US20140079637A1 - Methods and compositions for improving antiangiogenic therapy with anti-integrins - Google Patents
Methods and compositions for improving antiangiogenic therapy with anti-integrins Download PDFInfo
- Publication number
- US20140079637A1 US20140079637A1 US14/006,669 US201214006669A US2014079637A1 US 20140079637 A1 US20140079637 A1 US 20140079637A1 US 201214006669 A US201214006669 A US 201214006669A US 2014079637 A1 US2014079637 A1 US 2014079637A1
- Authority
- US
- United States
- Prior art keywords
- integrin
- agent
- beta
- antibody
- tumor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 239000000203 mixture Substances 0.000 title claims abstract description 49
- 238000011122 anti-angiogenic therapy Methods 0.000 title description 10
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 61
- 210000004881 tumor cell Anatomy 0.000 claims abstract description 37
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 35
- 102000006495 integrins Human genes 0.000 claims abstract description 35
- 108010044426 integrins Proteins 0.000 claims abstract description 35
- 230000004565 tumor cell growth Effects 0.000 claims abstract description 19
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 10
- 238000003384 imaging method Methods 0.000 claims abstract description 4
- 102000012355 Integrin beta1 Human genes 0.000 claims description 83
- 108010022222 Integrin beta1 Proteins 0.000 claims description 83
- 210000004027 cell Anatomy 0.000 claims description 82
- 239000003795 chemical substances by application Substances 0.000 claims description 53
- 208000005017 glioblastoma Diseases 0.000 claims description 33
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 29
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 29
- 230000014509 gene expression Effects 0.000 claims description 26
- 201000010915 Glioblastoma multiforme Diseases 0.000 claims description 25
- 230000005764 inhibitory process Effects 0.000 claims description 24
- 239000003112 inhibitor Substances 0.000 claims description 15
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 12
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 11
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 claims description 11
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 11
- 230000001404 mediated effect Effects 0.000 claims description 10
- 239000004055 small Interfering RNA Substances 0.000 claims description 9
- 229920001184 polypeptide Polymers 0.000 claims description 8
- 239000004037 angiogenesis inhibitor Substances 0.000 claims description 7
- 108020004999 messenger RNA Proteins 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 210000000481 breast Anatomy 0.000 claims description 6
- 210000001072 colon Anatomy 0.000 claims description 6
- 238000002271 resection Methods 0.000 claims description 5
- 210000003734 kidney Anatomy 0.000 claims description 4
- 210000004072 lung Anatomy 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 206010025323 Lymphomas Diseases 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 230000000306 recurrent effect Effects 0.000 claims description 2
- 238000011577 humanized mouse model Methods 0.000 claims 2
- 238000009175 antibody therapy Methods 0.000 claims 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 claims 1
- 208000027831 neuroepithelial neoplasm Diseases 0.000 claims 1
- 230000002611 ovarian Effects 0.000 claims 1
- 238000011282 treatment Methods 0.000 abstract description 23
- 238000002560 therapeutic procedure Methods 0.000 abstract description 13
- 206010027476 Metastases Diseases 0.000 abstract description 12
- 230000007246 mechanism Effects 0.000 abstract description 9
- 230000003527 anti-angiogenesis Effects 0.000 abstract description 7
- 230000001772 anti-angiogenic effect Effects 0.000 abstract description 7
- 230000036770 blood supply Effects 0.000 abstract description 3
- 230000030833 cell death Effects 0.000 abstract description 3
- 229960000397 bevacizumab Drugs 0.000 description 30
- 230000012010 growth Effects 0.000 description 24
- 230000033115 angiogenesis Effects 0.000 description 22
- 238000003197 gene knockdown Methods 0.000 description 22
- 239000003814 drug Substances 0.000 description 21
- 230000002792 vascular Effects 0.000 description 20
- 206010021143 Hypoxia Diseases 0.000 description 19
- 206010018338 Glioma Diseases 0.000 description 17
- 210000004556 brain Anatomy 0.000 description 17
- 230000007954 hypoxia Effects 0.000 description 17
- 208000032612 Glial tumor Diseases 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 15
- 102000005962 receptors Human genes 0.000 description 15
- 108020003175 receptors Proteins 0.000 description 15
- 239000002525 vasculotropin inhibitor Substances 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 14
- 230000035755 proliferation Effects 0.000 description 14
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 13
- 230000009368 gene silencing by RNA Effects 0.000 description 13
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 11
- 229940079593 drug Drugs 0.000 description 11
- 230000011664 signaling Effects 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 230000004614 tumor growth Effects 0.000 description 10
- 108091008605 VEGF receptors Proteins 0.000 description 9
- 229940120638 avastin Drugs 0.000 description 9
- 210000002469 basement membrane Anatomy 0.000 description 9
- 230000004663 cell proliferation Effects 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 101100272719 Arabidopsis thaliana BRG3 gene Proteins 0.000 description 8
- 208000026310 Breast neoplasm Diseases 0.000 description 8
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 8
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 8
- 108020004459 Small interfering RNA Proteins 0.000 description 8
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 206010006187 Breast cancer Diseases 0.000 description 7
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 7
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 7
- 230000002491 angiogenic effect Effects 0.000 description 7
- 230000010261 cell growth Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 210000002744 extracellular matrix Anatomy 0.000 description 7
- 102000018358 immunoglobulin Human genes 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 230000009401 metastasis Effects 0.000 description 7
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 6
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 238000002512 chemotherapy Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 210000004408 hybridoma Anatomy 0.000 description 6
- 230000009545 invasion Effects 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 206010009944 Colon cancer Diseases 0.000 description 5
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 5
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 108010081667 aflibercept Proteins 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 201000008275 breast carcinoma Diseases 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 230000007705 epithelial mesenchymal transition Effects 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 210000005166 vasculature Anatomy 0.000 description 5
- 208000006332 Choriocarcinoma Diseases 0.000 description 4
- 108010067715 Focal Adhesion Protein-Tyrosine Kinases Proteins 0.000 description 4
- 102000016621 Focal Adhesion Protein-Tyrosine Kinases Human genes 0.000 description 4
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 4
- 241000713666 Lentivirus Species 0.000 description 4
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 4
- 102100035194 Placenta growth factor Human genes 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000008499 blood brain barrier function Effects 0.000 description 4
- 210000001218 blood-brain barrier Anatomy 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 3
- 101001001487 Homo sapiens Phosphatidylinositol-glycan biosynthesis class F protein Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 3
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 3
- 238000009098 adjuvant therapy Methods 0.000 description 3
- 229960002833 aflibercept Drugs 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000021164 cell adhesion Effects 0.000 description 3
- 238000002648 combination therapy Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000007783 downstream signaling Effects 0.000 description 3
- 230000010102 embolization Effects 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 229940090044 injection Drugs 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- ONDPWWDPQDCQNJ-UHFFFAOYSA-N n-(3,3-dimethyl-1,2-dihydroindol-6-yl)-2-(pyridin-4-ylmethylamino)pyridine-3-carboxamide;phosphoric acid Chemical compound OP(O)(O)=O.OP(O)(O)=O.C=1C=C2C(C)(C)CNC2=CC=1NC(=O)C1=CC=CN=C1NCC1=CC=NC=C1 ONDPWWDPQDCQNJ-UHFFFAOYSA-N 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 229960003876 ranibizumab Drugs 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 210000003556 vascular endothelial cell Anatomy 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 2
- 241000271063 Agkistrodon piscivorus piscivorus Species 0.000 description 2
- 102100034608 Angiopoietin-2 Human genes 0.000 description 2
- 108010009906 Angiopoietins Proteins 0.000 description 2
- 102000009840 Angiopoietins Human genes 0.000 description 2
- 108090000672 Annexin A5 Proteins 0.000 description 2
- 102000004121 Annexin A5 Human genes 0.000 description 2
- 108091023037 Aptamer Proteins 0.000 description 2
- 101100272718 Arabidopsis thaliana BRG2 gene Proteins 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 101000924533 Homo sapiens Angiopoietin-2 Proteins 0.000 description 2
- 101000692455 Homo sapiens Platelet-derived growth factor receptor beta Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 241000699660 Mus musculus Species 0.000 description 2
- 208000003788 Neoplasm Micrometastasis Diseases 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102100026918 Phospholipase A2 Human genes 0.000 description 2
- 102100040681 Platelet-derived growth factor C Human genes 0.000 description 2
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 108010073925 Vascular Endothelial Growth Factor B Proteins 0.000 description 2
- 108010073923 Vascular Endothelial Growth Factor C Proteins 0.000 description 2
- 108010073919 Vascular Endothelial Growth Factor D Proteins 0.000 description 2
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 2
- 102100038217 Vascular endothelial growth factor B Human genes 0.000 description 2
- 102100038232 Vascular endothelial growth factor C Human genes 0.000 description 2
- 102100038234 Vascular endothelial growth factor D Human genes 0.000 description 2
- 241000711975 Vesicular stomatitis virus Species 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000036755 cellular response Effects 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 201000010989 colorectal carcinoma Diseases 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000001146 hypoxic effect Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 229940080607 nexavar Drugs 0.000 description 2
- 230000007959 normoxia Effects 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 108010017992 platelet-derived growth factor C Proteins 0.000 description 2
- 230000001124 posttranscriptional effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 2
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007755 survival signaling Effects 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 230000008728 vascular permeability Effects 0.000 description 2
- 101150084750 1 gene Proteins 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010048623 Collagen Receptors Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 101100481404 Danio rerio tie1 gene Proteins 0.000 description 1
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 108700021041 Disintegrin Proteins 0.000 description 1
- 241000353621 Eilat virus Species 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010040219 FAK-related nonkinase Proteins 0.000 description 1
- 108091006020 Fc-tagged proteins Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 1
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 1
- 102100027844 Fibroblast growth factor receptor 4 Human genes 0.000 description 1
- 108010017707 Fibronectin Receptors Proteins 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102400001369 Heparin-binding EGF-like growth factor Human genes 0.000 description 1
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000917134 Homo sapiens Fibroblast growth factor receptor 4 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000955962 Homo sapiens Vacuolar protein sorting-associated protein 51 homolog Proteins 0.000 description 1
- 101000851030 Homo sapiens Vascular endothelial growth factor receptor 3 Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 102000016844 Immunoglobulin-like domains Human genes 0.000 description 1
- 108050006430 Immunoglobulin-like domains Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010041341 Integrin alpha1 Proteins 0.000 description 1
- 102000000507 Integrin alpha2 Human genes 0.000 description 1
- 108010041100 Integrin alpha6 Proteins 0.000 description 1
- 102000000426 Integrin alpha6 Human genes 0.000 description 1
- 108050004144 Integrin beta-1 subunit Proteins 0.000 description 1
- 208000005168 Intussusception Diseases 0.000 description 1
- 102000009875 Ki-67 Antigen Human genes 0.000 description 1
- 108010020437 Ki-67 Antigen Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 206010059282 Metastases to central nervous system Diseases 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100323232 Mus musculus Ang3 gene Proteins 0.000 description 1
- 101100216078 Mus musculus Ang4 gene Proteins 0.000 description 1
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 1
- 101100481406 Mus musculus Tie1 gene Proteins 0.000 description 1
- 208000023137 Myotoxicity Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 102000016978 Orphan receptors Human genes 0.000 description 1
- 108070000031 Orphan receptors Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 208000031816 Pathologic Dilatation Diseases 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 101710096328 Phospholipase A2 Proteins 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 101710105463 Snake venom vascular endothelial growth factor toxin Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- -1 TGFbeta2 Proteins 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102400000716 Transforming growth factor beta-1 Human genes 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 102000056172 Transforming growth factor beta-3 Human genes 0.000 description 1
- 108090000097 Transforming growth factor beta-3 Proteins 0.000 description 1
- 102400000731 Tumstatin Human genes 0.000 description 1
- 102000016663 Vascular Endothelial Growth Factor Receptor-3 Human genes 0.000 description 1
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 206010064930 age-related macular degeneration Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical class N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 206010002224 anaplastic astrocytoma Diseases 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000009925 apoptotic mechanism Effects 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229940117880 bevacizumab injection Drugs 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 230000004637 cellular stress Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 239000013632 covalent dimer Substances 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 108700041286 delta Proteins 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005059 dormancy Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000007368 endocrine function Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000012282 endovascular technique Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000023404 leukocyte cell-cell adhesion Effects 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 238000012917 library technology Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940076783 lucentis Drugs 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011645 metastatic carcinoma Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 239000002836 nanoconjugate Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000004179 neuropil Anatomy 0.000 description 1
- 239000013631 noncovalent dimer Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000001662 opsonic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000013755 primary melanoma of the central nervous system Diseases 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 208000020615 rectal carcinoma Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 108091008601 sVEGFR Proteins 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229940034785 sutent Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012349 terminal deoxynucleotidyl transferase dUTP nick-end labeling Methods 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000012932 thermodynamic analysis Methods 0.000 description 1
- 238000009095 third-line therapy Methods 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000002993 trophoblast Anatomy 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 108010012374 type IV collagen alpha3 chain Proteins 0.000 description 1
- 229940079023 tysabri Drugs 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 230000006444 vascular growth Effects 0.000 description 1
- 229950000578 vatalanib Drugs 0.000 description 1
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2839—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily
- C07K16/2842—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the integrin superfamily against integrin beta1-subunit-containing molecules, e.g. CD29, CD49
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the present invention comprises, in general, pharmaceutical compositions for inhibiting tumor cell growth, comprising: a first agent which is an inhibitor of VEGF activity, such as VEGF signaling and/or binding to the VEGF receptor; and a second agent which blocks beta-1 integrin.
- the blocking of beta-1 integrin can be blocking of cell attachment, blocking of beta-integrin intracellular signaling that occurs after cell attachment, or both.
- the agents used are compositions of matter, such as peptides or small molecules. They may be antibodies or antibody-like molecules. The combination of agents has a synergistic effect, i.e. is more effective than either agent separately.
- the agents may be in a single composition or a matched pair of compositions.
- FIG. 8 is a bar graph showing expression of annexin and Ki67 apoptosis markers at different concentrations of AIIB2 in an antiangiogenesis resistant glioblastoma cell line.
- FIG. 12 is a bar graph showing cell growth over time of GBM cells subjected to hypoxia for 2 days followed by growth at normoxia. Cells were given IgG (control) and different concentrations of AIIB2.
- FIG. 13 is a line graph showing tumor growth over time for U87MG glioma tumors measured biweekly with control IgG (10 mg/kg) (diamonds), bevacizumab (10 mg/kg) (squares), or low-dose alternating combination therapy of bevacizumab (1 mg/kg) and AIIB2 (1 mg/kg) (circles).
- VEGF refers to vascular endothelial growth factor, also referred to as vasoendothelial growth factor, having an exemplary amino acid sequence at Genbank Accession Number AAA35789, described further at Leung, et al. “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science 246 (4935), 1306-1309 (1989). VEGF is a dimeric, disulfide-linked 46-kDa glycoprotein related to Platelet-Derived Growth Factor (“PDGF”).
- PDGF Platelet-Derived Growth Factor
- VEGFR-I also known as flt-1
- VEGFR-2 also known as KDR3
- VEGFR-3 VEGF receptor
- the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence.
- the humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- antibody further includes various forms of modified or altered antibodies, such as various fragments such as an Fv fragment, an Fv fragment containing only the light and heavy chain variable regions, an Fv fragment linked by a disulfide bond (Brinkmann, et al. Proc. Natl. Acad. Sci. USA, 90: 547-551 (1993)), a Fab or (Fab)′2 fragment containing the variable regions and parts of the constant regions, a single-chain antibody and the like (Bird et al., Science 242: 424-426 (1988); Huston et al., Proc. Nat. Acad. Sci. USA 85: 5879-5883 (1988)).
- fragments such as an Fv fragment, an Fv fragment containing only the light and heavy chain variable regions, an Fv fragment linked by a disulfide bond (Brinkmann, et al. Proc. Natl. Acad. Sci. USA, 90: 547-551 (1993)
- Fab or (Fab)′2 fragment
- tumors and metastases may be deprived of an adequate blood supply resulting in tumor cell growth arrest and possibly regression, including tumor cell death.
- the methods have a variety of uses in scientific research and health care wherein vascularization is a contributing factor in disease processes, especially cancer.
- enhancement of vascularization for repair or replacement of tissue may be achieved by potentiating both angiogenesis and adhesive vessel co-option simultaneously or sequentially.
- anti-beta-1 compositions can be a monotherapy for 3L GBM who have failed Bevacizmab.
- vascular niche a niche for insulin gene expression and beta cell proliferation.
- vascular mural cells require the ⁇ 1 integrin subunit for proper adhesion to vessels and for maintaining vessel stability.
- carcinoma cells appear to hijack the brain's VBM for essential functions during brain metastasis.
- inhibiting angiogenesis in circumscribed, well-established CNS melanoma metastases causes reversion to growth by vascular co-option. This suggests a continuum for vessel utilization by tumor cells which may represent a viable target for therapeutic exploitation.
- ⁇ 1 integrins In addition to the apoptotic mechanism described in vitro, inhibition of vascular co-option may have also attenuated growth.
- tumors were analyzed in the MMTV/PyMT transgenic model of breast cancer.
- Conditional deletion of ⁇ 1 integrin after induction of tumorigenesis resulted in impairment of FAK phosphorylation and proliferation consistent with a reliance on anchorage-dependent signaling for tumor growth.
- Single chain recombinant antibodies may also be used, as described, for example in U.S. Pat. No. 5,840,300 to Williams et al, entitled “Methods and compositions comprising single chain recombinant antibodies,” hereby incorporated by reference for purposes of describing methods useful in the preparation of such compositions.
- Kappa, heavy, and lambda immunoglobulin chains are amplified separately and are subsequently combined as single chains, using recombinant PCR, i.e., the splicing by overlap extension (SOE) PCR method, wherein the single chains comprise a heavy chain plus a kappa chain or a heavy chain plus a lambda chain.
- SOE overlap extension
- KDR-bp KDR-binding protein
- Lys49PLA2 catalytically inactive PLA2 homologue
- RNAi lentivirus The preparation of competent virus from DNA vectors involves packaging the construct into a cell line.
- Packaging an RNAi lentivirus is essentially the same as packaging a lentivirus carrying a cDNA.
- DNA vectors are transiently transfected into a packaging cell line-such as human 293 cells, and after 2-3 days the supernatant will contain the virus.
- Spheroidal tumor cell growth in culture is a surrogate for stem-like phenotype and can be promoted/enriched by stressors such as hypoxia and acid pH.
- Knockdown of beta1 in both a classic glioma cell line (U87MG) and the BRG3 bevacizumab resistant line significantly impaired spheroid formation (data not shown)
- AIIB2 also inhibited spheroidal growth of U87MG glioma cells induced by 48 hours of hypoxia (data not shown).
- beta1 integrin In addition to impairment of spheroidal growth, inhibition of beta1 integrin promoted reversal of EMT as demonstrated by a significant increase in tumor cell area and a 50% decrease in the mesenchymal receptor c-met (data not shown).
- beta1 integrin may inhibit growth of tumors by 1) preventing vessel co-option and perivascular invasion (or invasion upon any classical ECM substrate), 2) reducing viability of tumor cells after insults such as IR and hypoxia possibly by promoting apoptosis, 3) directly inhibiting tumor cell proliferation, 4) directly inhibiting angiogenesis by targeting proliferating and migrating endothelial cells and 5) reversing the aggressive stem-like phenotype including epithelial to mesenchymal transition (EMT).
- EMT epithelial to mesenchymal transition
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Described here are methods and compositions for treating tumors and metastases that improve anti-angiogenesis therapy. By inhibiting these mechanisms in a biological system with an anti-beta one integrin composition in combination with an anti-angiogenic composition, tumors and metastases may be deprived of an adequate blood supply, thereby resulting in tumor cell growth arrest and possibly regression, including tumor cell death. The present compositions comprise an anti-beta one integrin agent in combination with an anti-VEGF agent, in a pharmaceutical composition or compositions. Methods of treatment and of imaging are also described.
Description
- This application claims priority from U.S. Provisional Patent Application No. 61/466,791 filed on Mar. 23, 2011, which is hereby incorporated by reference in its entirety.
- None.
- The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jan. 31, 2012, is named “479-100 Sequence Listing.txt” and is 5,287 bytes in size.
- 1. Field of the Invention
- The present invention relates to the field of therapeutic compositions and therapy for cancer, including metastatic cancer, especially therapy targeted towards tumor vascularization.
- 2. Related Art
- Presented below is background information on certain aspects of the present invention as they may relate to technical features referred to in the detailed description, but not necessarily described in detail. That is, individual parts or methods used in the present invention may be described in greater detail in the materials discussed below, which materials may provide further guidance to those skilled in the art for making or using certain aspects of the present invention as claimed. The discussion below should not be construed as an admission as to the relevance of the information to any claims herein or the prior art effect of the material described.
- Many molecules have been identified as having angiogenic properties. However, the most potent identified to date is vascular endothelial growth factor-A (VEGF-A). This is the target of the drug bevacizumab (a.k.a., Avastin® Genentech, South San Francisco, Calif.) which has shown clinical promise in patients with various late-stage cancers including colon and rectal [Hurwitz et al., New England Journal of Medicine 350:2335-2342 (2004)], breast [Miller et al., New England Journal of Medicine 357:2666-2676 (2007)], lung [Sandler et al., New England Journal of Medicine 355:2542-2550 (2006)], kidney [Escudier et al., The Lancet 370:2103-2111 (2007)] and brain [Friedman et al., Journal of Clinical Oncology, doi:10.1200/JCO.2008.19.8721 (2009)]. Drugs designed against VEGF-A receptors, as opposed to VEGF-A itself, have also shown similar promise in recent clinical trials.
- Lucentis® (ranibizumab) is also a recombinant humanized anti-VEGF antibody. Ranibizumab binds to multiple VEGF-A isoforms. As an antibody fragment, ranibizumab is designed to be a small molecule with a molecular weight of 48 kD. It is packaged for intravitreal use, rather than intravenous or intratumor use.
- VEGF-A is the most characterized, and perhaps most potent, member of a family of vascular growth factors [Ferrara and Gerber, Acta Haematologica 106:148-156 (2002)]. Currently, other members include VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and PIGF. These factors signal through at least three known receptor tyrosine kinases: VEGFR1, VEGFR2, and VEGFR3.
- Unfortunately, the predictions of the anti-angiogenesis hypothesis thus far have not been realized in the clinic [Greenberg and Cheresh, Expert Opinion on Biological Therapy 9:1347-1356 (2009)]. At best, bevacizumab treatment in combination with chemotherapy results in prolongation of survival by a median of just 4.7 months [Hurwitz et al., New England Journal of Medicine 350:2335-2342 (2004)]. Patients ultimately succumb to continued cancer progression. The mechanism of this resistance is controversial and could reflect either an invalidation of the angiogenesis hypothesis or the ability of tumor cells to acquire an alternate vascular source.
- Treatment strategies in the art have too heavily relied on a singular concept of tumor vascularization based on angiogenesis. The clinical resistance to anti-angiogenesis therapy is quite likely due to tumor cells utilizing an alternative method for obtaining a vasculature. Various types of tumor vascularization processes have been described including vessel ectasia, vessel remodeling, vessel co-option, vascular intussusception, vascular glomeruloid formation, pseudovessel formation, and circulating endothelial progenitors [reviewed in Dome et al., American Journal of Pathology 170:1-15 (2007)].
- Several strategies in the art have proposed combination therapeutic strategies for inhibition of tumor vascularization. However, these strategies target only the angiogenic aspect of tumor vascularization or propose targeted vascular disruption of new tumor vessels. So far, no therapeutic strategy in the prior art provides for the complete inhibition of tumor and/or metastasis vascularization by administration to a biological system compounds targeting both angiogenic growth signaling and adhesion-based signaling of co-option in combination.
-
- Park et al. (U.S. Pat. No. 7,618,627 issued Nov. 17, 2009, “Method of increasing radiation sensitivity by inhibition of beta-one integrin”) used anti-beta one integrin antibody AIIB2 in conjunction with ionizing radiation to increase apoptosis of tumor cells.
- Theodore Yednock [U.S. Pat. No. 6,033,665 (2000)] “Compositions and methods for modulating leukocyte adhesion to brain endothelial cells.” This is one of the first patents resulting in an anti-integrin therapeutic which has been FDA approved for clinical use (Tysabri® against alpha-4-beta-1 for treatment of multiple sclerosis, Elan Pharmaceuticals, Inc.).
- Friess et al. [U.S. Pat. App. 0050385 A1 (2008)] proposed combination treatment with an anti-VEGF antibody and an anti-HER2 antibody, both targeting growth factors related to angiogenesis.
- Senger et al. [U.S. Pat. No. 6,596,276 (2003)] proposed administration of inhibiting antibodies against alpha-1 and/or alpha-2 integrin subunits to target these downstream effectors of VEGF mediated angiogenesis.
- Bissell et al. [U.S. Pat. No. 5,846,536 (1998) and U.S. Pat. No. 6,123,941 (2000)] disclose a method for reversing malignant phenotype in tissue by administering an effective amount of a β1 integrin function-blocking antibody or a peptide inhibitor of integrin function to the β1 integrin receptors of tissue in need of such treatment.
- The following brief summary is not intended to include all features and aspects of the present invention, nor does it imply that the invention must include all features and aspects discussed in this summary.
- The present invention comprises, in general, pharmaceutical compositions for inhibiting tumor cell growth, comprising: a first agent which is an inhibitor of VEGF activity, such as VEGF signaling and/or binding to the VEGF receptor; and a second agent which blocks beta-1 integrin. The blocking of beta-1 integrin can be blocking of cell attachment, blocking of beta-integrin intracellular signaling that occurs after cell attachment, or both. The agents used are compositions of matter, such as peptides or small molecules. They may be antibodies or antibody-like molecules. The combination of agents has a synergistic effect, i.e. is more effective than either agent separately. The agents may be in a single composition or a matched pair of compositions.
- In certain aspects, the present invention comprises methods for inhibiting tumor cell growth. In general, the present methods include methods for inhibiting tumor cell growth, comprising the step of administering to a subject having said tumor: a combination of a first agent which is anti-angiogenic agent; and a second agent which blocks tumor cell interactions with the extracellular matrix mediated by beta-1 integrin and beta-1 integrin signaling, whereby tumor cell growth is inhibited to an extent greater than inhibition caused by either the first agent or the second agent alone, i.e. synergisticaly. Preferably the subject is a human subject with a tumor.
- In one embodiment, the present method comprises administration of doses of an anti-beta-1 integrin antibody in conjunction with an antagonistic anti-VEGF receptor, anti-VEGF, (e.g. anti-VEGF-A) antibody. Various anti-VEGF and anti-integrin agents are described in further detail below. Methods for delivery of combined antibodies to a patient will be well known to those with ordinary medical, nursing, or allied health skill in the field of clinical oncology. The present compositions may be administered via any clinical means, especially parenteral or intratumoral injection. The present compositions can also be directly applied to an actual or potential cavity in the body including the tumor bed following surgical resection. Agents which increase the vascular permeability may also be administered at a clinically appropriate interval. These may enhance delivery of therapeutics in certain organs such as the central nervous system (CNS). In addition, adjuvant therapy regimens may be given prior to, during, or following treatment including radiation and chemotherapy. Repeat administrations of the embodiment may be provided to achieve the desired clinical effect.
-
FIGS. 1A , 1B, and 1C is a series of three bar graphs showing increases beta-1 integrin (MFI) of U87MG glioma cells (1A), MDA-MB-231 breast carcinoma cells (1B) and SW1080 colorectal carcinoma cells (1), respectively in response to acute hypoxic insult. -
FIGS. 2A and 2B is a pair of photographs showing staining of glioma tumor xenografts for integrin beta 1 expression with (2A) and without (2B) treatment with bevacizmab treatment. -
FIG. 3A is a bar graph showing integrin beta 1 expression in U87MG glioma cells in different conditions of proliferation;FIG. 3B is a scatter plot showing correlation between integrin beta 1 expression and proliferation. -
FIGS. 4A and 4B is a pair of photographs from a patient specimen of glioblastomamultiforme showing cells stained for integrin beta 1 expression where there is normal vasculature (4A) and in angiogenicglomeruloid vessels (4B). -
FIG. 5 is a bar graph plotting integrin beta 1 expression in cases of primary glioblastoma and antiangiogenic evasive glioblastoma. -
FIG. 6 is a bar graph showing cell growth inhibition by different doses of AIIB2 on a primary glioblastoma cell line and synergistic growth inhibition when AIIB2 is combined with hypoxia (1% oxygen for 48 hrs). -
FIGS. 7A and 7B is a pair of bar graphs showing integrin beta 1 expression (7A) and proliferation (7B) of three different knock down cell lines, where the integrin beta 1 knockdown showed substantially less expression and proliferation. -
FIG. 8 is a bar graph showing expression of annexin and Ki67 apoptosis markers at different concentrations of AIIB2 in an antiangiogenesis resistant glioblastoma cell line. -
FIG. 9 is a bar graph showing cell growth under different concentrations of AIIB2 antibody of the primary GBM cell line. -
FIG. 10 is a graph showing tumor volume changes under different treatments of antibodies in a mouse tumor model. The plot labeled “combo” is a combination of AIIB2 and bevacizumab. The arrow shows the start of treatment. -
FIG. 11 is a bar graph showing cell growth over time of GBM cells in growth phase and confluent culture (growth arrest) that were treated with different concentrations of AIIB2 over 2 days. IgG was used as the control. -
FIG. 12 is a bar graph showing cell growth over time of GBM cells subjected to hypoxia for 2 days followed by growth at normoxia. Cells were given IgG (control) and different concentrations of AIIB2. -
FIG. 13 is a line graph showing tumor growth over time for U87MG glioma tumors measured biweekly with control IgG (10 mg/kg) (diamonds), bevacizumab (10 mg/kg) (squares), or low-dose alternating combination therapy of bevacizumab (1 mg/kg) and AIIB2 (1 mg/kg) (circles). - Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described. Generally, nomenclatures utilized in connection with, and techniques of, cell and molecular biology and chemistry are those well known and commonly used in the art. Certain experimental techniques, not specifically defined, are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. For purposes of the clarity, following terms are defined below.
- “VEGF” refers to vascular endothelial growth factor, also referred to as vasoendothelial growth factor, having an exemplary amino acid sequence at Genbank Accession Number AAA35789, described further at Leung, et al. “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science 246 (4935), 1306-1309 (1989). VEGF is a dimeric, disulfide-linked 46-kDa glycoprotein related to Platelet-Derived Growth Factor (“PDGF”). It is produced by normal cell lines and tumor cell lines; is an endothelial cell-selective mitogen; shows angiogenic activity in in vivo test systems (e.g., rabbit cornea); is chemotactic for endothelial cells and monocytes; and induces plasminogen activators in endothelial cells, which are involved in the proteolytic degradation of the extracellular matrix during the formation of capillaries. A number of isoforms of VEGF are known, which, while they show comparable biological activity, differ in the type of cells that secrete them and in their heparin-binding capacity. The cellular receptors of VEGFs (VEGFRs) are transmembranous receptor tyrosine kinases. They are characterized by an extracellular domain with seven immunoglobulin-like domains and an intracellular tyrosine kinase domain. Various types of VEGF receptor have been characterized, including VEGFR-I (also known as flt-1), VEGFR-2 (also known as KDR3) and VEGFR-3. A large number of human tumors, especially gliomas and carcinomas, express high levels of VEGF and VEGFRs. This has led to the hypothesis that VEGF released by tumor cells stimulates the growth of blood capillaries and the proliferation of tumor endothelium in a paracrine manner and, through the improved blood supply, accelerates tumor growth.
- The term “VEGF inhibitor” refers to a substance or method that decreases signaling by the VEGF-VEGFR pathway. VEGF inhibitors can be, for example, small molecules, peptides, polypeptides, proteins, including more specifically antibodies, including anti-VEGF antibodies, anti-VEGFR antibodies, intrabodies, maxibodies, minibodies, diabodies, Fc fusion proteins such as peptibodies, receptibodies, soluble VEGF receptor proteins and fragments, and a variety of others. A presently preferred VEGF inhibitor is a peptide, such as an antibody based inhibitor. Many VEGF inhibitors work by binding to VEGF or to a VEGF receptor. Others work more indirectly by binding to factors that bind to VEGF or to a VEGF receptor or to other components of the VEGF signaling pathway. Still other VEGF inhibitors act by altering regulatory posttranslational modifications that modulate VEGF pathway signaling. VEGF inhibitors in accordance with the invention also may act through more indirect mechanisms. Whatever the mechanism involved, as used herein, a VEGF inhibitor decreases the effective activity of the VEGF signaling pathway in a given circumstance over what it would be in the same circumstance in the absence of the inhibitor. Another VEGF inhibitor is nucleic acid based, using RNAi, as described below.
- The term “humanized” refers to forms of non-human (e.g., rodent) antibodies which are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).
- The term “convection enhanced delivery” refers to a method for drug delivery to the brain by overcoming the blood-brain barrier. Convection enhanced delivery was first described by R. Hunt Bobo et al in Proc. Natl. Acad. Sci. USA (March 1994, Vol 91, pages 2076-2080; “Convection-enhanced delivery of macromolecules in the brain”). Convection-enhanced delivery involves the stereotactic placement through cranial burr holes of several catheters into brain parenchyma and the subsequent infusion of therapeutic agents via a microinfusion pump. Standard methods of local delivery of most drugs into the brain, either by intravenous injection and passage through the blood brain barrier, or intraventricular injection, have relied on diffusion, which results in a nonhomogenous distribution of most agents. Intravenous administration of drugs to the brain is hampered by the blood-brain barrier, which prevents the passage of large molecules. The blood-brain barrier is characterized by tight junctions between vascular endothelial cells, which prevent or impede various naturally occurring and synthetic substances (including anti-cancer drugs) from entering the brain. In contrast to techniques that rely on diffusion, convection-enhanced delivery uses a pressure gradient established at the tip of an infusion catheter to push a drug into the extracellular space. The intention is to distribute the drug more evenly, at higher concentrations, and over a larger area than when administered by diffusion alone. Convection-enhanced delivery of therapeutic agents may occur after craniotomy with tumor resection. Convection enhanced delivery of drugs is described in detail by Yael Mardor et al. in Cancer Research (August 2005, vol 65, pages 6858-6863; “Convection-enhanced drug delivery: Increased efficacy and magnetic resonance image monitoring”).
- The term “human monoclonal antibody” refers to an antibody substantially free of non-human (e.g. mouse) sequence. It may be fully human, or humanized, as is known in the art, by the removal of mouse sequences save for the binding regions of the antibody, either the Fv portion or the CDR regions.
- The term “antibody” further includes various forms of modified or altered antibodies, such as various fragments such as an Fv fragment, an Fv fragment containing only the light and heavy chain variable regions, an Fv fragment linked by a disulfide bond (Brinkmann, et al. Proc. Natl. Acad. Sci. USA, 90: 547-551 (1993)), a Fab or (Fab)′2 fragment containing the variable regions and parts of the constant regions, a single-chain antibody and the like (Bird et al., Science 242: 424-426 (1988); Huston et al., Proc. Nat. Acad. Sci. USA 85: 5879-5883 (1988)). The antibody may be originally of animal (especially mouse or rat) or human origin or may be chimeric (Morrison et al., Proc Nat. Acad. Sci. USA 81: 6851-6855 (1984)). It may be humanized as described in Jones et al., Nature 321: 522-525 (1986), and published UK patent application #8707252.
- The term “extracellular substrate” refers to a substrate for cell binding, and may include both defined tissue such as vasculature (vascular endothelial cells) or extracellular matrix (ECM), that is, the extracellular part of animal tissue that usually provides structural support to the animal cells in addition to performing various other important functions; it is composed of an interlocking mesh of fibrous proteins and glycosaminoglycans.
- The term “shRNA” refers to short hairpin RNA.
- The term “RNAi” refers to RNA interference. RNAi is a post-transcriptional, targeted gene-silencing technique that uses double-stranded RNA (dsRNA) to degrade messenger RNA (mRNA) containing the same sequence as the dsRNA (Sharp, P. A. and Zamore, P. D. 287, 2431-2432 (2000); Zamore, P. D., et al. Cell 101, 25-33 (2000). Tuschl, T. et al. Genes Dev. 13, 3191-3197 (1999); Cottrell T R, and Doering T L. 2003. Trends Microbiol. 11:37-43; Bushman F. 2003. Mol Therapy. 7:9-10; McManus M T and Sharp P A. 2002. Nat Rev Genet. 3:737-47). The process occurs when an endogenous ribonuclease cleaves the longer dsRNA into shorter, e.g., 21- or 22-nucleotide-long RNAs, termed small interfering RNAs or siRNAs. The smaller RNA segments then mediate the degradation of the target mRNA. Kits for synthesis of RNAi are commercially available from, e.g. New England Biolabs or Ambion. In one embodiment one or more of the chemistries described herein for use in antisense RNA can be employed in molecules that mediate RNAi.
- The term “pharmaceutical composition” refers to a product or pair of products containing the recited therapeutic agents in a specified amount in combination with pharmaceutically acceptable diluents, stabilizers, excipients, etc. The term “pharmaceutically acceptable” refers to molecular entities and compositions that are of sufficient purity and quality for use in the formulation of a pharmaceutical composition, medicine or medicament of the present invention and that, when appropriately administered to an animal or a human, do not produce an adverse, allergic or other untoward reaction. Since both human use and veterinary use are equally included within the scope of the present invention, a pharmaceutically acceptable formulation would include a pharmaceutical composition, medicine or medicament for either human or veterinary use.
- In certain aspects of the present invention pertaining to methods, a pharmaceutical composition may contain a single agent, but, according to the method, be administered. during a course of treatment, with the other agent.
- Described here are improved methods and compositions for treating tumors and metastases that recognize the dual mechanisms of tumor vascularization by 1) new growth or remodeling of vessels (i.e., angiogenesis) in combination with 2) utilization of existing vessels via a direct adhesive interactions (i.e., co-option). By inhibiting both mechanisms in a biological system in combination, tumors and metastases may be deprived of an adequate blood supply resulting in tumor cell growth arrest and possibly regression, including tumor cell death. The methods have a variety of uses in scientific research and health care wherein vascularization is a contributing factor in disease processes, especially cancer. In another embodiment, enhancement of vascularization for repair or replacement of tissue may be achieved by potentiating both angiogenesis and adhesive vessel co-option simultaneously or sequentially.
- Current antiangiogenic therapies targeting the VEGF pathway are a rapidly growing market led by Genentech's Avastin® (bevacizumab) with $6.1 billion in total sales in 2009. However, Avastin® has only shown modest clinical success. At best it increases overall survival by 4.7 months in colon cancer and progression free survival by 4.2 months in brain cancer (gliobastoma multiforme, GBM). Even more discouraging, the FDA is considering overturning their approval for the use of Avastin® in metastatic breast cancer as has already occurred in the UK.
- Avastin® is thought to work by preventing new vessel formation (angiogenesis) thus starving tumor cells of glucose and oxygen. Notably, beta-1 integrin is upregulated during oxygen deprivation (a.k.a., hypoxia) in tumor cells. In GBM cells taken from patients who have failed Avastin® therapy this target is upregulated 50 to 200× compared to untreated primary GBM cells. Interestingly, it is also upregulated during the process of tumor cell proliferation and after gamma irradiation suggesting a dual role in mitosis and cell survival. Inhibition of this target may also prevent integrin-dependent invasion of tumor cells upon ECM scaffolds (e.g., stroma and vascular basement membranes).
- An aspect of the present invention involves use of agents that inhibit beta-1 integrin in patients who have failed treatment with anti-VEGF antibodies, such as Avastin® (bevacizumab). This has been shown in vitro as described below, and in vivo. The phrase “failed anti VEGF antibody treatment” is used here in its clinical sense. The clinical definition of bevacizmab failure is: 1) non response from the start (usually 70% of patients) and 2) disease progression in the face of therapy after initial response. There are various objective clinical criteria for progression, but the one most often used (and specifically used in the Bevacizmab clinical trials) are the McDonald Criteria. Patients in either group are usually taken off Bevacizmab and then reoperated on (28 days later as Bevacizmab makes you prone to bleeding) and submitted for possible third-line therapies or end of life care. Therefore, it is believed that anti-beta-1 compositions can be a monotherapy for 3L GBM who have failed Bevacizmab.
- Holash et al. (1999; Science 284: 1994-1998 “vessel co-option, regression and growth in tumors mediated by angiopoietins and VEGF”) demonstrated in rat glioma model that a subset of tumors initially grew by co-opting existing host blood vessels. This co-opted host vasculature in due course showed up-regulation of VEGF and angiogenesis. The present inventor's studies on brain metastasis have shown that vascular co-option or the utilization of pre-existing vessels is the predominant form of vessel use by tumor cells during early experimental brain metastasis establishment and in human clinical specimens reflecting early stages of the disease. The findings exclude a requirement for de novo angiogenesis prior to microcolony formation. The CNS parenchyma is largely devoid of non-vascular stromal basement membrane components which are necessary for epithelial and carcinoma cell adhesion and survival. Vascular co-option, therefore, supplies substrates for malignant growth of non-neural carcinoma cells not otherwise widely available in the neuropil. Proliferation by metastatic tumor cells is highly potentiated upon adhesion to a basement membrane substratum and is attenuated by inhibiting MEK in vitro. Consistent with the experiments in tissue culture, during the early stages of colony formation in vivo the vast majority of micrometastases were found to be in direct contact with the VBM of existing brain vessels and many of these cells were proliferating. Thus the vascular basement membrane (VBM) is implicated as the active substrate for tumor cell growth in brain. VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis.
- Tumor cell adhesion to the vascular basement membrane of blood vessels is found to be mediated by beta-1 integrin. Blockade or loss of the beta-1 integrin subunit in tumor cells prevented adhesion to vascular basement membrane and attenuated metastasis establishment and growth in vivo. The requirement of metastatic carcinoma cells for the vasculature in adhesion and invasion during metastasis in the brain may be more analogous to the requirement for VBM during development of pancreatic islets. Islet cells use β1 integrins to interface with the VBM and this interaction is required for proliferation and endocrine function. Nikolova et al. termed this basement membrane microenvironment, a “vascular niche” (Nikolova et al., 2006; Dev Cell 10: 397-405; “The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation”). Similarly vascular mural cells require the β1 integrin subunit for proper adhesion to vessels and for maintaining vessel stability. In an analogous fashion, carcinoma cells, then, appear to hijack the brain's VBM for essential functions during brain metastasis. Interestingly, inhibiting angiogenesis in circumscribed, well-established CNS melanoma metastases causes reversion to growth by vascular co-option. This suggests a continuum for vessel utilization by tumor cells which may represent a viable target for therapeutic exploitation.
- The interaction between the tumor cells and the vessels relies on β1 integrin-mediated tumor cell adhesion to the vascular basement membrane of blood vessels. This interaction is sufficient to promote immediate proliferation and micrometastasis establishment of tumor lines in the brain. This angiotropic mechanism was universal to both carcinomas (anchorage-dependent cells) and lymphomas (anchorage-dispensible cells) in the CNS. β1 integrins play a dominant role in many facets of normal cell biology and have been implicated in cancer initiation, progression, and metastasis. There are at least 10 β1 integrin heterodimers which serve as variably promiscuous adhesive receptors to diverse ligands such as the collagens and laminins. Nonetheless our data suggest that antagonism of the β1 integrin subunit alone might be useful in therapeutic strategies for brain metastases. Indeed, Park et al. found that inhibitory anti-β1 integrin subunit antibodies induced apoptosis in breast carcinoma cells grown in three dimensional culture, but not in cells grown in monolayers (Park et al. 2006; “β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo,” Cancer Res. 66: 1526-1535). Treating mice bearing breast cancer xenografts from those cell lines with the same antibody led to decreased tumor volume. In addition to the apoptotic mechanism described in vitro, inhibition of vascular co-option may have also attenuated growth. In an alternative strategy to evaluate the role of β1 integrins, tumors were analyzed in the MMTV/PyMT transgenic model of breast cancer. Conditional deletion of β1 integrin after induction of tumorigenesis resulted in impairment of FAK phosphorylation and proliferation consistent with a reliance on anchorage-dependent signaling for tumor growth.
- The present method is applicable for treatment of any type of epithelial or non-epithelial mammalian tumor having beta-1 integrin receptors, particularly, glioblastoma, anaplastic astrocytoma, breast/mammary carcinomas, lung carcinomas, melanomas, colon and rectal carcinomas, bladder carcinomas, endometrial carcinomas, ovarian carcinomas, renal carcinomas, Hodgkin and non-Hodgkin Lymphomas, pancreatic carcinomas, prostate carcinomas, and thyroid carcinomas.
- Thus, an advantage of this aspect is that both mechanisms of tumor vascularization comprising angiogenesis and adhesive vessel co-option are targeted. As described below, an advantage of inhibition of beta-1 integrin is not only blocking co-option of blood vessels for use by a tumor, but also directly inhibiting tumor proliferation and preventing survival signaling pathways activated by hypoxia. This avoids therapeutic resistance identified in prior-art strategies relying only on anti-angiogenesis alone. The means for evaluation of treatment efficacy including tumor dormancy and regression will be well known to those with ordinary medical skill. These will include use of medical imaging techniques such as MRI, CT, PET, and SPECT as well as physical size measurements and clinical status of the patient. The two modalities of anti-angiogenesis agent and integrin-blocking agent together have a synergistic effect.
- Antibodies to integrins, and, in particular, β1 integrin, useful in the practice of the present methods, are known in the art. See Bissell et al. U.S. Pat. No. 6,123,941 for a description of reverting malignant phenotype in cancer cells through application of anti-β1 integrin antibody AIIB2. Anti-beta-1 integrins against the CD-29 epitope are available from Research Diagnostics, Inc., Flanders, N.J. Another anti-β1 integrin antibody is CSAT, available from the University of Iowa Hybridoma Bank. Another commercially available anti-β1 integrin antibody is 4B7R, a Murine IgG1kappa antibody available from Ancell Immunology Research Products.
- AIIB2 is a rat monoclonal IgG1 that was originally isolated from a human choriocarcinoma hybridoma, and identified as an anti-β1 integrin antibody that non-specifically bound to all heterodimers of the β1 integrin extracellular domain. Experiments using F(ab)′ fragments of enzyme-digested AIIB2 indicated that the epitope-binding portion of the antibody was active, and resulted in down modulation of β1 integrin mediated signaling and downstream signaling intermediates. Further details on β1 integrin biology is made more complex by 5 known splice variants that differ primarily with regard to the cytoplasmic domain, further described below in connection with polypeptides for immunization in preparing an anti-β1 integrin antibody. AIIB2 has been found to recognize all variants via the extracellular domain. Park et al (U.S. Pat. No. 7,618,627 issued Nov. 17, 2009, “Method of increasing radiation sensitivity by inhibition of beta-one integrin”) used AIIB2 antibody in conjunction with ionizing radiation to increase apoptosis of tumor cells.
- As reported in Hall et al., “The alpha 1/beta 1 and alpha 6/beta-1 Integrin Heterodimers Mediate Cell Attachment to Distinct Sites on Laminin,” J. Cell Biol. 110:2175-2184 (1990) anti-integrin antibody AII B2 was prepared as follows: A Lewis rat was given two intraperitoneal injections 2 wk apart with 107 EDTA-harvested JAR choriocarcinoma cells, mixed 1:I with Ribi adjuvant. 2 wk later, two additional intrasplenic injections were given 2 wk apart in the absence of adjuvant. A Balb/c mouse was given four bimonthly intraperitoneal injections of 5×106 first-trimester human cytotrophoblasts. 4 d after the last injection, each spleen was fused with Sp2/0 mouse plasmacytoma cells by the method of Kennett et al. (1980), as modified by Wheelock et al. (1987). Hybridoma supernatants were screened for their ability to inhibit JAR human choriocarcinoma cell attachment to FN, LN, or Col IV using the attachment assay described above. Two rat hybridoma supernatants were found that inhibited attachment to FN only (BIE5 and BIIG2), whereas two others inhibited attachment to LN, FN, and Col IV (AIIB2 and BIE11). One mouse hybridoma supernatant inhibited attachment of JAR cells to Col IV only (S2G3). These hybridomas were cloned by limiting dilution. The rat antibodies were purified from culture supernatants by affinity chromatography using goat anti-rat agarose. The mouse supernatant, S2G3, an IgM, was concentrated 10-fold by precipitation with 50% saturated ammonium sulfate at 4° C. These antibodies were retested for attachment inhibitory activity on FN, LN and Col IV coated substrates before further use.
- An anti-integrin antibody suitable for use with the present method and composition may be produced by methods similar to those described in Werb, Z., Tremble, P., Berensten, O., Crowley, E., and Damsky, C. H. (1989). Signal transduction through the fibronectin receptors induces collagenase expression. J. Cell Biol. 109, 877-890; and Damsky, C. H., Fitzgerald, M., and Fisher, S. J. (1992). This provides a screening assay for potential antibodies. The immunogen used was whole human JAR choriocarcinoma cells. The antibody blocks cell attachment to Fn, Col-I, IV and LN, and so can be further characterized in these ways.
- Inhibition of beta-1 integrin with the rat monoclonal antibody AIIB2 combined with hypoxia synergistically reduced growth of GBM cells in vitro. AIIB2 also directly reduced growth of Avastin® evasive GBM cells in vitro. Such a composition might also be used for in vivo tumor imaging or as a biomarker for cell proliferation or responses to cell insults (e.g., hypoxia or ionizing radiation). Striking upregulation of beta-1 integrin in angiogenic blood vessels of untreated GBM was also observed. Therefore, it may also be useful for directly inhibiting and/or imaging the process of angiogenesis in vivo.
- As stated above, a variety of VEGF inhibitors may be used in the present methods and compositions. As described in Oliner et al. US 2009/0304694 A1, published Dec. 10, 2009, entitled “ANG2 AND VEGF INHIBITOR COMBINATIONS,” suitable VEGF inhibitors for use in the present methods include the following: (a) 4TBPPAPC, as described in US2003/0125339 or U.S. Pat. No. 6,995,162 which is herein incorporated by reference in its entirety, particularly in parts disclosing 4TBPPAPC; (b) AMG 706, as described in US2003/0125339 or U.S. Pat. No. 6,995,162 or U.S. Pat. No. 6,878,714 which is herein incorporated by reference in its entirety, particularly in parts disclosing AMG 706; (c) Avastin®; (d) Nexavar®, as described in WO00/42012, WO00/41698, US2005/0038080A1, US2003/0125359A1, US2002/0165394A1, US2001/003447A1, US2001/0016659A1, and US2002/013774A1 which are herein incorporated by reference in their entirety, particularly in parts disclosing Nexavar®; (e) PTK/ZK; (f) Sutent®, and (g) VEGF inhibitors of Formula IV as described in US2006/0241115. In this regard, a presently preferred VEGF inhibitor is AMG 706.
- Humanized anti-VEGF or anti-integrin antibodies can be prepared according to several methods. U.S. Pat. No. 6,949,245 to Sliwkowski et al., issued Sep. 27, 2005, entitled “Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies,” described methods for humanizing an antibody that may be adapted according to the present teachings. The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Pat. No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Chimeric antibodies of interest herein include “primatized” antibodies comprising variable domain antigen-binding sequences derived from a non-human primate (e.g. Old World Monkey, Ape etc) and human constant region sequences.
- As further described in the above-referenced U.S. Pat. No. 6,949,245, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as “import” residues, which are typically taken from an “import” variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such “humanized” antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.
- Single chain recombinant antibodies may also be used, as described, for example in U.S. Pat. No. 5,840,300 to Williams et al, entitled “Methods and compositions comprising single chain recombinant antibodies,” hereby incorporated by reference for purposes of describing methods useful in the preparation of such compositions. Briefly, Kappa, heavy, and lambda immunoglobulin chains are amplified separately and are subsequently combined as single chains, using recombinant PCR, i.e., the splicing by overlap extension (SOE) PCR method, wherein the single chains comprise a heavy chain plus a kappa chain or a heavy chain plus a lambda chain. Flexible linear-linker peptides are used in the primers which therefore comprise the linker used to join VL to VH to form the novel recombinant Fv fragments containing integrin binding variable regions comprising both light and heavy chains as a single chain. The Fv fragments may be developed as a library of Fv fragments directed against β1 integrin subunits.
- Suitable antibodies can also be prepared in genetically engineered mice designed to express human antibodies. The mice can be immunized with an antigen comprising a fragment of human β1 integrin and the mouse splenocytes containing active B cells fused with a suitable myeloma line. Mice with the human Ig repertoire are commercially available. See Hemachandra et al., “Human Monoclonal Antibodies against Pseudomonas aeruginosa Lipopolysaccharide Derived from Transgenic Mice Containing Megabase Human Immunoglobulin Loci Are Opsonic and Protective against Fatal Pseudomonas Sepsis,” INFECTION AND IMMUNITY, April 2001, p. 2223-2229 Vol. 69, No. 4.
- Another technique for preparing the present antibodies, phage display combinatorial library technology, provides a useful method to generate large libraries of human Mabs that may be screened for anti-integrin activity. The libraries made from lymphocyte mRNA may consist of up to 108 recombinants of monoclonal Fab repertoires. By displaying the library on a filamentous phage surface and panning against a model epitope (β1 integrin fragment as described below), monoclonal Fab antibodies can be selected and analyzed for their immunological properties and biological activities (integrin inhibition). Fabs are ideal for use in both therapeutic and diagnostic methods as they can be produced in large quantities inexpensively and they are innately non-immunogenic. See U.S. Pat. No. 6,716,410 to Witzum et al. for a description of this technique, which is hereby incorporated by reference.
- As described by Marks et al., a human single-chain Fv (scFv) may be isolated from a non-immune phage library which binds the 131 antigen. CDR3 of the light (V(L)) and heavy (V(H)) chain variable region of a selected antibody may then be sequentially mutated, the mutant scFv displayed on phage, and higher affinity mutants selected on antigen. See Schier et al., “Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site,” J Mol Biol. 1996 Nov. 8; 263(4):551-67.
- Bispecific antibodies (e.g. diabodies) which cross link with other antigens may also be employed. Unlike other bispecific formats, diabodies can be produced in functional form by secretion from bacteria (E. coli) or yeast (P. Pastoris). Detailed protocols can be found in: Tomlinson I. and Holliger P. (2000) Methods for generating multivalent and bispecific antibody fragments, Methods Enzymol, 326, 461-479; and Holliger, P. (2001) Expression of antibody fragments in Pichia pastoris. Meth. Mol. Biol. Dimeric antibody fragments, or minibodies, may be created in a variety of known ways. These produce noncovalent or covalent dimers (sc(FV)2). The present antibody composition may be prepared as a purified pharmaceutical composition with known stabilizers and excipients in a sterile powder or liquid form for intravenous administration as is known in the art and exemplified in the description of a freeze dried monoclonal antibody in U.S. Pat. No. 6,165,467, hereby incorporated by reference.
- The term “synergistic” is used herein in its conventional sense, referring to a combination of components wherein the activity of the combination is greater than the additive of the individual activities of each component of the combination.
- Other inhibitors of VEGF activity may be used in the present methods and compositions. For example, Aflibercept (VEGF-Trap, AVE-0005) is a fully human recombinant fusion protein composed of the second Ig domain of vascular endothelial growth factor receptor 1 (VEGFR1) and the third Ig domain of vascular endothelial growth factor receptor 2 (VEGFR2), fused to the Fc region of human IgG1. Aflibercept binds to all VEGF-A isoforms as well as placental growth factor (PIGF), thereby preventing these factors from stimulating angiogenesis. Aflibercept is administered by intravenous infusion at 4 mg/kg every two weeks in combination with chemotherapy.
- A VEGF receptor-binding protein, designated KDR-bp (KDR-binding protein), from the venom of the Eastern Cottonmouth (Agkistrodonpiscivoruspiscivorus) is a catalytically inactive PLA2 homologue, Lys49PLA2, which possesses potent myotoxicity, and is an exogenous molecule found to antagonize the VEGF receptor, as described in Fujisawa et al. “Catalytically inactive phospholipase A2 homologue binds to vascular endothelial growth factor receptor-2 via a C-terminal loop region,” Biochem. J. (2008) 411, 515-522.
- In certain aspects, the present invention comprises a method for inhibiting tumor cell growth, comprising the step of administering to a subject having said tumor a combination of a low-dose first agent which is anti-angiogenic agent; and a second agent which blocks tumor cell binding mediated by beta-1 integrin, whereby tumor cell growth is inhibited to an equivalent amount as caused by the first agent at a higher clinical dose. The low-dose first agent may for example be a VEGF inhibitor which is administered at a minimum dosage as indicated on the product's labeling or literature. According to the present invention, tumor growth will be inhibited to at least the same extent as if the VEGF inhibitor were given at the highest approved dose. For example, the recommended dose of bevacizumab when treating colon or rectal cancer is either 5 mg or 10 mg per kg (about 2.3 mg to 4.5 mg per pound) given by IV every 14 days. The recommended dose will vary (either 5 or 10 mg per kg) based on the type of chemotherapy being given.
- Therapeutic Combinations of an Agent which is an Inhibitor of VEGF and an Agent which Blocks Beta-Integrin
- Agents modulating adhesive vessel co-option and angiogenesis may be administered together or sequentially after a prescribed time interval. When administered together they may be delivered via an acceptable biocompatible delivery platform. This may be a nanoconjugate or polymer. Alternatively, the agents may directly fused to each other. In addition, multiple angiogenesis and/or adhesive vessel co-option modulating agents may be administered either simultaneously or sequentially. Finally, any of the embodiments may be combined with adjuvant therapies such as radiation, chemotherapy, and/or agents which increase vascular permeability.
- Embodiments for inhibiting the angiogenesis signaling aspect having an inhibitory effect on VEGF-A, either in downstream signaling or in the ability to bind to its extracellular receptors (VEGFR-1/Flt-1, VEGFR-2/Flk-1), may be used. Other mediators of angiogenesis may also be targeted including other VEGF family members (VEGF-B, VEGF-C, VEGF-D, VEGF-E, and PIGF) and their receptors (VEGFR-1/Flt-1, VEGFR2/Flk-1, VEGFR-3/Flt-4), fibroblast growth factors (FGF-1 and FGF-2) and their receptors (FGFR-1, FGFR-2, FGFR-3, FGFR4), epidermal growth factor members (EGF and HB-EGF) and their receptor (EGFR), CEACAM-1/CD-66a, the orphan receptor HER-2, angiopoietins (Ang 1, Ang2, Ang3, and Ang4) and their receptors (Tie-1 and Tie2), platelet-derived growth factors (PDGF) and their receptors (PDGFR type alpha and PDGFR type beta), transforming growth factor-beta family members (TGF-beta-1, TGFbeta2, TGF-beta3) and their receptor (TGFBR2), delta-like ligand 4 and its receptor (Notch), and naturally occurring antiangiogenic fragments of pre-existing structural proteins such as angiostatin and tumstatin.
- Embodiments for targeting the adhesive vessel co-option signaling aspect having an inhibitory effect on beta-1 integrin, either in downstream signaling or in the ability to bind to its extracellular receptors, may be used. These may include disintegrins, components/fragments of extracellular matrix, focal adhesion kinase (FAK), FAK-related non kinase, and extracellular signal-related kinase (ERK/MAPK).
- The anti-angiogenic composition may comprise a human monoclonal antibody or antibody fragment, humanized antibody or antibody fragment, inhibitory peptide, kinase inhibitor, endogenous inhibitor, small molecule inhibitor, nanobody, RNAi, aptamer, antisense, or any of these agents in combination with a pharmaceutically acceptable vector or carrier.
- The anti-adhesion-based vessel co-option composition may comprise a human monoclonal antibody or antibody fragment, humanized antibody or antibody fragment, inhibitory peptide, kinase inhibitor, endogenous inhibitor, small molecule inhibitor, nanobody, RNAi, aptamer, antisense, or any of these agents in combination with a pharmaceutically acceptable vector or carrier.
- In a presently preferred embodiment, a patient with recurrent glioblastoma multiforme (GBM) will undergo implantation of one or more catheter(s) placed intratumorally, within a resection cavity, or subdurally. The patient will be administered standard bevacizumab therapy I.V. at a clinically-appropriate dose and interval. At least 24 hours, or ideally 48 to 120 hours, after bevacizumab injection an inhibitory anti-beta-1 integrin composition will be administered through said catheters via convection enhanced delivery (CED) device at a clinically-relevant dose and rate.
- In another embodiment the above regimen will be combined with an additional adjuvant therapy such as ionizing radiation and/or chemotherapy. In another embodiment, the above regimen will be administered to a newly diagnosed GBM. In another embodiment both the antiangiogenic composition and the inhibitory anti-beta-1 integrin composition will be administered via CED. In another embodiment both the antiangiogenic composition and the inhibitory anti-beta-1 integrin composition will be administered parenterally. In another embodiment, one or both compositions will be administered directly to the tumor bed in an inert carrier such as a dissolvable biocompatible polymer. In another embodiment, both compositions will be administered simultaneously as a bivalent antibody. In another embodiment, the inhibitory anti-beta-1 integrin composition will be administered alone to a patient who has failed prior antiangiogenic therapy. In another embodiment, the inhibitory anti-beta-1 integrin composition will be administered alone to a patient who is naïve to antiangiogenic therapy. In another embodiment, the anti-beta-1 integrin composition may further comprise a radioisotope attached thereto, particularly a beta-emitting element.
- An alternative agent for inducing hypoxia, besides anti-angiogenic therapy, is to use endovascular techniques for vessel embolization (superselective embolization/targeted embolization). This procedure is known for use for highly vascular brain lesions such as meningiomas and AVMs in order to shrink the lesion thus providing for more favorable circumstances for surgical resection.
- Inhibiting this target may be effective against several cancers expressing beta1 integrins beyond GBM including most epithelial and non-epithelial tumors such as breast, lung, liver, kidney, colon, melanoma, and lymphoma. There may be an additional use for an anti-beta1 composition for inhibiting angiogenesis in non-neoplastic diseases such as age-related wet macular degeneration. Finally, there may be use for an anti-beta-1 composition for anti-inflammatory indications as beta-1 integrin signaling is important for some immune cell functions including adhesion and proliferation.
- An alternate embodiment relates to potentiate vascularization in a biological system as in a regenerative medicine strategy. In such an embodiment, selective modulation of both angiogenesis and adhesive vessel co-option can result in improved tissue repair or regeneration.
- A further embodiment of the present invention comprises the use of shRNA (short hairpin RNA) to knockdown beta-1 integrin gene expression in a tumor cell. This was carried out in an example below, where significant reduction in tumor cell growth was shown in a cell line resistant to an anti-VEGF antibody. In the exemplified work, ShRNAs are precursors to the short interfering RNAs (siRNAs) that are the powerful mediators of RNA interference (RNAi). In RNAi, genes homologous in sequence to the siRNA are silenced at the post-transcriptional state. There are a variety of different hairpin structures that may give rise to effective siRNAs. Lentiviruses, such as the human immunodeficiency virus (HIV) are capable of infecting non-dividing cells, including differentiated neurons of the brain. Short hairpin RNAs can be expressed from lentiviruses, allowing for high efficiency transfection of a variety of cell types. An effective RNA hairpin construct can be designed based on the sequence of the gene to be silenced. Integrin beta-1 is a protein that, in humans, is encoded by the ITGB 1 gene. The entire human mRNA for integrin beta-1 subunit is set forth in Genbank locus X07979 and accession number BC020057. This sequence of 3656 nucleotides (SEQ ID NO: 1), also given in J. Cell Biol. 105 (3), 1183-1190 (1987) is not reproduced here for the sake of brevity, but is incorporated herein specifically by reference. This known sequence may be used to design interfering nucleic acid constructs such as the exemplified shRNA.
- Although not every hairpin construct will produce an effective RNAi response, rules have been developed that enrich for successful constructs. These rules are based on the examination of large numbers of effective constructs and thermodynamic analysis of microRNAs and effective siRNAs. Rules are published for example at Ambion technical bulletin #506, available online.
- The preparation of competent virus from DNA vectors involves packaging the construct into a cell line. Packaging an RNAi lentivirus is essentially the same as packaging a lentivirus carrying a cDNA. In essence, DNA vectors are transiently transfected into a packaging cell line-such as human 293 cells, and after 2-3 days the supernatant will contain the virus.
- For the most part, lentiviral vector production systems are based on a “split” system, where the natural viral genome has been split into individual helper plasmid constructs. This splitting of the different viral elements into three or four separate vectors diminishes the risk of creating a replication-capable virus by adventitious recombination of the lentiviral genome.
- When choosing a lentiviral production system for producing a beta integrin knockdown according to the present invention, one may prepare viruses that have a restricted host range (i.e. virus that may infect only rodents) vs. a broad host range (virus that may infect mouse, birds, human, etc). For the most part, the viral surface coat protein determines the species specificity. Because the lentiviral production systems are split, this coat protein can be switched by using, for example, the vesicular stomatitis virus (VSV/G) glycoprotein (which display a wide host range tropism) vs. an ecotropic maltose binding surface glycoprotein (which displays a limited specificity).
- Using Gene link siRNA explorer (http colon slash slash www dot genelink.com/sima/shmai.asp), 483 shRNA sequences were identified as inhibitors of human beta-1 integrin mRNA, including, for example, the sequence TTCTGGATTGGACTGATCAGTTC (SEQ ID NO: 2).
- The agents referred to here are preferably delivered to a patient in need thereof, which is, suffering from the tumors described here, in the form of a pharmaceutical composition suitable for human administration. The composition will comprise the agent, e.g. antibody or nucleic acid in isolated and substantially pure form, admixed with stabilizers, buffers, excipients, etc., as known in the art, and free of adventitious agents.
- The examples below are illustrative of certain inventive concepts described here.
- Here it is shown that hypoxia, another common cellular stress in the setting of fast-growing cancers and after antiangiogenic therapy, is correlated with high beta1 expression in patient glioblastomamultiforme (GBM) specimens. To directly confirm this mechanism we subjected glioma cells to 6 to 48 h of 1% oxygen to simulate microenvironmental hypoxia. We observed a significant increase in beta1 integrin expression in glioma cells in vitro (
FIG. 1 ). This is a rapid and reversible cellular response and was also demonstrated in breast and colorectal carcinoma cells. To verify that anti-angiogenic therapy can acutely increase beta1 expression in growing tumors in vivo we stained glioma tumors from mice taken within days of the last bevacizumab treatment. Marked increases in beta1 were observed in the treated tumors compared to controls, particularly in the hypoxic tumor core (FIG. 2 ). - Further increases in beta1 expression in tumor cells in vitro were observed during tumor cell proliferation itself. There is an inverse correlation between cell confluence in vitro and level of beta1 in U87MG glioma cells (
FIG. 3 ). In addition, expression of proliferation marker Ki-67 was positively correlated with beta1 expression in U87MG glioma cells as demonstrated by FACS. This is consistent with what others have observed in breast carcinoma cells. Finally, we visually observed significant increases in beta1 integrin expression in angiogenic vessels in human surgical specimens from primary GBM (FIG. 4 ). This increased beta 1 integrin expression is thought to be related to the association of beta1 to cellular proliferation observed in glioma cells, as discussed above. Thus, in addition to invasion and growth upon vessels, beta1 integrin appears to be intimately involved in tumor cell proliferation, survival signaling after hypoxia and IR, and in vascular endothelial cells during the process of angiogenesis. These multiple features make beta1 integrin a highly attractive target to potentially inhibit growth of tumors directly and as a conjunctive therapy with anti-angiogenesis to attenuate development of anti-angiogenic resistance. - To test the hypothesis that beta1 integrin may be involved in bevacizumab resistance we used immunofluorescenthistochemistry for beta1 integrin in paired patient specimens of GBM taken before bevacizumab therapy and after development of acquired bevacizumab resistance. Clear increases in post-bevacizumab GBM tissues compared to untreated specimens was seen in 9 of 12 pairs (75%,
FIG. 5 ). - To directly verify the increase in beta1 integrin expression in tumor cells after acquired bevacizumab resistance we analyzed cell lines derived from primary GBMs (first surgery) and from tissue isolated at least 30 d after development of resistance to antiangiogenic therapy. Indeed, beta1 integrin expression was an average of 13-fold higher in cells from the latter group compared to the former (
FIG. 6 ). - To verify that the observed beta1 integrin upregulation was functional we stained adjacent patient tumor sections for activated focal adhesion kinase (phospho-FAKtyr397). phospho-FAKtyr397 staining was significantly higher in the patient samples taken after acquired bevacizumab resistance compared to samples taken prior to therapy (
FIG. 7 ). - Thus, beta1 integrin is functionally upregulated in clinical patient samples taken after the development of acquired bevacizumab resistance.
- Integrin beta 1 shRNA in lentiviral particles were purchased from Santa Cruz Biotechnology, Inc., catalog #sc-35675. A mixture of four different shRNA sequences are provided. This material was used to transform cell line SF8106-Ax1 and SF7796-Ax3 (also known as BRG3 and BRG2, respectively), derived from patients who failed bevacizumab. We created stable knockdown lines of beta1 and beta3 integrins using a lentiviral vector. We verified 70% knockdown of beta1 in the BRG3 cells and a corresponding 60% decrease in cell growth after 1 week compared to either GFP vector control cells or beta3 knockdown cells (
FIG. 8 ). To study these cells in more detail, we isolated BRG3 knockdown clones with over 90% knockdown of beta1 and assessed functions indicative of increased tumor cell aggressiveness including adhesion, cell spreading, cell migration, and cell proliferation. These knockdown clones were significantly impaired in all four functions compared to the vector control cells (FIG. 9 ). - To verify the above findings in vivo we implanted three of the above BRG3 beta1 integrin knockdown clones subcutaneously in nude mice and followed tumor growth for 6 months. Vector control tumor cells grew normally whereas we observed no growth of any of the knockdown clones for the entire study period (
FIG. 10 ). Indeed, 13 of the 15 (87%) knockdown tumors completely regressed. To verify these findings are directly a result of beta1 knockdown we implanted polyclonal knockdown lines from the BRG2 and BRG3 subcutaneously and similarly monitored growth in vivo. These lines demonstrated an average of 70% beta1 knockdown. As predicted, these lines grew slower than the vector control lines. However, in contrast to the 90% knockdown clones, after several weeks both lines displayed latent growth in vivo suggesting a dose-response relationship for proliferation and levels of beta1 integrin (data not shown). - Thus, 90% or greater knockdown of beta1 in bevacizumab resistant glioma lines attenuates aggressive phenotypes in vitro and completely prevents growth in a xenograft model in vivo.
- To verify the above results with a clinically-relevant mode of beta1 inhibition we used the well characterized AIIB2 inhibitory rat monoclonal anti-beta1 integrin antibody in in vitro inhibition experiments. An isotype-matched IgG was used as a control. Bevacizumab resistant glioma lines demonstrated similar inhibition of function as beta1 knockdowns including decreased adhesion (data not shown) and migration (dynamic movie analysis, not shown) at 10 μg/ml. Effects on cell growth were demonstrated with immunofluorescent staining for either apoptosis/cell death (annexin V) or proliferation (Ki-67 antigen). After staining cells were sorted by flow cytometry/fluorescence activated cell sorting (FACS). This analysis demonstrated a significant decrease in Ki-67 staining in GBM cells treated with AIIB2, but no effect on annexin V immunoreactivity, consistent with a cytostatic effect (data not shown).
- This treatment with AIIB2 was repeated with a primary GBM line in vitro to see if cell growth would be affected by proliferative status. Cells in subconfluent culture (growth phase), but not those in confluent culture (growth arrest), were significantly growth inhibited by AIIB2 treatment for 2 days (
FIG. 11 ). - Finally, in vivo treatment with AIIB2 at doses of up to 5 mg/kg twice weekly significantly inhibited growth of the BRG3 bevacizumab resistant line (data not shown) in a subcutaneous xenograft model. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) revealed increased apoptosis in the AIIB2 treated tumors in the BRG3 line (data not shown).
- Thus, beta1 integrin inhibition with function-blocking antibodies such as AIIB2 attenuates aggressive phenotypes in vitro similar to beta1 knockdown. In addition, parenteral administration of AIIB2 is effective for inhibiting tumor growth of classic and bevacizumab resistant gliomaxenografts in vivo.
- Spheroidal tumor cell growth in culture is a surrogate for stem-like phenotype and can be promoted/enriched by stressors such as hypoxia and acid pH. Knockdown of beta1 in both a classic glioma cell line (U87MG) and the BRG3 bevacizumab resistant line significantly impaired spheroid formation (data not shown) AIIB2 also inhibited spheroidal growth of U87MG glioma cells induced by 48 hours of hypoxia (data not shown).
- In addition to impairment of spheroidal growth, inhibition of beta1 integrin promoted reversal of EMT as demonstrated by a significant increase in tumor cell area and a 50% decrease in the mesenchymal receptor c-met (data not shown).
- As an in vitro model of the effects of antiangiogenic therapy we subjected growth phase primary GBM cells to hypoxia for 2 days followed by continued growth in normoxia for 2 days. Hypoxia is used as an in vitro surrogate for anti-angiogenesis therapy such as bevacizumab. The addition of AIIB2 antibodies for the 2 day recovery period resulted in a further decrease in tumor cell growth as compared to either hypoxia or AIIB2 treatment alone (
FIG. 12 ). Thus, the combination of beta1 integrin inhibition with antiangiogenesisis predicted to potentiate therapeutic efficacy. - To verify the in vitro results above we treated mice with growing subcutaneous U87MG glioma tumors biweekly with control IgG (10 mg/kg), bevacizumab (10 mg/kg), or low-dose alternating combination therapy of bevacizumab (1 mg/kg) and AIIB2 (1 mg/kg). After several weeks of treatment, the low-dose alternating combination therapy proved to be as effective for inhibition of tumor growth as standard dose bevacizumab alone (
FIG. 13 ). Thus, beta1 integrin inhibition with AIIB2 allowed a 20-fold decrease in bevacizumab dose. - Thus, in summary, it is shown that inhibition of beta1 integrin may inhibit growth of tumors by 1) preventing vessel co-option and perivascular invasion (or invasion upon any classical ECM substrate), 2) reducing viability of tumor cells after insults such as IR and hypoxia possibly by promoting apoptosis, 3) directly inhibiting tumor cell proliferation, 4) directly inhibiting angiogenesis by targeting proliferating and migrating endothelial cells and 5) reversing the aggressive stem-like phenotype including epithelial to mesenchymal transition (EMT). Importantly, antagonizing the beta1 receptor via either lentiviral knockdown or with AIIB2 can significantly attenuate growth of bevacizumab-resistant gliomaxenografts in vivo. Further, AIIB2 treatment can reduce the necessary dose of bevacizumab up at least 20× in a gliomaxenograft model.
- The above specific description is meant to exemplify and illustrate the invention and should not be seen as limiting the scope of the invention, which is defined by the literal and equivalent scope of the appended claims. Any patents or publications mentioned in this specification are intended to convey details of methods and materials useful in carrying out certain aspects of the invention which may not be explicitly set out but which would be understood by workers in the field. Such patents or publications are hereby incorporated by reference to the same extent as if each was specifically and individually incorporated by reference and contained herein, as needed for the purpose of describing and enabling the method or material referred to.
Claims (28)
1. A pharmaceutical composition for inhibiting tumor cell growth, comprising a combination of
a first agent which is an inhibitor of vascular endothelial growth factor (“VEGF”); and
a second agent which blocks beta-1 integrin binding, whereby said combination inhibits tumor cell growth to a greater extent than either the first agent or the second agent separately.
2. The composition of claim 1 wherein the inhibitor of VEGF is an antibody binding VEGF.
3. The composition of claim 2 wherein the antibody is a humanized mouse antibody.
4. The composition of claim 1 wherein the second agent is a polypeptide binding to beta-1 integrin.
5. The composition of claim 4 wherein the polypeptide binds to beta-1 integrin associated with any alpha subunit and inhibits tumor cell binding to an extracellular substrate.
6. The composition of claim 4 wherein the polypeptide is an antibody specific for beta-1 integrin.
7. The composition of claim 6 wherein the antibody specific for beta-1 integrin is a chimeric, single chain or humanized antibody.
8. The composition of claim 7 wherein the antibody is AIIB2, BIE11 or a humanized antibody derived from AIIB2 or BIE11.
9. The composition of claim 1 wherein the first agent and the second agent are provided by a bivalent antibody having one binding site recognizing VEGF and one binding site recognizing beta 1 integrin.
10. A method for inhibiting tumor cell growth, comprising the step of administering to a subject having said tumor:
a combination of a first agent which is anti-angiogenic agent; and
a second agent which blocks tumor cell binding mediated by beta-1 integrin, whereby tumor cell growth is inhibited to an extent greater than inhibition caused by either the first agent or the second agent alone.
11. The method of claim 10 wherein the antiangiogenic agent is an antibody binding VEGF.
12. The method of claim 10 wherein the antiangiogenic agent is selected from the group consisting of a humanized mouse monoclonal antibody and a fully human antibody.
13. The method of claim 10 wherein the second agent is a polypeptide binding to beta-1 integrin.
14. The method of claim 13 wherein the polypeptide binds to beta-1 integrin associated with any alpha subunit.
15. The method of claim 13 wherein the polypeptide is an isolated antibody specific for beta-1 integrin.
16. The method of claim 15 wherein the antibody is a chimeric, single chain or humanized antibody.
17. The method of claim 15 wherein the antibody is AIIB2, BIE11 or humanized derivatives thereof.
18. The method of claim 10 wherein the tumor is selected from the group consisting of glioblastoma, colorectal, lung, breast, liver, kidney, colon, melanoma, and lymphoma.
19. A method of treating a tumor of neuro-epithelium tissue comprising the step of contacting the tumor with an inhibitor of beta-1 integrin binding.
20. The method of claim 19 wherein the inhibitor is an antibody binding to beta-1 integrin associated with any alpha subunit.
21. A method for imaging a tumor, comprising:
administering to a subject having said tumor a combination of a first agent which binds to VEGF; and a second agent which blocks tumor cell binding mediated by beta-1 integrin, wherein one or both first agent and said second agent are labeled.
22. The method of claim 21 wherein the second agent is a chimeric, single chain or humanized antibody binding to beta-1 integrin.
23. The method of claim 21 wherein the tumor is selected from the group consisting of glioblastoma, colorectal, lung, kidney, liver, ovarian and breast.
24. A method for inhibiting tumor cell growth comprising the step of delivering to said cell a nucleic acid construct interfering with expression of a gene encoding beta-1 integrin.
25. The method of claim 24 wherein said construct is a lentiviral vector encoding an shRNA that binds to beta-1 integrin mRNA to silence beta 1 integrin gene expression.
26. A method of treating a patient having a tumor, said patient having failed anti-VEGF antibody therapy, comprising the step of administering to said patient an anti-integrin agent.
27. A kit for treating a patient with recurrent glioblastomamultiforme (GBM) comprising:
(a) a catheter for placement intratumorally, within a resection cavity, or subdurally; and
(b) an inhibitory anti-beta1 integrin composition formulated for administration through said catheter via convection enhanced delivery (CED) device at a clinically-relevant dose and rate.
28. A method for inhibiting tumor cell growth, comprising the step of administering to a subject having said tumor:
a combination of a low-dose first agent which is anti-angiogenic agent; and
a second agent which blocks tumor cell binding mediated by beta-1 integrin, whereby tumor cell growth is inhibited to an equivalent amount as caused by the first agent at a higher clinical dose.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/006,669 US20140079637A1 (en) | 2011-03-23 | 2012-03-22 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161466791P | 2011-03-23 | 2011-03-23 | |
PCT/US2012/030204 WO2012129448A1 (en) | 2011-03-23 | 2012-03-22 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
US14/006,669 US20140079637A1 (en) | 2011-03-23 | 2012-03-22 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/030204 A-371-Of-International WO2012129448A1 (en) | 2011-03-23 | 2012-03-22 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/869,970 Continuation US11185585B2 (en) | 2011-03-23 | 2018-01-12 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140079637A1 true US20140079637A1 (en) | 2014-03-20 |
Family
ID=46879749
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/006,669 Abandoned US20140079637A1 (en) | 2011-03-23 | 2012-03-22 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
US15/869,970 Active US11185585B2 (en) | 2011-03-23 | 2018-01-12 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
US17/512,500 Abandoned US20220111045A1 (en) | 2011-03-23 | 2021-10-27 | Methods and Compositions for Improving Antiangiogenic Therapy with Anti-Integrins |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/869,970 Active US11185585B2 (en) | 2011-03-23 | 2018-01-12 | Methods and compositions for improving antiangiogenic therapy with anti-integrins |
US17/512,500 Abandoned US20220111045A1 (en) | 2011-03-23 | 2021-10-27 | Methods and Compositions for Improving Antiangiogenic Therapy with Anti-Integrins |
Country Status (9)
Country | Link |
---|---|
US (3) | US20140079637A1 (en) |
EP (1) | EP2688585B1 (en) |
JP (1) | JP2014523398A (en) |
KR (1) | KR20140030153A (en) |
CN (1) | CN103561761A (en) |
AU (1) | AU2012230809B2 (en) |
CA (1) | CA2830908C (en) |
ES (1) | ES2699532T3 (en) |
WO (1) | WO2012129448A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140030153A (en) * | 2011-03-23 | 2014-03-11 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | Methods and compositions for improving antiangiogenic therapy with anti- integrins |
EP3530284B1 (en) | 2012-12-26 | 2023-10-25 | OncoSynergy, Inc. | Anti-integrin beta1 antibody compositions and methods of use thereof |
EP3067698A1 (en) | 2015-03-11 | 2016-09-14 | Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Pd-ecgf as biomarker of cancer |
EP3067369A1 (en) | 2015-03-11 | 2016-09-14 | Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) | Methods and compositions for the treatment of anti-angiogenic resistant cancer |
IL298067A (en) | 2015-08-25 | 2023-01-01 | Histide Ag | Compounds for inducing tissue formation and their uses |
WO2017046229A1 (en) * | 2015-09-17 | 2017-03-23 | Histide Ag | Pharmaceutical association of growth factor receptor agonist and adhesion protein inhibitor for converting a neoplastic cell into a non-neoplastic cell and uses thereof |
AU2016323407A1 (en) * | 2015-09-17 | 2018-04-19 | Histide Ag | Pharmaceutical association of growth factor receptor agonist and adhesion protein inhibitor for converting a neoplastic cell into a non-neoplastic cell and uses thereof |
AU2016323408A1 (en) * | 2015-09-17 | 2018-04-19 | Histide Ag | Pharmaceutical association of growth factor receptor agonist and adhesion protein inhibitor for converting a neoplastic cell into a non-neoplastic cell and uses thereof |
US12319732B2 (en) | 2019-01-10 | 2025-06-03 | Sg Medical Inc. | Anti-beta 1 integrin humanized antibody, and pharmaceutical composition for treating cancer, comprising same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252043B1 (en) * | 1989-04-28 | 2001-06-26 | Biogen, Inc. | Vascular cell adhesion molecule (VCAM) polypeptides |
WO2008060645A2 (en) * | 2006-03-21 | 2008-05-22 | Genentech, Inc. | Combinatorial therapy involving alpha5beta1 antagonists |
US20090041767A1 (en) * | 2007-07-27 | 2009-02-12 | Vanitha Ramakrishnan | Pharmaceutical combinations |
WO2010111254A1 (en) * | 2009-03-25 | 2010-09-30 | Genentech, Inc. | Novel anti-alpha5beta1 antibodies and uses thereof |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US6033665A (en) | 1989-09-27 | 2000-03-07 | Elan Pharmaceuticals, Inc. | Compositions and methods for modulating leukocyte adhesion to brain endothelial cells |
US6165467A (en) | 1991-07-20 | 2000-12-26 | Yoshihide Hagiwara | Stabilized human monoclonal antibody preparation |
US5840300A (en) | 1995-09-11 | 1998-11-24 | Trustees Of The University Of Pennsylvania | Methods and compositions comprising single chain recombinant antibodies |
US5846536A (en) * | 1996-10-04 | 1998-12-08 | The Regents Of The University Of California | Restoration of normal phenotype in cancer cells |
US6596276B1 (en) | 1997-09-30 | 2003-07-22 | Beth Israel Deaconess Medical Center | Method for inhibiting tumor angiogenesis in a living subject |
AU746662B2 (en) * | 1998-05-08 | 2002-05-02 | Regents Of The University Of California, The | Methods for detecting and inhibiting angiogenesis |
WO2000042012A1 (en) | 1999-01-13 | 2000-07-20 | Bayer Corporation | φ-CARBOXYARYL SUBSTITUTED DIPHENYL UREAS AS RAF KINASE INHIBITORS |
IL144144A0 (en) | 1999-01-13 | 2002-05-23 | Bayer Ag | Omega-carboxy aryl substituted diphenyl ureas as p38 kinase inhibitors |
US7928239B2 (en) | 1999-01-13 | 2011-04-19 | Bayer Healthcare Llc | Inhibition of RAF kinase using quinolyl, isoquinolyl or pyridyl ureas |
US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
US6716410B1 (en) | 1999-10-26 | 2004-04-06 | The Regents Of The University Of California | Reagents and methods for diagnosing, imaging and treating atherosclerotic disease |
JP3789066B2 (en) | 1999-12-08 | 2006-06-21 | 三菱電機株式会社 | Liquid crystal display |
US8725620B2 (en) | 2000-07-10 | 2014-05-13 | Nobuyoshi Morimoto | System and method for negotiating improved terms for products and services being purchased through the internet |
US6995162B2 (en) | 2001-01-12 | 2006-02-07 | Amgen Inc. | Substituted alkylamine derivatives and methods of use |
US6878714B2 (en) | 2001-01-12 | 2005-04-12 | Amgen Inc. | Substituted alkylamine derivatives and methods of use |
US20030143191A1 (en) * | 2001-05-25 | 2003-07-31 | Adam Bell | Chemokine beta-1 fusion proteins |
JP4351043B2 (en) | 2001-07-09 | 2009-10-28 | エラン ファーマシューティカルズ,インコーポレイテッド | Method for inhibiting amyloid toxicity |
JP2005526008A (en) | 2001-12-04 | 2005-09-02 | オニックス ファーマシューティカルズ,インコーポレイティド | RAF-MEK-ERK pathway inhibitors for treating cancer |
US8637553B2 (en) | 2003-07-23 | 2014-01-28 | Bayer Healthcare Llc | Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions |
US7435823B2 (en) | 2004-01-23 | 2008-10-14 | Amgen Inc. | Compounds and methods of use |
WO2005117976A2 (en) * | 2004-06-03 | 2005-12-15 | The Regent Of The University Of California | Method of increasing radiation sensitivity by inhibition of beta one integrin |
JP2008546805A (en) | 2005-06-23 | 2008-12-25 | メディミューン,エルエルシー | Antibody formulations with optimal aggregation and fragmentation profiles |
AR059066A1 (en) | 2006-01-27 | 2008-03-12 | Amgen Inc | COMBINATIONS OF THE ANGIOPOYETINE INHIBITOR -2 (ANG2) AND THE VASCULAR ENDOTELIAL GROWTH FACTOR INHIBITOR (VEGF) |
JP4997432B2 (en) | 2006-02-10 | 2012-08-08 | 学校法人慶應義塾 | Neural stem cell growth inhibitor |
CN101448858B (en) * | 2006-03-21 | 2013-06-12 | 健泰科生物技术公司 | Combinatorial therapy involving alpha5beta1 antagonists |
WO2008031064A1 (en) * | 2006-09-07 | 2008-03-13 | University Of South Florida | Hyd1 peptides as anti-cancer agents |
WO2009009114A2 (en) * | 2007-07-12 | 2009-01-15 | Oncomed Pharmaceuticals, Inc. | Compositions and methods for treating and diagnosing cancer |
EP2060287B1 (en) * | 2007-11-14 | 2011-06-15 | BrainLAB AG | Drug supply system for CED (Convection Enhanced Delivery) catheter infusions |
WO2010022139A1 (en) * | 2008-08-20 | 2010-02-25 | New York Blood Center, Inc. | Regulation of integrin surface expression |
AU2009331529A1 (en) * | 2008-12-23 | 2011-08-11 | Astrazeneca Ab | Targeted binding agents directed to alpha5beta1 and uses therefor |
KR20140030153A (en) * | 2011-03-23 | 2014-03-11 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | Methods and compositions for improving antiangiogenic therapy with anti- integrins |
EP3530284B1 (en) * | 2012-12-26 | 2023-10-25 | OncoSynergy, Inc. | Anti-integrin beta1 antibody compositions and methods of use thereof |
-
2012
- 2012-03-22 KR KR1020137027236A patent/KR20140030153A/en not_active Ceased
- 2012-03-22 CA CA2830908A patent/CA2830908C/en active Active
- 2012-03-22 US US14/006,669 patent/US20140079637A1/en not_active Abandoned
- 2012-03-22 JP JP2014501258A patent/JP2014523398A/en active Pending
- 2012-03-22 AU AU2012230809A patent/AU2012230809B2/en active Active
- 2012-03-22 CN CN201280024596.8A patent/CN103561761A/en active Pending
- 2012-03-22 WO PCT/US2012/030204 patent/WO2012129448A1/en active Application Filing
- 2012-03-22 EP EP12760157.3A patent/EP2688585B1/en active Active
- 2012-03-22 ES ES12760157T patent/ES2699532T3/en active Active
-
2018
- 2018-01-12 US US15/869,970 patent/US11185585B2/en active Active
-
2021
- 2021-10-27 US US17/512,500 patent/US20220111045A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252043B1 (en) * | 1989-04-28 | 2001-06-26 | Biogen, Inc. | Vascular cell adhesion molecule (VCAM) polypeptides |
WO2008060645A2 (en) * | 2006-03-21 | 2008-05-22 | Genentech, Inc. | Combinatorial therapy involving alpha5beta1 antagonists |
US20090220504A1 (en) * | 2006-03-21 | 2009-09-03 | Anan Chuntharapai | Combinatorial therapy |
US20090041767A1 (en) * | 2007-07-27 | 2009-02-12 | Vanitha Ramakrishnan | Pharmaceutical combinations |
WO2010111254A1 (en) * | 2009-03-25 | 2010-09-30 | Genentech, Inc. | Novel anti-alpha5beta1 antibodies and uses thereof |
Non-Patent Citations (8)
Title |
---|
Carnevale et al. Regulation of Postangiogenic Neovessel Survival by beta1 and beta3 Integrins in Collagen and Fibrin Matrices. J. Vasc Res. 2007; 44:40-50. * |
Chekenya et al. The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene (2008) 27, 5182-5194 * |
Chen, Tom T, Context-dependent VEGF signaling: molecular regulation of vascular patterning during angiogenesis. University of California, Los Angeles . Dissertation, 2009, 235 pages. * |
Friedlander et al. Migration of Brain Tumor Cells on Extracellular Matrix Proteins in Vitro Correlates with Tumor Type and Grade and Involves αv, and Ã1 Integrins. CANCERRESEARCH56. 1939-1947. April 15. 19961 * |
Hemler et al. Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. (1990) Immunological Reviews 14:45-65. * |
Park et al. beta1 Integrin Inhibition Dramatically Enhances Radiotherapy Efficacy in Human Breast Cancer Xenografts. Cancer Res. 2008 Jun 1; 68(11): 4398-4405. * |
Tol et al. Chemotherapy, Bevacizumab, and Cetuximab in Metastatic Colorectal Cancer. N Engl J Med 2009;360:563-72. * |
Yang et al. Embryonic mesodermal defects in 5 integrin-deficient mice. Development 119, 1093-1105 (1993) * |
Also Published As
Publication number | Publication date |
---|---|
JP2014523398A (en) | 2014-09-11 |
KR20140030153A (en) | 2014-03-11 |
US20180236073A1 (en) | 2018-08-23 |
CA2830908A1 (en) | 2012-09-27 |
AU2012230809A1 (en) | 2013-10-10 |
WO2012129448A1 (en) | 2012-09-27 |
US20220111045A1 (en) | 2022-04-14 |
EP2688585A1 (en) | 2014-01-29 |
CN103561761A (en) | 2014-02-05 |
AU2012230809B2 (en) | 2017-06-29 |
ES2699532T3 (en) | 2019-02-11 |
EP2688585A4 (en) | 2015-05-06 |
US11185585B2 (en) | 2021-11-30 |
EP2688585B1 (en) | 2018-09-05 |
CA2830908C (en) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220111045A1 (en) | Methods and Compositions for Improving Antiangiogenic Therapy with Anti-Integrins | |
JP7540994B2 (en) | High affinity isoform selective TGFβ1 inhibitors and uses thereof - Patents.com | |
CN102596998B (en) | The treatment of vascular proliferative disorders | |
US10106601B2 (en) | Inhibition of PLGF to treat philadelphia chromosome positive leukemia | |
KR102608028B1 (en) | Monoclonal antibody that specifically binds to the human plasma membrane vesicle-related protein PV-1 and its production method and use | |
TWI669312B (en) | Inhibition of scube2, a novel vegfr2 co-receptor, suppresses tumor angiogenesis | |
US20090017011A1 (en) | Modulation of vegf-c/vegfr-3 interactions in the treatment of rheumatoid arthritis | |
JP2020054375A (en) | Treatment of angiogenic disorders | |
US11078272B2 (en) | Treatment of pediatric brain tumors with targeting of CD47 pathway | |
TW201712033A (en) | Human antibody against second-type vascular endothelial growth receptor for anti-angiogenesis and tumor target treatment | |
KR20240040068A (en) | Engineered immune cells specifically targeting mesothelin and uses thereof | |
WO2023016509A1 (en) | Drug for inhibiting tumor cell metastasis and use thereof | |
EP3440111B1 (en) | Anti-vegfr-1 antibodies and uses thereof | |
KR102207221B1 (en) | Methods of inhibiting pathological angiogenesis with doppel-targeting molecules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARBONELL, WARREN SHAWN;AGHI, MANISH KUMAR;SIGNING DATES FROM 20120716 TO 20120720;REEL/FRAME:031730/0777 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |