[go: up one dir, main page]

US20130118175A1 - Piston engine drivable using a steam power process - Google Patents

Piston engine drivable using a steam power process Download PDF

Info

Publication number
US20130118175A1
US20130118175A1 US13/812,804 US201113812804A US2013118175A1 US 20130118175 A1 US20130118175 A1 US 20130118175A1 US 201113812804 A US201113812804 A US 201113812804A US 2013118175 A1 US2013118175 A1 US 2013118175A1
Authority
US
United States
Prior art keywords
piston
cylinder
engine
internal
piston engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/812,804
Inventor
Nadja Eisenmenger
Hans-Christoph Magel
Andreas Wengert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGEL, HANS-CHRISTOPH, WENGERT, ANDREAS, EISENMENGER, NADJA
Publication of US20130118175A1 publication Critical patent/US20130118175A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00 with crankshaft
    • F01B9/023Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00 with crankshaft of Bourke-type or Scotch yoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a piston engine which can be driven via a steam power process.
  • the invention relates to a piston engine which can be driven via a steam power process and which serves to use the waste heat of an internal-combustion engine.
  • Internal-combustion engines convert the energy of the fuel into mechanical energy in order to drive vehicles and the like. However, a substantial portion of the energy is thereby released as waste heat which is directed away by the cooling system or in the exhaust gas of the internal-combustion engine. In order to use this thermal energy, it is conceivable for a steam power process to be coupled to the internal-combustion engine. The thermal energy from the internal-combustion engine can thereby be used to produce steam which is expanded in an expansion engine and which consequently provides additional energy which can be used to drive the vehicle or to produce auxiliary energy. In this instance, however, there is produced the problem that a large expansion volume of the expansion engine is necessary for a high degree of efficiency of the steam power process whereas the structural space situation in an internal-combustion engine is, however, generally very constrained.
  • the piston engine according to the invention has the advantage that a good degree of efficiency can be obtained with a compact construction type.
  • the piston engine can also be accommodated in a confined structural space situation in an internal-combustion engine, or the like, and have sufficient working volume at the same time.
  • the piston engine may be combined with an internal-combustion engine in order to convert the waste heat of the internal-combustion engine into additional driving energy.
  • Such a combination is particularly efficient in order to use waste heat in a commercial vehicle because, in this instance, the internal-combustion engine discharges great power and consequently a large quantity of heat is also available in order to produce steam. The fuel consumption of the internal-combustion engine can thereby be reduced.
  • a piston engine which is constructed as a reciprocating piston steam engine and which has a Scotch yoke crank mechanism is particularly advantageous. Substantially the same speed range can thereby be obtained for the piston engine as for the internal-combustion engine and consequently the mechanical energy discharged by the piston engine can be discharged directly to the crankshaft of the diesel engine or the gas engine. On the one hand, a small structural size of the piston engine is particularly important in this instance.
  • crankshaft of the piston engine may be located precisely on the crank axis of the internal-combustion engine so that no additional structural space for power transmission via one or more toothed wheels, a chain or a belt is necessary. Therefore, it is particularly advantageous for a crank axis of a crankshaft of the piston engine to be located on a crank axis of the internal-combustion engine.
  • the cylinder is further advantageous for the cylinder to be directed horizontally or downwards from the crank axis of the crankshaft in relation to an installation position of the internal-combustion engine.
  • a piston engine which is constructed as a two-piston reciprocating piston engine and which has opposing cylinders with a Scotch yoke drive
  • a relatively compact structural form can be achieved. Owing to the cylinders located at both sides of the crankshaft, however, this structural form does not have a flexible orientation of the cylinders because the possible fitting positions are limited. Particularly in this case, only horizontal installation may be advantageous here, the remaining auxiliary units having to be adapted.
  • a piston engine which is constructed as a one-cylinder steam engine and which operates with the single-cycle method is fitted to the internal-combustion engine.
  • This structural form allows a small structural size and flexible positioning.
  • the single cylinder of the piston engine can be fitted to the internal-combustion engine in a flexible manner in terms of the angular position.
  • a cylinder diameter of the cylinder piston may nevertheless be determined so as to be relatively small.
  • crankshaft or another shaft of the piston engine may be located directly on the crank axis or shaft axis of the internal-combustion engine and the cylinder of the piston engine can be positioned in an available gap in the internal-combustion engine owing to the one-sided structural space.
  • a compact piston engine may also be positioned at other locations, for example, in the region of the transmission bell housing between the internal-combustion engine and the transmission.
  • fitting laterally to the internal-combustion engine is advantageous, the crankshaft of the piston engine (steam engine) being orientated parallel with the crankshaft of the internal-combustion engine. It is thereby possible to bring about a simple operative connection of the two crankshafts via toothed wheels or chains or belts.
  • a very compact structural size of the steam engine is also necessary therefor.
  • a one-cylinder structural form is advantageous, the cylinder being orientated approximately parallel with the travel direction of the cylinder of the internal-combustion engine. In this instance, these combinations also afford the necessary freedom for positioning the cylinder structural space for the drive connection.
  • an additional cylinder bore an additional cylinder piston which is arranged in the additional cylinder bore and an additional rod which is connected at least indirectly to the additional cylinder piston to be provided, for the additional rod to be directed out of the additional cylinder bore, for the additional cylinder piston to delimit in the additional cylinder bore, at one side, a third working space and, at the other side, a fourth operating space, and for the rod and the additional rod to be connected to each other at least indirectly.
  • a piston engine having precisely two cylinders may be constructed.
  • a dual-action cylinder piston can be constructed with relatively little complexity in a piston engine in which a Scotch yoke drive and a bearing arrangement of a slider crank on the rods which act as transmission rods are provided. It is thereby possible to obtain practically double the stroke space with the same structural space being required, whereby the degree of efficiency of the piston engine is increased.
  • the return space constructed in the cylinder pistons can be used directly as additional operating space.
  • the sealing of the additional working spaces is then brought about at the transmission rod, respectively. Consequently, additional sealing locations are not required.
  • additional sealing elements in particular piston rings.
  • the piston engine being constructed as a reciprocating piston steam engine using the single-cycle principle and with Scotch yoke crank operation in conjunction with an internal-combustion engine, consequently, there can be produced a particularly low-consumption and cost-effective combination engine which comprises the internal-combustion engine and the piston engine and which complies with the requirements in terms of service-life of a commercial vehicle.
  • the cylinder piston it is advantageous for the cylinder piston to have, at one side, a first lateral face and, at the other side, a second lateral face, for the first lateral face and the second lateral face to be directed away from each other, for the first lateral face of the cylinder piston in the cylinder bore to delimit the first operating space and for the second lateral face of the cylinder piston in the cylinder bore to delimit the second operating space. It is thereby possible to achieve alternating actuation of the cylinder piston owing to alternating filling of the operating spaces with vapor-like operating fluid.
  • the rod at the second lateral face of the cylinder piston may be connected to the cylinder piston and for the rod to extend at least approximately perpendicularly relative to the second lateral face through the second operating space.
  • the rod may be rigidly connected to the cylinder piston.
  • the force acting on the cylinder piston may advantageously be transmitted via the rod to a crankshaft or the like.
  • an inlet for the first operating space and an inlet for the second operating space may be provided and for vapor-like operating fluid to be alternately directed into the first operating space and the second operating space via the inlet for the first operating space and via the inlet for the second operating space.
  • the inlets may be advantageously constructed as valve-controlled inlets.
  • an outlet for the first operating space and an outlet for the second operating space to be provided and for at least partially depressurized vapor-like operating fluid to be able to be alternately discharged from the first operating space and the second operating space via the outlet for the first operating space and via the outlet for the second operating space.
  • the outlets may advantageously be constructed as valve-controlled outlets.
  • Gaseous operating fluid which is under relatively high pressure can be directed via the inlets into the operating spaces.
  • the depressurized gaseous operating fluid can then be directed, for example, to a condenser via the outlets.
  • crankshaft which is arranged in a crankshaft space to be provided, for the crankshaft to have a crankshaft journal on which a sliding block is arranged, for the rod to be connected to a slider crank arranged in the crankshaft space and for the crank slider to have a slot-like recess, in which the sliding block is introduced.
  • a slider crank mechanism can thereby be constructed.
  • a piston engine in the form of a reciprocating piston steam engine can be constructed with a Scotch yoke crank mechanism.
  • the cylinder bore is also advantageous for the cylinder bore to be directed horizontally or downwards from the crank axis of the crankshaft in relation to an installation position of the internal-combustion engine. In this region, no auxiliary units are generally arranged in the internal-combustion engine so that the structural space available can be used.
  • the steam power process may be constructed as an ORC process (Organic Rankine Cycle process).
  • ORC process Organic Rankine Cycle process
  • the thermal energy of the waste heat is converted into mechanical energy via the ORC process.
  • the waste heat can advantageously be transmitted to the operating fluid of the ORC process from an exhaust gas of the internal-combustion engine or an exhaust gas return line via a heat exchanger.
  • the operating fluid may be based at least substantially on water.
  • the operating fluid can be vaporized at the heat exchanger. That vapor can subsequently be depressurized in the piston engine which acts as an expansion engine, the mechanical energy being acquired.
  • the operating fluid is subsequently cooled in a condenser and supplied to a pump.
  • the operating fluid can thereby be compressed in the fluid phase by the pump to the pressure level for the repeated vaporization at the heat exchanger.
  • the circuit is thereby closed.
  • the rod is connected, on the one hand, rigidly to the cylinder piston and, on the other hand, rigidly to the slider crank. It is further advantageous for there to be provided a bearing on which the rod directed out of the cylinder bore is supported.
  • the bearing may advantageously be constructed by a bearing face.
  • the bearing can further be lubricated by a lubricant from the crankshaft space. Consequently, the rod is supported displaceably on the bearing, a compact construction being made possible.
  • the piston engine forming a combination engine with the internal-combustion engine.
  • a steam engine is combined with an internal-combustion engine.
  • the piston engine can be operatively connected in mechanical terms to a drive train of a vehicle.
  • the piston engine is fitted to an internal-combustion engine, it is advantageous for the piston engine to be fitted to the internal-combustion engine at the front, or for the piston engine to be fitted to the internal-combustion engine at the side.
  • a gear casing or the like which is also required for other units may be used in order to produce the mechanical operative connection.
  • the cylinder bore is also advantageous for the cylinder bore to be orientated at least approximately parallel with a cylinder of the internal-combustion engine. Particularly in the case of a single-cylinder construction of the piston engine, the cylinder is preferably directed upwards.
  • FIG. 1 is a schematic cross section of a piston engine in accordance with a first embodiment of the invention
  • FIG. 2 shows an arrangement of the piston engine of the first embodiment of the invention illustrated in FIG. 1 in an internal-combustion engine and
  • FIG. 3 is a schematic cross section of the piston engine illustrated in FIG. 1 in accordance with a second embodiment of the invention.
  • FIG. 1 is a schematic illustration of a piston engine 1 in accordance with a first embodiment of the invention.
  • the piston engine 1 is driven via a steam power process.
  • the piston engine 1 can be used particularly in an internal-combustion engine of a motor vehicle in order to use the waste heat of the internal-combustion engine.
  • the piston engine 1 then converts the waste heat into mechanical energy which can be used, for example, as additional drive energy or to drive an auxiliary unit, in particular an electrical generator.
  • the piston engine 1 according to the invention is also suitable for other applications.
  • the piston engine 1 has a housing portion 2 and a cylinder 3 which is connected to the housing portion 2 .
  • the piston engine 1 has precisely one cylinder 3 .
  • the cylinder 3 of the piston engine 1 has a cylinder bore 4 , in which a cylinder piston 5 is arranged.
  • the cylinder piston 5 is arranged in this instance in the cylinder bore 4 in a manner displaceable along an axis 6 of the cylinder bore 4 .
  • the cylinder piston 5 has, at one side, a first lateral face 7 and, at the other side, a second lateral face 8 .
  • the cylinder piston 5 delimits in the cylinder bore 4 a first operating space 9 with the first lateral face 7 .
  • the cylinder piston 5 delimits a second operating space 10 in the cylinder bore 4 with the second lateral face 8 .
  • Valve-controlled inlets 12 , 13 are provided in the cylinder 3 .
  • Valve-controlled outlets 14 , 15 are further provided in the cylinder 3 .
  • the inlet 12 and the outlet 14 are associated with the first operating space 9 .
  • the inlet 13 and the outlet 15 are associated with the second operating space 10 .
  • highly pressurized, vapor-like operating fluid can be introduced into the first operating space 9 via the inlet 12 .
  • An actuating force is applied to the cylinder piston 5 in the direction 11 via the pressure of the gaseous operating fluid.
  • the gaseous operating fluid in the first operating space 9 thereby becomes depressurized.
  • the outlet 15 can be opened in order to discharge the already depressurized, remaining operating fluid from the second operating space 10 .
  • an inverse actuation of the cylinder piston 5 may be carried out counter to the direction 11 .
  • the valve-controlled inlet 13 is opened in order to introduce highly pressurized, gaseous operating fluid into the second operating space 10 .
  • the inlet 11 for the first operating space 9 is closed in this instance.
  • the outlet 14 for the first operating space 11 can now be opened in order to discharge the depressurized, gaseous operating fluid from the first operating space 9 when the cylinder piston 5 is actuated counter to the direction 11 . Consequently, an alternating actuation of the cylinder piston 5 is possible.
  • the piston engine 1 has a rod 20 which acts as the transmission rod 20 .
  • the rod 20 is connected at one side to the cylinder piston 5 at the second lateral face 8 .
  • the rod 20 is rigidly connected to the cylinder piston 5 .
  • the rod 20 is orientated with respect to the axis 6 in this instance so that the rod 20 is orientated perpendicularly to the second lateral face 8 .
  • the rod 20 is connected at the other side to a slider crank 23 which is arranged in the crankshaft space 21 .
  • the connection of the rod 20 to the slider crank 23 is also constructed in a rigid manner in this instance. Consequently, the rod 20 extends through the second operating space 10 and into the crankshaft space 21 .
  • the cylinder bore 4 is separated from the crankshaft space 21 by a housing portion 24 .
  • a bearing face 25 which adjoins the crankshaft space 21 is constructed on the housing portion 24 .
  • the bearing face 25 forms a bearing 25 ′, on which the rod 20 which is directed out of the cylinder bore 4 is supported.
  • Lubricating oil is preferably located in the crankshaft space 21 . This lubricating oil can also be used to lubricate the bearing face 25 . Consequently, advantageous supporting of the rod 20 on the bearing face 25 is possible.
  • annular sealing elements 26 , 27 which are arranged behind the bearing face 25 can be provided. Introduction of lubricating oil into the second operating space 10 , and consequently mixing of the gaseous operating fluid, on the one hand, and the lubricating oil, on the other hand, is thereby prevented.
  • the crank mechanism of the piston engine 1 has a sliding block 28 which is arranged on a crankshaft journal 29 of the crankshaft 22 .
  • the sliding block 28 is in this instance introduced into a slot-like recess 30 of the slider crank 23 . It is thereby possible to convert the reciprocating movement of the rod 20 into a rotational movement of the crankshaft 22 .
  • the lubrication of the crank mechanism is brought about in this instance by means of the lubricating oil provided in the crankshaft space 21 .
  • piston rings 31 , 32 which improve sealing between the operating spaces 9 , 10 and, at the same time, prevent friction between the cylinder piston 5 and the cylinder bore 4 . Frictional wear can thereby be reduced and a reliable sealing action ensured at the same time.
  • a piston engine 1 which is in the form of a reciprocating piston steam engine and which operates with the single-cycle principle can advantageously be constructed so as to have precisely one cylinder 3 .
  • the cylinder piston 5 introduces its force via the rod 20 to the slider crank mechanism and consequently the crankshaft 22 . All the inlets 12 , 13 and outlets 14 , 15 are controlled.
  • the reciprocating piston movement of the cylinder piston 5 is transmitted to the crankshaft 22 by the slider crank drive with the slider crank 23 and the sliding block 28 which is arranged on the crankshaft journal 29 .
  • the slider crank 23 is supported on the bearing location formed by the bearing face 25 via the rod 20 . That bearing is located in the oil region because it adjoins the crankshaft space 21 .
  • the operating fluid is alternately depressurized in the operating spaces 9 , 10 . Consequently, both the upward and the downward movements of the cylinder piston 5 contribute to the power production.
  • a great expansion volume is thereby achieved in a small structural space of the piston engine 1 .
  • a small structural length is further achieved from one crank axis 33 of the crankshaft 22 as far as one end 34 of the cylinder 3 .
  • the piston engine 1 can thereby be flexibly arranged in an internal-combustion engine or the like.
  • FIG. 2 shows an arrangement of the piston engine 1 illustrated in FIG. 1 in an internal-combustion engine 35 .
  • the internal-combustion engine 35 has, for example, a cylinder 36 which is orientated perpendicularly or vertically relative to an installation position. This is possible, for example, in a configuration as a series cylinder.
  • a plurality of auxiliary units 37 , 38 , 39 are arranged at the front side of the internal-combustion engine 35 .
  • a crank axis 33 of the internal-combustion engine 35 is orientated perpendicularly relative to the plane of the drawing in this embodiment.
  • the piston engine 1 can now advantageously be arranged at the front side of the internal-combustion engine 35 , the structural space left unoccupied by the auxiliary units 37 to 39 being able to be used.
  • the piston engine 1 is arranged at the front side of the internal-combustion engine 35 in such a manner that the crank axis 33 of the piston engine 1 corresponds to the crank axis 33 of the internal-combustion engine 35 .
  • That fitting arrangement is particularly advantageous because the power transmission from the piston engine 1 to the internal-combustion engine 35 can be carried out without additional toothed wheels, chains and belts.
  • FIG. 3 is a schematic cross section of the piston engine 1 illustrated in FIG. 1 in accordance with a second embodiment.
  • the piston engine 1 has an additional cylinder 3 ′.
  • An additional cylinder bore 4 ′, in which an additional cylinder piston 5 ′ is arranged, is constructed in the additional cylinder 3 ′.
  • the additional cylinder piston 5 ′ can also be actuated along the axis 6 in this instance.
  • the cylinder piston 5 ′ has a first lateral face 7 ′ and a second lateral face 8 ′. At the first lateral face 7 ′, the cylinder piston 5 ′ delimits a third operating space 40 . At the second lateral face 8 ′, the cylinder piston 5 ′ delimits a fourth operating space 41 .
  • the cylinder piston 5 ′ can be actuated together with the cylinder piston 5 so that both cylinder pistons 5 are displaced either in the direction 11 or counter to the direction 11 .
  • Inlets 12 ′, 13 ′ are provided in the additional cylinder 3 ′. Furthermore, outlets 14 ′, 15 ′ are provided in the additional cylinder 3 ′. The inlet 12 ′ and the outlet 14 ′ are associated with the third operating space 40 in this instance. The inlet 13 ′ and the outlet 15 ′ are associated with the fourth operating space 41 .
  • a rod 20 ′, via which the cylinder piston 5 ′ is connected to the slider crank 23 , is further provided. In this instance, the rod 20 ′ is rigidly connected to the cylinder piston 5 ′ at the second lateral face 8 ′. Consequently, the displacement force acting on the cylinder piston 5 can be transmitted to the slider crank 23 via the rod 20 ′.
  • the rod 20 ′ is supported on a bearing 25 ′ in this instance.
  • pressurized, gaseous operating fluid is alternately introduced into the third operating space 40 and the fourth operating space 41 .
  • the inlets 12 ′, 13 ′ are alternately opened.
  • the actuation of the inlets 12 , 13 and the inlets 12 ′, 13 ′ for the two cylinders 3 , 3 ′ may occur in a synchronized manner.
  • the actuation of the outlets 14 , 15 for the cylinder 3 and the outlets 14 ′, 15 ′ for the cylinder 3 ′ can also occur in a synchronized manner.
  • a piston engine 1 having mutually opposing cylinders 3 , 3 ′ and consequently mutually opposing cylinder pistons 5 , 5 ′ can be constructed, the cylinder pistons 5 , 5 ′ introducing their forces to the crankshaft 22 via the slider crank mechanism.
  • the reciprocating piston movement of the two cylinder pistons 5 , 5 ′ is transmitted to the crankshaft 22 .
  • the slider crank 23 is advantageously supported on the two bearing locations 25 , 25 ′ which are arranged at the two sides of the crank axis 33 .
  • the sealing of the crankshaft space 21 which is filled with lubricating oil with respect to the cylinder bores 4 , 4 ′ is brought about in this embodiment via the bearings 25 , 25 ′.
  • An additional sealing may also optionally be provided by means of sealing elements.
  • the first operating space 9 and the fourth operating space 41 can simultaneously be filled with gaseous operating fluid so that, during the expansion of the operating fluid, an actuation of the slider crank 23 in the direction 11 is brought about. Subsequently, an opposed actuation can be brought about by introducing the gaseous operating fluid, on the one hand, into the second operating space 10 and, on the other hand, into the third operating space 40 .
  • Each of the cylinder pistons 5 , 5 ′ is thereby acted upon at both sides. It is thereby possible to have a compact construction of the piston engine 1 with a large expansion volume being constructed at the same time.
  • the piston engine 1 of the second embodiment illustrated in FIG. 3 can be fitted to an internal-combustion engine 35 .
  • the piston engine 1 of the second embodiment can be arranged in the internal-combustion engine 35 illustrated in FIG. 2 in that there is brought about a horizontal installation position in relation to the axis 6 of the piston engine 1 and a displacement, on the one hand, of the auxiliary unit 37 upwards and, on the other hand, optionally of the auxiliary unit 39 upwards.
  • the crank axis 33 of the crankshaft 22 of the piston engine 1 then corresponds to the crank axis 33 of the internal-combustion engine 35 .
  • the piston engine 1 then forms with the internal-combustion engine 35 a combination engine 1 , 35 .
  • the piston engine 1 is operatively connected in mechanical terms to a drive train 33 of a vehicle. If the piston engine 1 is fitted to the internal-combustion engine 35 , the piston engine 1 can be fitted to the internal-combustion engine 35 at the front or the piston engine 1 can be fitted to the internal-combustion engine 35 at the side.
  • the cylinder bore 4 is preferably orientated at least approximately parallel with the cylinder 36 of the internal-combustion engine 35 .
  • the fitting is particularly advantageous if precisely one cylinder bore 4 is provided. Owing to the compact construction, favorable fitting positions in the internal-combustion engine 35 are thereby produced.
  • the cylinder piston 5 it is advantageous for the cylinder piston 5 to have, at one side, a first lateral face 7 and, at the other side, a second lateral face 8 , for the first lateral face 7 and the second lateral face 8 to be directed away from each other, for the first lateral face 7 of the cylinder piston 5 to delimit the first operating space 9 in the cylinder bore 4 and for the second lateral face 8 of the cylinder piston 5 to delimit the second operating space 10 in the cylinder bore 4 . Consequently, it is also advantageous in this instance for the rod 20 to be connected to the cylinder piston 5 at the second lateral face 8 of the cylinder piston 5 and for the rod 20 to extend through the second operating space 10 at least approximately perpendicularly relative to the second lateral face 8 .
  • an inlet 12 for the first operating space 9 and an inlet 13 for the second operating space 10 to be provided and for vapor-like operating fluid to be able to be directed alternately into the first operating space 9 and the second operating space 10 via the inlet 12 for the first operating space 9 and via the inlet 13 for the second operating space 10 ,
  • an outlet 14 for the first operating space 9 and an outlet 15 for the second operating space 10 to be provided and for at least partially depressurized vapor-like operating fluid to be able to be discharged alternately from the first operating space 9 and the second operating space 10 via the outlet 14 for the first operating space 9 and via the outlet 15 for the second operating space 10 .
  • crankshaft 22 which is arranged in a crankshaft space 21 to be provided, for the crankshaft 22 to have a crankshaft journal 29 on which a sliding block 28 is arranged, for the rod 20 to be connected to a slider crank 23 which is arranged in the crankshaft space 21 and for the slider crank 23 to have a slot-like recess 30 in which the sliding block 28 is introduced.
  • crank axis 33 of the crankshaft 22 it is also advantageous for a crank axis 33 of the crankshaft 22 to be arranged on a crank axis 33 of the internal-combustion engine 35 . Consequently, it is also advantageous for the cylinder bore 4 to be orientated horizontally or downwards from the crank axis 33 in relation to an installation position of the internal-combustion engine 35 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A piston engine (1) that can be driven using a steam power process and is used in particular for utilizing waste heat from an internal combustion engine comprises at least one cylinder bore (4), a cylinder piston (5) which is arranged in the cylinder bore (4), and a rod (20) which is connected to the cylinder piston (5). The rod (20) is guided out of the cylinder bore (4). The cylinder piston (5) delimits a first operating space (9) and a second operating space (10) in the cylinder bore (4). A crankshaft (22) is disposed in a crankshaft space (21). The rod (20) is connected to a slider crank mechanism (23) which is disposed in the crankshaft space (21), the rod (20) being effectively connected to the crankshaft (22) via the slider crank mechanism (23), thus making it possible to obtain a large expansion volume while keeping the design of the piston engine (1) compact.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to a piston engine which can be driven via a steam power process. In particular, the invention relates to a piston engine which can be driven via a steam power process and which serves to use the waste heat of an internal-combustion engine.
  • Internal-combustion engines convert the energy of the fuel into mechanical energy in order to drive vehicles and the like. However, a substantial portion of the energy is thereby released as waste heat which is directed away by the cooling system or in the exhaust gas of the internal-combustion engine. In order to use this thermal energy, it is conceivable for a steam power process to be coupled to the internal-combustion engine. The thermal energy from the internal-combustion engine can thereby be used to produce steam which is expanded in an expansion engine and which consequently provides additional energy which can be used to drive the vehicle or to produce auxiliary energy. In this instance, however, there is produced the problem that a large expansion volume of the expansion engine is necessary for a high degree of efficiency of the steam power process whereas the structural space situation in an internal-combustion engine is, however, generally very constrained.
  • SUMMARY OF THE INVENTION
  • The piston engine according to the invention has the advantage that a good degree of efficiency can be obtained with a compact construction type. In particular, the piston engine can also be accommodated in a confined structural space situation in an internal-combustion engine, or the like, and have sufficient working volume at the same time.
  • In an advantageous manner, the piston engine may be combined with an internal-combustion engine in order to convert the waste heat of the internal-combustion engine into additional driving energy. Such a combination is particularly efficient in order to use waste heat in a commercial vehicle because, in this instance, the internal-combustion engine discharges great power and consequently a large quantity of heat is also available in order to produce steam. The fuel consumption of the internal-combustion engine can thereby be reduced.
  • Particularly for use in commercial vehicles having a diesel engine or a gas engine, a piston engine which is constructed as a reciprocating piston steam engine and which has a Scotch yoke crank mechanism is particularly advantageous. Substantially the same speed range can thereby be obtained for the piston engine as for the internal-combustion engine and consequently the mechanical energy discharged by the piston engine can be discharged directly to the crankshaft of the diesel engine or the gas engine. On the one hand, a small structural size of the piston engine is particularly important in this instance. On the other hand, however, an ability to be positioned as flexibly as possible in the internal-combustion engine is also necessary in order to still find, among the generally large number of auxiliary units present in the internal-combustion engine, a favorable fitting location which does not cause great complexity in terms of modifications to the internal-combustion engine. This is advantageously possible particularly in the case of a commercial vehicle by installation in the internal-combustion engine at the front, the installation being carried out between the internal-combustion engine and a radiator or a fan. In this instance, the crankshaft of the piston engine may be located precisely on the crank axis of the internal-combustion engine so that no additional structural space for power transmission via one or more toothed wheels, a chain or a belt is necessary. Therefore, it is particularly advantageous for a crank axis of a crankshaft of the piston engine to be located on a crank axis of the internal-combustion engine.
  • It is further advantageous for the cylinder to be directed horizontally or downwards from the crank axis of the crankshaft in relation to an installation position of the internal-combustion engine. In the case of a piston engine which is constructed as a two-piston reciprocating piston engine and which has opposing cylinders with a Scotch yoke drive, a relatively compact structural form can be achieved. Owing to the cylinders located at both sides of the crankshaft, however, this structural form does not have a flexible orientation of the cylinders because the possible fitting positions are limited. Particularly in this case, only horizontal installation may be advantageous here, the remaining auxiliary units having to be adapted.
  • In an advantageous manner, a piston engine which is constructed as a one-cylinder steam engine and which operates with the single-cycle method is fitted to the internal-combustion engine. This structural form allows a small structural size and flexible positioning. Owing to the construction as a one-cylinder engine, the single cylinder of the piston engine can be fitted to the internal-combustion engine in a flexible manner in terms of the angular position. By the single-cycle principle which is implemented by the dual-action cylinder piston being used, a cylinder diameter of the cylinder piston may nevertheless be determined so as to be relatively small.
  • Owing to the compact structural form which is constructed at one side relative to the axis as a one-cylinder engine, it is easier to find structural space for the piston engine in a typical internal-combustion engine in the front portion between the fitted units which are already present. In particular, a crankshaft or another shaft of the piston engine may be located directly on the crank axis or shaft axis of the internal-combustion engine and the cylinder of the piston engine can be positioned in an available gap in the internal-combustion engine owing to the one-sided structural space.
  • This combination allows a sufficiently compact structure of the piston engine with a working volume that is sufficient for a high level of efficiency. Both the fitting and a sufficient reduction in the fuel consumption are thereby possible. Consequently, the prerequisites for economical use of the piston engine in an internal-combustion engine of a motor vehicle or the like are met.
  • Alternatively to the fitting arrangement in front of the internal-combustion engine, a compact piston engine may also be positioned at other locations, for example, in the region of the transmission bell housing between the internal-combustion engine and the transmission. Furthermore, fitting laterally to the internal-combustion engine is advantageous, the crankshaft of the piston engine (steam engine) being orientated parallel with the crankshaft of the internal-combustion engine. It is thereby possible to bring about a simple operative connection of the two crankshafts via toothed wheels or chains or belts. A very compact structural size of the steam engine is also necessary therefor. A one-cylinder structural form is advantageous, the cylinder being orientated approximately parallel with the travel direction of the cylinder of the internal-combustion engine. In this instance, these combinations also afford the necessary freedom for positioning the cylinder structural space for the drive connection.
  • Alternatively, however, it is also advantageous for an additional cylinder bore, an additional cylinder piston which is arranged in the additional cylinder bore and an additional rod which is connected at least indirectly to the additional cylinder piston to be provided, for the additional rod to be directed out of the additional cylinder bore, for the additional cylinder piston to delimit in the additional cylinder bore, at one side, a third working space and, at the other side, a fourth operating space, and for the rod and the additional rod to be connected to each other at least indirectly. In particular, a piston engine having precisely two cylinders may be constructed.
  • In order to obtain a good level of efficiency of the steam power process, a large expansion volume is necessary for the gaseous operating fluid in the piston engine. Owing to the constrained structural space situation, an increase in the cylinder piston or an increase in the number of cylinder pistons is generally not possible. Additional optimization of the expansion volume with a predetermined structural size of a piston engine may be brought about by an operating piston which acts at both sides in accordance with a single-cycle principle.
  • A dual-action cylinder piston can be constructed with relatively little complexity in a piston engine in which a Scotch yoke drive and a bearing arrangement of a slider crank on the rods which act as transmission rods are provided. It is thereby possible to obtain practically double the stroke space with the same structural space being required, whereby the degree of efficiency of the piston engine is increased.
  • Owing to the slider crank being supported on the transmission rods from the cylinder pistons to the slider crank, the return space constructed in the cylinder pistons can be used directly as additional operating space. The sealing of the additional working spaces is then brought about at the transmission rod, respectively. Consequently, additional sealing locations are not required. In order to improve the sealing at the transmission rods, there may optionally be provided in this instance additional sealing elements, in particular piston rings.
  • In this construction, consequently, an advantageous combination of the piston engine with an internal-combustion engine may also be brought about. In spite of the compact construction of the piston engine, there can be obtained an adequate working volume which results in a high level of efficiency and consequently a substantial reduction of the fuel consumption. Consequently, the prerequisites for an economic use of the piston engine in a motor vehicle are also met in this instance.
  • Additional optimization is possible owing to the slider crank being arranged in the oil region. It is thereby possible to achieve a long service-life and a high degree of efficiency, which is particularly significant for use in a commercial vehicle having an internal-combustion engine. In this instance, sealing for the operating fluid (operating medium) at the rods with respect to the oil region is also effective at the same time as sealing for the adjacent operating spaces. Consequently, there is produced an advantageous construction in which the number of components necessary is reduced.
  • Owing to the piston engine being constructed as a reciprocating piston steam engine using the single-cycle principle and with Scotch yoke crank operation in conjunction with an internal-combustion engine, consequently, there can be produced a particularly low-consumption and cost-effective combination engine which comprises the internal-combustion engine and the piston engine and which complies with the requirements in terms of service-life of a commercial vehicle.
  • Therefore, it is advantageous for the cylinder piston to have, at one side, a first lateral face and, at the other side, a second lateral face, for the first lateral face and the second lateral face to be directed away from each other, for the first lateral face of the cylinder piston in the cylinder bore to delimit the first operating space and for the second lateral face of the cylinder piston in the cylinder bore to delimit the second operating space. It is thereby possible to achieve alternating actuation of the cylinder piston owing to alternating filling of the operating spaces with vapor-like operating fluid. In this instance, it is also advantageous for the rod at the second lateral face of the cylinder piston to be connected to the cylinder piston and for the rod to extend at least approximately perpendicularly relative to the second lateral face through the second operating space. In this instance, the rod may be rigidly connected to the cylinder piston. As a result, the force acting on the cylinder piston may advantageously be transmitted via the rod to a crankshaft or the like.
  • It is advantageous for an inlet for the first operating space and an inlet for the second operating space to be provided and for vapor-like operating fluid to be alternately directed into the first operating space and the second operating space via the inlet for the first operating space and via the inlet for the second operating space. In this instance, the inlets may be advantageously constructed as valve-controlled inlets. It is further advantageous for an outlet for the first operating space and an outlet for the second operating space to be provided and for at least partially depressurized vapor-like operating fluid to be able to be alternately discharged from the first operating space and the second operating space via the outlet for the first operating space and via the outlet for the second operating space. In this instance, the outlets may advantageously be constructed as valve-controlled outlets. In this instance, it is possible to incorporate the operating spaces advantageously in the steam power process. Gaseous operating fluid which is under relatively high pressure can be directed via the inlets into the operating spaces. The depressurized gaseous operating fluid can then be directed, for example, to a condenser via the outlets.
  • It is also advantageous for a crankshaft which is arranged in a crankshaft space to be provided, for the crankshaft to have a crankshaft journal on which a sliding block is arranged, for the rod to be connected to a slider crank arranged in the crankshaft space and for the crank slider to have a slot-like recess, in which the sliding block is introduced. In an advantageous manner, a slider crank mechanism can thereby be constructed. In this instance, a piston engine in the form of a reciprocating piston steam engine can be constructed with a Scotch yoke crank mechanism.
  • It is also advantageous for the cylinder bore to be directed horizontally or downwards from the crank axis of the crankshaft in relation to an installation position of the internal-combustion engine. In this region, no auxiliary units are generally arranged in the internal-combustion engine so that the structural space available can be used.
  • In an advantageous manner, the steam power process may be constructed as an ORC process (Organic Rankine Cycle process). In this instance, the thermal energy of the waste heat is converted into mechanical energy via the ORC process. In this instance, the waste heat can advantageously be transmitted to the operating fluid of the ORC process from an exhaust gas of the internal-combustion engine or an exhaust gas return line via a heat exchanger. In this instance, the operating fluid may be based at least substantially on water. The operating fluid can be vaporized at the heat exchanger. That vapor can subsequently be depressurized in the piston engine which acts as an expansion engine, the mechanical energy being acquired. The operating fluid is subsequently cooled in a condenser and supplied to a pump. The operating fluid can thereby be compressed in the fluid phase by the pump to the pressure level for the repeated vaporization at the heat exchanger. The circuit is thereby closed.
  • It is advantageous for the rod to be connected, on the one hand, rigidly to the cylinder piston and, on the other hand, rigidly to the slider crank. It is further advantageous for there to be provided a bearing on which the rod directed out of the cylinder bore is supported. In this instance, the bearing may advantageously be constructed by a bearing face. The bearing can further be lubricated by a lubricant from the crankshaft space. Consequently, the rod is supported displaceably on the bearing, a compact construction being made possible.
  • It is particularly advantageous for precisely one cylinder bore to be provided. An extremely compact construction which produces a larger selection in relation to possible fitting positions thereby results. A favorable fitting position in the internal-combustion engine may thereby be selected even if constrained spatial conditions which are caused, for example, by additional units exist at that position.
  • Therefore, fitting to the internal-combustion engine may be advantageously carried out, the piston engine forming a combination engine with the internal-combustion engine. In this instance, a steam engine is combined with an internal-combustion engine. The piston engine can be operatively connected in mechanical terms to a drive train of a vehicle.
  • If the piston engine is fitted to an internal-combustion engine, it is advantageous for the piston engine to be fitted to the internal-combustion engine at the front, or for the piston engine to be fitted to the internal-combustion engine at the side. In the case of lateral fitting, for example, a gear casing or the like which is also required for other units may be used in order to produce the mechanical operative connection. It is also advantageous for the cylinder bore to be orientated at least approximately parallel with a cylinder of the internal-combustion engine. Particularly in the case of a single-cylinder construction of the piston engine, the cylinder is preferably directed upwards.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Preferred embodiments of the invention are explained in greater detail in the following description with reference to the appended drawings, in which corresponding elements are indicated with corresponding reference numerals. In the drawings:
  • FIG. 1 is a schematic cross section of a piston engine in accordance with a first embodiment of the invention;
  • FIG. 2 shows an arrangement of the piston engine of the first embodiment of the invention illustrated in FIG. 1 in an internal-combustion engine and
  • FIG. 3 is a schematic cross section of the piston engine illustrated in FIG. 1 in accordance with a second embodiment of the invention.
  • DETAILED DESCRIPTION
  • FIG. 1 is a schematic illustration of a piston engine 1 in accordance with a first embodiment of the invention. The piston engine 1 is driven via a steam power process. In this instance, the piston engine 1 can be used particularly in an internal-combustion engine of a motor vehicle in order to use the waste heat of the internal-combustion engine. The piston engine 1 then converts the waste heat into mechanical energy which can be used, for example, as additional drive energy or to drive an auxiliary unit, in particular an electrical generator. However, the piston engine 1 according to the invention is also suitable for other applications.
  • The piston engine 1 has a housing portion 2 and a cylinder 3 which is connected to the housing portion 2. In this embodiment, the piston engine 1 has precisely one cylinder 3.
  • The cylinder 3 of the piston engine 1 has a cylinder bore 4, in which a cylinder piston 5 is arranged. The cylinder piston 5 is arranged in this instance in the cylinder bore 4 in a manner displaceable along an axis 6 of the cylinder bore 4.
  • The cylinder piston 5 has, at one side, a first lateral face 7 and, at the other side, a second lateral face 8. The cylinder piston 5 delimits in the cylinder bore 4 a first operating space 9 with the first lateral face 7. The cylinder piston 5 delimits a second operating space 10 in the cylinder bore 4 with the second lateral face 8. When the cylinder piston 5 is displaced in a direction 11, the volume of the first operating space 9 increases whereas the volume of the second operating space 10 decreases. Conversely, when the cylinder piston 5 is displaced counter to the direction 11, the volume of the first operating space 9 decreases whereas the volume of the second operating space 10 increases.
  • Valve-controlled inlets 12, 13 are provided in the cylinder 3. Valve-controlled outlets 14, 15 are further provided in the cylinder 3. The inlet 12 and the outlet 14 are associated with the first operating space 9. The inlet 13 and the outlet 15 are associated with the second operating space 10. For example, highly pressurized, vapor-like operating fluid can be introduced into the first operating space 9 via the inlet 12. An actuating force is applied to the cylinder piston 5 in the direction 11 via the pressure of the gaseous operating fluid. The gaseous operating fluid in the first operating space 9 thereby becomes depressurized. The outlet 15 can be opened in order to discharge the already depressurized, remaining operating fluid from the second operating space 10. After the completed travel of the cylinder piston 5 in the direction 11, an inverse actuation of the cylinder piston 5 may be carried out counter to the direction 11. In this instance, the valve-controlled inlet 13 is opened in order to introduce highly pressurized, gaseous operating fluid into the second operating space 10. The inlet 11 for the first operating space 9 is closed in this instance. Furthermore, the outlet 14 for the first operating space 11 can now be opened in order to discharge the depressurized, gaseous operating fluid from the first operating space 9 when the cylinder piston 5 is actuated counter to the direction 11. Consequently, an alternating actuation of the cylinder piston 5 is possible.
  • The piston engine 1 has a rod 20 which acts as the transmission rod 20. The rod 20 is connected at one side to the cylinder piston 5 at the second lateral face 8. In this instance, the rod 20 is rigidly connected to the cylinder piston 5. The rod 20 is orientated with respect to the axis 6 in this instance so that the rod 20 is orientated perpendicularly to the second lateral face 8. There is provided in the housing portion 2 a crankshaft space 21 in which a crankshaft 22 is arranged. The rod 20 is connected at the other side to a slider crank 23 which is arranged in the crankshaft space 21. The connection of the rod 20 to the slider crank 23 is also constructed in a rigid manner in this instance. Consequently, the rod 20 extends through the second operating space 10 and into the crankshaft space 21.
  • The cylinder bore 4 is separated from the crankshaft space 21 by a housing portion 24. In this instance, a bearing face 25 which adjoins the crankshaft space 21 is constructed on the housing portion 24. The bearing face 25 forms a bearing 25′, on which the rod 20 which is directed out of the cylinder bore 4 is supported. Lubricating oil is preferably located in the crankshaft space 21. This lubricating oil can also be used to lubricate the bearing face 25. Consequently, advantageous supporting of the rod 20 on the bearing face 25 is possible. In order to improve the sealing between the crankshaft space 21 and the second operating space 10 of the cylinder bore 4, annular sealing elements 26, 27 which are arranged behind the bearing face 25 can be provided. Introduction of lubricating oil into the second operating space 10, and consequently mixing of the gaseous operating fluid, on the one hand, and the lubricating oil, on the other hand, is thereby prevented.
  • The crank mechanism of the piston engine 1 has a sliding block 28 which is arranged on a crankshaft journal 29 of the crankshaft 22. The sliding block 28 is in this instance introduced into a slot-like recess 30 of the slider crank 23. It is thereby possible to convert the reciprocating movement of the rod 20 into a rotational movement of the crankshaft 22. The lubrication of the crank mechanism is brought about in this instance by means of the lubricating oil provided in the crankshaft space 21.
  • In this embodiment, there are further arranged, at an outer side of the cylinder piston 5, piston rings 31, 32 which improve sealing between the operating spaces 9, 10 and, at the same time, prevent friction between the cylinder piston 5 and the cylinder bore 4. Frictional wear can thereby be reduced and a reliable sealing action ensured at the same time.
  • Consequently, a piston engine 1 which is in the form of a reciprocating piston steam engine and which operates with the single-cycle principle can advantageously be constructed so as to have precisely one cylinder 3. In this instance, the cylinder piston 5 introduces its force via the rod 20 to the slider crank mechanism and consequently the crankshaft 22. All the inlets 12, 13 and outlets 14, 15 are controlled. The reciprocating piston movement of the cylinder piston 5 is transmitted to the crankshaft 22 by the slider crank drive with the slider crank 23 and the sliding block 28 which is arranged on the crankshaft journal 29.
  • In this embodiment, the slider crank 23 is supported on the bearing location formed by the bearing face 25 via the rod 20. That bearing is located in the oil region because it adjoins the crankshaft space 21.
  • The operating fluid is alternately depressurized in the operating spaces 9, 10. Consequently, both the upward and the downward movements of the cylinder piston 5 contribute to the power production. A great expansion volume is thereby achieved in a small structural space of the piston engine 1. In combination with the Scotch yoke crank mechanism, a small structural length is further achieved from one crank axis 33 of the crankshaft 22 as far as one end 34 of the cylinder 3. The piston engine 1 can thereby be flexibly arranged in an internal-combustion engine or the like.
  • Owing to the compact structural form of the single-cylinder piston engine 1 constructed at one side relative to the crank axis 33, it is possible in particular to make use of the structural space which is available at the front in a typical internal-combustion engine between the installation units already present and in which the crank axis 33 of the piston engine 1 is arranged precisely on a crank axis of the internal-combustion engine. This arrangement is further described with reference to FIG. 2.
  • FIG. 2 shows an arrangement of the piston engine 1 illustrated in FIG. 1 in an internal-combustion engine 35. In this instance, the individual components are schematically illustrated. The internal-combustion engine 35 has, for example, a cylinder 36 which is orientated perpendicularly or vertically relative to an installation position. This is possible, for example, in a configuration as a series cylinder. A plurality of auxiliary units 37, 38, 39 are arranged at the front side of the internal-combustion engine 35. A crank axis 33 of the internal-combustion engine 35 is orientated perpendicularly relative to the plane of the drawing in this embodiment. The piston engine 1 can now advantageously be arranged at the front side of the internal-combustion engine 35, the structural space left unoccupied by the auxiliary units 37 to 39 being able to be used. In this instance, the piston engine 1 is arranged at the front side of the internal-combustion engine 35 in such a manner that the crank axis 33 of the piston engine 1 corresponds to the crank axis 33 of the internal-combustion engine 35. That fitting arrangement is particularly advantageous because the power transmission from the piston engine 1 to the internal-combustion engine 35 can be carried out without additional toothed wheels, chains and belts. In this instance, it is advantageous to have a fitting arrangement in which the axis 6 of the cylinder 4 is directed horizontally or, as is the case in the embodiment illustrated in FIG. 2, downwards because generally none of the auxiliary units 37 to 39 is located in the internal-combustion engine 35 in this region.
  • FIG. 3 is a schematic cross section of the piston engine 1 illustrated in FIG. 1 in accordance with a second embodiment. In this embodiment, the piston engine 1 has an additional cylinder 3′. An additional cylinder bore 4′, in which an additional cylinder piston 5′ is arranged, is constructed in the additional cylinder 3′. The additional cylinder piston 5′ can also be actuated along the axis 6 in this instance. The cylinder piston 5′ has a first lateral face 7′ and a second lateral face 8′. At the first lateral face 7′, the cylinder piston 5′ delimits a third operating space 40. At the second lateral face 8′, the cylinder piston 5′ delimits a fourth operating space 41. The cylinder piston 5′ can be actuated together with the cylinder piston 5 so that both cylinder pistons 5 are displaced either in the direction 11 or counter to the direction 11.
  • Inlets 12′, 13′ are provided in the additional cylinder 3′. Furthermore, outlets 14′, 15′ are provided in the additional cylinder 3′. The inlet 12′ and the outlet 14′ are associated with the third operating space 40 in this instance. The inlet 13′ and the outlet 15′ are associated with the fourth operating space 41. A rod 20′, via which the cylinder piston 5′ is connected to the slider crank 23, is further provided. In this instance, the rod 20′ is rigidly connected to the cylinder piston 5′ at the second lateral face 8′. Consequently, the displacement force acting on the cylinder piston 5 can be transmitted to the slider crank 23 via the rod 20′. The rod 20′ is supported on a bearing 25′ in this instance. In order to actuate the cylinder piston 5′, pressurized, gaseous operating fluid is alternately introduced into the third operating space 40 and the fourth operating space 41. For that purpose, the inlets 12′, 13′ are alternately opened. The actuation of the inlets 12, 13 and the inlets 12′, 13′ for the two cylinders 3, 3′ may occur in a synchronized manner. Accordingly, the actuation of the outlets 14, 15 for the cylinder 3 and the outlets 14′, 15′ for the cylinder 3′ can also occur in a synchronized manner.
  • Consequently, a piston engine 1 having mutually opposing cylinders 3, 3′ and consequently mutually opposing cylinder pistons 5, 5′ can be constructed, the cylinder pistons 5, 5′ introducing their forces to the crankshaft 22 via the slider crank mechanism. In this instance, the reciprocating piston movement of the two cylinder pistons 5, 5′ is transmitted to the crankshaft 22. In this embodiment, the slider crank 23 is advantageously supported on the two bearing locations 25, 25′ which are arranged at the two sides of the crank axis 33. The sealing of the crankshaft space 21 which is filled with lubricating oil with respect to the cylinder bores 4, 4′ is brought about in this embodiment via the bearings 25, 25′. An additional sealing may also optionally be provided by means of sealing elements.
  • Consequently, for example, the first operating space 9 and the fourth operating space 41 can simultaneously be filled with gaseous operating fluid so that, during the expansion of the operating fluid, an actuation of the slider crank 23 in the direction 11 is brought about. Subsequently, an opposed actuation can be brought about by introducing the gaseous operating fluid, on the one hand, into the second operating space 10 and, on the other hand, into the third operating space 40. Each of the cylinder pistons 5, 5′ is thereby acted upon at both sides. It is thereby possible to have a compact construction of the piston engine 1 with a large expansion volume being constructed at the same time.
  • The piston engine 1 of the second embodiment illustrated in FIG. 3 can be fitted to an internal-combustion engine 35. For example, the piston engine 1 of the second embodiment can be arranged in the internal-combustion engine 35 illustrated in FIG. 2 in that there is brought about a horizontal installation position in relation to the axis 6 of the piston engine 1 and a displacement, on the one hand, of the auxiliary unit 37 upwards and, on the other hand, optionally of the auxiliary unit 39 upwards. In this configuration, the crank axis 33 of the crankshaft 22 of the piston engine 1 then corresponds to the crank axis 33 of the internal-combustion engine 35.
  • The piston engine 1 then forms with the internal-combustion engine 35 a combination engine 1, 35. In this instance, the piston engine 1 is operatively connected in mechanical terms to a drive train 33 of a vehicle. If the piston engine 1 is fitted to the internal-combustion engine 35, the piston engine 1 can be fitted to the internal-combustion engine 35 at the front or the piston engine 1 can be fitted to the internal-combustion engine 35 at the side. In this instance, the cylinder bore 4 is preferably orientated at least approximately parallel with the cylinder 36 of the internal-combustion engine 35. The fitting is particularly advantageous if precisely one cylinder bore 4 is provided. Owing to the compact construction, favorable fitting positions in the internal-combustion engine 35 are thereby produced.
  • Consequently, it is advantageous for the cylinder piston 5 to have, at one side, a first lateral face 7 and, at the other side, a second lateral face 8, for the first lateral face 7 and the second lateral face 8 to be directed away from each other, for the first lateral face 7 of the cylinder piston 5 to delimit the first operating space 9 in the cylinder bore 4 and for the second lateral face 8 of the cylinder piston 5 to delimit the second operating space 10 in the cylinder bore 4. Consequently, it is also advantageous in this instance for the rod 20 to be connected to the cylinder piston 5 at the second lateral face 8 of the cylinder piston 5 and for the rod 20 to extend through the second operating space 10 at least approximately perpendicularly relative to the second lateral face 8.
  • Consequently, it is advantageous for an inlet 12 for the first operating space 9 and an inlet 13 for the second operating space 10 to be provided and for vapor-like operating fluid to be able to be directed alternately into the first operating space 9 and the second operating space 10 via the inlet 12 for the first operating space 9 and via the inlet 13 for the second operating space 10,
  • and/or
  • for an outlet 14 for the first operating space 9 and an outlet 15 for the second operating space 10 to be provided and for at least partially depressurized vapor-like operating fluid to be able to be discharged alternately from the first operating space 9 and the second operating space 10 via the outlet 14 for the first operating space 9 and via the outlet 15 for the second operating space 10.
  • Consequently, it is advantageous for a crankshaft 22 which is arranged in a crankshaft space 21 to be provided, for the crankshaft 22 to have a crankshaft journal 29 on which a sliding block 28 is arranged, for the rod 20 to be connected to a slider crank 23 which is arranged in the crankshaft space 21 and for the slider crank 23 to have a slot-like recess 30 in which the sliding block 28 is introduced.
  • Consequently, it is also advantageous for a crank axis 33 of the crankshaft 22 to be arranged on a crank axis 33 of the internal-combustion engine 35. Consequently, it is also advantageous for the cylinder bore 4 to be orientated horizontally or downwards from the crank axis 33 in relation to an installation position of the internal-combustion engine 35.
  • The invention is not limited to the embodiments described.

Claims (12)

1. A piston engine (1) which can be driven via a steam power process, having at least one cylinder bore (4), a cylinder piston (5) which is arranged in the cylinder bore (4) and a rod (20) which is connected at least indirectly to the cylinder piston (5) and which is directed out of the cylinder bore (4), wherein the cylinder piston (5) delimits in the cylinder bore (4) at one side a first operating space (9) and, at an other side, a second operating space (10), wherein a crankshaft (22) which is arranged in a crankshaft space (21) is provided, wherein the rod (20) is connected to a slider crank (23) which is arranged in the crankshaft space (21) and wherein the rod (20) is operatively connected to the crankshaft (22) via the slider crank (23).
2. The piston engine as claimed in claim 1, characterized in that the rod (20) is connected, on one hand, rigidly to the cylinder piston (5) and, on an other hand, rigidly to the slider crank (23).
3. The piston engine as claimed in claim 1, characterized in that there is provided a bearing (25′) on which the rod (20) directed out of the cylinder bore (4) is supported.
4. The piston engine as claimed in claim 3, characterized in that the bearing (25′) is configured to be lubricated by a lubricant from the crankshaft space (21).
5. The piston engine as claimed in claim 1, characterized in that precisely one cylinder bore (4) is provided.
6. The piston engine as claimed in claim 1, characterized in that an internal-combustion engine (35) is provided and in that the piston engine (1) forms with the internal-combustion engine (35) a combination engine (1, 35).
7. The piston engine as claimed in claim 6, characterized in that the piston engine (1) is operatively connected in mechanical terms to a drive train (33) of a vehicle.
8. The piston engine as claimed in claim 6, characterized in that the piston engine (1) is fitted to an internal-combustion engine (35).
9. The piston engine as claimed in claim 8, characterized in that the piston engine (1) is fitted to the internal-combustion engine (35) at a front.
10. The piston engine as claimed in claim 1, characterized in that there are provided an additional cylinder bore (4′), an additional cylinder piston (5′) which is arranged in the additional cylinder bore (4′) and an additional rod (20′) which is connected at least indirectly to the additional cylinder piston (5′), in that the additional rod (20′) is directed out of the additional cylinder bore (4′), in that the additional cylinder piston (5′) delimits in the additional cylinder bore (4′), at one side, a third operating space (40) and, at an other side, a fourth operating space (41), and in that the rod (20) and the additional rod (20′) are connected to each other at least indirectly.
11. The piston engine as claimed in claim 8, characterized in that the piston engine (1) is fitted to the internal-combustion engine at a side.
12. The piston engine as claimed in claim 8, characterized in that the cylinder bore (4) is orientated at least approximately parallel with a cylinder (36) of the internal-combustion engine (35).
US13/812,804 2010-07-28 2011-07-07 Piston engine drivable using a steam power process Abandoned US20130118175A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010038538.7 2010-07-28
DE102010038538A DE102010038538A1 (en) 2010-07-28 2010-07-28 About a steam power process drivable piston engine
PCT/EP2011/061465 WO2012013470A1 (en) 2010-07-28 2011-07-07 Piston engine drivable using a steam power process

Publications (1)

Publication Number Publication Date
US20130118175A1 true US20130118175A1 (en) 2013-05-16

Family

ID=44543182

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/812,804 Abandoned US20130118175A1 (en) 2010-07-28 2011-07-07 Piston engine drivable using a steam power process

Country Status (4)

Country Link
US (1) US20130118175A1 (en)
CN (1) CN103026001A (en)
DE (1) DE102010038538A1 (en)
WO (1) WO2012013470A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436345B1 (en) 2018-05-22 2019-10-08 Woodward, Inc. Simplified mechanism for a scotch yoke actuator
US12023300B2 (en) 2020-06-29 2024-07-02 Hill-Rom Services Pte. Ltd. Rotational high frequency chest wall oscillation pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002286B1 (en) 2013-02-21 2016-09-02 Exoes SYSTEM FOR THE CONVERSION OF THERMAL ENERGY OF EXHAUST GASES OF A COMBUSTION ENGINE.
DE102017123119A1 (en) 2017-10-05 2019-04-11 Ficht Fahrzeug + Marinetechnik Gmbh & Co. Kg Reciprocating expansion machine, in particular steam engine and working cylinder for this purpose
CN109763894A (en) * 2018-12-24 2019-05-17 刘法锐 A kind of symmetrical link engine piston crank mechanism
EP3904637B1 (en) * 2019-07-05 2025-03-12 Galetskij, Anatolij Jurevich Internal combustion engine with slider-crank mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791881A (en) * 1954-06-17 1957-05-14 Charles T Denker Combined diesel and steam engine
US3200800A (en) * 1962-04-27 1965-08-17 Bois Francois M Du Internal combustion engine
US4412511A (en) * 1980-09-02 1983-11-01 Firey Joseph C Char and oil burning engine
US6095100A (en) * 1995-11-01 2000-08-01 Hughes; Barry Frank Combination internal combustion and steam engine
US7219633B1 (en) * 2005-03-21 2007-05-22 Mcleod Robert A Compression ignition rotating cylinder engine
US20090013681A1 (en) * 2007-07-12 2009-01-15 Courtright Geoffrey B Energized Fluid Motor and Components
WO2009113862A1 (en) * 2008-03-14 2009-09-17 Odd Bernhard Torkildsen Combustion engine having mutually connected pistons

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1188506A (en) * 1914-03-12 1916-06-27 Benjamin W Stearns Internal-combustion power system.
DE409919C (en) * 1923-06-26 1925-02-16 Gottfried Hillekum Two-stroke internal combustion engine with two opposing cylinders
DE920758C (en) * 1951-12-21 1954-11-29 Heinz Boerner Two-stroke internal combustion engine
US4901531A (en) * 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US4889039A (en) * 1988-10-17 1989-12-26 Miller Bernard F Gas compressor with labyrinth sealing and active magnetic bearings
US6216462B1 (en) * 1999-07-19 2001-04-17 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency High efficiency, air bottoming engine
DE20117271U1 (en) * 2001-10-20 2002-01-03 ENGINION AG, 13355 Berlin internal combustion engine
JP2003232203A (en) * 2001-11-01 2003-08-22 Hiroyasu Tanigawa Various energy preserving cycle engine
CN2644697Y (en) * 2003-06-20 2004-09-29 深圳索雷克家用电器有限公司 Automatic water pump for steam cleaner
US7992386B2 (en) * 2008-11-03 2011-08-09 Cyclone Power Technologies, Inc. Waste heat engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791881A (en) * 1954-06-17 1957-05-14 Charles T Denker Combined diesel and steam engine
US3200800A (en) * 1962-04-27 1965-08-17 Bois Francois M Du Internal combustion engine
US4412511A (en) * 1980-09-02 1983-11-01 Firey Joseph C Char and oil burning engine
US6095100A (en) * 1995-11-01 2000-08-01 Hughes; Barry Frank Combination internal combustion and steam engine
US7219633B1 (en) * 2005-03-21 2007-05-22 Mcleod Robert A Compression ignition rotating cylinder engine
US20090013681A1 (en) * 2007-07-12 2009-01-15 Courtright Geoffrey B Energized Fluid Motor and Components
WO2009113862A1 (en) * 2008-03-14 2009-09-17 Odd Bernhard Torkildsen Combustion engine having mutually connected pistons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436345B1 (en) 2018-05-22 2019-10-08 Woodward, Inc. Simplified mechanism for a scotch yoke actuator
US12023300B2 (en) 2020-06-29 2024-07-02 Hill-Rom Services Pte. Ltd. Rotational high frequency chest wall oscillation pump

Also Published As

Publication number Publication date
CN103026001A (en) 2013-04-03
WO2012013470A1 (en) 2012-02-02
DE102010038538A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US8359860B2 (en) Drive train of a motor vehicle with a compressed-air system
KR101878856B1 (en) Machine combination comprising an internal combustion engine and a generator
US7194989B2 (en) Energy efficient clean burning two-stroke internal combustion engine
US20130118175A1 (en) Piston engine drivable using a steam power process
US20160341187A1 (en) Reciprocating motor-compressor with integrated stirling engine
JP4246202B2 (en) Multistage Stirling engine
CN103016149A (en) Hydraulic engine with inter-cylinder gear linkage function
US20040255880A1 (en) Linear motion engine
CN101526028B (en) Vertical cylinder piston type internal combustion engine
US20130118174A1 (en) Piston engine drivable using a steam power process
WO2012013462A1 (en) Piston engine drivable using a steam power process
EP0628709B1 (en) Internal combustion engine
KR102312150B1 (en) Power generating device using working fluid
US1474549A (en) Internal-combustion engine
DE102010038542A1 (en) piston engine
RU2196237C1 (en) Rodless internal combustion engine (versions)
RU2250377C2 (en) Piston machine
RU2375595C1 (en) Asynchronous toothed converter of reciprocation into rotation and vice versa, front and rear crank pairs, idle gear and its anvil gear wheel
RU2386036C2 (en) Motor with ring cylinder
RU2722201C1 (en) Free piston engine
RU2484255C1 (en) Rack-and-pinion piston machine
RU2483216C1 (en) Semigear-and-rack piston machine
RU2448263C1 (en) Internal combustion engine
RU2531707C1 (en) Diesel locomotive
CN105971727A (en) Synchronous piston internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EISENMENGER, NADJA;MAGEL, HANS-CHRISTOPH;WENGERT, ANDREAS;SIGNING DATES FROM 20130117 TO 20130121;REEL/FRAME:029706/0234

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION