method 200 classifies any subsequent packets from the same connection with the same application identifier saved at step 206 .
- method 200 would involve the classification of the packets with the previously saved application identifier at step 208 .
- method 200 propagates the application classifier to the interfaces in the network 100 .
- This propagation step could involve any number of processes.
- the propagation step could include referencing a flow table which is stored on the data compression device, which as previously described, is computer device in network 100 that is executing the traffic compression (such as router 126 or 112 , or any of switches 114 - 124 ).
- This flow table could include the network locations to which the application classifier should be communicated within network 100 .
- FIG, 3 illustrates the method of the second embodiment of the invention, which comprises a method of classifying applications over encrypted traffic instead of compressed traffic as in the first embodiment.
- method 300 involves the same steps and processes as described in FIG. 2 for the first embodiment, except that encrypted traffic is received at step 302 , and the application classification is performed on unencrypted traffic. Further, the application classifier is propagated to encrypted interfaces instead of compressed interfaces at step 310 . Similar to compression interfaces, encrypted interfaces comprise any connection in network 100 wherein traffic is being encrypted via encryption software.
- FIG. 4 is a signaling diagram illustrating the signals exchanged between the network devices during execution of the method of the second embodiment of the invention.
- end user device 402 outputs traffic from a connection on the end user device (here, referred to as “Connection A” for exemplary purposes only), shown as signal 406 , to router 104 .
- this traffic 406 comprises compressed traffic.
- the traffic 406 comprises encrypted traffic.
- Connection A may comprise any standard connector between an end user device and a network such as a WAN network.
- the application classifier determination process 408 involves analysis of the application data to determine the application that “fits” the application data. This process may involve utilizing a cloud-based traffic classification service which receives the application data, and returns the application classifier as output.
- the application classifier determination process could also involve the router 104 referencing a database of application classifiers, with associated characteristic information, and selecting the application classifier with the closest match to the application data. Those skilled in the art will appreciate that any number of methods could be utilized to select the application classifier within the various embodiments of the invention.
- Application classification aims to determine the application used for any connection and is based on several different methods or even a combination of methods.
- Such methods may comprise L2 (Layer 2) protocols such as ARP (Address Resolution Protocol); PPP (Point-to-Point Protocol); LLDP (Link Layer Discovery Protocol).
- the methods may also comprise IP protocols (such as ICMP (Internet Control Message Protocol); IGMP (Internet Group Management Protocol); or GRE (Generic Routing Encapsulation).
- IP protocols such as ICMP (Internet Control Message Protocol); IGMP (Internet Group Management Protocol); or GRE (Generic Routing Encapsulation).
- Other possibilities may comprise analyzing any of the following information: a) TCP or UDP ports (such as HTTP, Telnet, FTP); b) the application layer header of the application to be identified; c) Packet data content; or d) Packets and traffic behavior.
- the application classifier application process 410 involves saving the application classifier for the specific connection in the end user device 402 that originated the traffic 406 in a flow table in the associated router ( 126 or 112 in FIG. 1 ) for the associated subnetwork ( 106 or 110 in FIG. 1 ).
- the application classifier may be stored in a memory in the end user device 402 , such as storage 904 as shown in FIG. 9 .
- the application classifier may also be stored in any memory which is accessible to network devices in network 100 .
- Router 104 then receives additional traffic 412 , also referred to as additional packets 412 , from the same connection on the same end user device as traffic 406 .
- This traffic 412 may comprise either compressed traffic as in the first embodiment, or encrypted traffic as in the second embodiment. in both the first and second embodiments, the router then performs an application classifier application process 414 on the additional traffic to apply the same application classifier to traffic 412 as was assigned to traffic 406 .
- Router 104 then sends the application classifier information to the network 404 .
- Methods 300 or 400 may be executed by a router, such as router 126 or 112 in FIG. 1 .
- methods 300 or 400 may also be executed by an access device, such as WIFI access point in network 100 .
- WIFI access point such as WiFI 10.1 or 1011
- Those skilled in the art will recognize that any number of devices in network 100 may execute methods 300 or 400 within the spirit and scope of the invention.
- FIG. 5 is a signaling diagram illustrating the signals exchanged between the network devices in network 100 during execution of the method of the first and second embodiments of the invention.
- a signal comprising a new application trigger 508 is sent from the end user device 502 to the router 504 to indicate a suspected change in application based on changed L7 application data.
- router 504 executes two processes: an altered application classifier determination process 510 and an application classifier application process 512 .
- the altered application classifier determination process 510 involves the same processes as the application classifier determination process 408 , but for the input of altered application data instead of the application data which is input in the 408 process.
- the application classifier application process 512 involves the same processes as the application classifier application process 410 in FIG. 4 , which comprises saving the application classifier for the specific connection in the end user device 502 that originated the traffic 508 .
- the end user device 502 then sends additional traffic (packets) from connection A 514 , wherein this traffic comprises uncompressed traffic in the first embodiment and unencrypted traffic in the second embodiment.
- This additional traffic 514 is associated with the same application identifier which resulted from the altered application classifier determination process 510 .
- the outer 504 executes the application classification application process 516 to save the application identifier in connection A for the additional packets.
- the router 504 then sends the application classifier information 518 to the network 506 .
- FIG. 6 is a flow diagram illustrating the application management method of the third embodiment of the invention.
- the third embodiment may be embodied in any network device which is able to access compressed traffic (via compression interfaces) from end user devices.
- the third embodiment may be embodied in the application recognition module 104 , as referenced below in the description of method 600 for exemplary purposes only.
- the application recognition module 104 may comprise any number of forms within the spirit and scope of the invention.
- the application recognition module may comprise a stand-alone computer device, or a computer device which includes spread functionality among multiple locations in network 100 .
- Step 602 begins with step 602 when compressed traffic is detected at a first connection.
- This step 602 may be a passive or active step depending on the configuration of the application recognition module 104 .
- the application recognition module 104 would receive a notification (for example, from an end user device 148 - 162 , or routers 126 or 112 ) that compressed traffic is present on communication channel 108 .
- the application recognition module 104 would be configured to actively snoop or monitor communication channel 108 until compressed traffic is detected.
- method 600 executes an application classifier acquisition process. Instead of trying to analyze the compressed traffic to determine the application classifier, at this step the application recognition module 104 will access the connection of the network device that originated the compressed traffic to acquire the application classifier associated with the compressed traffic.
- method 600 executes an application management process, which utilizes the application classifier stored for the connection as input.
- This process may include any number of processes depending on the configuration of the application recognition module 104 , and business needs.
- the application management process may comprise applying quality of service metrics on traffic associated with a particular application identifier.
- Another example of an application management process may include a reporting function to generate a report for one or more criteria relating to the specific application represented by the application identifier.
- method 600 provides application management process output. This output will vary depending on the type of application management process is utilized. If the application management process is a reporting function, then the output at step 608 may include one or more reports in any number of formats (spreadsheet, .jpg, .pdf files, etc.) If quality of service metrics are applied, the output would comprise resulting data resulting from the QoS metric application.
- Another example of an application management process comprises performance metrics such as delay, wherein jitter could be calculated and presented as output.
- FIG. 7 is a flow diagram illustrating the application management process of the fourth embodiment of the invention, Method 700 is similar to method 600 , but for the detection of unencrypted traffic at step 702 versus the detection of uncompressed traffic at step 602 .
- the steps 702 - 708 are as described for steps 602 - 608 , except that unencrypted traffic and encrypted interfaces are involved instead of uncompressed traffic and compressed interfaces, respectively.
- the encrypted interfaces comprise any network connection including encryption software 907 as described below in FIG. 9 .
- FIG. 8 is a signaling diagram illustrating the signals exchanged between network devices during execution of the application management method of the third and fourth embodiments of the invention.
- the first connection 802 sends traffic 808 to the application recognition module (ARM) 804 .
- ARM application recognition module
- the third and fourth embodiments may be embodied in a number of network devices in network 100 , but for exemplary purposes only, the third and fourth embodiments are described from the perspective of the application recognition module.
- Traffic signal 808 may comprise uncompressed traffic in the case of the third embodiment, and unencrypted traffic in the case of the fourth embodiment.
- the traffic signal 808 may not be a direct signal to the ARM 804 , but rather, may comprise the traffic 808 being sent to a common communication channel, such as bus 108 , which the ARM 804 also has access (as described above in the passive and active embodiments).
- the ARM 804 performs two processes: an application classifier acquisition process 810 and an application management process 812 .
- the application classifier acquisition process 810 comprises the ARM 804 accessing the connection of the network device that originated the compressed traffic to acquire the application classifier associated with the compressed traffic.
- the application management process 812 may comprise any number of processes depending on the configuration of the application recognition module 804 , and business needs.
- the ARM 804 sends application management process output 814 to network 806 .
- FIG. 9 is a block diagram illustrating a network device configured to operate as described herein for identifying and managing applications over compressed or encrypted traffic in a network.
- This network device 900 may include, without limitation, an end user device such as 148 - 162 in FIG. 1 .
- Network device 900 includes communication interface 901 , processing system 902 , and user interface 903 .
- Processing system 902 includes storage system 904 .
- Storage system 904 stores software configured to perform the methods described herein, as well as compression software 905 , flow table 906 , and encryption software 907 .
- Processing system 902 is linked to communication interface 901 and user interface 903 , and may be configured to execute any of the methods described herein.
- network device 900 could include a programmed general-purpose computer, although those skilled in the art will appreciate that programmable or special purpose circuitry and equipment may be used.
- Network device 900 may be distributed among multiple devices that together make up elements 901 - 907 .
- Communication interface 901 could include a network interface, modem, port, transceiver, or some other communication device. Communication interface 901 may be distributed among multiple communication devices.
- Processing system 902 could include a computer microprocessor, logic circuit, or some other processing device. Processing system 902 may be distributed among multiple processing devices.
- User interface 903 could include a keyboard, mouse, voice recognition interface, microphone and speakers, graphical display, touch screen, or some other type of user device. User interface 903 may be distributed among multiple user devices.
- Storage system 904 could include a disk, tape, integrated circuit, server, or some other memory device. Storage system 904 may be distributed among multiple memory devices.
- Processing system 902 retrieves and executes compression software 905 and encryption software 907 from storage system 904 .
- Compression software 905 and encryption software 907 may include an operating system, utilities, drivers, networking software, and other software typically loaded onto a computer system.
- Compression software 905 and encryption software 907 could include an application program, firmware, or some other form of machine-readable processing instructions.
- Compression software 905 and encryption software 907 directs processing system 902 to operate as described herein to classify and manage applications over compressed or encrypted traffic in a network.
- computer device 900 is not required to have both compression software 905 and encryption software 907 .
- a computer device 900 operating some of the methods of the invention may very well comprise, or have access to, either compression software 905 or encryption software 907 , but not both.
- the various embodiments of the invention offer many advantages over the prior art, If networking devices can identify the specific application that originated an individual packet or flow when the traffic is uncompressed, and pass that information along to the compressed side of the network, then AVC modules will be able to perform reporting, quality of services, statistical, and other management functions with heightened accuracy. Likewise, providing this ability to classify and manage applications over encrypted traffic will also provide similar benefits.
- the embodiments of the invention also result in a more efficient system as the invention alleviates the need for behavioral or statistical mechanisms to identify applications in the network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
System and methods for identifying and managing applications over compressed or encrypted traffic in a network are described. The first and second embodiments, which provides a method for managing applications over compressed or encrypted traffic respectively, comprise identifying applications on the traffic, saving the application classification per connection, and propagating the application classification to the network. A method for providing application identification over compressed or encrypted traffic is also disclosed, which includes an application recognition module configured to, among other functions, determine an application classifier for compressed or encrypted traffic without applying an application classification process, and utilize the application classification for previous packets originating from the connection for the current packets from the same connection.
Description
- In today's computer networks, users are utilizing more applications than ever before, and networks utilize application classification technologies to identify precisely which applications are running on the network in order to manage them more effectively. Due to the exponential increase of traffic volume in the network, network compression and optimization techniques were highly adopted. Similar to the network bandwidth growth, cyber-threats has been exponentially growing. Many companies cite cyber threats as the top risk to their operations—higher than even the threat from natural disasters. As a result, encryption of data in computer networks has become critical.
- Due to these two problems, many companies are currently using compression, optimization and encryption techniques. However, application classification, and other functions associated with classified applications, conflict with, and are complicated by, the technologies used in wide area networks to compress or encrypt or optimize traffic. Thus, there is a need in the art for a method for classifying and managing applications over compressed or encrypted traffic in a network, including without limitation, a WAN network.
- Broadly described, the various embodiments of invention provide for a system and methods for providing application identification and management of applications in a network which includes compressed or optimized traffic (“compressed traffic”). in some embodiments, these same methods and systems may be utilized for application classification over encrypted traffic instead of compressed traffic. In a first embodiment, a method, and associated system, of classifying applications over compressed interfaces comprises the steps of: receiving uncompressed traffic including application data from a connection; determining an application classifier for application data; saving the application classifier for the connection; classifying any consecutive packets from the connection with the same application classifier; and propagating the application classifier to the compressed interfaces. A second embodiment provides a method, and associated system, for classifying applications over encrypted interfaces instead of compressed interfaces as in the first embodiment.
- In the third embodiment, a method, and associated system, for managing applications over compressed interfaces comprises the steps of detecting compressed traffic originating from a first connection; acquiring the application classifier for the compressed traffic; and, executing an application management process on the compressed traffic; and, returning an application management process output to the network. The fourth embodiment provides a method, and associated system, for managing applications over encrypted interfaces instead of compressed interfaces as in the third embodiment.
- This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
-
FIG. 1 is a block diagram of a system according to the various embodiments of the invention. -
FIG. 2 is a flow diagram illustrating the application classification method of the first embodiment of the invention. -
FIG. 3 is a flow diagram illustrating the application classification method of the second embodiment of the invention. -
FIG. 4 is a signaling diagram illustrating the method of the first and second embodiments of the invention. -
FIG. 5 is a signaling diagram illustrating the methods of the first and second embodiments of the invention when a new application is detected,. -
FIG. 6 is a flow diagram illustrating the application management method of the third embodiment of the invention. -
FIG. 7 is a flow diagram illustrating the application management method of the fourth embodiment of the invention. -
FIG. 8 is a signaling diagram illustrating the application management method of the third and fourth embodiments of the invention. -
FIG. 9 is a block diagram illustrating a computer device in accordance with the various embodiments of the invention. - Like reference numbers and designations in the various drawings indicate like elements.
-
FIG. 1 is a block diagram of a system according to the various embodiments of the invention. Network 100 is a wide area network comprising anetwork core 102, which may include one or more routers serving as the backbone ofnetwork 100.Network core 102 comprises equipment to provide paths for the exchange of information between a plurality of subnetworks (106 and 110). Each subnetwork includes a router (126 and 112, respectively), which may be coupled to one or more switches (114-124). Those skilled in the art will appreciate that various types and quantities of equipment and structure may be included in the network core and each subnetwork network within the spirit and scope of this invention. - To optimize bandwidth in
network 100, one or more devices may compress traffic in the network 100 (data compression devices). These devices may comprise, without limitation, a router such asrouters routers network 100 although other devices innetwork 100, such as the switches 114-124 may also serve as data compression devices. - The
data compression devices storage system 904, as will be described further inFIG. 9 . Innetwork 100, wherein therouters router network 100, and thenetwork core 102 is referred to as a “compression interface”. Each compression interface includes a connection for transmitting compressed data from one or more end user devices 148-162 in the respective subnetwork to the network. - To safeguard communications in
subnetwork networks routers routers network 100 although other devices innetwork 100, such as the switches 114-124 may also serve as data encryption devices. These data encryption devices may include encryption software (shown as 907 inFIG. 9 ) for encrypting traffic innetwork 100. -
System 100 further includes one or more end user devices 148-162, wherein each end user device is communicatively coupled to a switch 114-124 (depending on the location of the end user device). The connection between the end user devices 148-162 and switches 114-124 may comprise, without limitation, a WIFI connection or Ethernet connection. End user devices 148-162 insystem 100 may utilize one or more applications, such as a Facebook application or a YouTube application, which may generate a plurality of application flows or packets (hereinafter referred to as “traffic” or “packets”). - Application recognition module (ARM) 104 may comprise a computer device (as described in
FIG. 9 ) configured to perform various functions on compressed or encrypted traffic onnetwork communication interface 108. These various functions may involve reporting or quality of service functions relating to the type of application(s) being utilized in the network. This application recognition module may include any type of software developed for analyzing applications in a network environment, including without limitation, the CISCO® Application Visibility and Control (AVC) Solution. The application recognition module (ARM) is configured to utilize the application classifier for the connection which originates the compressed or encrypted traffic, rather than trying to execute application classification methods on the compressed or encrypted traffic. The ARM is described in greater detail in the description ofFIGS. 7 and 8 . -
FIG. 2 is a flow diagram illustrating the application classification method of the second embodiment of the invention.Method 200 could be executed by any computer device operating in the uncompressed interface ofnetwork 100, including without limitation a router tasked with traffic compression shown asrouter FIG. 1 . Alternatively, another router or switch, such as switches 114-124, could also executemethod 200 within the spirit and scope of the invention. -
Method 200 begins atstep 202, and receives uncompressed traffic including application data for a connection in thesubnetwork - At
step 204,method 200 determines an application classifier for the application data. Thisstep 204 involves utilizing techniques used in application recognition modules, such as but without limitation, the Cisco® Application Visibility and Control technology, to identify which application is originating the packets based on the application data. Thisstep 204 may also involve utilizing a cloud-based application classification service which is communicatively coupled to network MO. The cloud-based application classification service may receive the application data, and after processing the application data, return an application classifier based on the cloud-based application classification service's algorithms and databases. - At
step 206,method 200 saves the application classifier for the connection. The application classifier and any related L7 information, such as sub-classification information, is saved per connection. If an end user device is originating the uncompressed traffic, then the application classifier would be stored in the routers (126 or 112 inFIG. 1 ) or switches (114-124 inFIG. 1 ) innetwork 100. However, this application classifier may be saved in any memory accessible by, or included in,network 100. For example, a router (such asrouter FIG. 1 , with components as shown inFIG. 9 ) may store the application identifier in thestorage system 904. - At
step 208,method 200 classifies any subsequent packets from the same connection with the same application identifier saved atstep 206. In an alternate embodiment, if an application identifier was not saved for the packets atstep 206, and an application classifier was previously stored at the same connection for previous packets,method 200 would involve the classification of the packets with the previously saved application identifier atstep 208. - At
step 210,method 200 propagates the application classifier to the interfaces in thenetwork 100. This propagation step could involve any number of processes. For example, the propagation step could include referencing a flow table which is stored on the data compression device, which as previously described, is computer device innetwork 100 that is executing the traffic compression (such asrouter network 100. - FIG, 3 illustrates the method of the second embodiment of the invention, which comprises a method of classifying applications over encrypted traffic instead of compressed traffic as in the first embodiment. Thus,
method 300 involves the same steps and processes as described inFIG. 2 for the first embodiment, except that encrypted traffic is received atstep 302, and the application classification is performed on unencrypted traffic. Further, the application classifier is propagated to encrypted interfaces instead of compressed interfaces atstep 310. Similar to compression interfaces, encrypted interfaces comprise any connection innetwork 100 wherein traffic is being encrypted via encryption software. -
FIG. 4 is a signaling diagram illustrating the signals exchanged between the network devices during execution of the method of the second embodiment of the invention. In signaling diagram 400,end user device 402 outputs traffic from a connection on the end user device (here, referred to as “Connection A” for exemplary purposes only), shown assignal 406, torouter 104. In the first embodiment, thistraffic 406 comprises compressed traffic. In the second embodiment, thetraffic 406 comprises encrypted traffic. Connection A may comprise any standard connector between an end user device and a network such as a WAN network. Oncerouter 104 receives thetraffic 406, in both the first and second embodiments, router performs two processes: an application classifier determination process 408 and an applicationclassifier application process 410. - The application classifier determination process 408 involves analysis of the application data to determine the application that “fits” the application data. This process may involve utilizing a cloud-based traffic classification service which receives the application data, and returns the application classifier as output. The application classifier determination process could also involve the
router 104 referencing a database of application classifiers, with associated characteristic information, and selecting the application classifier with the closest match to the application data. Those skilled in the art will appreciate that any number of methods could be utilized to select the application classifier within the various embodiments of the invention. - Application classification aims to determine the application used for any connection and is based on several different methods or even a combination of methods. Such methods may comprise L2 (Layer 2) protocols such as ARP (Address Resolution Protocol); PPP (Point-to-Point Protocol); LLDP (Link Layer Discovery Protocol). The methods may also comprise IP protocols (such as ICMP (Internet Control Message Protocol); IGMP (Internet Group Management Protocol); or GRE (Generic Routing Encapsulation). Other possibilities may comprise analyzing any of the following information: a) TCP or UDP ports (such as HTTP, Telnet, FTP); b) the application layer header of the application to be identified; c) Packet data content; or d) Packets and traffic behavior.
- The application
classifier application process 410 involves saving the application classifier for the specific connection in theend user device 402 that originated thetraffic 406 in a flow table in the associated router (126 or 112 inFIG. 1 ) for the associated subnetwork (106 or 110 inFIG. 1 ). Alternatively, the application classifier may be stored in a memory in theend user device 402, such asstorage 904 as shown inFIG. 9 . However, the application classifier may also be stored in any memory which is accessible to network devices innetwork 100. -
Router 104 then receives additional traffic 412, also referred to as additional packets 412, from the same connection on the same end user device astraffic 406. This traffic 412 may comprise either compressed traffic as in the first embodiment, or encrypted traffic as in the second embodiment. in both the first and second embodiments, the router then performs an applicationclassifier application process 414 on the additional traffic to apply the same application classifier to traffic 412 as was assigned totraffic 406.Router 104 then sends the application classifier information to thenetwork 404. -
Methods router FIG. 1 . Alternatively,methods network 100. Those skilled in the art will recognize that any number of devices innetwork 100 may executemethods -
FIG. 5 is a signaling diagram illustrating the signals exchanged between the network devices innetwork 100 during execution of the method of the first and second embodiments of the invention. Inmethod 500, a signal comprising a new application trigger 508 is sent from theend user device 502 to therouter 504 to indicate a suspected change in application based on changed L7 application data. - Once
router 504 receives the new application trigger 508, therouter 504 executes two processes: an altered application classifier determination process 510 and an applicationclassifier application process 512. The altered application classifier determination process 510 involves the same processes as the application classifier determination process 408, but for the input of altered application data instead of the application data which is input in the 408 process. The applicationclassifier application process 512 involves the same processes as the applicationclassifier application process 410 inFIG. 4 , which comprises saving the application classifier for the specific connection in theend user device 502 that originated the traffic 508. - The
end user device 502 then sends additional traffic (packets) fromconnection A 514, wherein this traffic comprises uncompressed traffic in the first embodiment and unencrypted traffic in the second embodiment. Thisadditional traffic 514 is associated with the same application identifier which resulted from the altered application classifier determination process 510. To do so, the outer 504 executes the applicationclassification application process 516 to save the application identifier in connection A for the additional packets. Therouter 504 then sends theapplication classifier information 518 to thenetwork 506. -
FIG. 6 is a flow diagram illustrating the application management method of the third embodiment of the invention. The third embodiment may be embodied in any network device which is able to access compressed traffic (via compression interfaces) from end user devices. For example, and without limitation, the third embodiment may be embodied in theapplication recognition module 104, as referenced below in the description ofmethod 600 for exemplary purposes only. Those skilled in the art will appreciate that theapplication recognition module 104 may comprise any number of forms within the spirit and scope of the invention. For exemplary purposes only, the application recognition module may comprise a stand-alone computer device, or a computer device which includes spread functionality among multiple locations innetwork 100. -
Method 600 begins withstep 602 when compressed traffic is detected at a first connection. Thisstep 602 may be a passive or active step depending on the configuration of theapplication recognition module 104. In a passive embodiment, theapplication recognition module 104 would receive a notification (for example, from an end user device 148-162, orrouters 126 or 112) that compressed traffic is present oncommunication channel 108. In an active embodiment, theapplication recognition module 104 would be configured to actively snoop or monitorcommunication channel 108 until compressed traffic is detected. - At
step 604,method 600 executes an application classifier acquisition process. Instead of trying to analyze the compressed traffic to determine the application classifier, at this step theapplication recognition module 104 will access the connection of the network device that originated the compressed traffic to acquire the application classifier associated with the compressed traffic. - At
step 606,method 600 executes an application management process, which utilizes the application classifier stored for the connection as input. This process may include any number of processes depending on the configuration of theapplication recognition module 104, and business needs. For example, the application management process may comprise applying quality of service metrics on traffic associated with a particular application identifier. Another example of an application management process may include a reporting function to generate a report for one or more criteria relating to the specific application represented by the application identifier. Those skilled in the art will appreciate that numerous processes involving analysis of applications, and performance of applications, in a network could be included in the application management process within the spirit and scope of the invention - At
step 608,method 600 provides application management process output. This output will vary depending on the type of application management process is utilized. If the application management process is a reporting function, then the output atstep 608 may include one or more reports in any number of formats (spreadsheet, .jpg, .pdf files, etc.) If quality of service metrics are applied, the output would comprise resulting data resulting from the QoS metric application. Another example of an application management process comprises performance metrics such as delay, wherein jitter could be calculated and presented as output. -
FIG. 7 is a flow diagram illustrating the application management process of the fourth embodiment of the invention,Method 700 is similar tomethod 600, but for the detection of unencrypted traffic atstep 702 versus the detection of uncompressed traffic atstep 602. The steps 702-708 are as described for steps 602-608, except that unencrypted traffic and encrypted interfaces are involved instead of uncompressed traffic and compressed interfaces, respectively. The encrypted interfaces comprise any network connection includingencryption software 907 as described below inFIG. 9 . -
FIG. 8 is a signaling diagram illustrating the signals exchanged between network devices during execution of the application management method of the third and fourth embodiments of the invention. Thefirst connection 802 sendstraffic 808 to the application recognition module (ARM) 804. As discussed above, the third and fourth embodiments may be embodied in a number of network devices innetwork 100, but for exemplary purposes only, the third and fourth embodiments are described from the perspective of the application recognition module. -
Traffic signal 808 may comprise uncompressed traffic in the case of the third embodiment, and unencrypted traffic in the case of the fourth embodiment. Thetraffic signal 808 may not be a direct signal to theARM 804, but rather, may comprise thetraffic 808 being sent to a common communication channel, such asbus 108, which theARM 804 also has access (as described above in the passive and active embodiments). - Once
ARM 804 receivestraffic 808, theARM 804 performs two processes: an application classifier acquisition process 810 and an application management process 812. As described above, the application classifier acquisition process 810 comprises theARM 804 accessing the connection of the network device that originated the compressed traffic to acquire the application classifier associated with the compressed traffic. As also described above, the application management process 812 may comprise any number of processes depending on the configuration of theapplication recognition module 804, and business needs. At the conclusion of the application management process 812, theARM 804 sends application management process output 814 tonetwork 806. -
FIG. 9 is a block diagram illustrating a network device configured to operate as described herein for identifying and managing applications over compressed or encrypted traffic in a network. Thisnetwork device 900 may include, without limitation, an end user device such as 148-162 inFIG. 1 .Network device 900 includescommunication interface 901,processing system 902, anduser interface 903.Processing system 902 includesstorage system 904.Storage system 904 stores software configured to perform the methods described herein, as well ascompression software 905, flow table 906, andencryption software 907. -
Processing system 902 is linked tocommunication interface 901 anduser interface 903, and may be configured to execute any of the methods described herein. In addition to an end user device,network device 900 could include a programmed general-purpose computer, although those skilled in the art will appreciate that programmable or special purpose circuitry and equipment may be used.Network device 900 may be distributed among multiple devices that together make up elements 901-907. -
Communication interface 901 could include a network interface, modem, port, transceiver, or some other communication device.Communication interface 901 may be distributed among multiple communication devices,Processing system 902 could include a computer microprocessor, logic circuit, or some other processing device.Processing system 902 may be distributed among multiple processing devices.User interface 903 could include a keyboard, mouse, voice recognition interface, microphone and speakers, graphical display, touch screen, or some other type of user device.User interface 903 may be distributed among multiple user devices.Storage system 904 could include a disk, tape, integrated circuit, server, or some other memory device.Storage system 904 may be distributed among multiple memory devices. -
Processing system 902 retrieves and executescompression software 905 andencryption software 907 fromstorage system 904.Compression software 905 andencryption software 907 may include an operating system, utilities, drivers, networking software, and other software typically loaded onto a computer system.Compression software 905 andencryption software 907 could include an application program, firmware, or some other form of machine-readable processing instructions. When executed by processingsystem 902,Compression software 905 andencryption software 907 directsprocessing system 902 to operate as described herein to classify and manage applications over compressed or encrypted traffic in a network. It is important to note thatcomputer device 900 is not required to have bothcompression software 905 andencryption software 907. Thus, acomputer device 900 operating some of the methods of the invention may very well comprise, or have access to, eithercompression software 905 orencryption software 907, but not both. - The various embodiments of the invention offer many advantages over the prior art, If networking devices can identify the specific application that originated an individual packet or flow when the traffic is uncompressed, and pass that information along to the compressed side of the network, then AVC modules will be able to perform reporting, quality of services, statistical, and other management functions with heightened accuracy. Likewise, providing this ability to classify and manage applications over encrypted traffic will also provide similar benefits. The embodiments of the invention also result in a more efficient system as the invention alleviates the need for behavioral or statistical mechanisms to identify applications in the network.
- While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular implementations of particular inventions. Certain features that are described in this specification in the context of separate implementations or embodiments may also be implemented in combination in a single implementation or embodiment. Conversely, various features that are described in the context of a single implementation or embodiment may also be implemented in multiple implementations or embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
- Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.
- Particular implementations of the subject matter described in this specification have been described. Other implementations are within the scope of the following claims. For example, the actions recited in the claims may be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Further, any methods described in this application may be implemented as computer software on a computer readable medium.
Claims (20)
1. A method of identifying applications over one or more compressed interfaces in a network, wherein the network comprises at least one data compression device, the method comprising the steps of:
receiving uncompressed traffic including application data from an end user device, wherein the end user device comprises a connection to a subnetwork;
determining an application classifier based on the application data;
saving the application classifier for the connection; and, classifying any consecutive packets from the connection with the same application classifier.
2. The method of claim 1 , further comprising the step of propagating the application classifier to the compressed interfaces in the network.
3. The method of claim 2 , wherein the propagating step comprises using the flow table that is stored on the data compression device.
4. The method of claim 2 , wherein the propagating step comprises sending information for previously stored in the connection from a previous device.
5. The method of claim 1 , wherein the step of determining an application classifier based on the application data comprises utilizing a cloud-based application classification service.
6. The method of claim 1 , further comprising the steps of:
detecting new L7 information from the connection; and,
sending a new application trigger for the connection.
7. The method of claim 6 , further comprising the steps of:
determining an altered application classifier for application data;
saving the altered application classifier for the connection; and, classifying any consecutive packets from the connection with the same altered application classifier.
8. The method of claim 1 , wherein the method is executed by a router in the network.
9. The method of claim 1 , wherein the method is executed by a switch or an access device in the network.
10. A method of managing applications over compressed traffic in a network, wherein the network comprises at least one communication channel, the method comprising the steps of:
detecting compressed traffic originating from a connection;
acquiring the application classifier for the compressed traffic without applying a classification process to the compressed traffic;
executing an application management process on the compressed traffic; and,
returning an application management process output to the network.
11. The method of claim 10 , wherein the step of detecting compressed traffic originating from a connection comprises the step of receiving a notification indicating that compressed traffic is present in the communication channel.
12. The method of claim 10 , wherein the step of detecting compressed traffic originating from a connection comprises the step of monitoring the communication channel until compressed traffic is detected.
13. The method of claim 10 , wherein the acquiring the application classifier step comprises accessing a stored application identifier from the connection.
14. The method of claim 13 , wherein accessing a stored application identifier from the connection comprises accessing a previous application identifier.
15. The method of claim 10 , wherein the application management process function comprises a reporting function.
16. The method of claim 10 , wherein the application management process comprises a quality of service function.
17. The method of claim 10 , wherein the method is executed by an application recognition module.
18. A method of identifying applications over encrypted interfaces in a network, wherein the network comprises at least one data encryption device, the method comprising the steps of:
receiving unencrypted traffic including application data from an end user device, wherein the end user device comprises a connection to a subnetwork;
determining an application classifier based on the application data;
saving the application classifier for the connection;
classifying any consecutive packets from the connection with the same application classifier; and,
propagating the application classifier to the encrypted interface in the network.
19. The method of claim 18 , wherein the propagating step comprises sending information for previously stored in the connection from a previous device.
20. The method of claim 18 , further comprising the steps of:
sending a new application trigger for the connection in response to new L7 information;
determining an altered application classifier for application data; and, classifying any consecutive packets from the connection with the same altered application classifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/142,302 US20160248652A1 (en) | 2013-11-24 | 2016-04-29 | System and method for classifying and managing applications over compressed or encrypted traffic |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/088,436 US9356876B1 (en) | 2013-11-24 | 2013-11-24 | System and method for classifying and managing applications over compressed or encrypted traffic |
US15/142,302 US20160248652A1 (en) | 2013-11-24 | 2016-04-29 | System and method for classifying and managing applications over compressed or encrypted traffic |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/088,436 Continuation US9356876B1 (en) | 2013-11-24 | 2013-11-24 | System and method for classifying and managing applications over compressed or encrypted traffic |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160248652A1 true US20160248652A1 (en) | 2016-08-25 |
Family
ID=56027982
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/088,436 Active 2034-04-17 US9356876B1 (en) | 2013-11-24 | 2013-11-24 | System and method for classifying and managing applications over compressed or encrypted traffic |
US15/142,302 Abandoned US20160248652A1 (en) | 2013-11-24 | 2016-04-29 | System and method for classifying and managing applications over compressed or encrypted traffic |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/088,436 Active 2034-04-17 US9356876B1 (en) | 2013-11-24 | 2013-11-24 | System and method for classifying and managing applications over compressed or encrypted traffic |
Country Status (1)
Country | Link |
---|---|
US (2) | US9356876B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170364794A1 (en) * | 2016-06-20 | 2017-12-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for classifying the payload of encrypted traffic flows |
US20180255074A1 (en) * | 2017-03-01 | 2018-09-06 | Symantec Corporation | Managing data encrypting applications |
IL251683B (en) | 2017-04-09 | 2019-08-29 | Yoseph Koren | System and method for dynamic management of private data |
CN110535728A (en) * | 2019-09-05 | 2019-12-03 | 烽火通信科技股份有限公司 | A kind of network flow cognitive method and system |
CN114301850B (en) * | 2021-12-03 | 2024-03-15 | 成都中科微信息技术研究院有限公司 | Military communication encryption flow identification method based on generation of countermeasure network and model compression |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090213859A1 (en) * | 2008-02-25 | 2009-08-27 | Cisco Technology, Inc. | Shared l2 bridging domains for l3 virtual networks |
US20120026914A1 (en) * | 2010-07-28 | 2012-02-02 | Swapnesh Banerjee | Analyzing Network Activity by Presenting Topology Information with Application Traffic Quantity |
US20120042060A1 (en) * | 2010-08-12 | 2012-02-16 | Steve Jackowski | Systems and methods for quality of service of ica published applications |
US20120078994A1 (en) * | 2010-09-29 | 2012-03-29 | Steve Jackowski | Systems and methods for providing quality of service via a flow controlled tunnel |
US20130107872A1 (en) * | 2004-02-13 | 2013-05-02 | Thomas Dean Lovett | Processor-memory module performance acceleration in fabric-backplane enterprise servers |
US20130294449A1 (en) * | 2012-05-03 | 2013-11-07 | Lsi Corporation | Efficient application recognition in network traffic |
US20140160932A1 (en) * | 2012-12-11 | 2014-06-12 | Qualcomm Incorporated | Method and apparatus for classifying flows for compression |
US20140286337A1 (en) * | 2013-03-25 | 2014-09-25 | Sandvine Incorporated Ulc | System and method for subscriber aware network monitoring |
US20160191348A1 (en) * | 2013-08-12 | 2016-06-30 | Hewlett-Packard Development Company, L.P. | Application-aware network management |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8305896B2 (en) * | 2007-10-31 | 2012-11-06 | Cisco Technology, Inc. | Selective performance enhancement of traffic flows |
-
2013
- 2013-11-24 US US14/088,436 patent/US9356876B1/en active Active
-
2016
- 2016-04-29 US US15/142,302 patent/US20160248652A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130107872A1 (en) * | 2004-02-13 | 2013-05-02 | Thomas Dean Lovett | Processor-memory module performance acceleration in fabric-backplane enterprise servers |
US20090213859A1 (en) * | 2008-02-25 | 2009-08-27 | Cisco Technology, Inc. | Shared l2 bridging domains for l3 virtual networks |
US20120026914A1 (en) * | 2010-07-28 | 2012-02-02 | Swapnesh Banerjee | Analyzing Network Activity by Presenting Topology Information with Application Traffic Quantity |
US20120042060A1 (en) * | 2010-08-12 | 2012-02-16 | Steve Jackowski | Systems and methods for quality of service of ica published applications |
US20120078994A1 (en) * | 2010-09-29 | 2012-03-29 | Steve Jackowski | Systems and methods for providing quality of service via a flow controlled tunnel |
US20130294449A1 (en) * | 2012-05-03 | 2013-11-07 | Lsi Corporation | Efficient application recognition in network traffic |
US20140160932A1 (en) * | 2012-12-11 | 2014-06-12 | Qualcomm Incorporated | Method and apparatus for classifying flows for compression |
US20140286337A1 (en) * | 2013-03-25 | 2014-09-25 | Sandvine Incorporated Ulc | System and method for subscriber aware network monitoring |
US20160191348A1 (en) * | 2013-08-12 | 2016-06-30 | Hewlett-Packard Development Company, L.P. | Application-aware network management |
Also Published As
Publication number | Publication date |
---|---|
US9356876B1 (en) | 2016-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9860154B2 (en) | Streaming method and system for processing network metadata | |
US9037710B2 (en) | Method and apparatus for correlating end to end measurements through control plane monitoring of wireless traffic | |
US10291534B2 (en) | Incremental application of resources to network traffic flows based on heuristics and business policies | |
CN103609070B (en) | Network flow detection method, system, equipment and controller | |
US11546266B2 (en) | Correlating discarded network traffic with network policy events through augmented flow | |
US10146682B2 (en) | Method and apparatus for improving non-uniform memory access | |
US9674728B2 (en) | Method and apparatus for managing a degree of parallelism of streams | |
CN110557342B (en) | Apparatus for analyzing and mitigating dropped packets | |
US20160248652A1 (en) | System and method for classifying and managing applications over compressed or encrypted traffic | |
US10284460B1 (en) | Network packet tracing | |
US20130294449A1 (en) | Efficient application recognition in network traffic | |
CA2897664A1 (en) | An improved streaming method and system for processing network metadata | |
US9270561B2 (en) | Method and apparatus for applying uniform hashing to wireless traffic | |
CN117596252A (en) | Flow mirroring method and device | |
US8611343B2 (en) | Method and apparatus for providing a two-layer architecture for processing wireless traffic | |
CN107210969B (en) | Data processing method based on software defined network and related equipment | |
US20160285713A1 (en) | Session aware adaptive packet filtering | |
KR100862727B1 (en) | Traffic analysis method and system | |
US10644983B2 (en) | Control plane analytics and policing | |
KR101707073B1 (en) | Error detection network system based on sdn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CISCO TECHNOLOGY, INC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEN-DVORA, NIR;ZAYATS, MICHAEL;HAIM, CHANOH;AND OTHERS;SIGNING DATES FROM 20131122 TO 20131215;REEL/FRAME:038420/0360 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |