US20120179941A1 - System and Method For Power Outage and Restoration Notification in an Advanced Metering Infrastructure Network - Google Patents
System and Method For Power Outage and Restoration Notification in an Advanced Metering Infrastructure Network Download PDFInfo
- Publication number
- US20120179941A1 US20120179941A1 US13/423,160 US201213423160A US2012179941A1 US 20120179941 A1 US20120179941 A1 US 20120179941A1 US 201213423160 A US201213423160 A US 201213423160A US 2012179941 A1 US2012179941 A1 US 2012179941A1
- Authority
- US
- United States
- Prior art keywords
- meter
- notification message
- mesh
- neighboring
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
- G01D4/002—Remote reading of utility meters
- G01D4/004—Remote reading of utility meters to a fixed location
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/22—Alternate routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2204/00—Indexing scheme relating to details of tariff-metering apparatus
- G01D2204/40—Networks; Topology
- G01D2204/45—Utility meters networked together within a single building
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/30—Smart metering, e.g. specially adapted for remote reading
Definitions
- This invention pertains generally to methods and systems for providing power outage and restoration notifications within an Advanced Metering Infrastructure (AMI) network.
- AMI Advanced Metering Infrastructure
- a mesh network is a wireless network configured to route data between nodes within a network. It allows for continuous connections and reconfigurations around broken or blocked paths by retransmitting messages from node to node until a destination is reached.
- Mesh networks differ from other networks in that the component parts can all connect to each other via multiple hops. Thus, mesh networks are self-healing: the network remains operational when a node or a connection fails.
- Advanced Metering Infrastructure or Advanced Metering Management
- AMI Advanced Metering Infrastructure
- AMM Advanced Metering Management
- This infrastructure includes hardware, software, communications, customer associated systems and meter data management software.
- the infrastructure allows collection and distribution of information to customers, suppliers, utility companies and service providers. This enables these businesses to either participate in, or provide, demand response solutions, products and services.
- Customers may alter energy usage patterns from normal consumption patterns in response to demand pricing. This improves system load and reliability.
- a meter may be installed on a power line, gas line, or water line and wired into a power grid for power. During an outage, the meter may cease to function. When power is restored, meter functionality may be restored.
- a method and system provide power outage and restoration notifications within an AMI network.
- Mesh networks are used to connect meters of an AMI in a geographical area. Each meter may communicate with its neighbors via the mesh network.
- a mesh gate links the mesh network to a server over a wide area network (WAN).
- WAN wide area network
- leaf meters transmit outage messages first. Parent meters add a parent identifier before forwarding the outage messages. This reduces the number of transmitted outage messages within the mesh network.
- restoration messages are transmitted from the leaf nodes first, while parent nodes piggy-back parent identifiers when forwarding the restoration messages from the leaf meters.
- a method of transmitting a meter power status including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter; and retransmitting the notification message.
- a method of transmitting a network power status including: receiving at least one notification message from a meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- a system for transmitting a network power status including: (A) a mesh network; (B) a wide area network separate from the mesh network; (C) at least one meter in communication with the mesh network, the meter configured to: recognize a power status change at a meter, if the meter is scheduled to transmit first, transmit a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier, if the meter is not scheduled to transmit first, wait a predetermined time period to receive a notification message from at least one neighboring meter, responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, and retransmitting the notification message; (D) a mesh gate in communication with the meter over the mesh network and in communication with the wide area network, the mesh gate configured to: receive at least one notification message from a meter, where
- a system for transmitting a network power status including: a mesh network; a wide area network separate from the mesh network; at least one meter in communication with the mesh network; a mesh gate in communication with the meter over the mesh network and in communication with the wide area network; and a server in communication with the mesh gate over the wide area network, the server configured to receive the composite notification message.
- a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a meter power status, the method including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter; and retransmitting the notification message.
- a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a network power status, including: receiving at least one notification message from a meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- a method of transmitting a meter power status including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message from the meter to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a meter power status, the method including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message from the meter to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite
- FIG. 1 illustrates an example system for providing AMI communications over a mesh network.
- FIG. 2A illustrates an example meter for use within a mesh network.
- FIG. 2B illustrates an example mesh gate for use within a mesh network.
- FIG. 3 illustrates an example network stack for use within a mesh radio.
- FIG. 4A illustrates an example procedure for transmitting outage and restoration notifications from a meter within a mesh network.
- FIG. 4B illustrates an example procedure for transmitting outage and restoration notifications from a mesh gate within a wide area network.
- FIG. 5A illustrates a first timing of transmitting outage notifications from a meter within a mesh network.
- FIG. 5B illustrates a second timing of transmitting outage notifications from a meter within a mesh network.
- FIG. 5C illustrates a third timing of transmitting outage notifications from a meter within a mesh network.
- FIG. 6 illustrates a timing of transmitting restoration notifications from a meter within a mesh network.
- FIG. 1 illustrates an example system for providing AMI communications over a mesh network.
- a mesh network A 100 may include a mesh gate A 102 and a plurality of meters: meters A 104 , B 106 , C 108 , D 110 , E 112 , and F 114 .
- a mesh gate may also be referred to as a NAN-WAN gate or an access point.
- the mesh gate A 102 may communicate to a server 118 over a wide area network 116 .
- a mesh gate B 120 and a mesh network B 122 may also communicate with the server 118 over the wide area network (WAN) 116 .
- WAN wide area network
- a mesh gate C 124 and a mesh network C 126 may also communicate with the server 118 over the wide area network 116 .
- the server 118 is known as a “head end.”
- the mesh gate may also be known as a collector, a concentrator, or an access point.
- a mesh device association can include a registration for application service at the mesh gate A 102 or the server 118 .
- the mesh gate A 102 and the server 118 can maintain a table of available applications and services and requesting mesh devices.
- the mesh network A 100 may include a plurality of mesh gates and meters which cover a geographical area.
- the meters may be part of an AMI system and communicate with the mesh gates over the mesh network.
- the AMI system may monitor utilities usage, such as gas, water, or electricity usage and usage patterns.
- the mesh gate A 102 may provide a gateway between the mesh network A 100 and a server, discussed below.
- the mesh gate A 102 may include a mesh radio to communicate with the mesh network A 100 and a WAN communication interface to communicate with a WAN.
- the mesh gate A 102 may aggregate information from meters within the mesh network A 100 and transmit the information to the server.
- the mesh gate A 102 may be as depicted below. It will be appreciated that while only one mesh gate is depicted in the mesh network A 100 , any number of mesh gates may be deployed within the mesh network A 100 , for example, to improve transmission bandwidth to the server and provide redundancy.
- a typical system will include a plurality of mesh gates within the mesh network. In a non-limiting embodiment for an urban or metropolitan geographical area, there may be between 1 and 100 mesh gates, though this is not a limitation of the invention.
- each mesh gate supports approximately 400 meters, depending on system requirements, wireless reception conditions, available bandwidth, and other considerations. It will be appreciated that it is preferable to limit meter usage of bandwidth to allow for future upgrades.
- the meters A 104 , B 106 , C 108 , D 110 , E 112 , and F 114 may each be a mesh device, such as a meter depicted below.
- the meters may be associated with the mesh network A 100 through direct or indirect communications with the mesh gate A 102 .
- Each meter may forward or relay transmissions from other meters within the mesh network A 100 towards the mesh gate A. It will be appreciated that while only six meters are depicted in the mesh network A 100 , any number of meters may be deployed to cover any number of utility lines or locations.
- meters A 104 and D 110 are in direct communications with mesh gate A 102 .
- meters B 106 , E 112 and F 114 can all reach mesh gate A 102 through meter D 110 .
- meter C 108 can reach mesh gate A 102 through meter E 112 and meter D 110 .
- the wide area network (WAN) 116 may be any communication medium capable of transmitting digital information.
- the WAN 116 may be the Internet, a cellular network, a private network, a phone line configured to carry a dial-up connection, or any other network.
- the server 118 may be a computing device configured to receive information from a plurality of mesh networks and meters.
- the server 118 may also be configured to transmit instructions to the mesh networks, mesh gates, and meters.
- servers may be distributed by geographical location. Redundant servers may provide backup and failover capabilities in the AMI system.
- the optional mesh gates B 120 and C 124 may be similar to mesh gate A 102 , discussed above. Each mesh gate may be associated with a mesh network. For example, mesh gate B 120 may be associated with mesh network B 122 and mesh gate C 124 may be associated with mesh network C 126 .
- the mesh network B 122 and the mesh network C 126 may be similar to the mesh network A 102 .
- Each mesh network may include a plurality of meters (not depicted).
- Each mesh network may cover a geographical area, such as a premise, a residential building, an apartment building, or a residential block.
- the mesh network may include a utilities network and be configured to measure utilities flow at each sensor.
- Each mesh gate communicates with the server over the WAN, and thus the server may receive information from and control a large number of meters or mesh devices.
- Mesh devices may be located wherever they are needed, without the necessity of providing wired communications with the server.
- FIG. 2A illustrates an example meter for use within a mesh network.
- a meter 200 may include a radio 202 , a communication card 204 , a metering sensor 206 , and a battery or other power or energy storage device or source 208 .
- the radio 202 may include a memory 210 , a processor 212 , a transceiver 214 , and a microcontroller unit (MCU) 216 or other processor or processing logic.
- MCU microcontroller unit
- a mesh device can be any device configured to participate as a node within a mesh network.
- An example mesh device is a mesh repeater, which can be a wired device configured to retransmit received mesh transmissions. This extends a range of a mesh network and provides mesh network functionality to mesh devices that enter sleep cycles.
- the meter 200 may be a mesh device communicating with a mesh gate and other mesh devices over a mesh network.
- the meter 200 may be a gas, water or electricity meter installed in a residential building or other location to monitor utilities usage.
- the meter 200 may also control access to utilities on server instructions, for example, by reducing the flow of gas, water or electricity.
- the radio 202 may be a mesh radio configured to communicate with a mesh network.
- the radio 202 may transmit, receive, and forward messages to the mesh network. Any meter within the mesh network may thus communicate with any other meter or mesh gate by communicating with its neighbor and requesting a message be forwarded.
- the communication card 204 may interface between the radio 202 and the sensor 206 . Sensor readings may be converted to radio signals for transmission over the radio 202 .
- the communication card 204 may include encryption/decryption or other security functions to protect the transmission.
- the communication card 204 may decode instructions received from the server.
- the metering sensor 206 may be a gas, water, or electricity meter sensor, or another sensor.
- digital flow sensors may be used to measure a quantity of utilities consumed within a residence or building.
- the sensor 206 may be an electricity meter configured to measure a quantity of electricity flowing over a power line.
- the battery 208 may be configured to independently power the meter 200 during a power outage.
- the battery 208 may be a large capacitor storing electricity to power the meter 200 for at least five minutes after a power outage.
- Small compact but high capacity capacitors known as super capacitors are known in the art and may advantageously be used.
- One exemplary super capacitor is the SESSCAP 50f 2.7v 18 ⁇ 30 mm capacitor.
- Alternative battery technologies may be used, for example, galvanic cells, electrolytic cells, fuel cells, flow cells, and voltaic cells.
- radio 202 may be modular and configured for easy removal and replacement. This facilitates component upgrading over a lifetime of the meter 200 .
- the memory 210 of the radio 202 may store instructions and run-time variables of the radio 202 .
- the memory 210 may include both volatile and non-volatile memory.
- the memory 210 may also store a history of sensor readings from the metering sensor 206 and an incoming queue of server instructions.
- the processor 212 of the radio 202 may execute instructions, for example, stored in memory 210 .
- Instructions stored in memory 210 may be ordinary instructions, for example, provided at time of meter installation, or special instructions received from the server during run time.
- the transceiver 214 of the radio 202 may transmit and receive wireless signals to a mesh network.
- the transceiver 214 may be configured to transmit sensor readings and status updates under control of the processor 212 .
- the transceiver 214 may receive server instructions from a server, which are communicated to the memory 210 and the processor 212 .
- the MCU 216 can execute firmware or software required by the meter 200 .
- the firmware or software can be installed at manufacture or via a mesh network over the radio 202 .
- any number of MCUs can exist in the meter 200 .
- two MCUs can be installed, a first MCU for executing firmware handling communication protocols, and a second MCU for handling applications.
- a mesh device and a mesh gate can share the architecture of meter 200 .
- the radio 202 and the MCU 216 provide the necessary hardware, and the MCU 216 executes any necessary firmware or software.
- Meters may be located in geographically dispersed locations within an AMI system. For example, a meter may be located near a gas line, an electric line, or a water line entering a building or premise to monitor a quantity of gas, electricity, or water. The meter may communicate with other meters and mesh gates through a mesh network. The meter may transmit meter readings and receive instructions via the mesh network.
- FIG. 2B illustrates an example mesh gate for use within a mesh network.
- the mesh gate 230 may include a mesh radio 232 , a wide area network interface 234 , a battery 236 , and a processor 238 .
- the mesh radio 232 may include a memory 242 , a processor 244 , and a transceiver 246 .
- the mesh gate 230 may interface between mesh devices (for example, meters) in a mesh network and a server.
- mesh devices for example, meters
- meters may be as discussed above.
- the mesh gate 230 may be installed in a central location relative to the meters and also communicate with a server over a WAN.
- the mesh radio 232 may be a mesh radio configured to communicate with meters over a mesh network.
- the radio 232 may transmit, receive, and forward messages to the mesh network.
- the WAN interface 234 may communicate with a server over a WAN.
- the WAN may be a cellular network, a private network, a dial up connection, or any other network.
- the WAN interface 234 may include encryption/decryption or other security functions to protect data being transmitted to and from the server.
- the battery 236 may be configured to independently power the mesh gate 230 during a power outage.
- the battery 236 may be a large capacitor storing electricity to power the mesh gate 230 for at least five minutes after a power outage.
- a power outage notification process may be activated during a power outage.
- the processor 238 may control the mesh radio 232 and the WAN interface 234 .
- Meter information received from the meters over the mesh radio 232 may be compiled into composite messages for forwarding to the server.
- Server instructions may be received from the WAN interface 234 and forwarded to meters in the mesh network.
- the mesh radio 232 , WAN interface 234 , battery 236 , and processor 238 may be modular and configured for easy removal and replacement. This facilitates component upgrading over a lifetime of the mesh gate 230 .
- the memory 242 of the mesh radio 232 may store instructions and run-time variables of the mesh radio 232 .
- the memory 242 may include both volatile and non-volatile memory.
- the memory 242 may also store a history of meter communications and a queue of incoming server instructions.
- meter communications may include past sensor readings and status updates.
- the processor 244 of the mesh radio 232 may execute instructions, for example, stored in memory 242 .
- Instructions stored in memory 242 may be ordinary instructions, for example, provided at time of mesh gate installation, or special instructions received from the server during run-time.
- the transceiver 246 of the mesh radio 232 may transmit and receive wireless signals to a mesh network.
- the transceiver 246 may be configured to receive sensor readings and status updates from a plurality of meters in the mesh network.
- the transceiver 246 may also receive server instructions, which are communicated to the memory 242 and the processor 244 .
- a mesh gate may interface between a mesh network and a server.
- the mesh gate may communicate with meters in the mesh network and communicate with the server over a WAN network.
- the mesh gate forwards information and instructions between the meters in its mesh network and the server.
- FIG. 3 illustrates an example network stack for use within a mesh radio.
- a radio 300 may interface with an application process 302 .
- the application process 302 may communicate with an application layer 304 , which communicates with a transport layer 306 , a network layer 308 , a data link layer 310 and a physical layer 312 .
- the radio 300 may be a mesh radio as discussed above.
- the radio 300 may be a component in a meter, a mesh gate, or any other mesh device configured to participate in a mesh network.
- the radio 300 may be configured to transmit wireless signals over a predetermined frequency to other radios.
- the application process 302 may be an executing application that requires information to be communicated over the network stack.
- the application process 302 may be software supporting an AMI system.
- the application layer 304 interfaces directly with and performs common application services for application processes. Functionality includes semantic conversion between associated application processes.
- the application layer 304 may be implemented as ANSI C12.12/22.
- the transport layer 306 responds to service requests from the application layer 304 and issues service requests to the network layer 308 . It delivers data to the appropriate application on the host computers.
- the layer 306 may be implemented as TCP (Transmission Control Protocol), and UDP (User Datagram Protocol).
- the network layer 308 is responsible for end to end (source to destination) packet delivery.
- the functionality of the layer 308 includes transferring variable length data sequences from a source to a destination via one or more networks while maintaining the quality of service, and error control functions. Data will be transmitted from its source to its destination, even if the transmission path involves multiple hops.
- the data link layer 310 transfers data between adjacent network nodes in a network, wherein the data is in the form of packets.
- the layer 310 provides functionality including transferring data between network entities and error correction/detection.
- the layer 310 may be implemented as IEEE 802.15.4.
- the physical layer 312 may be the most basic network layer, transmitting bits over a data link connecting network nodes. No packet headers or trailers are included.
- the bit stream may be grouped into code words or symbols and converted to a physical signal, which is transmitted over a transmission medium, such as radio waves.
- the physical layer 312 provides an electrical, mechanical, and procedural interface to the transmission medium.
- the layer 312 may be implemented as IEEE 802.15.4.
- the network stack provides different levels of abstraction for programmers within an AMI system. Abstraction reduces a concept to only information which is relevant for a particular purpose. Thus, each level of the network stack may assume the functionality below it on the stack is implemented. This facilitates programming features and functionality for the AMI system.
- FIG. 4A illustrates an example procedure for transmitting outage and restoration notifications from a meter within a mesh network.
- a mesh device such as a meter, may include a sensor for measuring utilities and receive power from a power grid. At times, the power grid may fail during a power outage. The power grid may also be restored after an outage.
- the meter may include a battery configured to power the meter for a period of time, during which the meter executes a power outage notification procedure to inform a mesh gate and a server of the power outage. Similarly, the meter may execute a power restoration notification when functionality is restored after power is restored to the power grid.
- the meter may detect a power status change.
- the meter may include an electric sensor sensing a power, current, or voltage of an electric line powering the meter from a power grid.
- the sensor may wait a predetermined recognition period before determining that a power outage has occurred.
- the meter may also wait a predetermined recognition period before determining that the power outage has ended and power has been restored. Using a recognition period before an outage or a restoration has occurred prevents the meter from trigging the notification procedure for brief outages and restorations.
- the meter tests whether it is the first to transmit.
- the meter may look up a neighborhood table to determine whether it is a leaf meter.
- a leaf meter may have no children meters, and is thus the last meter on its associated branch.
- FIG. 1 depicts meters A 104 , B 106 , C 108 , and F 114 as leaf meters.
- Meter F 114 is a leaf meter because no child meter would transmit through it to reach mesh gate A 102 , even though meter F 114 has two alternate paths to the mesh gate A 102 (F 114 to E 112 to D 110 to mesh gate or F 114 to D 110 to mesh gate).
- a one-hop device which can be a device in direct communications with the mesh gate, may transmit immediately.
- the meter may look up the neighborhood table to determine a number of hops to the mesh gate. If it is farthest from the mesh gate on its branch, it will transmit first. If the meter determines yes, the meter proceeds to 404 . If no, the meter proceeds to 410 .
- the neighborhood table can be built during association requests and subsequent neighbor exchanges.
- the meter may transmit a notification message.
- the notification message may include a nature of the notification (whether a power outage or restoration has occurred, as determined in 400 ) and a meter identifier.
- the meter identifier may be a globally unique identifier assigned to the meter at manufacture or installation that identifies the meter to the mesh gate and the server.
- the meter may attempt a retry transmission. Retries may be attempted until an acknowledgement is received or a predetermined number of retry attempts has been exceeded.
- Information transmitted in the transmission may include a device identifier, a time of outage, and any other necessary information.
- a number of transmitted neighbor information may be restricted. For example, only a predetermined maximum number of parents, siblings, and children node information can be transmitted to limit message size.
- Neighbors can be selected based on a preferred route ratio. Neighbors that are on a preferred route of a meter's path to the mesh gate may be prioritized. The preferred route ratio can be used to select routes with a minimum of hops over a best minimum signal quality link to the mesh gate.
- the meter may test whether it has exceeded a predetermined retry attempts.
- the meter may increment a counter for a number of retries after every attempt to transmit a notification message in 404 .
- the predetermined retry attempts may be set to limit network congestion, both within the mesh network and over a WAN from a mesh gate to the server during a power outage and restoration.
- the meter may continually attempt to transmit until its battery is drained during a power outage notification procedure. This may be used in an AMI system where it is important to receive as many accurate outage notifications as possible, or where network bandwidth is of lesser concern. If the predetermined retry attempts have been exceed, the procedure ends. If no, the meter procedures to 408 .
- the meter optionally delays a random time period.
- the delay may allow other meters in the mesh network to transmit and reduce collisions. Further, the delay may improve battery life after a power outage.
- the random time period may be associated with a predetermined floor value, below which it cannot be set. This may be an exclusion period during which no retransmission may be attempted by the meter.
- the meter tests whether a child message has been received. For example, a non-leaf meter will not transmit during a first attempt, and may receive notification messages from child meters. If yes, the meter proceeds to 412 . If no, the meter proceeds to 404 . In one embodiment, if the meter determines it has missed the child messages, it may immediately transmit its message.
- the meter may insert a meter identifier in the notification message.
- the notification message received from the child meter in 410 may include a status (whether the notification is for a power outage or restoration) and at least one meter identifier associated with children meters.
- the meter may insert its own identifier into the message before forwarding the message in 404 .
- leaf meters transmit notification messages first. Each meter waits to receive a notification message from children meters before adding its identifier and forwarding the notification to its parent meter. This reduces message congestion in the mesh network during a notification procedure.
- each parent meter may determine how many children meters it has, and wait for notification messages from all children meters before compiling the messages into one message to be forwarded.
- the parent meter may wait for a predetermined period of time, because only some children meters may be affected by a power outage.
- a meter has not suffered a power outage, it would simply forward any received notification messages to its parent without adding its identifier into the message. Similarly, if a parent meter has not had a power restoration; it will remain off and be unable to forward notification messages. In this example, children meters may attempt alternative routes to transmit notification messages, as discussed below.
- FIG. 4B illustrates an example procedure for transmitting outage and restoration notifications from a mesh gate within a wide area network.
- a mesh gate and its associated mesh devices such as meters, may receive power from a power grid. At times, the power grid may fail during a power outage. The power grid may also be restored after an outage.
- the mesh gate may include a battery configured to power the mesh gate for a period of time, during which the mesh gate executes a power outage notification procedure to inform a server of the outage and affected meters. Similarly, the mesh gate may execute a power restoration notification when power is restored to the power grid.
- the mesh gate may receive a notification message from a meter within its mesh network.
- the notification message may include a status indicating whether it is an outage or restoration notification and at least one meter identifier.
- the notification message may be as discussed above.
- the mesh gate may test whether it has finished receiving notification messages from the mesh network. For example, the mesh gate may continually receive notification messages until its battery drops to a critical level during an outage. The critical level may be set to where enough power remains in the battery to allow the mesh gate to transmit its composite notification message to the server, as discussed below, along with a predetermined number of retries.
- the mesh gate may wait for a predetermined time period after receiving a first notification message.
- the predetermined time period may be determined, in part, based on the size of the mesh network, the maximum number of hops to reach a leaf meter, the link quality of the mesh network, etc.
- the mesh gate may proceed as soon as message notifications from all children meters within the mesh network have been received. If all children meters are accounted for, the mesh gate does not need to wait for further notification messages.
- the mesh gate may proceed to 454 . If no, it may proceed to 450 to await more notification messages.
- the mesh gate may select a power reporting configuration.
- a power reporting configuration For example, two power reporting configurations may be available: one used for minor outage, such as one affecting only a few meters, and one used for major outages, such as one affecting many meters.
- the power reporting configuration may affect the retry attempts and delay periods discussed below.
- a high number of retry attempts may be set. It may be likely that a major outage has affected other mesh networks. Thus, a longer delay period may be used to reduce transmission collisions over the WAN. In addition, a longer window may be set to wait for notification messages from meters.
- the mesh gate may aggregate all the notification messages into a composite notification message.
- the mesh gate may create the composite notification message containing a status indicating whether an outage or restoration has occurred in the mesh network and a list of meter identifiers associated with the notification.
- the list of meter identifiers may be received in 452 from one or more meters.
- the mesh gate may receive both an outage and a restoration notification message.
- the mesh gate may aggregate a first notification message, for example, all received outage notification messages, for transmission. Then, the mesh gate may aggregate a second notification message, for example, the restoration notification message for transmission.
- the mesh gate may transmit the composite notification message to the server over a WAN.
- the WAN may be a cellular network, a wired network, or another network configured to carry information.
- the WAN used to transmit the composite notification message may be a secondary communications medium.
- a primary wired network may fail during a power outage, and therefore a backup network may be used.
- the backup network may be a battery-powered network, cellular network, a battery-powered wired network, or another network configured to operate during an outage.
- the mesh gate may attempt a retry transmission. Retries may be attempted until an acknowledgement is received or a predetermined number of retry attempts has been exceeded.
- the mesh gate may test whether a predetermined number of retry attempts has been exceeded.
- the mesh gate may increment a counter for a number of retries after every attempt to transmit a notification message in 458 .
- the predetermined retry attempts may be set to limit network congestion over the WAN to the server during a power outage and restoration.
- the mesh gate may continually attempt to transmit until its battery is drained during a power outage notification procedure. This may be used in an AMI system where it is important to receive as many accurate outage notifications as possible, or where network bandwidth is of lesser concern.
- the predetermined number of retry attempts may be set in part based on the power reporting configuration selected in 454 . If the predetermined number of retry attempts has been exceeded, the mesh gate may end the procedure. If no, the mesh gate may proceed to 462 .
- the mesh gate may optionally delay a random time period. For example, the delay may allow other mesh gates in the WAN to transmit and reduce collisions. Further, the delay may improve battery life after a power outage.
- the delay period may be set in part based on the power reporting configuration selected in 454 .
- the random time period may be associated with a floor value, below which it cannot be set. This may be an exclusion period during which no retransmission may be attempted.
- the mesh gate may aggregate all notification messages sent to it by meters over the mesh network.
- the composite notification message consists of a power status and a list of meter identifiers identifying the meters affected by the power status.
- the composite notification message may be transmitted over an outage-resistant communications link to a server.
- FIG. 5A illustrates a first timing of transmitting outage notifications from a meter within a mesh network.
- a power outage notification process allows orderly transmission of power outage notification from one or more mesh devices (such as a meter) in a mesh network to a mesh gate.
- the mesh gate aggregates the notifications and transmits a composite message to a server. Because the mesh network may include a large number of meters, transmitting individual notifications from each meter may cause network congestion, especially because other meters within the mesh network are also likely affected by the same outage and will also be sending outage notifications.
- a recognition period (e.g., RECOGNITION_PERIOD) may elapse between an occurrence of a power outage and time T 1 , when the power outage is recognized by the meter.
- the recognition period may prevent minor power fluctuations or outages from triggering the outage notification procedure.
- FIG. 5B illustrates a second timing of transmitting outage notifications from a meter within a mesh network.
- the meter may wait for a first random period before a first attempt to send a power outage notification at time T 2 .
- a first attempt wait period (e.g., PO_RND_PERIOD) may represent a maximum random delay in seconds used before the first attempt. This random delay starts after recognition period (RECOGNITION_PERIOD) elapses at time T 1 .
- the first attempt is reserved for leaf meters. A meter which is not a leaf meter will not transmit during the first attempt.
- the meter may wait for a retry random period before a retry attempt at time T 3 .
- a retry wait period (e.g., PO_RETRY_RND_PERIOD) may represent a maximum random delay in seconds used for each retry. This random delay starts after time T 2 , when a first transmission attempt occurs.
- Using a random delay before the first and retry attempts prevents colliding transmission from multiple meters and reduces network congestion. If a meter attempts to transmit but a transmission is already in progress, the meter may wait for the transmission in progress to end before attempting to transmit.
- a meter receives a notification from a child meter, its transmission includes the child's notification plus the meter's identifier.
- the number of individual notifications and messages are reduced in the mesh network.
- the meter may continually retry to transmit an outage notification until the meter's battery is drained.
- there may be a predetermined maximum number retries.
- there may be a minimum period for the first delay and the subsequent retry delays. The minimum delay periods may eliminate the possibility of immediate retransmissions and guarantee a minimum delay between attempts.
- the mesh gate may receive all the power outage notification messages and compile the information into a message for transmission to a server over a WAN.
- the mesh gate may also retransmit the compiled notification as necessary, until its battery is drained.
- Child meters in a mesh network transmit outage notifications first, and parent meters piggy-back meter identifiers into the child notifications before forwarding the child notifications. A number of messages and notifications transmitted in the mesh network during an outage are thereby reduced.
- FIG. 6 illustrates a timing of transmitting restoration notifications from a meter within a mesh network.
- a power restoration notification process allows orderly transmission of power restoration notification messages from one or more mesh devices (such as a meter) in a mesh network to a mesh gate.
- the mesh gate aggregates the notifications and transmits a composite message to a server. Because the mesh network may include a large number of meters, transmitting individual notifications from each meter may cause network congestion, especially because other meters within the mesh network are also likely affected by the restoration and will also be sending restoration notifications.
- the meter may first wait for a recognition period before deciding the power has been restored.
- the recognition period may prevent triggering restoration notifications when power returns for a brief moment before the outage continues.
- a first random period, PR_RND_PERIOD may represent a maximum random delay used before a first attempt is made to send a power restoration notification. This first random period may begin after the power restored recognition period, PR_RECOGNITION_PERIOD. A first notification may be transmitted. Only leaf meters transmit during the first attempt.
- a retry random period, PR_RETRY_RND_PERIOD may represent a maximum random delay before a retry to send a power restoration notification.
- the retry random period begins after the first random period.
- Using a random delay before the first and retry attempts reduces colliding transmission from multiple meters. If a meter attempts to transmit but a transmission is already in progress, the meter may wait for the transmission to end before attempting to transmit.
- the mesh gate may wait a minimum delay (e.g., MIN_DELAY) to time T 4 and an additional random period (e.g., RAND_PERIOD) to time T 5 before retrying transmission.
- a minimum delay e.g., MIN_DELAY
- RAND_PERIOD additional random period
- Each retry attempt may be preceded by a retry random period (e.g., RETRY_RND_PERIOD) to time T 6 , and a maximum number of retry attempts may be set at maximum retries (e.g., MAX_RETRIES).
- the procedure may stop at time T 7 , after all retry attempts have been made.
- a meter receives a notification from a child meter, its transmission includes the child's notification plus the meter's identifier.
- the number of individual notifications and messages are reduced in the mesh network.
- the mesh gate may receive all power restoration notification messages and compile the information into a composite message for transmission to a server over a WAN. Similarly, the mesh gate may also repeatedly attempt to transmit the composite restoration message until a maximum number of retries have been made or the server acknowledges the transmission.
- Child meters in a mesh network transmit restoration notifications first, and parent meters piggy-back meter identifiers into the child notifications before forwarding the child notifications. A number of messages and notifications transmitted in the mesh network during a restoration are thereby reduced.
- a child meter attempts to forward a message to a parent meter that is not functional (for example, the parent meter's power has not been restored); the child meter may wait a predetermined period of time. If the parent meter remains non-functional, the child meter may attempt to send its notification via an alternative path through the mesh network stored in its memory. If that fails, the child meter may attempt to discover a new route through the mesh network to the mesh gate. If that fails, the child meter may attempt to associate with a new mesh network in order to transmit its restoration notification message.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephonic Communication Services (AREA)
- Selective Calling Equipment (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
- This application is a continuation of U.S. application Ser. No. 12/275,254, filed Nov. 21, 2008, and claims the benefit of priority to the following United States provisional patent applications which are incorporated herein by reference in their entirety:
-
- Ser. No. 60/989,957 entitled “Point-to-Point Communication within a Mesh Network”, filed Nov. 25, 2007 (Attorney Docket No. TR0004-PRO);
- Ser. No. 60/989,967 entitled “Efficient And Compact Transport Layer And Model For An Advanced Metering Infrastructure (AMI) Network,” filed Nov. 25, 2007 (Attorney Docket No. TR0003-PRO);
- Ser. No. 60/989,958 entitled “Creating And Managing A Mesh Network Including Network Association,” filed Nov. 25, 2007 (Attorney Docket No. TR0005-PRO);
- Ser. No. 60/989,964 entitled “Route Optimization Within A Mesh Network,” filed Nov. 25, 2007 (Attorney Docket No. TR0007-PRO);
- Ser. No. 60/989,950 entitled “Application Layer Device Agnostic Collector Utilizing ANSI C12.22,” filed Nov. 25, 2007 (TR0009-PRO);
- Ser. No. 60/989,953 entitled “System And Method For Real Time Event Report Generation Between Nodes And Head End Server In A Meter Reading Network Including From Smart And Dumb Meters,” filed Nov. 25, 2007 (Attorney Docket No. TR0010-PRO);
- Ser. No. 60/989,956 entitled “System and Method for False Alert Filtering of Event Messages Within a Network”, filed Nov. 25, 2007 (Attorney Docket No. TR0011-PRO);
- Ser. No. 60/989,975 entitled “System and Method for Network (Mesh) Layer And Application Layer Architecture And Processes,” filed Nov. 25, 2007 (Attorney Docket No. TR0014-PRO);
- Ser. No. 60/989,959 entitled “Tree Routing Within a Mesh Network,” filed Nov. 25, 2007 (Attorney Docket No. TR0017-PRO);
- Ser. No. 60/989,961 entitled “Source Routing Within a Mesh Network,” filed Nov. 25, 2007 (Attorney Docket No. TR0019-PRO);
- Ser. No. 60/989,962 entitled “Creating and Managing a Mesh Network,” filed Nov. 25, 2007 (Attorney Docket No. TR0020-PRO);
- Ser. No. 60/989,951 entitled “Network Node And Collector Architecture For Communicating Data And Method Of Communications,” filed Nov. 25, 2007 (Attorney Docket No. TR0021-PRO);
- Ser. No. 60/989,955 entitled “System And Method For Recovering From Head End Data Loss And Data Collector Failure In An Automated Meter Reading Infrastructure,” filed Nov. 25, 2007 (Attorney Docket No. TR0022-PRO);
- Ser. No. 60/989,952 entitled “System And Method For Assigning Checkpoints To A Plurality Of Network Nodes In Communication With A Device Agnostic Data Collector,” filed Nov. 25, 2007 (Attorney Docket No. TR0023-PRO);
- Ser. No. 60/989,954 entitled “System And Method For Synchronizing Data In An Automated Meter Reading Infrastructure,” filed Nov. 25, 2007 (Attorney Docket No. TR0024-PRO);
- Ser. No. 61/025,285 entitled “Outage and Restoration Notification within a Mesh Network”, filed Jan. 31, 2008 (Attorney Docket No. TR0026-PRO);
- Ser. No. 60/992,312 entitled “Mesh Network Broadcast,” filed Dec. 4, 2007 (Attorney Docket No. TR0027-PRO);
- Ser. No. 60/992,313 entitled “Multi Tree Mesh Networks”, filed Dec. 4, 2007 (Attorney Docket No. TR0028-PRO);
- Ser. No. 60/992,315 entitled “Mesh Routing Within a Mesh Network,” filed Dec. 4, 2007 (Attorney Docket No. TR0029-PRO);
- Ser. No. 61/025,279 entitled “Point-to-Point Communication within a Mesh Network”, filed Jan. 31, 2008 (Attorney Docket No. TR0030-PRO), and which are incorporated by reference.
- Ser. No. 61/025,270 entitled “Application Layer Device Agnostic Collector Utilizing Standardized Utility Metering Protocol Such As ANSI C12.22,” filed Jan. 31, 2008 (Attorney Docket No. TR0031-PRO);
- Ser. No. 61/025,276 entitled “System And Method For Real-Time Event Report Generation Between Nodes And Head End Server In A Meter Reading Network Including Form Smart And Dumb Meters,” filed Jan. 31, 2008 (Attorney Docket No. TR0032-PRO);
- Ser. No. 61/025,282 entitled “Method And System for Creating And Managing Association And Balancing Of A Mesh Device In A Mesh Network,” filed Jan. 31, 2008 (Attorney Docket No. TR0035-PRO);
- Ser. No. 61/025,271 entitled “Method And System for Creating And Managing Association And Balancing Of A Mesh Device In A Mesh Network,” filed Jan. 31, 2008 (Attorney Docket No. TR0037-PRO);
- Ser. No. 61/025,287 entitled “System And Method For Operating Mesh Devices In Multi-Tree Overlapping Mesh Networks”, filed Jan. 31, 2008 (Attorney Docket No. TR0038-PRO);
- Ser. No. 61/025,278 entitled “System And Method For Recovering From Head End Data Loss And Data Collector Failure In An Automated Meter Reading Infrastructure,” filed Jan. 31, 2008 (Attorney Docket No. TR0039-PRO);
- Ser. No. 61/025,273 entitled “System And Method For Assigning Checkpoints to A Plurality Of Network Nodes In Communication With A Device-Agnostic Data Collector,” filed Jan. 31, 2008 (Attorney Docket No. TR0040-PRO);
- Ser. No. 61/025,277 entitled “System And Method For Synchronizing Data In An Automated Meter Reading Infrastructure,” filed Jan. 31, 2008 (Attorney Docket No. TR0041-PRO);
- Ser. No. 61/025,285 entitled “System and Method for Power Outage and Restoration Notification in An Automated Meter Reading Infrastructure,” filed Jan. 31, 2008 (Attorney Docket No. TR0042-PRO); and
- Ser. No. 61/094,116 entitled “Message Formats and Processes for Communication Across a Mesh Network,” filed Sep. 4, 2008 (Attorney Docket No. TR0049-PRO).
- This application hereby references and incorporates by reference each of the following United States nonprovisional patent applications filed contemporaneously herewith:
-
- Ser. No. 12/275,236 entitled “Point-to-Point Communication within a Mesh Network”, filed Nov. 21, 2008 (Attorney Docket No. TR0004-US);
- Ser. No. 12/275,305 entitled “Efficient And Compact Transport Layer And Model For An Advanced Metering Infrastructure (AMI) Network,” filed Nov. 21, 2008 (Attorney Docket No. TR0003-US);
- Ser. No. 12/275,238 entitled “Communication and Message Route Optimization and Messaging in a Mesh Network,” filed Nov. 21, 2008 (Attorney Docket No. TR0007-US);
- Ser. No. 12/275,242 entitled “Collector Device and System Utilizing Standardized Utility Metering Protocol,” filed Nov. 21, 2008 (Attorney Docket No. TR0009-US);
- Ser. No. 12/275,245 entitled “System and Method for False Alert Filtering of Event Messages Within a Network,” filed Nov. 21, 2008 (Attorney Docket No. TR0011-US);
- Ser. No. 12/275,252 entitled “Method and System for Creating and Managing Association and Balancing of a Mesh Device in a Mesh Network,” filed Nov. 21, 2008 (Attorney Docket No. TR0020-US); and
- Ser. No. 12/275,257 entitled “System And Method For Operating Mesh Devices In Multi-Tree Overlapping Mesh Networks”, filed Nov. 21, 2008 (Attorney Docket No. TR0038-US).
- This invention pertains generally to methods and systems for providing power outage and restoration notifications within an Advanced Metering Infrastructure (AMI) network.
- A mesh network is a wireless network configured to route data between nodes within a network. It allows for continuous connections and reconfigurations around broken or blocked paths by retransmitting messages from node to node until a destination is reached. Mesh networks differ from other networks in that the component parts can all connect to each other via multiple hops. Thus, mesh networks are self-healing: the network remains operational when a node or a connection fails.
- Advanced Metering Infrastructure (AMI) or Advanced Metering Management (AMM) are systems that measure, collect and analyze utility usage, from advanced devices such as electricity meters, gas meters, and water meters, through a network on request or a pre-defined schedule. This infrastructure includes hardware, software, communications, customer associated systems and meter data management software. The infrastructure allows collection and distribution of information to customers, suppliers, utility companies and service providers. This enables these businesses to either participate in, or provide, demand response solutions, products and services. Customers may alter energy usage patterns from normal consumption patterns in response to demand pricing. This improves system load and reliability.
- A meter may be installed on a power line, gas line, or water line and wired into a power grid for power. During an outage, the meter may cease to function. When power is restored, meter functionality may be restored.
- A method and system provide power outage and restoration notifications within an AMI network. Mesh networks are used to connect meters of an AMI in a geographical area. Each meter may communicate with its neighbors via the mesh network. A mesh gate links the mesh network to a server over a wide area network (WAN). When a power outage occurs among the meters of a mesh network, leaf meters transmit outage messages first. Parent meters add a parent identifier before forwarding the outage messages. This reduces the number of transmitted outage messages within the mesh network. Similarly, restoration messages are transmitted from the leaf nodes first, while parent nodes piggy-back parent identifiers when forwarding the restoration messages from the leaf meters.
- In one aspect, there is provided a system and method for power outage and restoration notification in an advanced metering infrastructure network.
- In another aspect, there is provided a method of transmitting a meter power status, including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter; and retransmitting the notification message.
- In another aspect, there is provided a method of transmitting a network power status, including: receiving at least one notification message from a meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- In another aspect, there is provided a system for transmitting a network power status, including: (A) a mesh network; (B) a wide area network separate from the mesh network; (C) at least one meter in communication with the mesh network, the meter configured to: recognize a power status change at a meter, if the meter is scheduled to transmit first, transmit a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier, if the meter is not scheduled to transmit first, wait a predetermined time period to receive a notification message from at least one neighboring meter, responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, and retransmitting the notification message; (D) a mesh gate in communication with the meter over the mesh network and in communication with the wide area network, the mesh gate configured to: receive at least one notification message from a meter, wherein the notification messages include a power status indicator and at least one meter identifier, aggregate the received meter identifiers into a composite notification message, the composite notification message includes a power status indicator and at least one meter identifier, transmit the composite notification message to a server over a wide area network, and retransmitting the composite notification message; and (E) a server in communication with the mesh gate over the wide area network, the server configured to receive the composite notification message.
- In another aspect, there is provided a system for transmitting a network power status, including: a mesh network; a wide area network separate from the mesh network; at least one meter in communication with the mesh network; a mesh gate in communication with the meter over the mesh network and in communication with the wide area network; and a server in communication with the mesh gate over the wide area network, the server configured to receive the composite notification message.
- In another aspect, there is provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a meter power status, the method including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter; and retransmitting the notification message.
- In another aspect, there is provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a network power status, including: receiving at least one notification message from a meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- In another aspect, there is provided a method of transmitting a meter power status, including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message from the meter to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- In another aspect, there is provided a computer program stored in a computer readable form for execution in a processor and a processor coupled memory to implement a method of transmitting a meter power status, the method including: recognizing a power status change at a meter; if the meter is scheduled to transmit first, transmitting a notification message from the meter to at least one neighboring meter towards a mesh gate, wherein the notification message includes a power status indicator and a meter identifier; if the meter is not scheduled to transmit first, waiting a predetermined time period to receive a notification message from at least one neighboring meter; responsive to receiving a notification message, adding a meter identifier to the received notification message before retransmitting the modified notification message to at least one neighboring meter, wherein the notification message includes a power status indicator and at least one meter identifier; aggregating the received meter identifiers into a composite notification message, the composite notification message including a power status indicator and at least one meter identifier; transmitting the composite notification message to a server over a wide area network; and retransmitting the composite notification message.
- This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
-
FIG. 1 illustrates an example system for providing AMI communications over a mesh network. -
FIG. 2A illustrates an example meter for use within a mesh network. -
FIG. 2B illustrates an example mesh gate for use within a mesh network. -
FIG. 3 illustrates an example network stack for use within a mesh radio. -
FIG. 4A illustrates an example procedure for transmitting outage and restoration notifications from a meter within a mesh network. -
FIG. 4B illustrates an example procedure for transmitting outage and restoration notifications from a mesh gate within a wide area network. -
FIG. 5A illustrates a first timing of transmitting outage notifications from a meter within a mesh network. -
FIG. 5B illustrates a second timing of transmitting outage notifications from a meter within a mesh network. -
FIG. 5C illustrates a third timing of transmitting outage notifications from a meter within a mesh network. -
FIG. 6 illustrates a timing of transmitting restoration notifications from a meter within a mesh network. -
FIG. 1 illustrates an example system for providing AMI communications over a mesh network. Amesh network A 100 may include amesh gate A 102 and a plurality of meters: meters A 104,B 106,C 108,D 110,E 112, andF 114. A mesh gate may also be referred to as a NAN-WAN gate or an access point. Themesh gate A 102 may communicate to aserver 118 over awide area network 116. Optionally, amesh gate B 120 and amesh network B 122 may also communicate with theserver 118 over the wide area network (WAN) 116. Optionally, amesh gate C 124 and a mesh network C 126 may also communicate with theserver 118 over thewide area network 116. - In one example embodiment, the
server 118 is known as a “head end.” The mesh gate may also be known as a collector, a concentrator, or an access point. - It will be appreciated that a mesh device association can include a registration for application service at the
mesh gate A 102 or theserver 118. Themesh gate A 102 and theserver 118 can maintain a table of available applications and services and requesting mesh devices. - The
mesh network A 100 may include a plurality of mesh gates and meters which cover a geographical area. The meters may be part of an AMI system and communicate with the mesh gates over the mesh network. For example, the AMI system may monitor utilities usage, such as gas, water, or electricity usage and usage patterns. - The
mesh gate A 102 may provide a gateway between themesh network A 100 and a server, discussed below. Themesh gate A 102 may include a mesh radio to communicate with themesh network A 100 and a WAN communication interface to communicate with a WAN. - The
mesh gate A 102 may aggregate information from meters within themesh network A 100 and transmit the information to the server. Themesh gate A 102 may be as depicted below. It will be appreciated that while only one mesh gate is depicted in themesh network A 100, any number of mesh gates may be deployed within themesh network A 100, for example, to improve transmission bandwidth to the server and provide redundancy. A typical system will include a plurality of mesh gates within the mesh network. In a non-limiting embodiment for an urban or metropolitan geographical area, there may be between 1 and 100 mesh gates, though this is not a limitation of the invention. In one embodiment, each mesh gate supports approximately 400 meters, depending on system requirements, wireless reception conditions, available bandwidth, and other considerations. It will be appreciated that it is preferable to limit meter usage of bandwidth to allow for future upgrades. - The meters A 104,
B 106,C 108,D 110,E 112, andF 114 may each be a mesh device, such as a meter depicted below. The meters may be associated with themesh network A 100 through direct or indirect communications with themesh gate A 102. Each meter may forward or relay transmissions from other meters within themesh network A 100 towards the mesh gate A. It will be appreciated that while only six meters are depicted in themesh network A 100, any number of meters may be deployed to cover any number of utility lines or locations. - As depicted, only meters A 104 and
D 110 are in direct communications withmesh gate A 102. However,meters B 106,E 112 andF 114 can all reachmesh gate A 102 throughmeter D 110. Similarly,meter C 108 can reachmesh gate A 102 throughmeter E 112 andmeter D 110. - The wide area network (WAN) 116 may be any communication medium capable of transmitting digital information. For example, the
WAN 116 may be the Internet, a cellular network, a private network, a phone line configured to carry a dial-up connection, or any other network. - The
server 118 may be a computing device configured to receive information from a plurality of mesh networks and meters. Theserver 118 may also be configured to transmit instructions to the mesh networks, mesh gates, and meters. - It will be appreciated that while only one server is depicted, any number of servers may be used in the AMI system. For example, servers may be distributed by geographical location. Redundant servers may provide backup and failover capabilities in the AMI system.
- The optional
mesh gates B 120 andC 124 may be similar to meshgate A 102, discussed above. Each mesh gate may be associated with a mesh network. For example,mesh gate B 120 may be associated withmesh network B 122 andmesh gate C 124 may be associated with mesh network C 126. - The
mesh network B 122 and the mesh network C 126 may be similar to themesh network A 102. Each mesh network may include a plurality of meters (not depicted). - Each mesh network may cover a geographical area, such as a premise, a residential building, an apartment building, or a residential block. Alternatively, the mesh network may include a utilities network and be configured to measure utilities flow at each sensor. Each mesh gate communicates with the server over the WAN, and thus the server may receive information from and control a large number of meters or mesh devices. Mesh devices may be located wherever they are needed, without the necessity of providing wired communications with the server.
-
FIG. 2A illustrates an example meter for use within a mesh network. Ameter 200 may include aradio 202, acommunication card 204, ametering sensor 206, and a battery or other power or energy storage device orsource 208. Theradio 202 may include amemory 210, aprocessor 212, atransceiver 214, and a microcontroller unit (MCU) 216 or other processor or processing logic. - A mesh device can be any device configured to participate as a node within a mesh network. An example mesh device is a mesh repeater, which can be a wired device configured to retransmit received mesh transmissions. This extends a range of a mesh network and provides mesh network functionality to mesh devices that enter sleep cycles.
- The
meter 200 may be a mesh device communicating with a mesh gate and other mesh devices over a mesh network. For example, themeter 200 may be a gas, water or electricity meter installed in a residential building or other location to monitor utilities usage. Themeter 200 may also control access to utilities on server instructions, for example, by reducing the flow of gas, water or electricity. - The
radio 202 may be a mesh radio configured to communicate with a mesh network. Theradio 202 may transmit, receive, and forward messages to the mesh network. Any meter within the mesh network may thus communicate with any other meter or mesh gate by communicating with its neighbor and requesting a message be forwarded. - The
communication card 204 may interface between theradio 202 and thesensor 206. Sensor readings may be converted to radio signals for transmission over theradio 202. Thecommunication card 204 may include encryption/decryption or other security functions to protect the transmission. In addition, thecommunication card 204 may decode instructions received from the server. - The
metering sensor 206 may be a gas, water, or electricity meter sensor, or another sensor. For example, digital flow sensors may be used to measure a quantity of utilities consumed within a residence or building. Alternatively, thesensor 206 may be an electricity meter configured to measure a quantity of electricity flowing over a power line. - The
battery 208 may be configured to independently power themeter 200 during a power outage. For example, thebattery 208 may be a large capacitor storing electricity to power themeter 200 for at least five minutes after a power outage. Small compact but high capacity capacitors known as super capacitors are known in the art and may advantageously be used. One exemplary super capacitor is the SESSCAP 50f 2.7v 18×30 mm capacitor. Alternative battery technologies may be used, for example, galvanic cells, electrolytic cells, fuel cells, flow cells, and voltaic cells. - It will be appreciated that the
radio 202,communication card 204,metering sensor 206 andbattery 208 may be modular and configured for easy removal and replacement. This facilitates component upgrading over a lifetime of themeter 200. - The
memory 210 of theradio 202 may store instructions and run-time variables of theradio 202. For example, thememory 210 may include both volatile and non-volatile memory. - The
memory 210 may also store a history of sensor readings from themetering sensor 206 and an incoming queue of server instructions. - The
processor 212 of theradio 202 may execute instructions, for example, stored inmemory 210. Instructions stored inmemory 210 may be ordinary instructions, for example, provided at time of meter installation, or special instructions received from the server during run time. - The
transceiver 214 of theradio 202 may transmit and receive wireless signals to a mesh network. Thetransceiver 214 may be configured to transmit sensor readings and status updates under control of theprocessor 212. Thetransceiver 214 may receive server instructions from a server, which are communicated to thememory 210 and theprocessor 212. - In the example of
FIG. 2A , theMCU 216 can execute firmware or software required by themeter 200. The firmware or software can be installed at manufacture or via a mesh network over theradio 202. - In one embodiment, any number of MCUs can exist in the
meter 200. For example, two MCUs can be installed, a first MCU for executing firmware handling communication protocols, and a second MCU for handling applications. - It will be appreciated that a mesh device and a mesh gate can share the architecture of
meter 200. Theradio 202 and theMCU 216 provide the necessary hardware, and theMCU 216 executes any necessary firmware or software. - Meters may be located in geographically dispersed locations within an AMI system. For example, a meter may be located near a gas line, an electric line, or a water line entering a building or premise to monitor a quantity of gas, electricity, or water. The meter may communicate with other meters and mesh gates through a mesh network. The meter may transmit meter readings and receive instructions via the mesh network.
-
FIG. 2B illustrates an example mesh gate for use within a mesh network. Themesh gate 230 may include amesh radio 232, a widearea network interface 234, abattery 236, and aprocessor 238. Themesh radio 232 may include amemory 242, aprocessor 244, and atransceiver 246. - The
mesh gate 230 may interface between mesh devices (for example, meters) in a mesh network and a server. For example, meters may be as discussed above. Themesh gate 230 may be installed in a central location relative to the meters and also communicate with a server over a WAN. - The
mesh radio 232 may be a mesh radio configured to communicate with meters over a mesh network. Theradio 232 may transmit, receive, and forward messages to the mesh network. - The
WAN interface 234 may communicate with a server over a WAN. For example, the WAN may be a cellular network, a private network, a dial up connection, or any other network. TheWAN interface 234 may include encryption/decryption or other security functions to protect data being transmitted to and from the server. - The
battery 236 may be configured to independently power themesh gate 230 during a power outage. For example, thebattery 236 may be a large capacitor storing electricity to power themesh gate 230 for at least five minutes after a power outage. A power outage notification process may be activated during a power outage. - The
processor 238 may control themesh radio 232 and theWAN interface 234. Meter information received from the meters over themesh radio 232 may be compiled into composite messages for forwarding to the server. Server instructions may be received from theWAN interface 234 and forwarded to meters in the mesh network. - It will be appreciated that the
mesh radio 232,WAN interface 234,battery 236, andprocessor 238 may be modular and configured for easy removal and replacement. This facilitates component upgrading over a lifetime of themesh gate 230. - The
memory 242 of themesh radio 232 may store instructions and run-time variables of themesh radio 232. For example, thememory 242 may include both volatile and non-volatile memory. Thememory 242 may also store a history of meter communications and a queue of incoming server instructions. For example, meter communications may include past sensor readings and status updates. - The
processor 244 of themesh radio 232 may execute instructions, for example, stored inmemory 242. Instructions stored inmemory 242 may be ordinary instructions, for example, provided at time of mesh gate installation, or special instructions received from the server during run-time. - The
transceiver 246 of themesh radio 232 may transmit and receive wireless signals to a mesh network. Thetransceiver 246 may be configured to receive sensor readings and status updates from a plurality of meters in the mesh network. Thetransceiver 246 may also receive server instructions, which are communicated to thememory 242 and theprocessor 244. - A mesh gate may interface between a mesh network and a server. The mesh gate may communicate with meters in the mesh network and communicate with the server over a WAN network. By acting as a gateway, the mesh gate forwards information and instructions between the meters in its mesh network and the server.
-
FIG. 3 illustrates an example network stack for use within a mesh radio. Aradio 300 may interface with an application process 302. The application process 302 may communicate with anapplication layer 304, which communicates with atransport layer 306, anetwork layer 308, adata link layer 310 and aphysical layer 312. - The
radio 300 may be a mesh radio as discussed above. For example, theradio 300 may be a component in a meter, a mesh gate, or any other mesh device configured to participate in a mesh network. Theradio 300 may be configured to transmit wireless signals over a predetermined frequency to other radios. - The application process 302 may be an executing application that requires information to be communicated over the network stack. For example, the application process 302 may be software supporting an AMI system.
- The
application layer 304 interfaces directly with and performs common application services for application processes. Functionality includes semantic conversion between associated application processes. For example, theapplication layer 304 may be implemented as ANSI C12.12/22. - The
transport layer 306 responds to service requests from theapplication layer 304 and issues service requests to thenetwork layer 308. It delivers data to the appropriate application on the host computers. For example, thelayer 306 may be implemented as TCP (Transmission Control Protocol), and UDP (User Datagram Protocol). - The
network layer 308 is responsible for end to end (source to destination) packet delivery. The functionality of thelayer 308 includes transferring variable length data sequences from a source to a destination via one or more networks while maintaining the quality of service, and error control functions. Data will be transmitted from its source to its destination, even if the transmission path involves multiple hops. - The
data link layer 310 transfers data between adjacent network nodes in a network, wherein the data is in the form of packets. Thelayer 310 provides functionality including transferring data between network entities and error correction/detection. For example, thelayer 310 may be implemented as IEEE 802.15.4. - The
physical layer 312 may be the most basic network layer, transmitting bits over a data link connecting network nodes. No packet headers or trailers are included. The bit stream may be grouped into code words or symbols and converted to a physical signal, which is transmitted over a transmission medium, such as radio waves. Thephysical layer 312 provides an electrical, mechanical, and procedural interface to the transmission medium. For example, thelayer 312 may be implemented as IEEE 802.15.4. - The network stack provides different levels of abstraction for programmers within an AMI system. Abstraction reduces a concept to only information which is relevant for a particular purpose. Thus, each level of the network stack may assume the functionality below it on the stack is implemented. This facilitates programming features and functionality for the AMI system.
-
FIG. 4A illustrates an example procedure for transmitting outage and restoration notifications from a meter within a mesh network. A mesh device, such as a meter, may include a sensor for measuring utilities and receive power from a power grid. At times, the power grid may fail during a power outage. The power grid may also be restored after an outage. The meter may include a battery configured to power the meter for a period of time, during which the meter executes a power outage notification procedure to inform a mesh gate and a server of the power outage. Similarly, the meter may execute a power restoration notification when functionality is restored after power is restored to the power grid. - In 400, the meter may detect a power status change. For example, the meter may include an electric sensor sensing a power, current, or voltage of an electric line powering the meter from a power grid. When the sensor senses a cut-off in electricity, the meter may wait a predetermined recognition period before determining that a power outage has occurred.
- When a meter's power is restored after an outage, the meter may also wait a predetermined recognition period before determining that the power outage has ended and power has been restored. Using a recognition period before an outage or a restoration has occurred prevents the meter from trigging the notification procedure for brief outages and restorations.
- In 402, the meter tests whether it is the first to transmit. For example, the meter may look up a neighborhood table to determine whether it is a leaf meter. A leaf meter may have no children meters, and is thus the last meter on its associated branch. For example,
FIG. 1 depicts meters A 104,B 106,C 108, andF 114 as leaf meters.Meter F 114 is a leaf meter because no child meter would transmit through it to reachmesh gate A 102, even thoughmeter F 114 has two alternate paths to the mesh gate A 102 (F 114 toE 112 toD 110 to mesh gate orF 114 toD 110 to mesh gate). - A one-hop device, which can be a device in direct communications with the mesh gate, may transmit immediately.
- Alternatively, the meter may look up the neighborhood table to determine a number of hops to the mesh gate. If it is farthest from the mesh gate on its branch, it will transmit first. If the meter determines yes, the meter proceeds to 404. If no, the meter proceeds to 410. The neighborhood table can be built during association requests and subsequent neighbor exchanges.
- In 404, the meter may transmit a notification message. The notification message may include a nature of the notification (whether a power outage or restoration has occurred, as determined in 400) and a meter identifier. The meter identifier may be a globally unique identifier assigned to the meter at manufacture or installation that identifies the meter to the mesh gate and the server.
- If the notification message has previously been transmitted, the meter may attempt a retry transmission. Retries may be attempted until an acknowledgement is received or a predetermined number of retry attempts has been exceeded.
- Information transmitted in the transmission may include a device identifier, a time of outage, and any other necessary information. In one embodiment, a number of transmitted neighbor information may be restricted. For example, only a predetermined maximum number of parents, siblings, and children node information can be transmitted to limit message size. Neighbors can be selected based on a preferred route ratio. Neighbors that are on a preferred route of a meter's path to the mesh gate may be prioritized. The preferred route ratio can be used to select routes with a minimum of hops over a best minimum signal quality link to the mesh gate.
- In 406, the meter may test whether it has exceeded a predetermined retry attempts. The meter may increment a counter for a number of retries after every attempt to transmit a notification message in 404. The predetermined retry attempts may be set to limit network congestion, both within the mesh network and over a WAN from a mesh gate to the server during a power outage and restoration.
- Alternatively, the meter may continually attempt to transmit until its battery is drained during a power outage notification procedure. This may be used in an AMI system where it is important to receive as many accurate outage notifications as possible, or where network bandwidth is of lesser concern. If the predetermined retry attempts have been exceed, the procedure ends. If no, the meter procedures to 408.
- In 408, the meter optionally delays a random time period. For example, the delay may allow other meters in the mesh network to transmit and reduce collisions. Further, the delay may improve battery life after a power outage.
- The random time period may be associated with a predetermined floor value, below which it cannot be set. This may be an exclusion period during which no retransmission may be attempted by the meter.
- In 410, the meter tests whether a child message has been received. For example, a non-leaf meter will not transmit during a first attempt, and may receive notification messages from child meters. If yes, the meter proceeds to 412. If no, the meter proceeds to 404. In one embodiment, if the meter determines it has missed the child messages, it may immediately transmit its message.
- In 412, the meter may insert a meter identifier in the notification message. The notification message received from the child meter in 410 may include a status (whether the notification is for a power outage or restoration) and at least one meter identifier associated with children meters. The meter may insert its own identifier into the message before forwarding the message in 404.
- By executing the procedure above, leaf meters transmit notification messages first. Each meter waits to receive a notification message from children meters before adding its identifier and forwarding the notification to its parent meter. This reduces message congestion in the mesh network during a notification procedure.
- In an alternative example, each parent meter may determine how many children meters it has, and wait for notification messages from all children meters before compiling the messages into one message to be forwarded. Alternatively, the parent meter may wait for a predetermined period of time, because only some children meters may be affected by a power outage.
- It will be appreciated that if a meter has not suffered a power outage, it would simply forward any received notification messages to its parent without adding its identifier into the message. Similarly, if a parent meter has not had a power restoration; it will remain off and be unable to forward notification messages. In this example, children meters may attempt alternative routes to transmit notification messages, as discussed below.
-
FIG. 4B illustrates an example procedure for transmitting outage and restoration notifications from a mesh gate within a wide area network. A mesh gate and its associated mesh devices, such as meters, may receive power from a power grid. At times, the power grid may fail during a power outage. The power grid may also be restored after an outage. The mesh gate may include a battery configured to power the mesh gate for a period of time, during which the mesh gate executes a power outage notification procedure to inform a server of the outage and affected meters. Similarly, the mesh gate may execute a power restoration notification when power is restored to the power grid. - In 450, the mesh gate may receive a notification message from a meter within its mesh network. For example, the notification message may include a status indicating whether it is an outage or restoration notification and at least one meter identifier. The notification message may be as discussed above.
- In 452, the mesh gate may test whether it has finished receiving notification messages from the mesh network. For example, the mesh gate may continually receive notification messages until its battery drops to a critical level during an outage. The critical level may be set to where enough power remains in the battery to allow the mesh gate to transmit its composite notification message to the server, as discussed below, along with a predetermined number of retries.
- Alternatively, the mesh gate may wait for a predetermined time period after receiving a first notification message. For example, the predetermined time period may be determined, in part, based on the size of the mesh network, the maximum number of hops to reach a leaf meter, the link quality of the mesh network, etc.
- Alternatively, the mesh gate may proceed as soon as message notifications from all children meters within the mesh network have been received. If all children meters are accounted for, the mesh gate does not need to wait for further notification messages.
- If the mesh gate has finished receiving notification messages, it may proceed to 454. If no, it may proceed to 450 to await more notification messages.
- In 454, the mesh gate may select a power reporting configuration. For example, two power reporting configurations may be available: one used for minor outage, such as one affecting only a few meters, and one used for major outages, such as one affecting many meters. The power reporting configuration may affect the retry attempts and delay periods discussed below.
- For example, it may be very important to inform the server of a major outage. Thus, a high number of retry attempts may be set. It may be likely that a major outage has affected other mesh networks. Thus, a longer delay period may be used to reduce transmission collisions over the WAN. In addition, a longer window may be set to wait for notification messages from meters.
- In 456, the mesh gate may aggregate all the notification messages into a composite notification message. For example, the mesh gate may create the composite notification message containing a status indicating whether an outage or restoration has occurred in the mesh network and a list of meter identifiers associated with the notification. For example, the list of meter identifiers may be received in 452 from one or more meters.
- In one example, the mesh gate may receive both an outage and a restoration notification message. The mesh gate may aggregate a first notification message, for example, all received outage notification messages, for transmission. Then, the mesh gate may aggregate a second notification message, for example, the restoration notification message for transmission.
- In 458, the mesh gate may transmit the composite notification message to the server over a WAN. For example, the WAN may be a cellular network, a wired network, or another network configured to carry information. In one example, the WAN used to transmit the composite notification message may be a secondary communications medium. A primary wired network may fail during a power outage, and therefore a backup network may be used. For example, the backup network may be a battery-powered network, cellular network, a battery-powered wired network, or another network configured to operate during an outage.
- If the composite notification message has previously been transmitted, the mesh gate may attempt a retry transmission. Retries may be attempted until an acknowledgement is received or a predetermined number of retry attempts has been exceeded.
- In 460, the mesh gate may test whether a predetermined number of retry attempts has been exceeded. The mesh gate may increment a counter for a number of retries after every attempt to transmit a notification message in 458. The predetermined retry attempts may be set to limit network congestion over the WAN to the server during a power outage and restoration.
- Alternatively, the mesh gate may continually attempt to transmit until its battery is drained during a power outage notification procedure. This may be used in an AMI system where it is important to receive as many accurate outage notifications as possible, or where network bandwidth is of lesser concern.
- For example, the predetermined number of retry attempts may be set in part based on the power reporting configuration selected in 454. If the predetermined number of retry attempts has been exceeded, the mesh gate may end the procedure. If no, the mesh gate may proceed to 462.
- In 462, the mesh gate may optionally delay a random time period. For example, the delay may allow other mesh gates in the WAN to transmit and reduce collisions. Further, the delay may improve battery life after a power outage.
- For example, the delay period may be set in part based on the power reporting configuration selected in 454. The random time period may be associated with a floor value, below which it cannot be set. This may be an exclusion period during which no retransmission may be attempted.
- The mesh gate may aggregate all notification messages sent to it by meters over the mesh network. The composite notification message consists of a power status and a list of meter identifiers identifying the meters affected by the power status. The composite notification message may be transmitted over an outage-resistant communications link to a server.
-
FIG. 5A illustrates a first timing of transmitting outage notifications from a meter within a mesh network. A power outage notification process allows orderly transmission of power outage notification from one or more mesh devices (such as a meter) in a mesh network to a mesh gate. The mesh gate aggregates the notifications and transmits a composite message to a server. Because the mesh network may include a large number of meters, transmitting individual notifications from each meter may cause network congestion, especially because other meters within the mesh network are also likely affected by the same outage and will also be sending outage notifications. - A recognition period (e.g., RECOGNITION_PERIOD) may elapse between an occurrence of a power outage and time T1, when the power outage is recognized by the meter. The recognition period may prevent minor power fluctuations or outages from triggering the outage notification procedure.
-
FIG. 5B illustrates a second timing of transmitting outage notifications from a meter within a mesh network. The meter may wait for a first random period before a first attempt to send a power outage notification at time T2. A first attempt wait period (e.g., PO_RND_PERIOD) may represent a maximum random delay in seconds used before the first attempt. This random delay starts after recognition period (RECOGNITION_PERIOD) elapses at time T1. The first attempt is reserved for leaf meters. A meter which is not a leaf meter will not transmit during the first attempt. - The meter may wait for a retry random period before a retry attempt at time T3. A retry wait period (e.g., PO_RETRY_RND_PERIOD) may represent a maximum random delay in seconds used for each retry. This random delay starts after time T2, when a first transmission attempt occurs.
- Using a random delay before the first and retry attempts prevents colliding transmission from multiple meters and reduces network congestion. If a meter attempts to transmit but a transmission is already in progress, the meter may wait for the transmission in progress to end before attempting to transmit.
- If a meter receives a notification from a child meter, its transmission includes the child's notification plus the meter's identifier. By piggy-backing the meter's identifier in a child's notification and forwarding the notification, the number of individual notifications and messages are reduced in the mesh network.
- The meter may continually retry to transmit an outage notification until the meter's battery is drained. In addition, there may be a predetermined maximum number retries. In addition, there may be a minimum period for the first delay and the subsequent retry delays. The minimum delay periods may eliminate the possibility of immediate retransmissions and guarantee a minimum delay between attempts.
- The mesh gate may receive all the power outage notification messages and compile the information into a message for transmission to a server over a WAN. The mesh gate may also retransmit the compiled notification as necessary, until its battery is drained.
- Child meters in a mesh network transmit outage notifications first, and parent meters piggy-back meter identifiers into the child notifications before forwarding the child notifications. A number of messages and notifications transmitted in the mesh network during an outage are thereby reduced.
-
FIG. 6 illustrates a timing of transmitting restoration notifications from a meter within a mesh network. A power restoration notification process allows orderly transmission of power restoration notification messages from one or more mesh devices (such as a meter) in a mesh network to a mesh gate. The mesh gate aggregates the notifications and transmits a composite message to a server. Because the mesh network may include a large number of meters, transmitting individual notifications from each meter may cause network congestion, especially because other meters within the mesh network are also likely affected by the restoration and will also be sending restoration notifications. - When power is restored at a meter, the meter may first wait for a recognition period before deciding the power has been restored. The recognition period may prevent triggering restoration notifications when power returns for a brief moment before the outage continues.
- A first random period, PR_RND_PERIOD, may represent a maximum random delay used before a first attempt is made to send a power restoration notification. This first random period may begin after the power restored recognition period, PR_RECOGNITION_PERIOD. A first notification may be transmitted. Only leaf meters transmit during the first attempt.
- A retry random period, PR_RETRY_RND_PERIOD, may represent a maximum random delay before a retry to send a power restoration notification. The retry random period begins after the first random period.
- Using a random delay before the first and retry attempts reduces colliding transmission from multiple meters. If a meter attempts to transmit but a transmission is already in progress, the meter may wait for the transmission to end before attempting to transmit.
- After the first attempt to transmit has been made, the mesh gate may wait a minimum delay (e.g., MIN_DELAY) to time T4 and an additional random period (e.g., RAND_PERIOD) to time T5 before retrying transmission. Each retry attempt may be preceded by a retry random period (e.g., RETRY_RND_PERIOD) to time T6, and a maximum number of retry attempts may be set at maximum retries (e.g., MAX_RETRIES). The procedure may stop at time T7, after all retry attempts have been made.
- If a meter receives a notification from a child meter, its transmission includes the child's notification plus the meter's identifier. By piggy-backing the meter's identifier in a child's notification and forwarding the notification, the number of individual notifications and messages are reduced in the mesh network.
- The mesh gate may receive all power restoration notification messages and compile the information into a composite message for transmission to a server over a WAN. Similarly, the mesh gate may also repeatedly attempt to transmit the composite restoration message until a maximum number of retries have been made or the server acknowledges the transmission.
- Child meters in a mesh network transmit restoration notifications first, and parent meters piggy-back meter identifiers into the child notifications before forwarding the child notifications. A number of messages and notifications transmitted in the mesh network during a restoration are thereby reduced.
- If a child meter attempts to forward a message to a parent meter that is not functional (for example, the parent meter's power has not been restored); the child meter may wait a predetermined period of time. If the parent meter remains non-functional, the child meter may attempt to send its notification via an alternative path through the mesh network stored in its memory. If that fails, the child meter may attempt to discover a new route through the mesh network to the mesh gate. If that fails, the child meter may attempt to associate with a new mesh network in order to transmit its restoration notification message.
- Although the above embodiments have been discussed with reference to specific example embodiments, it will be evident that the various modification, combinations and changes can be made to these embodiments. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than in a restrictive sense. The foregoing specification provides a description with reference to specific exemplary embodiments. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/423,160 US8370697B2 (en) | 2007-11-25 | 2012-03-16 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
Applications Claiming Priority (31)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98996207P | 2007-11-25 | 2007-11-25 | |
US98995907P | 2007-11-25 | 2007-11-25 | |
US98995107P | 2007-11-25 | 2007-11-25 | |
US98996407P | 2007-11-25 | 2007-11-25 | |
US98997507P | 2007-11-25 | 2007-11-25 | |
US98995207P | 2007-11-25 | 2007-11-25 | |
US98996707P | 2007-11-25 | 2007-11-25 | |
US98995407P | 2007-11-25 | 2007-11-25 | |
US98995307P | 2007-11-25 | 2007-11-25 | |
US98995807P | 2007-11-25 | 2007-11-25 | |
US98995007P | 2007-11-25 | 2007-11-25 | |
US98996107P | 2007-11-25 | 2007-11-25 | |
US98995607P | 2007-11-25 | 2007-11-25 | |
US98995707P | 2007-11-25 | 2007-11-25 | |
US98995507P | 2007-11-25 | 2007-11-25 | |
US99231507P | 2007-12-04 | 2007-12-04 | |
US99231307P | 2007-12-04 | 2007-12-04 | |
US99231207P | 2007-12-04 | 2007-12-04 | |
US2527608P | 2008-01-31 | 2008-01-31 | |
US2527108P | 2008-01-31 | 2008-01-31 | |
US2527808P | 2008-01-31 | 2008-01-31 | |
US2528208P | 2008-01-31 | 2008-01-31 | |
US2528508P | 2008-01-31 | 2008-01-31 | |
US2528708P | 2008-01-31 | 2008-01-31 | |
US2527308P | 2008-01-31 | 2008-01-31 | |
US2527008P | 2008-01-31 | 2008-01-31 | |
US2527908P | 2008-01-31 | 2008-01-31 | |
US2527708P | 2008-01-31 | 2008-01-31 | |
US9411608P | 2008-09-04 | 2008-09-04 | |
US12/275,254 US8171364B2 (en) | 2007-11-25 | 2008-11-21 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
US13/423,160 US8370697B2 (en) | 2007-11-25 | 2012-03-16 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/275,254 Continuation US8171364B2 (en) | 2007-11-25 | 2008-11-21 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120179941A1 true US20120179941A1 (en) | 2012-07-12 |
US8370697B2 US8370697B2 (en) | 2013-02-05 |
Family
ID=40668058
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/275,254 Active 2031-02-24 US8171364B2 (en) | 2007-11-25 | 2008-11-21 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
US13/423,160 Active US8370697B2 (en) | 2007-11-25 | 2012-03-16 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/275,254 Active 2031-02-24 US8171364B2 (en) | 2007-11-25 | 2008-11-21 | System and method for power outage and restoration notification in an advanced metering infrastructure network |
Country Status (4)
Country | Link |
---|---|
US (2) | US8171364B2 (en) |
EP (1) | EP2215556B1 (en) |
CA (1) | CA2705091A1 (en) |
WO (1) | WO2009067256A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140085105A1 (en) * | 2012-09-21 | 2014-03-27 | Silver Spring Networks, Inc. | Power Outage Notification and Determination |
EP3371930A4 (en) * | 2015-11-05 | 2019-03-27 | Trilliant Networks, Inc. | METHOD AND APPARATUS FOR SECURE REPORT OF ACCUMULATED EVENTS |
US20210223761A1 (en) * | 2018-07-27 | 2021-07-22 | Rockwell Automation Technologies, Inc. | System And Method Of Communicating Unconnected Messages Over High Availability Industrial Control Systems |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7650425B2 (en) * | 1999-03-18 | 2010-01-19 | Sipco, Llc | System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system |
US8161149B2 (en) | 2007-03-07 | 2012-04-17 | International Business Machines Corporation | Pseudo-agent |
US20100332640A1 (en) * | 2007-03-07 | 2010-12-30 | Dennis Sidney Goodrow | Method and apparatus for unified view |
US8495157B2 (en) | 2007-03-07 | 2013-07-23 | International Business Machines Corporation | Method and apparatus for distributed policy-based management and computed relevance messaging with remote attributes |
WO2009055061A1 (en) | 2007-10-25 | 2009-04-30 | Trilliant Networks, Inc. | Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit |
WO2009067257A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | Energy use control system and method |
EP2257884A4 (en) * | 2007-11-25 | 2011-04-20 | Trilliant Networks Inc | System and method for transmitting and receiving information on a neighborhood area network |
WO2009067256A2 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for power outage and restoration notification in an advanced metering infrastructure network |
US8368554B2 (en) * | 2007-12-18 | 2013-02-05 | Elster Electricity Llc | System and method for collecting information from utility meters |
US8948027B2 (en) * | 2009-01-16 | 2015-02-03 | Blackberry Limited | Method and system for wireless network management |
US8314717B2 (en) * | 2009-09-01 | 2012-11-20 | Harris Corporation | Network address field for nodes within a meter reading wireless mesh network and associated system |
US8203464B2 (en) * | 2009-09-01 | 2012-06-19 | Harris Corporation | Registration of a new node to a meter reading wireless mesh network and associated system |
US8966110B2 (en) | 2009-09-14 | 2015-02-24 | International Business Machines Corporation | Dynamic bandwidth throttling |
CA2788327A1 (en) * | 2010-01-29 | 2011-08-04 | Elster Solutions, Llc | Clearing redundant data in wireless mesh network |
DE102010034961B4 (en) * | 2010-08-20 | 2015-12-31 | Qundis Gmbh | Method for operating a device for detecting consumption values in a building arising consumption quantities |
CA2809034A1 (en) | 2010-08-27 | 2012-03-01 | Randy Frei | System and method for interference free operation of co-located tranceivers |
US8718798B2 (en) * | 2010-11-09 | 2014-05-06 | General Electric Company | Gateway mirroring of metering data between zigbee networks |
EP2641137A2 (en) | 2010-11-15 | 2013-09-25 | Trilliant Holdings, Inc. | System and method for securely communicating across multiple networks using a single radio |
IT1403787B1 (en) * | 2010-12-28 | 2013-10-31 | Ist Superiore Mario Boella | METHOD FOR THE MANAGEMENT OF CONSUMPTION AND / OR PRODUCTION DYNAMICS ELECTRIC DIENERGY AND ITS DEVICE |
WO2012097204A1 (en) | 2011-01-14 | 2012-07-19 | Trilliant Holdings, Inc. | Process, device and system for volt/var optimization |
WO2012103072A2 (en) * | 2011-01-25 | 2012-08-02 | Trilliant Holdings, Inc. | Aggregated real-time power outages/restoration reporting (rtpor) in a secure mesh network |
US8856323B2 (en) | 2011-02-10 | 2014-10-07 | Trilliant Holdings, Inc. | Device and method for facilitating secure communications over a cellular network |
US9041349B2 (en) | 2011-03-08 | 2015-05-26 | Trilliant Networks, Inc. | System and method for managing load distribution across a power grid |
US20120299744A1 (en) * | 2011-05-23 | 2012-11-29 | Jimmy Sfaelos | Head-end system for advanced metering infrastructure network |
JP5857451B2 (en) * | 2011-06-03 | 2016-02-10 | 富士通株式会社 | Distribution method and distribution system |
US9306833B2 (en) * | 2011-06-20 | 2016-04-05 | Cisco Technology, Inc. | Data routing for power outage management |
US8918578B2 (en) * | 2011-08-02 | 2014-12-23 | General Electric Company | Method and system of a timer based buffer used for metrology |
US8619819B2 (en) * | 2011-08-19 | 2013-12-31 | Ecolink Intelligent Technology, Inc. | Robust communication protocol for home networks |
US9001787B1 (en) | 2011-09-20 | 2015-04-07 | Trilliant Networks Inc. | System and method for implementing handover of a hybrid communications module |
US10057123B1 (en) | 2013-12-27 | 2018-08-21 | Alarm.Com Incorporated | Network topology backup |
US10015720B2 (en) | 2014-03-14 | 2018-07-03 | GoTenna, Inc. | System and method for digital communication between computing devices |
US9841456B2 (en) | 2014-07-16 | 2017-12-12 | International Business Machines Corporation | Electric outage detection and localization |
US9641382B2 (en) * | 2014-07-21 | 2017-05-02 | Cisco Technology, Inc. | Fast network formation after network power restoration |
CN104581939B (en) * | 2015-01-04 | 2018-03-30 | 中国科学院信息工程研究所 | A kind of queuing behavioral value method and system based on a variety of heterogeneous sensors |
KR101833694B1 (en) * | 2015-01-07 | 2018-02-28 | 미쓰비시덴키 가부시키가이샤 | Wireless communication device, wireless communication system, and wireless communication method |
US11172273B2 (en) | 2015-08-10 | 2021-11-09 | Delta Energy & Communications, Inc. | Transformer monitor, communications and data collection device |
WO2017027682A1 (en) | 2015-08-11 | 2017-02-16 | Delta Energy & Communications, Inc. | Enhanced reality system for visualizing, evaluating, diagnosing, optimizing and servicing smart grids and incorporated components |
WO2017041093A1 (en) | 2015-09-03 | 2017-03-09 | Delta Energy & Communications, Inc. | System and method for determination and remediation of energy diversion in a smart grid network |
WO2017058435A1 (en) | 2015-10-02 | 2017-04-06 | Delta Energy & Communications, Inc. | Supplemental and alternative digital data delivery and receipt mesh network realized through the placement of enhanced transformer mounted monitoring devices |
WO2017070648A1 (en) | 2015-10-22 | 2017-04-27 | Delta Energy & Communications, Inc. | Augmentation, expansion and self-healing of a geographically distributed mesh network using unmanned aerial vehicle technology |
WO2017070646A1 (en) | 2015-10-22 | 2017-04-27 | Delta Energy & Communications, Inc. | Data transfer facilitation across a distributed mesh network using light and optical based technology |
CA3054546C (en) | 2016-02-24 | 2022-10-11 | Delta Energy & Communications, Inc. | Distributed 802.11s mesh network using transformer module hardware for the capture and transmission of data |
US10146036B2 (en) | 2016-06-07 | 2018-12-04 | Globalfoundries Inc. | Semiconductor wafer inspection using care area group-specific threshold settings for detecting defects |
US10652633B2 (en) | 2016-08-15 | 2020-05-12 | Delta Energy & Communications, Inc. | Integrated solutions of Internet of Things and smart grid network pertaining to communication, data and asset serialization, and data modeling algorithms |
US10292060B2 (en) | 2016-10-13 | 2019-05-14 | Eaton Intelligent Power Limited | Autonomous, power-dictated message routing for multi-hop mesh network outage communications |
US10655984B2 (en) | 2017-12-20 | 2020-05-19 | Florida Power & Light Company | Power state estimation for power grid serviced premises |
US10944669B1 (en) | 2018-02-09 | 2021-03-09 | GoTenna, Inc. | System and method for efficient network-wide broadcast in a multi-hop wireless network using packet echos |
JP6542959B1 (en) * | 2018-06-27 | 2019-07-10 | 日本電信電話株式会社 | RADIO COMMUNICATION SYSTEM, FIRST RADIO DEVICE, SECOND RADIO DEVICE, AND RADIO COMMUNICATION METHOD |
WO2020023909A1 (en) | 2018-07-27 | 2020-01-30 | GoTenna, Inc. | Vine™: zero-control routing using data packet inspection for wireless mesh networks |
US11651453B2 (en) | 2018-10-19 | 2023-05-16 | Eaton Intelligent Power Limited | Enhanced status notification and outage detection systems and methods for electric utility networks |
WO2020185707A1 (en) | 2019-03-08 | 2020-09-17 | goTenna Inc. | Method for utilization-based traffic throttling in a wireless mesh network |
CN112382076B (en) * | 2020-11-12 | 2021-08-27 | 贵州电网有限责任公司 | Equipment and operation method for acquiring topological information of district electric energy meter |
US12113696B2 (en) | 2022-02-01 | 2024-10-08 | Bank Of America Corporation | System and method for monitoring network processing optimization |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572438A (en) * | 1995-01-05 | 1996-11-05 | Teco Energy Management Services | Engery management and building automation system |
US20010010032A1 (en) * | 1998-10-27 | 2001-07-26 | Ehlers Gregory A. | Energy management and building automation system |
US20060217936A1 (en) * | 2005-03-22 | 2006-09-28 | Elster Electricity Llc | Using a fixed network wireless data collection system to improve utility responsiveness to power outages |
US7174260B2 (en) * | 2004-04-01 | 2007-02-06 | Blue Line Innovations Inc. | System and method for reading power meters |
Family Cites Families (473)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4132981A (en) | 1976-10-21 | 1979-01-02 | Rockwell International Corporation | Self-powered system for measuring and storing consumption of utility meter |
US4190800A (en) | 1976-11-22 | 1980-02-26 | Scientific-Atlanta, Inc. | Electrical load management system |
US4204195A (en) | 1977-05-23 | 1980-05-20 | General Electric Company | Meter terminal unit for use in automatic remote meter reading and control system |
US4254472A (en) | 1978-08-14 | 1981-03-03 | The Valeron Corporation | Remote metering system |
US4322842A (en) | 1979-10-23 | 1982-03-30 | Altran Electronics | Broadcast system for distribution automation and remote metering |
US4396915A (en) | 1980-03-31 | 1983-08-02 | General Electric Company | Automatic meter reading and control system |
US4425628A (en) | 1981-05-26 | 1984-01-10 | General Electric Company | Control module for engergy management system |
US4638314A (en) | 1984-01-12 | 1987-01-20 | American Science And Engineering, Inc. | Meter transponder hybrid |
US4644320A (en) | 1984-09-14 | 1987-02-17 | Carr R Stephen | Home energy monitoring and control system |
US4749992B1 (en) | 1986-07-03 | 1996-06-11 | Total Energy Management Consul | Utility monitoring and control system |
US4792946A (en) | 1987-04-07 | 1988-12-20 | Spectrum Electronics, Inc. | Wireless local area network for use in neighborhoods |
US5010568A (en) | 1989-04-04 | 1991-04-23 | Sparton Corporation | Remote meter reading method and apparatus |
US5007052A (en) | 1989-04-11 | 1991-04-09 | Metricom, Inc. | Method for routing packets by squelched flooding |
US5138615A (en) | 1989-06-22 | 1992-08-11 | Digital Equipment Corporation | Reconfiguration system and method for high-speed mesh connected local area network |
US5115433A (en) | 1989-07-18 | 1992-05-19 | Metricom, Inc. | Method and system for routing packets in a packet communication network |
US4939726A (en) | 1989-07-18 | 1990-07-03 | Metricom, Inc. | Method for routing packets in a packet communication network |
US5673252A (en) | 1990-02-15 | 1997-09-30 | Itron, Inc. | Communications protocol for remote data generating stations |
US5056107A (en) | 1990-02-15 | 1991-10-08 | Iris Systems Inc. | Radio communication network for remote data generating stations |
US5553094A (en) | 1990-02-15 | 1996-09-03 | Iris Systems, Inc. | Radio communication network for remote data generating stations |
US5079768A (en) | 1990-03-23 | 1992-01-07 | Metricom, Inc. | Method for frequency sharing in frequency hopping communications network |
US5130987A (en) | 1990-03-23 | 1992-07-14 | Metricom, Inc. | Method for synchronizing a wide area network without global synchronizing |
US5077753A (en) | 1990-04-09 | 1991-12-31 | Proxim, Inc. | Radio communication system using spread spectrum techniques |
US5216623A (en) | 1990-06-06 | 1993-06-01 | M. T. Mcbrian, Inc. | System and method for monitoring and analyzing energy characteristics |
US5117422A (en) | 1990-07-09 | 1992-05-26 | Itt Corporation | Method for providing an efficient and adaptive management of message routing in a multi-platform and apparatus communication system |
US5159592A (en) | 1990-10-29 | 1992-10-27 | International Business Machines Corporation | Network address management for a wired network supporting wireless communication to a plurality of mobile users |
CA2054591C (en) | 1991-02-28 | 1996-09-03 | Giovanni Vannucci | Wireless telecommunication systems |
CA2040234C (en) | 1991-04-11 | 2000-01-04 | Steven Messenger | Wireless coupling of devices to wired network |
US5394436A (en) | 1991-10-01 | 1995-02-28 | Norand Corporation | Radio frequency local area network |
US5844893A (en) | 1991-05-14 | 1998-12-01 | Norand Corporation | System for coupling host computer meanswith base transceiver units on a local area network |
US6084867A (en) | 1991-10-01 | 2000-07-04 | Intermec Ip Corp. | Apparatus and method of routing data in a radio frequency local area network |
US6407991B1 (en) | 1993-05-06 | 2002-06-18 | Intermec Ip Corp. | Communication network providing wireless and hard-wired dynamic routing |
US5761083A (en) | 1992-03-25 | 1998-06-02 | Brown, Jr.; Robert J. | Energy management and home automation system |
US5544036A (en) | 1992-03-25 | 1996-08-06 | Brown, Jr.; Robert J. | Energy management and home automation system |
US5974236A (en) | 1992-03-25 | 1999-10-26 | Aes Corporation | Dynamically reconfigurable communications network and method |
AU4661793A (en) | 1992-07-02 | 1994-01-31 | Wellfleet Communications | Data packet processing method and apparatus |
US5442633A (en) | 1992-07-08 | 1995-08-15 | International Business Machines Corporation | Shortcut network layer routing for mobile hosts |
EP0582373B1 (en) | 1992-07-17 | 1999-10-06 | Sun Microsystems, Inc. | Method and apparatus for implementing self-organization in a wireless local area network |
IT1257167B (en) | 1992-10-27 | 1996-01-05 | METHOD FOR IMPROVING THE MANAGEMENT OF DISTRIBUTION NETWORKS, IN PARTICULAR OF GAS, WATER, ELECTRICITY, HEAT. | |
US6970434B1 (en) | 1995-06-07 | 2005-11-29 | Broadcom Corporation | Hierarchical communication system providing intelligent data, program and processing migration |
GB9312836D0 (en) | 1993-06-22 | 1993-08-04 | Schlumberger Ind Ltd | Multipoint to point radiocommunications network |
US5528507A (en) | 1993-08-11 | 1996-06-18 | First Pacific Networks | System for utility demand monitoring and control using a distribution network |
US5465398A (en) | 1993-10-07 | 1995-11-07 | Metricom, Inc. | Automatic power level control of a packet communication link |
AU679593B2 (en) | 1993-11-04 | 1997-07-03 | Broadcom Corporation | A communication network providing wireless and hard-wired dynamic routing |
US5608780A (en) | 1993-11-24 | 1997-03-04 | Lucent Technologies Inc. | Wireless communication system having base units which extracts channel and setup information from nearby base units |
US5530963A (en) | 1993-12-16 | 1996-06-25 | International Business Machines Corporation | Method and system for maintaining routing between mobile workstations and selected network workstation using routing table within each router device in the network |
US5471469A (en) | 1994-02-08 | 1995-11-28 | Metricon, Inc. | Method of resolving media contention in radio communication links |
US5453977A (en) | 1994-02-08 | 1995-09-26 | Metricom, Inc. | Method for network configuration via third party query |
US5400338A (en) | 1994-02-08 | 1995-03-21 | Metricom, Inc. | Parasitic adoption of coordinate-based addressing by roaming node |
US5963457A (en) | 1994-03-18 | 1999-10-05 | Hitachi, Ltd. | Electrical power distribution monitoring system and method |
US5430729A (en) | 1994-04-04 | 1995-07-04 | Motorola, Inc. | Method and apparatus for adaptive directed route randomization and distribution in a richly connected communication network |
US5488608A (en) | 1994-04-14 | 1996-01-30 | Metricom, Inc. | Method and system for routing packets in a packet communication network using locally constructed routing tables |
US5467345A (en) | 1994-05-31 | 1995-11-14 | Motorola, Inc. | Packet routing system and method therefor |
US5479400A (en) | 1994-06-06 | 1995-12-26 | Metricom, Inc. | Transceiver sharing between access and backhaul in a wireless digital communication system |
US5515369A (en) | 1994-06-24 | 1996-05-07 | Metricom, Inc. | Method for frequency sharing and frequency punchout in frequency hopping communications network |
US5903566A (en) | 1994-06-24 | 1999-05-11 | Metricom, Inc. | Method for distributing program code to intelligent nodes in a wireless mesh data communication network |
US5570084A (en) | 1994-06-28 | 1996-10-29 | Metricom, Inc. | Method of loose source routing over disparate network types in a packet communication network |
CA2129199C (en) | 1994-07-29 | 1999-07-20 | Roger Y.M. Cheung | Method and apparatus for bridging wireless lan to a wired lan |
US5696501A (en) | 1994-08-02 | 1997-12-09 | General Electric Company | Method and apparatus for performing the register functions for a plurality of metering devices at a common node |
US5758331A (en) | 1994-08-15 | 1998-05-26 | Clear With Computers, Inc. | Computer-assisted sales system for utilities |
US5490139A (en) | 1994-09-28 | 1996-02-06 | International Business Machines Corporation | Mobility enabling access point architecture for wireless attachment to source routing networks |
MY123040A (en) | 1994-12-19 | 2006-05-31 | Salbu Res And Dev Proprietary Ltd | Multi-hop packet radio networks |
US5727057A (en) | 1994-12-27 | 1998-03-10 | Ag Communication Systems Corporation | Storage, transmission, communication and access to geographical positioning data linked with standard telephony numbering and encoded for use in telecommunications and related services |
US6988025B2 (en) | 2000-11-28 | 2006-01-17 | Power Measurement Ltd. | System and method for implementing XML on an energy management device |
US7188003B2 (en) | 1994-12-30 | 2007-03-06 | Power Measurement Ltd. | System and method for securing energy management systems |
US5659300A (en) | 1995-01-30 | 1997-08-19 | Innovatec Corporation | Meter for measuring volumetric consumption of a commodity |
US7133845B1 (en) | 1995-02-13 | 2006-11-07 | Intertrust Technologies Corp. | System and methods for secure transaction management and electronic rights protection |
US5572528A (en) | 1995-03-20 | 1996-11-05 | Novell, Inc. | Mobile networking method and apparatus |
US5608721A (en) | 1995-04-03 | 1997-03-04 | Motorola, Inc. | Communications network and method which implement diversified routing |
US5596722A (en) | 1995-04-03 | 1997-01-21 | Motorola, Inc. | Packet routing system and method for achieving uniform link usage and minimizing link load |
US5822309A (en) | 1995-06-15 | 1998-10-13 | Lucent Technologies Inc. | Signaling and control architecture for an ad-hoc ATM LAN |
US5757783A (en) | 1995-06-15 | 1998-05-26 | Lucent Technologies Inc. | Method and apparatus for routing ATM cells in an AD-ATM LAN |
US5623495A (en) | 1995-06-15 | 1997-04-22 | Lucent Technologies Inc. | Portable base station architecture for an AD-HOC ATM lan |
US5726644A (en) | 1995-06-30 | 1998-03-10 | Philips Electronics North America Corporation | Lighting control system with packet hopping communication |
US5896566A (en) | 1995-07-28 | 1999-04-20 | Motorola, Inc. | Method for indicating availability of updated software to portable wireless communication units |
US5898826A (en) | 1995-11-22 | 1999-04-27 | Intel Corporation | Method and apparatus for deadlock-free routing around an unusable routing component in an N-dimensional network |
US5737318A (en) | 1995-12-27 | 1998-04-07 | Philips Electronics North America Corporation | Method for initializing a wireless, packet-hopping network |
US6195018B1 (en) | 1996-02-07 | 2001-02-27 | Cellnet Data Systems, Inc. | Metering system |
US5896097A (en) | 1996-03-06 | 1999-04-20 | Schlumberger Resource Management Services, Inc. | System for utility meter communications using a single RF frequency |
US5767790A (en) | 1996-03-07 | 1998-06-16 | Jovellana; Bartolome D. | Automatic utility meter monitor |
US5719564A (en) | 1996-05-10 | 1998-02-17 | Sears; Lawrence M. | Utility meter reading system |
GB2315197B (en) | 1996-07-11 | 2000-07-12 | Nokia Mobile Phones Ltd | Method and apparatus for system clock adjustment |
US5920697A (en) | 1996-07-11 | 1999-07-06 | Microsoft Corporation | Method of automatic updating and use of routing information by programmable and manual routing information configuration based on least lost routing |
US5892758A (en) | 1996-07-11 | 1999-04-06 | Qualcomm Incorporated | Concentrated subscriber wireless remote telemetry system |
US5748104A (en) | 1996-07-11 | 1998-05-05 | Qualcomm Incorporated | Wireless remote telemetry system |
US5919247A (en) | 1996-07-24 | 1999-07-06 | Marimba, Inc. | Method for the distribution of code and data updates |
US5774660A (en) | 1996-08-05 | 1998-06-30 | Resonate, Inc. | World-wide-web server with delayed resource-binding for resource-based load balancing on a distributed resource multi-node network |
DE19632261C2 (en) | 1996-08-09 | 1998-07-09 | Siemens Ag | Method for establishing telecommunication connections between telecommunication devices in wireless telecommunication systems, in particular between DECT devices of a DECT system |
US6075777A (en) | 1996-08-21 | 2000-06-13 | Lucent Technologies Inc. | Network flow framework for online dynamic channel allocation |
US5987011A (en) | 1996-08-30 | 1999-11-16 | Chai-Keong Toh | Routing method for Ad-Hoc mobile networks |
US6246677B1 (en) | 1996-09-06 | 2001-06-12 | Innovatec Communications, Llc | Automatic meter reading data communication system |
US6078785A (en) | 1996-10-15 | 2000-06-20 | Bush; E. William | Demand reporting of electricity consumption by radio in relays to a base station, and demand relays wattmeters so reporting over a wide area |
US5880677A (en) | 1996-10-15 | 1999-03-09 | Lestician; Guy J. | System for monitoring and controlling electrical consumption, including transceiver communicator control apparatus and alternating current control apparatus |
US6018659A (en) | 1996-10-17 | 2000-01-25 | The Boeing Company | Airborne broadband communication network |
US6014089A (en) | 1996-10-28 | 2000-01-11 | Tracy Corporation Ii | Method for transmitting data using a digital control channel of a wireless network |
US6150955A (en) | 1996-10-28 | 2000-11-21 | Tracy Corporation Ii | Apparatus and method for transmitting data via a digital control channel of a digital wireless network |
US7143204B1 (en) | 1996-11-15 | 2006-11-28 | Logiclink Corporation | Method and apparatus for suspending or adjusting billing charge for usage of electrically powered devices if abnormal or halt condition detected |
US6839775B1 (en) | 1996-11-15 | 2005-01-04 | Kim Y. Kao | Method and apparatus for vending machine controller configured to monitor and analyze power profiles for plurality of motor coils to determine condition of vending machine |
US5901067A (en) | 1996-11-15 | 1999-05-04 | Kim Y. Kao | System for interactively selecting and activating groups of electrically powered devices |
US7054271B2 (en) | 1996-12-06 | 2006-05-30 | Ipco, Llc | Wireless network system and method for providing same |
US6044062A (en) | 1996-12-06 | 2000-03-28 | Communique, Llc | Wireless network system and method for providing same |
JP3097581B2 (en) | 1996-12-27 | 2000-10-10 | 日本電気株式会社 | Ad-hoc local area network configuration method, communication method and terminal |
US5894422A (en) | 1997-01-27 | 1999-04-13 | Chasek; Norman E. | System and methods that facilitate the introduction of market based economic models for electric power |
US7046682B2 (en) | 1997-02-12 | 2006-05-16 | Elster Electricity, Llc. | Network-enabled, extensible metering system |
AR011440A1 (en) | 1997-02-12 | 2000-08-16 | Abb Power T & D Co | ELECTRONIC MEASUREMENT PROVISION |
US7079810B2 (en) | 1997-02-14 | 2006-07-18 | Statsignal Ipc, Llc | System and method for communicating with a remote communication unit via the public switched telephone network (PSTN) |
US5926531A (en) | 1997-02-14 | 1999-07-20 | Statsignal Systems, Inc. | Transmitter for accessing pay-type telephones |
US6233327B1 (en) | 1997-02-14 | 2001-05-15 | Statsignal Systems, Inc. | Multi-function general purpose transceiver |
US6618578B1 (en) | 1997-02-14 | 2003-09-09 | Statsignal Systems, Inc | System and method for communicating with a remote communication unit via the public switched telephone network (PSTN) |
US6628764B1 (en) | 1997-02-14 | 2003-09-30 | Statsignal Systems, Inc. | System for requesting service of a vending machine |
US6430268B1 (en) | 1997-09-20 | 2002-08-06 | Statsignal Systems, Inc. | Systems for requesting service of a vending machine |
US7137550B1 (en) | 1997-02-14 | 2006-11-21 | Statsignal Ipc, Llc | Transmitter for accessing automated financial transaction machines |
CN1153352C (en) | 1997-03-18 | 2004-06-09 | 皇家菲利浦电子有限公司 | Receiver tuning system |
US5898387A (en) | 1997-03-26 | 1999-04-27 | Scientific-Atlanta, Inc. | Modular meter based utility gateway enclosure |
US6118269A (en) | 1997-03-26 | 2000-09-12 | Comverge Technologies, Inc. | Electric meter tamper detection circuit for sensing electric meter removal |
US6073169A (en) | 1997-04-08 | 2000-06-06 | Abb Power T&D Company Inc. | Automatic meter reading system employing common broadcast command channel |
US6457054B1 (en) | 1997-05-15 | 2002-09-24 | Intel Corporation | System for reducing user-visibility latency in network transactions |
US5874903A (en) | 1997-06-06 | 1999-02-23 | Abb Power T & D Company Inc. | RF repeater for automatic meter reading system |
US5991806A (en) | 1997-06-09 | 1999-11-23 | Dell Usa, L.P. | Dynamic system control via messaging in a network management system |
US5914672A (en) | 1997-06-13 | 1999-06-22 | Whisper Communications Incorporated | System for field installation of a remote meter interface |
US6108699A (en) | 1997-06-27 | 2000-08-22 | Sun Microsystems, Inc. | System and method for modifying membership in a clustered distributed computer system and updating system configuration |
US6058355A (en) | 1997-06-30 | 2000-05-02 | Ericsson Inc. | Automatic power outage notification via CEBus interface |
JP3180726B2 (en) | 1997-08-05 | 2001-06-25 | 日本電気株式会社 | Mobile terminal control method |
US6414952B2 (en) | 1997-08-28 | 2002-07-02 | Broadcom Homenetworking, Inc. | Virtual gateway system and method |
US20080129538A1 (en) | 1999-02-23 | 2008-06-05 | Raj Vaswani | Electronic electric meter for networked meter reading |
US6538577B1 (en) | 1997-09-05 | 2003-03-25 | Silver Springs Networks, Inc. | Electronic electric meter for networked meter reading |
US6088659A (en) | 1997-09-11 | 2000-07-11 | Abb Power T&D Company Inc. | Automated meter reading system |
US6124806A (en) | 1997-09-12 | 2000-09-26 | Williams Wireless, Inc. | Wide area remote telemetry |
US6574661B1 (en) | 1997-09-26 | 2003-06-03 | Mci Communications Corporation | Integrated proxy interface for web based telecommunication toll-free network management using a network manager for downloading a call routing tree to client |
US20020120569A1 (en) | 1997-10-16 | 2002-08-29 | Day Mark E. | System and method for communication between remote locations |
US5986574A (en) | 1997-10-16 | 1999-11-16 | Peco Energy Company | System and method for communication between remote locations |
US6711166B1 (en) | 1997-12-10 | 2004-03-23 | Radvision Ltd. | System and method for packet network trunking |
ATE228749T1 (en) | 1998-02-02 | 2002-12-15 | Ericsson Inc | SECTORIZATION FOR AREA COVERAGE IN COMMUNICATION SYSTEM WITH TIME MULTIPLEX METHOD AND FREQUENCY TIME DUPLEX |
SE9801172D0 (en) | 1998-04-01 | 1998-04-01 | Ericsson Telefon Ab L M | Cell selection in a system with different cell capabilities |
NO309550B1 (en) | 1998-04-07 | 2001-02-12 | It & Process As | System for controlling the power consumption of a user of electrical power |
US6778099B1 (en) | 1998-05-01 | 2004-08-17 | Elster Electricity, Llc | Wireless area network communications module for utility meters |
US6553355B1 (en) | 1998-05-29 | 2003-04-22 | Indranet Technologies Limited | Autopoietic network system endowed with distributed artificial intelligence for the supply of high volume high-speed multimedia telesthesia telemetry, telekinesis, telepresence, telemanagement, telecommunications, and data processing services |
US6122603A (en) | 1998-05-29 | 2000-09-19 | Powerweb, Inc. | Multi-utility energy control system with dashboard |
US6311105B1 (en) | 1998-05-29 | 2001-10-30 | Powerweb, Inc. | Multi-utility energy control system |
US6445691B2 (en) | 1998-06-08 | 2002-09-03 | Koninklijke Philips Electronics N. V. | Wireless coupling of standardized networks and non-standardized nodes |
US6522974B2 (en) | 2000-03-01 | 2003-02-18 | Westerngeco, L.L.C. | Method for vibrator sweep analysis and synthesis |
US6914893B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc, Llc | System and method for monitoring and controlling remote devices |
US6437692B1 (en) | 1998-06-22 | 2002-08-20 | Statsignal Systems, Inc. | System and method for monitoring and controlling remote devices |
US6891838B1 (en) | 1998-06-22 | 2005-05-10 | Statsignal Ipc, Llc | System and method for monitoring and controlling residential devices |
US6218953B1 (en) | 1998-10-14 | 2001-04-17 | Statsignal Systems, Inc. | System and method for monitoring the light level around an ATM |
US6914533B2 (en) | 1998-06-22 | 2005-07-05 | Statsignal Ipc Llc | System and method for accessing residential monitoring devices |
US6028522A (en) | 1998-10-14 | 2000-02-22 | Statsignal Systems, Inc. | System for monitoring the light level around an ATM |
US6304556B1 (en) | 1998-08-24 | 2001-10-16 | Cornell Research Foundation, Inc. | Routing and mobility management protocols for ad-hoc networks |
US6826620B1 (en) | 1998-08-26 | 2004-11-30 | Paradyne Corporation | Network congestion control system and method |
US6665620B1 (en) | 1998-08-26 | 2003-12-16 | Siemens Transmission & Distribution, Llc | Utility meter having primary and secondary communication circuits |
US6246689B1 (en) | 1998-09-21 | 2001-06-12 | Lucent Technologies Inc. | Method and apparatus for efficient topology aggregation for networks with hierarchical structure |
US7103511B2 (en) | 1998-10-14 | 2006-09-05 | Statsignal Ipc, Llc | Wireless communication networks for providing remote monitoring of devices |
US20020013679A1 (en) | 1998-10-14 | 2002-01-31 | Petite Thomas D. | System and method for monitoring the light level in a lighted area |
US6480497B1 (en) | 1998-11-23 | 2002-11-12 | Ricochet Networks, Inc. | Method and apparatus for maximizing data throughput in a packet radio mesh network |
FR2786387B1 (en) * | 1998-11-27 | 2001-01-26 | Ge Medical Syst Sa | DEVICE AND METHOD FOR TAKING RADIOLOGICAL IMAGES |
US6636894B1 (en) | 1998-12-08 | 2003-10-21 | Nomadix, Inc. | Systems and methods for redirecting users having transparent computer access to a network using a gateway device having redirection capability |
US6718137B1 (en) | 1999-01-05 | 2004-04-06 | Ciena Corporation | Method and apparatus for configuration by a first network element based on operating parameters of a second network element |
US20080136667A1 (en) | 1999-02-23 | 2008-06-12 | Raj Vaswani | Network for automated meter reading |
US20040183687A1 (en) | 1999-03-18 | 2004-09-23 | Petite Thomas D. | System and method for signaling a weather alert condition to a residential environment |
US6747557B1 (en) | 1999-03-18 | 2004-06-08 | Statsignal Systems, Inc. | System and method for signaling a weather alert condition to a residential environment |
US7650425B2 (en) | 1999-03-18 | 2010-01-19 | Sipco, Llc | System and method for controlling communication between a host computer and communication devices associated with remote devices in an automated monitoring system |
US7263073B2 (en) | 1999-03-18 | 2007-08-28 | Statsignal Ipc, Llc | Systems and methods for enabling a mobile user to notify an automated monitoring system of an emergency situation |
US6751672B1 (en) | 1999-06-02 | 2004-06-15 | Nortel Networks Limited | Efficient dynamic home agent discovery algorithm and system |
US6300881B1 (en) | 1999-06-09 | 2001-10-09 | Motorola, Inc. | Data transfer system and method for communicating utility consumption data over power line carriers |
US7231482B2 (en) | 2000-06-09 | 2007-06-12 | Universal Smart Technologies, Llc. | Method and system for monitoring and transmitting utility status via universal communications interface |
US6954814B1 (en) | 1999-06-10 | 2005-10-11 | Amron Technologies Inc. | Method and system for monitoring and transmitting utility status via universal communications interface |
US7185131B2 (en) | 1999-06-10 | 2007-02-27 | Amron Technologies, Inc. | Host-client utility meter systems and methods for communicating with the same |
US6725281B1 (en) | 1999-06-11 | 2004-04-20 | Microsoft Corporation | Synchronization of controlled device state using state table and eventing in data-driven remote device control model |
US6681110B1 (en) | 1999-07-02 | 2004-01-20 | Musco Corporation | Means and apparatus for control of remote electrical devices |
US6691173B2 (en) | 1999-07-06 | 2004-02-10 | Widcomm, Inc. | Distributed management of an extended network containing short-range wireless links |
US6785592B1 (en) | 1999-07-16 | 2004-08-31 | Perot Systems Corporation | System and method for energy management |
JP3669619B2 (en) | 1999-09-06 | 2005-07-13 | 富士通株式会社 | Software updating method and apparatus for wireless terminal device |
US6980973B1 (en) | 1999-09-07 | 2005-12-27 | Visa International Service Association | Self-paying smart utility meter and payment service |
US6751455B1 (en) | 1999-09-17 | 2004-06-15 | The Regents Of The University Of California | Power- and bandwidth-adaptive in-home wireless communications system with power-grid-powered agents and battery-powered clients |
US6976062B1 (en) | 1999-09-22 | 2005-12-13 | Intermec Ip Corp. | Automated software upgrade utility |
US7020701B1 (en) | 1999-10-06 | 2006-03-28 | Sensoria Corporation | Method for collecting and processing data using internetworked wireless integrated network sensors (WINS) |
AU7861700A (en) | 1999-10-06 | 2001-05-10 | Sensoria Corporation | Method for collecting data using compact internetworked wireless integrated network sensors (wins) |
US6904025B1 (en) | 1999-10-12 | 2005-06-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Wide area network mobility for IP based networks |
US7042368B2 (en) | 1999-10-16 | 2006-05-09 | Datamatic, Ltd | Automated meter reader device having optical sensor with automatic gain control |
US6710721B1 (en) | 1999-10-16 | 2004-03-23 | Datamatic Inc. | Radio frequency automated meter reading device |
US20060028355A1 (en) | 1999-10-16 | 2006-02-09 | Tim Patterson | Automated meter reader having peak product delivery rate generator |
US7315257B2 (en) | 1999-10-16 | 2008-01-01 | Datamatic, Ltd. | Automated meter reader having high product delivery rate alert generator |
ATE287101T1 (en) | 1999-11-01 | 2005-01-15 | Abb Research Ltd | INTEGRATION OF A FIELD CONTROL DEVICE INTO A PLANT CONTROL SYSTEM |
US6909705B1 (en) | 1999-11-02 | 2005-06-21 | Cello Partnership | Integrating wireless local loop networks with cellular networks |
US6697331B1 (en) | 1999-11-17 | 2004-02-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Link layer acknowledgement and retransmission for cellular telecommunications |
EP1107508A1 (en) | 1999-12-06 | 2001-06-13 | Telefonaktiebolaget Lm Ericsson | System, method and computer program product for sending broadcast messages |
US6480505B1 (en) | 1999-12-06 | 2002-11-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Batched fair exhaustive polling scheduler |
US6535498B1 (en) | 1999-12-06 | 2003-03-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Route updating in ad-hoc networks |
US6975613B1 (en) | 1999-12-06 | 2005-12-13 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for scheduling communication sessions in an ad-hoc network |
US6711409B1 (en) | 1999-12-15 | 2004-03-23 | Bbnt Solutions Llc | Node belonging to multiple clusters in an ad hoc wireless network |
US6885309B1 (en) | 2000-06-01 | 2005-04-26 | Cellnet Innovations, Inc. | Meter to internet pathway |
US6577671B1 (en) | 1999-12-29 | 2003-06-10 | Nokia Mobile Phones Limited | Enhanced code allocation method for CDMA systems |
US6298053B1 (en) | 2000-01-14 | 2001-10-02 | Metricom, Inc. | Method and apparatus for connection handoff between connected radios |
US7213063B2 (en) | 2000-01-18 | 2007-05-01 | Lucent Technologies Inc. | Method, apparatus and system for maintaining connections between computers using connection-oriented protocols |
US7379981B2 (en) | 2000-01-31 | 2008-05-27 | Kenneth W. Garrard | Wireless communication enabled meter and network |
US8019836B2 (en) | 2002-01-02 | 2011-09-13 | Mesh Comm, Llc | Wireless communication enabled meter and network |
AU2001234669A1 (en) | 2000-01-31 | 2001-08-07 | Telemetry Technologies, Inc. | Wireless communication enabled meter and network |
US20010033554A1 (en) | 2000-02-18 | 2001-10-25 | Arun Ayyagari | Proxy-bridge connecting remote users to a limited connectivity network |
US6369769B1 (en) | 2000-02-25 | 2002-04-09 | Innovatec Communications, Llc | Flush mounted pit lid antenna |
US6865185B1 (en) | 2000-02-25 | 2005-03-08 | Cisco Technology, Inc. | Method and system for queuing traffic in a wireless communications network |
US6845091B2 (en) | 2000-03-16 | 2005-01-18 | Sri International | Mobile ad hoc extensions for the internet |
US6775258B1 (en) | 2000-03-17 | 2004-08-10 | Nokia Corporation | Apparatus, and associated method, for routing packet data in an ad hoc, wireless communication system |
GB0007266D0 (en) | 2000-03-25 | 2000-05-17 | Hewlett Packard Co | Providing location data about a mobile entity |
US7062361B1 (en) | 2000-05-02 | 2006-06-13 | Mark E. Lane | Method and apparatus for controlling power consumption |
US6933857B2 (en) | 2000-05-05 | 2005-08-23 | Charles A. Foote | Method and system for airborne meter communication |
US20020066095A1 (en) | 2000-05-12 | 2002-05-30 | Yueh-O Yu | Process and device for updating personalized products |
US6880086B2 (en) | 2000-05-20 | 2005-04-12 | Ciena Corporation | Signatures for facilitating hot upgrades of modular software components |
US7487282B2 (en) | 2000-06-09 | 2009-02-03 | Leach Mark A | Host-client utility meter systems and methods for communicating with the same |
US6900738B2 (en) | 2000-06-21 | 2005-05-31 | Henry Crichlow | Method and apparatus for reading a meter and providing customer service via the internet |
US6519509B1 (en) | 2000-06-22 | 2003-02-11 | Stonewater Software, Inc. | System and method for monitoring and controlling energy distribution |
US7072945B1 (en) | 2000-06-30 | 2006-07-04 | Nokia Corporation | Network and method for controlling appliances |
US6633823B2 (en) | 2000-07-13 | 2003-10-14 | Nxegen, Inc. | System and method for monitoring and controlling energy usage |
US7197046B1 (en) | 2000-08-07 | 2007-03-27 | Shrikumar Hariharasubrahmanian | Systems and methods for combined protocol processing protocols |
US6836737B2 (en) | 2000-08-09 | 2004-12-28 | Statsignal Systems, Inc. | Systems and methods for providing remote monitoring of consumption for a utility meter |
US6829216B1 (en) | 2000-08-18 | 2004-12-07 | Hitachi Telecom (U.S.A.), Inc. | Method and system for designing a network |
US7200633B2 (en) | 2000-08-25 | 2007-04-03 | Ntt Docomo, Inc. | Information delivery system and information delivery method |
US6728514B2 (en) | 2000-09-08 | 2004-04-27 | Wi-Lan Inc. | Scalable wireless network topology systems and methods |
US20020051269A1 (en) | 2000-09-29 | 2002-05-02 | Shlomo Margalit | Reconfigurable over-the-air optical data transmission system |
US7103086B2 (en) | 2000-09-29 | 2006-09-05 | Maxstream, Inc. | Frequency hopping data radio |
US20020031101A1 (en) | 2000-11-01 | 2002-03-14 | Petite Thomas D. | System and methods for interconnecting remote devices in an automated monitoring system |
US7230931B2 (en) | 2001-01-19 | 2007-06-12 | Raze Technologies, Inc. | Wireless access system using selectively adaptable beam forming in TDD frames and method of operation |
US7016336B2 (en) | 2000-11-22 | 2006-03-21 | Telefonaktiebolaget L M Ericsson (Publ) | Administrative domains for personal area networks |
US20070136817A1 (en) | 2000-12-07 | 2007-06-14 | Igt | Wager game license management in a peer gaming network |
WO2002065707A2 (en) | 2000-12-26 | 2002-08-22 | Bluesocket, Inc. | Methods and systems for clock synchronization across wireless networks |
US6965575B2 (en) | 2000-12-29 | 2005-11-15 | Tropos Networks | Selection of routing paths based upon path quality of a wireless mesh network |
FI20010095L (en) | 2001-01-16 | 2002-07-17 | Nokia Corp | Verification method, monitoring network element in telecommunications networks and telecommunications system |
US6842706B1 (en) | 2001-01-17 | 2005-01-11 | Smart Disaster Response Technologies, Inc. | Methods, apparatus, media, and signals for managing utility usage |
US6946972B2 (en) | 2001-01-25 | 2005-09-20 | Smartsynch, Inc. | Systems and methods for wirelessly transmitting data from a utility meter |
US6671635B1 (en) | 2001-02-23 | 2003-12-30 | Power Measurement Ltd. | Systems for improved monitoring accuracy of intelligent electronic devices |
BRPI0204473B1 (en) | 2001-03-12 | 2017-11-28 | Koninklijke Philips N. V. | A REPRODUCTIVE DEVICE FOR REPRODUCING A CONTENT ITEM STORED IN A STORAGE MEDIA |
JP3700596B2 (en) | 2001-03-14 | 2005-09-28 | 日本電気株式会社 | Communication network, path setting method, and path setting program |
EP1386432A4 (en) | 2001-03-21 | 2009-07-15 | John A Stine | An access and routing protocol for ad hoc networks using synchronous collision resolution and node state dissemination |
AUPR441401A0 (en) | 2001-04-12 | 2001-05-17 | Gladwin, Paul | Utility usage rate monitor |
AR033307A1 (en) | 2001-05-02 | 2003-12-10 | Invensys Metering Systems Nort | AUTOMATIC METER READING MODULE |
AR033319A1 (en) | 2001-05-04 | 2003-12-10 | Invensys Metering Systems Nort | PROVISION AND METHOD FOR COMMUNICATION AND CONTROL OF AUTOMATED METER READING |
US20020186619A1 (en) | 2001-05-07 | 2002-12-12 | Reeves Michael H. | Apparatus, system and method for synchronizing a clock with a master time service |
US20030156715A1 (en) | 2001-06-12 | 2003-08-21 | Reeds James Alexander | Apparatus, system and method for validating integrity of transmitted data |
US7009493B2 (en) | 2001-06-22 | 2006-03-07 | Matsushita Electric Works, Ltd. | Electronic device with paging for energy curtailment and code generation for manual verification of curtailment |
US6999441B2 (en) | 2001-06-27 | 2006-02-14 | Ricochet Networks, Inc. | Method and apparatus for contention management in a radio-based packet network |
US6509801B1 (en) | 2001-06-29 | 2003-01-21 | Sierra Monolithics, Inc. | Multi-gigabit-per-sec clock recovery apparatus and method for optical communications |
US7266840B2 (en) | 2001-07-12 | 2007-09-04 | Vignette Corporation | Method and system for secure, authorized e-mail based transactions |
US7076244B2 (en) | 2001-07-23 | 2006-07-11 | Research In Motion Limited | System and method for pushing information to a mobile device |
US7277414B2 (en) * | 2001-08-03 | 2007-10-02 | Honeywell International Inc. | Energy aware network management |
US6711512B2 (en) | 2001-08-07 | 2004-03-23 | Korea Electric Power Data Network Co. Ltd. | Pole transformer load monitoring system using wireless internet network |
US7346463B2 (en) | 2001-08-09 | 2008-03-18 | Hunt Technologies, Llc | System for controlling electrically-powered devices in an electrical network |
US6993571B2 (en) | 2001-08-16 | 2006-01-31 | International Business Machines Corporation | Power conservation in a server cluster |
US6993417B2 (en) | 2001-09-10 | 2006-01-31 | Osann Jr Robert | System for energy sensing analysis and feedback |
KR100452508B1 (en) | 2001-09-25 | 2004-10-12 | 엘지전자 주식회사 | remote detecting equipment using CO-LINE and controlling method therefore |
US7362709B1 (en) | 2001-11-02 | 2008-04-22 | Arizona Board Of Regents | Agile digital communication network with rapid rerouting |
US6975647B2 (en) | 2001-11-13 | 2005-12-13 | Ems Technologies Canada, Ltd | Enhancements for TCP performance enhancing proxies |
US6829347B1 (en) | 2001-12-14 | 2004-12-07 | Nortel Networks Limited | Constraint based routing |
US6925461B2 (en) | 2001-12-17 | 2005-08-02 | At&T Corp. | Parallel random proxy usage for large scale web access |
US7106757B2 (en) | 2001-12-19 | 2006-09-12 | Intel Corporation | System and method for streaming multimedia over packet networks |
US7609673B2 (en) | 2002-02-08 | 2009-10-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Packet-based conversational service for a multimedia session in a mobile communications system |
ITMI20012726A1 (en) | 2001-12-20 | 2003-06-20 | Enel Distribuzione Spa | SYSTEM OF REMOTE CONSUMPTION OF CONSUMPTION AND REMOTE MANAGEMENT OF USERS ALSO DISTRIBUTED OF A DOMESTIC TYPE |
US6744740B2 (en) | 2001-12-21 | 2004-06-01 | Motorola, Inc. | Network protocol for wireless devices utilizing location information |
US7073178B2 (en) | 2002-01-18 | 2006-07-04 | Mobitv, Inc. | Method and system of performing transactions using shared resources and different applications |
US6714787B2 (en) | 2002-01-17 | 2004-03-30 | Motorola, Inc. | Method and apparatus for adapting a routing map for a wireless communications network |
US6882635B2 (en) | 2002-02-05 | 2005-04-19 | Qualcomm Incorporated | Coexistence between interfering communication systems |
US7626508B2 (en) * | 2002-03-05 | 2009-12-01 | Aeromesh Corporation | Monitoring system and method |
US6985087B2 (en) | 2002-03-15 | 2006-01-10 | Qualcomm Inc. | Method and apparatus for wireless remote telemetry using ad-hoc networks |
US6801865B2 (en) | 2002-03-21 | 2004-10-05 | Engage Networks, Inc. | Meter monitoring and tamper protection system and method |
US6831921B2 (en) | 2002-03-27 | 2004-12-14 | James A. Higgins | Wireless internet access system |
KR100701110B1 (en) | 2002-03-28 | 2007-03-30 | 로버트쇼 컨트롤즈 캄파니 | Energy management system and method |
US7230544B2 (en) | 2002-04-22 | 2007-06-12 | Cellnet Innovations, Inc. | Intelligent two-way telemetry |
US7177661B2 (en) | 2002-05-06 | 2007-02-13 | Extricom Ltd. | Communication between wireless access points over LAN cabling |
WO2003096503A2 (en) | 2002-05-07 | 2003-11-20 | Enikia Llc | Power theft prevention based on signature monitoring on power lines |
AU2003239385A1 (en) | 2002-05-10 | 2003-11-11 | Richard R. Reisman | Method and apparatus for browsing using multiple coordinated device |
US7561977B2 (en) | 2002-06-13 | 2009-07-14 | Whirlpool Corporation | Total home energy management system |
US7119713B2 (en) | 2002-06-27 | 2006-10-10 | Elster Electricity, Llc | Dynamic self-configuring metering network |
US20040113810A1 (en) | 2002-06-28 | 2004-06-17 | Mason Robert T. | Data collector for an automated meter reading system |
GB0218452D0 (en) | 2002-08-08 | 2002-09-18 | Lal Depak | Energy consumption monitoring |
US7069438B2 (en) | 2002-08-19 | 2006-06-27 | Sowl Associates, Inc. | Establishing authenticated network connections |
US20040039817A1 (en) | 2002-08-26 | 2004-02-26 | Lee Mai Tranh | Enhanced algorithm for initial AP selection and roaming |
US7324453B2 (en) | 2002-08-30 | 2008-01-29 | Alcatel Lucent | Constraint-based shortest path first method for dynamically switched optical transport networks |
US7009379B2 (en) | 2002-09-12 | 2006-03-07 | Landis & Gyr, Inc. | Electricity meter with power supply load management |
EP1401224A1 (en) | 2002-09-17 | 2004-03-24 | Motorola, Inc. | Software download to software definable radio by intermediate communication unit |
WO2004030152A2 (en) | 2002-09-30 | 2004-04-08 | Basic Resources, Inc. | Outage notification device and method |
WO2004034653A1 (en) | 2002-10-11 | 2004-04-22 | Nokia Corporation | Dynamic tunneling peering with performance optimisation |
US6995666B1 (en) | 2002-10-16 | 2006-02-07 | Luttrell Clyde K | Cellemetry-operated railroad switch heater |
US7599323B2 (en) | 2002-10-17 | 2009-10-06 | Alcatel-Lucent Usa Inc. | Multi-interface mobility client |
WO2004047382A1 (en) | 2002-11-20 | 2004-06-03 | Fujitsu Limited | Radio terminal apparatus |
JP3773049B2 (en) | 2002-11-28 | 2006-05-10 | ヤマハ株式会社 | A musical tone attenuation rate control device that generates decibel linear attenuation rate data according to the position of the knob. |
US20040117788A1 (en) | 2002-12-11 | 2004-06-17 | Jeyhan Karaoguz | Method and system for TV interface for coordinating media exchange with a media peripheral |
JP3799010B2 (en) * | 2002-12-19 | 2006-07-19 | アンリツ株式会社 | Mesh network bridge |
US20040125776A1 (en) | 2002-12-26 | 2004-07-01 | Haugli Hans C. | Peer-to-peer wireless data communication system with progressive dynamic routing |
US7366113B1 (en) * | 2002-12-27 | 2008-04-29 | At & T Corp. | Adaptive topology discovery in communication networks |
US6859186B2 (en) | 2003-02-03 | 2005-02-22 | Silver Spring Networks, Inc. | Flush-mounted antenna and transmission system |
US7174170B2 (en) | 2003-02-12 | 2007-02-06 | Nortel Networks Limited | Self-selection of radio frequency channels to reduce co-channel and adjacent channel interference in a wireless distributed network |
JP4134916B2 (en) | 2003-02-14 | 2008-08-20 | 松下電器産業株式会社 | Network connection device and network connection switching method |
US7304587B2 (en) * | 2003-02-14 | 2007-12-04 | Energy Technology Group, Inc. | Automated meter reading system, communication and control network for automated meter reading, meter data collector program product, and associated methods |
US20070013547A1 (en) | 2003-02-14 | 2007-01-18 | Boaz Jon A | Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods |
US7400264B2 (en) | 2003-02-14 | 2008-07-15 | Energy Technology Group, Inc. | Automated meter reading system, communication and control network for automated meter reading, meter data collector, and associated methods |
US20040185845A1 (en) | 2003-02-28 | 2004-09-23 | Microsoft Corporation | Access point to access point range extension |
US7406298B2 (en) | 2003-03-25 | 2008-07-29 | Silver Spring Networks, Inc. | Wireless communication system |
US7089089B2 (en) | 2003-03-31 | 2006-08-08 | Power Measurement Ltd. | Methods and apparatus for retrieving energy readings from an energy monitoring device |
US7010363B2 (en) | 2003-06-13 | 2006-03-07 | Battelle Memorial Institute | Electrical appliance energy consumption control methods and electrical energy consumption systems |
US7562024B2 (en) | 2003-06-18 | 2009-07-14 | Hewlett-Packard Development Company, L.P. | Method and system for addressing client service outages |
US7053853B2 (en) | 2003-06-26 | 2006-05-30 | Skypilot Network, Inc. | Planar antenna for a wireless mesh network |
US7444508B2 (en) | 2003-06-30 | 2008-10-28 | Nokia Corporation | Method of implementing secure access |
WO2005004368A2 (en) | 2003-07-07 | 2005-01-13 | Lg Electronics, Inc. | Upgrade apparatus and its method for home network system |
US7701858B2 (en) | 2003-07-17 | 2010-04-20 | Sensicast Systems | Method and apparatus for wireless communication in a mesh network |
US7251570B2 (en) | 2003-07-18 | 2007-07-31 | Power Measurement Ltd. | Data integrity in a mesh network |
US7321316B2 (en) | 2003-07-18 | 2008-01-22 | Power Measurement, Ltd. | Grouping mesh clusters |
KR100547788B1 (en) | 2003-07-31 | 2006-01-31 | 삼성전자주식회사 | High speed personal wireless network and data transmission method capable of communication between devices of piconets |
JP4218451B2 (en) | 2003-08-05 | 2009-02-04 | 株式会社日立製作所 | License management system, server device and terminal device |
US7336642B2 (en) | 2003-08-07 | 2008-02-26 | Skypilot Networks, Inc. | Communication protocol for a wireless mesh architecture |
AU2003270322A1 (en) | 2003-09-05 | 2005-04-21 | Itron, Inc. | Synchronizing and controlling software downloads, such as for utility meter-reading data collection and processing |
US20050055432A1 (en) * | 2003-09-08 | 2005-03-10 | Smart Synch, Inc. | Systems and methods for remote power management using 802.11 wireless protocols |
US7289887B2 (en) | 2003-09-08 | 2007-10-30 | Smartsynch, Inc. | Systems and methods for remote power management using IEEE 802 based wireless communication links |
JP4139758B2 (en) | 2003-09-29 | 2008-08-27 | 関西電力株式会社 | Path setting method and network, relay station, and master station that employ the path setting method |
US7245938B2 (en) | 2003-10-17 | 2007-07-17 | Sobczak David M | Wireless antenna traffic matrix |
US7324824B2 (en) | 2003-12-09 | 2008-01-29 | Awarepoint Corporation | Wireless network monitoring system |
US7814483B2 (en) | 2003-11-04 | 2010-10-12 | Thomson Licensing | Cache server at hotspots for downloading services |
KR100640327B1 (en) | 2003-11-24 | 2006-10-30 | 삼성전자주식회사 | New Frame Structure and Data Transmission Method for Bridge Operation in High-Speed Personal Wireless Network |
US7215926B2 (en) | 2003-12-05 | 2007-05-08 | Microsoft Corporation | Enhanced mode technique for growing mesh networks |
KR100547849B1 (en) | 2003-12-05 | 2006-01-31 | 삼성전자주식회사 | Frame Structure for Selecting Bridge Device in WPAN and Method for Selecting Bridge Device in WPAN |
AU2003292275A1 (en) | 2003-12-19 | 2005-07-05 | Nokia Corporation | Selection of radio resources in a wireless communication device |
EP1553713A1 (en) | 2004-01-09 | 2005-07-13 | Thomson Multimedia Broadband Belgium | Time synchronizing device and process and associated products |
US7317404B2 (en) | 2004-01-14 | 2008-01-08 | Itron, Inc. | Method and apparatus for collecting and displaying consumption data from a meter reading system |
US7802015B2 (en) | 2004-01-26 | 2010-09-21 | Tantalus Systems Corp. | Communications system of heterogeneous elements |
JP2005242691A (en) | 2004-02-26 | 2005-09-08 | Fujitsu Ltd | Program download and switching method and apparatus therefor |
US20050195757A1 (en) | 2004-03-02 | 2005-09-08 | Kidder Kenneth B. | Wireless association approach and arrangement therefor |
US20050194456A1 (en) | 2004-03-02 | 2005-09-08 | Tessier Patrick C. | Wireless controller with gateway |
US7539862B2 (en) | 2004-04-08 | 2009-05-26 | Ipass Inc. | Method and system for verifying and updating the configuration of an access device during authentication |
US20050251403A1 (en) * | 2004-05-10 | 2005-11-10 | Elster Electricity, Llc. | Mesh AMR network interconnecting to TCP/IP wireless mesh network |
JP4449588B2 (en) | 2004-06-09 | 2010-04-14 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, wireless communication method, and computer program |
US7847706B1 (en) | 2004-06-23 | 2010-12-07 | Wireless Telematics Llc | Wireless electrical apparatus controller device and method of use |
WO2006012211A2 (en) | 2004-06-24 | 2006-02-02 | Meshnetworks, Inc. | A system and method for adaptive rate selection for wireless networks |
JP4445351B2 (en) | 2004-08-31 | 2010-04-07 | 株式会社東芝 | Semiconductor module |
US7627283B2 (en) | 2004-09-10 | 2009-12-01 | Nivis, Llc | System and method for a wireless mesh network of configurable signage |
US7590589B2 (en) | 2004-09-10 | 2009-09-15 | Hoffberg Steven M | Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference |
US7554941B2 (en) | 2004-09-10 | 2009-06-30 | Nivis, Llc | System and method for a wireless mesh network |
US7263371B2 (en) | 2004-09-13 | 2007-08-28 | Lucent Technologies Inc. | Method for controlling paging and registration of a mobile device in a wireless communications system |
US7170425B2 (en) | 2004-09-24 | 2007-01-30 | Elster Electricity, Llc | System and method for creating multiple operating territories within a meter reading system |
US7546595B1 (en) | 2004-10-14 | 2009-06-09 | Microsoft Corporation | System and method of installing software updates in a computer networking environment |
US7349355B2 (en) | 2004-10-27 | 2008-03-25 | Intel Corporation | Methods and apparatus for providing a communication proxy system |
US7369856B2 (en) | 2004-11-24 | 2008-05-06 | Intel Corporation | Method and system to support fast hand-over of mobile subscriber stations in broadband wireless networks |
WO2006065188A1 (en) | 2004-12-17 | 2006-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Retransmission in wireless communication systems |
US7327998B2 (en) | 2004-12-22 | 2008-02-05 | Elster Electricity, Llc | System and method of providing a geographic view of nodes in a wireless network |
US7428229B2 (en) | 2004-12-28 | 2008-09-23 | Motorola, Inc. | Ad hoc cluster idle node coordination |
US7626967B2 (en) | 2005-01-05 | 2009-12-01 | Intel Corporation | Methods and apparatus for providing a transparent bridge associated with a wireless mesh network |
US7697459B2 (en) | 2005-01-05 | 2010-04-13 | Intel Corporation | Methods and apparatus for identifying a distance-vector route associated with a wireless mesh network |
GB2439490B (en) | 2005-03-08 | 2008-12-17 | Radio Usa Inc E | Systems and methods for modifying power usage |
US20060215673A1 (en) | 2005-03-11 | 2006-09-28 | Interdigital Technology Corporation | Mesh network configured to autonomously commission a network and manage the network topology |
US8599822B2 (en) * | 2005-03-23 | 2013-12-03 | Cisco Technology, Inc. | Slot-based transmission synchronization mechanism in wireless mesh networks |
EP1710764A1 (en) | 2005-04-07 | 2006-10-11 | Sap Ag | Authentication of products using identification tags |
EP1713206A1 (en) | 2005-04-11 | 2006-10-18 | Last Mile Communications/Tivis Limited | A distributed communications network comprising wirelessly linked base stations |
US7676231B2 (en) | 2005-04-13 | 2010-03-09 | Intel Corporation | Methods and apparatus for selecting communication channels based on channel load information |
US7522540B1 (en) | 2005-04-15 | 2009-04-21 | Nvidia Corporation | Extended service set mesh topology discovery |
US7814322B2 (en) * | 2005-05-03 | 2010-10-12 | Sri International | Discovery and authentication scheme for wireless mesh networks |
KR100737854B1 (en) | 2005-05-10 | 2007-07-12 | 삼성전자주식회사 | Optimal Route Routing Method in Wireless Networks |
US7539882B2 (en) | 2005-05-30 | 2009-05-26 | Rambus Inc. | Self-powered devices and methods |
WO2006130725A2 (en) | 2005-05-31 | 2006-12-07 | Interdigital Technology Corporation | Authentication and encryption methods using shared secret randomness in a joint channel |
US20070063866A1 (en) | 2005-06-02 | 2007-03-22 | Andisa Technologies, Inc. | Remote meter monitoring and control system |
US7274975B2 (en) | 2005-06-06 | 2007-09-25 | Gridpoint, Inc. | Optimized energy management system |
US7539151B2 (en) | 2005-06-30 | 2009-05-26 | Intel Corporation | Channel selection for mesh networks having nodes with multiple radios |
DE602005002259T2 (en) | 2005-06-30 | 2008-05-21 | Ntt Docomo Inc. | Apparatus and method for improved handoff in mesh networks |
WO2007015822A1 (en) | 2005-07-20 | 2007-02-08 | Firetide, Inc. | Route optimization for on-demand routing protocols for mesh networks |
US20070060147A1 (en) | 2005-07-25 | 2007-03-15 | Shin Young S | Apparatus for transmitting data packets between wireless sensor networks over internet, wireless sensor network domain name server, and data packet transmission method using the same |
US7602747B2 (en) | 2005-07-29 | 2009-10-13 | Intel Corporation | Systems and methods increased mobility among mobile nodes in a wireless network |
US7106044B1 (en) | 2005-08-02 | 2006-09-12 | General Electric Company | Systems, methods, and apparatuses for detecting residential electricity theft in firmware |
US7400253B2 (en) | 2005-08-04 | 2008-07-15 | Mhcmos, Llc | Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof |
US7583984B2 (en) | 2005-08-12 | 2009-09-01 | Lg Electronics Inc. | Method of providing notification for battery power conservation in a wireless system |
US7495578B2 (en) | 2005-09-02 | 2009-02-24 | Elster Electricity, Llc | Multipurpose interface for an automated meter reading device |
US7911359B2 (en) | 2005-09-12 | 2011-03-22 | Abl Ip Holding Llc | Light management system having networked intelligent luminaire managers that support third-party applications |
US8874477B2 (en) | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
US7733224B2 (en) | 2006-06-30 | 2010-06-08 | Bao Tran | Mesh network personal emergency response appliance |
US7788491B1 (en) | 2005-10-21 | 2010-08-31 | Sprint Communications Company L.P. | Use of encryption for secure communication exchanges |
US7498873B2 (en) | 2005-11-02 | 2009-03-03 | Rosom Corporation | Wide-lane pseudorange measurements using FM signals |
US7493494B2 (en) | 2005-11-03 | 2009-02-17 | Prostor Systems, Inc. | Secure data cartridge |
US7756538B2 (en) | 2005-11-09 | 2010-07-13 | Motorola, Inc. | Wide area network handset assisted content delivery system and method of using same |
US7814478B2 (en) | 2005-11-09 | 2010-10-12 | Texas Instruments Norway As | Methods and apparatus for use in updating application programs in memory of a network device |
US20070110024A1 (en) | 2005-11-14 | 2007-05-17 | Cisco Technology, Inc. | System and method for spanning tree cross routes |
KR20130036332A (en) | 2005-11-17 | 2013-04-11 | 실버 스프링 네트웍스, 인코포레이티드 | Method and system for providing a network protocol for utility services |
US7962101B2 (en) | 2005-11-17 | 2011-06-14 | Silver Spring Networks, Inc. | Method and system for providing a routing protocol for wireless networks |
US7623043B2 (en) | 2005-12-19 | 2009-11-24 | General Electric Company | Method and system for metering consumption of energy |
US20070147268A1 (en) | 2005-12-23 | 2007-06-28 | Elster Electricity, Llc | Distributing overall control of mesh AMR LAN networks to WAN interconnected collectors |
US7743224B2 (en) | 2006-01-06 | 2010-06-22 | Dot Hill Systems Corp. | Method and apparatus for virtual load regions in storage system controllers |
US8219705B2 (en) | 2006-01-31 | 2012-07-10 | Sigma Designs, Inc. | Silent acknowledgement of routing in a mesh network |
US20080170511A1 (en) | 2006-01-31 | 2008-07-17 | Peter Shorty | Home electrical device control within a wireless mesh network |
US8300652B2 (en) | 2006-01-31 | 2012-10-30 | Sigma Designs, Inc. | Dynamically enabling a secondary channel in a mesh network |
US20080154396A1 (en) | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US20080159213A1 (en) | 2006-01-31 | 2008-07-03 | Peter Shorty | Home electrical device control within a wireless mesh network |
US7680041B2 (en) | 2006-01-31 | 2010-03-16 | Zensys A/S | Node repair in a mesh network |
US8223783B2 (en) | 2006-01-31 | 2012-07-17 | Sigma Designs, Inc. | Using battery-powered nodes in a mesh network |
US20080165712A1 (en) | 2006-01-31 | 2008-07-10 | Peter Shorty | Home electrical device control within a wireless mesh network |
US8509790B2 (en) | 2006-01-31 | 2013-08-13 | Tommas Jess Christensen | Multi-speed mesh networks |
US20080151824A1 (en) | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US20080151795A1 (en) | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US8626251B2 (en) | 2006-01-31 | 2014-01-07 | Niels Thybo Johansen | Audio-visual system energy savings using a mesh network |
US9166812B2 (en) | 2006-01-31 | 2015-10-20 | Sigma Designs, Inc. | Home electrical device control within a wireless mesh network |
US8626178B2 (en) | 2006-01-31 | 2014-01-07 | Niels Thybo Johansen | Audio-visual system control using a mesh network |
US8194569B2 (en) | 2006-01-31 | 2012-06-05 | Sigma Designs, Inc. | Static update controller enablement in a mesh network |
US20070177576A1 (en) | 2006-01-31 | 2007-08-02 | Niels Thybo Johansen | Communicating metadata through a mesh network |
US20080151825A1 (en) | 2006-01-31 | 2008-06-26 | Peter Shorty | Home electrical device control within a wireless mesh network |
US20070257813A1 (en) | 2006-02-03 | 2007-11-08 | Silver Spring Networks | Secure network bootstrap of devices in an automatic meter reading network |
US7545285B2 (en) | 2006-02-16 | 2009-06-09 | Elster Electricity, Llc | Load control unit in communication with a fixed network meter reading system |
US7427927B2 (en) | 2006-02-16 | 2008-09-23 | Elster Electricity, Llc | In-home display communicates with a fixed network meter reading system |
US7729496B2 (en) | 2006-02-28 | 2010-06-01 | International Business Machines Corporation | Efficient key updates in encrypted database systems |
US20070206521A1 (en) | 2006-03-05 | 2007-09-06 | Osaje Emeke E | Wireless Utility Monitoring And Control Mesh Network |
US7936681B2 (en) | 2006-03-06 | 2011-05-03 | Cisco Technology, Inc. | Cross-layer design techniques for interference-aware routing configuration in wireless mesh networks |
US7768926B2 (en) | 2006-03-09 | 2010-08-03 | Firetide, Inc. | Effective bandwidth path metric and path computation method for wireless mesh networks with wired links |
US7802245B2 (en) | 2006-04-27 | 2010-09-21 | Agere Systems Inc. | Methods and apparatus for performing in-service upgrade of software in network processor |
US7958032B2 (en) | 2006-05-10 | 2011-06-07 | International Business Machines Corporation | Generating event messages corresponding to event indicators |
US7548907B2 (en) | 2006-05-11 | 2009-06-16 | Theresa Wall | Partitioning electrical data within a database |
EP2018633A1 (en) * | 2006-05-17 | 2009-01-28 | Tanla Solutions Limited | Automated meter reading system and method thereof |
US8103389B2 (en) | 2006-05-18 | 2012-01-24 | Gridpoint, Inc. | Modular energy control system |
EP2039088A4 (en) | 2006-07-03 | 2012-02-15 | Tanla Solutions Ltd | Home security system using an ad-hoc wireless mesh and method thereof |
US7843842B2 (en) | 2006-08-04 | 2010-11-30 | Cisco Technology, Inc. | Method and system for initiating a remote trace route |
US20080032703A1 (en) | 2006-08-07 | 2008-02-07 | Microsoft Corporation | Location based notification services |
US7548826B2 (en) | 2006-08-24 | 2009-06-16 | Blue Pillar, Inc. | Power monitoring and testing |
US7707415B2 (en) | 2006-09-07 | 2010-04-27 | Motorola, Inc. | Tunneling security association messages through a mesh network |
US8055461B2 (en) | 2006-09-15 | 2011-11-08 | Itron, Inc. | Distributing metering responses for load balancing an AMR network |
US8138944B2 (en) | 2006-09-15 | 2012-03-20 | Itron, Inc. | Home area networking (HAN) with handheld for diagnostics |
US7986718B2 (en) | 2006-09-15 | 2011-07-26 | Itron, Inc. | Discovery phase in a frequency hopping network |
CA2663135C (en) | 2006-09-19 | 2017-01-31 | Firetide, Inc. | A multi-channel assignment method for multi-radio multi-hop wireless mesh networks |
US7571865B2 (en) | 2006-10-31 | 2009-08-11 | Tonerhead, Inc. | Wireless temperature control system |
US20080177678A1 (en) | 2007-01-24 | 2008-07-24 | Paul Di Martini | Method of communicating between a utility and its customer locations |
US8155007B2 (en) | 2007-01-25 | 2012-04-10 | Cisco Technology, Inc. | Path optimization for mesh access points in a wireless mesh network |
US7853417B2 (en) | 2007-01-30 | 2010-12-14 | Silver Spring Networks, Inc. | Methods and system for utility network outage detection |
US7957322B2 (en) | 2007-02-02 | 2011-06-07 | Silver Sring Networks, Inc. | Flow-through provisioning in utility AMR/AMI networks |
CN101765758B (en) | 2007-02-02 | 2011-08-31 | 阿芝台克联合公司 | Utility monitoring device, system and method |
US8489716B2 (en) | 2007-02-02 | 2013-07-16 | Silver Spring Networks, Inc. | Method and system of providing network addresses to in-premise devices in a utility network |
US8023482B2 (en) | 2007-03-15 | 2011-09-20 | Cisco Technology, Inc. | Dynamic rate limiting in wireless mesh networks |
US7859477B2 (en) | 2007-03-30 | 2010-12-28 | Silver Spring Networks, Inc. | J-pole antenna |
US8230108B2 (en) | 2007-04-13 | 2012-07-24 | Hart Communication Foundation | Routing packets on a network using directed graphs |
ITTO20070351A1 (en) | 2007-05-17 | 2008-11-18 | Gevipi Ag | THERMOSTATIC MIXER DEVICE PERFECTED FOR SANITARY USE |
US8189577B2 (en) | 2007-06-15 | 2012-05-29 | Silver Spring Networks, Inc. | Network utilities in wireless mesh communications networks |
US7940669B2 (en) | 2007-06-15 | 2011-05-10 | Silver Spring Networks, Inc. | Route and link evaluation in wireless mesh communications networks |
US20090003356A1 (en) | 2007-06-15 | 2009-01-01 | Silver Spring Networks, Inc. | Node discovery and culling in wireless mesh communications networks |
US8072951B2 (en) | 2007-06-15 | 2011-12-06 | Silver Spring Networks, Inc. | Method and system for providing routing protocols in a frequency hopping spread spectrum network |
US8130700B2 (en) | 2007-06-15 | 2012-03-06 | Silver Spring Networks, Inc. | Method and system for providing network and routing protocols for utility services |
US8233905B2 (en) | 2007-06-15 | 2012-07-31 | Silver Spring Networks, Inc. | Load management in wireless mesh communications networks |
US7769888B2 (en) | 2007-06-15 | 2010-08-03 | Silver Spring Networks, Inc. | Method and system for providing network and routing protocols for utility services |
US20080317047A1 (en) | 2007-06-20 | 2008-12-25 | Motorola, Inc. | Method for discovering a route to a peer node in a multi-hop wireless mesh network |
US20090010178A1 (en) | 2007-07-03 | 2009-01-08 | Digi International Inc. | Cordless mains powered form factor for mesh network router node |
US9464917B2 (en) | 2007-07-18 | 2016-10-11 | Silver Spring Networks, Inc. | Method and system of reading utility meter data over a network |
US7894371B2 (en) | 2007-07-31 | 2011-02-22 | Motorola, Inc. | System and method of resource allocation within a communication system |
US7961740B2 (en) | 2007-08-01 | 2011-06-14 | Silver Spring Networks, Inc. | Method and system of routing in a utility smart-grid network |
US8279870B2 (en) | 2007-08-01 | 2012-10-02 | Silver Spring Networks, Inc. | Method and system of routing in a utility smart-grid network |
US20090115626A1 (en) | 2007-11-02 | 2009-05-07 | Raj Vaswani | Electronic meter for networked meter reading |
US9158510B2 (en) | 2007-11-21 | 2015-10-13 | International Business Machines Corporation | System and computer program product for creating a telecommunications application |
US20090132220A1 (en) | 2007-11-21 | 2009-05-21 | International Business Machines Corporation | Method For Creating A Telecommunications Application |
WO2009067256A2 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for power outage and restoration notification in an advanced metering infrastructure network |
WO2009067249A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for application layer time synchronization without creating a time discrepancy or gap in time |
EP2257884A4 (en) | 2007-11-25 | 2011-04-20 | Trilliant Networks Inc | System and method for transmitting and receiving information on a neighborhood area network |
WO2009067255A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | Point-to-point communication within a mesh network |
WO2009067248A1 (en) | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | Application layer authorization token and method |
US8289883B2 (en) | 2007-12-21 | 2012-10-16 | Samsung Electronics Co., Ltd. | Hybrid multicast routing protocol for wireless mesh networks |
US7522639B1 (en) | 2007-12-26 | 2009-04-21 | Katz Daniel A | Synchronization among distributed wireless devices beyond communications range |
US8442092B2 (en) | 2007-12-27 | 2013-05-14 | Silver Spring Networks, Inc. | Creation and use of unique hopping sequences in a frequency-hopping spread spectrum (FHSS) wireless communications network |
US20090167547A1 (en) | 2007-12-31 | 2009-07-02 | Brad Gilbert | Utility disconnect monitor node with communication interface |
US7961554B2 (en) | 2008-01-11 | 2011-06-14 | Cellnet Innovations, Inc. | Methods and systems for accurate time-keeping on metering and other network communication devices |
JP4530059B2 (en) | 2008-02-18 | 2010-08-25 | 日本電気株式会社 | Disk array device, firmware exchange method, and firmware exchange program |
US8402455B2 (en) | 2008-03-17 | 2013-03-19 | Landis+Gyr Innovations, Inc. | Methods and systems for distributing firmware through an over-the-air network |
US7839899B2 (en) | 2008-03-28 | 2010-11-23 | Silver Spring Networks, Inc. | Method and system of updating routing information in a communications network |
US8311063B2 (en) | 2008-03-28 | 2012-11-13 | Silver Spring Networks, Inc. | Updating routing and outage information in a communications network |
US20090267792A1 (en) | 2008-04-25 | 2009-10-29 | Henry Crichlow | Customer supported automatic meter reading method |
US7978632B2 (en) | 2008-05-13 | 2011-07-12 | Nortel Networks Limited | Wireless mesh network transit link topology optimization method and system |
US8843241B2 (en) | 2008-05-20 | 2014-09-23 | LiveMeters, Inc. | Remote monitoring and control system comprising mesh and time synchronization technology |
US20090303972A1 (en) | 2008-06-06 | 2009-12-10 | Silver Spring Networks | Dynamic Scrambling Techniques for Reducing Killer Packets in a Wireless Network |
US20090310593A1 (en) | 2008-06-17 | 2009-12-17 | Qualcomm Incorporated | Self-positioning access points |
US8484486B2 (en) | 2008-08-06 | 2013-07-09 | Silver Spring Networks, Inc. | Integrated cryptographic security module for a network node |
US8756675B2 (en) | 2008-08-06 | 2014-06-17 | Silver Spring Networks, Inc. | Systems and methods for security in a wireless utility network |
US8467370B2 (en) | 2008-08-15 | 2013-06-18 | Silver Spring Networks, Inc. | Beaconing techniques in frequency hopping spread spectrum (FHSS) wireless mesh networks |
US8699377B2 (en) | 2008-09-04 | 2014-04-15 | Trilliant Networks, Inc. | System and method for implementing mesh network communications using a mesh network protocol |
US8207726B2 (en) | 2008-09-05 | 2012-06-26 | Silver Spring Networks, Inc. | Determining electric grid endpoint phase connectivity |
US9025584B2 (en) | 2008-09-09 | 2015-05-05 | Silver Spring Networks, Inc. | Multi-channel mesh nodes employing stacked responses |
WO2010033245A1 (en) | 2008-09-22 | 2010-03-25 | Silver Spring Networks, Inc. | Power line communication using frequency hopping |
US9743337B2 (en) | 2008-09-22 | 2017-08-22 | Silver Spring Networks, Inc. | Meshed networking of access points in a utility network |
WO2010033244A1 (en) | 2008-09-22 | 2010-03-25 | Silver Spring Networks, Inc. | Transparent routing in a power line carrier network |
US8990569B2 (en) | 2008-12-03 | 2015-03-24 | Verizon Patent And Licensing Inc. | Secure communication session setup |
US8249049B2 (en) | 2009-03-17 | 2012-08-21 | Cisco Technology, Inc. | Clock synchronization |
-
2008
- 2008-11-21 WO PCT/US2008/013024 patent/WO2009067256A2/en active Application Filing
- 2008-11-21 CA CA2705091A patent/CA2705091A1/en not_active Abandoned
- 2008-11-21 US US12/275,254 patent/US8171364B2/en active Active
- 2008-11-21 EP EP08851927.7A patent/EP2215556B1/en active Active
-
2012
- 2012-03-16 US US13/423,160 patent/US8370697B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572438A (en) * | 1995-01-05 | 1996-11-05 | Teco Energy Management Services | Engery management and building automation system |
US5684710A (en) * | 1995-01-05 | 1997-11-04 | Tecom Inc. | System for measuring electrical power interruptions |
US5696695A (en) * | 1995-01-05 | 1997-12-09 | Tecom Inc. | System for rate-related control of electrical loads |
US20010010032A1 (en) * | 1998-10-27 | 2001-07-26 | Ehlers Gregory A. | Energy management and building automation system |
US7174260B2 (en) * | 2004-04-01 | 2007-02-06 | Blue Line Innovations Inc. | System and method for reading power meters |
US20060217936A1 (en) * | 2005-03-22 | 2006-09-28 | Elster Electricity Llc | Using a fixed network wireless data collection system to improve utility responsiveness to power outages |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140085105A1 (en) * | 2012-09-21 | 2014-03-27 | Silver Spring Networks, Inc. | Power Outage Notification and Determination |
WO2014046925A1 (en) | 2012-09-21 | 2014-03-27 | Silver Spring Networks, Inc. | Power outage notification and determination |
CN104781861A (en) * | 2012-09-21 | 2015-07-15 | 思飞信智能电网公司 | Power outage notification and determination |
EP2898493A4 (en) * | 2012-09-21 | 2015-10-28 | Silver Spring Networks Inc | Power outage notification and determination |
AU2013318370B2 (en) * | 2012-09-21 | 2016-12-15 | Itron Networked Solutions, Inc. | Power outage notification and determination |
US9689710B2 (en) * | 2012-09-21 | 2017-06-27 | Silver Spring Networks, Inc. | Power outage notification and determination |
EP3371930A4 (en) * | 2015-11-05 | 2019-03-27 | Trilliant Networks, Inc. | METHOD AND APPARATUS FOR SECURE REPORT OF ACCUMULATED EVENTS |
US10505948B2 (en) * | 2015-11-05 | 2019-12-10 | Trilliant Networks, Inc. | Method and apparatus for secure aggregated event reporting |
US20210223761A1 (en) * | 2018-07-27 | 2021-07-22 | Rockwell Automation Technologies, Inc. | System And Method Of Communicating Unconnected Messages Over High Availability Industrial Control Systems |
US11669076B2 (en) * | 2018-07-27 | 2023-06-06 | Rockwell Automation Technologies, Inc. | System and method of communicating unconnected messages over high availability industrial control systems |
Also Published As
Publication number | Publication date |
---|---|
EP2215556B1 (en) | 2019-08-28 |
WO2009067256A3 (en) | 2009-12-30 |
EP2215556A4 (en) | 2011-01-19 |
CA2705091A1 (en) | 2009-05-28 |
EP2215556A2 (en) | 2010-08-11 |
WO2009067256A2 (en) | 2009-05-28 |
US20090138777A1 (en) | 2009-05-28 |
US8370697B2 (en) | 2013-02-05 |
US8171364B2 (en) | 2012-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8370697B2 (en) | System and method for power outage and restoration notification in an advanced metering infrastructure network | |
US8780763B2 (en) | Communication and message route optimization and messaging in a mesh network | |
US8792409B2 (en) | Clearing redundant data in wireless mesh network | |
US9166934B2 (en) | System and method for operating mesh devices in multi-tree overlapping mesh networks | |
US9628372B2 (en) | Data communication apparatus, data communication system, and data communication method | |
AU2010235877B2 (en) | Packet acknowledgement for polled mesh network communications | |
WO2009067260A1 (en) | Power-conserving network device for advanced metering infrastructure | |
US9614799B2 (en) | System and method for operating mesh devices in multi-tree overlapping mesh networks | |
WO2009067252A1 (en) | Proxy use within a mesh network | |
US9078050B2 (en) | Techniques for clock recovery in a mobile information collection network following a power outage | |
CA2765683A1 (en) | Mesh infrastructure utilizing priority repeaters and multiple transceivers | |
CA2717641C (en) | Packet acknowledgment for polled mesh network communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRILLIANT NETWORKS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VEILLETTE, MICHEL;REEL/FRAME:027889/0410 Effective date: 20081220 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: THIRD EYE CAPITAL CORPORATION, CANADA Free format text: SECURITY INTEREST;ASSIGNORS:TRILLIANT NETWORKS, INC.;TRILLIANT HOLDINGS, INC.;TRILLIANT NETWORKS (CANADA) INC.;REEL/FRAME:050989/0361 Effective date: 20191101 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |