US20130067643A1 - Adjustable sports helmet - Google Patents
Adjustable sports helmet Download PDFInfo
- Publication number
- US20130067643A1 US20130067643A1 US13/235,186 US201113235186A US2013067643A1 US 20130067643 A1 US20130067643 A1 US 20130067643A1 US 201113235186 A US201113235186 A US 201113235186A US 2013067643 A1 US2013067643 A1 US 2013067643A1
- Authority
- US
- United States
- Prior art keywords
- shell
- helmet
- sports helmet
- strap
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/32—Collapsible helmets; Helmets made of separable parts ; Helmets with movable parts, e.g. adjustable
- A42B3/324—Adjustable helmets
Definitions
- Existing protective sports helmets such as helmets for lacrosse, hockey, football, and baseball, can be difficult to don, and it can be challenging for a user to make efficient fit adjustments, particularly during a game.
- a wearer pulls on a typical sports helmet, he or she has to pull the sides out laterally to fit the helmet over the wearer's ears. This often results in the fit not being ideally snug in a lateral direction.
- a helmet that fits a given wearer well in the lateral direction may not fit well in a longitudinal direction. Adjusting or attaching the chin straps also can be difficult, particularly when the wearer does so while wearing lacrosse or hockey gloves.
- Protective face masks, face cages, or face guards on existing sports helmets typically are attached to the exterior of the helmet shell via clips, straps, or loops. While the face guards are generally secured in place, they tend to move or slide slightly during play, and are not particularly adept at distributing energy from impacts.
- a protective sports helmet such as a lacrosse, hockey, football, or baseball helmet, includes one or more features that promote efficient fit adjustment and efficient donning and removal of the helmet.
- the helmet includes a front shell portion hingedly or pivotably connected to a rear shell portion.
- the lower region of the front shell portion is pivotable away from the lower region of the rear shell portion to provide ear channels and to promote easy donning and removal of the helmet.
- the upper region of the front shell may additionally or alternatively be longitudinally adjustable relative to the upper region of the rear shell via a multi-position, longitudinal adjustment mechanism.
- Cam mechanisms optionally are provided on the helmet shell for securing straps of a chin cup or chin guard assembly at desired lengths.
- the cam mechanisms optionally each include a self-energizing grip member that increasingly engages the strap when the strap is subjected to a load while the cam mechanism is in the locked position.
- a face guard optionally is attached within the helmet shell structure, which provides a smooth helmet exterior and promotes distributed energy transfer from the face guard to the helmet shell.
- FIG. 1 is a rear-perspective view of a sports helmet including a front shell portion pivotably attached to a rear shell portion, according to one embodiment.
- FIG. 2 is a sectional view taken along line 2 - 2 in FIG. 1 .
- FIG. 3 is a sectional view taken along line 3 - 3 in FIG. 1 .
- FIG. 4 is a sectional view taken along line 4 - 4 in FIG. 1 .
- FIG. 5 is a partial interior view of the ear region of the helmet shown in FIG. 1 with the helmet in the open position.
- FIG. 6 is a side view of the helmet shown in FIG. 1 in the closed position.
- FIG. 7 is a side view of the helmet shown in FIG. 1 in the open position.
- FIG. 8 is a partial perspective view of the helmet shown in FIG. 1 with the face guard attached.
- FIG. 9 is a partial perspective view of the helmet section shown in FIG. 1 with the face guard detached.
- FIG. 10 is a side-sectional view of the helmet shown in FIG. 1 .
- FIG. 11A is a side view of a cam mechanism, according to one embodiment, in an open position, with the base region of the cam mechanism shown as transparent to reveal details of the cam lever.
- FIG. 11B is a side view of the cam mechanism shown in FIG. 11A in a locked position.
- FIG. 11C is a side view of the cam mechanism shown in FIGS. 11A and 11B in a locked position with the grip member pivoted to further engage the strap under a loading condition.
- FIG. 11D is a side view of the cam mechanism shown in FIGS. 11A-11C in a locked position with the grip member further pivoted to further engage the strap under an extreme loading condition.
- FIG. 12A is an exploded view of the hinge mechanism shown in FIG. 10 .
- FIG. 12B is a perspective view of the hinge mechanism shown in FIG. 12A .
- FIG. 13A is an exploded view of a longitudinal adjustment mechanism, according to one embodiment.
- FIG. 13B is a perspective view of the longitudinal adjustment mechanism shown in FIG. 13A .
- FIG. 13C is a side-sectional view of the longitudinal adjustment mechanism shown in FIGS. 13A and 13B .
- FIG. 14 is a partial, top perspective view of the helmet shown in FIGS. 1-10 with a section of the rear shell portion cutaway to show the overlap of the rear and front shell portions.
- FIG. 15 is a top perspective view of a helmet including the longitudinal adjustment mechanism shown in FIGS. 13A-13C , according to one embodiment.
- a sports helmet 10 such as a lacrosse, hockey, football, or baseball helmet, includes a rear shell portion 12 and a front shell portion 14 .
- the front and rear shell portions 14 , 12 may be made of a polymer material, a composite material, or of another suitable material.
- An upper region of the rear shell portion 12 is connected to an upper region of the front shell portion 14 via a hinge 13 (shown in FIG. 10 ), such as a mechanical hinge or living hinge, or via another connecting mechanism that provides pivoting movement between the front and rear shell portions.
- a hinge 13 shown in FIG. 10
- the front and rear shell portions 14 , 12 are rotatable between a closed, use position, and an open position that promotes efficient donning and removing of the helmet 10 .
- the hinge 13 includes a male portion 15 attached directly or indirectly to, or integral with, one of the front and rear shell portions 14 , 12 , and a female portion 16 attached directly or indirectly to, or integral with, the other of the front and rear shell portions 14 , 12 .
- a male portion 15 including a locking tab 29 and a living hinge region 27 is attached to the rear shell portion 12 .
- a female portion 16 including an opening 31 that receives the locking tab 29 is attached to the front shell portion 14 .
- the hinge portions 15 , 16 may be attached via screws, bolts, adhesive, as part of the molding process, or via any other suitable mechanism or process.
- One or more sections or a system of energy-attenuating material 11 such as expanded polypropylene (“EPP”) foam or another shock-absorbing material, are adhered or otherwise affixed to the inner surfaces of the front and rear shell portions 14 , 12 .
- the energy-attenuating material 11 alternatively may be in-molded with the front and rear shell portions 14 , 12 .
- comfort padding may also be included, particularly in regions intended to engage sensitive areas of a wearer's face, such as the cheeks. Comfort padding also may be used to provide customized fit and enhanced fit stability.
- Multi-layer padding including an outer layer of energy-attenuating material and an inner layer of comfort padding, may optionally be used in these sensitive areas.
- a helmet 10 may alternatively or additionally be included in the helmet 10 .
- an inflated air bladder system may be used instead of a foam liner.
- a variety or combination of energy management systems may be employed in the helmet 10 to meet the needs of a given application. For example, in a baseball helmet, a crushable foam designed to absorb a single, high-velocity impact may be used, whereas a recovering energy foam designed to absorb multiple, lower-velocity impacts may be used in a lacrosse helmet.
- a lever 18 , dial, or similar locking device is attached to one of the rear shell portion 12 and the front shell portion 14 .
- a lever 18 is attached to the rear region of the rear shell portion 12 .
- the lever 18 is movable between an unlocked position that allows the front and rear shells portions 14 , 12 to be pivoted relative to each other between an open position and a closed position, and a locked position that secures the front and rear shells portions 14 , 12 in a closed, use position.
- a torsion spring 17 or similar device may be attached to the lever 18 to bias the lever 18 toward the locked position.
- the lever 18 optionally includes a cross-bar 19 or similar structure to which a cable 21 , cord, belt, or other connecting element is attached.
- the cable 21 runs from the lever 18 into the helmet through an opening in the rear shell portion 12 , and along each inner side of the helmet shell, optionally between the inner shell wall and an unaffixed portion of the internal, energy-attenuating material 11 .
- the cable 21 may be stitched or otherwise attached to a first end of a belt 23 that is secured at its other end to a screw 25 or other anchor element projecting into the front shell portion 14 .
- the cable 21 may have a greater length and be attached directly to the screw 25 or other anchor element on the front shell portion 14 .
- the lever 18 When the lever 18 is in the closed position, it pulls the cable 21 taut such that the front and rear shell portions 14 , 12 are held securely against each other in the closed, use position. When the lever 18 is moved into the unlocked position, the cable 21 loosens such that the front and rear shell portions 14 , 12 may be separated from each other into the open position to allow for efficient donning of the helmet 10 . Upper regions of the front and rear shell portions 14 , 12 may be configured to engage each other when the helmet is moved into the open position to limit the degree to which the helmet may be opened in the longitudinal direction.
- the front and rear shell portions 14 , 12 optionally overlap and engage each other to form one or more lap joints so that the shell portions cannot move laterally relative to each other.
- the front and rear shell portions 14 , 12 may include corresponding tongues and grooves, or other cooperating engagements, to prevent the shell portions from moving laterally relative to each other. Accordingly, the overlapping shell structure absorbs the bulk of impact energy against the helmet 10 , and the lever 18 need only be capable of locking the shell portions 12 , 14 in place in the longitudinal direction.
- a channel 20 is formed on each inner side of the helmet 10 .
- These inner channels 20 provide a pathway for the wearer's ears during donning and removal of the helmet 10 .
- the wearer need not pull the sides of the helmet 10 laterally outward to move it past the wearer's ears.
- a recess 22 is provided on each interior side of the helmet to accommodate the wearer's ears in the closed, use position. Once the wearer's ears are located in the recesses 22 , the helmet 10 may be pivoted to the closed position and locked into place by moving the lever 18 to the closed position. Because the helmet 10 does not need to be stretched laterally, it can provide a snug, stable, comfortable fit over, below, and about the wearer's ears.
- the helmet 10 includes a chin cup 30 or chin guard connected to the helmet shell via upper straps 32 and lowers straps 34 .
- the straps 32 , 34 may optionally be routed to the chin cup 30 inside the helmet 10 , which improves stability and retention of the straps, as well as the aesthetic profile of the helmet 10 .
- the straps 32 , 34 protrude to the exterior of the helmet 10 through openings 35 in the helmet shell.
- Hinged cam levers 36 or similar securing devices are included near the openings 35 to secure the straps to the helmet shell at desired lengths.
- the cam levers 36 are rotatable into an open position to allow for adjustment of the strap lengths, after which the cam levers 36 may be rotated into the closed position to grip the straps 32 , 34 and hold them in place.
- the cam levers 36 prevent or substantially prevent the straps 32 , 34 from moving or loosening such that the straps need not be adjusted once they are secured at desired lengths.
- each cam lever 36 is pivotably connected to a grip member 38 that may be pulled into engagement with an inner surface of the strap 32 (or 34 ) to secure the strap 32 in place.
- the grip member 38 optionally is in engagement with a base structure 37 .
- the grip member pivots 38 about the cam lever 36 —and about a fulcrum point 41 on the base structure 37 —so that the engagement portion 39 further engages the strap 32 and more tightly secures it in place.
- the cam mechanism is “self-energizing,” meaning that as the load applied to the strap 32 increases, the gripping force applied by the gripping member 38 also increases. Further, the cam mechanism can resist equivalent loads even if the thickness of the strap 32 is varied.
- the base structure 37 optionally includes openings 43 or a receiving mechanism positioned adjacent to the outer surface of the strap 32 .
- the grip member 39 pivots to an even greater degree about the cam lever 36 and the fulcrum point 41 to more tightly engage the strap 32 and to force portions of the strap 32 into one or more of the openings 43 . In this manner, the strap 32 is tightly secured, even under extreme loading conditions.
- compartments 40 or protruding arms or tabs 26 optionally are included in or on the helmet shell for receiving the free ends of the straps 32 , 34 .
- compartments 40 are included in the upper region of the front shell portion 14 for receiving the ends of the upper straps 32
- tabs 26 are included in the lower region of the front shell portion 14 for receiving the ends of the lower straps 34 . Any other arrangement of compartments 40 or tabs 26 may alternatively be used.
- the compartments 40 or tabs 26 shield the free ends of the straps from contact with sticks, helmets, gloves, and so forth. Concealing the ends of the straps 32 , 34 may also be aesthetically pleasing to many players.
- the straps 32 , 34 optionally include sizing indicators 42 , such as printed numbers or raised bumps, to aid a user in adjusting the straps 32 , 34 to desired lengths. For example, if a user adjusts the straps to a first length, then tries on the helmet and determines the straps 32 , 34 need to be tightened or loosened, the sizing indicators 42 provide a guide for how much adjustment needs to be made. The sizing indicators 42 also provide an indication of whether the left and right straps are adjusted to the same length or to different lengths relative to each other.
- sizing indicators 42 such as printed numbers or raised bumps
- the straps 32 , 34 remain securely in place and do not need to be adjusted or re-connected each time a wearer dons the helmet. There is no need to unclamp or unsecure the straps between uses due to the shell arrangement that allows for donning and removing of the helmet 10 by pivoting the front and rear shell portions 14 , 12 away from each other. This is particularly beneficial during a game, since a player will often be wearing bulky gloves that make it difficult to manipulate straps. With the hinged shell arrangement, only the lever 18 needs to be manipulated to allow for efficient removing and donning of the helmet 10 .
- a face guard 50 optionally is attached to inset side regions of the front shell portion 14 .
- the face guard 50 may be a cage, mask, or similar structure made from a metal, plastic, composite, or other suitable material.
- the front shell portion 14 includes an inset region 52 or channel on each of its sides for receiving a rearwardly extending section 54 of the face guard 50 .
- a cover 56 is positioned over each of the rearwardly extending sections 54 and is attached to the front shell portion 14 via bolts 55 , screws, or other suitable connecting devices.
- An upper section 57 of the face guard 50 may be secured in a channel or recess under the visor region of the helmet such that it is contained within the helmet's profile.
- the upper section 57 of the face guard 50 may be attached to the front shell portion 14 via a clip or other connecting device, or in any other suitable manner.
- the inset regions 52 may be lined with a cushioning element, such as an elastomeric adhesive or other cushioning material. Additionally or alternatively, the rearwardly extending section 54 of the face guard 50 may be coated or covered with a cushioning element. Providing such a cushioned interface between the face guard 50 and the helmet shell improves the damping characteristics of the helmet 10 .
- the outer cover 56 may include an integral jaw protector 58 , or may be connected to a separate jaw protector, that extends along the bottom of the face guard 50 to cover the sides of a wearer's jaw and the front of a wearer's chin.
- the face guard 50 optionally may be attached to the jaw protector 58 via clips 59 , straps, or other connecting devices.
- the jaw protector 58 shields the wearer's jaw and chin from contact, and also provides a convenient structure for a wearer to grab onto and pull forward to move the helmet 10 into the open position when donning or removing the helmet.
- the helmet 10 optionally includes an adjustment mechanism 60 at a crown region of the helmet 10 that provides for longitudinal adjustment between the front and rear shell portions 12 , 14 .
- the longitudinal adjustment mechanism 60 may be incorporated into the hinge structure or may be a separate element. In embodiments where ease of donning and removal is not required, a longitudinal adjustment mechanism 60 may be included while the hinge mechanism may be omitted.
- the adjustment mechanism 60 includes a spring-loaded or cantilevered arm 61 positioned on or integral with a band 63 or other support structure.
- the band 63 is directly or indirectly attached to or integral with an interior surface of one of the front and rear shell portions 14 , 12 .
- the arm 61 includes a button 62 or other activation element protruding to the exterior of the helmet shell from an end of the arm 61 .
- a receiving component 64 attached to or integral with the other of the front and rear shell portions 14 , 12 includes multiple openings 66 for receiving the button 62 (three openings 66 are shown in the illustrated embodiment but any other desired number of openings 66 may be included).
- the spring-loaded arm 61 may include one or more upward-facing grooves for receiving one or more downward projections on the receiving component 64 , or may include one or more upward projections for engaging one or more downward-facing grooves on the receiving component 64 . Any other suitable engagement mechanism that allows for relative longitudinal movement between the front and rear shell portions 12 , 14 may be used.
- the front and rear shell portions 14 , 12 may be moved longitudinally relative to each other between the provided positions.
- the button 62 may be released when it is aligned with the opening 66 that provides the desired helmet length for a given wearer, such that it moves upward into the opening 66 and locks the front and rear shell portions in place.
- Three alternate longitudinal positions are shown by way of example in the illustrated embodiment. Such an adjustment allows for a personalized, snug fit against a wearer's brow. Thus, a wearer may adjust the fit of the helmet against his or her brow, and may leave the helmet in the desired fit position between uses.
- the helmet 10 optionally includes an internal fit system, as well. Examples of such a fit system are described in U.S. patent application Ser. No. 12/191,000, filed on Aug. 13, 2008, which is incorporated herein by reference.
- the helmet 10 includes a lateral and occipital adjustment system configured to engage the sides and back of a wearer's head and the nape of the wearer's neck.
- the lateral and occipital adjustment system may include one or more bands 72 (shown in FIG. 4 ) or straps attached or affixed to the energy-attenuating material 11 (or to the front shell portion 14 ) in the front interior region of the helmet 10 , via screws, snaps, or any other suitable connectors.
- the bands may be made of a relatively flexible plastic, nylon, or other suitable material.
- the bands 72 may be tightened or loosened, such that they are displaced laterally toward or away from the central interior of the helmet 10 , via a dial 74 , knob, or another device located at the rear interior of the helmet 10 .
- An occipital pad 76 or similar element may be attached to the dial 74 , the bands 72 , or another region for engaging the rear of a wearer's head or the nape of the wearer's neck. Any other suitable lateral and occipital adjustment system may alternatively be used in the helmet 10 .
- a user moves the lever 18 to the open position then positions the rear padding of the helmet against the rear of the user's head.
- the user then pulls the face guard 50 or jaw protector 58 forward to pivot the front shell portion 14 away from the rear shell portion 12 into the open position.
- the user then pulls the face guard 50 or jaw protector 58 in a downward direction such that the channels 20 move past his or her ears until the ears are positioned in the recesses 22 .
- the front shell portion 14 is then moved into the closed position, either automatically or with the aid of the user.
- the chin cup 30 assuming the straps 32 , 34 have been properly adjusted, engages the user's chin in the closed position.
- the user then moves the lever 18 into the locked position, which tightens the cables 21 or other connecting elements, thus securing the front shell portion 14 to the rear shell portion 12 .
- the user simply moves the lever 18 to the open position, pulls the face guard 50 or jaw protector 58 forward, then lifts the helmet off of his or her head.
Landscapes
- Helmets And Other Head Coverings (AREA)
Abstract
Description
- Existing protective sports helmets, such as helmets for lacrosse, hockey, football, and baseball, can be difficult to don, and it can be challenging for a user to make efficient fit adjustments, particularly during a game. For example, when a wearer pulls on a typical sports helmet, he or she has to pull the sides out laterally to fit the helmet over the wearer's ears. This often results in the fit not being ideally snug in a lateral direction. Further, a helmet that fits a given wearer well in the lateral direction may not fit well in a longitudinal direction. Adjusting or attaching the chin straps also can be difficult, particularly when the wearer does so while wearing lacrosse or hockey gloves.
- Protective face masks, face cages, or face guards on existing sports helmets typically are attached to the exterior of the helmet shell via clips, straps, or loops. While the face guards are generally secured in place, they tend to move or slide slightly during play, and are not particularly adept at distributing energy from impacts.
- A protective sports helmet, such as a lacrosse, hockey, football, or baseball helmet, includes one or more features that promote efficient fit adjustment and efficient donning and removal of the helmet. In one embodiment, the helmet includes a front shell portion hingedly or pivotably connected to a rear shell portion. The lower region of the front shell portion is pivotable away from the lower region of the rear shell portion to provide ear channels and to promote easy donning and removal of the helmet. The upper region of the front shell may additionally or alternatively be longitudinally adjustable relative to the upper region of the rear shell via a multi-position, longitudinal adjustment mechanism.
- Cam mechanisms optionally are provided on the helmet shell for securing straps of a chin cup or chin guard assembly at desired lengths. The cam mechanisms optionally each include a self-energizing grip member that increasingly engages the strap when the strap is subjected to a load while the cam mechanism is in the locked position. A face guard optionally is attached within the helmet shell structure, which provides a smooth helmet exterior and promotes distributed energy transfer from the face guard to the helmet shell.
- Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.
- In the drawings, wherein the same reference number indicates the same element throughout the views:
-
FIG. 1 is a rear-perspective view of a sports helmet including a front shell portion pivotably attached to a rear shell portion, according to one embodiment. -
FIG. 2 is a sectional view taken along line 2-2 inFIG. 1 . -
FIG. 3 is a sectional view taken along line 3-3 inFIG. 1 . -
FIG. 4 is a sectional view taken along line 4-4 inFIG. 1 . -
FIG. 5 is a partial interior view of the ear region of the helmet shown inFIG. 1 with the helmet in the open position. -
FIG. 6 is a side view of the helmet shown inFIG. 1 in the closed position. -
FIG. 7 is a side view of the helmet shown inFIG. 1 in the open position. -
FIG. 8 is a partial perspective view of the helmet shown inFIG. 1 with the face guard attached. -
FIG. 9 is a partial perspective view of the helmet section shown inFIG. 1 with the face guard detached. -
FIG. 10 is a side-sectional view of the helmet shown inFIG. 1 . -
FIG. 11A is a side view of a cam mechanism, according to one embodiment, in an open position, with the base region of the cam mechanism shown as transparent to reveal details of the cam lever. -
FIG. 11B is a side view of the cam mechanism shown inFIG. 11A in a locked position. -
FIG. 11C is a side view of the cam mechanism shown inFIGS. 11A and 11B in a locked position with the grip member pivoted to further engage the strap under a loading condition. -
FIG. 11D is a side view of the cam mechanism shown inFIGS. 11A-11C in a locked position with the grip member further pivoted to further engage the strap under an extreme loading condition. -
FIG. 12A is an exploded view of the hinge mechanism shown inFIG. 10 . -
FIG. 12B is a perspective view of the hinge mechanism shown inFIG. 12A . -
FIG. 13A is an exploded view of a longitudinal adjustment mechanism, according to one embodiment. -
FIG. 13B is a perspective view of the longitudinal adjustment mechanism shown inFIG. 13A . -
FIG. 13C is a side-sectional view of the longitudinal adjustment mechanism shown inFIGS. 13A and 13B . -
FIG. 14 is a partial, top perspective view of the helmet shown inFIGS. 1-10 with a section of the rear shell portion cutaway to show the overlap of the rear and front shell portions. -
FIG. 15 is a top perspective view of a helmet including the longitudinal adjustment mechanism shown inFIGS. 13A-13C , according to one embodiment. - Various embodiments of the invention will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments.
- The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.
- Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of items in the list.
- Turning now in detail to the drawings, as shown in
FIGS. 1-10 , asports helmet 10, such as a lacrosse, hockey, football, or baseball helmet, includes arear shell portion 12 and afront shell portion 14. The front andrear shell portions - An upper region of the
rear shell portion 12 is connected to an upper region of thefront shell portion 14 via a hinge 13 (shown inFIG. 10 ), such as a mechanical hinge or living hinge, or via another connecting mechanism that provides pivoting movement between the front and rear shell portions. In this manner, the front andrear shell portions helmet 10. - In one embodiment, the
hinge 13 includes amale portion 15 attached directly or indirectly to, or integral with, one of the front andrear shell portions female portion 16 attached directly or indirectly to, or integral with, the other of the front andrear shell portions male portion 15 including alocking tab 29 and aliving hinge region 27 is attached to therear shell portion 12. Afemale portion 16 including anopening 31 that receives thelocking tab 29 is attached to thefront shell portion 14. Thehinge portions - One or more sections or a system of energy-attenuating
material 11, such as expanded polypropylene (“EPP”) foam or another shock-absorbing material, are adhered or otherwise affixed to the inner surfaces of the front andrear shell portions material 11 alternatively may be in-molded with the front andrear shell portions - Other energy management systems may alternatively or additionally be included in the
helmet 10. For example, an inflated air bladder system may be used instead of a foam liner. As another example, a series of inwardly protruding structures that crush to absorb impact—then return to their original shapes—may be used. Further, a variety or combination of energy management systems may be employed in thehelmet 10 to meet the needs of a given application. For example, in a baseball helmet, a crushable foam designed to absorb a single, high-velocity impact may be used, whereas a recovering energy foam designed to absorb multiple, lower-velocity impacts may be used in a lacrosse helmet. - A
lever 18, dial, or similar locking device is attached to one of therear shell portion 12 and thefront shell portion 14. In the illustrated embodiment, alever 18 is attached to the rear region of therear shell portion 12. Thelever 18 is movable between an unlocked position that allows the front andrear shells portions rear shells portions torsion spring 17 or similar device may be attached to thelever 18 to bias thelever 18 toward the locked position. - The
lever 18 optionally includes a cross-bar 19 or similar structure to which acable 21, cord, belt, or other connecting element is attached. Thecable 21 runs from thelever 18 into the helmet through an opening in therear shell portion 12, and along each inner side of the helmet shell, optionally between the inner shell wall and an unaffixed portion of the internal, energy-attenuatingmaterial 11. In one embodiment, thecable 21 may be stitched or otherwise attached to a first end of abelt 23 that is secured at its other end to ascrew 25 or other anchor element projecting into thefront shell portion 14. Alternatively, thecable 21 may have a greater length and be attached directly to thescrew 25 or other anchor element on thefront shell portion 14. - When the
lever 18 is in the closed position, it pulls thecable 21 taut such that the front andrear shell portions lever 18 is moved into the unlocked position, thecable 21 loosens such that the front andrear shell portions helmet 10. Upper regions of the front andrear shell portions - Further, as best shown in
FIG. 14 , the front andrear shell portions rear shell portions helmet 10, and thelever 18 need only be capable of locking theshell portions - In the open position, a
channel 20 is formed on each inner side of thehelmet 10. Theseinner channels 20 provide a pathway for the wearer's ears during donning and removal of thehelmet 10. Thus, the wearer need not pull the sides of thehelmet 10 laterally outward to move it past the wearer's ears. Arecess 22 is provided on each interior side of the helmet to accommodate the wearer's ears in the closed, use position. Once the wearer's ears are located in therecesses 22, thehelmet 10 may be pivoted to the closed position and locked into place by moving thelever 18 to the closed position. Because thehelmet 10 does not need to be stretched laterally, it can provide a snug, stable, comfortable fit over, below, and about the wearer's ears. - In one embodiment, the
helmet 10 includes achin cup 30 or chin guard connected to the helmet shell viaupper straps 32 and lowersstraps 34. Thestraps chin cup 30 inside thehelmet 10, which improves stability and retention of the straps, as well as the aesthetic profile of thehelmet 10. In one embodiment, thestraps helmet 10 throughopenings 35 in the helmet shell. - Hinged cam levers 36 or similar securing devices are included near the
openings 35 to secure the straps to the helmet shell at desired lengths. The cam levers 36 are rotatable into an open position to allow for adjustment of the strap lengths, after which the cam levers 36 may be rotated into the closed position to grip thestraps straps - As shown in
FIGS. 11A-11D , in one embodiment, eachcam lever 36 is pivotably connected to agrip member 38 that may be pulled into engagement with an inner surface of the strap 32 (or 34) to secure thestrap 32 in place. Thegrip member 38 optionally is in engagement with abase structure 37. When thecam lever 36 is pivoted from the open position (shown inFIG. 11A ) to the closed position (shown inFIG. 11B ), anengagement portion 39 of thegrip member 38 is pulled into thestrap 32 to secure the strap in place. - In one embodiment, when the
strap 32 is pulled or subjected to a load in direction X (shown inFIG. 11C ) while thecam lever 36 is in the locked position, the grip member pivots 38 about thecam lever 36—and about afulcrum point 41 on thebase structure 37—so that theengagement portion 39 further engages thestrap 32 and more tightly secures it in place. In this manner, the cam mechanism is “self-energizing,” meaning that as the load applied to thestrap 32 increases, the gripping force applied by the grippingmember 38 also increases. Further, the cam mechanism can resist equivalent loads even if the thickness of thestrap 32 is varied. - The
base structure 37 optionally includesopenings 43 or a receiving mechanism positioned adjacent to the outer surface of thestrap 32. When an extreme load is applied to the strap in direction X (shown inFIG. 11D ), thegrip member 39 pivots to an even greater degree about thecam lever 36 and thefulcrum point 41 to more tightly engage thestrap 32 and to force portions of thestrap 32 into one or more of theopenings 43. In this manner, thestrap 32 is tightly secured, even under extreme loading conditions. - As shown in
FIGS. 6 and 7 , compartments 40 or protruding arms ortabs 26 optionally are included in or on the helmet shell for receiving the free ends of thestraps front shell portion 14 for receiving the ends of theupper straps 32, andtabs 26 are included in the lower region of thefront shell portion 14 for receiving the ends of the lower straps 34. Any other arrangement ofcompartments 40 ortabs 26 may alternatively be used. Thecompartments 40 ortabs 26 shield the free ends of the straps from contact with sticks, helmets, gloves, and so forth. Concealing the ends of thestraps - The
straps indicators 42, such as printed numbers or raised bumps, to aid a user in adjusting thestraps straps indicators 42 provide a guide for how much adjustment needs to be made. The sizingindicators 42 also provide an indication of whether the left and right straps are adjusted to the same length or to different lengths relative to each other. - Once desired strap adjustments are made by a user, the
straps helmet 10 by pivoting the front andrear shell portions lever 18 needs to be manipulated to allow for efficient removing and donning of thehelmet 10. - As shown in
FIGS. 8 and 9 , aface guard 50 optionally is attached to inset side regions of thefront shell portion 14. Theface guard 50 may be a cage, mask, or similar structure made from a metal, plastic, composite, or other suitable material. Thefront shell portion 14 includes aninset region 52 or channel on each of its sides for receiving arearwardly extending section 54 of theface guard 50. Acover 56 is positioned over each of therearwardly extending sections 54 and is attached to thefront shell portion 14 viabolts 55, screws, or other suitable connecting devices. Such an arrangement facilitates efficient transfer of impact energy to the shell in a distributed loading pattern, as opposed to the point loading pattern that occurs in helmets in which the face guard is clipped to the helmet at multiple, discrete locations. - An
upper section 57 of theface guard 50 may be secured in a channel or recess under the visor region of the helmet such that it is contained within the helmet's profile. Alternatively, theupper section 57 of theface guard 50 may be attached to thefront shell portion 14 via a clip or other connecting device, or in any other suitable manner. - In one embodiment, the
inset regions 52 may be lined with a cushioning element, such as an elastomeric adhesive or other cushioning material. Additionally or alternatively, therearwardly extending section 54 of theface guard 50 may be coated or covered with a cushioning element. Providing such a cushioned interface between theface guard 50 and the helmet shell improves the damping characteristics of thehelmet 10. - The
outer cover 56 may include anintegral jaw protector 58, or may be connected to a separate jaw protector, that extends along the bottom of theface guard 50 to cover the sides of a wearer's jaw and the front of a wearer's chin. Theface guard 50 optionally may be attached to thejaw protector 58 viaclips 59, straps, or other connecting devices. Thejaw protector 58 shields the wearer's jaw and chin from contact, and also provides a convenient structure for a wearer to grab onto and pull forward to move thehelmet 10 into the open position when donning or removing the helmet. - As shown in FIGS. 15 and 13A-13-C, the
helmet 10 optionally includes anadjustment mechanism 60 at a crown region of thehelmet 10 that provides for longitudinal adjustment between the front andrear shell portions longitudinal adjustment mechanism 60 may be incorporated into the hinge structure or may be a separate element. In embodiments where ease of donning and removal is not required, alongitudinal adjustment mechanism 60 may be included while the hinge mechanism may be omitted. - In one embodiment, the
adjustment mechanism 60 includes a spring-loaded or cantileveredarm 61 positioned on or integral with aband 63 or other support structure. Theband 63 is directly or indirectly attached to or integral with an interior surface of one of the front andrear shell portions arm 61 includes abutton 62 or other activation element protruding to the exterior of the helmet shell from an end of thearm 61. A receivingcomponent 64 attached to or integral with the other of the front andrear shell portions multiple openings 66 for receiving the button 62 (threeopenings 66 are shown in the illustrated embodiment but any other desired number ofopenings 66 may be included). - In another embodiment, the spring-loaded
arm 61 may include one or more upward-facing grooves for receiving one or more downward projections on the receivingcomponent 64, or may include one or more upward projections for engaging one or more downward-facing grooves on the receivingcomponent 64. Any other suitable engagement mechanism that allows for relative longitudinal movement between the front andrear shell portions - When the
button 62 is depressed, the front andrear shell portions button 62 may be released when it is aligned with theopening 66 that provides the desired helmet length for a given wearer, such that it moves upward into theopening 66 and locks the front and rear shell portions in place. Three alternate longitudinal positions are shown by way of example in the illustrated embodiment. Such an adjustment allows for a personalized, snug fit against a wearer's brow. Thus, a wearer may adjust the fit of the helmet against his or her brow, and may leave the helmet in the desired fit position between uses. - The
helmet 10 optionally includes an internal fit system, as well. Examples of such a fit system are described in U.S. patent application Ser. No. 12/191,000, filed on Aug. 13, 2008, which is incorporated herein by reference. In one embodiment, thehelmet 10 includes a lateral and occipital adjustment system configured to engage the sides and back of a wearer's head and the nape of the wearer's neck. The lateral and occipital adjustment system may include one or more bands 72 (shown inFIG. 4 ) or straps attached or affixed to the energy-attenuating material 11 (or to the front shell portion 14) in the front interior region of thehelmet 10, via screws, snaps, or any other suitable connectors. The bands may be made of a relatively flexible plastic, nylon, or other suitable material. - The
bands 72 may be tightened or loosened, such that they are displaced laterally toward or away from the central interior of thehelmet 10, via adial 74, knob, or another device located at the rear interior of thehelmet 10. Anoccipital pad 76 or similar element may be attached to thedial 74, thebands 72, or another region for engaging the rear of a wearer's head or the nape of the wearer's neck. Any other suitable lateral and occipital adjustment system may alternatively be used in thehelmet 10. - To don the
helmet 10, a user moves thelever 18 to the open position then positions the rear padding of the helmet against the rear of the user's head. The user then pulls theface guard 50 orjaw protector 58 forward to pivot thefront shell portion 14 away from therear shell portion 12 into the open position. The user then pulls theface guard 50 orjaw protector 58 in a downward direction such that thechannels 20 move past his or her ears until the ears are positioned in therecesses 22. Thefront shell portion 14 is then moved into the closed position, either automatically or with the aid of the user. - The
chin cup 30, assuming thestraps lever 18 into the locked position, which tightens thecables 21 or other connecting elements, thus securing thefront shell portion 14 to therear shell portion 12. To remove thehelmet 10, the user simply moves thelever 18 to the open position, pulls theface guard 50 orjaw protector 58 forward, then lifts the helmet off of his or her head. - Any of the above-described embodiments may be used alone or in combination with one another. Further, the sports helmet may include additional features not described herein. While several embodiments have been shown and described, various changes and substitutions may of course be made, without departing from the spirit and scope of the invention. The invention, therefore, should not be limited, except by the following claims and their equivalents.
Claims (20)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/235,186 US20130067643A1 (en) | 2011-09-16 | 2011-09-16 | Adjustable sports helmet |
US13/535,124 US20130067645A1 (en) | 2011-09-16 | 2012-06-27 | Adjustable sports helmet |
EP12832545.3A EP2755511A4 (en) | 2011-09-16 | 2012-09-13 | Adjustable sports helmet |
PCT/US2012/055128 WO2013040186A1 (en) | 2011-09-16 | 2012-09-13 | Adjustable sports helmet |
CA2848826A CA2848826A1 (en) | 2011-09-16 | 2012-09-13 | Adjustable sports helmet |
US13/803,903 US20130219595A1 (en) | 2011-09-16 | 2013-03-14 | Sports helmet including a reinforced jaw protector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/235,186 US20130067643A1 (en) | 2011-09-16 | 2011-09-16 | Adjustable sports helmet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/535,124 Continuation-In-Part US20130067645A1 (en) | 2011-09-16 | 2012-06-27 | Adjustable sports helmet |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130067643A1 true US20130067643A1 (en) | 2013-03-21 |
Family
ID=47879195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/235,186 Abandoned US20130067643A1 (en) | 2011-09-16 | 2011-09-16 | Adjustable sports helmet |
Country Status (1)
Country | Link |
---|---|
US (1) | US20130067643A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10285466B2 (en) | 2010-07-22 | 2019-05-14 | Kranos Ip Corporation | Football helmet with shell section defined by a non-linear channel |
US10376011B2 (en) | 2012-06-18 | 2019-08-13 | Kranos Ip Corporation | Football helmet with raised plateau |
US10506841B2 (en) | 2013-02-12 | 2019-12-17 | Riddell, Inc. | Football helmet with recessed face guard mounting areas |
US20200337408A1 (en) * | 2017-11-21 | 2020-10-29 | Bauer Hockey Ltd. | Adjustable helmet |
US10948898B1 (en) | 2013-01-18 | 2021-03-16 | Bell Sports, Inc. | System and method for custom forming a protective helmet for a customer's head |
USD927084S1 (en) | 2018-11-22 | 2021-08-03 | Riddell, Inc. | Pad member of an internal padding assembly of a protective sports helmet |
CN113301822A (en) * | 2019-01-15 | 2021-08-24 | 株式会社 Hjc | Helmet mating system |
CN113542619A (en) * | 2021-08-31 | 2021-10-22 | 邵勇 | Helmet type shooting and recording system |
US11167198B2 (en) | 2018-11-21 | 2021-11-09 | Riddell, Inc. | Football helmet with components additively manufactured to manage impact forces |
US11213736B2 (en) | 2016-07-20 | 2022-01-04 | Riddell, Inc. | System and methods for designing and manufacturing a bespoke protective sports helmet |
USD953648S1 (en) | 2017-03-16 | 2022-05-31 | Falcon Helmet Design & Engineering, Inc. | Protective headgear |
US11399589B2 (en) | 2018-08-16 | 2022-08-02 | Riddell, Inc. | System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers |
US11464272B2 (en) | 2020-04-06 | 2022-10-11 | Easton Diamond Sports, Llc | Attachment features for batting helmets |
US11583024B2 (en) | 2020-12-08 | 2023-02-21 | LIFT Airborne Technologies LLC | Helmet fit system |
US20230059228A1 (en) * | 2021-08-17 | 2023-02-23 | Trek Bicycle Corporation | Helmet with carbon cage and adjustable fit system |
US11589632B2 (en) | 2018-11-12 | 2023-02-28 | Rawlings Sporting Goods Company, Inc. | Adjustable protective helmet jaw flap |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1537178A (en) * | 1923-10-11 | 1925-05-12 | Drapermaynard Company | Helmet |
US3283336A (en) * | 1964-05-06 | 1966-11-08 | Russell F Critser | Safety device in combination with a football helmet |
US3373443A (en) * | 1966-02-24 | 1968-03-19 | Michael T. Marietta | Combination helmet and face mask |
US5042093A (en) * | 1988-10-21 | 1991-08-27 | Comasec International Sa | Headgear including an adjustable coif |
US6154889A (en) * | 1998-02-20 | 2000-12-05 | Team Wendy, Llc | Protective helmet |
US20070083967A1 (en) * | 2005-06-21 | 2007-04-19 | Daniel Crossman | Face protector and protective system |
US20080189835A1 (en) * | 2005-03-25 | 2008-08-14 | Mango Sport System S.R.L. | Protective Helmet For Sports Use and For Work Use |
-
2011
- 2011-09-16 US US13/235,186 patent/US20130067643A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1537178A (en) * | 1923-10-11 | 1925-05-12 | Drapermaynard Company | Helmet |
US3283336A (en) * | 1964-05-06 | 1966-11-08 | Russell F Critser | Safety device in combination with a football helmet |
US3373443A (en) * | 1966-02-24 | 1968-03-19 | Michael T. Marietta | Combination helmet and face mask |
US5042093A (en) * | 1988-10-21 | 1991-08-27 | Comasec International Sa | Headgear including an adjustable coif |
US6154889A (en) * | 1998-02-20 | 2000-12-05 | Team Wendy, Llc | Protective helmet |
US20080189835A1 (en) * | 2005-03-25 | 2008-08-14 | Mango Sport System S.R.L. | Protective Helmet For Sports Use and For Work Use |
US20070083967A1 (en) * | 2005-06-21 | 2007-04-19 | Daniel Crossman | Face protector and protective system |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10357075B2 (en) | 2010-07-22 | 2019-07-23 | Kranos Ip Corporation | Impact attenuation system for a protective helmet |
US10448691B2 (en) | 2010-07-22 | 2019-10-22 | Kranos Ip Corporation | Football helmet with movable flexible section |
US10470514B2 (en) | 2010-07-22 | 2019-11-12 | Kranos Ip Corporation | Football helmet with movable shell segment |
US10470515B2 (en) | 2010-07-22 | 2019-11-12 | Kranos Ip Corporation | Football helmet with pressable front section |
US10470516B2 (en) | 2010-07-22 | 2019-11-12 | Kranos Ip Corporation | Impact attenuation system for a protective helmet |
US10285466B2 (en) | 2010-07-22 | 2019-05-14 | Kranos Ip Corporation | Football helmet with shell section defined by a non-linear channel |
US10736372B2 (en) | 2010-07-22 | 2020-08-11 | Kanos Ip Corporation | Impact attenuation system for a protective helmet |
US10376011B2 (en) | 2012-06-18 | 2019-08-13 | Kranos Ip Corporation | Football helmet with raised plateau |
US10948898B1 (en) | 2013-01-18 | 2021-03-16 | Bell Sports, Inc. | System and method for custom forming a protective helmet for a customer's head |
US11889883B2 (en) | 2013-01-18 | 2024-02-06 | Bell Sports, Inc. | System and method for forming a protective helmet for a customer's head |
US11419383B2 (en) | 2013-01-18 | 2022-08-23 | Riddell, Inc. | System and method for custom forming a protective helmet for a customer's head |
US10506841B2 (en) | 2013-02-12 | 2019-12-17 | Riddell, Inc. | Football helmet with recessed face guard mounting areas |
US10582737B2 (en) | 2013-02-12 | 2020-03-10 | Riddell, Inc. | Football helmet with impact attenuation system |
US11910859B2 (en) | 2013-02-12 | 2024-02-27 | Riddell, Inc. | Football helmet with impact attenuation system |
US11712615B2 (en) | 2016-07-20 | 2023-08-01 | Riddell, Inc. | System and method of assembling a protective sports helmet |
US11213736B2 (en) | 2016-07-20 | 2022-01-04 | Riddell, Inc. | System and methods for designing and manufacturing a bespoke protective sports helmet |
USD953648S1 (en) | 2017-03-16 | 2022-05-31 | Falcon Helmet Design & Engineering, Inc. | Protective headgear |
US11730227B2 (en) * | 2017-11-21 | 2023-08-22 | Bauer Hockey Llc | Adjustable helmet |
US20230397688A1 (en) * | 2017-11-21 | 2023-12-14 | Bauer Hockey Llc | Adjustable helmet |
US20200337408A1 (en) * | 2017-11-21 | 2020-10-29 | Bauer Hockey Ltd. | Adjustable helmet |
US12059051B2 (en) | 2018-08-16 | 2024-08-13 | Riddell, Inc. | System and method for designing and manufacturing a protective sports helmet |
US11399589B2 (en) | 2018-08-16 | 2022-08-02 | Riddell, Inc. | System and method for designing and manufacturing a protective helmet tailored to a selected group of helmet wearers |
US11589632B2 (en) | 2018-11-12 | 2023-02-28 | Rawlings Sporting Goods Company, Inc. | Adjustable protective helmet jaw flap |
US11167198B2 (en) | 2018-11-21 | 2021-11-09 | Riddell, Inc. | Football helmet with components additively manufactured to manage impact forces |
USD927084S1 (en) | 2018-11-22 | 2021-08-03 | Riddell, Inc. | Pad member of an internal padding assembly of a protective sports helmet |
CN113301822A (en) * | 2019-01-15 | 2021-08-24 | 株式会社 Hjc | Helmet mating system |
US11464272B2 (en) | 2020-04-06 | 2022-10-11 | Easton Diamond Sports, Llc | Attachment features for batting helmets |
US11812814B2 (en) | 2020-04-06 | 2023-11-14 | Easton Diamond Sports, Llc | Attachment features for batting helmets |
US11583024B2 (en) | 2020-12-08 | 2023-02-21 | LIFT Airborne Technologies LLC | Helmet fit system |
US20230059228A1 (en) * | 2021-08-17 | 2023-02-23 | Trek Bicycle Corporation | Helmet with carbon cage and adjustable fit system |
CN113542619A (en) * | 2021-08-31 | 2021-10-22 | 邵勇 | Helmet type shooting and recording system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130067643A1 (en) | Adjustable sports helmet | |
US20130219595A1 (en) | Sports helmet including a reinforced jaw protector | |
US20130067645A1 (en) | Adjustable sports helmet | |
US6865752B2 (en) | Adjustable sports helmet | |
US11026465B2 (en) | Helmet comprising an occipital adjustment mechanism | |
US9032557B2 (en) | Protective helmet | |
CA2696242C (en) | Headgear securement system | |
US6532602B2 (en) | Insert-molded helmet | |
US6311338B1 (en) | Arrangement for maintaining a protective helmet | |
US8156574B2 (en) | Helmet adjustment system | |
US6256797B1 (en) | Helmet and method of removing the same | |
US20170245579A1 (en) | Helmet with chin cup | |
US20140007324A1 (en) | Soft helmet incorporating rigid panels | |
US8856973B2 (en) | Goalie helmet with novel strap configuration | |
US20080109946A1 (en) | Goalie helmet with novel strap configuration | |
WO2014004402A1 (en) | Sports helmet including a reinforced jaw protector | |
CA2565753C (en) | Goalie helmet with novel strap configuration | |
CA2822722A1 (en) | Helmet with chin cup | |
IES72942B2 (en) | Protective headgear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTON SPORTS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUSAL, MICHAEL J.;DEAN, GREGORY;REEL/FRAME:027194/0957 Effective date: 20111019 |
|
AS | Assignment |
Owner name: BAUER PERFORMANCE LACROSSE INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTON SPORTS, INC.;REEL/FRAME:032678/0863 Effective date: 20140415 |
|
AS | Assignment |
Owner name: EASTON SPORTS INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK;REEL/FRAME:032695/0427 Effective date: 20140415 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, TEXAS Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS;ASSIGNOR:BPS GREENLAND INC.;REEL/FRAME:032714/0285 Effective date: 20140415 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, MASSAC Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS;ASSIGNOR:BPS GREENLAND INC.;REEL/FRAME:032714/0237 Effective date: 20140415 |
|
AS | Assignment |
Owner name: PERFORMANCE LACROSSE GROUP INC., NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:BAUER PERFORMANCE LACROSSE INC.;REEL/FRAME:033870/0486 Effective date: 20140910 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: EASTON BASEBALL / SOFTBALL INC., NEW HAMPSHIRE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:040852/0237 Effective date: 20161207 |
|
AS | Assignment |
Owner name: EASTON BASEBALL / SOFTBALL INC. (F/K/A BPS GREENLA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:042000/0844 Effective date: 20170227 |