US20120220186A1 - Electric yo-yo toy - Google Patents
Electric yo-yo toy Download PDFInfo
- Publication number
- US20120220186A1 US20120220186A1 US13/057,262 US200913057262A US2012220186A1 US 20120220186 A1 US20120220186 A1 US 20120220186A1 US 200913057262 A US200913057262 A US 200913057262A US 2012220186 A1 US2012220186 A1 US 2012220186A1
- Authority
- US
- United States
- Prior art keywords
- contact
- rotors
- electric
- stationary contact
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H1/00—Tops
- A63H1/24—Tops with illuminating arrangements
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H1/00—Tops
- A63H1/30—Climbing tops, e.g. Yo-Yo
Definitions
- the present invention relates to a yo-yo toy having a rotary shaft of the yo-yo body, to which the lower end of a string is attached and rising while winding the string around the rotary shaft, and descending while loosening the string from the rotary shaft, and making the rotary shaft forcedly rotated.
- the electric yo-yo toy in which the rotary shaft of the yo-yo body around which a string is wound is forcedly rotated by a drive motor (for example, patent document 1).
- the electric yo-yo toy has a pair of rotors each formed in a disc shape, a main shaft provided between centers of the pair of rotors, and a rotary shaft swingably provided for the main shaft.
- One of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, a detecting device that detects rotation of the rotors, and a power supply such as a cell.
- An electric yo-yo toy makes a rotary shaft around which a string is wound forcedly rotate by a drive motor so as to realize a high-level technique which cannot be achieved by a regular yo-yo toy by a young child and a beginner. Since all of electric parts and gear mechanisms are housed in one of the rotors, the rotor becomes heavy and the rotors are not balanced. There is a problem that the electric yo-yo toy tilts during playing.
- the present invention has been achieved in consideration of the problems, and an object of the invention is to provide an electric yo-yo toy in which electric parts and gear mechanisms are allocated to both rotors in a balanced manner so that weights of the rotors are almost the same, and which realizes lighter weight and compactness and is easily handled also by young children and beginners.
- an electric yo-yo toy of a first aspect of the invention includes an electric yo-yo toy including a pair of rotors; a main shaft provided between centers of the pair of rotors; and a rotary shaft swingably provided for the main shaft and around which a string member is wound, wherein one of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotors, the other rotor is provided with a power source, and the main shaft is provided with a conducting unit that electrically connects the drive motor and the detecting device of one of the rotors and the power source of the other rotor.
- the conducting unit includes an inner conduction shaft provided on the inside of the main shaft and an outer conduction shaft provided on the outside of the main shaft.
- the outer conduction shaft is formed in a cylindrical shape and provided on the outside of the main shaft, and a rotary shaft is swingably provided for the outer conduction shaft.
- the inner conduction shaft is a fixing shaft which is inserted in the main shaft and which fixes the pair of rotors.
- the detecting device includes a first stationary contact plate: a second stationary contact plate provided apart from the first stationary contact plate; a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously; a rolling contact that rolls toward between a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously and a non-contact position where it does not come into contact with at least one of the first and second stationary contact plates; and a magnet which holds the rolling contact in the non-contact position, and the rolling contact rolls against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the first and second stationary contact plates almost simultaneously to drive the drive motor.
- the second stationary contact plates are provided on both sides of the first stationary contact plate, when the rolling contact comes into contact with the first stationary contact plate and one of the second stationary contact plates, the drive motor drives in one direction, and when the rolling contact comes into contact with the first stationary contact plate and the other second stationary contact plate, the drive motor drives in the other direction.
- the detecting device includes an oscillating contact whose one end is pivoted and capable of oscillating like a pendulum: a stationary contact plate provided apart from the oscillating contact and coming into contact when the oscillating contact oscillates; and a magnet which holds the oscillating contact in a position of non-contact with the stationary contact plate, and the oscillating contact oscillates against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the stationary contact plate to drive the drive motor.
- the stationary contact plates are provided on both sides of the oscillating contact, when the oscillating contact comes into contact with one of the stationary contact plates, the drive motor drives in one direction, and when the oscillating contact comes into contact with the other stationary contact plate, the drive motor drives in the other direction.
- a pair of detecting devices is provided so as to face one of the rotors and, when both of the detecting devices detect rotation, the drive motor is driven.
- one of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotors.
- the other rotor is provided with a power source.
- the power source provided for the other rotor and the drive motor and the detecting device provided for the rotor are electrically connected by a conducting unit disposed in the main shaft provided between centers of the pair of rotors, thereby constructing an electric circuit.
- weights are allocated to the right and left rotors in a balanced manner in the electric yo-yo toy according to the present invention, lighter weight and compactness are achieved, and there is an effect that even a young child and a beginner can easily handle the electric yo-yo toy.
- the electric yo-yo toy according to the invention has an effect that, since the conducting unit includes: an inner conduction shaft provided on the inside of the main shaft; and an outer conduction shaft provided on the outside of the main shaft, without contact between the inner and outer conduction shafts, a safe electric circuit can be constructed.
- the electric yo-yo toy according to the present invention has the following effect. Since the outer conduction shaft is formed in a cylindrical shape and provided on the outside of the main shaft, a rotary shaft is swingably provided for the outer conduction shaft.
- the outer conduction shaft is made of a metal conductive material, and frictional resistance of the outer conduction shaft is small, so that smooth rotation of the rotary shaft can be expected. Moreover, since the wear of the outer conduction shaft is extremely small, the product life is long.
- the inner conduction shaft is a fixing shaft which is inserted in the main shaft and which fixes the pair of rotors. Consequently, it is unnecessary to separately provide a unit for fixing and integrating the pair of rotors. There is an effect that the number of parts is decreased, and the toy can be manufactured inexpensively and compactly.
- a screw is used as a fixing shaft, the rotors can be easily disassembled, and there is an effect that the tangled string member can be easily untangled.
- the detecting device includes: a first stationary contact plate: a second stationary contact plate provided apart from the first stationary contact plate; a rolling contact that rolls between a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously and a non-contact position where it does not come into contact with at least one of the first and second stationary contact plates; and a magnet which holds the rolling contact in the non-contact position.
- the rolling contact rolls against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the first and second stationary contact plates almost simultaneously to drive the drive motor. There is consequently an effect that the rotation can be detected reliably and promptly.
- the second stationary contact plates are provided on both sides of the first stationary contact plate.
- the drive motor drives in one direction.
- the drive motor drives in the other direction.
- the rotor can be forcedly rotated by the drive motor in the rotating direction of the rotor detected.
- the detecting device includes: an oscillating contact whose one end is pivoted and capable of oscillating like a pendulum: a stationary contact plate provided apart from the oscillating contact and coming into contact when the oscillating contact oscillates; and a magnet which holds the oscillating contact in a position of non-contact with the stationary contact plate.
- the oscillating contact oscillates against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the stationary contact plate to drive the drive motor.
- rotation can be detected reliably and promptly.
- the stationary contact plates are provided on both sides of the oscillating contact.
- the drive motor drives in one direction.
- the drive motor drives in the other direction. Consequently, the rotor can be forcedly rotated by the drive motor in the rotation direction of the rotor detected, and there is an effect that can provide smooth playing.
- a pair of detecting devices is provided so as to face one of the rotors and, when both of the detecting devices detect rotation, the drive motor is driven.
- FIG. 1( a ) is an overall side cross section view of an electric yo-yo toy according to the present invention viewed from one direction in the case of using a rolling contact for a rotation detecting device.
- FIG. 1( b ) is a side cross section view of the electric yo-yo toy according to the present invention viewed from another direction in the case of using an oscillating contact for a rotation detecting device which is no partially shown.
- FIG. 1( c ) is an overall side cross section view of the electric yo-yo toy according to the present invention viewed from further another direction.
- FIG. 2( a ) is an overall front view of one of the rotors in the electric yo-yo toy according to the present invention.
- FIG. 2( b ) is a front view of a detecting device of one of the rotors in the electric yo-yo toy according to the present invention.
- FIG. 2( c ) is a side view of the detecting device of one of the rotors in the electric yo-yo toy according to the present.
- FIG. 3( a ) is an overall front view of the other rotor in the electric yo-yo toy according to the present invention.
- FIG. 3( b ) is a side view of the other rotor in the electric yo-yo toy according to the present invention.
- FIG. 4( a ) is an overall front view of a rotation case of one of the rotors.
- FIG. 4( b ) is a cross section view of the rotation case of one of the rotors in the direction of arrow A.
- FIG. 4( c ) is a side view of the rotation case of one of the rotors.
- FIG. 4( d ) is an overall rear view of the rotation case of one of the rotors.
- FIG. 4( e ) is a cross section view of the rotation case of one of the rotors in the direction of arrow B.
- FIG. 4( f ) is a cross section view of the rotation case of one of the rotors in the direction of arrow C.
- FIG. 5( a ) is an overall front view of an external cover of one of the rotors.
- FIG. 5( b ) is a cross section view of the external cover of one of the rotors in the direction of arrow A.
- FIG. 5( c ) is a right side view of the external cover of one of the rotors.
- FIG. 5( d ) is an overall rear view of the external cover of one of the rotors.
- FIG. 5( e ) is a cross section view of the external cover of one of the rotors in the direction of arrow B.
- FIG. 5( f ) is a cross section view of the external cover of one of the rotors in the direction of arrow C.
- FIG. 5( g ) is a bottom view of the external cover of one of the rotors.
- FIG. 6( a ) is an overall front view of a main shaft member of one of the rotors.
- FIG. 6( b ) is a right side view of the main shaft member of one of the rotors.
- FIG. 6( c ) is a cross section view of the main shaft member of one of the rotors in the direction of arrow A.
- FIG. 6( d ) is an overall rear view of the main shaft member of one of the rotors.
- FIG. 6( e ) is a cross section view of the main shaft member of one of the rotors in the direction of arrow B.
- FIG. 7( a ) is an overall front view of a motor attachment plate of one of the rotors.
- FIG. 7( b ) is a right side cross section view of the motor attachment plate of one of the rotors.
- FIG. 7( c ) is a right side view of the motor attachment plate of one of the rotors.
- FIG. 7( d ) is an overall rear view of the motor attachment plate of one of the rotors.
- FIG. 8( a ) is an overall front view of a rotation case of the other rotor.
- FIG. 8( b ) is a cross section view of the rotation case of the other rotor in the direction of arrow A.
- FIG. 8( c ) is a cross section view of the rotation case of the other rotor in the direction of arrow B.
- FIG. 8( d ) is a right side view of the rotation case of the other rotor.
- FIG. 8( e ) is an overall rear view of the rotation case of the other rotor.
- FIG. 8( f ) is a cross section view of the rotation case of the other rotor in the direction of arrow C.
- FIG. 8( g ) is a cross section view of the rotation case of the other rotor in the direction of arrow D.
- FIG. 8( h ) is a cross section view of the rotation case of the other rotor in the direction of arrow G.
- FIG. 8( i ) is a cross section view of the rotation case of the other rotor in the direction of arrow E.
- FIG. 8( j ) is a cross section view of the rotation case of the other rotor in the direction of arrow F.
- FIG. 9( a ) is an overall front view of an external cover of the other rotor.
- FIG. 9( b ) is a right side view of the external cover of the other rotor.
- FIG. 9( c ) is a cross section view of an external cover of the other rotor in the direction of arrow A.
- FIG. 9( d ) is an overall rear view of an external cover of the other rotor.
- FIG. 9( e ) is a cross section view of an external cover of the other rotor in the direction of arrow B.
- FIG. 10( a ) is an overall front view of a cover member of the other rotor.
- FIG. 10( b ) is a cross section view of the cover member of the other rotor in the direction of arrow A.
- FIG. 10( c ) is a right side view of the cover member of the other rotor.
- FIG. 10( d ) is an overall rear view of the cover member of the other rotor.
- FIG. 10( e ) is a cross section view of the cover member of the other rotor in the direction of arrow B.
- FIG. 10( f ) is a bottom view of the cover member of the other rotor.
- FIG. 11( a ) is a left side view of a rotary shaft.
- FIG. 11( b ) is a front view of the rotary shaft.
- FIG. 11( c ) is a cross section view of the rotary shaft.
- FIG. 11( d ) is a right side view of the rotary shaft.
- FIG. 12( a ) is a front view of an attachment plate for attaching a first stationary contact plate.
- FIG. 12( b ) is a top view of the attachment plate for attaching the first stationary contact plate.
- FIG. 12( c ) is a bottom view of the attachment plate for attaching the first stationary contact plate.
- FIG. 12( d ) is a side cross section view of the attachment plate for attaching the first stationary contact plate.
- FIG. 12( e ) is a left side view of the attachment plate for attaching the first stationary contact plate.
- FIG. 12( f ) is a rear view of the attachment plate for attaching the first stationary contact plate.
- FIG. 13( a ) shows a drive gear of an electric yo-yo toy.
- FIG. 13( b ) shows an intermediate shaft of the electric yo-yo toy.
- FIG. 13( c ) shows a fixing shaft (inner conduction shaft) of the electric yo-yo toy.
- FIG. 13( d ) shows a metal tongue piece on the other rotor side of the electric yo-yo toy.
- FIG. 13( e ) shows a metal tongue piece on one of the rotors of the electric yo-yo toy.
- FIG. 13( f ) shows a first stationary contact plate of the electric yo-yo toy.
- FIG. 13( g ) shows a conductive band of the electric yo-yo toy.
- FIG. 14( a ) is a front view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( b ) is a top view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( c ) is a bottom view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( d ) is a left cross section view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( e ) is a left side view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( f ) is a rear view of the attachment plate for attaching the first stationary contact plate.
- FIG. 14( g ) is a front view of the attachment plate for attaching the first stationary contact plate showing a use mode.
- FIG. 14( h ) is a side view of the attachment plate for attaching the first stationary contact plate showing a use mode.
- FIG. 15 is an Electric configuration diagram of an electric yo-yo toy.
- FIG. 16( a ) is an overall front view of one of the rotors of the electric yo-yo toy according to the present invention.
- FIG. 16( b ) is a front view of a detecting device of one of the rotors of the electric yo-yo toy according to the present invention.
- FIG. 16( c ) is a side view of the detecting device of one of the rotors of the electric yo-yo toy according to the present invention.
- FIG. 17( a ) is a front view of the attachment plate for attaching the first stationary contact plate.
- FIG. 17( b ) is a top view of the attachment plate for attaching the first stationary contact plate.
- FIG. 17( c ) is a bottom view of the attachment plate for attaching the first stationary contact plate.
- FIG. 17( d ) is a left cross section view of the attachment plate for attaching the first stationary contact plate.
- FIG. 17( e ) is a left side view of the attachment plate for attaching the first stationary contact plate.
- FIG. 17( f ) is a rear view of the attachment plate for attaching the first stationary contact plate.
- FIG. 18( a ) shows an oscillating contact of the electric yo-yo toy.
- FIG. 18( b ) shows a contact piece of the electric yo-yo toy.
- FIG. 19 is another electric configuration diagram of the electric yo-yo toy.
- FIG. 20( a ) is an overall side cross section view of an electric yo-yo toy according to the present invention viewed from one direction.
- FIG. 20( b ) is an overall front view of a rotation case of one of the rotors of electric yo-yo toy according to the present invention.
- FIG. 20( c ) is an overall cross section view of the electric yo-yo toy according to the present invention viewed from another direction.
- FIG. 20( d ) is an overall front view of one of the rotors of the electric yo-yo toy according to the present invention.
- FIG. 20( e ) is an overall rear view of the rotation case of one of the rotors of the electric yo-yo toy according to the present invention.
- FIG. 20( f ) is an overall front view of the other rotor in the electric yo-yo toy according to the present invention.
- FIG. 20( g ) is a side view of the other rotor in the electric yo-yo toy according to the present invention viewed from one direction.
- FIG. 20( h ) is a side view of the other rotor in the electric yo-yo toy according to the present invention viewed from further another direction.
- FIG. 21( a ) is an overall side cross section view of a use mode of the electric yo-yo toy according to the present invention when a flexible pipe slides to a position apart from a pair of rotors.
- FIG. 21( b ) is an overall side cross section view of a use mode of the electric yo-yo toy according to the present invention when the flexible pipe slides to a position close to the pair of rotors.
- FIG. 22( a ) is a side view of a use mode of the electric yo-yo toy according to the present invention when a flexible pipe slides to a position apart from a pair of rotors.
- FIG. 22( b ) is a side view of a use mode of the electric yo-yo toy according to the present invention when the flexible pipe slides to a position close to the pair of rotors.
- FIG. 23( a ) is an overall perspective view of a flexible pipe when a cut groove of the flexible pipe is linearly closed in an axial direction.
- FIG. 23( b ) is an overall perspective view of a flexible pipe when a cut groove of the flexible pipe is linearly opened in an axial direction.
- An electric yo-yo toy 1 has a pair of rotors 10 and 60 , a main shaft 26 provided between the centers of the pair of rotors 10 and 60 , and a rotary shaft 122 rotatably provided for the main shaft 26 and around which a string member 2 is wound.
- the rotor 10 as one of them is provided with a drive motor 130 , a gear mechanism 140 for transmitting rotation of the drive motor 130 to the rotary shaft 122 , and a detecting device 100 for detecting rotation of the rotor 10 .
- the other rotor 60 is provided with power supplies 81 and 82 .
- the main shaft 26 is provided with a conducting unit 40 for electrically connecting the drive motor 130 and the detecting device 100 of the rotor 10 and the power supplies 81 and 82 of the other rotor 60 .
- the electric yo-yo toy 1 has, as described above, an electric circuit constructed by electrically connecting the power supplies 81 and 82 provided for the other rotor 60 and the drive motor 130 and the detecting device 100 provided for the one rotor 10 via the conducting unit 40 disposed in the main shaft 26 provided between the centers of the pair of rotors 10 and 60 .
- the weights are allocated to the right and left rotors 60 and 10 in a balanced manner.
- the electric yo-yo toy 1 realizes light weight and compactness and is easily handled also by young children and beginners.
- the conducting unit 40 has an inner conduction shaft 41 provided on the inside of the main shaft 26 and an outer conduction shaft 121 provided on the outside of the main shaft 26 . Consequently, the electric yo-yo toy 1 has a safe electric circuit without contact between the inner conduction shaft 41 and the outer conduction shaft 121 .
- the external conduction shaft 121 is formed in a cylindrical shape and provided on the outside of the main shaft 26 , and the rotary shaft 122 is swingably provided for the outer conduction shaft 121 . Since the external conduction shaft 121 is made of a metal conducting material, the frictional resistance of the outer conduction shaft 121 is low, smooth rotation of the rotary shaft 122 can be expected and, moreover, the friction of the outer conduction shaft 121 is extremely small, so that the electric yo-yo toy 1 has long product life.
- the inner conduction shaft 41 is inserted in the main shaft 26 and serves as a fixing shaft that fixes the pair of rotors 10 and 60 . Consequently, it is unnecessary to provide the electric yo-yo toy 1 with a unit for fixing and integrating the pair of rotors 10 and 60 . The number of parts is decreased and the electric yo-yo toy 1 can be manufactured inexpensively and compactly.
- a screw is used as the fixing shaft, the rotor 10 and the other rotor 60 can be easily disassembled, and tangle of the string member 2 is easily loosened.
- the detecting device 100 of the electric yo-yo toy 1 has a first stationary contact plate 103 , a second stationary contact plate 105 provided apart from the first stationary contact plate 103 , a rolling contact 101 rolling between a contact position in which it contacts almost simultaneously with the first and second stationary contact plates 103 and 105 and a no-contact position in which it does not in contact with at least one of the first and second stationary contact plates 103 and 105 , and a magnet 115 which holds the rolling contact 101 in the non-contact position.
- the electric yo-yo toy 1 is constructed so that the rolling contact 101 rolls against the magnetic force of the magnet 115 by inertia force of the rotation of the rotor 10 , comes into contact with the first and second stationary contact plates 103 and 105 almost simultaneously, continues contacting by centrifugal force to drive the drive motor 130 . Therefore, the electric yo-yo toy 1 can detect rotation reliably and promptly.
- the electric yo-yo toy 1 has a configuration that the second stationary contact plates 105 are provided on both sides of the first stationary contact plate 103 , when the rolling contact 101 comes into contact with the first stationary contact plate 103 and one of the second stationary contact plates 105 , the drive motor 130 drives in one direction and, when the rolling contact 101 comes into contact with the first stationary contact plate 103 and the other second stationary contact plate 105 , the drive motor 130 drives in the other direction.
- the electric yo-yo toy 1 can make the rotor 10 forcedly rotate by the drive motor 130 in the rotation direction of the rotor 10 detected, and can provide smooth playing.
- Another detecting device 150 of the electric yo-yo toy 1 has an oscillating contact 151 whose one end is pivoted and capable of oscillating like a pendulum, the stationary contact plate 105 which is provided apart from the oscillating contact 151 and comes into contact when the oscillating contact 151 oscillates, and a magnet 165 which holds the oscillating contact 151 in a position where the stationary contact plate 105 is not in contact.
- the oscillating contact 151 oscillates against the magnetic force of the magnet 165 by the inertia force generated by the rotation of the rotor 10 , comes into contact with the stationary contact plate, continues in contact by the centrifugal force, and drives the drive motor 130 .
- the electric yo-yo toy 1 can detect rotation reliably and promptly and, moreover, is inexpensive since the number of parts is small.
- the electric yo-yo toy 1 has a configuration that the stationary contact plates 105 are provided on both sides of the oscillating contact 151 , when the rolling contact 151 comes into contact with one of the stationary contact plates 105 , the drive motor 130 drives in one direction and, when the rolling contact 101 comes into contact with the other stationary contact plate 105 , the drive motor 130 drives in the other direction.
- the electric yo-yo toy 1 can make the rotor 10 forcedly rotate by the drive motor 130 in the rotation direction of the rotor 10 detected, and can provide smooth playing.
- the electric yo-yo toy 1 is constructed that a pair of detecting devices 100 , 100 , 150 , and 150 is provided so as to face the rotor 10 as one of the rotors and detect rotation, and the drive motor 130 is driven.
- the drive motor 130 does not drive only by detection of the detecting device 100 and the detecting device 150 as one of them. Therefore, the drive motor 130 can be prevented from driving suddenly without discretion.
- the electric yo-yo toy will be described in detail with reference to FIGS. 1 to 15 .
- the electric yo-yo toy 1 has a pair of rotors 10 and 60 each formed in a disc shape, and the main shaft 26 provided between the centers of the pair of rotors 10 and 60 .
- the rotor 10 as one of them includes a rotation case 11 and an external cover 22 screwed to the rotation case 11 .
- the rotation case 11 is integrally formed by synthetic resin in a bowl shape by a side wall 12 , a curved wall 13 connected around the side wall 12 , and a peripheral wall 15 formed around the curved wall 13 .
- An opening 16 is formed in an almost center of the side wall 12 .
- An annular recess 17 is formed around the opening 16 in an outside face 12 a of the side wall 12 .
- a ring-shaped resistance plate 18 is fit in the recess 17 .
- a main shaft member 25 is attached to the attachment bosses 21 by screws or the like.
- the main shaft member 25 is integrally formed by synthetic resin and includes the main shaft 26 and a rectangular attachment plate 27 formed at one end of the main shaft 26 .
- through holes 28 are formed in positions matching the attachment bosses 21 . . . .
- the main shaft 26 is formed in a cylindrical shape, and an insertion hole 29 in which the fixing shaft (inner conduction shaft) 41 is inserted is formed in the main shaft 26 .
- the fixing shaft (inner conduction shaft) 41 is made of a conductive material such as metal and includes a shaft part 42 and a flange part 43 .
- a screw 45 is formed in the shaft part 42 .
- a fitting recess 31 in which a metal tongue piece 30 shown in FIG. 13( e ) is fit is formed in the surface 27 a of the attachment plate 27 .
- the insertion hole 29 penetrates the fitting recess 31 .
- an insertion hole 32 in which a bent piece 37 of a ring-shaped conductive band 36 attached to the main shaft 26 shown in FIG. 13( g ) is inserted is formed in the attachment plate 27 .
- rectangular guide recesses 33 are formed in both opposed sides of the attachment plate 27 .
- semicircular notch recesses 35 and 35 in which a gear is inserted are formed in both opposed sides.
- a motor attachment plate 50 is attached to the attachment bosses 21 . . . by screws or the like.
- positioning tubes 51 are provided in positions matching the positions of the attachment bosses 21 . . . in a face 50 a as one of faces of the motor attachment plate 50 , and communication holes 52 are formed in positions of the positioning tubes 51 .
- a motor attachment recess 53 is formed in the other face 50 b of the motor attachment plate 50 , and an opening 55 in which a drive shaft 131 of the drive motor 130 is inserted is also formed.
- rectangular guide recesses 57 and 57 are formed in both opposed sides of the motor attachment plate 50 . Near the other opposed sides, bearing holes 56 and 56 are formed.
- the other rotor 60 includes a rotation case 61 and an external cover 90 screwed to the rotation case 61 .
- the rotation case 61 is integrally formed by synthetic resin in a bowl shape by a side wall 62 , a curved wall 63 connected around the side wall 62 , and a peripheral wall 65 formed around the curved wall 63 .
- a bearing hole 66 is formed in an almost center of the side wall 62 .
- a shaft cylindrical part 64 is formed around the bearing hole 66 in an outside face 62 a of the side wall 62 , and an annular recess 67 is formed around the shaft cylindrical part 64 .
- the ring-shaped resistance plate 18 is fit in the recess 67 .
- an almost C-shaped guide wall 69 in which a metal tongue piece 70 shown in FIG. 13( d ) is fit is formed around the bearing hole 66 as a center.
- an insertion hole 72 in which the bent piece 37 of the ring-shaped conductive band 36 attached to the shaft cylindrical part 64 shown in FIG. 13( g ) is inserted is formed.
- an attachment recess 73 (refer to FIG.
- FIGS. 9( a )- 9 ( e ) an opening 91 through which the cells 81 and 82 are attached/detached to/from the attachment recess 73 are is formed in the outside cover 90 .
- a cover member 92 is closably attached as shown in FIGS. 10( a )- 9 ( f ).
- the detecting device 100 attached to the rotor 10 has a metal sphere (rolling contact) 101 , a guide member 102 (refer to FIGS. 12( a )- 12 ( f )) for guiding the metal sphere 101 , the first stationary contact plate 103 fixed to the guide member 102 , and the second stationary contact plates 105 provided apart on both sides of the first stationary contact plate 103 .
- the guide member 102 has an attachment plate 106 , a semicircular projection 107 projected on one side of the attachment plate 106 , a guide wall 109 curved around the projection 107 as a center, and a magnet attachment frame 110 formed on the other side of the attachment plate 106 and positioned in an almost intermediate part of the guide wall 109 .
- the magnet 115 is attached to the magnet attachment frame 110 .
- a shaft hole 108 is formed in an almost center of the projection 107 .
- the guide member 102 is disposed opposed to the inside face 12 b of the rotation case 11 .
- the guide member 102 is fixed so as to face the inside face 12 b of the rotation case 11 . Since the magnet attachment frame 110 fits in the guide recess 33 in the attachment plate 27 of the main shaft member 25 and the guide recess 57 in the motor attachment plate 50 , the guide member 102 is fixed unswingably by the screw 111 .
- the first stationary contact plate 103 is fixed to the projection 107 by the screw 111 .
- the first stationary contact plate 103 is made by an almost semicircular guide plate 112 formed so as to project from the outer periphery of the projection 107 and a bent piece 113 which is bent at almost the right angle at one end of the guide plate 112 .
- the metal sphere 101 rolls between the periphery of the guide plate 112 and the guide wall 109 and is stably held in an almost center of the guide wall 109 by the magnet 115 .
- an engagement recess 116 for making the metal sphere 101 engaged with the guide wall 109 may be formed as shown in FIG. 14( g ).
- the second stationary contact plate 105 is formed in a band shape and held in a state where it is bent in a semi-annular shape by guide projections 117 and 118 formed on the inside face 12 b side of the rotation case 11 . Both ends of the second stationary contact plate 105 are bent, thereby forming contact parts 120 .
- the contact parts 120 are provided on both sides of the guide plate 112 . When the metal sphere 101 rolls to one direction, it comes into contact with one of the contact parts 120 and the guide plate 112 . When the metal sphere 101 rolls to the other direction, it comes into contact with the other contact part 120 and the guide plate 112 .
- the external cover 22 is screwed to the rotation case 11 and, as shown in FIGS. 5( a )- 5 ( g ) and, a semi-annular guide projection 46 for guiding the metal sphere 101 so that the metal sphere 101 rolls between the periphery of the guide plate 112 and the guide wall 109 is formed. Further, in the external cover 22 , a mountain-shaped projection 47 covering the drive motor 130 is formed in an almost center.
- the through hole 28 in the attachment plate 27 of the main shaft member 25 and the positioning tube 51 of the motor attachment plate 50 are overlapped in order on the attachment boss 21 of the rotation case 11 , and a screw 58 is screwed in the attachment boss 21 via the communication hole 52 and the through hole 28 , thereby fixing the main shaft member 25 and the motor attachment plate 50 .
- the main shaft 26 projects from the opening 16 in the rotation case 11 to the outside.
- the ring-shaped conductive band 36 is attached to the main shaft 26 , as described above.
- the bent piece 37 of the ring-shaped conductive band 36 is inserted in the insertion hole 32 in the attachment plate 27 and projects to the inside.
- the main shaft 26 is provided with the conductive cylindrical body (outer conduction shaft) 121 .
- One end of the conductive cylindrical body (outer conduction shaft) 121 is in contact with the conductive band 36 on the side of the rotor 10 as one of the rotors, and the other end is in contact with the conductive band 36 on the other rotor 60 side.
- the rotary shaft 122 made of the nonconductive material, for example, synthetic resin is swingably provided.
- a string winding groove 123 and a driven gear 124 are formed in the rotary shaft 122 .
- the string winding groove 123 is positioned almost midway between the rotor 10 and the other rotor 60 .
- the drive gear 124 is disposed in the rotor 10 .
- the drive motor 130 is attached to the motor attachment recess 53 in the motor attachment plate 50 , and the drive shaft 131 projects from the opening 55 between the motor attachment plate 50 and the attachment plate 27 .
- a drive gear 132 shown in FIG. 13( a ) is fixed to the drive shaft 131 .
- the drive gear 132 engages with a spur gear 135 fixed to one end of an intermediate shaft 133 shown in FIG. 13( b ).
- the driven gear 124 of the rotary shaft 122 engages with a pinion 136 fixed to the other end of the intermediate shaft 133 .
- the intermediate shaft 133 is swingably attached to the bearing hole 56 in the motor attachment plate 50 and a bearing hole 19 formed in the rotation case 11 .
- the electric yo-yo toy 1 is assembled as follows.
- the ring-shaped conductive band 36 is attached to the main shaft 26 of the main shaft member 25 , and the bent piece 37 of the ring-shaped conductive band 36 is inserted in the insertion hole 32 in the attachment plate 27 and fixed.
- the conductive cylindrical body (external conductive shaft) 121 is attached to the main shaft 26 , one end of the conductive cylindrical body (external conductive shaft) 121 comes into contact with the conductive band 36 .
- the rotary shaft 122 is swingably attached to the conductive cylindrical body (external conductive shaft) 121 .
- the driven gear 124 of the rotary shaft 122 is positioned on the side of the attachment plate 27 .
- the metal tongue piece 30 is fit in the fitting recess 31 in the attachment plate 27 of the main shaft member 26 , and the fixing shaft (internal conductive shaft) 41 is inserted in the insertion hole 29 in the main shaft 26 .
- the flange part 43 of the fixing shaft (internal conductive shaft) 41 comes into contact with the metal tongue piece 30 .
- the drive motor 130 When the drive motor 130 is attached to the motor attachment recess 53 in the motor attachment plate 50 , the drive shaft 131 projects from the opening 55 in the motor attachment plate 50 , and the drive gear 132 is fixed to the projected drive shaft 131 .
- the through hole 28 in the attachment plate 27 of the main shaft member 25 and the positioning tube 51 of the motor attachment plate 50 are overlapped in order on the attachment boss 21 of the rotation case 11 , and the screw 58 is screwed in the attachment boss 21 via the communication hole 52 and the through hole 28 , thereby fixing the main shaft member 25 and the motor attachment plate 50 to the rotation case 11 .
- the intermediate shaft 133 is swingably fit in the bearing hole 56 in the motor attachment plate 50 and the bearing hole 19 formed in the rotation case 11 .
- the spur gear 135 in the intermediate shaft 133 engages with the drive gear 132
- the pinion 136 in the intermediate shaft 133 engages with the drive gear 124 in the rotary shaft 122 .
- the pair of second stationary contact plate 105 and the guide member 102 is attached in predetermined positions in the rotation case 11 and, after that, the external cover 22 is fixed to the rotation case 11 .
- the ring-shaped conductive band 36 is attached to the shaft cylindrical part 64 of the rotation case 61 of the other rotor 60 , and the bent piece 37 of the ring-shaped conductive band 36 is inserted in the insertion hole 72 in the rotation case 61 and fixed.
- the metal tongue piece 70 is fit in the guide wall 69 in the rotation case 61 .
- the other end of the conductive cylindrical body (outer conduction shaft) 121 comes into contact with the conductive band 36 of the rotation case 61 .
- the metal tongue piece 70 comes into contact with the screw 45 and the nut 48 of the fixing shaft (inner conductive shaft) 41 .
- the electric configuration of the electric yo-yo toy 1 is as follows. As shown in FIG. 15 , a positive-electrode contact terminal 85 of each of the cells 81 and 82 is connected to a second stationary contact plate 105 a via the conductive band 36 of the other rotor 60 , the conductive cylindrical body 121 , and the conductive band 36 of the rotor 10 . A negative-electrode contact terminal 87 of each of the cells 81 and 82 is connected to the other second stationary contact plate 105 b via the metal tongue piece 70 of the other rotor 60 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 30 of the rotor 10 .
- the first stationary contact plate 103 a is connected to the terminal 130 a of the drive motor 130
- the other first stationary contact plate 103 b is connected to the other terminal 130 b of the drive motor 130
- the conducting unit 40 for electrically connecting the drive motor 130 and the detecting device 100 of the rotor 10 and the power supplies 81 and 82 in the other rotor 60 is constructed.
- the electric yo-yo toy 1 can be used as follows. As shown in FIG. 15 , when the electric yo-yo toy 1 does not rotate, the metal sphere 101 is held in the position (non-contact position) P 0 apart from the contact part 120 in the second stationary contact plate 105 by the magnet 115 , and the current from the cells 81 and 82 does not flow to the drive motor 130 , so that the drive motor 130 is in a non-drive state. As shown in FIGS. 21 and 22 , the lower part of the string member 2 is coupled and fixed to the rotary shaft 122 , and the string member 2 is wound around the rotary shaft 122 .
- the drive motor 130 When the rotor 10 rotates, the drive motor 130 operates. Specifically, in FIG. 15 , when the rotor 10 rotates clockwise, the metal sphere 101 rolls in the counterclockwise direction against the magnetic force of the magnet 115 by the inertia force, a metal sphere 101 a positioned above moves to the contact position P 1 where it simultaneously comes into contact with the first stationary contact plate 103 a and the second stationary contact plate 105 a , and a metal sphere 101 b positioned downward moves to the contact position where it simultaneously comes into contact with the other first stationary contact plate 103 b and the other second stationary contact plate 105 b.
- the current of the cells 81 and 82 flows in the negative-electrode contact terminal 87 of the cells 81 and 82 via the positive-electrode contact terminal 85 , the conductive band 36 of the rotor 10 , the second stationary contact plate 105 a , the metal sphere 101 a , a first stationary contact plate 103 a , a terminal 130 a of the drive motor 130 , a terminal 130 b of the drive motor 130 , the other first stationary contact plate 103 b , the metal sphere 101 b , the other second stationary contact plate 105 b , the metal tongue piece 30 of the rotor 10 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 70 of the other rotor 60 , and the drive shaft 131 of the drive motor 130 rotates in the counterclockwise direction.
- the drive gear 132 attached to the drive shaft 131 When the drive shaft 131 rotates in the counterclockwise direction, the drive gear 132 attached to the drive shaft 131 , the spur gear 135 that engages with the drive gear 132 , the intermediate shaft 133 fixing the spur gear 135 , the pinion 136 fixed to the intermediate shaft 133 , and the driven gear 124 that engages with the pinion 136 rotate, and the rotary shaft 122 tries to rotate in the counterclockwise direction.
- the rotary shaft 122 is coupled and fixed to the lower part of the string member 2 and does not rotate. Therefore, the rotor 10 rotates at high speed in the clockwise direction around the rotary shaft 122 as a center.
- the metal sphere 101 a simultaneously comes into contact with the first stationary contact plate 103 a and the second stationary contact plate 105 a by the centrifugal force, and the metal sphere 101 b continues contacting in the other first and second stationary contact plates 103 b and 105 b , so that the high-speed rotation of the rotor 10 is maintained.
- the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair of rotors 10 and 60 continues rotating in a state where they are hanging on the string member 2 .
- the centrifugal force stops working on the metal sphere 101
- the metal sphere 101 returns to the non-contact position apart from the contact part 120 of the second stationary contact plate 105 by the magnetic force of the magnet 115 , and the driving of the drive motor 130 stops.
- the current of the cells 81 and 82 flows in the negative-electrode contact terminal 87 of the cells 81 and 82 via the positive-electrode contact terminal 85 , the conductive band 36 of the other rotor 60 , the conductive cylindrical body (outer conduction shaft) 121 , the conductive band 36 of the rotor 10 , the second stationary contact plate 105 a , the metal sphere 101 b , the other first stationary contact plate 103 b , the terminal 130 b of the drive motor 130 , the terminal 130 a of the drive motor 130 , the first stationary contact plate 103 a , the metal sphere 101 a , the other second stationary contact plate 105 b , the metal tongue piece 30 of the rotor 10 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 70 of the other rotor 60 , and the drive shaft 131 of the drive motor 130 rotates in the clockwise direction.
- the drive gear 132 attached to the drive shaft 131 When the drive shaft 131 rotates in the clockwise direction, the drive gear 132 attached to the drive shaft 131 , the spur gear 135 that engages with the drive gear 132 , the intermediate shaft 133 fixing the spur gear 135 , the pinion 136 fixed to the intermediate shaft 133 , and the driven gear 124 that engages with the pinion 136 rotate, and the rotary shaft 122 tries to rotate in the clockwise direction.
- the rotary shaft 122 is coupled and fixed to the lower part of the string member 2 and does not rotate. Therefore, the rotor 10 rotates at high speed in the counterclockwise direction around the rotary shaft 122 as a center.
- the metal sphere 101 a simultaneously comes into contact with the first stationary contact plate 103 a and the other second stationary contact plate 105 b by the centrifugal force, and the metal sphere 101 b continues contacting in the other first stationary contact plate 103 b and the second stationary contact plate 105 a , so that the high-speed rotation of the rotor 10 is maintained.
- the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair of rotors 10 and 60 continues rotating in a state where they are hanging on the string member 2 .
- the centrifugal force stops working on the metal sphere 101
- the metal sphere 101 returns to the non-contact position apart from the contact part 120 of the second stationary contact plate 105 by the magnetic force of the magnet 115 , and the driving of the drive motor 130 stops.
- the detecting device 100 may be constructed by the metal oscillating contact 151 as illustrated in FIG. 16 to FIG. 19 .
- the detecting device 150 attached to the rotor 10 includes the oscillating contact 151 , a guide member 152 for swingably pivoting the oscillating contact 151 , and the stationary contact plates 105 provided apart on both of the oscillating contact 151 .
- the guide member 152 includes an attachment plate 156 , a shaft hole 157 formed in one end of the attachment plate 156 , and a magnet attachment frame 160 formed on the other end of the attachment plate 156 . To the magnet attachment frame 160 , the magnet 165 is attached.
- the guide member 152 is disposed opposed to the inside face 12 b side of the rotation case 11 .
- the guide member 152 is fixed so as to be face the inside face 12 b of the rotation case 11 . Since the magnet attachment frame 160 is fit in the guide recess 33 in the attachment plate 27 of the main shaft member 25 and the guide recess 57 in the motor attachment plate 50 , the guide member 152 is fixed by the pivot 153 unswingably. As shown in FIG. 18( a ), the oscillating contact 151 is attached swingably by the pivot 153 .
- a contact piece 166 is fixed to the guide member 152 by the pivot 153 .
- the contact piece 166 is made by a board 167 having an almost semicircular shape and a bent piece 168 which is bent at almost right angle at one end of the board 167 .
- the oscillating contact 151 is always in contact with the board 167 (contact piece 166 ) via the metal pivot 153 and the screw part 154 .
- a front part 163 is stably held in an almost center by the magnet 165 and is usually not in contact with the stationary contact plates 105 on both sides.
- the stationary contact plate 105 is as described above.
- the electric configuration of the electric yo-yo toy 1 is as follows. As shown in FIG. 19 , the positive-electrode contact terminal 85 of each of the cells 81 and 82 is connected to the stationary contact plate 105 a via the conductive band 36 of the other rotor 60 , the conductive cylindrical body (outer conduction shaft) 121 , and the conductive band 36 of the rotor 10 .
- the negative-electrode contact terminal 87 of each of the cells 81 and 82 is connected to the other stationary contact plate 105 b via the metal tongue piece 70 of the other rotor 60 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 30 of the rotor 10 .
- the contact piece 166 a is connected to the terminal 130 a of the drive motor 130
- the other contact piece 166 b is connected to the other terminal 130 b of the drive motor 130 .
- the electric yo-yo toy 1 can be used as follows. When the electric yo-yo toy 1 does not rotate, the oscillating contact 151 is held in the position (non-contact position) apart from the contact part 120 in the stationary contact plate 105 by the magnet 165 , and the current from the cells 81 and 82 does not flow to the drive motor 130 , so that the drive motor 130 is in a non-drive state. As shown in FIGS. 21 and 22 , the lower part of the string member 2 is coupled and fixed to the rotary shaft 122 , and the string member 2 is wound around the rotary shaft 122 .
- the drive motor 130 When the rotor 10 rotates, the drive motor 130 operates. Specifically, in FIG. 19 , when the rotor 10 rotates clockwise, the oscillating contact 151 oscillates against the magnetic force of the magnet 165 by the inertia force, the oscillating contact 151 a positioned above comes into contact with the stationary contact plate 105 a , and the stationary contact 151 b positioned below comes into contact with the other stationary contact plate 105 b.
- the current of the cells 81 and 82 flows in the negative-electrode contact terminal 87 of the cells 81 and 82 via the positive-electrode contact terminal 85 , the conductive band 36 of the other rotor 60 , the conductive cylindrical body (outer conduction shaft) 121 , the conductive band 36 of the rotor 10 , the stationary contact plate 105 a , the oscillating contact 151 a , the contact piece 166 a , the terminal 130 a of the drive motor 130 , the terminal 130 b of the drive motor 130 , the other contact piece 166 b , the oscillating contact 151 b , the other stationary contact plate 105 b , the metal tongue piece 30 of the rotor 10 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 70 of the other rotor 60 , and the drive shaft 131 of the drive motor 130 rotates in the counterclockwise direction.
- the drive shaft 131 rotates in the counterclockwise direction, as described above,
- the oscillating contact 151 a comes into contact with the stationary contact plate 105 a by the centrifugal force, and the oscillating contact 151 b continues contacting in the other stationary contact plate 105 b , so that the high-speed rotation of the rotor 10 is maintained.
- the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair of rotors 10 and 60 continues rotating in a state where they are hanging on the string member 2 .
- the current of the cells 81 and 82 flows in the negative-electrode contact terminal 87 of the cells 81 and 82 via the positive-electrode contact terminal 85 , the conductive band 36 of the other rotor 60 , the conductive cylindrical body (outer conduction shaft) 121 , the conductive band 36 of the rotor 10 , the stationary contact plate 105 a , the oscillating contact 151 b , the other contact piece 166 b , the terminal 130 b of the drive motor 130 , the terminal 130 a of the drive motor 130 , the contact piece 166 a , the oscillating contact 151 a , the other stationary contact plate 105 b , the metal tongue piece 30 of the rotor 10 , the fixing shaft (inner conduction shaft) 41 , and the metal tongue piece 70 of the other rotor 60 , and the drive shaft 131 of the drive motor 130 rotates in the clockwise direction.
- the drive shaft 131 rotates in the clockwise direction, as described above, the
- the oscillating contact 151 a comes into contact with the other stationary contact plate 105 b by the centrifugal force, and the oscillating contact 151 b continues contacting the stationary contact plate 105 a , so that the high-speed rotation of the rotor 10 is maintained.
- the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair of rotors 10 and 60 continues rotating in a state where they are hanging on the string member 2 .
- the shape of the external cover 22 of the rotors 10 and 60 projects from the shape of the drive motor 130 .
- the projection height of the shape of the external cover 22 from the rotors 10 and 60 can be suppressed, and the rotors 10 and 60 become lighter and more compact.
- the electric yo-yo toy 1 since the rotors 10 and 60 are forcedly rotated by the drive motor 130 internally stored, even young children and beginners can perform high-level tricks.
- Examples of the high-level tricks include “walk-the-dog trick”, “sleeper trick”, “rock the baby trick”, and “breakaway trick”.
- the high-level tricks are performed basically by making the rotors 10 and 50 rotate at high-speed in a state where they hang on the string member.
- the high-speed rotation of the rotors 10 and 50 can be achieved by the drive motor 130 as described above. After performing the above trick, the electric yo-yo toy 1 is pulled back to your hand, thereby finishing the trick.
- a flexible pipe 3 is slidably attached to the string member 2 .
- the flexible pipe 3 is made of a material having elasticity, restorability, and flexibility such as soft synthetic resin, urethane, or rubber. With such a material, the flexible pipe 3 can follow the string member 2 even when it is wound around the rotary shaft 122 together with the string member 2 or stretched. No adverse influence is exerted on the operation of the electric yo-yo toy 1 .
- the flexible pipe 3 is used by covering the string member 2 , slidable along the string member 2 , and can be held in a desired position to which the flexible pipe 3 slides by frictional resistance.
- the flexible pipe 3 is not limited to the electric yo-yo toy but can be also used for string members of regular yo-yo toys.
- the flexible pipe 3 is formed in a pipe shape having an inside diameter 4 a in which the string member 2 can be inserted and an outside diameter 4 b narrower than the space between the pair of rotors 10 and 60 , has elasticity that it bends together with the string member 2 , and can slide along the string member 2 and can be held in a predetermined position by frictional resistance.
- the flexible pipe 3 is formed shorter than the radius of the rotors 10 and 60 , it is hidden on the inside of the pair of rotors 10 and 60 . It looks good, and a scene that a young child or a beginner easily plays the yo-yo can make people wonder and be surprised. As shown in FIG.
- the flexible pipe 3 when the flexible pipe 3 is formed so that a cut groove 5 which can be opened extends linearly in the axial direction, the flexible pipe 3 can be easily attached to the string member 2 by opening the cut groove 5 without inserting the string member 2 .
- the flexible pipe 3 can be easily attached to the string member 2 already attached to the yo-yo 1 .
- the present invention can be used for an electric yo-yo toy having therein a drive motor.
Landscapes
- Toys (AREA)
Abstract
The present invention provides an electric yo-yo toy which is easily handled even by a young child and a beginner by allocating electric parts and gear mechanism to both of rotors in a balanced manner so that weights of both of the rotors are almost the same. An electric yo-yo toy has a pair of rotors, a main shaft provided between the centers of the pair of rotors, and a rotary shaft rotatably provided for the main shaft and around which a string member is wound. The rotor is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotor. The other rotor is provided with power supplies. The main shaft is provided with a conducting unit for electrically connecting the drive motor and the detecting device of the rotor and the power supplies of the other rotor.
Description
- The disclosures of International Patent Application No. PCT/JP2009/069865 is hereby incorporated by reference.
- The present invention relates to a yo-yo toy having a rotary shaft of the yo-yo body, to which the lower end of a string is attached and rising while winding the string around the rotary shaft, and descending while loosening the string from the rotary shaft, and making the rotary shaft forcedly rotated.
- Conventionally, there is an electric yo-yo toy in which the rotary shaft of the yo-yo body around which a string is wound is forcedly rotated by a drive motor (for example, patent document 1). The electric yo-yo toy has a pair of rotors each formed in a disc shape, a main shaft provided between centers of the pair of rotors, and a rotary shaft swingably provided for the main shaft. One of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, a detecting device that detects rotation of the rotors, and a power supply such as a cell.
-
- Patent document 1: Japanese Patent Application Laid-Open No. 2005-66167
- An electric yo-yo toy makes a rotary shaft around which a string is wound forcedly rotate by a drive motor so as to realize a high-level technique which cannot be achieved by a regular yo-yo toy by a young child and a beginner. Since all of electric parts and gear mechanisms are housed in one of the rotors, the rotor becomes heavy and the rotors are not balanced. There is a problem that the electric yo-yo toy tilts during playing.
- In the yo-yo toy, it is desirable that weights of rotors disposed on both sides of a rotary shaft are almost the same. When the weights of the rotors disposed on both sides are almost the same, the string in a pulled state and the rotary shaft form an almost right angle, so that smooth movement can be expected. However, when one of the rotors is heavier than the other, the string in a pulled state and the rotary shaft do not form an almost right angle. The string comes into contact with the other rotor which is lighter, and smooth movement cannot be expected. In the electric yo-yo toy, also in the case where the rotary shaft tilts, the drive motor forcedly rotates the rotary shaft. In some cases, the string in a tangled state is tightened firmly. There is a problem that the user has hard time untangling the tangled string.
- To solve the problem, it is considered to put a weight in the lighter rotor to balance the right and left rotors in the electric yo-yo toy. In this case, however, the weight becomes almost double. There are problems that burden on a hand of the user is large, and that it is difficult to use the electric yo-yo toy for a young child and a beginner. There are other problems than the weight. Since all of electric parts and gear mechanisms are housed in one of the rotors, the size becomes large. To make the sizes of the rotors balanced, the other rotor has to be made large. There is consequently a problem that it is more difficult for a young child having small hands to handle the electric yo-yo toy.
- The present invention has been achieved in consideration of the problems, and an object of the invention is to provide an electric yo-yo toy in which electric parts and gear mechanisms are allocated to both rotors in a balanced manner so that weights of the rotors are almost the same, and which realizes lighter weight and compactness and is easily handled also by young children and beginners.
- To achieve the object, an electric yo-yo toy of a first aspect of the invention includes an electric yo-yo toy including a pair of rotors; a main shaft provided between centers of the pair of rotors; and a rotary shaft swingably provided for the main shaft and around which a string member is wound, wherein one of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotors, the other rotor is provided with a power source, and the main shaft is provided with a conducting unit that electrically connects the drive motor and the detecting device of one of the rotors and the power source of the other rotor.
- To achieve the object, in the electric yo-yo toy of a second aspect of the invention, the conducting unit includes an inner conduction shaft provided on the inside of the main shaft and an outer conduction shaft provided on the outside of the main shaft.
- To achieve the object, in the electric yo-yo toy of a third aspect of the invention, the outer conduction shaft is formed in a cylindrical shape and provided on the outside of the main shaft, and a rotary shaft is swingably provided for the outer conduction shaft.
- To achieve the object, in the electric yo-yo toy of a fourth aspect of the invention, the inner conduction shaft is a fixing shaft which is inserted in the main shaft and which fixes the pair of rotors.
- To achieve the object, in the electric yo-yo toy of a fifth aspect of the invention, the detecting device includes a first stationary contact plate: a second stationary contact plate provided apart from the first stationary contact plate; a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously; a rolling contact that rolls toward between a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously and a non-contact position where it does not come into contact with at least one of the first and second stationary contact plates; and a magnet which holds the rolling contact in the non-contact position, and the rolling contact rolls against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the first and second stationary contact plates almost simultaneously to drive the drive motor.
- To achieve the object, in the electric yo-yo toy of a sixth aspect of the invention, the second stationary contact plates are provided on both sides of the first stationary contact plate, when the rolling contact comes into contact with the first stationary contact plate and one of the second stationary contact plates, the drive motor drives in one direction, and when the rolling contact comes into contact with the first stationary contact plate and the other second stationary contact plate, the drive motor drives in the other direction.
- To achieve the object, in the electric yo-yo toy of a seventh aspect of the invention, the detecting device includes an oscillating contact whose one end is pivoted and capable of oscillating like a pendulum: a stationary contact plate provided apart from the oscillating contact and coming into contact when the oscillating contact oscillates; and a magnet which holds the oscillating contact in a position of non-contact with the stationary contact plate, and the oscillating contact oscillates against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the stationary contact plate to drive the drive motor.
- To achieve the object, in the electric yo-yo toy of an eighth aspect of the invention, the stationary contact plates are provided on both sides of the oscillating contact, when the oscillating contact comes into contact with one of the stationary contact plates, the drive motor drives in one direction, and when the oscillating contact comes into contact with the other stationary contact plate, the drive motor drives in the other direction.
- To achieve the object, in the electric yo-yo toy of a ninth aspect of the invention, a pair of detecting devices is provided so as to face one of the rotors and, when both of the detecting devices detect rotation, the drive motor is driven.
- In an electric yo-yo toy according to the present invention, one of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotors. The other rotor is provided with a power source. The power source provided for the other rotor and the drive motor and the detecting device provided for the rotor are electrically connected by a conducting unit disposed in the main shaft provided between centers of the pair of rotors, thereby constructing an electric circuit. As described above, weights are allocated to the right and left rotors in a balanced manner in the electric yo-yo toy according to the present invention, lighter weight and compactness are achieved, and there is an effect that even a young child and a beginner can easily handle the electric yo-yo toy.
- In addition to the above effect, the electric yo-yo toy according to the invention has an effect that, since the conducting unit includes: an inner conduction shaft provided on the inside of the main shaft; and an outer conduction shaft provided on the outside of the main shaft, without contact between the inner and outer conduction shafts, a safe electric circuit can be constructed.
- In addition to the above effect, the electric yo-yo toy according to the present invention has the following effect. Since the outer conduction shaft is formed in a cylindrical shape and provided on the outside of the main shaft, a rotary shaft is swingably provided for the outer conduction shaft. The outer conduction shaft is made of a metal conductive material, and frictional resistance of the outer conduction shaft is small, so that smooth rotation of the rotary shaft can be expected. Moreover, since the wear of the outer conduction shaft is extremely small, the product life is long.
- In addition to the above effect, in the electric yo-yo toy according to the present invention, the inner conduction shaft is a fixing shaft which is inserted in the main shaft and which fixes the pair of rotors. Consequently, it is unnecessary to separately provide a unit for fixing and integrating the pair of rotors. There is an effect that the number of parts is decreased, and the toy can be manufactured inexpensively and compactly. When a screw is used as a fixing shaft, the rotors can be easily disassembled, and there is an effect that the tangled string member can be easily untangled.
- In addition to the above effect, in the electric yo-yo toy according to the present invention, the detecting device includes: a first stationary contact plate: a second stationary contact plate provided apart from the first stationary contact plate; a rolling contact that rolls between a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously and a non-contact position where it does not come into contact with at least one of the first and second stationary contact plates; and a magnet which holds the rolling contact in the non-contact position. The rolling contact rolls against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the first and second stationary contact plates almost simultaneously to drive the drive motor. There is consequently an effect that the rotation can be detected reliably and promptly.
- In addition to the above effect, in the electric yo-yo toy according to the invention, the second stationary contact plates are provided on both sides of the first stationary contact plate. When the rolling contact comes into contact with the first stationary contact plate and one of the second stationary contact plates, the drive motor drives in one direction. When the rolling contact comes into contact with the first stationary contact plate and the other second stationary contact plate, the drive motor drives in the other direction. The rotor can be forcedly rotated by the drive motor in the rotating direction of the rotor detected. There is also an effect that can provide smooth playing.
- In the electric yo-yo toy according to the invention, in addition to the above effects, the detecting device includes: an oscillating contact whose one end is pivoted and capable of oscillating like a pendulum: a stationary contact plate provided apart from the oscillating contact and coming into contact when the oscillating contact oscillates; and a magnet which holds the oscillating contact in a position of non-contact with the stationary contact plate. The oscillating contact oscillates against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the stationary contact plate to drive the drive motor. Thus, rotation can be detected reliably and promptly. There are also effects that the number of parts is smaller and the price is low.
- In the electric yo-yo toy according to the invention, the stationary contact plates are provided on both sides of the oscillating contact. When the oscillating contact comes into contact with one of the stationary contact plates, the drive motor drives in one direction. When the oscillating contact comes into contact with the other stationary contact plate, the drive motor drives in the other direction. Consequently, the rotor can be forcedly rotated by the drive motor in the rotation direction of the rotor detected, and there is an effect that can provide smooth playing.
- In the electric yo-yo toy according to the present invention, a pair of detecting devices is provided so as to face one of the rotors and, when both of the detecting devices detect rotation, the drive motor is driven. There is consequently an effect that the drive motor does not drive only by detection of one of the detecting devices and, therefore, the drive motor can be prevented from driving suddenly without discretion.
-
FIG. 1( a) is an overall side cross section view of an electric yo-yo toy according to the present invention viewed from one direction in the case of using a rolling contact for a rotation detecting device. -
FIG. 1( b) is a side cross section view of the electric yo-yo toy according to the present invention viewed from another direction in the case of using an oscillating contact for a rotation detecting device which is no partially shown. -
FIG. 1( c) is an overall side cross section view of the electric yo-yo toy according to the present invention viewed from further another direction. -
FIG. 2( a) is an overall front view of one of the rotors in the electric yo-yo toy according to the present invention. -
FIG. 2( b) is a front view of a detecting device of one of the rotors in the electric yo-yo toy according to the present invention. -
FIG. 2( c) is a side view of the detecting device of one of the rotors in the electric yo-yo toy according to the present. -
FIG. 3( a) is an overall front view of the other rotor in the electric yo-yo toy according to the present invention. -
FIG. 3( b) is a side view of the other rotor in the electric yo-yo toy according to the present invention. -
FIG. 4( a) is an overall front view of a rotation case of one of the rotors. -
FIG. 4( b) is a cross section view of the rotation case of one of the rotors in the direction of arrow A. -
FIG. 4( c) is a side view of the rotation case of one of the rotors. -
FIG. 4( d) is an overall rear view of the rotation case of one of the rotors. -
FIG. 4( e) is a cross section view of the rotation case of one of the rotors in the direction of arrow B. -
FIG. 4( f) is a cross section view of the rotation case of one of the rotors in the direction of arrow C. -
FIG. 5( a) is an overall front view of an external cover of one of the rotors. -
FIG. 5( b) is a cross section view of the external cover of one of the rotors in the direction of arrow A. -
FIG. 5( c) is a right side view of the external cover of one of the rotors. -
FIG. 5( d) is an overall rear view of the external cover of one of the rotors. -
FIG. 5( e) is a cross section view of the external cover of one of the rotors in the direction of arrow B. -
FIG. 5( f) is a cross section view of the external cover of one of the rotors in the direction of arrow C. -
FIG. 5( g) is a bottom view of the external cover of one of the rotors. -
FIG. 6( a) is an overall front view of a main shaft member of one of the rotors. -
FIG. 6( b) is a right side view of the main shaft member of one of the rotors. -
FIG. 6( c) is a cross section view of the main shaft member of one of the rotors in the direction of arrow A. -
FIG. 6( d) is an overall rear view of the main shaft member of one of the rotors. -
FIG. 6( e) is a cross section view of the main shaft member of one of the rotors in the direction of arrow B. -
FIG. 7( a) is an overall front view of a motor attachment plate of one of the rotors. -
FIG. 7( b) is a right side cross section view of the motor attachment plate of one of the rotors. -
FIG. 7( c) is a right side view of the motor attachment plate of one of the rotors. -
FIG. 7( d) is an overall rear view of the motor attachment plate of one of the rotors. -
FIG. 8( a) is an overall front view of a rotation case of the other rotor. -
FIG. 8( b) is a cross section view of the rotation case of the other rotor in the direction of arrow A. -
FIG. 8( c) is a cross section view of the rotation case of the other rotor in the direction of arrow B. -
FIG. 8( d) is a right side view of the rotation case of the other rotor. -
FIG. 8( e) is an overall rear view of the rotation case of the other rotor. -
FIG. 8( f) is a cross section view of the rotation case of the other rotor in the direction of arrow C. -
FIG. 8( g) is a cross section view of the rotation case of the other rotor in the direction of arrow D. -
FIG. 8( h) is a cross section view of the rotation case of the other rotor in the direction of arrow G. -
FIG. 8( i) is a cross section view of the rotation case of the other rotor in the direction of arrow E. -
FIG. 8( j) is a cross section view of the rotation case of the other rotor in the direction of arrow F. -
FIG. 9( a) is an overall front view of an external cover of the other rotor. -
FIG. 9( b) is a right side view of the external cover of the other rotor. -
FIG. 9( c) is a cross section view of an external cover of the other rotor in the direction of arrow A. -
FIG. 9( d) is an overall rear view of an external cover of the other rotor. -
FIG. 9( e) is a cross section view of an external cover of the other rotor in the direction of arrow B. -
FIG. 10( a) is an overall front view of a cover member of the other rotor. -
FIG. 10( b) is a cross section view of the cover member of the other rotor in the direction of arrow A. -
FIG. 10( c) is a right side view of the cover member of the other rotor. -
FIG. 10( d) is an overall rear view of the cover member of the other rotor. -
FIG. 10( e) is a cross section view of the cover member of the other rotor in the direction of arrow B. -
FIG. 10( f) is a bottom view of the cover member of the other rotor. -
FIG. 11( a) is a left side view of a rotary shaft. -
FIG. 11( b) is a front view of the rotary shaft. -
FIG. 11( c) is a cross section view of the rotary shaft. -
FIG. 11( d) is a right side view of the rotary shaft. -
FIG. 12( a) is a front view of an attachment plate for attaching a first stationary contact plate. -
FIG. 12( b) is a top view of the attachment plate for attaching the first stationary contact plate. -
FIG. 12( c) is a bottom view of the attachment plate for attaching the first stationary contact plate. -
FIG. 12( d) is a side cross section view of the attachment plate for attaching the first stationary contact plate. -
FIG. 12( e) is a left side view of the attachment plate for attaching the first stationary contact plate. -
FIG. 12( f) is a rear view of the attachment plate for attaching the first stationary contact plate. -
FIG. 13( a) shows a drive gear of an electric yo-yo toy. -
FIG. 13( b) shows an intermediate shaft of the electric yo-yo toy. -
FIG. 13( c) shows a fixing shaft (inner conduction shaft) of the electric yo-yo toy. -
FIG. 13( d) shows a metal tongue piece on the other rotor side of the electric yo-yo toy. -
FIG. 13( e) shows a metal tongue piece on one of the rotors of the electric yo-yo toy. -
FIG. 13( f) shows a first stationary contact plate of the electric yo-yo toy. -
FIG. 13( g) shows a conductive band of the electric yo-yo toy. -
FIG. 14( a) is a front view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( b) is a top view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( c) is a bottom view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( d) is a left cross section view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( e) is a left side view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( f) is a rear view of the attachment plate for attaching the first stationary contact plate. -
FIG. 14( g) is a front view of the attachment plate for attaching the first stationary contact plate showing a use mode. -
FIG. 14( h) is a side view of the attachment plate for attaching the first stationary contact plate showing a use mode. -
FIG. 15 is an Electric configuration diagram of an electric yo-yo toy. -
FIG. 16( a) is an overall front view of one of the rotors of the electric yo-yo toy according to the present invention. -
FIG. 16( b) is a front view of a detecting device of one of the rotors of the electric yo-yo toy according to the present invention. -
FIG. 16( c) is a side view of the detecting device of one of the rotors of the electric yo-yo toy according to the present invention. -
FIG. 17( a) is a front view of the attachment plate for attaching the first stationary contact plate. -
FIG. 17( b) is a top view of the attachment plate for attaching the first stationary contact plate. -
FIG. 17( c) is a bottom view of the attachment plate for attaching the first stationary contact plate. -
FIG. 17( d) is a left cross section view of the attachment plate for attaching the first stationary contact plate. -
FIG. 17( e) is a left side view of the attachment plate for attaching the first stationary contact plate. -
FIG. 17( f) is a rear view of the attachment plate for attaching the first stationary contact plate. -
FIG. 18( a) shows an oscillating contact of the electric yo-yo toy. -
FIG. 18( b) shows a contact piece of the electric yo-yo toy. -
FIG. 19 is another electric configuration diagram of the electric yo-yo toy. -
FIG. 20( a) is an overall side cross section view of an electric yo-yo toy according to the present invention viewed from one direction. -
FIG. 20( b) is an overall front view of a rotation case of one of the rotors of electric yo-yo toy according to the present invention. -
FIG. 20( c) is an overall cross section view of the electric yo-yo toy according to the present invention viewed from another direction. -
FIG. 20( d) is an overall front view of one of the rotors of the electric yo-yo toy according to the present invention. -
FIG. 20( e) is an overall rear view of the rotation case of one of the rotors of the electric yo-yo toy according to the present invention. -
FIG. 20( f) is an overall front view of the other rotor in the electric yo-yo toy according to the present invention. -
FIG. 20( g) is a side view of the other rotor in the electric yo-yo toy according to the present invention viewed from one direction. -
FIG. 20( h) is a side view of the other rotor in the electric yo-yo toy according to the present invention viewed from further another direction. -
FIG. 21( a) is an overall side cross section view of a use mode of the electric yo-yo toy according to the present invention when a flexible pipe slides to a position apart from a pair of rotors. -
FIG. 21( b) is an overall side cross section view of a use mode of the electric yo-yo toy according to the present invention when the flexible pipe slides to a position close to the pair of rotors. -
FIG. 22( a) is a side view of a use mode of the electric yo-yo toy according to the present invention when a flexible pipe slides to a position apart from a pair of rotors. -
FIG. 22( b) is a side view of a use mode of the electric yo-yo toy according to the present invention when the flexible pipe slides to a position close to the pair of rotors. -
FIG. 23( a) is an overall perspective view of a flexible pipe when a cut groove of the flexible pipe is linearly closed in an axial direction. -
FIG. 23( b) is an overall perspective view of a flexible pipe when a cut groove of the flexible pipe is linearly opened in an axial direction. - Outline of an embodiment of the present invention will be described with reference to
FIGS. 1 to 15 . An electric yo-yo toy 1 has a pair ofrotors main shaft 26 provided between the centers of the pair ofrotors rotary shaft 122 rotatably provided for themain shaft 26 and around which astring member 2 is wound. Therotor 10 as one of them is provided with adrive motor 130, agear mechanism 140 for transmitting rotation of thedrive motor 130 to therotary shaft 122, and a detectingdevice 100 for detecting rotation of therotor 10. Theother rotor 60 is provided withpower supplies main shaft 26 is provided with a conductingunit 40 for electrically connecting thedrive motor 130 and the detectingdevice 100 of therotor 10 and the power supplies 81 and 82 of theother rotor 60. - The electric yo-
yo toy 1 has, as described above, an electric circuit constructed by electrically connecting the power supplies 81 and 82 provided for theother rotor 60 and thedrive motor 130 and the detectingdevice 100 provided for the onerotor 10 via the conductingunit 40 disposed in themain shaft 26 provided between the centers of the pair ofrotors rotors yo toy 1 realizes light weight and compactness and is easily handled also by young children and beginners. - In the electric yo-
yo toy 1, the conductingunit 40 has aninner conduction shaft 41 provided on the inside of themain shaft 26 and anouter conduction shaft 121 provided on the outside of themain shaft 26. Consequently, the electric yo-yo toy 1 has a safe electric circuit without contact between theinner conduction shaft 41 and theouter conduction shaft 121. - In the electric yo-
yo toy 1, theexternal conduction shaft 121 is formed in a cylindrical shape and provided on the outside of themain shaft 26, and therotary shaft 122 is swingably provided for theouter conduction shaft 121. Since theexternal conduction shaft 121 is made of a metal conducting material, the frictional resistance of theouter conduction shaft 121 is low, smooth rotation of therotary shaft 122 can be expected and, moreover, the friction of theouter conduction shaft 121 is extremely small, so that the electric yo-yo toy 1 has long product life. - In the electric yo-
yo toy 1, theinner conduction shaft 41 is inserted in themain shaft 26 and serves as a fixing shaft that fixes the pair ofrotors yo toy 1 with a unit for fixing and integrating the pair ofrotors yo toy 1 can be manufactured inexpensively and compactly. When a screw is used as the fixing shaft, therotor 10 and theother rotor 60 can be easily disassembled, and tangle of thestring member 2 is easily loosened. - The detecting
device 100 of the electric yo-yo toy 1 has a firststationary contact plate 103, a secondstationary contact plate 105 provided apart from the firststationary contact plate 103, a rollingcontact 101 rolling between a contact position in which it contacts almost simultaneously with the first and secondstationary contact plates stationary contact plates magnet 115 which holds therolling contact 101 in the non-contact position. The electric yo-yo toy 1 is constructed so that the rollingcontact 101 rolls against the magnetic force of themagnet 115 by inertia force of the rotation of therotor 10, comes into contact with the first and secondstationary contact plates drive motor 130. Therefore, the electric yo-yo toy 1 can detect rotation reliably and promptly. - The electric yo-
yo toy 1 has a configuration that the secondstationary contact plates 105 are provided on both sides of the firststationary contact plate 103, when the rollingcontact 101 comes into contact with the firststationary contact plate 103 and one of the secondstationary contact plates 105, thedrive motor 130 drives in one direction and, when the rollingcontact 101 comes into contact with the firststationary contact plate 103 and the other secondstationary contact plate 105, thedrive motor 130 drives in the other direction. The electric yo-yo toy 1 can make therotor 10 forcedly rotate by thedrive motor 130 in the rotation direction of therotor 10 detected, and can provide smooth playing. - Outline of another embodiment of the present invention will be described with reference to
FIG. 16 toFIG. 19 . Another detectingdevice 150 of the electric yo-yo toy 1 has anoscillating contact 151 whose one end is pivoted and capable of oscillating like a pendulum, thestationary contact plate 105 which is provided apart from theoscillating contact 151 and comes into contact when theoscillating contact 151 oscillates, and amagnet 165 which holds theoscillating contact 151 in a position where thestationary contact plate 105 is not in contact. Theoscillating contact 151 oscillates against the magnetic force of themagnet 165 by the inertia force generated by the rotation of therotor 10, comes into contact with the stationary contact plate, continues in contact by the centrifugal force, and drives thedrive motor 130. The electric yo-yo toy 1 can detect rotation reliably and promptly and, moreover, is inexpensive since the number of parts is small. - The electric yo-
yo toy 1 has a configuration that thestationary contact plates 105 are provided on both sides of theoscillating contact 151, when the rollingcontact 151 comes into contact with one of thestationary contact plates 105, thedrive motor 130 drives in one direction and, when the rollingcontact 101 comes into contact with the otherstationary contact plate 105, thedrive motor 130 drives in the other direction. The electric yo-yo toy 1 can make therotor 10 forcedly rotate by thedrive motor 130 in the rotation direction of therotor 10 detected, and can provide smooth playing. - The electric yo-
yo toy 1 is constructed that a pair of detectingdevices rotor 10 as one of the rotors and detect rotation, and thedrive motor 130 is driven. In the electric yo-yo toy 1, thedrive motor 130 does not drive only by detection of the detectingdevice 100 and the detectingdevice 150 as one of them. Therefore, thedrive motor 130 can be prevented from driving suddenly without discretion. - Further, the electric yo-yo toy will be described in detail with reference to
FIGS. 1 to 15 . As shown inFIGS. 1( a)-1(c), the electric yo-yo toy 1 has a pair ofrotors main shaft 26 provided between the centers of the pair ofrotors rotor 10 as one of them includes arotation case 11 and anexternal cover 22 screwed to therotation case 11. - As shown in
FIGS. 4( a)-4(f), therotation case 11 is integrally formed by synthetic resin in a bowl shape by aside wall 12, acurved wall 13 connected around theside wall 12, and aperipheral wall 15 formed around thecurved wall 13. Anopening 16 is formed in an almost center of theside wall 12. Anannular recess 17 is formed around theopening 16 in anoutside face 12 a of theside wall 12. As shown inFIGS. 1( a)-1(b), a ring-shapedresistance plate 18 is fit in therecess 17. - Four
attachment bosses 21 are provided around theopening 16 as a center in aninside face 12 b of theside wall 12. As shown inFIG. 1( b), amain shaft member 25 is attached to theattachment bosses 21 by screws or the like. As shown inFIGS. 6( a)-(e), themain shaft member 25 is integrally formed by synthetic resin and includes themain shaft 26 and arectangular attachment plate 27 formed at one end of themain shaft 26. In theattachment plate 27, throughholes 28 are formed in positions matching theattachment bosses 21 . . . . Themain shaft 26 is formed in a cylindrical shape, and aninsertion hole 29 in which the fixing shaft (inner conduction shaft) 41 is inserted is formed in themain shaft 26. As shown inFIG. 13( c), the fixing shaft (inner conduction shaft) 41 is made of a conductive material such as metal and includes ashaft part 42 and aflange part 43. Ascrew 45 is formed in theshaft part 42. - In the
surface 27 a of theattachment plate 27, afitting recess 31 in which ametal tongue piece 30 shown inFIG. 13( e) is fit is formed. Theinsertion hole 29 penetrates thefitting recess 31. In theattachment plate 27, aninsertion hole 32 in which abent piece 37 of a ring-shapedconductive band 36 attached to themain shaft 26 shown inFIG. 13( g) is inserted is formed. In both opposed sides of theattachment plate 27, rectangular guide recesses 33 are formed. In the other opposed sides, semicircular notch recesses 35 and 35 in which a gear is inserted are formed. - As shown in
FIG. 1( c), amotor attachment plate 50 is attached to theattachment bosses 21 . . . by screws or the like. As shown inFIGS. 7( a)-7(d),positioning tubes 51 are provided in positions matching the positions of theattachment bosses 21 . . . in aface 50 a as one of faces of themotor attachment plate 50, and communication holes 52 are formed in positions of thepositioning tubes 51. Amotor attachment recess 53 is formed in theother face 50 b of themotor attachment plate 50, and anopening 55 in which adrive shaft 131 of thedrive motor 130 is inserted is also formed. In both opposed sides of themotor attachment plate 50, rectangular guide recesses 57 and 57 are formed. Near the other opposed sides, bearingholes - As shown in
FIG. 1( c), theother rotor 60 includes arotation case 61 and anexternal cover 90 screwed to therotation case 61. As shown inFIGS. 8( a)-8(j), therotation case 61 is integrally formed by synthetic resin in a bowl shape by aside wall 62, acurved wall 63 connected around theside wall 62, and aperipheral wall 65 formed around thecurved wall 63. A bearinghole 66 is formed in an almost center of theside wall 62. A shaftcylindrical part 64 is formed around the bearinghole 66 in anoutside face 62 a of theside wall 62, and anannular recess 67 is formed around the shaftcylindrical part 64. As shown inFIGS. 1( a)-1(b), the ring-shapedresistance plate 18 is fit in therecess 67. - On an
inside face 62 b of theside wall 62, an almost C-shapedguide wall 69 in which ametal tongue piece 70 shown inFIG. 13( d) is fit is formed around the bearinghole 66 as a center. In theside wall 62, aninsertion hole 72 in which thebent piece 37 of the ring-shapedconductive band 36 attached to the shaftcylindrical part 64 shown inFIG. 13( g) is inserted is formed. Further, on theinside face 62 b of therotation case 61, an attachment recess 73 (refer toFIG. 3( b)) to which a pair of cells (power supplies) 81 and 82 is attached, and attachment recesses 75, 76, and 77 to whichcontact terminals cells FIGS. 9( a)-9(e), anopening 91 through which thecells attachment recess 73 are is formed in theoutside cover 90. To theopening 91, acover member 92 is closably attached as shown inFIGS. 10( a)-9(f). - As shown in
FIGS. 2( a)-2(c), the detectingdevice 100 attached to therotor 10 has a metal sphere (rolling contact) 101, a guide member 102 (refer toFIGS. 12( a)-12(f)) for guiding themetal sphere 101, the firststationary contact plate 103 fixed to theguide member 102, and the secondstationary contact plates 105 provided apart on both sides of the firststationary contact plate 103. Theguide member 102 has anattachment plate 106, asemicircular projection 107 projected on one side of theattachment plate 106, aguide wall 109 curved around theprojection 107 as a center, and amagnet attachment frame 110 formed on the other side of theattachment plate 106 and positioned in an almost intermediate part of theguide wall 109. Themagnet 115 is attached to themagnet attachment frame 110. Ashaft hole 108 is formed in an almost center of theprojection 107. - The
guide member 102 is disposed opposed to theinside face 12 b of therotation case 11. By adjusting theshaft hole 108 to ascrew hole 23 a of aprojection 23 formed opposed to therotation case 11 shown inFIG. 4( a) and screwing ascrew 111 in thescrew hole 23 a via theshaft hole 108, theguide member 102 is fixed so as to face theinside face 12 b of therotation case 11. Since themagnet attachment frame 110 fits in theguide recess 33 in theattachment plate 27 of themain shaft member 25 and theguide recess 57 in themotor attachment plate 50, theguide member 102 is fixed unswingably by thescrew 111. - When the
guide member 102 is fixed to therotation case 11 by thescrew 111, the firststationary contact plate 103 is fixed to theprojection 107 by thescrew 111. As shown inFIG. 13( f), the firststationary contact plate 103 is made by an almostsemicircular guide plate 112 formed so as to project from the outer periphery of theprojection 107 and abent piece 113 which is bent at almost the right angle at one end of theguide plate 112. As shown inFIG. 2( b), themetal sphere 101 rolls between the periphery of theguide plate 112 and theguide wall 109 and is stably held in an almost center of theguide wall 109 by themagnet 115. To make the held state more reliable, anengagement recess 116 for making themetal sphere 101 engaged with theguide wall 109 may be formed as shown inFIG. 14( g). - The second
stationary contact plate 105 is formed in a band shape and held in a state where it is bent in a semi-annular shape byguide projections inside face 12 b side of therotation case 11. Both ends of the secondstationary contact plate 105 are bent, thereby formingcontact parts 120. Thecontact parts 120 are provided on both sides of theguide plate 112. When themetal sphere 101 rolls to one direction, it comes into contact with one of thecontact parts 120 and theguide plate 112. When themetal sphere 101 rolls to the other direction, it comes into contact with theother contact part 120 and theguide plate 112. - As described above, the
external cover 22 is screwed to therotation case 11 and, as shown inFIGS. 5( a)-5(g) and, asemi-annular guide projection 46 for guiding themetal sphere 101 so that themetal sphere 101 rolls between the periphery of theguide plate 112 and theguide wall 109 is formed. Further, in theexternal cover 22, a mountain-shapedprojection 47 covering thedrive motor 130 is formed in an almost center. - As shown in
FIGS. 1( a)-1(c), in therotor 10 as one of the rotors, the throughhole 28 in theattachment plate 27 of themain shaft member 25 and thepositioning tube 51 of themotor attachment plate 50 are overlapped in order on theattachment boss 21 of therotation case 11, and ascrew 58 is screwed in theattachment boss 21 via thecommunication hole 52 and the throughhole 28, thereby fixing themain shaft member 25 and themotor attachment plate 50. Themain shaft 26 projects from theopening 16 in therotation case 11 to the outside. To themain shaft 26, as described above, the ring-shapedconductive band 36 is attached. Thebent piece 37 of the ring-shapedconductive band 36 is inserted in theinsertion hole 32 in theattachment plate 27 and projects to the inside. - The
main shaft 26 is provided with the conductive cylindrical body (outer conduction shaft) 121. One end of the conductive cylindrical body (outer conduction shaft) 121 is in contact with theconductive band 36 on the side of therotor 10 as one of the rotors, and the other end is in contact with theconductive band 36 on theother rotor 60 side. For the conductive cylindrical body (external conductive shaft) 121, therotary shaft 122 made of the nonconductive material, for example, synthetic resin is swingably provided. As illustrated inFIGS. 11( a)-11(d), in therotary shaft 122, astring winding groove 123 and a drivengear 124 are formed. Thestring winding groove 123 is positioned almost midway between therotor 10 and theother rotor 60. Thedrive gear 124 is disposed in therotor 10. - The
drive motor 130 is attached to themotor attachment recess 53 in themotor attachment plate 50, and thedrive shaft 131 projects from theopening 55 between themotor attachment plate 50 and theattachment plate 27. To thedrive shaft 131, adrive gear 132 shown inFIG. 13( a) is fixed. Thedrive gear 132 engages with aspur gear 135 fixed to one end of anintermediate shaft 133 shown inFIG. 13( b). The drivengear 124 of therotary shaft 122 engages with apinion 136 fixed to the other end of theintermediate shaft 133. Theintermediate shaft 133 is swingably attached to thebearing hole 56 in themotor attachment plate 50 and abearing hole 19 formed in therotation case 11. By thedrive gear 132, thespur gear 135, thepinion 136, and the drivengear 124, thegear mechanism 140 that transmits rotation of thedrive motor 130 to therotary shaft 122 is constructed. - The electric yo-
yo toy 1 is assembled as follows. The ring-shapedconductive band 36 is attached to themain shaft 26 of themain shaft member 25, and thebent piece 37 of the ring-shapedconductive band 36 is inserted in theinsertion hole 32 in theattachment plate 27 and fixed. When the conductive cylindrical body (external conductive shaft) 121 is attached to themain shaft 26, one end of the conductive cylindrical body (external conductive shaft) 121 comes into contact with theconductive band 36. Therotary shaft 122 is swingably attached to the conductive cylindrical body (external conductive shaft) 121. The drivengear 124 of therotary shaft 122 is positioned on the side of theattachment plate 27. Themetal tongue piece 30 is fit in thefitting recess 31 in theattachment plate 27 of themain shaft member 26, and the fixing shaft (internal conductive shaft) 41 is inserted in theinsertion hole 29 in themain shaft 26. Theflange part 43 of the fixing shaft (internal conductive shaft) 41 comes into contact with themetal tongue piece 30. - When the
drive motor 130 is attached to themotor attachment recess 53 in themotor attachment plate 50, thedrive shaft 131 projects from theopening 55 in themotor attachment plate 50, and thedrive gear 132 is fixed to the projecteddrive shaft 131. The throughhole 28 in theattachment plate 27 of themain shaft member 25 and thepositioning tube 51 of themotor attachment plate 50 are overlapped in order on theattachment boss 21 of therotation case 11, and thescrew 58 is screwed in theattachment boss 21 via thecommunication hole 52 and the throughhole 28, thereby fixing themain shaft member 25 and themotor attachment plate 50 to therotation case 11. - Simultaneously, the
intermediate shaft 133 is swingably fit in thebearing hole 56 in themotor attachment plate 50 and thebearing hole 19 formed in therotation case 11. Thespur gear 135 in theintermediate shaft 133 engages with thedrive gear 132, and thepinion 136 in theintermediate shaft 133 engages with thedrive gear 124 in therotary shaft 122. The pair of secondstationary contact plate 105 and theguide member 102 is attached in predetermined positions in therotation case 11 and, after that, theexternal cover 22 is fixed to therotation case 11. - The ring-shaped
conductive band 36 is attached to the shaftcylindrical part 64 of therotation case 61 of theother rotor 60, and thebent piece 37 of the ring-shapedconductive band 36 is inserted in theinsertion hole 72 in therotation case 61 and fixed. Themetal tongue piece 70 is fit in theguide wall 69 in therotation case 61. When the fixing shaft (inner conduction shaft) 41 attached to therotor 10 is inserted in thebearing hole 66 in therotation case 61 and anut 48 is screwed in thescrew 45 of the fixing shaft (inner conduction shaft) 41, therotation case 61 is fixed to therotor 10. The other end of the conductive cylindrical body (outer conduction shaft) 121 comes into contact with theconductive band 36 of therotation case 61. Themetal tongue piece 70 comes into contact with thescrew 45 and thenut 48 of the fixing shaft (inner conductive shaft) 41. After thecells attachment recess 73 in therotation case 61, theexternal cover 90 is fixed to therotation case 61. Thecells cover member 92 of theexternal cover 90. - The electric configuration of the electric yo-
yo toy 1 is as follows. As shown inFIG. 15 , a positive-electrode contact terminal 85 of each of thecells stationary contact plate 105 a via theconductive band 36 of theother rotor 60, the conductivecylindrical body 121, and theconductive band 36 of therotor 10. A negative-electrode contact terminal 87 of each of thecells stationary contact plate 105 b via themetal tongue piece 70 of theother rotor 60, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 30 of therotor 10. The firststationary contact plate 103 a is connected to the terminal 130 a of thedrive motor 130, and the other firststationary contact plate 103 b is connected to theother terminal 130 b of thedrive motor 130. By the conductive cylindrical body (external conductive shaft) 121 and the fixing shaft (inner conduction shaft) 41, the conductingunit 40 for electrically connecting thedrive motor 130 and the detectingdevice 100 of therotor 10 and the power supplies 81 and 82 in theother rotor 60 is constructed. - The electric yo-
yo toy 1 can be used as follows. As shown inFIG. 15 , when the electric yo-yo toy 1 does not rotate, themetal sphere 101 is held in the position (non-contact position) P0 apart from thecontact part 120 in the secondstationary contact plate 105 by themagnet 115, and the current from thecells drive motor 130, so that thedrive motor 130 is in a non-drive state. As shown inFIGS. 21 and 22 , the lower part of thestring member 2 is coupled and fixed to therotary shaft 122, and thestring member 2 is wound around therotary shaft 122. When the user holds the electric yo-yo toy 1 by inserting his/her middle finger in a loop formed in an upper part of thestring member 2 and pushes the electric yo-yo toy 1 downward, the pair ofrotors string member 2 from therotary shaft 122. - When the
rotor 10 rotates, thedrive motor 130 operates. Specifically, inFIG. 15 , when therotor 10 rotates clockwise, themetal sphere 101 rolls in the counterclockwise direction against the magnetic force of themagnet 115 by the inertia force, ametal sphere 101 a positioned above moves to the contact position P1 where it simultaneously comes into contact with the firststationary contact plate 103 a and the secondstationary contact plate 105 a, and ametal sphere 101 b positioned downward moves to the contact position where it simultaneously comes into contact with the other firststationary contact plate 103 b and the other secondstationary contact plate 105 b. - The current of the
cells electrode contact terminal 87 of thecells electrode contact terminal 85, theconductive band 36 of therotor 10, the secondstationary contact plate 105 a, themetal sphere 101 a, a firststationary contact plate 103 a, a terminal 130 a of thedrive motor 130, a terminal 130 b of thedrive motor 130, the other firststationary contact plate 103 b, themetal sphere 101 b, the other secondstationary contact plate 105 b, themetal tongue piece 30 of therotor 10, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 70 of theother rotor 60, and thedrive shaft 131 of thedrive motor 130 rotates in the counterclockwise direction. - When the
drive shaft 131 rotates in the counterclockwise direction, thedrive gear 132 attached to thedrive shaft 131, thespur gear 135 that engages with thedrive gear 132, theintermediate shaft 133 fixing thespur gear 135, thepinion 136 fixed to theintermediate shaft 133, and the drivengear 124 that engages with thepinion 136 rotate, and therotary shaft 122 tries to rotate in the counterclockwise direction. However, therotary shaft 122 is coupled and fixed to the lower part of thestring member 2 and does not rotate. Therefore, therotor 10 rotates at high speed in the clockwise direction around therotary shaft 122 as a center. - As long as the
rotor 10 rotates, themetal sphere 101 a simultaneously comes into contact with the firststationary contact plate 103 a and the secondstationary contact plate 105 a by the centrifugal force, and themetal sphere 101 b continues contacting in the other first and secondstationary contact plates rotor 10 is maintained. The user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair ofrotors string member 2. - In the electric yo-
yo toy 1, in a state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between thestring member 2 and theresistance plates 18. At the time of rise, the pair ofrotors rotors rotor 10 stops, the centrifugal force stops working on themetal sphere 101, themetal sphere 101 returns to the non-contact position apart from thecontact part 120 of the secondstationary contact plate 105 by the magnetic force of themagnet 115, and the driving of thedrive motor 130 stops. - When the electric yo-
yo toy 1 is pushed downward, the pair ofrotors string member 2 from therotary shaft 122. InFIG. 15 , when therotor 10 rotates in the counterclockwise direction, themetal sphere 101 rolls in the clockwise direction against the magnetic force of themagnet 115 by the inertia force, themetal sphere 101 a positioned above moves to the contact position P2 where it simultaneously comes into contact with the firststationary contact plate 103 a and the other secondstationary contact plate 105 b, and themetal sphere 101 b positioned below moves to the contact position P2 where it simultaneously comes into contact with the other firststationary contact plate 103 b and the secondstationary contact plate 105 a. - The current of the
cells electrode contact terminal 87 of thecells electrode contact terminal 85, theconductive band 36 of theother rotor 60, the conductive cylindrical body (outer conduction shaft) 121, theconductive band 36 of therotor 10, the secondstationary contact plate 105 a, themetal sphere 101 b, the other firststationary contact plate 103 b, the terminal 130 b of thedrive motor 130, the terminal 130 a of thedrive motor 130, the firststationary contact plate 103 a, themetal sphere 101 a, the other secondstationary contact plate 105 b, themetal tongue piece 30 of therotor 10, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 70 of theother rotor 60, and thedrive shaft 131 of thedrive motor 130 rotates in the clockwise direction. - When the
drive shaft 131 rotates in the clockwise direction, thedrive gear 132 attached to thedrive shaft 131, thespur gear 135 that engages with thedrive gear 132, theintermediate shaft 133 fixing thespur gear 135, thepinion 136 fixed to theintermediate shaft 133, and the drivengear 124 that engages with thepinion 136 rotate, and therotary shaft 122 tries to rotate in the clockwise direction. However, therotary shaft 122 is coupled and fixed to the lower part of thestring member 2 and does not rotate. Therefore, therotor 10 rotates at high speed in the counterclockwise direction around therotary shaft 122 as a center. - As long as the
rotor 10 rotates, themetal sphere 101 a simultaneously comes into contact with the firststationary contact plate 103 a and the other secondstationary contact plate 105 b by the centrifugal force, and themetal sphere 101 b continues contacting in the other firststationary contact plate 103 b and the secondstationary contact plate 105 a, so that the high-speed rotation of therotor 10 is maintained. As described above, the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair ofrotors string member 2. - In the electric yo-
yo toy 1, in a state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between thestring member 2 and theresistance plates 18. At the time of rise, the pair ofrotors rotors rotor 10 stops, the centrifugal force stops working on themetal sphere 101, themetal sphere 101 returns to the non-contact position apart from thecontact part 120 of the secondstationary contact plate 105 by the magnetic force of themagnet 115, and the driving of thedrive motor 130 stops. - Although the
rolling contact 101 using the metal sphere has been described, the detectingdevice 100 may be constructed by themetal oscillating contact 151 as illustrated inFIG. 16 toFIG. 19 . The detectingdevice 150 attached to therotor 10 includes theoscillating contact 151, aguide member 152 for swingably pivoting theoscillating contact 151, and thestationary contact plates 105 provided apart on both of theoscillating contact 151. As shown inFIGS. 17( a)-17(f), theguide member 152 includes anattachment plate 156, ashaft hole 157 formed in one end of theattachment plate 156, and amagnet attachment frame 160 formed on the other end of theattachment plate 156. To themagnet attachment frame 160, themagnet 165 is attached. - The
guide member 152 is disposed opposed to theinside face 12 b side of therotation case 11. By adjusting theshaft hole 157 to thescrew hole 23 a in theprojection 23 formed facing therotation case 11 shown inFIG. 16( a), inserting ascrew part 154 of apivot 153 into theshaft hole 157, and screwing thescrew part 154, theguide member 152 is fixed so as to be face theinside face 12 b of therotation case 11. Since themagnet attachment frame 160 is fit in theguide recess 33 in theattachment plate 27 of themain shaft member 25 and theguide recess 57 in themotor attachment plate 50, theguide member 152 is fixed by thepivot 153 unswingably. As shown inFIG. 18( a), theoscillating contact 151 is attached swingably by thepivot 153. - When the
guide member 152 is fixed to therotation case 11 by thepivot 153, acontact piece 166 is fixed to theguide member 152 by thepivot 153. As shown inFIG. 18( b), thecontact piece 166 is made by aboard 167 having an almost semicircular shape and abent piece 168 which is bent at almost right angle at one end of theboard 167. Theoscillating contact 151 is always in contact with the board 167 (contact piece 166) via themetal pivot 153 and thescrew part 154. Afront part 163 is stably held in an almost center by themagnet 165 and is usually not in contact with thestationary contact plates 105 on both sides. Thestationary contact plate 105 is as described above. - The electric configuration of the electric yo-
yo toy 1 is as follows. As shown inFIG. 19 , the positive-electrode contact terminal 85 of each of thecells stationary contact plate 105 a via theconductive band 36 of theother rotor 60, the conductive cylindrical body (outer conduction shaft) 121, and theconductive band 36 of therotor 10. The negative-electrode contact terminal 87 of each of thecells stationary contact plate 105 b via themetal tongue piece 70 of theother rotor 60, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 30 of therotor 10. Thecontact piece 166 a is connected to the terminal 130 a of thedrive motor 130, and theother contact piece 166 b is connected to theother terminal 130 b of thedrive motor 130. - The electric yo-
yo toy 1 can be used as follows. When the electric yo-yo toy 1 does not rotate, theoscillating contact 151 is held in the position (non-contact position) apart from thecontact part 120 in thestationary contact plate 105 by themagnet 165, and the current from thecells drive motor 130, so that thedrive motor 130 is in a non-drive state. As shown inFIGS. 21 and 22 , the lower part of thestring member 2 is coupled and fixed to therotary shaft 122, and thestring member 2 is wound around therotary shaft 122. When the user holds the electric yo-yo toy 1 by inserting his/her middle finger in a loop formed in an upper part of thestring member 2 and pushes the electric yo-yo toy 1 downward, the pair ofrotors string member 2 from therotary shaft 122. - When the
rotor 10 rotates, thedrive motor 130 operates. Specifically, inFIG. 19 , when therotor 10 rotates clockwise, theoscillating contact 151 oscillates against the magnetic force of themagnet 165 by the inertia force, theoscillating contact 151 a positioned above comes into contact with thestationary contact plate 105 a, and thestationary contact 151 b positioned below comes into contact with the otherstationary contact plate 105 b. - The current of the
cells electrode contact terminal 87 of thecells electrode contact terminal 85, theconductive band 36 of theother rotor 60, the conductive cylindrical body (outer conduction shaft) 121, theconductive band 36 of therotor 10, thestationary contact plate 105 a, theoscillating contact 151 a, thecontact piece 166 a, the terminal 130 a of thedrive motor 130, the terminal 130 b of thedrive motor 130, theother contact piece 166 b, theoscillating contact 151 b, the otherstationary contact plate 105 b, themetal tongue piece 30 of therotor 10, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 70 of theother rotor 60, and thedrive shaft 131 of thedrive motor 130 rotates in the counterclockwise direction. When thedrive shaft 131 rotates in the counterclockwise direction, as described above, therotor 10 rotates at high speed in the clockwise direction around therotary shaft 122 as a center. - As long as the
rotor 10 rotates, theoscillating contact 151 a comes into contact with thestationary contact plate 105 a by the centrifugal force, and theoscillating contact 151 b continues contacting in the otherstationary contact plate 105 b, so that the high-speed rotation of therotor 10 is maintained. The user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair ofrotors string member 2. - In the electric yo-
yo toy 1, in a state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between thestring member 2 and theresistance plates 18. At the time of rise, the pair ofrotors rotors rotor 10 stops, the centrifugal force stops working on theoscillating contact 151, theoscillating contact 151 returns to the non-contact position apart from thecontact part 120 of thestationary contact plate 105 by the magnetic force of themagnet 165, and the driving of thedrive motor 130 stops. - When the electric yo-
yo toy 1 is pushed downward, the pair ofrotors string member 2 from therotary shaft 122. InFIG. 19 , when therotor 10 rotates in the counterclockwise direction, theoscillating contact 151 oscillates against the magnetic force of themagnet 165 by the inertia force, theoscillating contact 151 a positioned above comes into contact with the otherstationary contact plate 105 a, and theoscillating contact 151 b positioned below comes into contact with thestationary contact plate 105 a. - The current of the
cells electrode contact terminal 87 of thecells electrode contact terminal 85, theconductive band 36 of theother rotor 60, the conductive cylindrical body (outer conduction shaft) 121, theconductive band 36 of therotor 10, thestationary contact plate 105 a, theoscillating contact 151 b, theother contact piece 166 b, the terminal 130 b of thedrive motor 130, the terminal 130 a of thedrive motor 130, thecontact piece 166 a, theoscillating contact 151 a, the otherstationary contact plate 105 b, themetal tongue piece 30 of therotor 10, the fixing shaft (inner conduction shaft) 41, and themetal tongue piece 70 of theother rotor 60, and thedrive shaft 131 of thedrive motor 130 rotates in the clockwise direction. When thedrive shaft 131 rotates in the clockwise direction, as described above, therotor 10 rotates at high speed in the counterclockwise direction around therotary shaft 122 as a center. - As long as the
rotor 10 rotates, theoscillating contact 151 a comes into contact with the otherstationary contact plate 105 b by the centrifugal force, and theoscillating contact 151 b continues contacting thestationary contact plate 105 a, so that the high-speed rotation of therotor 10 is maintained. As described above, the user can develop various kinds of tricks with the electric yo-yo toy 1 since the pair ofrotors string member 2. - In the electric yo-
yo toy 1, in a state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between thestring member 2 and theresistance plates 18. At the time of rise, the pair ofrotors rotors rotor 10 stops, the centrifugal force stops working on theoscillating contact 151, theoscillating contact 151 returns to the non-contact position apart from thecontact part 120 of thestationary contact plate 105 by the magnetic force of themagnet 165, and the driving of thedrive motor 130 stops. - In the foregoing embodiment, the shape of the
external cover 22 of therotors drive motor 130. As shown inFIGS. 20( a)-20(h), by changing the shape of thedrive motor 130, the projection height of the shape of theexternal cover 22 from therotors rotors - As described above, with the electric yo-
yo toy 1, since therotors drive motor 130 internally stored, even young children and beginners can perform high-level tricks. Examples of the high-level tricks include “walk-the-dog trick”, “sleeper trick”, “rock the baby trick”, and “breakaway trick”. The high-level tricks are performed basically by making therotors rotors drive motor 130 as described above. After performing the above trick, the electric yo-yo toy 1 is pulled back to your hand, thereby finishing the trick. - In the electric yo-
yo toy 1, in a tension state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between thestring member 2 and theresistance plates 18. The operation of slightly pulling thestring member 2 upward to generate the frictional resistance between thestring member 2 and theresistance plate 18 is very difficult for young children and beginners. That is to say, thestring member 2 used for the electric yo-yo toy 1 has a slippery property. Even when thestring member 2 slides along theresistance plate 18, the frictional resistance does not easily occur. - In the electric yo-
yo toy 1 according to the present invention, as shown inFIGS. 21( a)-22(b), aflexible pipe 3 is slidably attached to thestring member 2. Preferably, theflexible pipe 3 is made of a material having elasticity, restorability, and flexibility such as soft synthetic resin, urethane, or rubber. With such a material, theflexible pipe 3 can follow thestring member 2 even when it is wound around therotary shaft 122 together with thestring member 2 or stretched. No adverse influence is exerted on the operation of the electric yo-yo toy 1. Theflexible pipe 3 is used by covering thestring member 2, slidable along thestring member 2, and can be held in a desired position to which theflexible pipe 3 slides by frictional resistance. - As shown in
FIGS. 21( a) and 22(a), in a tension state where the pair ofrotors string member 2, when theflexible pipe 3 slides to a position apart from the pair ofrotors flexible pipe 3 does not come into contact with theresistance plates rotors yo toy 1 back to his/her hand. - As shown in
FIGS. 21( b) and 22(b), in a tension state where the pair ofrotors string member 2, when theflexible pipe 3 slides to a position close to the pair ofrotors flexible pipe 3 can come into contact with theresistance plates rotors yo toy 1 back to his/her hand. In this case as well, in a tension state where the pair ofrotors string member 2, theflexible pipe 3 is positioned in a space between therotors rotors - In the electric yo-
yo toy 1, in a tension state where the pair ofrotors string member 2 while continuously rotating, when thestring member 2 is pulled slightly upward, thestring member 2 slackens and theflexible pipe 3 comes into contact with theresistance plates rotors rotors string member 2 by the frictional resistance between theflexible pipe 3 and theresistance plates 18. Since large frictional resistance occurs between theflexible pipe 3 and theresistance plates yo toy 1 back to his/her hand. Obviously, theflexible pipe 3 is not limited to the electric yo-yo toy but can be also used for string members of regular yo-yo toys. - As shown in
FIG. 23( a), theflexible pipe 3 is formed in a pipe shape having aninside diameter 4 a in which thestring member 2 can be inserted and anoutside diameter 4 b narrower than the space between the pair ofrotors string member 2, and can slide along thestring member 2 and can be held in a predetermined position by frictional resistance. When theflexible pipe 3 is formed shorter than the radius of therotors rotors FIG. 23( b), when theflexible pipe 3 is formed so that acut groove 5 which can be opened extends linearly in the axial direction, theflexible pipe 3 can be easily attached to thestring member 2 by opening thecut groove 5 without inserting thestring member 2. Theflexible pipe 3 can be easily attached to thestring member 2 already attached to the yo-yo 1. - The present invention can be used for an electric yo-yo toy having therein a drive motor.
-
- 1 electric yo-yo toy
- 2 string member
- 3 flexible pipe (rubber pipe)
- 4 a inside diameter
- 4 b outside diameter
- 5 cut groove
- 10 one of rotors
- 11 rotation case
- 12 side wall
- 12 a outside face
- 12 b inside face
- 13 curved wall
- 15 peripheral wall
- 16 opening
- 17 recess
- 18 resistance plate
- 19 bearing hole
- 21 attachment boss
- 22 external cover
- 23 projection
- 23 a screw hole
- 25 main shaft member
- 26 main shaft
- 27 attachment plate
- 27 a surface
- 28 through hole
- 29 insertion hole
- 30 metal tongue piece
- 31 fitting recess
- 32
insertion hole 32 - 33 guide recess
- 35 notch recess
- 36 conductive band
- 37 bent piece
- 40 conducting unit
- 41 fixing shaft (inner conduction shaft)
- 42 shaft part
- 43 flange part
- 45 screw
- 46 guide projection
- 47 projection
- 48 nut
- 50 motor attachment plate
- 50 a one of faces
- 50 b the other face
- 51 positioning tube
- 52 communication hole
- 53 motor attachment recess
- 55 opening
- 56 bearing hole
- 57 guide recess
- 58 screw
- 60 the other rotor
- 61 rotation case
- 62 side wall
- 62 a outside face
- 62 b inside face
- 63 curved wall
- 64 shaft cylindrical part
- 65 peripheral wall
- 66 bearing hole
- 67 recess
- 69 guide wall
- 70 metal tongue piece
- 72 insertion hole
- 73 attachment recess
- 75 attachment recess
- 76 attachment recess
- 77 attachment recess
- 81 cell (power supply)
- 82 cell (power supply)
- 85 contact terminal
- 86 contact terminal
- 87 contact terminal
- 90 external cover
- 91 opening
- 92 cover member
- 100 detecting device
- 101 metal sphere (rolling contact)
- 102 guide member
- 103 first stationary contact plate
- 105 second stationary contact plate
- 106 attachment plate
- 107 projection
- 108 shaft hole
- 109 guide wall
- 110 magnet attachment frame
- 111 screw
- 112 guide plate
- 113 bent piece
- 115 magnet
- 116 engagement recess
- 117 guide projection
- 118 guide projection
- 120 contact part
- 121 conductive cylindrical body (outer conduction shaft)
- 122 rotary shaft
- 123 string winding groove
- 124 driven gear
- 130 drive motor
- 130 a terminal
- 130 b terminal
- 131 drive shaft
- 132 drive gear
- 133 intermediate shaft
- 135 spur gear
- 136 pinion
- 140 gear mechanism
- 150 detecting device
- 151 oscillating contact
- 152 guide member
- 153 pivot
- 154 screw
- 156 attachment plate
- 157 shaft hole
- 160 magnet attachment frame
- 162 rear end
- 163 front part
- 165 magnet
- 166 contact piece
- 167 board
- 168 bent piece
Claims (9)
1. An electric yo-yo toy comprising:
a pair of rotors;
a main shaft provided between centers of the pair of rotors; and
a rotary shaft swingably provided for the main shaft and around which a string member is wound,
wherein one of the rotors is provided with a drive motor, a gear mechanism for transmitting rotation of the drive motor to the rotary shaft, and a detecting device for detecting rotation of the rotors,
the other rotor is provided with a power source, and
the main shaft is provided with a conducting unit that electrically connects the drive motor and the detecting device of one of the rotors and the power source of the other rotor.
2. The electric yo-yo toy according to claim 1 , wherein the conducting unit comprises
an inner conduction shaft provided on the inside of the main shaft and
an outer conduction shaft provided on the outside of the main shaft.
3. The electric yo-yo toy according to claim 2 , wherein the outer conduction shaft is formed in a cylindrical shape and provided on the outside of the main shaft, and
a rotary shaft is swingably provided for the outer conduction shaft.
4. The electric yo-yo toy according to claim 2 , wherein the inner conduction shaft is a fixing shaft which is inserted in the main shaft and which fixes the pair of rotors.
5. The electric yo-yo toy according to claim 1 , wherein the detecting device comprises:
a first stationary contact plate:
a second stationary contact plate provided apart from the first stationary contact plate;
a rolling contact that rolls between a contact position where it comes into contact with the first and second stationary contact plates almost simultaneously and a non-contact position where it does not come into contact with at least one of the first and second stationary contact plates; and
a magnet which holds the rolling contact in the non-contact position, and
the rolling contact rolls against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the first and second stationary contact plates almost simultaneously to drive the drive motor.
6. The electric yo-yo toy according to claim 5 , wherein the second stationary contact plates are provided on both sides of the first stationary contact plate,
when the rolling contact comes into contact with the first stationary contact plate and one of the second stationary contact plates, the drive motor drives in one direction, and when the rolling contact comes into contact with the first stationary contact plate and the other second stationary contact plate, the drive motor drives in the other direction.
7. The electric yo-yo toy according to claim 1 , wherein the detecting device comprises:
an oscillating contact whose one end is pivoted and capable of oscillating like a pendulum:
a stationary contact plate provided apart from the oscillating contact and coming into contact when the oscillating contact oscillates; and
a magnet which holds the oscillating contact in a position of non-contact with the stationary contact plate, and
the oscillating contact oscillates against magnetic force of the magnet by inertia force generated by rotation of the rotors and comes into contact with the stationary contact plate to drive the drive motor.
8. The electric yo-yo toy according to claim 7 , wherein the stationary contact plates are provided on both sides of the oscillating contact,
when the oscillating contact comes into contact with one of the stationary contact plates, the drive motor drives in one direction, and when the oscillating contact comes into contact with the other stationary contact plate, the drive motor drives in the other direction.
9. The electric yo-yo toy according to claim 1 , further comprising a pair of detecting devices is provided so as to face one of the rotors and, when both of the detecting devices detect rotation, the drive motor is driven.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/069865 WO2011064848A1 (en) | 2009-11-25 | 2009-11-25 | Electric yo-yo toy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120220186A1 true US20120220186A1 (en) | 2012-08-30 |
Family
ID=44065971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/057,262 Abandoned US20120220186A1 (en) | 2009-11-25 | 2009-11-25 | Electric yo-yo toy |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120220186A1 (en) |
JP (1) | JPWO2011064848A1 (en) |
CN (1) | CN102223931A (en) |
WO (1) | WO2011064848A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103933713A (en) * | 2014-05-07 | 2014-07-23 | 上海交通大学 | Planetary speed changing diabolo |
US9440157B1 (en) * | 2013-07-29 | 2016-09-13 | Guangdong Alpha Animation & Culture Co., Ltd. | Yoyo capable to be electrically accelerated when held by hands |
US9498730B2 (en) * | 2013-07-29 | 2016-11-22 | Guangdong Alpha Animation & Culture Co., Ltd. | Yoyo capable to be manually accelerated when held by hands |
GB2564160A (en) * | 2016-09-08 | 2019-01-09 | Van Dan Elzen Hans | Motorized yo-yo |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106621347A (en) * | 2016-11-10 | 2017-05-10 | 奥飞娱乐股份有限公司 | Electric acceleration yo-yo |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4913096U (en) * | 1972-05-08 | 1974-02-04 | ||
JPS6066389U (en) * | 1983-10-13 | 1985-05-11 | 野々垣 糺克 | Rotating toy with lighting device |
JPS6099987U (en) * | 1983-12-13 | 1985-07-08 | 株式会社学習研究社 | Flashing yo-yo |
JPS60106687U (en) * | 1983-12-26 | 1985-07-20 | 戸塚 弘道 | Yoyo with electronic music box |
JPH0746317Y2 (en) * | 1991-10-07 | 1995-10-25 | 株式会社バンダイ | Switch mechanism |
JP2005066167A (en) * | 2003-08-27 | 2005-03-17 | Takara Co Ltd | Yo-yo toy |
-
2009
- 2009-11-25 JP JP2010540967A patent/JPWO2011064848A1/en not_active Withdrawn
- 2009-11-25 CN CN200980143514XA patent/CN102223931A/en active Pending
- 2009-11-25 US US13/057,262 patent/US20120220186A1/en not_active Abandoned
- 2009-11-25 WO PCT/JP2009/069865 patent/WO2011064848A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9440157B1 (en) * | 2013-07-29 | 2016-09-13 | Guangdong Alpha Animation & Culture Co., Ltd. | Yoyo capable to be electrically accelerated when held by hands |
US9498730B2 (en) * | 2013-07-29 | 2016-11-22 | Guangdong Alpha Animation & Culture Co., Ltd. | Yoyo capable to be manually accelerated when held by hands |
CN103933713A (en) * | 2014-05-07 | 2014-07-23 | 上海交通大学 | Planetary speed changing diabolo |
GB2564160A (en) * | 2016-09-08 | 2019-01-09 | Van Dan Elzen Hans | Motorized yo-yo |
GB2564160B (en) * | 2016-09-08 | 2021-05-12 | Van Dan Elzen Hans | Motorized yo-yo |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011064848A1 (en) | 2013-04-11 |
WO2011064848A1 (en) | 2011-06-03 |
CN102223931A (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120220186A1 (en) | Electric yo-yo toy | |
US7381155B2 (en) | Wrist exerciser with auxiliary starting force | |
JPH06238066A (en) | Self propulsion bound ball | |
US11654320B2 (en) | System and method for exercise equipment hinge | |
EP3028753B1 (en) | Hand-held electrically-accelerated yo-yo | |
US11806570B2 (en) | Wrist exerciser and rotation mechanism thereof | |
US7018263B2 (en) | Electric toy top device with finger supported charging system | |
CN102039053A (en) | Artificial eyes | |
US20050048869A1 (en) | Toy yo-yo with selective enhanced rotation | |
KR20180014784A (en) | Devices for sexual stimulation | |
WO2024169291A1 (en) | Functional module and spinning top | |
CN219546414U (en) | Wire winding structure of chest expander and chest expander | |
CN218338970U (en) | Polyhedral toy | |
JP2011104286A (en) | Auxiliary device provided on yo-yo string | |
JP3203624U (en) | Power ball that can generate electricity | |
KR101650492B1 (en) | Direct current generator | |
KR101577379B1 (en) | let the battery charge with the development of eco-friendly, without the need for radio controlled toys | |
CN111867697B (en) | Bouncing device and bouncing rotary toy | |
CN214130062U (en) | Skipping rope handle and skipping rope | |
US11904197B2 (en) | Upper limbs training device and housing thereof | |
CN217091901U (en) | Direct-drive type electric rope skipping device with outer rotor motor | |
CN221713558U (en) | Toy | |
CN215818528U (en) | Earphone charging box is inhaled to magnetism | |
GB2618842A (en) | Upper limbs training device and housing thereof | |
TW200948447A (en) | Electric top |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |