US20120331377A1 - Content Rendering on a Computer - Google Patents
Content Rendering on a Computer Download PDFInfo
- Publication number
- US20120331377A1 US20120331377A1 US13/606,704 US201213606704A US2012331377A1 US 20120331377 A1 US20120331377 A1 US 20120331377A1 US 201213606704 A US201213606704 A US 201213606704A US 2012331377 A1 US2012331377 A1 US 2012331377A1
- Authority
- US
- United States
- Prior art keywords
- content
- rendered
- web browser
- request
- view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000009877 rendering Methods 0.000 title claims description 106
- 238000000034 method Methods 0.000 claims description 28
- 230000004044 response Effects 0.000 claims description 14
- 230000001131 transforming effect Effects 0.000 claims description 10
- 238000013475 authorization Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 238000013515 script Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
- G06F16/9574—Browsing optimisation, e.g. caching or content distillation of access to content, e.g. by caching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/957—Browsing optimisation, e.g. caching or content distillation
- G06F16/9577—Optimising the visualization of content, e.g. distillation of HTML documents
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/12—Use of codes for handling textual entities
- G06F40/123—Storage facilities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/12—Use of codes for handling textual entities
- G06F40/151—Transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- Productivity application programs such as word processing applications, spreadsheet applications, and presentation applications, enable users to create different types of documents. These documents may include data that is native to a particular document type and even to a particular application program. In order to view this native data, a user may view the document through the productivity application program that created the document. For example, a user may rely on a particular word processing application to view a word processing document that was created by the word processing application.
- typical web browsers may not be capable of reading a given document in its native format.
- a web server can be implemented to execute code that is capable of rendering a document from its native format into a web-compatible format that can be viewed through the web browser.
- An application server is provided for rendering documents and other content from a native document format into a web-compatible format capable of being viewed through a web browser or other suitable application.
- the application server includes a rendering module, which is operative to incrementally render documents. Through incremental rendering, the application server can provide portions of rendered documents to the web browser while the native documents are still being rendered.
- Other example implementations of the technologies described herein include converting a document from one format into another format (e.g., transforming a document from a binary file format into an Office Open XML format, a Portable Document Format (“PDF”), and the like).
- PDF Portable Document Format
- a download manager is also provided in order to increase the throughput of the rendering module. While the rendering module is rendering one document, the download manager may begin retrieving other documents to be rendered at a later time. These other documents may be downloaded from a storage server and stored in a rendering queue on the application server. Once the rendering module becomes available, the rendering module can immediately begin rendering these other documents directly from the rendering queue without any downtime while waiting for documents to be retrieved.
- One or more caches are also provided in order to reduce the amount of work utilized to retrieve documents and other content.
- caches include a document cache, an authorization cache, and a location cache.
- the document cache may be operative to store rendered documents in the front end, thereby eliminating the need to retrieve the rendered documents from other storage units in the back end.
- the authorization cache may be operative to store authorization and authentication data, thereby eliminating the need to re-authorize or re-authenticate a user who later accesses the same document.
- the location cache may be operative to store the location of a rendered document. Through the use of the location cache, the rendered document can be efficiently retrieved from the relevant storage unit without the need to query multiple storage units.
- a method for rendering content for viewing through a web browser operating on a computer. Portions of the content are transformed into portions of rendered content. While the portions of the content are being transformed into portions of the rendered content, at least one of the portions of the rendered content can be provided to an application program.
- FIG. 1 is a block diagram showing an illustrative system architecture operative to render documents for viewing through a web browser, in accordance with embodiments;
- FIG. 2 is a block diagram showing an illustrative implementation of an application manager from the system architecture of FIG. 1 , in accordance with embodiments;
- FIG. 3 is a block diagram showing an illustrative implementation of a front end from the system architecture of FIG. 1 , in accordance with embodiments;
- FIG. 4A is a flow diagram showing an illustrative process for rendering content for viewing through a web browser, in accordance with embodiments
- FIG. 4B is a flow diagram showing an illustrative process for fetching a portion of the rendered content, in accordance with embodiments.
- FIG. 5 is a computer architecture diagram showing an illustrative computer hardware architecture for a computing system capable of implementing the embodiments presented herein.
- an application server is provided that is operative to incrementally render a document or other content from its native format into another format, such as a web-compatible format.
- another format such as a web-compatible format.
- pre-rendering as content is being incrementally rendered, each discrete portion of the document or other content that has been rendered can be made available to the user.
- One or more caches may also be provided in order to reduce the amount of work utilized to retrieve rendered content.
- Embodiments described herein may refer to pages and slides as discrete portions of documents and rendered documents. However, it should be appreciated that pages and slides are merely examples of discrete portions and are not intended to be limiting. Other kinds of discrete portions, as contemplated by those skilled in the art, may be similarly implemented.
- embodiments described herein primarily refer to documents and document rendering. However, it should be appreciated that the embodiments described herein may be similarly applied to any suitable content which can be rendered from a native format into another format. Such content may include any multimedia, such as text, images, audio, video, and combinations thereof. Further, embodiments described herein primarily refer to the rendered format as a web-compatible format capable of being viewed through a web browser. However, it should be appreciated that the rendered format may be other suitable formats as contemplated by those skilled in the art.
- program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.
- program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.
- the subject matter described herein may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like.
- FIG. 1 is a block diagram showing a system architecture 100 operative to render documents and to retrieve rendered documents according to embodiments.
- the architecture 100 includes a front end 102 that is operative to communicate with a computer 104 .
- the front end 102 may receive and process requests from a web browser 106 over a network 108 , such as the Internet.
- the front end 102 may receive a Hypertext Transfer Protocol (“HTTP”) message with a request for a specific document, such as document 110 A, stored in a document store 112 .
- HTTP Hypertext Transfer Protocol
- the components of the architecture 100 may reside on the same server, according to further embodiments. Splitting the architecture 100 into the front ends and application servers is merely an implementation design choice and is not intended to be limiting.
- the web front end 102 may attempt to retrieve, from an output store 114 , a web-compatible rendered document 110 B corresponding to the requested document 110 A.
- the rendered document 110 B may be stored in the output store 114 if the document 110 A was recently rendered. If the output store 114 contains the rendered document 110 B corresponding to the document 110 A, then the output store 114 may return the rendered document 110 B to the front end 102 .
- the application server 116 may retrieve the document 110 A from the document store 112 .
- a rendering module 118 in the application server 116 is operative to render (i.e., convert, transform) the document 110 A into the rendered document 110 B.
- the rendering module 118 may generate the rendered document 110 B in any format capable of being displayed by a suitable web browser.
- Example formats may include an image format (e.g., Portable Network Graphics (“PNG”), Joint Photographic Experts Group (“JPEG”), etc.), MICROSOFT SILVERLIGHT, ADOBE FLASH, and the like.
- the rendering module 118 may also generate the rendered document 110 B into a web-ready rendition that may include Extensible Markup Language (“XML”), scripts, Hypertext Markup Language (“HTML”), images, and/or the like, such that individual data types in the web-ready rendition can be understood collectively by the web browser. Each of these data types may be made available to the user upon being generated by the incremental rendering process described herein.
- the rendering module 118 may also be operative to concurrently render multiple documents.
- the application server 116 may store the rendered document 110 B in the output store 114 and return the rendered document 110 B to the front end 102 .
- the front end 102 may respond to the HTTP request by providing the rendered document 110 B to the web browser 106 via the HTTP protocol.
- the web browser 106 can then display the rendered document 110 B, which is a full-fidelity representation of the corresponding document 110 A.
- the full-fidelity representation contains the same formatting (e.g., layout, resolution, content, etc.) found in the original representation. Thus, a user can expect the same experience viewing a given document whether the document is viewed through a productivity application program or through a web browser, such as the web browser 106 .
- the full-fidelity representation can be contrasted against a lower-fidelity representation in which, for example, the layout may be changed or the resolution and content may be reduced.
- the rendered document 110 B may be utilized for non-viewing scenarios, such as converting binary files to another document type for editing.
- a MICROSOFT OFFICE binary file may be rendered into an OPEN OFFICE EXTENSIBLE MARKUP LANGUAGE (“OOXML”) file.
- the architecture 100 may include additional front ends and/or additional application servers. Further, multiple front ends and/or multiple application servers may reside on the same server. For example, additional front ends may be utilized to handle a greater quantity of requests from web browsers.
- the additional application servers are deployed to handle the rendering of heavier loads.
- additional application servers are deployed to render different types of documents. For example, one application server may be dedicated to rendering word processing documents, while another application server may be dedicated to rendering presentations.
- additional application servers are deployed to render different elements of a given document. The rendered elements can then be combined to create the rendered document. For example, one application server may render video in a presentation, while another application server may render the text in the presentation. In this case, the front end 102 may be operative to combine the results of the two application servers to form the rendered presentation.
- the front end 102 may direct the application server 116 to render the document into multiple formats in order to support multiple uses across multiple device types and web client configurations.
- the web browser 106 may request from the front end 102 a given document rendered in ADOBE FLASH.
- the front end 102 may determine, through a user profile associated with the user operating the web browser 106 , that the user frequently accesses documents in ADOBE FLASH, MICROSOFT SILVERLIGHT, Portable Network Graphics (“PNG”), mobile, and full versions.
- the front end 102 may also determine, through the user profile that the user frequently accesses documents in a web-ready rendition including a combination of XML, scripts, HTML, images, and/or the like. In this case, the front end 102 may fulfill the request by rendering the document in one or more of these versions. Other suitable data may be similarly utilized to determine whether the front end 102 directs the application server 116 to render a document into multiple formats in response to a single render request. By proactively rendering documents into multiple formats in response to a single request rather than rendering the document in response to specific requests for the additional formats, the architecture 100 can more expeditiously provide the rendered documents.
- the application server 116 further includes an application manager 120 .
- the application manager 120 is operative to manage incremental rendering of the document 110 A into the rendered document 110 B.
- incremental rendering refers to providing portions of the rendered document 110 B as the document 110 A is being rendered by the rendering module 118 .
- the rendered first page of a word processing document or a rendered first slide of a presentation may be provided to the front end 102 , which can then provide the rendered first page or the rendered first slide to the web browser 106 for display.
- Other embodiments may render any particular page or slide in the document.
- Other embodiments may also render other portions of content besides pages or slides.
- the application manager 120 may provide the additional rendered pages and rendered slides to the web browser 106 .
- the application manager 120 may make available portions of the rendered document 110 B as the document 110 A is being rendered by the rendering module 118 .
- the front end 102 can then retrieve these portions of the rendered document 110 B, as necessary, from the application server 116 .
- the portions of the rendered document 110 B are stored in a backend cache 122 in the application server 116 .
- the pages or slides of a document may be rendered in any predefined order.
- the rendered pages or slides are then made available to the front end 102 in the same order as they were rendered.
- the documents are rendered from the beginning of the document to the end of the document.
- incremental rendering reduces the amount of rendering time before a user can view a portion, such as the beginning or some other portion, of the document. For example, in conventional pre-rendering, a user desiring to view a first page of a word processing document or a first slide of a presentation would need to wait until the entire word processing document or presentation is rendered. In an illustrative implementation of incremental rendering, the user can more quickly view the first page or the first slide prior to the remainder of the word processing document or the presentation being rendered.
- the user may request a page N or a slide N of a document where the variable N represents any page or slide within the document.
- the request may occur prior to or while the document is being rendered.
- the application manager 120 may direct the rendering module 118 to render the page N or the slide N by seeking the particular page or slide within the document.
- the rendered page N or slide N can then be made available to the front end 102 .
- the application manager 120 may proceed with rendering the remainder of the document.
- the rendering module 118 is operative to incrementally render a document even when the document has yet to be fully downloaded. That is, the rendering module 118 may begin rendering the document while it is being downloaded from the document store 112 , rather than wait until the entire file has been downloaded. This approach to rendering a document before it has fully downloaded may reduce the amount of time it takes for the rendering module 118 to render a document, especially if the document is relatively large.
- FIG. 2 is a block diagram showing the application manager 120 according to embodiments.
- the application manager 120 includes a download manager 202 and a rendering queue 204 .
- the download manager 202 is operative to download documents from the document store 112 prior to the rendering module 118 rendering the documents.
- the download manager 202 may then store the downloaded documents in the rendering queue 204 until the rendering module 118 is available to render the documents.
- the rendering queue 204 may operate without the download manager 202 .
- the download manager 202 may be utilized to speed processing through the rendering queue 204 . Further, even when the download manager 202 is present, the rendering queue 204 may operate independently of the download manager 202 to handle instances when the application manager 120 is overloaded.
- the download manager 202 may download the first document 206 A from the document store 112 , and the rendering module 118 may begin rendering the first document 206 A.
- the download manager 202 may concurrently download the second document 206 B from the document store 112 and store the second document 206 B in the rendering queue 204 .
- the rendering module 118 can then immediately proceed to rendering the second document 206 B from the rendering queue 204 without waiting for the second document 206 B to be downloaded. In this way, throughput of the rendering module 118 is improved by eliminating any idle time found in conventional implementations where the rendering module 118 would wait for the second document 206 B to download.
- the rendering queue 204 may be configured to store any number of documents, as contemplated by those skilled in the art.
- the download manager 202 may be configured by a user to adjust the number of documents being downloaded simultaneously and the maximum number of documents stored in the rendering queue 204 that are awaiting rendering. In this way, the user can ensure that the number of documents being downloaded and/or stored at any given time does not place an excessive burden on system resources.
- FIG. 3 is a block diagram showing the front end 102 according to embodiments.
- the front end 102 includes a request merge module 302 and several caches 304 , including a document cache 304 A, an authorization cache 304 B, and a location cache 304 C.
- the request merge module 302 maintains tracking data identifying a particular application server that is currently rendering a given document.
- the request merge module 302 may utilize this tracking data to direct additional requests for the same document to the same application server. By directing additional requests for the same document to the same application server, redundant work between application servers is reduced, and other application servers are free to render other documents.
- the system architecture 100 of FIG. 1 may include multiple front ends and multiple application servers. These front ends may or may not be capable of communicating with each other.
- the request merge module 302 may be configured to perform consistent hashing in order to identify a particular application server for a particular document request. In consistent hashing, one or more aspects of a given document request may be analyzed in order to map these aspects to a particular application server. In this way, separate front ends can direct multiple requests for the same document to the same application server, even when the front ends cannot communicate with each other.
- An example of an aspect of a document request is the name of the document being requested.
- consistent hashing in this case can significantly increase the likelihood that documents are not rendered multiple times on different application servers (e.g., multiple front ends could receive requests for the same document). Without consistent hashing, many application servers may receive these requests and process the same document. Other hashing techniques capable of mapping document requests to application servers may be similarly utilized.
- the caches 304 may improve performance of the front end 102 by reducing the need for the front end 102 to access other parts of the system architecture 100 , such as the output store 114 and the application server 116 .
- the document cache 304 A is operative to cache at least portions of rendered documents according to popularity. For example, documents that are frequently requested can be retrieved directly from the document cache 304 A instead of accessing the output store 114 or the application server 116 . Any of a variety of factors and methodologies may be utilized for determining the popularity of documents, as contemplated by those skilled in the art.
- the authorization cache 304 B is operative to store authorization or authentication information associated with users. Access to the documents and the rendered documents may be restricted based on an authorization process whereby a user enters identification information, such as a username and password. For example, when a user attempts to access a particular document, the front end 102 may access an authorization module (not shown), which requests information, such as a login identifier and password, identifying the user. The authorization module may then determine whether the user has permission to access the document. The authorization module may be configured to permit access to the document only when the authorization module verifies that the user has permission.
- the authorization cache 304 B may store state information indicating that the user has been verified.
- the front end 102 may utilize this state information to verify that the user has or does not have permission to access the document without the need for accessing the authorization module. In this way, the front end 102 is not required to send credentials to an remote authorization service, thereby optimizing performance of the front end 102 . Further, the user does not have to re-enter identification information for additional requests to access the same document.
- the state information stored in the authorization cache 304 B may be particularly useful when a user requests only a portion of a given document at a time. For example, a user may initially request only a first page of a multi-page document. Upon submitting the request for the first page of the document, the user may be required to enter identification information (i.e., credentials) in order to view the first page. If the user subsequently requests additional pages of the document, the front end 102 can expeditiously authorize the user based on the credentials stored in the authorization cache 304 B. Thus, each authentication of the user does not necessarily result in the user being prompted for credentials. Further, the need to re-query other servers to authenticate and authorize the user can be eliminated.
- the authorization cache 304 B may be configured to store the state information for any amount of time after which the state information may be deleted.
- the location cache 304 C which may also be referred to as a “dictionary”, is operative to store the location of a given rendered document.
- the location cache 304 C may indicate the particular storage unit that stores a particular rendered document.
- Examples of storage units may include the output store 114 and the backend cache 122 .
- the storage units may be part of the system architecture 100 or separate from the system architecture 100 .
- FIG. 4A is a flow diagram illustrating one method for rendering content for viewing through a web browser operating on a computer.
- FIG. 4B is a flow diagram illustrating one method for fetching a rendered portion of the content. The method of FIG. 4B may be performed concurrently or after the method of FIG. 4A is performed.
- the logical operations described herein are implemented (1) as a sequence of computer implemented acts or program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system.
- a routine 400 begins at operation 402 , where the front end 102 receives a request from the web browser 106 for a document, such as the document 110 A.
- the routine 400 then proceeds to operation 404 , where the front end 102 directs the rendering module 118 to begin incrementally rendering the document 110 A.
- the rendering module 118 may retrieve the document 110 A from the document store 112 .
- the rendering module 118 may render the first page or the first slide of the document 110 A.
- the request may specify a particular slide or page of the document 110 A.
- the rendering module 118 may render the particular page or the particular slide instead of the first page or the first slide.
- the routine proceeds to operation 406 .
- the rendering module 118 determines whether the document 110 A has been completely rendered. If the document 110 A has been completely rendered, then the routine 400 A terminates. If the document 110 A has not been completely rendered, the routine 400 proceeds back to operation 404 where the next page or next slide of the document 110 A is rendered. Operation 404 may be repeated as many times as necessary until the document 110 A has been completely rendered into the rendered document 110 B.
- a routine 400 B begins at operation 408 , where the front end 102 receives a request from the web browser 106 for a document, such as the document 110 A.
- the routine 400 B then proceeds to operation 410 , where as pages or slides of the rendered document 110 B are rendered by the rendering module 118 , the application manager 120 may make available these pages or slides of the rendered document 110 B to the front end 102 . If a particular page or particular slide is requested, the application manager 120 may also make available that particular page or particular slide.
- the rendering module 118 may make available the pages or slides of the rendered document 110 B through the backend cache 122 .
- the front end 102 may then retrieve the pages or slides of the rendered document 110 B from the backend cache 122 and transmit the pages or slides of the rendered document 110 B to the web browser 106 for display.
- routine 400 B may be performed while the document 110 A is being incrementally rendered according to the routine 400 A. That is, while the rendering module 118 is rendering pages or slides of the document 110 A according to routine 400 A, the application manager 120 may fulfill requests for those rendered pages or slides according to routine 400 B. In this way, the front end 102 can continue to retrieve the additional pages or slides of the rendered document 110 B without waiting for the entire rendered document 110 B to be generated. Further, while the application manager 120 is fulfilling requests for pages or slides of the rendered document 110 B, the rendering module 118 may continue to render additional pages or slides from the document 110 A.
- additional requests for other documents may be received by the front end 102 .
- the download manager 202 may retrieve the other documents from the document store 112 and store the documents in the rendering queue 204 while the rendering module 118 is still rendering the document 110 A.
- the rendering module 118 can begin rendering these other documents without waiting for them to be retrieved from document store 112 .
- additional requests for the document 110 A may be directed to the same application server 116 .
- other application servers can be available to render other documents.
- the rendering module 118 may render the document 110 A into multiple formats in response to a single request.
- the computer 500 includes a processing unit 502 (“CPU”), a system memory 504 , and a system bus 506 that couples the memory 504 to the CPU 502 .
- the computer 500 further includes a mass storage device 512 for storing one or more program modules 514 , such as the rendering module 118 , and one or more databases 516 , such as the document store 112 .
- Other program modules 514 may include the web browser 106 , the download manager 202 , and the request merge module 302 .
- Other databases 516 may include the output store 114 , the rendering queue 204 , and the caches 304 .
- the mass storage device 512 is connected to the CPU 502 through a mass storage controller (not shown) connected to the bus 506 .
- the mass storage device 512 and its associated computer-readable media provide non-volatile storage for the computer 500 .
- computer-readable media can be any available computer storage media that can be accessed by the computer 500 .
- computer-readable media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data.
- computer-readable media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer 500 .
- the computer 500 may operate in a networked environment using logical connections to remote computers through a network, such as the network 108 .
- the computer 500 may connect to the network 108 through a network interface unit 510 connected to the bus 506 .
- the network interface unit 510 may also be utilized to connect to other types of networks and remote computer systems.
- the computer 500 may also include an input/output controller 508 for receiving and processing input from a number of input devices (not shown), including a keyboard, a mouse, a microphone, and a game controller. Similarly, the input/output controller 508 may provide output to a display or other type of output device (not shown).
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- Business, Economics & Management (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Mathematical Physics (AREA)
- Information Transfer Between Computers (AREA)
- Digital Computer Display Output (AREA)
- Image Generation (AREA)
- Processing Or Creating Images (AREA)
- Auxiliary Devices For Music (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 12/397,351 entitled “Content Rendering on a Computer,” filed Mar. 4, 2009, which is expressly incorporated by reference herein.
- Productivity application programs, such as word processing applications, spreadsheet applications, and presentation applications, enable users to create different types of documents. These documents may include data that is native to a particular document type and even to a particular application program. In order to view this native data, a user may view the document through the productivity application program that created the document. For example, a user may rely on a particular word processing application to view a word processing document that was created by the word processing application.
- A problem can arise when documents are shared across the World Wide Web (hereinafter referred to as “web”) through web browsers. In particular, typical web browsers may not be capable of reading a given document in its native format. In order to address this problem, a web server can be implemented to execute code that is capable of rendering a document from its native format into a web-compatible format that can be viewed through the web browser.
- Conventional implementations of such web servers render a document in its entirety prior to providing the rendered version to the web browser. This is sometimes referred to as document pre-rendering. During pre-rendering, a user who requests to view a given document may be forced to wait a significant amount of time before the document has been completely rendered. This delay can cause substantial frustration and inconvenience for the user.
- It is with respect to these considerations and others that the disclosure made herein is presented.
- Technologies are described herein for rendering content, such as documents. An application server is provided for rendering documents and other content from a native document format into a web-compatible format capable of being viewed through a web browser or other suitable application. The application server includes a rendering module, which is operative to incrementally render documents. Through incremental rendering, the application server can provide portions of rendered documents to the web browser while the native documents are still being rendered. Other example implementations of the technologies described herein include converting a document from one format into another format (e.g., transforming a document from a binary file format into an Office Open XML format, a Portable Document Format (“PDF”), and the like).
- A download manager is also provided in order to increase the throughput of the rendering module. While the rendering module is rendering one document, the download manager may begin retrieving other documents to be rendered at a later time. These other documents may be downloaded from a storage server and stored in a rendering queue on the application server. Once the rendering module becomes available, the rendering module can immediately begin rendering these other documents directly from the rendering queue without any downtime while waiting for documents to be retrieved.
- One or more caches are also provided in order to reduce the amount of work utilized to retrieve documents and other content. Examples of caches include a document cache, an authorization cache, and a location cache. The document cache may be operative to store rendered documents in the front end, thereby eliminating the need to retrieve the rendered documents from other storage units in the back end. The authorization cache may be operative to store authorization and authentication data, thereby eliminating the need to re-authorize or re-authenticate a user who later accesses the same document. The location cache may be operative to store the location of a rendered document. Through the use of the location cache, the rendered document can be efficiently retrieved from the relevant storage unit without the need to query multiple storage units.
- According to one embodiment, a method is provided herein for rendering content for viewing through a web browser operating on a computer. Portions of the content are transformed into portions of rendered content. While the portions of the content are being transformed into portions of the rendered content, at least one of the portions of the rendered content can be provided to an application program.
- It should be appreciated that the above-described subject matter may also be implemented as a computer-controlled apparatus, a computer process, a computing system, or as an article of manufacture such as a computer-readable medium. These and various other features will be apparent from a reading of the following Detailed Description and a review of the associated drawings.
- This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended that this Summary be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all of the disadvantages noted in any part of this disclosure.
-
FIG. 1 is a block diagram showing an illustrative system architecture operative to render documents for viewing through a web browser, in accordance with embodiments; -
FIG. 2 is a block diagram showing an illustrative implementation of an application manager from the system architecture ofFIG. 1 , in accordance with embodiments; -
FIG. 3 is a block diagram showing an illustrative implementation of a front end from the system architecture ofFIG. 1 , in accordance with embodiments; -
FIG. 4A is a flow diagram showing an illustrative process for rendering content for viewing through a web browser, in accordance with embodiments; -
FIG. 4B is a flow diagram showing an illustrative process for fetching a portion of the rendered content, in accordance with embodiments; and -
FIG. 5 is a computer architecture diagram showing an illustrative computer hardware architecture for a computing system capable of implementing the embodiments presented herein. - The following detailed description is directed to technologies for rendering content, such as documents. Through the utilization of the technologies and concepts presented herein, an application server is provided that is operative to incrementally render a document or other content from its native format into another format, such as a web-compatible format. In contrast to pre-rendering, as content is being incrementally rendered, each discrete portion of the document or other content that has been rendered can be made available to the user. One or more caches may also be provided in order to reduce the amount of work utilized to retrieve rendered content.
- Embodiments described herein may refer to pages and slides as discrete portions of documents and rendered documents. However, it should be appreciated that pages and slides are merely examples of discrete portions and are not intended to be limiting. Other kinds of discrete portions, as contemplated by those skilled in the art, may be similarly implemented.
- Although not so limited, embodiments described herein primarily refer to documents and document rendering. However, it should be appreciated that the embodiments described herein may be similarly applied to any suitable content which can be rendered from a native format into another format. Such content may include any multimedia, such as text, images, audio, video, and combinations thereof. Further, embodiments described herein primarily refer to the rendered format as a web-compatible format capable of being viewed through a web browser. However, it should be appreciated that the rendered format may be other suitable formats as contemplated by those skilled in the art.
- While the subject matter described herein is presented in the general context of program modules that execute in conjunction with the execution of an operating system and application programs on a computer system, those skilled in the art will recognize that other implementations may be performed in combination with other types of program modules. Generally, program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the subject matter described herein may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like.
- In the following detailed description, references are made to the accompanying drawings that form a part hereof, and which are showing by way of illustration specific embodiments or examples. Referring now to the drawings, in which like numerals represent like elements through the several figures, concepts and technologies for providing on-demand content viewing will be described. In particular,
FIG. 1 is a block diagram showing asystem architecture 100 operative to render documents and to retrieve rendered documents according to embodiments. Thearchitecture 100 includes afront end 102 that is operative to communicate with acomputer 104. Thefront end 102 may receive and process requests from aweb browser 106 over anetwork 108, such as the Internet. For example, thefront end 102 may receive a Hypertext Transfer Protocol (“HTTP”) message with a request for a specific document, such asdocument 110A, stored in adocument store 112. It should be appreciated that the components of thearchitecture 100 may reside on the same server, according to further embodiments. Splitting thearchitecture 100 into the front ends and application servers is merely an implementation design choice and is not intended to be limiting. - In response to receiving the HTTP request, the web
front end 102 may attempt to retrieve, from anoutput store 114, a web-compatible rendereddocument 110B corresponding to the requesteddocument 110A. For example, the rendereddocument 110B may be stored in theoutput store 114 if thedocument 110A was recently rendered. If theoutput store 114 contains the rendereddocument 110B corresponding to thedocument 110A, then theoutput store 114 may return the rendereddocument 110B to thefront end 102. - If the
output store 114 does not contain the rendereddocument 110B, then theapplication server 116, and more specifically therendering module 118, may retrieve thedocument 110A from thedocument store 112. According to embodiments, arendering module 118 in theapplication server 116 is operative to render (i.e., convert, transform) thedocument 110A into the rendereddocument 110B. Therendering module 118 may generate the rendereddocument 110B in any format capable of being displayed by a suitable web browser. Example formats may include an image format (e.g., Portable Network Graphics (“PNG”), Joint Photographic Experts Group (“JPEG”), etc.), MICROSOFT SILVERLIGHT, ADOBE FLASH, and the like. Therendering module 118 may also generate the rendereddocument 110B into a web-ready rendition that may include Extensible Markup Language (“XML”), scripts, Hypertext Markup Language (“HTML”), images, and/or the like, such that individual data types in the web-ready rendition can be understood collectively by the web browser. Each of these data types may be made available to the user upon being generated by the incremental rendering process described herein. Therendering module 118 may also be operative to concurrently render multiple documents. Upon generating the rendereddocument 110B, theapplication server 116 may store the rendereddocument 110B in theoutput store 114 and return the rendereddocument 110B to thefront end 102. - Upon receiving the rendered
document 110B, thefront end 102 may respond to the HTTP request by providing the rendereddocument 110B to theweb browser 106 via the HTTP protocol. Theweb browser 106 can then display the rendereddocument 110B, which is a full-fidelity representation of thecorresponding document 110A. The full-fidelity representation contains the same formatting (e.g., layout, resolution, content, etc.) found in the original representation. Thus, a user can expect the same experience viewing a given document whether the document is viewed through a productivity application program or through a web browser, such as theweb browser 106. The full-fidelity representation can be contrasted against a lower-fidelity representation in which, for example, the layout may be changed or the resolution and content may be reduced. In other embodiments, the rendereddocument 110B may be utilized for non-viewing scenarios, such as converting binary files to another document type for editing. For example, a MICROSOFT OFFICE binary file may be rendered into an OPEN OFFICE EXTENSIBLE MARKUP LANGUAGE (“OOXML”) file. - It should be appreciated that the components and the configuration of the components within the
architecture 100 ofFIG. 1 are merely illustrative and are not intended to be limiting. In other embodiments, thearchitecture 100 may include additional front ends and/or additional application servers. Further, multiple front ends and/or multiple application servers may reside on the same server. For example, additional front ends may be utilized to handle a greater quantity of requests from web browsers. In one embodiment, the additional application servers are deployed to handle the rendering of heavier loads. In another embodiment, additional application servers are deployed to render different types of documents. For example, one application server may be dedicated to rendering word processing documents, while another application server may be dedicated to rendering presentations. In yet another embodiment, additional application servers are deployed to render different elements of a given document. The rendered elements can then be combined to create the rendered document. For example, one application server may render video in a presentation, while another application server may render the text in the presentation. In this case, thefront end 102 may be operative to combine the results of the two application servers to form the rendered presentation. - In some embodiments, in response to a single request to render a document in a given format, the
front end 102 may direct theapplication server 116 to render the document into multiple formats in order to support multiple uses across multiple device types and web client configurations. For example, theweb browser 106 may request from the front end 102 a given document rendered in ADOBE FLASH. Thefront end 102 may determine, through a user profile associated with the user operating theweb browser 106, that the user frequently accesses documents in ADOBE FLASH, MICROSOFT SILVERLIGHT, Portable Network Graphics (“PNG”), mobile, and full versions. Thefront end 102 may also determine, through the user profile that the user frequently accesses documents in a web-ready rendition including a combination of XML, scripts, HTML, images, and/or the like. In this case, thefront end 102 may fulfill the request by rendering the document in one or more of these versions. Other suitable data may be similarly utilized to determine whether thefront end 102 directs theapplication server 116 to render a document into multiple formats in response to a single render request. By proactively rendering documents into multiple formats in response to a single request rather than rendering the document in response to specific requests for the additional formats, thearchitecture 100 can more expeditiously provide the rendered documents. - According to embodiments, the
application server 116 further includes anapplication manager 120. Theapplication manager 120 is operative to manage incremental rendering of thedocument 110A into the rendereddocument 110B. As used herein, “incremental rendering” refers to providing portions of the rendereddocument 110B as thedocument 110A is being rendered by therendering module 118. For example, the rendered first page of a word processing document or a rendered first slide of a presentation may be provided to thefront end 102, which can then provide the rendered first page or the rendered first slide to theweb browser 106 for display. Other embodiments may render any particular page or slide in the document. Other embodiments may also render other portions of content besides pages or slides. As the remainder of the word processing document or presentation is being rendered by therendering module 118, theapplication manager 120 may provide the additional rendered pages and rendered slides to theweb browser 106. - In order to provide incremental rendering, the
application manager 120 may make available portions of the rendereddocument 110B as thedocument 110A is being rendered by therendering module 118. Thefront end 102 can then retrieve these portions of the rendereddocument 110B, as necessary, from theapplication server 116. In one embodiment, the portions of the rendereddocument 110B are stored in abackend cache 122 in theapplication server 116. - During incremental rendering, the pages or slides of a document may be rendered in any predefined order. The rendered pages or slides are then made available to the
front end 102 in the same order as they were rendered. In one embodiment, the documents are rendered from the beginning of the document to the end of the document. - In contrast to conventional pre-rendering where a user must wait until the entire document is rendered, incremental rendering reduces the amount of rendering time before a user can view a portion, such as the beginning or some other portion, of the document. For example, in conventional pre-rendering, a user desiring to view a first page of a word processing document or a first slide of a presentation would need to wait until the entire word processing document or presentation is rendered. In an illustrative implementation of incremental rendering, the user can more quickly view the first page or the first slide prior to the remainder of the word processing document or the presentation being rendered.
- In some embodiments, the user may request a page N or a slide N of a document where the variable N represents any page or slide within the document. The request may occur prior to or while the document is being rendered. Upon receiving the request for the page N or slide N, the
application manager 120 may direct therendering module 118 to render the page N or the slide N by seeking the particular page or slide within the document. The rendered page N or slide N can then be made available to thefront end 102. Upon making available the rendered page N or slide N, theapplication manager 120 may proceed with rendering the remainder of the document. - In some embodiments, the
rendering module 118 is operative to incrementally render a document even when the document has yet to be fully downloaded. That is, therendering module 118 may begin rendering the document while it is being downloaded from thedocument store 112, rather than wait until the entire file has been downloaded. This approach to rendering a document before it has fully downloaded may reduce the amount of time it takes for therendering module 118 to render a document, especially if the document is relatively large. - Turning now to
FIG. 2 , additional details regarding theapplication manager 120 will be described. In particular,FIG. 2 is a block diagram showing theapplication manager 120 according to embodiments. Theapplication manager 120 includes adownload manager 202 and arendering queue 204. According to embodiments, thedownload manager 202 is operative to download documents from thedocument store 112 prior to therendering module 118 rendering the documents. Thedownload manager 202 may then store the downloaded documents in therendering queue 204 until therendering module 118 is available to render the documents. It should be appreciated that therendering queue 204 may operate without thedownload manager 202. However, thedownload manager 202 may be utilized to speed processing through therendering queue 204. Further, even when thedownload manager 202 is present, therendering queue 204 may operate independently of thedownload manager 202 to handle instances when theapplication manager 120 is overloaded. - In an illustrative example, if a request is made to render a
first document 206A and asecond document 206B, thedownload manager 202 may download thefirst document 206A from thedocument store 112, and therendering module 118 may begin rendering thefirst document 206A. As therendering module 118 renders thefirst document 206A, thedownload manager 202 may concurrently download thesecond document 206B from thedocument store 112 and store thesecond document 206B in therendering queue 204. Upon rendering thefirst document 206A, therendering module 118 can then immediately proceed to rendering thesecond document 206B from therendering queue 204 without waiting for thesecond document 206B to be downloaded. In this way, throughput of therendering module 118 is improved by eliminating any idle time found in conventional implementations where therendering module 118 would wait for thesecond document 206B to download. - It should be appreciated that the
rendering queue 204 may be configured to store any number of documents, as contemplated by those skilled in the art. In some embodiments, thedownload manager 202 may be configured by a user to adjust the number of documents being downloaded simultaneously and the maximum number of documents stored in therendering queue 204 that are awaiting rendering. In this way, the user can ensure that the number of documents being downloaded and/or stored at any given time does not place an excessive burden on system resources. - Turning now to
FIG. 3 , additional details regarding thefront end 102 will be described. In particular,FIG. 3 is a block diagram showing thefront end 102 according to embodiments. Thefront end 102 includes arequest merge module 302 and several caches 304, including adocument cache 304A, anauthorization cache 304B, and a location cache 304C. According to embodiments, therequest merge module 302 maintains tracking data identifying a particular application server that is currently rendering a given document. Therequest merge module 302 may utilize this tracking data to direct additional requests for the same document to the same application server. By directing additional requests for the same document to the same application server, redundant work between application servers is reduced, and other application servers are free to render other documents. - As previously described, the
system architecture 100 ofFIG. 1 may include multiple front ends and multiple application servers. These front ends may or may not be capable of communicating with each other. In the case where front ends do not communicate with each other, therequest merge module 302 may be configured to perform consistent hashing in order to identify a particular application server for a particular document request. In consistent hashing, one or more aspects of a given document request may be analyzed in order to map these aspects to a particular application server. In this way, separate front ends can direct multiple requests for the same document to the same application server, even when the front ends cannot communicate with each other. An example of an aspect of a document request is the name of the document being requested. It should be appreciated that consistent hashing in this case can significantly increase the likelihood that documents are not rendered multiple times on different application servers (e.g., multiple front ends could receive requests for the same document). Without consistent hashing, many application servers may receive these requests and process the same document. Other hashing techniques capable of mapping document requests to application servers may be similarly utilized. - The caches 304 may improve performance of the
front end 102 by reducing the need for thefront end 102 to access other parts of thesystem architecture 100, such as theoutput store 114 and theapplication server 116. According to embodiments, thedocument cache 304A is operative to cache at least portions of rendered documents according to popularity. For example, documents that are frequently requested can be retrieved directly from thedocument cache 304A instead of accessing theoutput store 114 or theapplication server 116. Any of a variety of factors and methodologies may be utilized for determining the popularity of documents, as contemplated by those skilled in the art. - According to embodiments, the
authorization cache 304B is operative to store authorization or authentication information associated with users. Access to the documents and the rendered documents may be restricted based on an authorization process whereby a user enters identification information, such as a username and password. For example, when a user attempts to access a particular document, thefront end 102 may access an authorization module (not shown), which requests information, such as a login identifier and password, identifying the user. The authorization module may then determine whether the user has permission to access the document. The authorization module may be configured to permit access to the document only when the authorization module verifies that the user has permission. - When the authorization module successfully verifies the user, the
authorization cache 304B may store state information indicating that the user has been verified. Thefront end 102 may utilize this state information to verify that the user has or does not have permission to access the document without the need for accessing the authorization module. In this way, thefront end 102 is not required to send credentials to an remote authorization service, thereby optimizing performance of thefront end 102. Further, the user does not have to re-enter identification information for additional requests to access the same document. - The state information stored in the
authorization cache 304B may be particularly useful when a user requests only a portion of a given document at a time. For example, a user may initially request only a first page of a multi-page document. Upon submitting the request for the first page of the document, the user may be required to enter identification information (i.e., credentials) in order to view the first page. If the user subsequently requests additional pages of the document, thefront end 102 can expeditiously authorize the user based on the credentials stored in theauthorization cache 304B. Thus, each authentication of the user does not necessarily result in the user being prompted for credentials. Further, the need to re-query other servers to authenticate and authorize the user can be eliminated. Theauthorization cache 304B may be configured to store the state information for any amount of time after which the state information may be deleted. - According to embodiments, the location cache 304C, which may also be referred to as a “dictionary”, is operative to store the location of a given rendered document. For example, the location cache 304C may indicate the particular storage unit that stores a particular rendered document. Examples of storage units may include the
output store 114 and thebackend cache 122. The storage units may be part of thesystem architecture 100 or separate from thesystem architecture 100. By storing the location of rendered documents in the location cache 304C, thefront end 102 can direct requests for a rendered document to the specific storage unit, as opposed to individually querying each storage unit and causing additional loads on the storage units. - Referring now to
FIGS. 4A and 4B , additional details will be provided regarding the embodiments presented herein for rendering documents for viewing through a web browser. In particular,FIG. 4A is a flow diagram illustrating one method for rendering content for viewing through a web browser operating on a computer.FIG. 4B is a flow diagram illustrating one method for fetching a rendered portion of the content. The method ofFIG. 4B may be performed concurrently or after the method ofFIG. 4A is performed. It should be appreciated that the logical operations described herein are implemented (1) as a sequence of computer implemented acts or program modules running on a computing system and/or (2) as interconnected machine logic circuits or circuit modules within the computing system. The implementation is a matter of choice dependent on the performance and other requirements of the computing system. Accordingly, the logical operations described herein are referred to variously as states, operations, structural devices, acts, or modules. These operations, structural devices, acts, and modules may be implemented in software, in firmware, in special purpose digital logic, and any combination thereof. It should be appreciated that more or fewer operations may be performed than shown in the figures and described herein. These operations may also be performed in a different order than those described herein. - In
FIG. 4A , a routine 400 begins atoperation 402, where thefront end 102 receives a request from theweb browser 106 for a document, such as thedocument 110A. The routine 400 then proceeds tooperation 404, where thefront end 102 directs therendering module 118 to begin incrementally rendering thedocument 110A. In particular, therendering module 118 may retrieve thedocument 110A from thedocument store 112. Upon retrieving thedocument 110A from thedocument store 112, therendering module 118 may render the first page or the first slide of thedocument 110A. In some embodiments, the request may specify a particular slide or page of thedocument 110A. In this case, therendering module 118 may render the particular page or the particular slide instead of the first page or the first slide. Upon generating the first page or the first slide of the rendereddocument 110B, the routine proceeds tooperation 406. - At
operation 406, therendering module 118 determines whether thedocument 110A has been completely rendered. If thedocument 110A has been completely rendered, then the routine 400A terminates. If thedocument 110A has not been completely rendered, the routine 400 proceeds back tooperation 404 where the next page or next slide of thedocument 110A is rendered.Operation 404 may be repeated as many times as necessary until thedocument 110A has been completely rendered into the rendereddocument 110B. - In
FIG. 4B , a routine 400B begins atoperation 408, where thefront end 102 receives a request from theweb browser 106 for a document, such as thedocument 110A. The routine 400B then proceeds tooperation 410, where as pages or slides of the rendereddocument 110B are rendered by therendering module 118, theapplication manager 120 may make available these pages or slides of the rendereddocument 110B to thefront end 102. If a particular page or particular slide is requested, theapplication manager 120 may also make available that particular page or particular slide. Therendering module 118 may make available the pages or slides of the rendereddocument 110B through thebackend cache 122. Thefront end 102 may then retrieve the pages or slides of the rendereddocument 110B from thebackend cache 122 and transmit the pages or slides of the rendereddocument 110B to theweb browser 106 for display. - It should be appreciated that the routine 400B may be performed while the
document 110A is being incrementally rendered according to the routine 400A. That is, while therendering module 118 is rendering pages or slides of thedocument 110A according to routine 400A, theapplication manager 120 may fulfill requests for those rendered pages or slides according to routine 400B. In this way, thefront end 102 can continue to retrieve the additional pages or slides of the rendereddocument 110B without waiting for the entire rendereddocument 110B to be generated. Further, while theapplication manager 120 is fulfilling requests for pages or slides of the rendereddocument 110B, therendering module 118 may continue to render additional pages or slides from thedocument 110A. - According to some embodiments, additional requests for other documents may be received by the
front end 102. Instead of waiting until therendering module 118 has completed rendering thedocument 110A into the rendereddocument 110B, thedownload manager 202 may retrieve the other documents from thedocument store 112 and store the documents in therendering queue 204 while therendering module 118 is still rendering thedocument 110A. Upon rendering thedocument 110A into the rendereddocument 110B, therendering module 118 can begin rendering these other documents without waiting for them to be retrieved fromdocument store 112. - According to some embodiments, additional requests for the
document 110A may be directed to thesame application server 116. In this way, other application servers can be available to render other documents. Further, according to some embodiments, therendering module 118 may render thedocument 110A into multiple formats in response to a single request. - Referring now to
FIG. 5 , an exemplary computer architecture diagram showing acomputer 500 is illustrated. Thecomputer 500 includes a processing unit 502 (“CPU”), asystem memory 504, and a system bus 506 that couples thememory 504 to theCPU 502. Thecomputer 500 further includes a mass storage device 512 for storing one ormore program modules 514, such as therendering module 118, and one ormore databases 516, such as thedocument store 112.Other program modules 514 may include theweb browser 106, thedownload manager 202, and therequest merge module 302.Other databases 516 may include theoutput store 114, therendering queue 204, and the caches 304. The mass storage device 512 is connected to theCPU 502 through a mass storage controller (not shown) connected to the bus 506. The mass storage device 512 and its associated computer-readable media provide non-volatile storage for thecomputer 500. Although the description of computer-readable media contained herein refers to a mass storage device, such as a hard disk or CD-ROM drive, it should be appreciated by those skilled in the art that computer-readable media can be any available computer storage media that can be accessed by thecomputer 500. - By way of example, and not limitation, computer-readable media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules, or other data. For example, computer-readable media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the
computer 500. - According to various embodiments, the
computer 500 may operate in a networked environment using logical connections to remote computers through a network, such as thenetwork 108. Thecomputer 500 may connect to thenetwork 108 through anetwork interface unit 510 connected to the bus 506. It should be appreciated that thenetwork interface unit 510 may also be utilized to connect to other types of networks and remote computer systems. Thecomputer 500 may also include an input/output controller 508 for receiving and processing input from a number of input devices (not shown), including a keyboard, a mouse, a microphone, and a game controller. Similarly, the input/output controller 508 may provide output to a display or other type of output device (not shown). - Based on the foregoing, it should be appreciated that technologies for rendering content, such as documents, for viewing through a web browser are presented herein. Although the subject matter presented herein has been described in language specific to computer structural features, methodological acts, and computer readable media, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features, acts, or media described herein. Rather, the specific features, acts and mediums are disclosed as example forms of implementing the claims.
- The subject matter described above is provided by way of illustration only and should not be construed as limiting. Various modifications and changes may be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/606,704 US20120331377A1 (en) | 2009-03-04 | 2012-09-07 | Content Rendering on a Computer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/397,351 US8347208B2 (en) | 2009-03-04 | 2009-03-04 | Content rendering on a computer |
US13/606,704 US20120331377A1 (en) | 2009-03-04 | 2012-09-07 | Content Rendering on a Computer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/397,351 Continuation US8347208B2 (en) | 2009-03-04 | 2009-03-04 | Content rendering on a computer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120331377A1 true US20120331377A1 (en) | 2012-12-27 |
Family
ID=42679330
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/397,351 Expired - Fee Related US8347208B2 (en) | 2009-03-04 | 2009-03-04 | Content rendering on a computer |
US13/606,704 Abandoned US20120331377A1 (en) | 2009-03-04 | 2012-09-07 | Content Rendering on a Computer |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/397,351 Expired - Fee Related US8347208B2 (en) | 2009-03-04 | 2009-03-04 | Content rendering on a computer |
Country Status (17)
Country | Link |
---|---|
US (2) | US8347208B2 (en) |
EP (1) | EP2404276A4 (en) |
JP (1) | JP5537571B2 (en) |
KR (1) | KR101626639B1 (en) |
CN (1) | CN102341823B (en) |
AU (1) | AU2010221620B2 (en) |
BR (1) | BRPI1007813A2 (en) |
CA (1) | CA2749683C (en) |
CL (1) | CL2011002084A1 (en) |
IL (1) | IL214057A (en) |
MX (1) | MX2011009158A (en) |
MY (1) | MY163751A (en) |
RU (1) | RU2571512C2 (en) |
SG (1) | SG172952A1 (en) |
TW (1) | TWI493441B (en) |
WO (1) | WO2010101790A2 (en) |
ZA (1) | ZA201105214B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107809A1 (en) * | 2013-01-11 | 2014-07-17 | La Presse, Ltée | Device, method and system for displaying digital editions |
US20170060830A1 (en) * | 2015-08-26 | 2017-03-02 | YTML Consulting Pty Ltd | System and process for generating an internet application |
US11783120B2 (en) | 2015-08-26 | 2023-10-10 | Roar Software Pty Ltd. | System and process for generating an internet application |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080028302A1 (en) * | 2006-07-31 | 2008-01-31 | Steffen Meschkat | Method and apparatus for incrementally updating a web page |
US8776038B2 (en) | 2008-08-07 | 2014-07-08 | Code Systems Corporation | Method and system for configuration of virtualized software applications |
US8434093B2 (en) | 2008-08-07 | 2013-04-30 | Code Systems Corporation | Method and system for virtualization of software applications |
TWI471742B (en) * | 2009-05-13 | 2015-02-01 | Alibaba Group Holding Ltd | Web access / send method, client, server and network system |
CN102487456B (en) | 2009-11-30 | 2015-06-17 | 国际商业机器公司 | Method for providing visit rate of online video and device thereof |
US8954958B2 (en) | 2010-01-11 | 2015-02-10 | Code Systems Corporation | Method of configuring a virtual application |
US8959183B2 (en) * | 2010-01-27 | 2015-02-17 | Code Systems Corporation | System for downloading and executing a virtual application |
US9104517B2 (en) | 2010-01-27 | 2015-08-11 | Code Systems Corporation | System for downloading and executing a virtual application |
US9229748B2 (en) | 2010-01-29 | 2016-01-05 | Code Systems Corporation | Method and system for improving startup performance and interoperability of a virtual application |
US8763009B2 (en) | 2010-04-17 | 2014-06-24 | Code Systems Corporation | Method of hosting a first application in a second application |
US9047030B2 (en) * | 2010-04-29 | 2015-06-02 | Hewlett-Packard Development Company, L.P. | Caching network service resources |
US9218359B2 (en) | 2010-07-02 | 2015-12-22 | Code Systems Corporation | Method and system for profiling virtual application resource utilization patterns by executing virtualized application |
US9021015B2 (en) | 2010-10-18 | 2015-04-28 | Code Systems Corporation | Method and system for publishing virtual applications to a web server |
US9209976B2 (en) | 2010-10-29 | 2015-12-08 | Code Systems Corporation | Method and system for restricting execution of virtual applications to a managed process environment |
US8996985B1 (en) | 2011-03-16 | 2015-03-31 | Google Inc. | Online document processing service for displaying comments |
US8812946B1 (en) | 2011-10-17 | 2014-08-19 | Google Inc. | Systems and methods for rendering documents |
US20150199308A1 (en) | 2011-10-17 | 2015-07-16 | Google Inc. | Systems and methods for controlling the display of online documents |
US8266245B1 (en) | 2011-10-17 | 2012-09-11 | Google Inc. | Systems and methods for incremental loading of collaboratively generated presentations |
US8434002B1 (en) | 2011-10-17 | 2013-04-30 | Google Inc. | Systems and methods for collaborative editing of elements in a presentation document |
US8397153B1 (en) | 2011-10-17 | 2013-03-12 | Google Inc. | Systems and methods for rich presentation overlays |
US10430388B1 (en) | 2011-10-17 | 2019-10-01 | Google Llc | Systems and methods for incremental loading of collaboratively generated presentations |
US10108737B2 (en) * | 2012-01-25 | 2018-10-23 | Microsoft Technology Licensing, Llc | Presenting data driven forms |
US9367522B2 (en) | 2012-04-13 | 2016-06-14 | Google Inc. | Time-based presentation editing |
US10546047B1 (en) * | 2012-09-27 | 2020-01-28 | Open Text Corporation | Method and system for stashing of document alteration information for quicker web preview |
US9372840B1 (en) * | 2012-09-28 | 2016-06-21 | Emc Corporation | Method and system for accelerated transformation of content based on predictive chunking |
US9529785B2 (en) | 2012-11-27 | 2016-12-27 | Google Inc. | Detecting relationships between edits and acting on a subset of edits |
US9069986B2 (en) * | 2013-06-18 | 2015-06-30 | International Business Machines Corporation | Providing access control for public and private document fields |
US20150007041A1 (en) * | 2013-06-26 | 2015-01-01 | M-Files Oy | Method and technical equipment for providing a user interface implementation |
US9383902B2 (en) * | 2013-06-28 | 2016-07-05 | Successfactors, Inc. | Systems and methods for presentations with live application integration |
JP6192423B2 (en) * | 2013-08-12 | 2017-09-06 | キヤノン株式会社 | Information processing apparatus, information processing method, information processing system, and program |
US9971752B2 (en) | 2013-08-19 | 2018-05-15 | Google Llc | Systems and methods for resolving privileged edits within suggested edits |
JP6464587B2 (en) * | 2013-08-21 | 2019-02-06 | 株式会社リコー | Information processing system, information processing apparatus, information transmission method, and program |
US9348803B2 (en) | 2013-10-22 | 2016-05-24 | Google Inc. | Systems and methods for providing just-in-time preview of suggestion resolutions |
US10104155B2 (en) * | 2014-03-14 | 2018-10-16 | The University Of Tokyo | Document providing system, providing-side apparatus, and display-side apparatus |
CN107295052B (en) | 2016-04-11 | 2020-06-09 | 阿里巴巴集团控股有限公司 | A business processing method and device |
KR102036715B1 (en) * | 2018-04-02 | 2019-10-25 | 주식회사 한글과컴퓨터 | Web-based presentation editing apparatus for quick loading of presentation documents through browser and operating method thereof |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6119137A (en) * | 1997-01-30 | 2000-09-12 | Tumbleweed Communications Corp. | Distributed dynamic document conversion server |
US6336124B1 (en) * | 1998-10-01 | 2002-01-01 | Bcl Computers, Inc. | Conversion data representing a document to other formats for manipulation and display |
US20030023637A1 (en) * | 2000-03-01 | 2003-01-30 | Erez Halahmi | System and method for rapid document conversion |
US20030191858A1 (en) * | 2002-04-05 | 2003-10-09 | Koteshwerrao Adusumilli | Response time of transformed documents based on caching and dynamic transformation |
US6654032B1 (en) * | 1999-12-23 | 2003-11-25 | Webex Communications, Inc. | Instant sharing of documents on a remote server |
US6658462B1 (en) * | 1999-08-26 | 2003-12-02 | International Business Machines Corporation | System, method, and program for balancing cache space requirements with retrieval access time for large documents on the internet |
US20040030995A1 (en) * | 2002-08-08 | 2004-02-12 | International Business Machines Corporation | Web-based document printing and conversion |
US20040034830A1 (en) * | 2002-08-16 | 2004-02-19 | Commerce One Operations, Inc. | XML streaming transformer |
US6725426B1 (en) * | 2000-03-17 | 2004-04-20 | Broadvision, Inc. | Mechanism for translating between word processing documents and XML documents |
US6763501B1 (en) * | 2000-06-09 | 2004-07-13 | Webex Communications, Inc. | Remote document serving |
US20040172586A1 (en) * | 2003-02-28 | 2004-09-02 | Xerox Corporation | Method and apparatus for controlling document service requests from a mobile device |
US20060007466A1 (en) * | 2004-07-12 | 2006-01-12 | Itemfield Inc. | System and method for data format transformation |
US6988241B1 (en) * | 2000-10-16 | 2006-01-17 | International Business Machines Corporation | Client side, web-based spreadsheet |
US6990629B1 (en) * | 1999-07-27 | 2006-01-24 | Schlumberger Technology Corporation | Publishing system for intranet |
US20060069746A1 (en) * | 2004-09-08 | 2006-03-30 | Davis Franklin A | System and method for smart persistent cache |
US20060106822A1 (en) * | 2004-11-17 | 2006-05-18 | Chao-Chun Lee | Web-based editing system of compound documents and method thereof |
US20060136353A1 (en) * | 2004-12-16 | 2006-06-22 | Microsoft Corporation | Systems and methods for converting a formatted document to a web page |
US20060179406A1 (en) * | 2000-05-19 | 2006-08-10 | Renderx | Methods and systems for rendering electronic data |
US20060242572A1 (en) * | 2005-04-22 | 2006-10-26 | Microsoft Corporation | Viewer for protected content as a programming platform component |
US20060259524A1 (en) * | 2003-03-17 | 2006-11-16 | Horton D T | Systems and methods for document project management, conversion, and filing |
US7181682B1 (en) * | 2002-06-27 | 2007-02-20 | Siebel Systems, Inc. | Document publishing and rendering |
US20070220417A1 (en) * | 2006-03-17 | 2007-09-20 | Sonolink Communications Systems, Llc | System and method for editing online documents |
US20080120283A1 (en) * | 2006-11-17 | 2008-05-22 | Oracle International Corporation | Processing XML data stream(s) using continuous queries in a data stream management system |
US7398464B1 (en) * | 2002-05-31 | 2008-07-08 | Oracle International Corporation | System and method for converting an electronically stored document |
US20080189602A1 (en) * | 2007-01-25 | 2008-08-07 | Microsoft Corporation | Streamable interactive rendering-independent page layout |
US20080222516A1 (en) * | 2007-03-05 | 2008-09-11 | John Edward Petri | Document transformation performance via incremental fragment transformations |
US20090083279A1 (en) * | 2007-09-26 | 2009-03-26 | Hasek Charles A | Methods and apparatus for content caching in a video network |
US20090125802A1 (en) * | 2006-04-12 | 2009-05-14 | Lonsou (Beijing) Technologies Co., Ltd. | System and method for facilitating content display on portable devices |
US20090144158A1 (en) * | 2007-12-03 | 2009-06-04 | Matzelle Brent R | System And Method For Enabling Viewing Of Documents Not In HTML Format |
US20090217158A1 (en) * | 2008-02-25 | 2009-08-27 | Microsoft Corporation | Editing a document using a transitory editing surface |
US20090235161A1 (en) * | 2008-03-15 | 2009-09-17 | Microsoft Corporation | Lossless Web-Based Editor For Complex Documents |
US20090276696A1 (en) * | 2008-04-30 | 2009-11-05 | Microsoft Corporation | High-fidelity rendering of documents in viewer clients |
US20110035660A1 (en) * | 2007-08-31 | 2011-02-10 | Frederick Lussier | System and method for the automated creation of a virtual publication |
US20120331089A1 (en) * | 2011-06-21 | 2012-12-27 | Net Power And Light, Inc. | Just-in-time transcoding of application content |
US8407576B1 (en) * | 2008-09-02 | 2013-03-26 | Sitscape, Inc. | Situational web-based dashboard |
US8775520B1 (en) * | 2005-09-30 | 2014-07-08 | Google Inc. | Systems and methods for viewing non-HTML email attachments |
US20140250361A1 (en) * | 2004-09-30 | 2014-09-04 | Macromedia, Inc. | Preserving document construct fidelity in converting graphic-represented documents into text-readable documents |
US20140250368A1 (en) * | 2004-09-30 | 2014-09-04 | Macromedia, Inc. | Smart document import |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838906A (en) * | 1994-10-17 | 1998-11-17 | The Regents Of The University Of California | Distributed hypermedia method for automatically invoking external application providing interaction and display of embedded objects within a hypermedia document |
US5737599A (en) * | 1995-09-25 | 1998-04-07 | Rowe; Edward R. | Method and apparatus for downloading multi-page electronic documents with hint information |
US5778372A (en) * | 1996-04-18 | 1998-07-07 | Microsoft Corporation | Remote retrieval and display management of electronic document with incorporated images |
US6401131B1 (en) * | 1997-06-19 | 2002-06-04 | International Business Machines Corporation | Web server enabling attachment of HTML and non-HTML files to web pages |
US20020111973A1 (en) * | 1998-10-15 | 2002-08-15 | John Maddalozzo | Method of controlling web browser document image downloads and displays |
US6565609B1 (en) * | 1999-06-15 | 2003-05-20 | Microsoft Corporation | Translating data into HTML while retaining formatting and functionality for returning the translated data to a parent application |
US6613098B1 (en) * | 1999-06-15 | 2003-09-02 | Microsoft Corporation | Storage of application specific data in HTML |
US6590674B1 (en) * | 1999-09-23 | 2003-07-08 | Agile Software | Method and apparatus for creating and maintaining graphic representations of documents under a universal format |
US6704024B2 (en) * | 2000-08-07 | 2004-03-09 | Zframe, Inc. | Visual content browsing using rasterized representations |
US6745163B1 (en) | 2000-09-27 | 2004-06-01 | International Business Machines Corporation | Method and system for synchronizing audio and visual presentation in a multi-modal content renderer |
CA2349905A1 (en) * | 2001-06-07 | 2002-12-07 | Ibm Canada Limited-Ibm Canada Limitee | System and method of mapping between software objects and structured language element based documents |
US20020198963A1 (en) * | 2001-06-21 | 2002-12-26 | Wu Alex C. | Method of timer based download and playback scheme for internet browser |
US7346843B2 (en) * | 2001-09-18 | 2008-03-18 | International Business Machines Corporation | Low-latency, incremental rendering in a content framework |
JP2003108428A (en) * | 2001-09-27 | 2003-04-11 | Nippon Telegr & Teleph Corp <Ntt> | Cash cooperative data acquisition method, proxy server, cash cooperative data acquisition program, and storage medium storing cash cooperative data acquisition program |
US20050080804A1 (en) | 2001-10-30 | 2005-04-14 | Bradshaw Robert David | System and method for maintaining componentized content |
US20030106021A1 (en) * | 2001-11-30 | 2003-06-05 | Tushar Mangrola | Apparatus and method for creating PDF documents |
AUPR962001A0 (en) * | 2001-12-19 | 2002-01-24 | Redbank Manor Pty Ltd | Document display system and method |
KR100576487B1 (en) | 2002-02-08 | 2006-05-10 | 인터우븐 인코포레이티드 | System and method for maintaining componentized content |
JP4191063B2 (en) * | 2003-05-08 | 2008-12-03 | 株式会社リコー | Image processing apparatus, image processing method, and image processing program |
FR2853788A1 (en) * | 2003-04-08 | 2004-10-15 | Canon Kk | METHOD AND DEVICE FOR ACCESSING A DIGITAL DOCUMENT IN A PEER-TO-PEER COMMUNICATION NETWORK |
WO2004100015A2 (en) * | 2003-05-05 | 2004-11-18 | Arbortext, Inc. | System and method for defining specifications for outputting content in multiple formats |
US20050216846A1 (en) * | 2004-03-26 | 2005-09-29 | Mika Kalenius | Normal versus small screen rendering with given URL |
US20050268215A1 (en) * | 2004-06-01 | 2005-12-01 | Microsoft Corporation | Method and apparatus for viewing and interacting with a spreadsheet from within a web browser |
US7188312B2 (en) * | 2004-08-12 | 2007-03-06 | Ap-Mobile Technology Inc. | Remote document viewing system, device, and method thereof |
US7411693B2 (en) * | 2004-10-15 | 2008-08-12 | Agfa Inc. | Image data dissemination system and method |
US20060212798A1 (en) | 2005-01-12 | 2006-09-21 | Lection David B | Rendering content natively on local operating system |
US7814410B2 (en) | 2005-09-12 | 2010-10-12 | Workman Nydegger | Initial server-side content rendering for client-script web pages |
WO2008098164A2 (en) * | 2007-02-09 | 2008-08-14 | Novarra, Inc. | Method and server for providing a requested portion of a web page to a mobile device |
US8069433B2 (en) * | 2007-04-18 | 2011-11-29 | Microsoft Corporation | Multi-format centralized distribution of localized resources for multiple products |
US20090313574A1 (en) * | 2008-06-16 | 2009-12-17 | Microsoft Corporation | Mobile document viewer |
US20110258535A1 (en) * | 2010-04-20 | 2011-10-20 | Scribd, Inc. | Integrated document viewer with automatic sharing of reading-related activities across external social networks |
-
2009
- 2009-03-04 US US12/397,351 patent/US8347208B2/en not_active Expired - Fee Related
-
2010
- 2010-02-05 TW TW099103550A patent/TWI493441B/en not_active IP Right Cessation
- 2010-02-26 RU RU2011136691/08A patent/RU2571512C2/en active
- 2010-02-26 SG SG2011050549A patent/SG172952A1/en unknown
- 2010-02-26 MX MX2011009158A patent/MX2011009158A/en active IP Right Grant
- 2010-02-26 BR BRPI1007813A patent/BRPI1007813A2/en not_active Application Discontinuation
- 2010-02-26 CA CA2749683A patent/CA2749683C/en active Active
- 2010-02-26 EP EP10749134.2A patent/EP2404276A4/en not_active Ceased
- 2010-02-26 AU AU2010221620A patent/AU2010221620B2/en active Active
- 2010-02-26 CN CN201080010824.7A patent/CN102341823B/en active Active
- 2010-02-26 JP JP2011552998A patent/JP5537571B2/en active Active
- 2010-02-26 KR KR1020117020549A patent/KR101626639B1/en active Active
- 2010-02-26 WO PCT/US2010/025678 patent/WO2010101790A2/en active Application Filing
- 2010-02-26 MY MYPI2011003913A patent/MY163751A/en unknown
-
2011
- 2011-07-13 IL IL214057A patent/IL214057A/en active IP Right Grant
- 2011-07-14 ZA ZA2011/05214A patent/ZA201105214B/en unknown
- 2011-08-26 CL CL2011002084A patent/CL2011002084A1/en unknown
-
2012
- 2012-09-07 US US13/606,704 patent/US20120331377A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6119137A (en) * | 1997-01-30 | 2000-09-12 | Tumbleweed Communications Corp. | Distributed dynamic document conversion server |
US6336124B1 (en) * | 1998-10-01 | 2002-01-01 | Bcl Computers, Inc. | Conversion data representing a document to other formats for manipulation and display |
US6990629B1 (en) * | 1999-07-27 | 2006-01-24 | Schlumberger Technology Corporation | Publishing system for intranet |
US6658462B1 (en) * | 1999-08-26 | 2003-12-02 | International Business Machines Corporation | System, method, and program for balancing cache space requirements with retrieval access time for large documents on the internet |
US6654032B1 (en) * | 1999-12-23 | 2003-11-25 | Webex Communications, Inc. | Instant sharing of documents on a remote server |
US20030023637A1 (en) * | 2000-03-01 | 2003-01-30 | Erez Halahmi | System and method for rapid document conversion |
US6725426B1 (en) * | 2000-03-17 | 2004-04-20 | Broadvision, Inc. | Mechanism for translating between word processing documents and XML documents |
US20060179406A1 (en) * | 2000-05-19 | 2006-08-10 | Renderx | Methods and systems for rendering electronic data |
US6763501B1 (en) * | 2000-06-09 | 2004-07-13 | Webex Communications, Inc. | Remote document serving |
US6988241B1 (en) * | 2000-10-16 | 2006-01-17 | International Business Machines Corporation | Client side, web-based spreadsheet |
US20030191858A1 (en) * | 2002-04-05 | 2003-10-09 | Koteshwerrao Adusumilli | Response time of transformed documents based on caching and dynamic transformation |
US7398464B1 (en) * | 2002-05-31 | 2008-07-08 | Oracle International Corporation | System and method for converting an electronically stored document |
US7181682B1 (en) * | 2002-06-27 | 2007-02-20 | Siebel Systems, Inc. | Document publishing and rendering |
US20040030995A1 (en) * | 2002-08-08 | 2004-02-12 | International Business Machines Corporation | Web-based document printing and conversion |
US20040034830A1 (en) * | 2002-08-16 | 2004-02-19 | Commerce One Operations, Inc. | XML streaming transformer |
US20040172586A1 (en) * | 2003-02-28 | 2004-09-02 | Xerox Corporation | Method and apparatus for controlling document service requests from a mobile device |
US20060259524A1 (en) * | 2003-03-17 | 2006-11-16 | Horton D T | Systems and methods for document project management, conversion, and filing |
US20060007466A1 (en) * | 2004-07-12 | 2006-01-12 | Itemfield Inc. | System and method for data format transformation |
US20060069746A1 (en) * | 2004-09-08 | 2006-03-30 | Davis Franklin A | System and method for smart persistent cache |
US20140250368A1 (en) * | 2004-09-30 | 2014-09-04 | Macromedia, Inc. | Smart document import |
US20140250361A1 (en) * | 2004-09-30 | 2014-09-04 | Macromedia, Inc. | Preserving document construct fidelity in converting graphic-represented documents into text-readable documents |
US20060106822A1 (en) * | 2004-11-17 | 2006-05-18 | Chao-Chun Lee | Web-based editing system of compound documents and method thereof |
US20060136353A1 (en) * | 2004-12-16 | 2006-06-22 | Microsoft Corporation | Systems and methods for converting a formatted document to a web page |
US20060242572A1 (en) * | 2005-04-22 | 2006-10-26 | Microsoft Corporation | Viewer for protected content as a programming platform component |
US8775520B1 (en) * | 2005-09-30 | 2014-07-08 | Google Inc. | Systems and methods for viewing non-HTML email attachments |
US20070220417A1 (en) * | 2006-03-17 | 2007-09-20 | Sonolink Communications Systems, Llc | System and method for editing online documents |
US20090125802A1 (en) * | 2006-04-12 | 2009-05-14 | Lonsou (Beijing) Technologies Co., Ltd. | System and method for facilitating content display on portable devices |
US20080120283A1 (en) * | 2006-11-17 | 2008-05-22 | Oracle International Corporation | Processing XML data stream(s) using continuous queries in a data stream management system |
US20080189602A1 (en) * | 2007-01-25 | 2008-08-07 | Microsoft Corporation | Streamable interactive rendering-independent page layout |
US20080222516A1 (en) * | 2007-03-05 | 2008-09-11 | John Edward Petri | Document transformation performance via incremental fragment transformations |
US20110035660A1 (en) * | 2007-08-31 | 2011-02-10 | Frederick Lussier | System and method for the automated creation of a virtual publication |
US20090083279A1 (en) * | 2007-09-26 | 2009-03-26 | Hasek Charles A | Methods and apparatus for content caching in a video network |
US20090144158A1 (en) * | 2007-12-03 | 2009-06-04 | Matzelle Brent R | System And Method For Enabling Viewing Of Documents Not In HTML Format |
US20090217158A1 (en) * | 2008-02-25 | 2009-08-27 | Microsoft Corporation | Editing a document using a transitory editing surface |
US20090235161A1 (en) * | 2008-03-15 | 2009-09-17 | Microsoft Corporation | Lossless Web-Based Editor For Complex Documents |
US20090276696A1 (en) * | 2008-04-30 | 2009-11-05 | Microsoft Corporation | High-fidelity rendering of documents in viewer clients |
US8407576B1 (en) * | 2008-09-02 | 2013-03-26 | Sitscape, Inc. | Situational web-based dashboard |
US20120331089A1 (en) * | 2011-06-21 | 2012-12-27 | Net Power And Light, Inc. | Just-in-time transcoding of application content |
Non-Patent Citations (1)
Title |
---|
Yu, Jiang, et al. "A dynamic caching algorithm based on internal popularity distribution of streaming media." Multimedia Systems 12.2 (2006): pg.135-149. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014107809A1 (en) * | 2013-01-11 | 2014-07-17 | La Presse, Ltée | Device, method and system for displaying digital editions |
US9613013B2 (en) | 2013-01-11 | 2017-04-04 | Nuglif Inc. | Device, method and system for displaying a first page of a digital edition by efficient download of assets |
US10042822B2 (en) | 2013-01-11 | 2018-08-07 | Nuglif Inc. | Device, method and system for displaying pages of a digital edition by efficient download of assets |
US20170060830A1 (en) * | 2015-08-26 | 2017-03-02 | YTML Consulting Pty Ltd | System and process for generating an internet application |
US10891432B2 (en) * | 2015-08-26 | 2021-01-12 | Roar Software Pty Ltd. | System and process for generating an internet application |
US11783120B2 (en) | 2015-08-26 | 2023-10-10 | Roar Software Pty Ltd. | System and process for generating an internet application |
Also Published As
Publication number | Publication date |
---|---|
CN102341823A (en) | 2012-02-01 |
CA2749683C (en) | 2019-01-08 |
JP2012519907A (en) | 2012-08-30 |
WO2010101790A2 (en) | 2010-09-10 |
MX2011009158A (en) | 2011-09-28 |
WO2010101790A3 (en) | 2011-01-13 |
CN102341823B (en) | 2014-11-26 |
RU2571512C2 (en) | 2015-12-20 |
US8347208B2 (en) | 2013-01-01 |
KR20110134401A (en) | 2011-12-14 |
TWI493441B (en) | 2015-07-21 |
SG172952A1 (en) | 2011-08-29 |
ZA201105214B (en) | 2012-09-26 |
JP5537571B2 (en) | 2014-07-02 |
RU2011136691A (en) | 2013-03-10 |
US20100229086A1 (en) | 2010-09-09 |
IL214057A0 (en) | 2011-08-31 |
CA2749683A1 (en) | 2010-09-10 |
BRPI1007813A2 (en) | 2017-01-17 |
EP2404276A4 (en) | 2018-01-24 |
AU2010221620B2 (en) | 2014-07-10 |
EP2404276A2 (en) | 2012-01-11 |
KR101626639B1 (en) | 2016-06-02 |
TW201035861A (en) | 2010-10-01 |
CL2011002084A1 (en) | 2012-02-03 |
AU2010221620A1 (en) | 2011-08-04 |
IL214057A (en) | 2016-02-29 |
MY163751A (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8347208B2 (en) | Content rendering on a computer | |
US8856647B2 (en) | Font handling for viewing documents on the web | |
US9176953B2 (en) | Method and system of web-based document service | |
RU2555219C2 (en) | Use of pre-processing on server for expansion of views of electronic documents in computer network | |
US20130227047A1 (en) | Methods for managing content stored in cloud-based storages | |
JP5042693B2 (en) | Optimize storage and transmission of markup language files | |
US8484373B2 (en) | System and method for redirecting a request for a non-canonical web page | |
US8019884B2 (en) | Proxy content for submitting web service data in the user's security context | |
US8108441B2 (en) | Efficient creation, storage, and provision of web-viewable documents | |
US20130124954A1 (en) | Method and Apparatus for Merging Digital Content | |
US20140089778A1 (en) | Progressive Image Rendering Utilizing Data URI Enhancements | |
US20150205766A1 (en) | Serving combined resources to a browser client | |
US8826342B2 (en) | Programmable, interactive content viewing on a mobile video application | |
US10586078B2 (en) | Document system, control method, and storage medium | |
CN104936044A (en) | HTML5-based video file transmitting method, client and server |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROSOFT CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOWELL, GARETH ALAN;RUHLEN, MATTHEW JAMES;O'DELL-ALEXANDER, BRENDYN;AND OTHERS;SIGNING DATES FROM 20090224 TO 20090302;REEL/FRAME:029003/0591 |
|
AS | Assignment |
Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034544/0541 Effective date: 20141014 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |