US20140085083A1 - Computer-implemented method for contact lens care compliance - Google Patents
Computer-implemented method for contact lens care compliance Download PDFInfo
- Publication number
- US20140085083A1 US20140085083A1 US14/094,053 US201314094053A US2014085083A1 US 20140085083 A1 US20140085083 A1 US 20140085083A1 US 201314094053 A US201314094053 A US 201314094053A US 2014085083 A1 US2014085083 A1 US 2014085083A1
- Authority
- US
- United States
- Prior art keywords
- data
- lens
- eye
- ambient condition
- sensed data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000012544 monitoring process Methods 0.000 claims abstract description 9
- 229940023490 ophthalmic product Drugs 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 24
- 238000004891 communication Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 11
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 9
- 230000036541 health Effects 0.000 claims description 8
- 241000894006 Bacteria Species 0.000 claims description 6
- 241000233866 Fungi Species 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 6
- 244000052769 pathogen Species 0.000 claims description 6
- 239000000779 smoke Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000008901 benefit Effects 0.000 claims description 5
- 230000001737 promoting effect Effects 0.000 claims description 5
- 241000700605 Viruses Species 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 238000009532 heart rate measurement Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 description 34
- 239000000243 solution Substances 0.000 description 19
- 239000000976 ink Substances 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 230000002354 daily effect Effects 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000002000 scavenging effect Effects 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920001090 Polyaminopropyl biguanide Polymers 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 201000007717 corneal ulcer Diseases 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 206010023332 keratitis Diseases 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920001987 poloxamine Polymers 0.000 description 2
- 229940093424 polyaminopropyl biguanide Drugs 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- BWHOZHOGCMHOBV-BQYQJAHWSA-N trans-benzylideneacetone Chemical compound CC(=O)\C=C\C1=CC=CC=C1 BWHOZHOGCMHOBV-BQYQJAHWSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 2
- 238000001845 vibrational spectrum Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- UURVHRGPGCBHIC-UHFFFAOYSA-N 3-(ethenoxycarbonylamino)propanoic acid 4-[[[[[[[[[[[[[[[[[[[[[[[[[[[4-ethenoxycarbonyloxybutyl(dimethyl)silyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]oxy-dimethylsilyl]butyl ethenyl carbonate 1-ethenylpyrrolidin-2-one ethenyl N-[3-tris(trimethylsilyloxy)silylpropyl]carbamate Chemical compound C=CN1CCCC1=O.OC(=O)CCNC(=O)OC=C.C[Si](C)(C)O[Si](CCCNC(=O)OC=C)(O[Si](C)(C)C)O[Si](C)(C)C.C[Si](C)(CCCCOC(=O)OC=C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCCCOC(=O)OC=C UURVHRGPGCBHIC-UHFFFAOYSA-N 0.000 description 1
- ZOPSJJCUEOEROC-NSQCPRBHSA-N 3-[[butyl(dimethyl)silyl]oxy-dimethylsilyl]propyl 2-methylprop-2-enoate;n,n-dimethylprop-2-enamide;1-ethenylpyrrolidin-2-one;2-hydroxyethyl 2-methylprop-2-enoate;[(2r)-2-hydroxy-3-[3-[methyl-bis(trimethylsilyloxy)silyl]propoxy]propyl] 2-methylprop-2-enoat Chemical compound CN(C)C(=O)C=C.C=CN1CCCC1=O.CC(=C)C(=O)OCCO.CC(=C)C(=O)OCCOC(=O)C(C)=C.CCCC[Si](C)(C)O[Si](C)(C)CCCOC(=O)C(C)=C.CC(=C)C(=O)OC[C@H](O)COCCC[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C ZOPSJJCUEOEROC-NSQCPRBHSA-N 0.000 description 1
- 206010069408 Acanthamoeba keratitis Diseases 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- -1 METAPHILCON A Chemical compound 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 229920001616 Polymacon Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000191963 Staphylococcus epidermidis Species 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 239000000607 artificial tear Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000882 contact lens solution Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000000375 direct analysis in real time Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012063 dual-affinity re-targeting Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 201000004356 excessive tearing Diseases 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000006112 glass ceramic composition Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 101150026046 iga gene Proteins 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 201000010041 presbyopia Diseases 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
- G06K19/07749—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
- G06K19/07758—Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C11/00—Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
- A45C11/005—Contact lens cases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/067—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
- G06K19/07—Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
- G06K19/077—Constructional details, e.g. mounting of circuits in the carrier
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C11/00—Arrangements, systems or apparatus for checking, e.g. the occurrence of a condition, not provided for elsewhere
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/62—Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/04—Contact lenses for the eyes
Definitions
- the present invention relates to a method and system for promoting contact lens care compliance.
- the contact lens market in the United States is a multi-billion dollar market. Recent data indicates that nearly 36 million Americans, almost 13% of the US population, wear contact lenses. There are numerous manufacturers of contact lenses and many different channels of distribution, including eye care practitioners (e.g. ophthalmologists and optometrists), national and regional optical chains, mass merchants, and mail order and online stores.
- the contact lenses include any of the following basic types: soft, rigid gas permeable and hard.
- Soft contact lenses are made of a highly flexible material such as a plastic hydrogel polymer, hydroxyethyl methacrylate (HEMA) that contains water or silicone or hydrophilic hydrogels.
- HEMA hydroxyethyl methacrylate
- RGP contact lenses are composed of a firm plastic material and do not contain water. RGP lenses permit oxygen to pass directly through the lens to the eye, thus these lenses are gas permeable. In contrast, hard contact lenses are made of a hard plastic material, such as polymethyl methylacrylate (PMMA), which does not allow oxygen to pass through the lens to the eye.
- PMMA polymethyl methylacrylate
- contact lenses are classified as medical. devices, and are thus normally only dispensed with a valid prescription from a qualified eyecare practitioner.
- a valid prescription typically includes user's name, eye practitioner's name, contact lens brand name and material, lens measurements such as power, diameter and base curve, directions for safe use such as wearing schedule, whether lenses are for daily or extended wear, the number of refills, whether lens material substitutions are allowed and an expiration date.
- wearing schedule Generally, the quality of human vision worsens with age, or due to reasons independent of aging or eye diseases. Some of the changes in eyes are reduction in pupil size and the loss of accommodation or focusing capability, or presbyopia.
- prescriptions typically have an expiration date, and thus should be updated periodically.
- Each lens manufacturer has a replacement schedule of a contact lens, that is, how long the lenses can be safely worn before discarding. The replacement schedule depends on the patient, manufacturer or the type of lens chosen.
- RGPs last several years, while soft contact lenses come in a wider variety of replacement schedules: daily disposable—1 day, disposable (extended wear)—1 week to 1 month, disposable (daily wear)—2 weeks, frequent replacement (also called “planned replacement”), 1 month to several months, conventional 1-year, depending on brand.
- hard contact lenses are available for different wear schedules, such as daily wear, and extended wear or overnight wear.
- planned-replacement lenses an eye care practitioner works out a replacement schedule tailored to each user's needs. For example, for users who produce a higher level of protein in their eyes or do not take as good care of their lenses, it might be healthier to replace the lenses more frequently. Therefore, the onus to keep track of the wearable life of the lenses falls on the user. As such, if a user does not record the date of first use, or subsequent usage, as time passes it can become difficult to recall how long a particular pair of contact lenses has been worn.
- the present invention provides a method and system for tracking the life or age of an optical device, the method comprising the steps of: providing the optical device with data carrier means for carrying data related to the optical device, the data carrier having data carrier means operable in at least one of an electrical mode and a magnetic mode; providing an activation signal from an external means; activating the data carrier means with the activation signal to cause the data carrier means to emit the data in response to the activating signal; recording the time the data carrier means is interrogated; and processing the received data to determine the age or wearable life, or useful life, of the optical device based on the time of the activation signal and a predetermined time as a reference or milestone.
- the present invention provides a method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with said ophthalmic product for monitoring at least, one ambient condition and for logging and recording at least one reading associated said at least one ambient condition, following a predetermined event; determining whether said at least one reading exceeds at least one predetermined threshold, said at least one predetermined threshold corresponding to said at least one ambient condition, issuing an alert when said at least one reading exceeds at least one predetermined threshold.
- the present invention provides a method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with a contact lens container for monitoring at least one ambient condition and for logging and recording at least one reading associated said at least one ambient condition, following a predetermined event; comparing said at least one reading to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, issuing an alert based on said outcome.
- the method and system promote contact lens compliance, thus significantly diminishing complications associated with non-compliance.
- FIG. 1 depicts a schematic of an exemplary system for contact lens compliance
- FIG. 2 depicts a schematic of an exemplary contact lens
- FIG. 3 depicts a schematic of an exemplary system for contact lens compliance
- FIG. 4 depicts a schematic block diagram of an exemplary tag and an exemplary reader
- FIG. 5 is flowchart outlining the exemplary steps for determining contact lens compliance
- the ophthalmic device 10 includes, but is not limited to, ophthalmic lenses, soft contact lenses, hard contact lenses, bifocal contact lenses, multi-focal contact lenses, colored contact lenses, disposable contact lenses, extended wear contact lenses, gas permeable (GP) contact lenses, rigid gas permeable (RGP) contact lenses, monovision lenses, orthokeratology lenses, prosthetic contact lenses, silicone hydrogel contact lenses, special-effect contact lenses, specialty lenses, toric contact lenses, bi-toric contact lenses, aspherics, lenticulars, spheres, intraocular lenses or implantable collamer lenses (ICL), cosmetic lenses, overlay lenses and onlay lenses.
- GP gas permeable
- RGP rigid gas permeable
- ‘compliance’ is defined as ‘the process of complying with a regimen of treatment’. In the context of contact lens wear, this can be interpreted as a wearer correctly adhering to the instructions provided by the contact lens practitioner with respect to optimum lens wear and care.
- an exemplary ophthalmic device 10 such as a contact lens, comprises an anterior surface 12 , an opposing posterior surface 14 surrounded by a peripheral edge 16 , an edge surface (not shown), such as a spherical lens formed from surfaces 12 , 14 which have a spherical curvature.
- the contact lens 10 also includes an optical zone 13 surrounded by a peripheral zone 18 .
- the contact lens 10 can comprise any known material useful for making contact lenses, which may include, but is not limited to HEMA, POLYMACON, METAPHILCON A, HEMA 38 (TEFILCON), POLYHEMA, CROFILCON A, HEMFILCON A, HEMA 38 (TEFILCON) PHEMFILCON A, TETRAFILCON A, 41% OMAFILCON A, HEMA-GMMA, MODIFIED HEMA, PMMA, BENZ x-3, BENZ METAPHILCON, HEFILCON B, CROFILCON A, TEFILCON, SYNERGICON A, HEMA-VINYL METHACRYL, HEMA-VP, XYLOFILCON A, DL 77, HIOXIFILCON A, BOSTON ES, BOSTON XO, BOSTON ES, SILPERM 50, FSA, PARAGON DK 60, FLUOROSILICONE ACRYLATE, SILOXANE-FLUOROCARB
- the lens 10 includes at least one data carrier 20 on any surface of the lens 10 , such as the anterior surface 12 , the posterior surface 14 , or the edge surface (not shown) extending between the anterior surface 12 and the posterior surface 14 .
- the data carrier 20 may be any suitable means for retaining data operable in an electrical and/or magnetic mode, such as a radio identification device or RFID tag, as implemented in an exemplary embodiment of the present invention.
- each of the tags 20 can be implemented as a passive tag, an active tag, or a semi-passive tag.
- active, semi-passive tags, or passive tags share many features and that can be used with this invention.
- the term ‘tag’ is used to refer generally to all RFID devices.
- RFID systems use a variety of techniques to transmit data to and from the tag.
- the data can be transmitted using any of a variety of modulation techniques including, but not limited to, amplitude modulation (AM), phase modulation (PM), and frequency modulation (FM).
- modulation techniques including, but not limited to, amplitude modulation (AM), phase modulation (PM), and frequency modulation (FM).
- AM amplitude modulation
- PM phase modulation
- FM frequency modulation
- the data transmitted to the tag can be encoded using any of a variety of techniques, including frequency shift keying (FSK), pulse position modulation (PPM), pulse duration modulation (PDM) and amplitude shift keying (ASK).
- FSK frequency shift keying
- PPM pulse position modulation
- PDM pulse duration modulation
- ASK amplitude shift keying
- passive tags In general, passive tags have no battery or internal power source, and operate by back-scattering or load modulation of an incident RF signal, which may be transmitted by one of the Although some types of passive tags can store energy for a period of time, passive tags typically require continuous input power as an energy source.
- Active tags generally include an internal power source such as a battery, photovoltaics, or any other suitable type of power source, such as an energy scavenging device.
- Exemplary energy scavenging devices include devices that source energy from the environment, such as radiation (solar, RF, and so forth), or photovoltaic energy, vibration spectra of office windows, copy machines, microwave ovens; industrial motors, freeway traffic, RF power, or human gait.
- active tags can transmit RF signals automatically, or in response to a request or a command provided by a reader, on a predetermined schedule (e.g., every 10 seconds or every 300 seconds), or upon detection of a threshold event. This energy source permits active tag to create and transmit strong response signals even in regions where the interrogating radio frequency field is weak, and thus an active tag can be detected at greater range.
- Semi-passive tags are hybrids of passive and active tags, and are generally configured to provide improved read-range, data storage, sensor sophistication, level of security, etc., in comparison with purely passive tags.
- the optical devices 10 are manufactured using any one of the above noted materials, and may be manufactured in accordance with methods known to those skilled in the art of the specific optic device being produced.
- an intraocular lens is to be produced, the same may be manufactured by methods known to those skilled in the art of intraocular lens production.
- spin casting a method by which liquid monomer is injected into a spinning mold to create the desired lens shape, thickness and size. The monomer is distributed along the mold according to the centrifugal force, gravity and surface tension of the liquid. Slower rotations produce smaller diameters, thicker centers, flatter base curves and plus powers. The opposite is true for faster rotations.
- UV light is used to polymerize the monomer into a solid lens.
- the lens is then hydrated to its final state.
- lathe cutting is where a polymerized soft lens material in the rigid state is lathe cut similar to an RGP lens. After cutting and polishing the lenses, they go through a hydration stage that creates the final soft contact lens. The lens will have specific water content after hydration, depending on the polymer.
- cast molding a method which requires two molds between which liquid lens material is injected, and the lens is kept in a liquid state throughout the manufacturing process.
- a data carrier 20 can be included with the liquid monomer, or may be placed on one of the molds prior to introduction of the lens material such that the data carrier 20 is located on the anterior surface or posterior surface of the eventual lens 10 .
- the data carrier 20 is so positioned on the mold such that it is located at a predetermined location on the eventual lens 10 .
- the data carrier 20 is included with the eventual lens at any appropriate point in the manufacturing process, or after the manufacturing process by any other suitable methods, as described above.
- the data carrier 20 includes devices manufactured using printable electronics technology, such as printed RFID ICs, or organic, chipless, polymer-based tags, or made with conductive inks that can store and transmit data.
- printable electronics technology such as printed RFID ICs, or organic, chipless, polymer-based tags, or made with conductive inks that can store and transmit data.
- These tags 20 are produced with common commercial printing processes such as flexographic, rotogravure, offset or rotary screen using special inks and materials.
- a variety of electronic inks with conductive, insulating, or semiconductor qualities, are printed in successive layers on plastic substrates to form electronic circuits including organic field effect transistors (OFETs).
- OFETs organic field effect transistors
- the electronic inks may be opaque, or transparent and thus undetectable to the human eye, and are compatible with the particular contact lens material.
- the tag 20 is a magnetic tag, based on nanotechnology and microtechnology.
- the magnetic tag 20 includes certain materials which possess unique magnetic properties that permit individual items to be precisely identified.
- FIG. 2 shows another exemplary system 23 for contact lens compliance.
- the system 23 comprises a container 24 for storing the pair of lenses 10 and 11 . Disposed within a receptacle 26 of the container 24 is the contact lens 10 , while the contact lens 11 is disposed within a receptacle 28 , in a conventional manner.
- the container 24 has a substantially planar top surface and the receptacles 26 , 28 are generally concave when viewed from the side of the container 24 .
- the receptacles 26 , 28 include a liquid medium, such as a solution which may be, but is not limited to, saline solutions, buffered solutions, deionized water, or any other suitable contact lens storing liquid or lens care solution, that is used for the sterilization and storage of contact lenses 10 , 11 .
- a liquid medium such as a solution which may be, but is not limited to, saline solutions, buffered solutions, deionized water, or any other suitable contact lens storing liquid or lens care solution, that is used for the sterilization and storage of contact lenses 10 , 11 .
- the lens 10 is prescribed for the user's left eye, hereinafter the left lens 10 , includes at least one data carrier 20 or 22
- the lens 11 is prescribed for the user's right eye, hereinafter the right lens 11 , with at least one data carrier 30 or 32
- the system 23 also includes at least one external means, such as an interrogation unit or data carrier readers 34 and 36 , which have the capability of reading data associated with the data carrier 20 , 22 , 30 , or 32 ; or writing data to the data carrier 20 , 22 , 30 , or 32 .
- the data carrier 20 , 22 , 30 , or 32 may be caused to emit data to a receiving unit 34 or 36 either periodically, automatically or in response to a request.
- the container 24 includes the only one reader 34 for determination of the characteristics of either lens 10 or 11 , inherent in the data carrier 20 , 22 , 30 , or 32 .
- FIG. 4 shows an exemplary passive tag 20 in a block diagram form, and includes a processor module 38 , a computer readable medium 40 or memory module, a transmitter/receiver module 42 , and an antenna module 44 .
- the transmitter/receiver module 42 controls the communication of data to and from the external reader 34 via the antenna module 44 comprising an antenna and any associated electronic circuitry.
- the computer readable medium 40 serves many functions including accommodating security data and operating system instructions for the tag 20 which, in conjunction with the processor 38 or processing logic, performs the internal “house-keeping” functions such as response delay timing, data flow control and power supply switching.
- the computer readable medium 40 may include non-volatile programmable memory and/or volatile memory for data storage.
- the computer readable medium 40 also facilitates temporary data storage during tag 20 interrogations and response, and store the tag 20 data and retains data when the tag 20 is in a quiescent or power-saving “sleep” state.
- the computer readable medium 40 may further include data buffers to temporarily hold incoming data following demodulation, and outgoing data for modulation.
- the tag 20 data may include, and is not limited to, an identification number or a unique ID used to identify the tag 20 associated with a particular contact lens 10 or 11 , SKU, manufacturer, logo, material of manufacture, composition, date of manufacture, lot. no., batch no., warehouse related data; promotional material (rebate for next pair purchase or free trials), lens features and description, lens benefits data, health warnings, data on potential risk or complications, insurance coverage data, regulatory data, authenticity data, encryption data, fitting details, lens type data, lens care or handling information, recommended usage information such as wear schedule, expiration data, URI., lot number, storing liquid medium, UV cut-off, optical refractive index, Abbe value, transmittance % or haze(%) for a particular thickness, and so forth.
- an exemplary reader 34 includes a processor module 48 , a computer readable medium 50 , a transmitter/receiver module 52 , an antenna module 54 and a power supply unit 55 .
- the antenna module 54 which may include an antenna array, is coupled to the transmitter/receiver module 52 , which includes a transmitter/receiver or multiple transmitters/receivers to emit electromagnetic waves that are used to provide an interrogating field to the tag 20 , and receive response signals from the tag 20 via a receiver or multiple receivers.
- the reader 34 also includes an actuation means for powering on same, the actuation means may be require user intervention, or may be automatic.
- the actuation means may include any of the following: switch, sensor, proximity switch means (AC or DC inductive and capacitive), or reads triggered by a schedule, an external event or command.
- the memory capacity on the computer readable medium 50 of the reader 34 can be unlimited, and can be coupled to other memory modules on the devices such as volatile and non-volatile memory, including, but not limited to, flash memory, hard disk drive, Floppy, optical disks (DVDs, CDs etc.)
- the reader 34 may include a database with a computer readable medium which stores records of any of the above-noted data relating to the contact lens 10 .
- the tag 20 may further include interface circuitry to direct and accommodate the interrogation field energy for powering purposes and triggering of the tag 20 responses.
- the reader 34 may transmit activating signals or interrogation signals to the tag 20 automatically on a periodic basis.
- the reader 34 may also employ sleep modes to conserve power.
- the reader 34 includes input/output means for interacting with the system 23 or for outputting advisory signals or warnings.
- the input/output means may include, but are not limited to, display means 56 , such as a touch screen display with a graphical user interface, a microphone, stylus, keypad, keyboard, buttons, and LED(s) 58 , a speaker 60 .
- the computer-readable medium containing program instructions stored thereon when executed by the processor cause the processor to perform operations comprising causing a data carrier 20 , 22 , 30 , or 32 included with a ophthalmic lens 10 or 11 to emit a data signal periodically, automatically, or in response to a external signal from the data carrier 20 , 22 , 30 , or 32 , wherein the data carrier 20 , 22 , 30 , or 32 , comprises a device operable in a magnetic and/or electrical mode, such as an RFID tag or a chip with suitable antenna means, a communication interface, such as a wireless interface.
- the executable instructions also cause the processor to display information related to the data signal, and wherein the information comprises at least one of a SKU, unique ID, manufacturer, logo, material of manufacture, composition, lot no., batch no., warehouse related data; promotional material (rebate for next pair purchase or free trials), lens features and benefits data, health warnings, data on potential risk or complications, insurance coverage data, regulatory data, authenticity data, fitting details, orientation of the lens (inside-out/right side-out or convex surface/concave surface), lens type data, lens care or handling information, recommended usage information such as wear schedule, frequency of wear, compliance data, compliance-related statistics, lens ordering data, filling pharmacy, health professional information, time data, an ophthalmic lens user's personal details, prescription information, right eye/left eye identification data, expiration data, a URI, spectral passing band(nm), UV cut-off, optical refractive index, Abbe value, transmittance % or haze(%) for a particular thickness, lens case replacement schedule, and eye examination schedule.
- a speaker 60 outputs a particular audible signal depending on the outcome of the match/non-match determination.
- the speaker 60 may emit an audible signal with a particular duty cycle of indicative of a positive state or a negative state, such as a fast beeping sound for a non-match and a slow beeping sound for a match.
- these messages may include both visual signals and audible signals.
- audible signals are beneficial where ambient light conditions are poor, or when vision is impaired temporarily, or when a visual aid is required to decipher the information presented via the output means 56 .
- the system 23 may include only one reader 34 or 36 to determine the identity of the lenses 10 , 11 , such that a user can determine the identity of the lens 10 or 11 before storage, in order to place the lens 10 or 11 in the correct receptacle 26 or 28 , or before insertion of the lens 10 or 11 into the eye.
- the contact lens 10 is included with data at manufacture or post manufacture, such data includes, but is not limited to: expiration data, SKU, manufacturer, authentication data, date of manufacture, is written onto the memory 40 of the tag 20 .
- the contact lens 10 is associated with a tag 20 post-manufacture, such as, at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user. Therefore, the eyecare practitioner can write data onto the tag 20 , as stated above.
- the system 23 or reader 34 tracks the age or the time the optical device 10 has been in use, or the wearable life or useful life of an optical device 10 .
- the system 23 or reader 34 may determine the impending expiry of the lens 10 , or detect non-compliance and notify the user accordingly.
- non-adherence to the recommended wear or replacement schedule, or prolonged use of the expired lenses 10 , 11 may cause discomfort, inflammation, swelling, abrasion, or another problem that could result in permanent eye tissue damage.
- toric lenses 10 , 11 which unlike sphericals do not rotate in the eye, certain areas of the lens 10 or 11 build up deposits more quickly than others. An uneven build up of deposits may impact on the rotational stability of the lens 10 or 11 .
- the method for determining the tracks the age, wearable life or useful life of an optical device 10 will now be described, with reference to the flowchart of FIG. 5 .
- the method includes the step of providing an identifying means comprising a data carrier with the contact lens 10 , in step 100 .
- the data carrier includes a device 20 operable in at least one of an electrical mode and a magnetic mode, such as a tag 20 , as described above.
- the contact lens 10 is included with a tag 20 at manufacture, or included with the lens 10 post manufacture by any suitable means, and data, such as: expiration data, SKU, manufacturer, authentication data, date of manufacture, is written onto the memory 40 of the tag 20 , in step 102 .
- additional data may be included with the tag 20 post-manufacture of the lens 10 .
- Data may be written at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user.
- the post-manufacture data in addition to contact lens manufacture data, as stated above, may include prescribing eyecare practitioner, filling pharmacy, health professional information, date & time the prescription was filled, lens user's personal details, prescription information, right eye/left eye identification data, fitting details, and so forth.
- the contact lens 10 may be associated with an tag 20 post-manufacture of the lens 10 , such as, at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user. Therefore, the eyecare practitioner can write data onto the tag 20 , as stated above.
- POS point-of-sale
- an activation signal is provided from an external means, such as a reader 34 , in step 104 .
- the tag 20 is thus energized by the activation signal to cause the tag 20 to emit data in response to the activating signal.
- the time when the contact lens 10 is first interrogated by the reader 34 is recorded, this time may correspond to the time the contact lens 10 is first introduced into the container 24 .
- the transceiver 52 receives the data and the processor module 48 processes the received data, in step 106 .
- a counter 62 coupled to the processor 48 and tracks the elapsed time from, or to, a time reference, such as the first instance of interrogation of the lens 10 by the reader 34 marking first time use, and notifies the logic means 48 when a particular time threshold has been reached, close to be reached or surpassed.
- the time reference or time threshold may be user defined, or third-party defined, or the date of manufacture, or the expiration date.
- the counter 62 may be a real time clock, for example, the recommended period of wear may be expressed in hours or days.
- the counter 62 may count up or count down from one particular time reference to another particular time reference, and these particular time references may be associated with a request for action from the user, or may be an advisory signal.
- the counter 62 may count up from the date of manufacture to the expiration date, and outputs the wearable time remaining.
- the processor module 48 then issues an advisory signal associated with the contact lens 10 , in step 108 .
- the user can be notified of impending expiry, and actual expiry, of the lens 10 via an advisory signal means, either visually or auditorily or some other a stimulus to a human body, step 110 .
- the user may be prompted to seek a new prescription or obtain a new lens 10 or 11 or a lens pair 10 , 11 .
- the system 23 may also inform the user the minimum period the contact lens 10 or 11 should be left out of the eye before re-insertion, or the recommended number of times, if any, that the contact lens 10 or 11 should be cleaned. Should the right lens 10 and the left lens 11 have different expiration dates, as in the case when one lens 10 or 11 is damaged or lost and has to be replaced singly, then each lens 10 , 11 may have its own counter 62 .
- the counter 62 may determine the age or wearable life of the lens 10 or 11 by comparing the expiration date or the manufacturing date to contemporaneous time data related to the interrogation by the reader 34 .
- the system 23 may issue advisory signals visually, such as “Lens Expired”, “Change Lens”, “Remove Lens Daily”, Store Lens for 5 hrs each day”, “Clean Lens”, “45 Days left”, “New Rx required”, “Call EyeDoc for Checkup”, “Check-up in 2 weeks” messages or a plethora of symbolic messages, as depicted in FIG. 1 .
- the advisory signal may also be audible.
- the system 23 can output the advisory signals automatically or the user can query the system 23 , using an interactive display or keypad or buttons coupled to the reader 34 .
- the system 23 may also analyze the received data and track the amount of time the lenses 10 , 11 are actually worn by the user, and compile reports relating the user data, such as statistical data. Therefore, the system 23 may thus determine whether the user is in compliance with the prescription, with respect wear schedule, replacement schedule, or lens care. For example, using the statistical data the system 23 , or third parties, may determine whether dailies are worn for more than 24 hrs, or whether overnights are being worn beyond the prescribed maximum time period, such as 30 days. Using the historical data, the system 23 , or third parties, may recommend a wearing time dependent on the user's individual needs, or recommend another prescription with a different wearing schedule. The reports may also be issued to other interested parties, such as, eye practitioners and insurance companies.
- the lens 10 , 11 include at least one sensor 66 a, b, c or d , for producing a measurable response to a change in a physical condition, which is logged in conjunction with an in-built timer or clock 62 .
- a continual analog signal sensed by the devices 66 a - d is digitized by an analog-to-digital converter and sent to controllers for further processing.
- Typical characteristics and requirements of a sensor node 66 a - d call for a relatively small size, and consume extremely low energy, being autonomous and able to operate unattended, and being adaptive to the environment.
- the devices 66 a - d may be passive, semi-active or active.
- An exemplary sensing device 66 is a self-contained unit having sensing elements, data loggers with a computer-readable medium, such as a non-volatile memory, for data storage and program instructions.
- the internal software runs multi-phased, variable-interval test sequences that collect data.
- the controller logic unit performs important functions, such as providing information such as the sensor type and location, as well as calibration factors. It also provides dynamic information such as recording status, memory capacity, and battery level.
- the controller logic unit may also execute specific application algorithms to process the raw data to produces a digital data output. Also, feeding into the controller logic unit is a real-time clock, enabling all readings to be date and time stamped.
- the sensor 66 a also includes a communications interface, such as an RF, wireless, or optical interface, for communicating with the reader 34 ; or other sensors 66 b - d
- the wireless sensor 66 a, b, c or d gathers information from the environment through measuring various phenomena, as stated above.
- the sensor 66 a, b, c or d may transmit the acquired data via an RFID interface, and may be active, semi-active or passive.
- the device 66 a, b, c or d may be self powered or powered from external sources, as such, exemplary power sources include energy storage devices and/or energy scavenging devices.
- An energy storage device may be a battery, a Zn-air cell, or a capacitor.
- An energy scavenging device may include energy from the environment, such as radiation (solar, RF, and so forth), or photovoltaic energy.
- Other sources include vibration spectra of office windows, copy machines, microwave ovens, industrial motors, freeway traffic, RF power, or human gait.
- the devices 66 a - d are so positioned and programmed to monitor predefined conditions and acquire specific measurements, for example device 66 a may be programmed to measure and record vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, pH level, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof, among others. Any of these recorded measurements may be analyzed in real-time or later, and should such measurements exceed the predetermined thresholds then corresponding advisory signals or alerts are issued.
- all or some of the processing and analysis of the acquired data is performed by the sensor means 66 a, b, c or d , to issue a warning or an alerts as necessary when predetermined thresholds for any of the measured parameters are exceeded.
- the sensor 66 a, b, c or d may record the data and transmit the data to another computing device for processing, the transmission may occur automatically or when the sensor coupled to a computing device, via a wired or wireless connection.
- the wireless sensor 66 a, b, c or d is located on the lens 10 in a predetermined location, and dimensional so that it does not interfere substantially with the lens 10 configuration, alter the prescription, or cause the lens 10 to deteriorate, or does not irritate the eye of the lens wearer or give any discomfort to the lens wearer.
- the wireless sensor 66 a, b, c or d may include data comprising, but not limited to, an identification number or a unique ID used to identify the sensor 66 a, b, c or d associated with a particular contact lens, SKU, manufacturer, logo, material of manufacture, composition, date of manufacture, lot.
- lens features and description lens benefits data, health warnings, data on potential risk or complications, insurance coverage data, regulatory data, authenticity data, encryption data, fitting details, lens type data, lens care or handling information, recommended usage information such as wear schedule, expiration data, URI., lot number, storing liquid medium, UV cut-off, optical refractive index, Abbe value, transmittance % or haze(%) for a particular thickness, and so forth.
- oxygen measurements allow the system 23 to determine the mount of oxygen reaching the cornea, and mitigate against ocular problems, such as, eye dryness or irritation.
- Such data collected may be used to create a suitable prescription, including recommendations regarding the ideal contact lens type for the user, or provide warnings or alerts it the recommended amount of oxygen is not reaching the cornea.
- Eye temperature, and or pulse rate measurements may recorded and analyzed to determine the wear schedule of the lenses 10 , 11 or frequency of wear of the lens 10 or 11 , and correspondingly the lens care habits of the user, and trigger the issuance of advisory signals.
- data related lacrimal fluid content and protein content build up on the lenses 10 , 11 may also be used to determine the wear schedule of the lenses 10 , 11 or frequency of wear, and correspondingly the lens care habits of the user, and also trigger the issuance of advisory signals, or cause the user to initiate, an order of replacement lenses 10 , 11 , on a valid prescription, or lens solution or lens accessories.
- the system 23 automatically initiates and completes the order.
- the senor 66 a, h, c , or d may be configured to detect proteins such as, lysozyme, IgA, lactoferrin, and IgG, or any other proteins that might contribute to surface deposits on contact lenses 10 , 11 , and advisory signals or warnings are issued in the event that a predetermined threshold for at least one of the proteins is exceeded.
- proteins such as, lysozyme, IgA, lactoferrin, and IgG, or any other proteins that might contribute to surface deposits on contact lenses 10 , 11 , and advisory signals or warnings are issued in the event that a predetermined threshold for at least one of the proteins is exceeded.
- an eyecare professional may use this data to select from among the various types of contact lenses 10 , 11 the one that the wearer can be expected to tolerate, thus aiding in proper lens fitting.
- Chemical compound measurements and or moisture content levels may also be used to determine the lens care habits of the user, such as, proper use of cleaning solutions, rinsing solutions, disinfecting solutions, multipurpose solutions rewetting solutions or artificial tear products.
- sensor 66 a, b, c or d is able to determine the length of time the lens 10 or 11 is exposed to a certain lens care product.
- the senor 46 a, b, c or d may detect concentrations of compounds found in such lens care products, such as, dymed (polyaminopropyl biguanide), hydranate (hydroxyakylphosphonate), boric acid, ethylenediamine tetmacetate, poloxamine, sodium borate, sodium chloride. This data may also be used to advise the user to rinse and change the solution in the contact lens case 24 . Also, some users suffer from contact lens solution toxicity where the user experiences an unwanted reaction to certain solutions, such as noninfectious (inflammatory), allergic, or both.
- Typical symptoms of toxicity include redness of the eye, pain, itching, tearing, sensitivity to light, decreased or blurred vision, discharge from the eyes, and inability to wear the contact lenses 10 , 11 .
- the sensor 66 a, b, c , or d detect any active ingredients or preservatives above predetermined thresholds, advisory signals or warnings are issued, and recommendations for a suitable solution may also be issued.
- the system 23 is able to determine the product SKU of the solution and issue appropriate advisory signals, such as, recall notices, advertisements, rebates, or new product information.
- appropriate advisory signals such as, recall notices, advertisements, rebates, or new product information.
- the system 23 provides the user to select the solution in use with the contact lens 10 , 11 , associates the solution with contact lens 10 , 11 , such that appropriate advisory signals may be issued upon periodic cross-reference with third parties, contact solution manufactures, database, and so forth.
- the third parties, contact solution manufactures or database may push such advisory signals as appropriate.
- the senor 66 a, b, c or d is included with the contact lens container 24 to detect proteins, composition of the lacrimal fluid, fungus, pathogens, viri, bacteria, such as Gram-negative, Pseudmonas aeruginosa , Gram positive, Staphylococcus aureus and Staphylococcus Epidermidis , among others, which lead to microbial keratitis, or fungal, herpetic, mycobacterial microbial keratitis.
- proteins, composition of the lacrimal fluid, fungus, pathogens, viri, bacteria such as Gram-negative, Pseudmonas aeruginosa , Gram positive, Staphylococcus aureus and Staphylococcus Epidermidis , among others, which lead to microbial keratitis, or fungal, herpetic, mycobacterial microbial keratitis.
- the sensors 66 a - d may also detect concentrations of compounds found in such lens care products, such as, dymed (polyaminopropyl biguanide), hydranate (hydroxyalkylphosphonate), boric acid, ethylenediamine tetraacetate, poloxamine, sodium borate, sodium chloride.
- the sensed data may also comprise data related to eye temperature, eye pressure, eye moisture oxygen reaching the eye, blink rate, pressure from rubbing, and light.
- This data may also be used determine usage habits or compliance to proper lens care, and thus the data may be used to advise the user to clean, rinse and dry the contact lens container 24 , change the solution in the container 24 , replace the contact lens 10 , or the contact lens container 24 , in order to avoid complications due to non-compliance, as depicted in FIG. 1 .
- the system 23 issues advisory signals, such as reminders, alerts & warnings, to the user and third parties, such as, eye-care practitioners, pharmacy or central server/database via the wired or wireless network.
- the alerts may be provided via telephone, voice-mail, fax, email, SMS, IM, MMS, website, social networking site, ‘snail’ mail, courier, and so forth.
- third parties receive the advisory signals for analysis and may take certain actions based the nature of the advisory signals.
- the third party may automatically fill a new prescription for replacement lenses 10 , 11 and send them to the user, or may seek user intervention before filling the new prescription, in accordance with user-determined lens replacement rules.
- a third party may issue recall notices directly to affected users based on the device 10 characteristics, such as batch no., SKU, manufacturer, date of manufacture, material, and so forth. Affected users may be automatically provided with new lenses 10 , 11 , without any user intervention in a dens process.
- Such advisory signals may also be used for a container 24 with limited display capabilities or a reader 34 , with limited computing resources, coupled to a digital data processing device 64 or the network.
- Other advisory signals may comprise recall notices, advertisements, rebates, or new product information, URIs, URIs to product information.
- the third party may also analyze the received data and track the amount of time the lenses 10 , 11 are actually worn by the user, and compile reports relating the user data. The third party may thus determine whether the prescription is being followed, for example if dailies are worn for more than 24 hours, or whether overnights are being worn beyond the prescribed maximum time period, such as 30 days. Using the received data, the third party may recommend a wearing time dependent on the user's individual needs, or recommend another prescription with a different wearing schedule. The reports may also be issued to the user and any other interested parties, such as, insurance companies, parents or guardians.
- the sensor devices 66 a - d include at least one sensor 66 a is assigned to measure one or more environmental variables, and may communicate with the other sensor devices 66 b - d , and transmit their acquired data, such that each of the sensor devices 66 a - d includes the acquired data of all other sensor devices 66 a - d .
- the spatially distributed autonomous devices 66 a - d may form a wireless sensor network using sensors 66 a - d to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or chemical or biological agents, at different locations.
- certain devices 66 a - d may form a wireless sensor network using sensors 66 a - d to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or chemical or biological agents, at different locations.
- certain devices 66 a - d may form a wireless sensor network using sensors 66 a - d to cooperatively monitor physical or environmental conditions, such as temperature, sound,
- a sensor node 66 a, b, c , or d, or mote, within the wireless sensor network, is capable of performing processing, gathering sensory information and communicating with other connected nodes 66 a, b, c , or d in the network.
- the mote 66 a, b, c , or d is a computing entity having a programmable microprocessor, a transceiver (circuitry for transmitting and receiving data) a power source, antenna, and a computer readable medium for instructions and data storage.
- the microprocessor integrated circuit provides sensor signal processing, communication, control, monitoring other motes 66 a - d , data storage and energy management.
- acquired environmental data may be passed on to the radio link for transmission from mote 66 a to mote 66 b until data reaches a transmission node 66 c coupled to the network 18 .
- These radio links between motes 66 a - d may have a transmission distance in the range of 10-200 feet, or greater.
- data transmitted from at least one of the motes 66 c is provided to the database 16 , or other network entities for analysis. If the analysed data indicates non-compliance, the contact lens is immediately flagged and a warning or alert is issued to the user or a third party, such as, an eye care professional, pharmacist, insurance provider, or parent or guardian.
- the reader 34 is integrated with a portable computing device 64 , or communications device, such as a smartphone.
- a communications device with an integrated reader 34 interrogates the data carrier of lenses 10 , 11 at predetermined intervals when adjacent to the lenses 10 , 11 , for example, when placed to the car while in conversation.
- the device 64 can thus issue advisory signals to the user, and the advisory signals may be displayed on the display screen or announced to the user at predetermined moments, such as, on powering on the device, or before performing other actions on the device, such as making a call, selecting a playlist or sending a text message, or pop-up reminders during any of said user actions on the device.
- the advisory signals or alerts may be automatically included with the device's 64 scheduling software or calendar application, or the advisory signals may be sent to any user-defined recipient.
- the tag 20 may include the contactless IC chip, which is manufactured by Hitachi, Japan, measuring 0.15 ⁇ 0.15 millimeter (mm), 7.5 micrometer ( ⁇ m) thick or the ⁇ -ChipTM which features an internal antenna. These chips can thus operate entirely on their own, making it possible to use ⁇ -Chip as RFID IC tags without the need to attach external devices, such as antennae, making these tags, or similar tags, ideal for application in the present invention. Similar to the 0.15 mm square chip, the chip is manufactured by Hitachi, Japan, using silicon-on-insulator (SOI) fabrication process technology.
- SOI silicon-on-insulator
- the ⁇ -chip operates at a frequency of 2.45 GHz, and includes a 128-bit ROM for storing a unique ID and may include a non-volatile memory.
- this type of tag 20 is dimensioned to be attached to, imprinted on, or embedded in a contact lens 10 or 11 without detriment to the user's vision or comfort.
- Other suitable next-generation multi-band UHF-RFID tags with built-in antenna, such as UHF-RFID chips in 800 MHz-2.45 GHz frequency-range may be used, or any tags based on the EPCglobal standard, such as the EPCglobal UHF Generation 2 standard.
- Another suitable tags include an ‘internal’ coil antenna is formed directly on the surface of the chip, such as Coil-On-ChipTM technology from Maxell, Japan.
- the data carrier 20 and the sensors 66 a - d comprise devices manufactured using printable electronics technology, such as printed RFID ICs, or organic, chipless, polymer-based tags, or made with conductive inks that can store and transmit data.
- tags 20 may be produced with common commercial printing processes such as flexographic, rotogravure, offset or rotary screen using special inks and materials.
- a variety of electronic inks with conductive, insulating, or semiconductor qualities, are printed in successive layers on plastic substrates to form electronic circuits including organic field effect transistors (OFETs).
- the electronic inks may be opaque, or transparent and thus undetectable to the human eye, and are compatible with the particular contact lens material.
- the printable antenna and the circuit chip may be printed directly onto the suitable contact lens material, such that, at least one antenna and at least one circuit chip is electrically connected to the anterior surface, and/or the opposing posterior surface of the contact lens material.
- the antenna and the circuit chip may be printed onto a polymer film material, or other suitable carrier material, which is attached to the contact lens.
- active tags may include printable photovoltaics, or printable batteries.
- the tag 20 is a magnetic tag, haled on nanotechnology and microtechnology. The magnetic tag 20 includes certain materials which possess unique magnetic properties that permit individual items to be precisely identified.
- a reader 34 resident on the container 24 includes a network interface for coupling to a digital data processing device 64 or network.
- the network can include a series of network nodes (e.g., the clients and servers) that can be interconnected by network devices and wired and/or wireless communication lines (e.g., public carrier lines, private lines, satellite lines, etc.) that enable the network nodes to communicate.
- the transfer of data (e.g., messages) between network nodes can be facilitated by network devices, such as routers, switches, multiplexers, bridges, gateways, etc., that can manipulate and/or route data from an originating node to a server node regardless of dissimilarities in the network topology (e.g., bus, star, token ring), spatial distance (e.g., local, metropolitan, wide area network, internet), transmission technology (e.g., TCP/IP, Systems Network Architecture), data type (e.g., data, voice, video, multimedia), nature of connection (e.g., switched, non-switched, dial-up, dedicated, or virtual), and/or physical link (e.g., optical fiber, coaxial cable, twisted pair, wireless, etc.) between the originating and server network nodes.
- network devices such as routers, switches, multiplexers, bridges, gateways, etc.
- the reader 34 may be coupled via a wired or wireless connection, such as Ethernet, IEEE 1394, TDMA, COMA, GSM, EDGE, PSTN, ATM, ISDN, 802.1X, USB, Parallel, Serial, DART (RS-266c), among others.
- the input/output means for interacting with the system 23 are embodied within the digital data processing device, such as the graphical user interface, display means, stylus, keypad, keyboard, buttons, touch screen display, microphone, and speaker.
- the reader 34 is integrated in a digital data processing device 64 , which can include a personal computer (PC), a computer workstation, a laptop computer, a server computer, a mainframe computer, a wearable computing device, a tablet computing device, a handheld device (e.g., a personal digital assistant (FDA), a Pocket PCTM, a cellular telephone, an e-mail device, a smart phone, a wrist watch, an information appliance, and/or another type of generic or special-purpose, processor-controlled device capable of receiving, processing, and/or transmitting digital data.
- a digital data processing device 64 includes a processor, a computer readable medium and input/output means.
- Processor refers to the logic circuitry that responds to and processes instructions that drive digital data processing devices such as, without limitation, a central processing unit, an arithmetic logic unit, an application specific integrated circuit, a task engine, and/or combinations, arrangements, or multiples thereof.
- Instructions for programs or other executables can be pre-loaded into a programmable memory that is accessible to the processor and/or can be dynamically loaded into/from one or more volatile (e.g., RAM, cache, etc.) and/or non-volatile (e.g., a hard drive, optical disk, compact disk (CD), digital video disk (DVD), magnetic disk, magnetic tape, internal hard drive, external hard drive, random access memory (RAM), redundant array of independent disks (RAID), IC memory card, flash memory, or removable memory device) memory elements communicatively coupled to the processor.
- volatile e.g., RAM, cache, etc.
- non-volatile e.g., a hard drive, optical disk, compact disk (CD), digital video disk (DVD), magnetic disk, magnetic tape, internal hard drive, external hard drive, random access memory (RAM), redundant array of independent disks (RAID), IC memory card, flash memory, or removable memory device
- the instructions can, for example, correspond to the initialization of hardware within the digital data processing devices, an operating system that enables the hardware elements to communicate under software control and enables other computer programs to communicate, and/or software application programs that are designed to perform operations for other computer programs.
- a set of instructions is included in the computer-readable medium is for performing operations or functions related to the system 23 or the operation of the digital data processing device 64 .
- the system 23 may provide a computer program product encoded in a computer-readable medium including a plurality of computer executable steps for a digital data processing device 64 to determine the identity of a lens 10 or 11 , or determine whether the lens 10 or 11 is inside-out, or whether the lenses 10 , 11 need to be replaced based on the expiration data.
- a user can interact with the system 23 , for example, viewing a command line, using a graphical and/or other user interface, and entering commands via an input device, such as a mouse, microphone, a keyboard, a touch sensitive screen, a stylus, a track ball, a keypad, etc., and receiving advisory signals via output means such as display means, speaker, LEDs, and so forth, as shown in FIG. 1 .
- Inputs from the user can be received via an input/output (I/O) subsystem and routed to processor via an internal bus (e.g., system bus) for execution under the control of the operating system.
- I/O input/output
- the input/output means for interacting with the system 23 may be embodied within the digital data processing device 64 , such as the graphical user interface, display means, a touch screen display, stylus, keypad, keyboard, buttons, a microphone, and a speaker.
- the reader 34 can be added onto any of the afore-mentioned devices 64 as a peripheral, such as an SD/SDIO card reader inserted in an SD/SDIO card slot of the device 64 , or a USB reader, or a serial reader, or a reader coupled to a dock connector.
- the computer-readable medium 60 comprises program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising: causing at least one sensor 66 a, b, c , or d , included with a ophthalmic lens 10 , 11 to emit a data signal periodically, automatically, or in response to a external signal from the at least one sensor via a communication interface; the at least one sensor 66 a, b, c , or d , for monitoring at least one ambient condition and for logging and recording at least one reading associated the at least one ambient condition, following a predetermined event; comparing the at least one reading to a predetermined threshold and providing an outcome, the predetermined threshold corresponding to the at least one ambient condition, issuing an alert based on the outcome; and wherein the at least one of a the at least one ambient condition provides sensed data related to at least one of protein concentration, composition of the lacrimal fluid, fungus, pathogens, virus, bacteria, concentrations of compounds in a lens care product, pH level,
- the reader 34 is a standalone handheld device, or is coupled to a digital data processing device 64 or network.
- a non-integrated reader 34 may be used with multiple containers 24 , so that contact lens case 24 may be disposed of periodically to reduce your risk of infection. Therefore, a non-integrated reader 34 may be more economical than an integrated reader 34 , as the non-integrated reader 34 can be easily associated or de-associated with a contact lens container 24 to permit re-use with another container 24 , while also maintaining historical data pertaining to the user, contact lens 10 use, and so forth.
- the reader 34 may be coupled to another digital data processing device 64 or network to enable a user to order lenses 10 , 11 , for example, when the lenses 10 , 11 are nearing expiration, have expired, or have been damaged.
- a user may place carry out a transaction for the purpose of ordering or purchasing lenses 10 , 11 from a pharmacy, retailer or virtual store for a replacement lens or pair, based on the data stored on the tag 20 .
- the system 23 includes an RFID-NFC enabled mobile device 64 , capable of ordering a pair of lenses 10 , 11 .
- NFC Near Field Communication
- RFID radio frequency identification
- a NFC-enabled mobile device 64 such as a mobile phone
- the reader 34 is powered by the batteries within a mobile phone 56 to allow communication with a NFC tag 20 on a lens 10 .
- account information stored in the mobile device 64 the user can automatically place an order to a pharmacy or retailer for a replacement lens 10 or 11 or lens pair 10 , 11 , based on the data stored on the tag 20 , and any other data provided by the user.
- the reader 34 within the mobile device 64 , or wallet phone automatically connects via the cellular connection or through NFC-enabled Wi-Fi or Bluetooth to the pharmacy, retailer or virtual store to carry out the commercial transaction.
- the lenses 10 , 11 may be ordered automatically by the system 23 , or by the pharmacy, retailer or virtual store, upon determination of impending expiry of the lenses 10 , 11 , or in accordance with predetermined lens replacement rules stored in a computer readable medium 50 .
- communication may be accomplished between the reader 34 and a tag 20 via different media or frequencies for different purposes (e.g., infrared light, or acoustics).
- the tag 20 is configured as a read-only tag, programmable write-once/read-many tag, or re-programmable read-many/write-many tag.
- read-only tags have permanent unalterable code (e.g., identification and/or other data), which is fixed in embedded memory at the time of manufacture.
- Programmable write-once/read-many tags include embedded memory that can be written to once in the field with the desired information.
- Re-programmable read-many/write-many tags include embedded memory that can be written to multiple times with the desired information. Since it is impossible to rewrite the data on a write-once/read-many tag, this provides a high level of security and authenticity.
- the data such as, the unique ID
- the unique ID used to perform a lookup in a secure system, and no unique personal information about the user is present within that unique ID.
- a reader 34 with a network interface is coupled to a digital data processing device 64 or network to access the data record with the unique ID. Therefore, as an example, the unique ID may be associated with a right lens 10 or a left lens 11 , such that the invention can be practiced as described above.
- the container 24 include a releasable lock operable in accordance with the identity of the lenses 10 , 11 , the age or wearable life of the lenses 10 , 11 and/or the identity of the user, or compliance data.
- the container 24 is locked, and can only be opened after resetting the lock, or overriding the system 10 .
- the tag 20 includes a photovoltaic array that acts as both a light signal receiver (extracting data and clock information from the reader) and a means to convert light into electrical power to operate the RFID digital IC chip.
- the tag 20 responds to a unique signal from the tag reader and when activated, would send information back to the reader 34 , via electromagnetic means.
- the system 23 supports various security features that ensure the integrity, confidentiality and privacy of information stored or transmitted, such as: (a) mutual authentication—where the tag 20 can verify that the reader 34 is authentic and can prove its own authenticity to the reader 34 before starting a secure communication session or a secure transaction; (b) strong information security for complete data protection, information stored on tag 20 can be encrypted and communication between the tag 20 and the reader 34 can be encrypted to prevent eavesdropping.
- the authentication data of the contact lens 18 is verified with the logic means 48 or external means to help combat counterfeiting. Additional security technologies may also be used to ensure information integrity.
- the tag 20 may include built-in tamper-resistance by employing a variety of hardware and software capabilities that detect and react to tampering attempts and help counter possible attacks.
- the system 23 may also include the ability to process information and uniquely provide authenticated information access and protect the privacy of personal information.
- the tag 20 can verify the authority of the information requester 34 and then allow access only to the information required. Access to stored information can also be further protected by a challenge-response scheme, such as a personal identification number (PIN) or biometrics to protect privacy and counter unauthorized access.
- PIN personal identification number
- biometrics to protect privacy and counter unauthorized access.
- Other security options include providing only non-confidential information on the tag 20 , and using information pointers, rather than actual information, using ‘kill commands’ to permanently render the tag 20 inoperable by at any point in the life of the lens 20 while protecting against inadvertent or malicious disablement of the tag 20 , or using a disguised EPC number, or unique identifier, during transaction to helping protect tag identity and tag data.
- the above methods and systems are applicable to the optical devices which are used for a component, or the like, of an optical instrument or information equipment, where identification and/or orientation (installing direction of an optical device, such, back surface or front surface, or side) of the optical device may need to be readily determined prior to installation or use within certain equipment.
- the individual optical components must be mounted in a system structure, and the components have certain characteristics, such as, spectral passing band (nm), UV cut-off, optical refractive index, Abbe value, transmittance % or haze (%) for a particular thickness, thermal coefficient of expansion, density, UV cut-off, MILcode.
- Such devices may include, but are not limited to, pickup lens of an optical communication disk, an optical communication module, a pickup lens of a laser printer, an optical disk device, camera lens, and a telescope lens, lens for a monocular, binoculars, telescope, spotting scope, magnifier, telescopic gun sight, theodolite, microscope, and camera (photographic lens), among others.
- the optical devices may be fabricated using a variety of materials including optical glasses, engineered plastics and crystalline materials. Glass material is the most common type because of its excellent optical properties such as high light transmission and environmental stability.
- Plastic optics can also be combined with glass optics to form hybrid optical systems. Therefore, providing the optical lens with at least one data carrier for carrying data related to the optical lens facilitates acquiring the relevant data. This method and apparatus is particularly beneficial where the devices are relatively small, thus making it difficult to employ prior art methods, such as, engraving, for visual inspection by a user to determine the installation surface.
- the age of the optical devices such as, resistive touchscreens can be tracked or determined, such that usage in field can be studied, or compared to MTBF ratings, or the age may be used to determine a replacement schedule.
- the invention is not restricted to magnetic and/or electrical fields to be put into practice. Any other type of field (electromagnetic or otherwise) which is suitable to activate a cooperable data carrier means in accordance with the present invention can be employed. Thus, in alternative embodiments of the invention for example fields comprising radiation anywhere within the electromagnetic spectrum may be employed, and also other fields such as acoustic or other non-electromagnetic fields may be employed in suitably adapted embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Eyeglasses (AREA)
Abstract
A method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with said ophthalmic product for monitoring at least one ambient condition and for logging and recording at least one parameter associated said at least one ambient condition, following a predetermined event; comparing said at least one parameter to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, and issuing an alert based on said outcome.
Description
- This application is a divisional of, and claims the benefit of priority to U.S. patent application Ser. No. 12/758,058 filed on Apr. 12, 2010.
- 1. Field of Invention
- The present invention relates to a method and system for promoting contact lens care compliance.
- 2. Description of the Related Art
- The contact lens market in the United States is a multi-billion dollar market. Recent data indicates that nearly 36 million Americans, almost 13% of the US population, wear contact lenses. There are numerous manufacturers of contact lenses and many different channels of distribution, including eye care practitioners (e.g. ophthalmologists and optometrists), national and regional optical chains, mass merchants, and mail order and online stores. The contact lenses include any of the following basic types: soft, rigid gas permeable and hard. Soft contact lenses are made of a highly flexible material such as a plastic hydrogel polymer, hydroxyethyl methacrylate (HEMA) that contains water or silicone or hydrophilic hydrogels. Rigid gas permeable contact lenses, frequently referred to as RGP contact lenses, are composed of a firm plastic material and do not contain water. RGP lenses permit oxygen to pass directly through the lens to the eye, thus these lenses are gas permeable. In contrast, hard contact lenses are made of a hard plastic material, such as polymethyl methylacrylate (PMMA), which does not allow oxygen to pass through the lens to the eye.
- In most countries, contact lenses are classified as medical. devices, and are thus normally only dispensed with a valid prescription from a qualified eyecare practitioner. A valid prescription typically includes user's name, eye practitioner's name, contact lens brand name and material, lens measurements such as power, diameter and base curve, directions for safe use such as wearing schedule, whether lenses are for daily or extended wear, the number of refills, whether lens material substitutions are allowed and an expiration date. Generally, the quality of human vision worsens with age, or due to reasons independent of aging or eye diseases. Some of the changes in eyes are reduction in pupil size and the loss of accommodation or focusing capability, or presbyopia. As such, prescriptions typically have an expiration date, and thus should be updated periodically. Each lens manufacturer has a replacement schedule of a contact lens, that is, how long the lenses can be safely worn before discarding. The replacement schedule depends on the patient, manufacturer or the type of lens chosen.
- For example, RGPs last several years, while soft contact lenses come in a wider variety of replacement schedules: daily disposable—1 day, disposable (extended wear)—1 week to 1 month, disposable (daily wear)—2 weeks, frequent replacement (also called “planned replacement”), 1 month to several months, conventional 1-year, depending on brand. Generally, hard contact lenses are available for different wear schedules, such as daily wear, and extended wear or overnight wear. Also, with planned-replacement lenses, an eye care practitioner works out a replacement schedule tailored to each user's needs. For example, for users who produce a higher level of protein in their eyes or do not take as good care of their lenses, it might be healthier to replace the lenses more frequently. Therefore, the onus to keep track of the wearable life of the lenses falls on the user. As such, if a user does not record the date of first use, or subsequent usage, as time passes it can become difficult to recall how long a particular pair of contact lenses has been worn.
- Despite recommendations by eye care practitioners to replace lenses as specified in the prescriptions, most users continue to use these lens well past the expiration date or replacement date, whether unwittingly or otherwise. Such practices present a serious safety concern with contact lenses. Extended wear of contact lenses, rigid or soft, beyond the replacement schedule or wear schedule, increases the risk of corneal ulcers, infection-caused eruptions on the cornea that can lead to blindness. Symptoms include vision changes, eye redness, eye discomfort or pain, and excessive tearing. Another sight-threatening concern is the infection Acanthamoeba keratitis, caused by improper lens care. This difficult-to-treat parasitic infection's symptoms are similar to those of corneal ulcers. Several solutions for tracking the wearable life of a contact lens have been presented in the prior art, however these solutions place the onus of tracking the day-to-day wear of the lenses on the user, and are prone to error.
- It is thus one of the objects of this invention to mitigate or obviate at least one of the aforementioned disadvantages.
- In one of its aspects the present invention provides a method and system for tracking the life or age of an optical device, the method comprising the steps of: providing the optical device with data carrier means for carrying data related to the optical device, the data carrier having data carrier means operable in at least one of an electrical mode and a magnetic mode; providing an activation signal from an external means; activating the data carrier means with the activation signal to cause the data carrier means to emit the data in response to the activating signal; recording the time the data carrier means is interrogated; and processing the received data to determine the age or wearable life, or useful life, of the optical device based on the time of the activation signal and a predetermined time as a reference or milestone.
- In another of its aspects the present invention provides a method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with said ophthalmic product for monitoring at least, one ambient condition and for logging and recording at least one reading associated said at least one ambient condition, following a predetermined event; determining whether said at least one reading exceeds at least one predetermined threshold, said at least one predetermined threshold corresponding to said at least one ambient condition, issuing an alert when said at least one reading exceeds at least one predetermined threshold.
- In another of its aspects the present invention provides a method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with a contact lens container for monitoring at least one ambient condition and for logging and recording at least one reading associated said at least one ambient condition, following a predetermined event; comparing said at least one reading to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, issuing an alert based on said outcome.
- Advantageously, the method and system promote contact lens compliance, thus significantly diminishing complications associated with non-compliance.
- These and other features of the exemplary embodiments of the present invention will become more apparent in the following detailed description in which reference is made to the appended drawings wherein:
-
FIG. 1 depicts a schematic of an exemplary system for contact lens compliance; -
FIG. 2 depicts a schematic of an exemplary contact lens; -
FIG. 3 depicts a schematic of an exemplary system for contact lens compliance; -
FIG. 4 depicts a schematic block diagram of an exemplary tag and an exemplary reader; and -
FIG. 5 is flowchart outlining the exemplary steps for determining contact lens compliance; - The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
- Referring to
FIGS. 1 and 3 there is shown asystem 23 for ophthalmic device compliance. Theophthalmic device 10, as disclosed in the exemplary embodiments, includes, but is not limited to, ophthalmic lenses, soft contact lenses, hard contact lenses, bifocal contact lenses, multi-focal contact lenses, colored contact lenses, disposable contact lenses, extended wear contact lenses, gas permeable (GP) contact lenses, rigid gas permeable (RGP) contact lenses, monovision lenses, orthokeratology lenses, prosthetic contact lenses, silicone hydrogel contact lenses, special-effect contact lenses, specialty lenses, toric contact lenses, bi-toric contact lenses, aspherics, lenticulars, spheres, intraocular lenses or implantable collamer lenses (ICL), cosmetic lenses, overlay lenses and onlay lenses. As used herein, ‘compliance’ is defined as ‘the process of complying with a regimen of treatment’. In the context of contact lens wear, this can be interpreted as a wearer correctly adhering to the instructions provided by the contact lens practitioner with respect to optimum lens wear and care. - As depicted in
FIG. 2 , an exemplaryophthalmic device 10, such as a contact lens, comprises ananterior surface 12, an opposingposterior surface 14 surrounded by aperipheral edge 16, an edge surface (not shown), such as a spherical lens formed fromsurfaces contact lens 10 also includes anoptical zone 13 surrounded by aperipheral zone 18. Thecontact lens 10 can comprise any known material useful for making contact lenses, which may include, but is not limited to HEMA, POLYMACON, METAPHILCON A, HEMA 38 (TEFILCON), POLYHEMA, CROFILCON A, HEMFILCON A, HEMA 38 (TEFILCON) PHEMFILCON A, TETRAFILCON A, 41% OMAFILCON A, HEMA-GMMA, MODIFIED HEMA, PMMA, BENZ x-3, BENZ METAPHILCON, HEFILCON B, CROFILCON A, TEFILCON, SYNERGICON A, HEMA-VINYL METHACRYL, HEMA-VP, XYLOFILCON A, DL 77, HIOXIFILCON A, BOSTON ES, BOSTON XO, BOSTON ES, SILPERM 50, FSA, PARAGON DK 60, FLUOROSILICONE ACRYLATE, SILOXANE-FLUOROCARBON ACRYLATE, HILAFILCON B, BALAFILCON A, ALPHAFILCON A, METHAFILCON A, NELFICON A, VIFILCON A, VASURFILCON A, OCUFILCON B, ETAFILCON A, GALYFILCON, and SENOFILCON A, galyfilcon A, senofilcon A, genfilcon A, lenefilcon A, comfilcon A, acquafilcon A, balafilcon A, lotrafilcon A, narafilcon A, and silicone hydrogels. - The
lens 10 includes at least onedata carrier 20 on any surface of thelens 10, such as theanterior surface 12, theposterior surface 14, or the edge surface (not shown) extending between theanterior surface 12 and theposterior surface 14. Thedata carrier 20 may be any suitable means for retaining data operable in an electrical and/or magnetic mode, such as a radio identification device or RFID tag, as implemented in an exemplary embodiment of the present invention. For example, each of thetags 20 can be implemented as a passive tag, an active tag, or a semi-passive tag. Those skilled in the art will recognize that active, semi-passive tags, or passive tags share many features and that can be used with this invention. In this specification, for clarity of usage, the term ‘tag’ is used to refer generally to all RFID devices. - Generally, RFID systems use a variety of techniques to transmit data to and from the tag. For transmission to the tag, the data can be transmitted using any of a variety of modulation techniques including, but not limited to, amplitude modulation (AM), phase modulation (PM), and frequency modulation (FM). Furthermore, the data transmitted to the tag can be encoded using any of a variety of techniques, including frequency shift keying (FSK), pulse position modulation (PPM), pulse duration modulation (PDM) and amplitude shift keying (ASK). In general, passive tags have no battery or internal power source, and operate by back-scattering or load modulation of an incident RF signal, which may be transmitted by one of the Although some types of passive tags can store energy for a period of time, passive tags typically require continuous input power as an energy source. Active tags generally include an internal power source such as a battery, photovoltaics, or any other suitable type of power source, such as an energy scavenging device. Exemplary energy scavenging devices include devices that source energy from the environment, such as radiation (solar, RF, and so forth), or photovoltaic energy, vibration spectra of office windows, copy machines, microwave ovens; industrial motors, freeway traffic, RF power, or human gait. Further, active tags can transmit RF signals automatically, or in response to a request or a command provided by a reader, on a predetermined schedule (e.g., every 10 seconds or every 300 seconds), or upon detection of a threshold event. This energy source permits active tag to create and transmit strong response signals even in regions where the interrogating radio frequency field is weak, and thus an active tag can be detected at greater range. Semi-passive tags are hybrids of passive and active tags, and are generally configured to provide improved read-range, data storage, sensor sophistication, level of security, etc., in comparison with purely passive tags.
- The
optical devices 10 are manufactured using any one of the above noted materials, and may be manufactured in accordance with methods known to those skilled in the art of the specific optic device being produced. For example, if an intraocular lens is to be produced, the same may be manufactured by methods known to those skilled in the art of intraocular lens production. Generally, among the known methods for soft contact lens manufacturing is spin casting, a method by which liquid monomer is injected into a spinning mold to create the desired lens shape, thickness and size. The monomer is distributed along the mold according to the centrifugal force, gravity and surface tension of the liquid. Slower rotations produce smaller diameters, thicker centers, flatter base curves and plus powers. The opposite is true for faster rotations. When the desired parameters are obtained, UV light is used to polymerize the monomer into a solid lens. The lens is then hydrated to its final state. Another method is lathe cutting is where a polymerized soft lens material in the rigid state is lathe cut similar to an RGP lens. After cutting and polishing the lenses, they go through a hydration stage that creates the final soft contact lens. The lens will have specific water content after hydration, depending on the polymer. Yet another method is cast molding, a method which requires two molds between which liquid lens material is injected, and the lens is kept in a liquid state throughout the manufacturing process. As such, adata carrier 20 can be included with the liquid monomer, or may be placed on one of the molds prior to introduction of the lens material such that thedata carrier 20 is located on the anterior surface or posterior surface of theeventual lens 10. Preferably, thedata carrier 20 is so positioned on the mold such that it is located at a predetermined location on theeventual lens 10. Alternatively, thedata carrier 20 is included with the eventual lens at any appropriate point in the manufacturing process, or after the manufacturing process by any other suitable methods, as described above. - In another exemplary embodiment, the
data carrier 20 includes devices manufactured using printable electronics technology, such as printed RFID ICs, or organic, chipless, polymer-based tags, or made with conductive inks that can store and transmit data. Thesetags 20 are produced with common commercial printing processes such as flexographic, rotogravure, offset or rotary screen using special inks and materials. A variety of electronic inks with conductive, insulating, or semiconductor qualities, are printed in successive layers on plastic substrates to form electronic circuits including organic field effect transistors (OFETs). The electronic inks may be opaque, or transparent and thus undetectable to the human eye, and are compatible with the particular contact lens material. In an exemplary method of developing and manufacturing complete RFID tags uses ink jet technology used to print silver fluid, or inks containing silver dispersions, with features of less than 20 microns. This technology can precision print 1 picoliter-sized drops of organic and inorganic materials on a large variety of substrates. The printable antenna and the circuit chip may be printed directly onto the suitable contact lens material, such that, at least one antenna and at least one circuit chip is electrically connected to the anterior surface, and/or the opposing posterior surface of the contact lens material. Alternatively, the antenna and the circuit chip may be printed onto a polymer film material, or other suitable carrier material, which is attached to the contact lens. Alternatively, active tags may include printable photovoltaics, or printable batteries. In yet another exemplary embodiment, thetag 20 is a magnetic tag, based on nanotechnology and microtechnology. Themagnetic tag 20 includes certain materials which possess unique magnetic properties that permit individual items to be precisely identified. -
FIG. 2 shows anotherexemplary system 23 for contact lens compliance. Thesystem 23 comprises acontainer 24 for storing the pair oflenses receptacle 26 of thecontainer 24 is thecontact lens 10, while thecontact lens 11 is disposed within areceptacle 28, in a conventional manner. Thecontainer 24 has a substantially planar top surface and thereceptacles container 24. Thereceptacles contact lenses lens 10 is prescribed for the user's left eye, hereinafter theleft lens 10, includes at least onedata carrier lens 11 is prescribed for the user's right eye, hereinafter theright lens 11, with at least onedata carrier system 23 also includes at least one external means, such as an interrogation unit ordata carrier readers data carrier data carrier data carrier unit reader 34 will be discussed in operation with thetag 20, since this operation is similar to the interaction between thereader 34 andtag 22; and similar to the interaction between thereader 36 andtag readers tags container 24 includes the only onereader 34 for determination of the characteristics of eitherlens data carrier -
FIG. 4 shows an exemplarypassive tag 20 in a block diagram form, and includes a processor module 38, a computer readable medium 40 or memory module, a transmitter/receiver module 42, and an antenna module 44. The transmitter/receiver module 42 controls the communication of data to and from theexternal reader 34 via the antenna module 44 comprising an antenna and any associated electronic circuitry. The computerreadable medium 40 serves many functions including accommodating security data and operating system instructions for thetag 20 which, in conjunction with the processor 38 or processing logic, performs the internal “house-keeping” functions such as response delay timing, data flow control and power supply switching. The computerreadable medium 40 may include non-volatile programmable memory and/or volatile memory for data storage. The computerreadable medium 40 also facilitates temporary data storage duringtag 20 interrogations and response, and store thetag 20 data and retains data when thetag 20 is in a quiescent or power-saving “sleep” state. The computerreadable medium 40 may further include data buffers to temporarily hold incoming data following demodulation, and outgoing data for modulation. - The
tag 20 data may include, and is not limited to, an identification number or a unique ID used to identify thetag 20 associated with aparticular contact lens - As further shown in
FIG. 4 , anexemplary reader 34 includes aprocessor module 48, a computerreadable medium 50, a transmitter/receiver module 52, anantenna module 54 and apower supply unit 55. Theantenna module 54, which may include an antenna array, is coupled to the transmitter/receiver module 52, which includes a transmitter/receiver or multiple transmitters/receivers to emit electromagnetic waves that are used to provide an interrogating field to thetag 20, and receive response signals from thetag 20 via a receiver or multiple receivers. Thereader 34 also includes an actuation means for powering on same, the actuation means may be require user intervention, or may be automatic. As such, the actuation means may include any of the following: switch, sensor, proximity switch means (AC or DC inductive and capacitive), or reads triggered by a schedule, an external event or command. The memory capacity on the computerreadable medium 50 of thereader 34 can be unlimited, and can be coupled to other memory modules on the devices such as volatile and non-volatile memory, including, but not limited to, flash memory, hard disk drive, Floppy, optical disks (DVDs, CDs etc.) Thereader 34 may include a database with a computer readable medium which stores records of any of the above-noted data relating to thecontact lens 10. Thetag 20 may further include interface circuitry to direct and accommodate the interrogation field energy for powering purposes and triggering of thetag 20 responses. For example, thereader 34 may transmit activating signals or interrogation signals to thetag 20 automatically on a periodic basis. Thereader 34 may also employ sleep modes to conserve power. Thereader 34 includes input/output means for interacting with thesystem 23 or for outputting advisory signals or warnings. The input/output means may include, but are not limited to, display means 56, such as a touch screen display with a graphical user interface, a microphone, stylus, keypad, keyboard, buttons, and LED(s) 58, aspeaker 60. - More specifically, the computer-readable medium containing program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising causing a
data carrier ophthalmic lens data carrier data carrier sensors 66 a-d included with thecontact lens container 24. - A computer-readable medium containing program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising: causing at least one sensor 66 a, b, c, or d included with a ophthalmic lens 10 or 11 to emit a data signal periodically, automatically, or in response to a external signal from the sensor 66 a, b, c, or d, via a communication interface; said sensor 66 a, b, c, or d for monitoring at least one ambient condition and for logging and recording at least one reading associated said at least one ambient condition, following a predetermined event; comparing said at least one reading to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, issuing an alert based on said outcome; and wherein said at least one of a said at least one ambient condition provides sensed data related to at least one of protein concentration, composition of the lacrimal fluid, fungus, pathogens, virus, bacteria, concentrations of compounds in a lens care product, pH level, eye temperature, eye pressure, eye moisture, oxygen reaching the eye, blink rate, pressure from rubbing, frequency of wear, exposure to a lens care product, usage habits, vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof.
- In the instance of output signals being in the form of audible signals, a
speaker 60 outputs a particular audible signal depending on the outcome of the match/non-match determination. Also, thespeaker 60 may emit an audible signal with a particular duty cycle of indicative of a positive state or a negative state, such as a fast beeping sound for a non-match and a slow beeping sound for a match. However, these messages may include both visual signals and audible signals. Advantageously, audible signals are beneficial where ambient light conditions are poor, or when vision is impaired temporarily, or when a visual aid is required to decipher the information presented via the output means 56. Alternatively, thesystem 23 may include only onereader lenses lens lens correct receptacle lens - In one exemplary embodiment, the
contact lens 10 is included with data at manufacture or post manufacture, such data includes, but is not limited to: expiration data, SKU, manufacturer, authentication data, date of manufacture, is written onto thememory 40 of thetag 20. In another exemplary embodiment, thecontact lens 10 is associated with atag 20 post-manufacture, such as, at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user. Therefore, the eyecare practitioner can write data onto thetag 20, as stated above. - In another exemplary embodiment, the
system 23 orreader 34 tracks the age or the time theoptical device 10 has been in use, or the wearable life or useful life of anoptical device 10. For example, thesystem 23 orreader 34 may determine the impending expiry of thelens 10, or detect non-compliance and notify the user accordingly. As stated above, non-adherence to the recommended wear or replacement schedule, or prolonged use of theexpired lenses toric lenses lens lens optical device 10, such as acontact lens 10, will now be described, with reference to the flowchart ofFIG. 5 . The method includes the step of providing an identifying means comprising a data carrier with thecontact lens 10, instep 100. The data carrier includes adevice 20 operable in at least one of an electrical mode and a magnetic mode, such as atag 20, as described above. Thecontact lens 10 is included with atag 20 at manufacture, or included with thelens 10 post manufacture by any suitable means, and data, such as: expiration data, SKU, manufacturer, authentication data, date of manufacture, is written onto thememory 40 of thetag 20, instep 102. - Also, additional data may be included with the
tag 20 post-manufacture of thelens 10. Data may be written at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user. The post-manufacture data in addition to contact lens manufacture data, as stated above, may include prescribing eyecare practitioner, filling pharmacy, health professional information, date & time the prescription was filled, lens user's personal details, prescription information, right eye/left eye identification data, fitting details, and so forth. As stated above, thecontact lens 10 may be associated with antag 20 post-manufacture of thelens 10, such as, at the dispensing point or point-of-sale (POS) by an eyecare practitioner, such as, optometrists, ophthalmologists and opticians, or at the operating point by the user. Therefore, the eyecare practitioner can write data onto thetag 20, as stated above. - Next, an activation signal is provided from an external means, such as a
reader 34, instep 104. Thetag 20 is thus energized by the activation signal to cause thetag 20 to emit data in response to the activating signal. The time when thecontact lens 10 is first interrogated by thereader 34 is recorded, this time may correspond to the time thecontact lens 10 is first introduced into thecontainer 24. Thetransceiver 52 receives the data and theprocessor module 48 processes the received data, instep 106. - A
counter 62 coupled to theprocessor 48 and tracks the elapsed time from, or to, a time reference, such as the first instance of interrogation of thelens 10 by thereader 34 marking first time use, and notifies the logic means 48 when a particular time threshold has been reached, close to be reached or surpassed. The time reference or time threshold may be user defined, or third-party defined, or the date of manufacture, or the expiration date. Thecounter 62 may be a real time clock, for example, the recommended period of wear may be expressed in hours or days. Thecounter 62 may count up or count down from one particular time reference to another particular time reference, and these particular time references may be associated with a request for action from the user, or may be an advisory signal. For example, thecounter 62 may count up from the date of manufacture to the expiration date, and outputs the wearable time remaining. Theprocessor module 48 then issues an advisory signal associated with thecontact lens 10, instep 108. The user can be notified of impending expiry, and actual expiry, of thelens 10 via an advisory signal means, either visually or auditorily or some other a stimulus to a human body,step 110. At this time, the user may be prompted to seek a new prescription or obtain anew lens lens pair system 23 may also inform the user the minimum period thecontact lens contact lens right lens 10 and theleft lens 11 have different expiration dates, as in the case when onelens lens own counter 62. - The
counter 62 may determine the age or wearable life of thelens reader 34. Thesystem 23 may issue advisory signals visually, such as “Lens Expired”, “Change Lens”, “Remove Lens Daily”, Store Lens for 5 hrs each day”, “Clean Lens”, “45 Days left”, “New Rx required”, “Call EyeDoc for Checkup”, “Check-up in 2 weeks” messages or a plethora of symbolic messages, as depicted inFIG. 1 . The advisory signal may also be audible. Thesystem 23 can output the advisory signals automatically or the user can query thesystem 23, using an interactive display or keypad or buttons coupled to thereader 34. Thesystem 23 may also analyze the received data and track the amount of time thelenses system 23 may thus determine whether the user is in compliance with the prescription, with respect wear schedule, replacement schedule, or lens care. For example, using the statistical data thesystem 23, or third parties, may determine whether dailies are worn for more than 24 hrs, or whether overnights are being worn beyond the prescribed maximum time period, such as 30 days. Using the historical data, thesystem 23, or third parties, may recommend a wearing time dependent on the user's individual needs, or recommend another prescription with a different wearing schedule. The reports may also be issued to other interested parties, such as, eye practitioners and insurance companies. - In another exemplary embodiment, the
lens clock 62. A continual analog signal sensed by thedevices 66 a-d is digitized by an analog-to-digital converter and sent to controllers for further processing. Typical characteristics and requirements of asensor node 66 a-d call for a relatively small size, and consume extremely low energy, being autonomous and able to operate unattended, and being adaptive to the environment. Thedevices 66 a-d may be passive, semi-active or active. Anexemplary sensing device 66 is a self-contained unit having sensing elements, data loggers with a computer-readable medium, such as a non-volatile memory, for data storage and program instructions. The internal software runs multi-phased, variable-interval test sequences that collect data. The controller logic unit performs important functions, such as providing information such as the sensor type and location, as well as calibration factors. It also provides dynamic information such as recording status, memory capacity, and battery level. The controller logic unit may also execute specific application algorithms to process the raw data to produces a digital data output. Also, feeding into the controller logic unit is a real-time clock, enabling all readings to be date and time stamped. The sensor 66 a also includes a communications interface, such as an RF, wireless, or optical interface, for communicating with thereader 34; or other sensors 66 b-d The wireless sensor 66 a, b, c or d gathers information from the environment through measuring various phenomena, as stated above. The sensor 66 a, b, c or d may transmit the acquired data via an RFID interface, and may be active, semi-active or passive. The device 66 a, b, c or d may be self powered or powered from external sources, as such, exemplary power sources include energy storage devices and/or energy scavenging devices. An energy storage device may be a battery, a Zn-air cell, or a capacitor. An energy scavenging device may include energy from the environment, such as radiation (solar, RF, and so forth), or photovoltaic energy. Other sources include vibration spectra of office windows, copy machines, microwave ovens, industrial motors, freeway traffic, RF power, or human gait. - The
devices 66 a-d are so positioned and programmed to monitor predefined conditions and acquire specific measurements, for example device 66 a may be programmed to measure and record vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, pH level, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof, among others. Any of these recorded measurements may be analyzed in real-time or later, and should such measurements exceed the predetermined thresholds then corresponding advisory signals or alerts are issued. - In another exemplary embodiment, all or some of the processing and analysis of the acquired data is performed by the sensor means 66 a, b, c or d, to issue a warning or an alerts as necessary when predetermined thresholds for any of the measured parameters are exceeded. Alternatively, the sensor 66 a, b, c or d may record the data and transmit the data to another computing device for processing, the transmission may occur automatically or when the sensor coupled to a computing device, via a wired or wireless connection.
- Preferably, the wireless sensor 66 a, b, c or d is located on the
lens 10 in a predetermined location, and dimensional so that it does not interfere substantially with thelens 10 configuration, alter the prescription, or cause thelens 10 to deteriorate, or does not irritate the eye of the lens wearer or give any discomfort to the lens wearer. The wireless sensor 66 a, b, c or d may include data comprising, but not limited to, an identification number or a unique ID used to identify the sensor 66 a, b, c or d associated with a particular contact lens, SKU, manufacturer, logo, material of manufacture, composition, date of manufacture, lot. no., batch no., warehouse related data, promotional material (rebate for next pair purchase or free trials), lens features and description, lens benefits data, health warnings, data on potential risk or complications, insurance coverage data, regulatory data, authenticity data, encryption data, fitting details, lens type data, lens care or handling information, recommended usage information such as wear schedule, expiration data, URI., lot number, storing liquid medium, UV cut-off, optical refractive index, Abbe value, transmittance % or haze(%) for a particular thickness, and so forth. - As an example, oxygen measurements allow the
system 23 to determine the mount of oxygen reaching the cornea, and mitigate against ocular problems, such as, eye dryness or irritation. Such data collected may be used to create a suitable prescription, including recommendations regarding the ideal contact lens type for the user, or provide warnings or alerts it the recommended amount of oxygen is not reaching the cornea. Eye temperature, and or pulse rate measurements may recorded and analyzed to determine the wear schedule of thelenses lens - Meanwhile, data related lacrimal fluid content and protein content build up on the
lenses lenses replacement lenses system 23 automatically initiates and completes the order. For example, the sensor 66 a, h, c, or d, may be configured to detect proteins such as, lysozyme, IgA, lactoferrin, and IgG, or any other proteins that might contribute to surface deposits oncontact lenses - Based on the characteristic composition of the lacrimal fluid, an eyecare professional may use this data to select from among the various types of
contact lenses lens contact lens case 24. Also, some users suffer from contact lens solution toxicity where the user experiences an unwanted reaction to certain solutions, such as noninfectious (inflammatory), allergic, or both. Typical symptoms of toxicity include redness of the eye, pain, itching, tearing, sensitivity to light, decreased or blurred vision, discharge from the eyes, and inability to wear thecontact lenses - In another exemplary embodiment, based on the detected compounds, the
system 23 is able to determine the product SKU of the solution and issue appropriate advisory signals, such as, recall notices, advertisements, rebates, or new product information. Correspondingly, thesystem 23 provides the user to select the solution in use with thecontact lens contact lens - In another exemplary embodiment, the sensor 66 a, b, c or d is included with the
contact lens container 24 to detect proteins, composition of the lacrimal fluid, fungus, pathogens, viri, bacteria, such as Gram-negative, Pseudmonas aeruginosa, Gram positive, Staphylococcus aureus and Staphylococcus Epidermidis, among others, which lead to microbial keratitis, or fungal, herpetic, mycobacterial microbial keratitis. Thesensors 66 a-d may also detect concentrations of compounds found in such lens care products, such as, dymed (polyaminopropyl biguanide), hydranate (hydroxyalkylphosphonate), boric acid, ethylenediamine tetraacetate, poloxamine, sodium borate, sodium chloride. The sensed data may also comprise data related to eye temperature, eye pressure, eye moisture oxygen reaching the eye, blink rate, pressure from rubbing, and light. This data may also be used determine usage habits or compliance to proper lens care, and thus the data may be used to advise the user to clean, rinse and dry thecontact lens container 24, change the solution in thecontainer 24, replace thecontact lens 10, or thecontact lens container 24, in order to avoid complications due to non-compliance, as depicted inFIG. 1 . - Alternatively, the
system 23 issues advisory signals, such as reminders, alerts & warnings, to the user and third parties, such as, eye-care practitioners, pharmacy or central server/database via the wired or wireless network. The alerts may be provided via telephone, voice-mail, fax, email, SMS, IM, MMS, website, social networking site, ‘snail’ mail, courier, and so forth. Alternatively, third parties receive the advisory signals for analysis and may take certain actions based the nature of the advisory signals. For example, upon receipt of an advisory signal pertaining to creased, ripped or damagedcontact lens 10, the third party may automatically fill a new prescription forreplacement lenses device 10 characteristics, such as batch no., SKU, manufacturer, date of manufacture, material, and so forth. Affected users may be automatically provided withnew lenses container 24 with limited display capabilities or areader 34, with limited computing resources, coupled to a digitaldata processing device 64 or the network. Other advisory signals may comprise recall notices, advertisements, rebates, or new product information, URIs, URIs to product information. - The third party may also analyze the received data and track the amount of time the
lenses - In another exemplary embodiment, the
sensor devices 66 a-d include at least one sensor 66 a is assigned to measure one or more environmental variables, and may communicate with the other sensor devices 66 b-d, and transmit their acquired data, such that each of thesensor devices 66 a-d includes the acquired data of allother sensor devices 66 a-d. As such, the spatially distributedautonomous devices 66 a-d may form a wireless sensornetwork using sensors 66 a-d to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or chemical or biological agents, at different locations. Alternatively,certain devices 66 a-d - are designated to receive acquired data from
other devices 66 a-d. A sensor node 66 a, b, c, or d, or mote, within the wireless sensor network, is capable of performing processing, gathering sensory information and communicating with other connected nodes 66 a, b, c, or d in the network. Typically, the mote 66 a, b, c, or d is a computing entity having a programmable microprocessor, a transceiver (circuitry for transmitting and receiving data) a power source, antenna, and a computer readable medium for instructions and data storage. The microprocessor integrated circuit provides sensor signal processing, communication, control, monitoringother motes 66 a-d, data storage and energy management. As an example, acquired environmental data may be passed on to the radio link for transmission from mote 66 a to mote 66 b until data reaches a transmission node 66 c coupled to thenetwork 18. These radio links betweenmotes 66 a-d may have a transmission distance in the range of 10-200 feet, or greater. Alternatively, data transmitted from at least one of the motes 66 c is provided to thedatabase 16, or other network entities for analysis. If the analysed data indicates non-compliance, the contact lens is immediately flagged and a warning or alert is issued to the user or a third party, such as, an eye care professional, pharmacist, insurance provider, or parent or guardian. - In one exemplary embodiment, the
reader 34 is integrated with aportable computing device 64, or communications device, such as a smartphone. In one example, a communications device with anintegrated reader 34 interrogates the data carrier oflenses lenses device 64 can thus issue advisory signals to the user, and the advisory signals may be displayed on the display screen or announced to the user at predetermined moments, such as, on powering on the device, or before performing other actions on the device, such as making a call, selecting a playlist or sending a text message, or pop-up reminders during any of said user actions on the device. Alternatively, the advisory signals or alerts may be automatically included with the device's 64 scheduling software or calendar application, or the advisory signals may be sent to any user-defined recipient. - As an example, the
tag 20 may include the contactless IC chip, which is manufactured by Hitachi, Japan, measuring 0.15×0.15 millimeter (mm), 7.5 micrometer (μm) thick or the μ-Chip™ which features an internal antenna. These chips can thus operate entirely on their own, making it possible to use β-Chip as RFID IC tags without the need to attach external devices, such as antennae, making these tags, or similar tags, ideal for application in the present invention. Similar to the 0.15 mm square chip, the chip is manufactured by Hitachi, Japan, using silicon-on-insulator (SOI) fabrication process technology. The μ-chip operates at a frequency of 2.45 GHz, and includes a 128-bit ROM for storing a unique ID and may include a non-volatile memory. Typically, this type oftag 20, or similar, is dimensioned to be attached to, imprinted on, or embedded in acontact lens - In another exemplary embodiment, the
data carrier 20 and thesensors 66 a-d comprise devices manufactured using printable electronics technology, such as printed RFID ICs, or organic, chipless, polymer-based tags, or made with conductive inks that can store and transmit data. For example, tags 20 may be produced with common commercial printing processes such as flexographic, rotogravure, offset or rotary screen using special inks and materials. A variety of electronic inks with conductive, insulating, or semiconductor qualities, are printed in successive layers on plastic substrates to form electronic circuits including organic field effect transistors (OFETs). The electronic inks may be opaque, or transparent and thus undetectable to the human eye, and are compatible with the particular contact lens material. In an exemplary method of developing and manufacturing complete RFID tags uses ink jet technology used to print silver fluid, or inks containing silver dispersions, with features of less than 20 microns. The printable antenna and the circuit chip may be printed directly onto the suitable contact lens material, such that, at least one antenna and at least one circuit chip is electrically connected to the anterior surface, and/or the opposing posterior surface of the contact lens material. Alternatively, the antenna and the circuit chip may be printed onto a polymer film material, or other suitable carrier material, which is attached to the contact lens. Alternatively, active tags may include printable photovoltaics, or printable batteries. In yet another exemplary embodiment, thetag 20 is a magnetic tag, haled on nanotechnology and microtechnology. Themagnetic tag 20 includes certain materials which possess unique magnetic properties that permit individual items to be precisely identified. - In another exemplary embodiment, a
reader 34 resident on thecontainer 24 includes a network interface for coupling to a digitaldata processing device 64 or network. The network can include a series of network nodes (e.g., the clients and servers) that can be interconnected by network devices and wired and/or wireless communication lines (e.g., public carrier lines, private lines, satellite lines, etc.) that enable the network nodes to communicate. The transfer of data (e.g., messages) between network nodes can be facilitated by network devices, such as routers, switches, multiplexers, bridges, gateways, etc., that can manipulate and/or route data from an originating node to a server node regardless of dissimilarities in the network topology (e.g., bus, star, token ring), spatial distance (e.g., local, metropolitan, wide area network, internet), transmission technology (e.g., TCP/IP, Systems Network Architecture), data type (e.g., data, voice, video, multimedia), nature of connection (e.g., switched, non-switched, dial-up, dedicated, or virtual), and/or physical link (e.g., optical fiber, coaxial cable, twisted pair, wireless, etc.) between the originating and server network nodes. As an example, thereader 34 may be coupled via a wired or wireless connection, such as Ethernet, IEEE 1394, TDMA, COMA, GSM, EDGE, PSTN, ATM, ISDN, 802.1X, USB, Parallel, Serial, DART (RS-266c), among others. In this case, the input/output means for interacting with thesystem 23 are embodied within the digital data processing device, such as the graphical user interface, display means, stylus, keypad, keyboard, buttons, touch screen display, microphone, and speaker. - In another exemplary embodiment, as shown in
FIG. 1 , thereader 34 is integrated in a digitaldata processing device 64, which can include a personal computer (PC), a computer workstation, a laptop computer, a server computer, a mainframe computer, a wearable computing device, a tablet computing device, a handheld device (e.g., a personal digital assistant (FDA), a Pocket PC™, a cellular telephone, an e-mail device, a smart phone, a wrist watch, an information appliance, and/or another type of generic or special-purpose, processor-controlled device capable of receiving, processing, and/or transmitting digital data. Typically, a digitaldata processing device 64 includes a processor, a computer readable medium and input/output means. Processor refers to the logic circuitry that responds to and processes instructions that drive digital data processing devices such as, without limitation, a central processing unit, an arithmetic logic unit, an application specific integrated circuit, a task engine, and/or combinations, arrangements, or multiples thereof. Instructions for programs or other executables can be pre-loaded into a programmable memory that is accessible to the processor and/or can be dynamically loaded into/from one or more volatile (e.g., RAM, cache, etc.) and/or non-volatile (e.g., a hard drive, optical disk, compact disk (CD), digital video disk (DVD), magnetic disk, magnetic tape, internal hard drive, external hard drive, random access memory (RAM), redundant array of independent disks (RAID), IC memory card, flash memory, or removable memory device) memory elements communicatively coupled to the processor. The instructions can, for example, correspond to the initialization of hardware within the digital data processing devices, an operating system that enables the hardware elements to communicate under software control and enables other computer programs to communicate, and/or software application programs that are designed to perform operations for other computer programs. Thus, a set of instructions is included in the computer-readable medium is for performing operations or functions related to thesystem 23 or the operation of the digitaldata processing device 64. For example, thesystem 23 may provide a computer program product encoded in a computer-readable medium including a plurality of computer executable steps for a digitaldata processing device 64 to determine the identity of alens lens lenses system 23, for example, viewing a command line, using a graphical and/or other user interface, and entering commands via an input device, such as a mouse, microphone, a keyboard, a touch sensitive screen, a stylus, a track ball, a keypad, etc., and receiving advisory signals via output means such as display means, speaker, LEDs, and so forth, as shown inFIG. 1 . Inputs from the user can be received via an input/output (I/O) subsystem and routed to processor via an internal bus (e.g., system bus) for execution under the control of the operating system. The input/output means for interacting with thesystem 23 may be embodied within the digitaldata processing device 64, such as the graphical user interface, display means, a touch screen display, stylus, keypad, keyboard, buttons, a microphone, and a speaker. Alternatively, thereader 34 can be added onto any of the afore-mentioneddevices 64 as a peripheral, such as an SD/SDIO card reader inserted in an SD/SDIO card slot of thedevice 64, or a USB reader, or a serial reader, or a reader coupled to a dock connector. - More specifically, the computer-readable medium 60 comprises program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising: causing at least one sensor 66 a, b, c, or d, included with a ophthalmic lens 10, 11 to emit a data signal periodically, automatically, or in response to a external signal from the at least one sensor via a communication interface; the at least one sensor 66 a, b, c, or d, for monitoring at least one ambient condition and for logging and recording at least one reading associated the at least one ambient condition, following a predetermined event; comparing the at least one reading to a predetermined threshold and providing an outcome, the predetermined threshold corresponding to the at least one ambient condition, issuing an alert based on the outcome; and wherein the at least one of a the at least one ambient condition provides sensed data related to at least one of protein concentration, composition of the lacrimal fluid, fungus, pathogens, virus, bacteria, concentrations of compounds in a lens care product, pH level, eye temperature, eye pressure, eye moisture, oxygen reaching the eye, blink rate, pressure from rubbing, frequency of wear, exposure to a lens care product, usage habits, vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof.
- Alternatively, the
reader 34 is a standalone handheld device, or is coupled to a digitaldata processing device 64 or network. Anon-integrated reader 34 may be used withmultiple containers 24, so thatcontact lens case 24 may be disposed of periodically to reduce your risk of infection. Therefore, anon-integrated reader 34 may be more economical than an integratedreader 34, as thenon-integrated reader 34 can be easily associated or de-associated with acontact lens container 24 to permit re-use with anothercontainer 24, while also maintaining historical data pertaining to the user,contact lens 10 use, and so forth. - The
reader 34, either standalone or attached or integrated in the digitaldata processing device 64, may be coupled to another digitaldata processing device 64 or network to enable a user to orderlenses lenses system 23, a user may place carry out a transaction for the purpose of ordering or purchasinglenses tag 20. The prescription details, user details, shipping address, eyecare practitioner information, and so forth, are sent to the pharmacy, retailer or online store via a wired or wireless connection to carry out a commercial transaction; and any suitable payment means, such as, credit cards, debit cards, cheque, wire transfer, electronic money, C.O.D., and so forth, may be used to complete the transaction. In one example, thesystem 23 includes an RFID-NFC enabledmobile device 64, capable of ordering a pair oflenses mobile device 64, such as a mobile phone, thereader 34 is powered by the batteries within amobile phone 56 to allow communication with aNFC tag 20 on alens 10. Using account information stored in themobile device 64 the user can automatically place an order to a pharmacy or retailer for areplacement lens lens pair tag 20, and any other data provided by the user. Thereader 34 within themobile device 64, or wallet phone, automatically connects via the cellular connection or through NFC-enabled Wi-Fi or Bluetooth to the pharmacy, retailer or virtual store to carry out the commercial transaction. Alternatively, thelenses system 23, or by the pharmacy, retailer or virtual store, upon determination of impending expiry of thelenses readable medium 50. - In yet another exemplary embodiment, communication may be accomplished between the
reader 34 and atag 20 via different media or frequencies for different purposes (e.g., infrared light, or acoustics). - In another exemplary embodiment, the
tag 20 is configured as a read-only tag, programmable write-once/read-many tag, or re-programmable read-many/write-many tag. In general, read-only tags have permanent unalterable code (e.g., identification and/or other data), which is fixed in embedded memory at the time of manufacture. Programmable write-once/read-many tags include embedded memory that can be written to once in the field with the desired information. Re-programmable read-many/write-many tags include embedded memory that can be written to multiple times with the desired information. Since it is impossible to rewrite the data on a write-once/read-many tag, this provides a high level of security and authenticity. Upon purchase of the lens with thepassive tag 20, the data, such as, the unique ID, is associated with the prescription details, and other data as described above. Therefore, the unique ID used to perform a lookup in a secure system, and no unique personal information about the user is present within that unique ID. As described above, areader 34 with a network interface is coupled to a digitaldata processing device 64 or network to access the data record with the unique ID. Therefore, as an example, the unique ID may be associated with aright lens 10 or aleft lens 11, such that the invention can be practiced as described above. - In another exemplary embodiment, the
container 24 include a releasable lock operable in accordance with the identity of thelenses lenses lenses container 24 due to expiry or possible contamination, or seek a new prescription, thecontainer 24 is locked, and can only be opened after resetting the lock, or overriding thesystem 10. - In yet another exemplary embodiment, the
tag 20 includes a photovoltaic array that acts as both a light signal receiver (extracting data and clock information from the reader) and a means to convert light into electrical power to operate the RFID digital IC chip. Thetag 20 responds to a unique signal from the tag reader and when activated, would send information back to thereader 34, via electromagnetic means. - In yet another exemplary embodiment, the
system 23 supports various security features that ensure the integrity, confidentiality and privacy of information stored or transmitted, such as: (a) mutual authentication—where thetag 20 can verify that thereader 34 is authentic and can prove its own authenticity to thereader 34 before starting a secure communication session or a secure transaction; (b) strong information security for complete data protection, information stored ontag 20 can be encrypted and communication between thetag 20 and thereader 34 can be encrypted to prevent eavesdropping. The authentication data of thecontact lens 18 is verified with the logic means 48 or external means to help combat counterfeiting. Additional security technologies may also be used to ensure information integrity. Additionally, thetag 20 may include built-in tamper-resistance by employing a variety of hardware and software capabilities that detect and react to tampering attempts and help counter possible attacks. Thesystem 23 may also include the ability to process information and uniquely provide authenticated information access and protect the privacy of personal information. Thetag 20 can verify the authority of the information requester 34 and then allow access only to the information required. Access to stored information can also be further protected by a challenge-response scheme, such as a personal identification number (PIN) or biometrics to protect privacy and counter unauthorized access. Other security options include providing only non-confidential information on thetag 20, and using information pointers, rather than actual information, using ‘kill commands’ to permanently render thetag 20 inoperable by at any point in the life of thelens 20 while protecting against inadvertent or malicious disablement of thetag 20, or using a disguised EPC number, or unique identifier, during transaction to helping protect tag identity and tag data. - In yet another exemplary embodiment, the above methods and systems are applicable to the optical devices which are used for a component, or the like, of an optical instrument or information equipment, where identification and/or orientation (installing direction of an optical device, such, back surface or front surface, or side) of the optical device may need to be readily determined prior to installation or use within certain equipment. For some optical applications, the individual optical components must be mounted in a system structure, and the components have certain characteristics, such as, spectral passing band (nm), UV cut-off, optical refractive index, Abbe value, transmittance % or haze (%) for a particular thickness, thermal coefficient of expansion, density, UV cut-off, MILcode. Such devices may include, but are not limited to, pickup lens of an optical communication disk, an optical communication module, a pickup lens of a laser printer, an optical disk device, camera lens, and a telescope lens, lens for a monocular, binoculars, telescope, spotting scope, magnifier, telescopic gun sight, theodolite, microscope, and camera (photographic lens), among others. The optical devices may be fabricated using a variety of materials including optical glasses, engineered plastics and crystalline materials. Glass material is the most common type because of its excellent optical properties such as high light transmission and environmental stability. Other materials include quartz, sapphire, fused silica, and a wide range of plastics, such as, acrylic (PMMA), polystyrene polycarbonate (optical grade), NAS, polyolefin (Zeonex), Arton F, Optores (OZ1000-1100), Optores (OZ1310-1330), among others, and glass-ceramic materials. Plastic optics can also be combined with glass optics to form hybrid optical systems. Therefore, providing the optical lens with at least one data carrier for carrying data related to the optical lens facilitates acquiring the relevant data. This method and apparatus is particularly beneficial where the devices are relatively small, thus making it difficult to employ prior art methods, such as, engraving, for visual inspection by a user to determine the installation surface. As a further example, the age of the optical devices, such as, resistive touchscreens can be tracked or determined, such that usage in field can be studied, or compared to MTBF ratings, or the age may be used to determine a replacement schedule.
- Although a plurality of data carrier means activatable by suitable fields have been specifically disclosed herein, it is to be understood that the present invention is not restricted to these. Any electrically and/or magnetically operable device suitable for the indicated purpose may be employed in embodiments of the present invention. In particular, it is to be understood that the operation of the data carrier means need not be wholly electrical and/or magnetic, and thus for example optical and/or acoustic elements may be employed in conjunction with electrical and/or magnetic devices in alternative embodiments.
- It is further to be understood that the invention is not restricted to magnetic and/or electrical fields to be put into practice. Any other type of field (electromagnetic or otherwise) which is suitable to activate a cooperable data carrier means in accordance with the present invention can be employed. Thus, in alternative embodiments of the invention for example fields comprising radiation anywhere within the electromagnetic spectrum may be employed, and also other fields such as acoustic or other non-electromagnetic fields may be employed in suitably adapted embodiments.
- The embodiments and examples set forth herein were presented in order to best explain the present invention and its particular application and to thereby enable those skilled in the art to make and use the invention. However, those skilled in the art will recognize that the foregoing description and examples have been presented for the purposes of illustration and example only. The description as set forth is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching without departing from the spirit of the forthcoming claims.
- The preceding description has been provided with particular reference to preferred embodiments thereof and examples, but it will be understood that variations and modifications can be effected within the spirit and scope of the claims which may include the phrase “at least one of A, B and C” as an alternative expression that means one or more of A, B and C may be used, contrary to the holding in Superguide v. DIRECTV, 358 F3d 870, 69 USPQ2d 1865 (Fed. Cir. 2004).
Claims (20)
1. A method for tracking ophthalmic lens care compliance, said method comprising the steps of: including at least one sensor with said ophthalmic product for monitoring at least one ambient condition and for logging and recording at least one parameter associated said at least one ambient condition, following a predetermined event; comparing said at least one parameter to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, and issuing an alert based on said outcome.
2. The method of claim 1 wherein said alert is issued to at least one of a user of said ophthalmic product, eye professional, pharmacist, insurance provider, and a guardian or parent.
3. The method of claim 1 wherein said sensed data is transmitted to a computing device for processing, automatically, periodically, or upon request.
4. The method of claim 3 wherein said sensed data is transmitted wirelessly.
5. The method of claim 4 wherein said sensed data is transmitted via an RFID air-interface.
6. The method of claim 1 wherein said at least one ambient condition provides sensed data related to at least one of protein concentration, composition of the lacrimal fluid, fungus, pathogens, virus, bacteria, concentrations of compounds in a lens care product, pH level, eye temperature, eye pressure, eye moisture, oxygen reaching the eye, blink rate, pressure from rubbing, frequency of wear, exposure to a lens care product, usage habits, vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof.
7. A computer-implemented method for tracking ophthalmic lens care compliance, the method comprising a computer-readable medium containing program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising: causing at least one sensor included with a ophthalmic lens to emit a data signal periodically, automatically, or in response to a external signal from the at least one sensor via a communication interface; said at least one sensor for monitoring at least one ambient condition and for logging and recording at least one parameter associated said at least one ambient condition, following a predetermined event; comparing said at least one parameter to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, issuing an alert based on said outcome.
8. The method of claim 7 wherein said at least one of a said at least one ambient condition provides sensed data related to at least one of a protein concentration, composition of the lacrimal fluid, fungus, pathogens, viri, bacteria, concentrations of compounds in a lens care product, pH level,
9. The method of claim 7 wherein said at least one of a said at least one ambient condition provides sensed data related to at least one of a blink rate, pressure from rubbing, and light.
10. The method of claim 7 wherein said at least one of a said at least one ambient condition provides sensed data related chemicals, chemical compounds, acoustic energy, humidity, smoke, air quality.
11. The system of claim 7 wherein said at least one sensor is a member of a wireless sensor network.
12. The method of claim 7 wherein said at least one of a said at least one ambient condition provides sensed data related to at least one of a lacrimal fluid content and protein content on said lens, whereby said sensed data triggers an issuance of an advisory signal.
13. The method of claim 7 wherein said sensed data causes an order for a replacement lens to be initiated.
14. The method of claim 7 wherein said sensed data is related to at least one of eye temperature, eye pressure, eye moisture, and pulse rate measurements.
15. The method of claim 7 wherein said sensed data is related to vibration, radiation, magnetic fields, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof.
16. The method of claim 7 wherein said ophthalmic lens comprises data related to at least one of a SKU, unique ID, manufacturer, logo, material of manufacture, composition, lot, no., batch no., warehouse related data; promotional material, rebate for next pair purchase or free trials, lens features and benefits data, health warnings, data on potential risk or complications, insurance coverage data, regulatory data, authenticity data, fitting details, lens type data, lens care or handling information, recommended usage information such as wear schedule, filling pharmacy, health professional information, time, an ophthalmic product user's personal details, prescription information, right eye/left eye identification data, URI, lens case replacement schedule, eye exam schedule, eye appointments.
17. The method of claim 7 wherein said sensed data is analyzed to determine whether a user is in compliance with a prescription, a wear schedule, replacement schedule, or recommended lens care.
18. The method of claim 7 wherein said alert is at least one of health warnings, data on potential risk or complications, fitting details, lens care or handling information, recommended usage information such as wear schedule, prescription information, right eye/left eye identification data, lens case replacement schedule, eye exam schedule, eye appointments, and wherein said sensed data.
19. The method of claim 18 said alert is issued to at least one of a user of said ophthalmic lens and a third party comprising at least one of a parent, guardian, eye care professional, pharmacy, retailer, store, virtual store and an insurance provider.
20. A computer-implemented method for tracking ophthalmic lens care compliance, the method comprising a computer-readable medium containing program instructions stored thereon, when executed by the processor cause the processor to perform operations comprising: causing at least one sensor included with a ophthalmic lens to emit a data signal periodically, automatically, or in response to a external signal from the at least one sensor via a communication interface; said at least one sensor for monitoring at least one ambient condition and for logging and recording at least one parameter associated said at least one ambient condition, following a predetermined event; comparing said at least one parameter to a predetermined threshold and providing an outcome, said predetermined threshold corresponding to said at least one ambient condition, issuing an alert based on said outcome; and wherein said at least one of a said at least one ambient condition provides sensed data related to at least one of protein concentration, composition of the lacrimal fluid, fungus, pathogens, virus, bacteria, concentrations of compounds in a lens care product, pH level, eye temperature, eye pressure, eye moisture, oxygen reaching the eye, blink rate, pressure from rubbing, frequency of wear, exposure to a lens care product, usage habits, vital signs, pulse rate, oxygen, lacrimal fluid content, protein content, temperature, geolocation coordinates, chemicals, chemical compounds, acoustic energy, moisture content, humidity, smoke, vibration, light, radiation, magnetic fields, air quality, power, motion, global positioning, geo-location, orientation, acceleration, or changes thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/094,053 US20140085083A1 (en) | 2010-04-12 | 2013-12-02 | Computer-implemented method for contact lens care compliance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/758,058 US8628194B2 (en) | 2009-10-13 | 2010-04-12 | Method and system for contact lens care and compliance |
US14/094,053 US20140085083A1 (en) | 2010-04-12 | 2013-12-02 | Computer-implemented method for contact lens care compliance |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/758,058 Division US8628194B2 (en) | 2009-10-13 | 2010-04-12 | Method and system for contact lens care and compliance |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140085083A1 true US20140085083A1 (en) | 2014-03-27 |
Family
ID=50338288
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/758,058 Expired - Fee Related US8628194B2 (en) | 2009-10-13 | 2010-04-12 | Method and system for contact lens care and compliance |
US14/094,053 Abandoned US20140085083A1 (en) | 2010-04-12 | 2013-12-02 | Computer-implemented method for contact lens care compliance |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/758,058 Expired - Fee Related US8628194B2 (en) | 2009-10-13 | 2010-04-12 | Method and system for contact lens care and compliance |
Country Status (1)
Country | Link |
---|---|
US (2) | US8628194B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150363614A1 (en) * | 2014-06-13 | 2015-12-17 | Google Inc. | Zero-Power Wireless Device Programming |
US9400904B2 (en) | 2014-06-13 | 2016-07-26 | Verily Life Sciences Llc | System for aligning a handheld RFID reader |
US9495567B2 (en) | 2013-12-30 | 2016-11-15 | Verily Life Sciences Llc | Use of a tag and reader antenna for a simulated theremin effect |
US9973238B2 (en) | 2013-12-30 | 2018-05-15 | Verily Life Sciences, LLC | Methods for adjusting the power of an external reader |
US10039492B2 (en) | 2014-06-13 | 2018-08-07 | Verily Life Sciences, LLC | Conditional storage |
US10129227B2 (en) * | 2015-12-23 | 2018-11-13 | Mcafee, Llc | Sensor data collection, protection, and value extraction |
WO2019175669A1 (en) * | 2018-03-13 | 2019-09-19 | Menicon Co. Ltd. | System for collecting and utilizing health data |
WO2019175663A1 (en) * | 2018-03-14 | 2019-09-19 | Menicon Co. Ltd. | Method for generating a contact lens recommendation |
WO2019175660A1 (en) * | 2018-03-14 | 2019-09-19 | Menicon Co. Ltd. | Method for detecting a health condition with biomarkers |
US11734722B2 (en) | 2015-05-30 | 2023-08-22 | Menicon Singapore Pte Ltd. | Visual trigger in packaging |
WO2024041725A1 (en) * | 2022-08-23 | 2024-02-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Contact lens and method thereof |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8969830B2 (en) * | 2010-12-07 | 2015-03-03 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens disinfecting base unit with programmable and communication elements |
US8942841B2 (en) | 2011-12-06 | 2015-01-27 | Johnson & Johnson Vision Care, Inc | Lens storage unit with programmable and communication elements for monitoring the condition of lenses and their response to geo-social phenomena |
US20130144743A1 (en) * | 2011-12-06 | 2013-06-06 | Randall B. Pugh | Ophthalmic lens storing unit with programmable and communication elements for monitoring the use and automated ordering |
EP2812035A1 (en) * | 2012-02-10 | 2014-12-17 | Johnson & Johnson Vision Care Inc. | An ophthalmic lens storing unit with programmable and communication elements for monitoring the use and automated ordering |
EP2812826A1 (en) * | 2012-02-10 | 2014-12-17 | Johnson & Johnson Vision Care Inc. | A lens storage unit with programmable and communication elements for monitoring the condition of lenses and their response to geo-social phenomena |
US9482879B2 (en) | 2012-02-28 | 2016-11-01 | Johnson & Johnson Vision Care, Inc. | Methods of manufacture and use of energized ophthalmic devices having an electrical storage mode |
TWI572941B (en) | 2012-02-28 | 2017-03-01 | 壯生和壯生視覺關懷公司 | Method and apparatus for forming an electronic circuit for an ophthalmic device |
US8798332B2 (en) | 2012-05-15 | 2014-08-05 | Google Inc. | Contact lenses |
US9298020B1 (en) | 2012-07-26 | 2016-03-29 | Verily Life Sciences Llc | Input system |
US9523865B2 (en) | 2012-07-26 | 2016-12-20 | Verily Life Sciences Llc | Contact lenses with hybrid power sources |
US9158133B1 (en) | 2012-07-26 | 2015-10-13 | Google Inc. | Contact lens employing optical signals for power and/or communication |
US8857981B2 (en) | 2012-07-26 | 2014-10-14 | Google Inc. | Facilitation of contact lenses with capacitive sensors |
US8919953B1 (en) | 2012-08-02 | 2014-12-30 | Google Inc. | Actuatable contact lenses |
US9696564B1 (en) | 2012-08-21 | 2017-07-04 | Verily Life Sciences Llc | Contact lens with metal portion and polymer layer having indentations |
US8971978B2 (en) | 2012-08-21 | 2015-03-03 | Google Inc. | Contact lens with integrated pulse oximeter |
US9111473B1 (en) | 2012-08-24 | 2015-08-18 | Google Inc. | Input system |
US8820934B1 (en) | 2012-09-05 | 2014-09-02 | Google Inc. | Passive surface acoustic wave communication |
US20140192315A1 (en) | 2012-09-07 | 2014-07-10 | Google Inc. | In-situ tear sample collection and testing using a contact lens |
US9398868B1 (en) | 2012-09-11 | 2016-07-26 | Verily Life Sciences Llc | Cancellation of a baseline current signal via current subtraction within a linear relaxation oscillator-based current-to-frequency converter circuit |
US10010270B2 (en) * | 2012-09-17 | 2018-07-03 | Verily Life Sciences Llc | Sensing system |
US9326710B1 (en) | 2012-09-20 | 2016-05-03 | Verily Life Sciences Llc | Contact lenses having sensors with adjustable sensitivity |
US8960898B1 (en) | 2012-09-24 | 2015-02-24 | Google Inc. | Contact lens that restricts incoming light to the eye |
US8870370B1 (en) | 2012-09-24 | 2014-10-28 | Google Inc. | Contact lens that facilitates antenna communication via sensor impedance modulation |
US8979271B2 (en) | 2012-09-25 | 2015-03-17 | Google Inc. | Facilitation of temperature compensation for contact lens sensors and temperature sensing |
US20140088372A1 (en) | 2012-09-25 | 2014-03-27 | Google Inc. | Information processing method |
US8989834B2 (en) | 2012-09-25 | 2015-03-24 | Google Inc. | Wearable device |
US9884180B1 (en) | 2012-09-26 | 2018-02-06 | Verily Life Sciences Llc | Power transducer for a retinal implant using a contact lens |
US8960899B2 (en) | 2012-09-26 | 2015-02-24 | Google Inc. | Assembling thin silicon chips on a contact lens |
US8985763B1 (en) | 2012-09-26 | 2015-03-24 | Google Inc. | Contact lens having an uneven embedded substrate and method of manufacture |
US8821811B2 (en) | 2012-09-26 | 2014-09-02 | Google Inc. | In-vitro contact lens testing |
US9063351B1 (en) | 2012-09-28 | 2015-06-23 | Google Inc. | Input detection system |
US8965478B2 (en) | 2012-10-12 | 2015-02-24 | Google Inc. | Microelectrodes in an ophthalmic electrochemical sensor |
US9176332B1 (en) | 2012-10-24 | 2015-11-03 | Google Inc. | Contact lens and method of manufacture to improve sensor sensitivity |
US9757056B1 (en) | 2012-10-26 | 2017-09-12 | Verily Life Sciences Llc | Over-molding of sensor apparatus in eye-mountable device |
US9822927B2 (en) * | 2013-01-09 | 2017-11-21 | Frederick Energy Products, Llc | Mechanized area controller |
US8874182B2 (en) | 2013-01-15 | 2014-10-28 | Google Inc. | Encapsulated electronics |
US9289954B2 (en) | 2013-01-17 | 2016-03-22 | Verily Life Sciences Llc | Method of ring-shaped structure placement in an eye-mountable device |
US20140209481A1 (en) | 2013-01-25 | 2014-07-31 | Google Inc. | Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement |
US9636016B1 (en) | 2013-01-25 | 2017-05-02 | Verily Life Sciences Llc | Eye-mountable devices and methods for accurately placing a flexible ring containing electronics in eye-mountable devices |
US9778492B2 (en) * | 2013-02-28 | 2017-10-03 | Johnson & Johnson Vision Care, Inc. | Electronic ophthalmic lens with lid position sensor |
FR3003063B1 (en) * | 2013-03-06 | 2015-04-10 | Ophtalmic Cie | DEVICE FOR SELECTING CONTACT LENSES IN AN AGENCY FURNITURE FOR RECEIVING A PLURALITY OF CONTACT LENSES AND ASSOCIATED METHOD. |
IL231344B (en) * | 2013-03-13 | 2018-08-30 | Johnson & Johnson Vision Care | Methods of manufacture and use of energized ophthalmic devices having an electrical storage mode |
US9310626B2 (en) | 2013-03-15 | 2016-04-12 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices with organic semiconductor transistors |
US8894201B2 (en) * | 2013-03-15 | 2014-11-25 | Johnson & Johnson Vision Care, Inc. | Methods and ophthalmic devices with thin film transistors |
US8940552B2 (en) * | 2013-03-15 | 2015-01-27 | Johnson & Johnson Vision Care, Inc. | Methods and ophthalmic devices with organic semiconductor layer |
US9161712B2 (en) | 2013-03-26 | 2015-10-20 | Google Inc. | Systems and methods for encapsulating electronics in a mountable device |
US9113829B2 (en) | 2013-03-27 | 2015-08-25 | Google Inc. | Systems and methods for encapsulating electronics in a mountable device |
WO2014181568A1 (en) | 2013-05-09 | 2014-11-13 | ソニー株式会社 | Contact lens pair, contact lens, and storage medium |
US20140337043A1 (en) * | 2013-05-10 | 2014-11-13 | Anthony Dezilva | Contact lens cutting file distribution system and method |
US9897824B2 (en) * | 2013-05-17 | 2018-02-20 | Johnson & Johnson Vision Care, Inc. | Method and device for monitoring ophthalmic lens manufacturing conditions |
US8967488B2 (en) * | 2013-05-17 | 2015-03-03 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with communication system |
US9217881B2 (en) * | 2013-05-30 | 2015-12-22 | Johnson & Johnson Vision Care, Inc. | Apparatus for programming an energizable ophthalmic lens with a programmable media insert |
US9977256B2 (en) | 2013-05-30 | 2018-05-22 | Johnson & Johnson Vision Care, Inc. | Methods for manufacturing and programming an energizable ophthalmic lens with a programmable media insert |
US9217880B2 (en) * | 2013-05-30 | 2015-12-22 | Johnson & Johnson Vision Care, Inc. | Energizable ophthalmic lens device with a programmaable media insert |
US20140371560A1 (en) | 2013-06-14 | 2014-12-18 | Google Inc. | Body-Mountable Devices and Methods for Embedding a Structure in a Body-Mountable Device |
US9084561B2 (en) | 2013-06-17 | 2015-07-21 | Google Inc. | Symmetrically arranged sensor electrodes in an ophthalmic electrochemical sensor |
US9948895B1 (en) | 2013-06-18 | 2018-04-17 | Verily Life Sciences Llc | Fully integrated pinhole camera for eye-mountable imaging system |
US9685689B1 (en) | 2013-06-27 | 2017-06-20 | Verily Life Sciences Llc | Fabrication methods for bio-compatible devices |
US9028772B2 (en) | 2013-06-28 | 2015-05-12 | Google Inc. | Methods for forming a channel through a polymer layer using one or more photoresist layers |
US9307901B1 (en) | 2013-06-28 | 2016-04-12 | Verily Life Sciences Llc | Methods for leaving a channel in a polymer layer using a cross-linked polymer plug |
US9492118B1 (en) | 2013-06-28 | 2016-11-15 | Life Sciences Llc | Pre-treatment process for electrochemical amperometric sensor |
US9814387B2 (en) * | 2013-06-28 | 2017-11-14 | Verily Life Sciences, LLC | Device identification |
US10534202B2 (en) | 2013-08-13 | 2020-01-14 | Sony Corporation | Wearable device and electricity supply system |
US9251455B2 (en) * | 2013-08-22 | 2016-02-02 | Verily Life Sciences Llc | Using unique identifiers to retrieve configuration data for tag devices |
US9170646B2 (en) * | 2013-09-04 | 2015-10-27 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of interfacing with an external device |
US9448421B2 (en) * | 2013-09-04 | 2016-09-20 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of communication between lenses utilizing a secondary external device |
US8742623B1 (en) | 2013-09-16 | 2014-06-03 | Google Inc. | Device with dual power sources |
US9225375B2 (en) * | 2013-09-23 | 2015-12-29 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens system capable of wireless communication with multiple external devices |
US9572522B2 (en) | 2013-12-20 | 2017-02-21 | Verily Life Sciences Llc | Tear fluid conductivity sensor |
US9654674B1 (en) | 2013-12-20 | 2017-05-16 | Verily Life Sciences Llc | Image sensor with a plurality of light channels |
US9576168B2 (en) * | 2013-12-30 | 2017-02-21 | Verily Life Sciences Llc | Conditional retrieval |
US9366570B1 (en) | 2014-03-10 | 2016-06-14 | Verily Life Sciences Llc | Photodiode operable in photoconductive mode and photovoltaic mode |
US9184698B1 (en) | 2014-03-11 | 2015-11-10 | Google Inc. | Reference frequency from ambient light signal |
US9789655B1 (en) | 2014-03-14 | 2017-10-17 | Verily Life Sciences Llc | Methods for mold release of body-mountable devices including microelectronics |
EP3123237A4 (en) * | 2014-03-25 | 2018-01-03 | David Markus | System and method for contact lens wireless communication |
US9733493B2 (en) * | 2014-08-29 | 2017-08-15 | Johnson & Johnson Vision Care, Inc. | Lens system for presbyopes with inter-eye vision disparity limits |
EP3115831A1 (en) * | 2015-07-10 | 2017-01-11 | Essilor International (Compagnie Generale D'optique) | Connected optical member |
US10413182B2 (en) | 2015-07-24 | 2019-09-17 | Johnson & Johnson Vision Care, Inc. | Biomedical devices for biometric based information communication |
US10101599B1 (en) | 2017-12-28 | 2018-10-16 | Austin Greeson | Smart automated contact lens cleansing device |
US20190281936A1 (en) * | 2018-03-14 | 2019-09-19 | Menicon Co. Ltd. | Contact lens container with biomarker detection |
US11303632B1 (en) * | 2018-06-08 | 2022-04-12 | Wells Fargo Bank, N.A. | Two-way authentication system and method |
US10897705B2 (en) * | 2018-07-19 | 2021-01-19 | Tectus Corporation | Secure communication between a contact lens and an accessory device |
US10602513B2 (en) | 2018-07-27 | 2020-03-24 | Tectus Corporation | Wireless communication between a contact lens and an accessory device |
US10288909B1 (en) * | 2018-10-26 | 2019-05-14 | Spy Eye, Llc | Contact lens data transceiver |
EP3876780B1 (en) * | 2018-11-09 | 2022-10-12 | Alcon Inc. | Lens care container |
US12248837B2 (en) * | 2019-08-14 | 2025-03-11 | Avery Dennison Retail Information Services Llc | Method of optimizing read technology for high density items |
EP4078606A1 (en) * | 2019-12-19 | 2022-10-26 | Alcon Inc. | Personalized assistance system for user of vision correction device |
CN111504015B (en) * | 2020-04-20 | 2021-02-26 | 鹤壁市人民医院 | Medical treatment is drying and sterilizing device for consumptive material |
US12242558B2 (en) * | 2020-09-09 | 2025-03-04 | Willis Dennis Grajales | Method and system of using NFC technology on eyewear frames, eyewear accessories, and eye drop containers to link users devices with prescriptions and information |
US11852899B2 (en) * | 2020-10-06 | 2023-12-26 | International Business Machines Corporation | Ultrasound emitting contact lens |
US12321513B2 (en) | 2021-06-18 | 2025-06-03 | Advanced Semiconductor Engineering, Inc. | Body-part tracking device and body-part tracking method |
US12313912B2 (en) | 2022-08-23 | 2025-05-27 | Tectus Corporation | Electronic contact lens data receiver circuit |
CN116990450B (en) * | 2023-07-18 | 2024-04-26 | 欧几里德(苏州)医疗科技有限公司 | Defect detection method and system for cornea shaping mirror |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159360A (en) * | 1990-07-17 | 1992-10-27 | Kingston Technologies, Inc. | Contact lens with pre-determined useful life |
US20040180391A1 (en) * | 2002-10-11 | 2004-09-16 | Miklos Gratzl | Sliver type autonomous biosensors |
-
2010
- 2010-04-12 US US12/758,058 patent/US8628194B2/en not_active Expired - Fee Related
-
2013
- 2013-12-02 US US14/094,053 patent/US20140085083A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159360A (en) * | 1990-07-17 | 1992-10-27 | Kingston Technologies, Inc. | Contact lens with pre-determined useful life |
US20040180391A1 (en) * | 2002-10-11 | 2004-09-16 | Miklos Gratzl | Sliver type autonomous biosensors |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10644755B2 (en) | 2013-12-30 | 2020-05-05 | Verily Life Sciences Llc | Methods for adjusting the power of an external reader |
US9495567B2 (en) | 2013-12-30 | 2016-11-15 | Verily Life Sciences Llc | Use of a tag and reader antenna for a simulated theremin effect |
US9973238B2 (en) | 2013-12-30 | 2018-05-15 | Verily Life Sciences, LLC | Methods for adjusting the power of an external reader |
US10311259B2 (en) | 2013-12-30 | 2019-06-04 | Verily Life Sciences Llc | Use of a tag and reader antenna for a simulated Theremin effect |
US10448894B2 (en) | 2014-06-13 | 2019-10-22 | Verily Life Sciences Llc | Conditional storage |
US10039492B2 (en) | 2014-06-13 | 2018-08-07 | Verily Life Sciences, LLC | Conditional storage |
US9400904B2 (en) | 2014-06-13 | 2016-07-26 | Verily Life Sciences Llc | System for aligning a handheld RFID reader |
US20150363614A1 (en) * | 2014-06-13 | 2015-12-17 | Google Inc. | Zero-Power Wireless Device Programming |
US9818005B2 (en) * | 2014-06-13 | 2017-11-14 | Verily Life Sciences Llc | Zero-power wireless device programming |
US11734722B2 (en) | 2015-05-30 | 2023-08-22 | Menicon Singapore Pte Ltd. | Visual trigger in packaging |
US10129227B2 (en) * | 2015-12-23 | 2018-11-13 | Mcafee, Llc | Sensor data collection, protection, and value extraction |
CN111836574A (en) * | 2018-03-13 | 2020-10-27 | 目立康株式会社 | System for collecting and utilizing health data |
WO2019175669A1 (en) * | 2018-03-13 | 2019-09-19 | Menicon Co. Ltd. | System for collecting and utilizing health data |
JP2021515631A (en) * | 2018-03-13 | 2021-06-24 | 株式会社メニコン | Health data collection and utilization system |
JP7174061B2 (en) | 2018-03-13 | 2022-11-17 | 株式会社メニコン | Health monitoring method |
US12064237B2 (en) | 2018-03-13 | 2024-08-20 | Menicon Co., Ltd. | Determination system, computing device, determination method, and program |
WO2019175660A1 (en) * | 2018-03-14 | 2019-09-19 | Menicon Co. Ltd. | Method for detecting a health condition with biomarkers |
WO2019175663A1 (en) * | 2018-03-14 | 2019-09-19 | Menicon Co. Ltd. | Method for generating a contact lens recommendation |
WO2024041725A1 (en) * | 2022-08-23 | 2024-02-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Contact lens and method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20110084834A1 (en) | 2011-04-14 |
US8628194B2 (en) | 2014-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8628194B2 (en) | Method and system for contact lens care and compliance | |
US7623295B2 (en) | Optical device characterization | |
US20100259719A1 (en) | Method and System for Determining the Orientation of an Ophthalmic Lens | |
US20100065625A1 (en) | Optical device having a data carrier | |
US7500750B2 (en) | Method and system for tracking the wearable life of an ophthalmic product | |
CA2717328C (en) | Method and system for determining the orientation of an ophthalmic lens | |
US7708401B2 (en) | Ophthalmic lens characterization | |
JP6301455B2 (en) | Apparatus for programming energizable ophthalmic lenses with programmable media inserts | |
US8235288B2 (en) | Method for use in association with identification token and apparatus including identification token | |
JP6585149B2 (en) | Method of manufacturing and programming an energizable ophthalmic lens with a programmable media insert | |
US12242558B2 (en) | Method and system of using NFC technology on eyewear frames, eyewear accessories, and eye drop containers to link users devices with prescriptions and information | |
TWI620969B (en) | System and method of programming an energized ophthalmic lens | |
JP6246912B2 (en) | Energizable ophthalmic lens device with programmable media insert | |
CA2717631A1 (en) | Method and system for contact lens care and compliance | |
CN104221020B (en) | For by geographical social phenomenon equipment associated with the situation of ophthalmic lens | |
Saviola | Contact lens safety and the FDA: 1976 to the present | |
JP2007011013A (en) | Spectacles with rfid data carrier | |
JP2016011970A (en) | Spectacle frame, spectacles, and customer management system | |
EP4530706A1 (en) | Wearing detection module to be fixed on a spectacle frame and process for determining whether a spectacle frame is worn | |
Hui | CPD: BCLA Clear 9: Contact lens technologies of the future | |
CN104244762B (en) | Have for monitoring the programmable element and the ophthalmic lens memory element of communication device used and automatically order | |
Lewis | Daysoft Contact Lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |