[go: up one dir, main page]

US20110282037A1 - Antibody preparation - Google Patents

Antibody preparation Download PDF

Info

Publication number
US20110282037A1
US20110282037A1 US13/162,755 US201113162755A US2011282037A1 US 20110282037 A1 US20110282037 A1 US 20110282037A1 US 201113162755 A US201113162755 A US 201113162755A US 2011282037 A1 US2011282037 A1 US 2011282037A1
Authority
US
United States
Prior art keywords
antibody
seq
human
variable region
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/162,755
Inventor
Herman Waldmann
Mark Frewin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
BTG International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTG International Ltd filed Critical BTG International Ltd
Priority to US13/162,755 priority Critical patent/US20110282037A1/en
Publication of US20110282037A1 publication Critical patent/US20110282037A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to novel antibodies directed against the CD3 antigen complex, to DNA and RNA encoding for production these antibodies, to cell lines containing such DNA and/or RNA capable of producing them and to methods of producing the antibodies using the DNA, RNA and/or cells.
  • the human CD3 antigen consists of a minimum of four invariant polypeptide chains, which are non-covalently associated with the T-cell receptors on the surface of T-cells, and is generally now referred to as the CD3 antigen complex. This is intimately involved in the process of T-cell activation in response to antigen recognition by the T-cell receptors. All CD3 monoclonal antibodies can be used to sensitise T-cells to secondary proliferative stimuli such as IL1 (interleukin 1) and IL2 (interleukin 2). In addition, certain CD3 monoclonal antibodies are themselves mitogenic for T-cells. This property is isotype dependent and results from the interaction of the CD3 antibody Fc domain with Fc receptors on the surface of accessory cells.
  • Rodent CD3 antibodies have been used to influence immunological status by suppressing, enhancing or re-directing T-cell responses to antigens. They therefore have considerable therapeutic potential in the human for use as immuno-suppressive agents, for example for the treatment of rejection episodes following the transplantation of renal, hepatic and cardiac allografts.
  • WO 92/06193 and its equivalents address the CD3 antibody antiglobulin response problem by re-shaping or “humanising” the variable region genes for the antibodies and expressing them in association with relevant human constant domain genes. This reduces the non-human content of the monoclonal antibody to such a low level that an antiglobulin response is unlikely.
  • WO 93/19196 and its equivalents address the problem of first dose response.
  • These teach use of aglycosylated humanised CD3 antibodies of the IgG subclass which surprisingly retain their antigen binding specificity and immunosuppressive properties and yet do not induce T cell mitogenesis in vitro and induce a reduced level of cytokine release in vivo, whilst still maintaining some Fe binding ability.
  • CD3 antibodies Whilst these CD3 antibodies have great therapeutic value, their production in cell culture has not proven to be easy. In practice poor antibody yield is found accompanied by poor growth of transfected cell line. After much work over several years the best antibody levels achieved have been about 10 ⁇ g/ml, with cells expressing CD3 antibodies growing very slowly. Furthermore, these cells go negative over time in hollow cartridge systems used for large scale production.
  • the Celltech Glutamine Synthesis vector system PEE12 used in the aforesaid expression of CD3 antibodies routinely provides expression of other humanised antibodies at about 200 ⁇ g/ml.
  • the present inventors have now surprisingly found that by producing a chimeric form of the anti-CD3 antibody, linking the rat CD3 light chain variable region with the human lambda constant region and cloning this into PEE12 containing humanised CD3 aglycosyl heavy chain, they can produce myleoma cell lines which provide expression of functional aglycosylated CD3 antibodies at 60 to 100 ⁇ g/ml of culture.
  • some of the clones can be selected to provide still higher expression levels, eg. of the order of 120 ⁇ g/ml, and remain stable in long term culture with large scale production with no untoward effect on cell growth.
  • the present invention's chimeric antibodies offer good production capability without antiglobulin response normally associated with rat derived antibodies.
  • the present invention provides an IgG antibody having a binding affinity for the CD3 antigen complex in which in the heavy chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 2, 4 and 6 and respective conservatively modified variants thereof and the light chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 8, 10 and 12 and respective conservatively modified variants thereof
  • the heavy chain variable region framework corresponds in sequence to the human type sequence and the light chain variable region includes one or more of the specific amino acids characteristic of the rodent type sequence.
  • the light chain variable region includes sufficient amino acids specific to the rodent type sequence such that the light and heavy chains associate more strongly than when the light chain variable region is of the corresponding fully human type.
  • the light chain variable region corresponds entirely to the rodent, eg. rat, sequence.
  • only some or even one of the rat characteristic amino acids may be included.
  • Particular amino acids that are of rodent type rather than human type in the light chain variable region sequence are selected from those shown in SEQ ID No 14 in the sequence listing attached hereto, that being a preferred light chain variable region framework sequence wherein all the possible rat framework characteristic amino acids have been included, together with the respective CDR sequences.
  • amino acids characteristic of rat light chain variable framework region in SEQ ID No 14 are: Gln-1, Ala-2, Val-3, Val-4, Ala-7, Asn-8, Thr-12, Leu-14, Ser-16, Lys-19, Leu-20, Leu-39, Tyr-40, Glu-41, Ser-44, Met-48, Tyr-50, Phe-75, His-79, Asn-80, Val-81, Ala-82, Ile-83, Ile-88 and Phe-90.
  • the corresponding human amino acids are in each case Asp-1, Phe-2.
  • the heavy chain variable region framework is of human type and the light chain variable region is of rodent type, that being with all the aforespecified amino acids being the rat type of SEQ ID No 14.
  • rodent type that being with all the aforespecified amino acids being the rat type of SEQ ID No 14.
  • one or more, but not all of these positions of SEQ ID No 14 may be of the human type as long as sufficient rodent, eg. rat, sequence is present to enable stable light-heavy chain interaction to be achieved over that provided by the fully humanised form of the prior art.
  • Such interaction is preferably such that when the antibody is expressed in PEE12 cells using suppliers (Celltech) instructions in excess of 50 ⁇ g/ml is achieved, more preferably in excess of 100 ⁇ g/ml.
  • such cells should not go negative in significant numbers after several weeks use.
  • CDR amino sequences of SEQ ID No 2, 4, 6, 8, 10 and 12 correspond to CDRs (a), (b), (c), (d), (e) and (f) of WO 93/19196 and the CDRs themselves may also be referred to as respective CDRs (a) to (f) below.
  • the heavy chain and/or light chain each have all three of their respective CDRs of SEQ ID No 2, 4 and 6 and SEQ. ID. No 8, 10 and 12.
  • the antibody is aglycosylated.
  • aglycosylated is employed in its normal usage to indicate that the antibodies according to the invention are not glycosylated.
  • human type with respect to the framework region is meant a framework that is similar enough to human framework that it is substantially-non-immunogenic in human when present in an intact antibody.
  • an antibody of the invention having a heavy chain with a human type framework has between 60 and 140%, more typically at least 80 to 100%, of the rodent antibody affinity for the CD3 antigen. Characteristics of humanised monoclonal antibodies and methods for producing these from rodent monoclonals are disclosed in U.S. Pat. No. 5,585,089, the content of which is incorporated herein by reference for such purpose.
  • a human type framework region may have, for example, seven or more of the thirteen changes that distinguish the sequence of the N-terminal 119 amino acids of SEQ ID No 20 from that of SEQ ID No 16. More preferably all the amino acids of the human type are incorporated. These changes may be at, for example, any of positions 5, 18, 19, 42, 49, 75, 77, 78, 88, 93, 97, 98 and 114 of these sequences.
  • rodent type with respect to the framework region is meant a framework that correspond in amino acid sequence to that of an antibody of a rodent, eg. a rat or a mouse.
  • rodent eg. a rat or a mouse.
  • convenient framework amino acids are those of a rat antibody.
  • CD3 antigens are to be found in the report of the First International Workshop and Conference on Human Leukocyte Differentiation Antigens and description of various glycosylated antibodies directed against the CD3 antigen is also to be found in the reports of this series of Workshops and Conferences, particularly the Third and Fourth, published by Oxford University Press.
  • Specific examples of such antibodies include those described by Van Ller et al., Euro. J. Immunol., 1987, 17, 1599-1604, Alegre et al., J. Immunol., 1991, 140, 1184, and by Smith et al., ibid, 1986, 16, 478, the last publication relating to the IgG1 antibody UCHT1 and variants thereof.
  • the antibody OKT3 is discussed in publications such as Chatenaud et al., Transplantation. 1991, 51, 334 and the New England Journal of Medicine paper, 1985, 313, 339, and also in patents EP 0 018 795 and U.S. Pat. No. 4,361,539.
  • the antibody YTH 12.5.14.2 (hereinafter referred to as YTH 12.5) is discussed in publications such as Clark et al., European Immunol. 1989, 19, 381-388 and reshaped YTH 12.5 antibodies are the subject of EP 0504350 and its equivalents U.S. Ser.
  • the heavy chain CDRs (a), (b) and (c) are of most importance. It will be realised by those skilled in the art that the antibodies of the invention also comprise constant domains.
  • the CDRs (a), (b) and (c) are arranged in the heavy chain in the sequence in the order: human framework region 1/(a)/human framework region 2/(b)/human framework region 3/(c)/human framework region 4 in a leader to constant domain (n-terminal to C-terminal) direction and the CDRs (d), (e) and (f) are arranged in the light chain in the sequence: rodent framework region 1/(d)/rodent framework region 2/(e)/rodent framework region 3/(f)/rodent framework region 4 in a leader to constant domain direction.
  • the heavy chain CDRs are arranged in the sequence (a), (b), (c) in a leader to constant domain direction and the light chain CDRs are arranged in the sequence (d), (e), (f) in a leader to constant domain direction.
  • the rodent framework region is preferably rat.
  • antibodies according to the invention may contain quite different CDRs from those described hereinbefore and that, even when this is not the case, it may be possible to have heavy chains and particularly light chains containing only one or two of the CDRs (a), (b) and (c) and (d), (e) and (f), respectively.
  • CDRs a), (b) and (c) and (d), (e) and (f), respectively.
  • all six CDRs defined above is therefore not necessarily required in an antibody according to the present invention, all six CDRs will most usually be present in the most preferred antibodies.
  • a particularly preferred antibody therefore has a human type heavy chain with the three CDRs (a), (b) and (c) comprising the amino acid sequences SEQ ID No 2, 4 and 6 or respective conservatively modified variants thereof and a rat light chain with the three CDRs (d), (e) and (f) comprising the amino acid sequences SEQ ID No 8, 10 and 12 or respective conservatively modified variants thereof in which the heavy chain CDRs are arranged in the order (a), (b), (c) in the leader constant region direction and the light chain CDRs are arranged in the order (d), (e), (f) in the leader constant region direction.
  • a preferred form of the first aspect of the present invention provides an antibody, particularly aglycosylated, which has a binding affinity for the human CD3 antigen in which the antibody constant region is of or is derived from one of human origin, particularly being the lambda constant region attached to the rat light chain variable region.
  • the antibody prefferably has a rat light chain variable domain framework region corresponding in amino acid sequence to that in the YTH12.5 hybridoma, ie. that of SEQ ID No 14, although the constant region will still preferably be of or derived from one of those of human origin, eg. will be the human lambda constant region.
  • a preferred rat human chimeric light chain and lambda constant region amino acid sequence is that of SEQ ID No 18.
  • Recombinant nucleic acid, eg. DNA, encoding for YTH12.5 comprises an amino acid sequence of SEQ ID No 13 while that encoding the rat light chain variable region and the human lambda constant region comprises SEQ ID No 17.
  • V region frameworks are preferably those coded for by the human VH type III gene VH26.D.J. which is from the B cell hybridoma cell line 18/2 (Huminghat, Dersimonian et al., Journal of Immunology, 139, 2496-2501; WO 93/19196 and U.S. Ser. No. 08/478,684)).
  • the one or more preferred CDRs of the heavy chain of the rat anti-CD3 antibody are therefore present in a human variable domain framework which has the following amino acid sequence reading in the leader to constant region direction, CDR indicating a CDR (a), (b) or (c) as defined hereinbefore, a conservatively modified variant thereof or an alternative CDR:
  • the one or more preferred CDRs of the light chain of the rat CD3 antibody are present in a rodent variable domain framework which has the following amino acid sequence reading in the leader to constant region direction, CDR indicating a CDR (d), (e) and (f) as defined hereinbefore, a conservatively modified variant thereof or an alternative CDR:
  • the light chain variable region comprises SEQ ID No 14:
  • the heavy and light chain constant regions can be based on antibodies of different types as desired subject to the antibody being an IgG antibody, but although they may be of or derived from those of rodent, eg. rat or mouse, origin they are preferably of or are derived from those of human origin.
  • the constant region is preferably of the lambda type and for the heavy chain it is preferably of an IgG isotype, especially IgG1, modified to effect aglycosylation as appropriate.
  • the heavy chain variable region and human IgG1 CH1-hinge aglycosylCH2CH3 comprises SEQ ID No 20 and is encoded for by DNA of SEQ ID No 19.
  • All human constant regions of the IgG isotype are known to be glycosylated at the asparagine residue at position 297, which makes up part of the N-glycosylation motif Asparagine 297 - X 298 -Serine 299 or Threonine 299 , where X is the residue of any amino acid except proline.
  • the antibody of the invention may thus be aglycosylated by the replacement of Asparagine 297 in such a constant region with another amino acid which cannot be glycosylated. Any other amino acid residue can potentially be used, but alanine is the most preferred.
  • glycosylation at Asparagine 297 can be prevented by altering one of the other residues of the motif, e.g.
  • the replacement of one amino acid in a CDR with another amino acid having similar properties may not substantially alter the properties or structure of the peptide or protein in which the substitution or substitutions were made.
  • the aglycosylated antibodies of the present invention include those antibodies containing the preferred CDRs but with a specified amino acid sequence in which such a substitution or substitutions have occurred without substantially altering the binding affinity and specificity of the CDRs.
  • deletions may be made in the amino acid residue sequence of the CDRs or the sequences may be extended at one or both of the N- and C-termini whilst still retaining activity.
  • Preferred aglycosylated antibodies according to the present invention are such that the affinity constant for the antigen is 10 5 mole ⁇ 1 or more, for example up to 10 12 mole ⁇ 1 .
  • Ligands of different affinities may be suitable for different uses so that,
  • an affinity of 10 6 , 10 7 or 10 8 mole ⁇ 1 or more may be appropriate in some cases.
  • antibodies with an affinity in the range of 10 6 to 10 8 mole ⁇ 1 will often be suitable.
  • the antibodies also do not exhibit any substantial binding affinity for other antigens. Binding affinities of the antibody and antibody specificity may be tested by assay procedures such as those described in the Examples section of EP 0586617 and U.S. Ser. No. 08/478,684 and U.S. Pat. No. 5,585,097, incorporated herein by reference, (See Example 5—Effector Cell Retargetting Assay), or by techniques such as ELISA and other immunoassays.
  • Antibodies according to the invention are aglycosylated IgG CD3 antibodies having a “Y” shaped configuration which may have two identical light and two identical heavy chains and are thus bivalent with each antigen binding site having an affinity for the CD3 antigen.
  • the invention is also applicable to antibodies in which only one of the arms of the antibody has a binding affinity for the CD3 antigen.
  • Such antibodies may take various forms.
  • the other arm of the antibody may have a binding affinity for an antigen other than CD3 so that the antibody is a bispecific antibody, for example as described in U.S. Pat. No. 4,474,893 (incorporated herein by reference) and European Patent Applications Nos. 87907123.1 and 87907124.9.
  • the antibody may have only one arm which exhibits a binding affinity, such an antibody being termed “monovalent”.
  • Monovalent antibodies may be prepared in a number of ways. Glennie and Stevenson (Nature, 295, 712-713, (1982)) describe a method of preparing monovalent antibodies by enzymic digestion. Stevenson et al. describe a second approach to monovalent antibody preparation in which enzymatically produced Fab′ and Fc fragments are chemically cross-linked (Anticancer Drug Design, 3, 219-230 (1989)). In these methods the resulting monovalent antibodies have lost one of their Fab′ arms. A third method of preparing monovalent antibodies is described in European Patent No. 131424. In this approach the “Y” shape of the antibody is maintained, but only one of the two Fab′ domains will bind to the antigen. This is achieved by introducing into the hybridoma a gene coding for an irrelevant light chain which will combine with the heavy chain of the antibody to produce a mixture of products in which the monovalent antibody is the one of interest.
  • the monovalent aglycosylated CD3 antibodies of the invention are prepared by the following method. This involves the introduction into a suitable expression system, for example a cell system as described hereinafter, together with genes coding for the heavy and light chains, of a gene coding for a truncated heavy chain in which the variable region domain and first constant region domain of the heavy chain are absent, the gene lacking the exon for each of these domains.
  • a suitable expression system for example a cell system as described hereinafter
  • genes coding for the heavy and light chains of a gene coding for a truncated heavy chain in which the variable region domain and first constant region domain of the heavy chain are absent, the gene lacking the exon for each of these domains.
  • Such an antibody fragment (c) is monovalent since it has any only one Fab′ arm. Production of a monovalent antibody in the form of such a fragment by this method is preferred for a number of reasons. Thus, the resulting antibody fragment is easy to purify from a mixture of antibodies produced by the cell system since, for example, it may be separable simply on the basis of its molecular weight. This is not possible in the method of European Patent No. 131424 where the monovalent antibody produced has similar characteristics to a bivalent antibody in its size and outward appearance.
  • the production of a monovalent antibody fragment by the new method uses conditions which can more easily be controlled and is thus not as haphazard as an enzyme digestion/chemical coupling procedure which requires the separation of a complex reaction product, with the additional advantage that the cell line used will continue to produce monovalent antibody fragments, without the need for continuous synthesis procedures as required in the enzyme digestion/chemical coupling procedure.
  • aglycosylated antibodies according to the invention do not occur in nature and these aglycosylated antibodies may in general be produced synthetically in a number of ways. Most conveniently, however, appropriate gene constructs for the constant and variable regions of the heavy and light chains which are present in the antibody are separately obtained and then inserted in a suitable expression system.
  • Genes encoding the variable domains of a ligand of the desired structure may be produced and conveniently attached to genes encoding the constant domains of an antibody which have undergone site directed mutagenesis. These constant genes may be obtained from hybridoma cDNA or from the chromosomal DNA and have undergone site directed mutagenesis to produce the aglycosylated constant regions. Genes encoding the variable regions may also be derived by gene synthesis techniques used in the identification of the CDRs contained herein. Suitable cloning vehicles for the DNA may be of various types.
  • genes may provided by a variety of methods.
  • site directed mutagenesis may be employed to insert desired DNA at corresponding points in the framework encoding DNA.
  • Expression of these genes through culture of a cell system to produce a functional CD3 ligand is most conveniently effected by transforming a suitable prokaryotic or particularly eukaryotic cell system, particularly an immortalised mammalian cell line such as a myeloma cell line, for example the YB2/3.01/Ag20 (hereinafter referred to as YO) rat myeloma cell, NSO myeloma cell, or Chinese hamster ovary cells (although the use of plant cells is also of interest), with expression vectors which include DNA coding for the various antibody regions, and then culturing the transformed cell system to produce the desired antibody.
  • YO myeloma cell line
  • NSO myeloma cell for example the YB2/3.01/Ag20 (hereinafter referred to as YO) rat myeloma cell, NSO myeloma cell, or Chinese hamster ovary cells (although the use of plant cells is also
  • a second aspect of the present invention thus provides a process for the preparation of an aglycosylated IgG antibody according to the first aspect having a binding affinity for the CD3 antigen which comprises culturing cells capable of expressing the antibody in order to effect expression thereof.
  • a third aspect of the invention also provides a cell line which expresses an aglycosylated antibody according to the invention per se.
  • Preferred among such cell lines are those which comprise DNA sequences encoding the preferred CDRs described hereinbefore.
  • a group of nucleotide sequences coding for the CDRs (a) to (f) described hereinbefore is as indicated under (a) to (f) below, respectively, but it will be appreciated that the degeneracy of the genetic code permits variations to be made in these sequences whilst still encoding for the CDRs' amino acid sequences.
  • Such cell lines will particularly contain larger DNA sequences which comprise (1) DNA expressing human heavy chain variable framework regions carrying one or more of (a), (b) and (c), and (2) DNA expressing rodent, eg. rat light chain variable framework regions carrying one or more of (d), (e) and (f).
  • SEQ ID No 19 which codes for the CDRs (a), (b) and (c) arranged in the heavy chain framework coded for by the human VH type III gene VH26.D.Jlinked to the human IgG. CH1-hinge-aglycosyl-CH2CH3 as discussed hereinbefore and that sequence SEQ ID No 17 which codes for the CDRs (d), (e) and (f) arranged in the light chain framework coded for by the YTH 12.5 human lambda constant region chimeric protein.
  • the chimeric partially humanised aglycosylated antibodies in accordance with the present invention have therapeutic value, particularly in immunosuppression, particularly in the control of graft rejection, where it is especially desirable that immunosuppression is temporary rather than total, and thus that T-cells are not completely destroyed, but instead rendered non-functional by antibody blockade of the CD3 antigen-TCR complex.
  • the aglycosylated CD3 antibodies may have potential in other areas such as in the treatment of cancer, specifically in the construction of bispecific antibodies (for effector cell retargetting) or antibody-toxin conjugates, where the efficacy of the therapeutic agent would be compromised by Fc-mediated killing of the effector cells or non-specific killing of Fc receptor bearing cells respectively.
  • the present invention thus includes a method of treating patients with cancer, particularly a lymphoma, or for immunosuppression purposes, for instance in a case where graft rejection may occur, comprising administering a therapeutically effective amount of an aglycosylated antibody in accordance with the first aspect of the invention.
  • Aglycosylated antibodies in accordance with the first aspect of the invention may be formulated for administration to patients by administering the said antibody together with a physiologically acceptable diluent or carrier.
  • the antibodies are preferably administered in an injectable form together with such a diluent or carrier which is sterile and pyrogen free.
  • a suitable dose of antibody is about 1-10 mg injected daily over a time period of, for example 10 days, although due to the elimination of the first dose response it will be possible if desired to adminster higher amounts of the antibody, for example even up to 100 mg daily, depending on the individual patient's needs.
  • Veterinary use is on a similar g/kg dosage basis.
  • FIG. 1 shows plots of FACS assay of binding of fully humanised aglycosyl CD3 (of EP0586617, U.S. Ser. No. 08/478,684 and U.S. Pat. No. 5,585,097) and a chimeric antibody of the present invention in which a rat light variable framework region is employed.
  • Light chain YTH12.5LAG1 alone does not show normal binding as this is not associated with a heavy chain
  • FIG. 2 shows plots of FACS assay of binding of two chimeric transfectants produced using pOXD52neo vector and thus which express CD52 antigen on their surfaces. These illustrate use of pOXCD52neo vector as a way of monitoring whether transfectants are a clonal population.
  • TF 12.5L/CD3A . . . 27 has one peak when stained with CD52 showing all cells are producing CD3 antibody, whereas TF12.5L/CD3A.34 has two peaks showing a negative population of cells that do not produce CD3 antibody.
  • FIG. 3 shows plots of OD 492 against dilution in an ELISA comparing human IgG production as a measure of antibody yield for present chimeric and prior art humanised aglycosylCD3.
  • CD3 supernatants tested three weeks after transfection show the cell containing DNA encoding for a chimeric antibody of the present invention producing about 120 ⁇ g/ml and that the fully humanised CD3 producing less than 10 ⁇ g/ml.
  • FIGS. 4 and 5 show binding plots of the present invention chimeric antibodies and fully humanised CD3 to Jurkat cells for antibody affinity. Starting from a known concentration of 100 ⁇ g/ml and then diluting to 1/20 and seven fold titrations to 1/2560. The staining patterns demonstrate that the affinities are the same.
  • YTH 12.5 is a rat hybridoma cell line secreting an IgG2b monoclonal antibody specific for the CD3 antigen complex, but the methodology is applicable to other cells secreting CD3 specific antibodies with the same CDRs (see the preceding description).
  • V H gene (heavy chain variable region gene) is cloned using oligonucleotide primers VH1FOR and VH1BACK (see aforesaid incorporated patents).
  • VH1FOR and VH1BACK see aforesaid incorporated patents.
  • the PCR products are ligated into the vector M13-VHPCR1 in which site directed mutagenesis is performed using 6 oligonucleotide primers.
  • the V L gene (light chain variable region gene) was cloned using primers designed based on the published V L ⁇ sequences.
  • the gene is cloned into the vector M13-VKPCR, together with the human lambda light chain constant region.
  • this vector mutagenesis of the V L framework is performed using 5 oligonucleotides.
  • the humanised V L gene is then inserted into the expression vector pHâApr-1.
  • Vector p316 is generated in which the reshaped CD3 VH gene may be expressed in conjunction with different immunoglobulin H chain constant region genes, this vector being based on the pHâApr-gpt vector (Gunning et al., 1987, P.N.A.S. USA, 85, 7719-7723).
  • a 1.65 Kb fragment of DNA carrying the dihydrofolate reductase (dhft) gene and SV 40 expression signals (Page & Sydenham, 1991, Biotechnology, 9, 64) is inserted into the unique EcoRI site of pHâApr-gpt.
  • a 700 bp HindIII-BamHI DNA fragment encoding the reshaped CD3-VH gene is then cloned into the vector's multiple cloning site, downstream and under the control of the â actin promoter.
  • the desired H chain constant region gene (in genomic configuration) can then be inserted into the unique BamH1 restriction enzyme site downstream of the CD3-VH gene.
  • the aglycosyl human IgG1 constant region is derived from the wild type Glm (1,17) gene described by Takahashi et al., (1982, Cell, 29, 671-679) as follows.
  • the gene is cloned into the vector M13 tg131 where site-directed mutagenesis is performed (Amersham International PLC kit) to mutate the amino acid residue at position 297 from an asparagine to an alanine residue.
  • Oligosaccharide at Asn-297 is a characteristic feature of all normal human IgG antibodies (Kabat et al., 1987, Sequence of Proteins of Immunological Interest, US Department of Health Human Services Publication), each of the two heavy chains in the IgG molecules having a single branched chain carbohydrate group which is linked to the amide group of the asparagine residue (Rademacher and Dwek, 1984, Prog. Immunol., 5, 95-112). Substitution of asparagine with alanine prevents the glycosylation of the antibody.
  • the 2.3 Kb aglycosyl IgG1 constant region is excised from M13 by double digestion using BamHI and BgIII and ligated into the BamHI site of vector p316 to produce clone p323.
  • Subconfluent monolayers of dhfr ⁇ Chinese Hamster Ovary cells are co-transfected with the vector p323 containing the heavy chain gene and a second vector p274 containing the re-shaped human ⁇ light chain (Routledge et al., 1991, Eur. J. Immunol., 21, 2717-2725).
  • plasmid DNAs Prior to tranfection both plasmid DNAs were linearised using the restriction endonuclease PvuI. Transfection is carried out using the DOTMA reagent (Boehringer, Germany) following the manufacturer's recommendations.
  • Heavy and light chain transfectants are selected for in xanthine/hypoxanthine free IMDM containing 5% (v/v) dialysed foetal calf serum.
  • H-chain expression vectors carrying the non-mutant human IgG2 (Flanagan & Rabbitts, 1982, Nature 300, 709-713), IgG3 (Huck et al., 1986, Nuc. Acid. Res., 14, 1779-1789), IgG4 (Flanagan & Rabbitts, 1982, Nature 300, 709-713), Epsilon (Flanagan & Rabbitts, 1982, EMBO.
  • vectors p317, p318, p320, p321 and p325, respectively are derived from the vector p316.
  • Cells expressing CD3 antibodies were subjected to two rounds of cloning in soft agar, and then expanded into roller bottle cultures. The immunoglobulin from approximately 4 litres of tissue culture supernatant from each cell line is concentrated by ammonium sulphate precipitation, dialysed extensively against PBS and then quantified as follows:
  • a competition assay designed to specifically quantitate the concentration of antibody with CD3 antigen binding capacity was used.
  • Human T-cell blasts are incubated with FITC labelled UCHT-1, an antibody which binds to the same epitope of the CD3 antigen as the chimeric panel.
  • the concentration of FITC reagent used is previously determined to be half saturating.
  • Unlabelled YTH 12.5 (HPLC purified) was titrated from a known starting concentration and added to wells containing T-cells and UCHT-1 FITC.
  • the unlabelled antibody serves as a competitor for the antigen binding site. This is detected as decrease in the mean fluorescence seen when the cells are studied using FACS analysis.
  • titration of the chimeric antibodies from unknown starting concentrations yields a series of sigmoidal curves when mean fluorescence is plotted against antibody dilution. These can be directly compared with the standard YTH 12.5 curve, an equivalent antibody may be used.
  • a chain loss variant of YTH12.5LAG1 was selected for loss of CD3 light chain, that only expressing rat CD3 heavy chain, and was used for the purpose of transfecting in fully humanised aglycosyl CD3 heavy chain.
  • a 1.4 kb BamH1-Hind111 DNA fragment encoding the humanised IgG1 aglycosyl CD3 heavy chain construct was cloned into the multiple cloning site of two different expression vectors, pH ⁇ Apr-1 gpt (Gunning et al (1987) P.N.A.S. USA 84, 4831 and 85, 7719-7723) and pOXCD52neo (Frewin unpublished) which contain different selectable markers.
  • pOXCD52neo expression vector is produced using the strong ‘polypeptide chain elongation factor 1’ promoter (EF1) which gives high-level antibody production (see Shigekazu Nagata NAR, Vol 18. No 17, page 5322. This is placed in a construct together with a neomycin selectable marker. Also included in the vector is a cDNA for Campath CD52 surface expressed antigen, driven by the TK promoter (all these promoters and markers are in the public domain by reason of availability). The expression of CD52 on the cell surface allows identification of transformants using CD52 antibodies.
  • EF1 polypeptide chain elongation factor 1’ promoter
  • YTH 12.5LAG1 was then transfected separately with the two plasmids by electroporation and heavy transfectants selected with IMDM containing 5% foetal calf serum.
  • MPA and Xanthine for pH ⁇ Apr-1gpt and IMDM containing 5% foetal calf serum and 1 mg/ml G418 for pOXCD52neo over a couple of weeks until live colonies grew up for testing. Both transfections yielded positive clones when screened for human IgG1 production using ELISA.
  • Functional CD3 antibody was tested for by binding to a human T cell line Jurkat (ATCC TIB 152 (J. Immunol 133, 123-128 (1984)) and analysed by FACS (Becton Dickinson), both assays showing yields of antibody of between 30 and 50 ⁇ g/ml.
  • the pOXCD52neo vector allows monitoring of transfected cells producing antibody with the use of a cell surface marker CD52. Only cells containing this marker secrete antibody so by taking Campath CD52 antibodies linked with FITC transfected cells can be analysed by FACS for the percentage of cells producing antibody and clonal status can be confirmed. No negative producing cells were detected and antibody yields remained at 50 ⁇ g/ml with normal cell growth.
  • a chimeric form of the aglycosyl CD3 antibody was produced using PCR assembly to link the rat CD3 light chain variable region to the human lambda constant region using primers which introduce restriction enzyme sites Hind III and EcoR1 to allow cloning into the Celltech expression vector PEE12 (see Bebbington et al (1992) Biotechnology 10, 169).
  • the primer sequences are SEQ ID No 29 and 30 in the sequence listing attached hereto.
  • the final construct was sequenced and cloned into PEE 12 already containing the humanised CD3 aglycosyl heavy chain and this was transfected into the myeloma cell line NSO (ECACC No 85110503-Galfre and Milstein (1981) Enzymology 73 (B) 3-46) by electroporation. Resultant clones were screened for antibody production using ELISA for human IgG1 and human lambda light chain and on the FACS for binding to human T-cell clone Jurkat cell line.
  • the ELISA uses goat anti-human IgFc (Sigma I2136) as capture antibody and Biotinylated sheep anti-human IgG (Amersham RPN 1003) or Biotinylated goat anti-human lambda light chain (Amersham RPN 1188) as detector antibody. (see Routledge et al Eur. J. Immunol (1991) 21: 2717-2725).
  • FIGS. 1 to 4 illustrate the ability of these antibodies to bind CD3 with the same capacity as the previously described fully humanised aglycosyl anti-CD3 antibodies of the prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Transplantation (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

An IgG antibody is provided having a binding affinity for the CD3 antigen complex in which in the heavy chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 2, 4 and 6 and respective conservatively modified variants thereof and the light chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 8, 10 and 12 and respective conservatively modified variants thereof
    • characterised in that the heavy chain variable region framework corresponds in sequence to the human type sequence and the light chain variable region framework includes one or more of the specific amino acids characteristic of the rodent type sequence.
The novel antibody is capable of being expressed by mammalian cell expression systems at enhanced yields.

Description

  • The present invention relates to novel antibodies directed against the CD3 antigen complex, to DNA and RNA encoding for production these antibodies, to cell lines containing such DNA and/or RNA capable of producing them and to methods of producing the antibodies using the DNA, RNA and/or cells.
  • The human CD3 antigen consists of a minimum of four invariant polypeptide chains, which are non-covalently associated with the T-cell receptors on the surface of T-cells, and is generally now referred to as the CD3 antigen complex. This is intimately involved in the process of T-cell activation in response to antigen recognition by the T-cell receptors. All CD3 monoclonal antibodies can be used to sensitise T-cells to secondary proliferative stimuli such as IL1 (interleukin 1) and IL2 (interleukin 2). In addition, certain CD3 monoclonal antibodies are themselves mitogenic for T-cells. This property is isotype dependent and results from the interaction of the CD3 antibody Fc domain with Fc receptors on the surface of accessory cells.
  • Rodent CD3 antibodies have been used to influence immunological status by suppressing, enhancing or re-directing T-cell responses to antigens. They therefore have considerable therapeutic potential in the human for use as immuno-suppressive agents, for example for the treatment of rejection episodes following the transplantation of renal, hepatic and cardiac allografts.
  • WO 92/06193 and its equivalents (GB 2249310A, Appn No.s EP. 91917169.4, JP 516117/91 and U.S. Ser. No. 07/862,543; the contents of which are herein incorporated by reference) address the CD3 antibody antiglobulin response problem by re-shaping or “humanising” the variable region genes for the antibodies and expressing them in association with relevant human constant domain genes. This reduces the non-human content of the monoclonal antibody to such a low level that an antiglobulin response is unlikely.
  • WO 93/19196 and its equivalents (eg. EP 0586617, U.S. Pat. No. 5,585,097 and U.S. Ser. No. 08/478,684; the contents of which are herein incorporated by reference) address the problem of first dose response. These teach use of aglycosylated humanised CD3 antibodies of the IgG subclass which surprisingly retain their antigen binding specificity and immunosuppressive properties and yet do not induce T cell mitogenesis in vitro and induce a reduced level of cytokine release in vivo, whilst still maintaining some Fe binding ability.
  • Whilst these CD3 antibodies have great therapeutic value, their production in cell culture has not proven to be easy. In practice poor antibody yield is found accompanied by poor growth of transfected cell line. After much work over several years the best antibody levels achieved have been about 10 μg/ml, with cells expressing CD3 antibodies growing very slowly. Furthermore, these cells go negative over time in hollow cartridge systems used for large scale production.
  • The Celltech Glutamine Synthesis vector system PEE12 used in the aforesaid expression of CD3 antibodies routinely provides expression of other humanised antibodies at about 200 μg/ml. The original rat hybridoma cell line (YTH 12.5) expressed at a relatively normal level of 100 μg/ml in cell culture, indicating poor antibody production to be associated with the humanised form. It appears that it is one or more of the expressed humanised proteins that proves toxic to the cells, as following transfection of cells they go negative faster than they grow.
  • The present inventors have now surprisingly found that by producing a chimeric form of the anti-CD3 antibody, linking the rat CD3 light chain variable region with the human lambda constant region and cloning this into PEE12 containing humanised CD3 aglycosyl heavy chain, they can produce myleoma cell lines which provide expression of functional aglycosylated CD3 antibodies at 60 to 100 μg/ml of culture. By use of limiting dilution cloning some of the clones can be selected to provide still higher expression levels, eg. of the order of 120 μg/ml, and remain stable in long term culture with large scale production with no untoward effect on cell growth. Thus the present invention's chimeric antibodies offer good production capability without antiglobulin response normally associated with rat derived antibodies.
  • Accordingly, the present invention provides an IgG antibody having a binding affinity for the CD3 antigen complex in which in the heavy chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 2, 4 and 6 and respective conservatively modified variants thereof and the light chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 8, 10 and 12 and respective conservatively modified variants thereof
  • characterised in that the heavy chain variable region framework corresponds in sequence to the human type sequence and the light chain variable region includes one or more of the specific amino acids characteristic of the rodent type sequence.
  • Preferably the light chain variable region includes sufficient amino acids specific to the rodent type sequence such that the light and heavy chains associate more strongly than when the light chain variable region is of the corresponding fully human type. This can conveniently be such that the light chain variable region corresponds entirely to the rodent, eg. rat, sequence. Alternatively, only some or even one of the rat characteristic amino acids may be included.
  • Particular amino acids that are of rodent type rather than human type in the light chain variable region sequence are selected from those shown in SEQ ID No 14 in the sequence listing attached hereto, that being a preferred light chain variable region framework sequence wherein all the possible rat framework characteristic amino acids have been included, together with the respective CDR sequences. Thus amino acids characteristic of rat light chain variable framework region in SEQ ID No 14 are: Gln-1, Ala-2, Val-3, Val-4, Ala-7, Asn-8, Thr-12, Leu-14, Ser-16, Lys-19, Leu-20, Leu-39, Tyr-40, Glu-41, Ser-44, Met-48, Tyr-50, Phe-75, His-79, Asn-80, Val-81, Ala-82, Ile-83, Ile-88 and Phe-90. The corresponding human amino acids are in each case Asp-1, Phe-2. Met-3, Leu-4, Pro-7, His-8, Glu-12, Pro-I4, Lys-15, Ile-19, Ile-20, Gln-39, Arg-40, Pro-41, Ala-44, Val-48, Phe-50, Ser-75, Ser-79, Gly-80, Leu-81, Gln-82, Thr-83, Asp-88 and Tyr-90. The latter human sequence is illustrated in EP 0586617 B on page 6 and in the corresponding US patent application.
  • Conveniently the heavy chain variable region framework is of human type and the light chain variable region is of rodent type, that being with all the aforespecified amino acids being the rat type of SEQ ID No 14. However, one or more, but not all of these positions of SEQ ID No 14 may be of the human type as long as sufficient rodent, eg. rat, sequence is present to enable stable light-heavy chain interaction to be achieved over that provided by the fully humanised form of the prior art. Such interaction is preferably such that when the antibody is expressed in PEE12 cells using suppliers (Celltech) instructions in excess of 50 μg/ml is achieved, more preferably in excess of 100 μg/ml. Preferably such cells should not go negative in significant numbers after several weeks use.
  • It will be realised by those skilled in the art that techniques such as site directed mutagenesis using PCR will allow the necessary production of these various light variable chains such that all embodiments of the invention may be produced without undue burden and screened for expression levels from the PEE12 cells.
  • The CDR amino sequences of SEQ ID No 2, 4, 6, 8, 10 and 12 correspond to CDRs (a), (b), (c), (d), (e) and (f) of WO 93/19196 and the CDRs themselves may also be referred to as respective CDRs (a) to (f) below.
  • Preferably the heavy chain and/or light chain each have all three of their respective CDRs of SEQ ID No 2, 4 and 6 and SEQ. ID. No 8, 10 and 12.
  • Preferably the antibody is aglycosylated. The term aglycosylated is employed in its normal usage to indicate that the antibodies according to the invention are not glycosylated.
  • By the term human type with respect to the framework region is meant a framework that is similar enough to human framework that it is substantially-non-immunogenic in human when present in an intact antibody. Preferably an antibody of the invention having a heavy chain with a human type framework has between 60 and 140%, more typically at least 80 to 100%, of the rodent antibody affinity for the CD3 antigen. Characteristics of humanised monoclonal antibodies and methods for producing these from rodent monoclonals are disclosed in U.S. Pat. No. 5,585,089, the content of which is incorporated herein by reference for such purpose. Comparison of the human type heavy chain variable region with that of its rat counterpart can be made by comparing SEQ ID No 16 (rat) with the corresponding region found at the N-terminal of SEQ ID No 20. SEQ ID No 15 is that of DNA encoding for SEQ ID No 16. Thus a human type framework region may have, for example, seven or more of the thirteen changes that distinguish the sequence of the N-terminal 119 amino acids of SEQ ID No 20 from that of SEQ ID No 16. More preferably all the amino acids of the human type are incorporated. These changes may be at, for example, any of positions 5, 18, 19, 42, 49, 75, 77, 78, 88, 93, 97, 98 and 114 of these sequences.
  • By the term rodent type with respect to the framework region is meant a framework that correspond in amino acid sequence to that of an antibody of a rodent, eg. a rat or a mouse. In the case of anti-CD3 antibodies convenient framework amino acids are those of a rat antibody.
  • Further discussion of CD3 antigens is to be found in the report of the First International Workshop and Conference on Human Leukocyte Differentiation Antigens and description of various glycosylated antibodies directed against the CD3 antigen is also to be found in the reports of this series of Workshops and Conferences, particularly the Third and Fourth, published by Oxford University Press. Specific examples of such antibodies include those described by Van Ller et al., Euro. J. Immunol., 1987, 17, 1599-1604, Alegre et al., J. Immunol., 1991, 140, 1184, and by Smith et al., ibid, 1986, 16, 478, the last publication relating to the IgG1 antibody UCHT1 and variants thereof.
  • However, of particular interest as the basis for antibodies according to the present invention are the CDRs contained in the antibodies OKT3 and YTH 12.5.14.2. The antibody OKT3 is discussed in publications such as Chatenaud et al., Transplantation. 1991, 51, 334 and the New England Journal of Medicine paper, 1985, 313, 339, and also in patents EP 0 018 795 and U.S. Pat. No. 4,361,539. The antibody YTH 12.5.14.2 (hereinafter referred to as YTH 12.5) is discussed in publications such as Clark et al., European Immunol. 1989, 19, 381-388 and reshaped YTH 12.5 antibodies are the subject of EP 0504350 and its equivalents U.S. Ser. No 08/362,780 and U.S. Pat. No. 5,585,097, these applications describing in detail the CDRs present in this antibody. The contents of U.S. Ser. No. 08/362,780, U.S. Pat. No. 5,585,097 and U.S. Pat. No. 4,361,539 are incorporated herein by reference
  • The term “conservatively modified variants” is one well known in the art and indicates variants containing changes which are substantially without effect on antibody-antigen affinity. This term is conveniently defined as found in U.S. Pat. No. 5,380,712 which is incorporated herein by reference for such purpose.
  • Of the CDRs it is the heavy chain CDRs (a), (b) and (c) are of most importance. It will be realised by those skilled in the art that the antibodies of the invention also comprise constant domains.
  • The CDRs (a), (b) and (c) are arranged in the heavy chain in the sequence in the order: human framework region 1/(a)/human framework region 2/(b)/human framework region 3/(c)/human framework region 4 in a leader to constant domain (n-terminal to C-terminal) direction and the CDRs (d), (e) and (f) are arranged in the light chain in the sequence: rodent framework region 1/(d)/rodent framework region 2/(e)/rodent framework region 3/(f)/rodent framework region 4 in a leader to constant domain direction. It is preferred, therefore, that where all three are present the heavy chain CDRs are arranged in the sequence (a), (b), (c) in a leader to constant domain direction and the light chain CDRs are arranged in the sequence (d), (e), (f) in a leader to constant domain direction. The rodent framework region is preferably rat.
  • It should be appreciated however, that antibodies according to the invention may contain quite different CDRs from those described hereinbefore and that, even when this is not the case, it may be possible to have heavy chains and particularly light chains containing only one or two of the CDRs (a), (b) and (c) and (d), (e) and (f), respectively. However, although the presence of all six CDRs defined above is therefore not necessarily required in an antibody according to the present invention, all six CDRs will most usually be present in the most preferred antibodies.
  • A particularly preferred antibody therefore has a human type heavy chain with the three CDRs (a), (b) and (c) comprising the amino acid sequences SEQ ID No 2, 4 and 6 or respective conservatively modified variants thereof and a rat light chain with the three CDRs (d), (e) and (f) comprising the amino acid sequences SEQ ID No 8, 10 and 12 or respective conservatively modified variants thereof in which the heavy chain CDRs are arranged in the order (a), (b), (c) in the leader constant region direction and the light chain CDRs are arranged in the order (d), (e), (f) in the leader constant region direction.
  • A preferred form of the first aspect of the present invention provides an antibody, particularly aglycosylated, which has a binding affinity for the human CD3 antigen in which the antibody constant region is of or is derived from one of human origin, particularly being the lambda constant region attached to the rat light chain variable region.
  • One convenient possibility is for the antibody to have a rat light chain variable domain framework region corresponding in amino acid sequence to that in the YTH12.5 hybridoma, ie. that of SEQ ID No 14, although the constant region will still preferably be of or derived from one of those of human origin, eg. will be the human lambda constant region. A preferred rat human chimeric light chain and lambda constant region amino acid sequence is that of SEQ ID No 18. Recombinant nucleic acid, eg. DNA, encoding for YTH12.5 comprises an amino acid sequence of SEQ ID No 13 while that encoding the rat light chain variable region and the human lambda constant region comprises SEQ ID No 17.
  • Certain human heavy chain variable domain framework sequences will be preferable for the grafting of the preferred CDR sequences, since the 3-dimensional conformation of the CDRs will be better maintained in such sequences and the antibody will retain a high level of binding affinity for the antigen. The heavy chain variable (V) region frameworks are preferably those coded for by the human VH type III gene VH26.D.J. which is from the B cell hybridoma cell line 18/2 (Huminghat, Dersimonian et al., Journal of Immunology, 139, 2496-2501; WO 93/19196 and U.S. Ser. No. 08/478,684)).
  • In a preferred form of the first aspect of the present invention the one or more preferred CDRs of the heavy chain of the rat anti-CD3 antibody are therefore present in a human variable domain framework which has the following amino acid sequence reading in the leader to constant region direction, CDR indicating a CDR (a), (b) or (c) as defined hereinbefore, a conservatively modified variant thereof or an alternative CDR:
  • SEQ ID No 21/CDR/SEQ ID No 22/CDR/SEQ ID No 23/CDR/SEQ ID No 24
  • Similarly, the one or more preferred CDRs of the light chain of the rat CD3 antibody are present in a rodent variable domain framework which has the following amino acid sequence reading in the leader to constant region direction, CDR indicating a CDR (d), (e) and (f) as defined hereinbefore, a conservatively modified variant thereof or an alternative CDR:
  • SEQ ID No. 25/CDR/SEQ ID No. 26/CDR/ SEQ ID No. 27/CDR/SEQ ID No. 28.
  • In an aglycosylated antibody containing all three preferred light chain CDRs the light chain variable region comprises SEQ ID No 14:
  • The heavy and light chain constant regions can be based on antibodies of different types as desired subject to the antibody being an IgG antibody, but although they may be of or derived from those of rodent, eg. rat or mouse, origin they are preferably of or are derived from those of human origin. As described above, for the light chain the constant region is preferably of the lambda type and for the heavy chain it is preferably of an IgG isotype, especially IgG1, modified to effect aglycosylation as appropriate.
  • In an aglycosylated antibody containing all three preferred heavy chain CDRs, the heavy chain variable region and human IgG1 CH1-hinge aglycosylCH2CH3 comprises SEQ ID No 20 and is encoded for by DNA of SEQ ID No 19.
  • All human constant regions of the IgG isotype are known to be glycosylated at the asparagine residue at position 297, which makes up part of the N-glycosylation motif Asparagine297- X298-Serine299 or Threonine299, where X is the residue of any amino acid except proline. The antibody of the invention may thus be aglycosylated by the replacement of Asparagine297 in such a constant region with another amino acid which cannot be glycosylated. Any other amino acid residue can potentially be used, but alanine is the most preferred. Alternatively, glycosylation at Asparagine297 can be prevented by altering one of the other residues of the motif, e.g. by replacing residue 298 by proline, or residue 299 by any amino acid other than serine or threonine. Techniques for performing this site directed mutagenesis are well known to those skilled in the art and may for example be performed using a site directed mutagenesis kit such, for example, as that commercially available from Amersham. The procedure is further exemplified hereinafter.
  • It is well recognised in the art that the replacement of one amino acid in a CDR with another amino acid having similar properties, for example the replacement of a glutamic acid residue with an aspartic acid residue, may not substantially alter the properties or structure of the peptide or protein in which the substitution or substitutions were made. Thus, the aglycosylated antibodies of the present invention include those antibodies containing the preferred CDRs but with a specified amino acid sequence in which such a substitution or substitutions have occurred without substantially altering the binding affinity and specificity of the CDRs. Alternatively, deletions may be made in the amino acid residue sequence of the CDRs or the sequences may be extended at one or both of the N- and C-termini whilst still retaining activity.
  • Preferred aglycosylated antibodies according to the present invention are such that the affinity constant for the antigen is 105 mole−1 or more, for example up to 1012 mole−1. Ligands of different affinities may be suitable for different uses so that,
  • for example, an affinity of 106, 107 or 108 mole−1 or more may be appropriate in some cases. However antibodies with an affinity in the range of 106 to 108 mole−1 will often be suitable. Conveniently the antibodies also do not exhibit any substantial binding affinity for other antigens. Binding affinities of the antibody and antibody specificity may be tested by assay procedures such as those described in the Examples section of EP 0586617 and U.S. Ser. No. 08/478,684 and U.S. Pat. No. 5,585,097, incorporated herein by reference, (See Example 5—Effector Cell Retargetting Assay), or by techniques such as ELISA and other immunoassays.
  • Antibodies according to the invention are aglycosylated IgG CD3 antibodies having a “Y” shaped configuration which may have two identical light and two identical heavy chains and are thus bivalent with each antigen binding site having an affinity for the CD3 antigen. Alternatively, the invention is also applicable to antibodies in which only one of the arms of the antibody has a binding affinity for the CD3 antigen. Such antibodies may take various forms. Thus the other arm of the antibody may have a binding affinity for an antigen other than CD3 so that the antibody is a bispecific antibody, for example as described in U.S. Pat. No. 4,474,893 (incorporated herein by reference) and European Patent Applications Nos. 87907123.1 and 87907124.9. Alternatively, the antibody may have only one arm which exhibits a binding affinity, such an antibody being termed “monovalent”.
  • Monovalent antibodies (or antibody fragments) may be prepared in a number of ways. Glennie and Stevenson (Nature, 295, 712-713, (1982)) describe a method of preparing monovalent antibodies by enzymic digestion. Stevenson et al. describe a second approach to monovalent antibody preparation in which enzymatically produced Fab′ and Fc fragments are chemically cross-linked (Anticancer Drug Design, 3, 219-230 (1989)). In these methods the resulting monovalent antibodies have lost one of their Fab′ arms. A third method of preparing monovalent antibodies is described in European Patent No. 131424. In this approach the “Y” shape of the antibody is maintained, but only one of the two Fab′ domains will bind to the antigen. This is achieved by introducing into the hybridoma a gene coding for an irrelevant light chain which will combine with the heavy chain of the antibody to produce a mixture of products in which the monovalent antibody is the one of interest.
  • More preferably, however, the monovalent aglycosylated CD3 antibodies of the invention are prepared by the following method. This involves the introduction into a suitable expression system, for example a cell system as described hereinafter, together with genes coding for the heavy and light chains, of a gene coding for a truncated heavy chain in which the variable region domain and first constant region domain of the heavy chain are absent, the gene lacking the exon for each of these domains. This results in the production by the cell system of a mixture of (a) antibodies which are complete bivalent antibodies, (b) antibody fragments consisting only of two truncated heavy chains (i.e. an Fc fragment) and (c) fragments of antibody which are monovalent for the CD3 antigen, consisting of a truncated heavy chain and a light chain in association with the normal heavy chain. Such an antibody fragment (c) is monovalent since it has any only one Fab′ arm. Production of a monovalent antibody in the form of such a fragment by this method is preferred for a number of reasons. Thus, the resulting antibody fragment is easy to purify from a mixture of antibodies produced by the cell system since, for example, it may be separable simply on the basis of its molecular weight. This is not possible in the method of European Patent No. 131424 where the monovalent antibody produced has similar characteristics to a bivalent antibody in its size and outward appearance.
  • Additionally, the production of a monovalent antibody fragment by the new method uses conditions which can more easily be controlled and is thus not as haphazard as an enzyme digestion/chemical coupling procedure which requires the separation of a complex reaction product, with the additional advantage that the cell line used will continue to produce monovalent antibody fragments, without the need for continuous synthesis procedures as required in the enzyme digestion/chemical coupling procedure.
  • It is believed that aglycosylated antibodies according to the invention do not occur in nature and these aglycosylated antibodies may in general be produced synthetically in a number of ways. Most conveniently, however, appropriate gene constructs for the constant and variable regions of the heavy and light chains which are present in the antibody are separately obtained and then inserted in a suitable expression system.
  • Genes encoding the variable domains of a ligand of the desired structure may be produced and conveniently attached to genes encoding the constant domains of an antibody which have undergone site directed mutagenesis. These constant genes may be obtained from hybridoma cDNA or from the chromosomal DNA and have undergone site directed mutagenesis to produce the aglycosylated constant regions. Genes encoding the variable regions may also be derived by gene synthesis techniques used in the identification of the CDRs contained herein. Suitable cloning vehicles for the DNA may be of various types.
  • It will be realised by those skilled in the art that such genes may provided by a variety of methods. For example, it is possible to (i) raise a series of hybridomas against the CD3 antigen in the known manner, (ii) prepare DNA from these hybridomas by the procedures set out in WO 92/06193 and WO 93/19196 and their corresponding US patents by extracting mRNA and converting this to cDNA using PCR, (iii) screen this cDNA with oligonucleotide probes corresponding in sequence to CDR complementary DNA sequences, (iv) sequencing any positively identified hybridoma and (v) re-shaping the rat sequence by humanizing techniques set out in the aforesaid patents. In order to enable production of several and preferably all six preferred CDRs, site directed mutagenesis may be employed to insert desired DNA at corresponding points in the framework encoding DNA.
  • Expression of these genes through culture of a cell system to produce a functional CD3 ligand is most conveniently effected by transforming a suitable prokaryotic or particularly eukaryotic cell system, particularly an immortalised mammalian cell line such as a myeloma cell line, for example the YB2/3.01/Ag20 (hereinafter referred to as YO) rat myeloma cell, NSO myeloma cell, or Chinese hamster ovary cells (although the use of plant cells is also of interest), with expression vectors which include DNA coding for the various antibody regions, and then culturing the transformed cell system to produce the desired antibody. Such general techniques of use for the manufacture of ligands according to the present invention are well known in the art and are described in publications such as “Molecular Cloning” by Sambrook, Fritsch and Maniatis, Cold Spring Harbour Laboratory Press, 1989 (2nd edition). The techniques are further illustrated by the Examples contained in WO 93/19196 and U.S. Ser. No. 08/478,684, incorporated herein by reference.
  • A second aspect of the present invention thus provides a process for the preparation of an aglycosylated IgG antibody according to the first aspect having a binding affinity for the CD3 antigen which comprises culturing cells capable of expressing the antibody in order to effect expression thereof. A third aspect of the invention also provides a cell line which expresses an aglycosylated antibody according to the invention per se.
  • Preferred among such cell lines are those which comprise DNA sequences encoding the preferred CDRs described hereinbefore. A group of nucleotide sequences coding for the CDRs (a) to (f) described hereinbefore is as indicated under (a) to (f) below, respectively, but it will be appreciated that the degeneracy of the genetic code permits variations to be made in these sequences whilst still encoding for the CDRs' amino acid sequences.
    • (a) SEQ ID No 1; (b) SEQ ID No. 3; (c) SEQ ID No. 5; (d) SEQ ID No. 7;
    • (e) SEQ ID No. 9; (f) SEQ ID No. 11
  • Such cell lines will particularly contain larger DNA sequences which comprise (1) DNA expressing human heavy chain variable framework regions carrying one or more of (a), (b) and (c), and (2) DNA expressing rodent, eg. rat light chain variable framework regions carrying one or more of (d), (e) and (f).
  • A specific example of such DNA is SEQ ID No 19 which codes for the CDRs (a), (b) and (c) arranged in the heavy chain framework coded for by the human VH type III gene VH26.D.Jlinked to the human IgG. CH1-hinge-aglycosyl-CH2CH3 as discussed hereinbefore and that sequence SEQ ID No 17 which codes for the CDRs (d), (e) and (f) arranged in the light chain framework coded for by the YTH 12.5 human lambda constant region chimeric protein.
  • The chimeric partially humanised aglycosylated antibodies in accordance with the present invention have therapeutic value, particularly in immunosuppression, particularly in the control of graft rejection, where it is especially desirable that immunosuppression is temporary rather than total, and thus that T-cells are not completely destroyed, but instead rendered non-functional by antibody blockade of the CD3 antigen-TCR complex. In addition, the aglycosylated CD3 antibodies may have potential in other areas such as in the treatment of cancer, specifically in the construction of bispecific antibodies (for effector cell retargetting) or antibody-toxin conjugates, where the efficacy of the therapeutic agent would be compromised by Fc-mediated killing of the effector cells or non-specific killing of Fc receptor bearing cells respectively.
  • In a fourth aspect, the present invention thus includes a method of treating patients with cancer, particularly a lymphoma, or for immunosuppression purposes, for instance in a case where graft rejection may occur, comprising administering a therapeutically effective amount of an aglycosylated antibody in accordance with the first aspect of the invention.
  • Aglycosylated antibodies in accordance with the first aspect of the invention may be formulated for administration to patients by administering the said antibody together with a physiologically acceptable diluent or carrier. The antibodies are preferably administered in an injectable form together with such a diluent or carrier which is sterile and pyrogen free. By way of guidance it may be stated that a suitable dose of antibody is about 1-10 mg injected daily over a time period of, for example 10 days, although due to the elimination of the first dose response it will be possible if desired to adminster higher amounts of the antibody, for example even up to 100 mg daily, depending on the individual patient's needs. Veterinary use is on a similar g/kg dosage basis.
  • The invention will now be described by way of is illustration only by reference to the following non-limiting Examples, Figures and Sequence listing. Further embodiments of the invention falling within the scope of the claims will occur to those skilled in the art in the light of these.
  • FIGURES
  • FIG. 1: shows plots of FACS assay of binding of fully humanised aglycosyl CD3 (of EP0586617, U.S. Ser. No. 08/478,684 and U.S. Pat. No. 5,585,097) and a chimeric antibody of the present invention in which a rat light variable framework region is employed. Light chain YTH12.5LAG1 alone does not show normal binding as this is not associated with a heavy chain
  • FIG. 2: shows plots of FACS assay of binding of two chimeric transfectants produced using pOXD52neo vector and thus which express CD52 antigen on their surfaces. These illustrate use of pOXCD52neo vector as a way of monitoring whether transfectants are a clonal population. TF 12.5L/CD3A . . . 27 has one peak when stained with CD52 showing all cells are producing CD3 antibody, whereas TF12.5L/CD3A.34 has two peaks showing a negative population of cells that do not produce CD3 antibody.
  • FIG. 3: shows plots of OD492 against dilution in an ELISA comparing human IgG production as a measure of antibody yield for present chimeric and prior art humanised aglycosylCD3. CD3 supernatants tested three weeks after transfection show the cell containing DNA encoding for a chimeric antibody of the present invention producing about 120 μg/ml and that the fully humanised CD3 producing less than 10 μg/ml.
  • FIGS. 4 and 5: show binding plots of the present invention chimeric antibodies and fully humanised CD3 to Jurkat cells for antibody affinity. Starting from a known concentration of 100 μg/ml and then diluting to 1/20 and seven fold titrations to 1/2560. The staining patterns demonstrate that the affinities are the same.
  • SEQUENCE LISTING
    • SEQ ID No 1 is that of DNA encoding for CDR (a).
    • SEQ ID No 2 is the amino acid sequence of CDR (a).
    • SEQ ID No 3 is that of DNA encoding for CDR (b).
    • SEQ ID No 4 is the amino acid sequence of CDR (b).
    • SEQ ID No 5 is that of DNA encoding for CDR (c).
    • SEQ ID No 6 is the amino acid sequence of CDR (c).
    • SEQ ID No 7 is that of DNA encoding for CDR (d).
    • SEQ ID No 8 is the amino acid sequence of CDR (d).
    • SEQ ID No 9 is that of DNA encoding for CDR (e).
    • SEQ ID No 10 is the amino acid sequence of CDR (e).
    • SEQ ID No 11 is that of DNA encoding for CDR (f).
    • SEQ ID No 12 is the amino acid sequence of CDR (f).
    • SEQ ID No 13 is that of DNA encoding for the rat light chain variable region.
    • SEQ ID No 14 is the amino acid sequence of the rat light chain variable region.
    • SEQ ID No 15 is that of DNA encoding the rat heavy chain variable region including the respective CDRs.
    • SEQ ID No 16 is the amino acid sequence of the rat heavy chain variable region including the respective CDRs.
    • SEQ ID No 17 is that of DNA encoding the rat light chain variable region with respective CDRs and the human lambda constant region.
    • SEQ ID No 18 is the amino acid sequence of the rat light chain variable region with respective CDRs and the human lambda constant region.
    • SEQ ID No 19 is the DNA sequence encoding for the heavy chain variable region with CDRs and the human CH1-hinge-aglycosylCH2CH3.
    • SEQ ID No 20 is the amino acid sequence of the heavy chain variable region with CDRs and the human CH1-hinge-adycosylCH2CH3.
    • SEQ IDs No 21 to 24 are the amino acid sequences of the human heavy chain variable domain framework without CDRs.
    • SEQ IDs No 25 to 28 are the amino acid sequences of the rat light chain variable domain framework without CDRs.
    • SEQ ID No 29 and 30 are of primers used to clone rat CD3 light chain variable region into PEE12.
    General Methodology
  • General Methods of Producing CD3 Specific Monoclonal Antibodies with Humanised Heavy Chain.
  • The cloning and re-shaping of the V-region gene of the rat antibody YTH 12.5 specific for the human CD3 antigen is performed as described in Routledge et al., 1991, Eur. J. Immunol., 21, 2717 and in UK Patent Application No. 9121126.8 and its equivalents. YTH 12.5 is a rat hybridoma cell line secreting an IgG2b monoclonal antibody specific for the CD3 antigen complex, but the methodology is applicable to other cells secreting CD3 specific antibodies with the same CDRs (see the preceding description).
  • Briefly, the methodology is based on that of Orlandi et al., 1989, PNAS USA, 86, 3833, using the polymerase chain reaction (PCR). The VH gene (heavy chain variable region gene) is cloned using oligonucleotide primers VH1FOR and VH1BACK (see aforesaid incorporated patents). The PCR products are ligated into the vector M13-VHPCR1 in which site directed mutagenesis is performed using 6 oligonucleotide primers. The VL gene (light chain variable region gene) was cloned using primers designed based on the published VLë sequences. The gene is cloned into the vector M13-VKPCR, together with the human lambda light chain constant region. In this vector mutagenesis of the VL framework is performed using 5 oligonucleotides. The humanised VL gene is then inserted into the expression vector pHâApr-1.
  • Vector p316 is generated in which the reshaped CD3 VH gene may be expressed in conjunction with different immunoglobulin H chain constant region genes, this vector being based on the pHâApr-gpt vector (Gunning et al., 1987, P.N.A.S. USA, 85, 7719-7723). A 1.65 Kb fragment of DNA carrying the dihydrofolate reductase (dhft) gene and SV 40 expression signals (Page & Sydenham, 1991, Biotechnology, 9, 64) is inserted into the unique EcoRI site of pHâApr-gpt. A 700 bp HindIII-BamHI DNA fragment encoding the reshaped CD3-VH gene is then cloned into the vector's multiple cloning site, downstream and under the control of the â actin promoter. The desired H chain constant region gene (in genomic configuration) can then be inserted into the unique BamH1 restriction enzyme site downstream of the CD3-VH gene.
  • The aglycosyl human IgG1 constant region is derived from the wild type Glm (1,17) gene described by Takahashi et al., (1982, Cell, 29, 671-679) as follows. The gene is cloned into the vector M13 tg131 where site-directed mutagenesis is performed (Amersham International PLC kit) to mutate the amino acid residue at position 297 from an asparagine to an alanine residue.
  • Oligosaccharide at Asn-297 is a characteristic feature of all normal human IgG antibodies (Kabat et al., 1987, Sequence of Proteins of Immunological Interest, US Department of Health Human Services Publication), each of the two heavy chains in the IgG molecules having a single branched chain carbohydrate group which is linked to the amide group of the asparagine residue (Rademacher and Dwek, 1984, Prog. Immunol., 5, 95-112). Substitution of asparagine with alanine prevents the glycosylation of the antibody.
  • The 2.3 Kb aglycosyl IgG1 constant region is excised from M13 by double digestion using BamHI and BgIII and ligated into the BamHI site of vector p316 to produce clone p323.
  • Subconfluent monolayers of dhfr Chinese Hamster Ovary cells are co-transfected with the vector p323 containing the heavy chain gene and a second vector p274 containing the re-shaped human ë light chain (Routledge et al., 1991, Eur. J. Immunol., 21, 2717-2725). Prior to tranfection both plasmid DNAs were linearised using the restriction endonuclease PvuI. Transfection is carried out using the DOTMA reagent (Boehringer, Germany) following the manufacturer's recommendations.
  • Heavy and light chain transfectants are selected for in xanthine/hypoxanthine free IMDM containing 5% (v/v) dialysed foetal calf serum.
  • The production of the analogous wild type human IgG1 -CD3 heavy chain vector p278 has been described elsewhere (Routledge et al., 1991, Eur. J. Immunol., 21, 2717-2725 and GB9121126.8 incorporated herein by reference). H-chain expression vectors carrying the non-mutant human IgG2 (Flanagan & Rabbitts, 1982, Nature 300, 709-713), IgG3 (Huck et al., 1986, Nuc. Acid. Res., 14, 1779-1789), IgG4 (Flanagan & Rabbitts, 1982, Nature 300, 709-713), Epsilon (Flanagan & Rabbitts, 1982, EMBO. Journal 1, 655-660) and Alpha-2 (Flanagan & Rabbitts, 1982, Nature 300, 709-713) constant region genes (vectors p317, p318, p320, p321 and p325, respectively) are derived from the vector p316. Introduction of these vectors, in conjunction with the light chain vector p274, into dhfr CHO cells as described earlier, produced cell lines secreting CD3 antibody of the ã1, ã2, ã3, ã4, {dot over (a)} and á-2 isotype respectively. Cells expressing CD3 antibodies were subjected to two rounds of cloning in soft agar, and then expanded into roller bottle cultures. The immunoglobulin from approximately 4 litres of tissue culture supernatant from each cell line is concentrated by ammonium sulphate precipitation, dialysed extensively against PBS and then quantified as follows:
  • As the antibody is not pure, a competition assay designed to specifically quantitate the concentration of antibody with CD3 antigen binding capacity was used. Human T-cell blasts are incubated with FITC labelled UCHT-1, an antibody which binds to the same epitope of the CD3 antigen as the chimeric panel. The concentration of FITC reagent used is previously determined to be half saturating. Unlabelled YTH 12.5 (HPLC purified) was titrated from a known starting concentration and added to wells containing T-cells and UCHT-1 FITC. The unlabelled antibody serves as a competitor for the antigen binding site. This is detected as decrease in the mean fluorescence seen when the cells are studied using FACS analysis. Thus, titration of the chimeric antibodies from unknown starting concentrations yields a series of sigmoidal curves when mean fluorescence is plotted against antibody dilution. These can be directly compared with the standard YTH 12.5 curve, an equivalent antibody may be used.
  • EXAMPLE 1
  • Preparation of an aglycosylated antibody specific for the human CD3 antigen, containing CDRs corresponding in sequence to those from the YTH 12.5 rat antibody, in human heavy chain variable framework linked to IgG1 constant region and rat light chain variable framework linked to human lambda constant region.
  • A chain loss variant of YTH12.5LAG1 was selected for loss of CD3 light chain, that only expressing rat CD3 heavy chain, and was used for the purpose of transfecting in fully humanised aglycosyl CD3 heavy chain. A 1.4 kb BamH1-Hind111 DNA fragment encoding the humanised IgG1 aglycosyl CD3 heavy chain construct was cloned into the multiple cloning site of two different expression vectors, pHβApr-1 gpt (Gunning et al (1987) P.N.A.S. USA 84, 4831 and 85, 7719-7723) and pOXCD52neo (Frewin unpublished) which contain different selectable markers.
  • pOXCD52neo expression vector is produced using the strong ‘polypeptide chain elongation factor 1’ promoter (EF1) which gives high-level antibody production (see Shigekazu Nagata NAR, Vol 18. No 17, page 5322. This is placed in a construct together with a neomycin selectable marker. Also included in the vector is a cDNA for Campath CD52 surface expressed antigen, driven by the TK promoter (all these promoters and markers are in the public domain by reason of availability). The expression of CD52 on the cell surface allows identification of transformants using CD52 antibodies.
  • YTH 12.5LAG1 was then transfected separately with the two plasmids by electroporation and heavy transfectants selected with IMDM containing 5% foetal calf serum. MPA and Xanthine for pHβApr-1gpt and IMDM containing 5% foetal calf serum and 1 mg/ml G418 for pOXCD52neo, over a couple of weeks until live colonies grew up for testing. Both transfections yielded positive clones when screened for human IgG1 production using ELISA. Functional CD3 antibody was tested for by binding to a human T cell line Jurkat (ATCC TIB 152 (J. Immunol 133, 123-128 (1984)) and analysed by FACS (Becton Dickinson), both assays showing yields of antibody of between 30 and 50 μg/ml.
  • The pOXCD52neo vector allows monitoring of transfected cells producing antibody with the use of a cell surface marker CD52. Only cells containing this marker secrete antibody so by taking Campath CD52 antibodies linked with FITC transfected cells can be analysed by FACS for the percentage of cells producing antibody and clonal status can be confirmed. No negative producing cells were detected and antibody yields remained at 50 μg/ml with normal cell growth.
  • A chimeric form of the aglycosyl CD3 antibody was produced using PCR assembly to link the rat CD3 light chain variable region to the human lambda constant region using primers which introduce restriction enzyme sites Hind III and EcoR1 to allow cloning into the Celltech expression vector PEE12 (see Bebbington et al (1992) Biotechnology 10, 169). The primer sequences are SEQ ID No 29 and 30 in the sequence listing attached hereto.
  • The final construct was sequenced and cloned into PEE 12 already containing the humanised CD3 aglycosyl heavy chain and this was transfected into the myeloma cell line NSO (ECACC No 85110503-Galfre and Milstein (1981) Enzymology 73 (B) 3-46) by electroporation. Resultant clones were screened for antibody production using ELISA for human IgG1 and human lambda light chain and on the FACS for binding to human T-cell clone Jurkat cell line. The ELISA uses goat anti-human IgFc (Sigma I2136) as capture antibody and Biotinylated sheep anti-human IgG (Amersham RPN 1003) or Biotinylated goat anti-human lambda light chain (Amersham RPN 1188) as detector antibody. (see Routledge et al Eur. J. Immunol (1991) 21: 2717-2725).
  • After one transfection 16 clones expressed 60 μg/ml to 100 μg/ml, far more than any other transfection with the reshaped aglycosyl CD3. These transfectants were then cloned by limiting dilution cloning and some of these improved to 120 μg/ml. These remained stable in long term culture and large scale antibody production with no problems with cell growth.
  • FIGS. 1 to 4 illustrate the ability of these antibodies to bind CD3 with the same capacity as the previously described fully humanised aglycosyl anti-CD3 antibodies of the prior art.

Claims (2)

1. An IgG antibody having a binding affinity for the CD3 antigen complex in which in the heavy chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 2, 4 and 6 and respective conservatively modified variants thereof and the light chain has a variable region framework together with at least one CDR selected from the amino acid sequences of SEQ ID No 8, 10 and 12 and respective conservatively modified variants thereof characterised in that the heavy chain variable region framework corresponds in sequence to the human type sequence and the light chain variable region framework includes one or more of the specific amino acids characteristic of the rodent type sequence.
2-43. (canceled)
US13/162,755 1998-07-21 2011-06-17 Antibody preparation Abandoned US20110282037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/162,755 US20110282037A1 (en) 1998-07-21 2011-06-17 Antibody preparation

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
GBGB9815909.8A GB9815909D0 (en) 1998-07-21 1998-07-21 Antibody preparation
GB9815909.8 1998-07-21
PCT/GB1999/002380 WO2000005268A1 (en) 1998-07-21 1999-07-21 Hybrid human/rodent igg antibody to cd3, and methods of its construction
US09/736,371 US20020131968A1 (en) 1998-07-21 2000-12-15 Antibody preparation
US10/463,442 US7994289B2 (en) 1998-07-21 2003-06-18 Humanized anti-CD3 antibodies
US11/581,008 US7993641B2 (en) 1998-07-21 2006-10-16 Methods of treatment using anti-CD3 antibodies
US13/162,755 US20110282037A1 (en) 1998-07-21 2011-06-17 Antibody preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/581,008 Continuation US7993641B2 (en) 1998-07-21 2006-10-16 Methods of treatment using anti-CD3 antibodies

Publications (1)

Publication Number Publication Date
US20110282037A1 true US20110282037A1 (en) 2011-11-17

Family

ID=10835937

Family Applications (4)

Application Number Title Priority Date Filing Date
US09/736,371 Abandoned US20020131968A1 (en) 1998-07-21 2000-12-15 Antibody preparation
US10/463,442 Expired - Fee Related US7994289B2 (en) 1998-07-21 2003-06-18 Humanized anti-CD3 antibodies
US11/581,008 Expired - Fee Related US7993641B2 (en) 1998-07-21 2006-10-16 Methods of treatment using anti-CD3 antibodies
US13/162,755 Abandoned US20110282037A1 (en) 1998-07-21 2011-06-17 Antibody preparation

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09/736,371 Abandoned US20020131968A1 (en) 1998-07-21 2000-12-15 Antibody preparation
US10/463,442 Expired - Fee Related US7994289B2 (en) 1998-07-21 2003-06-18 Humanized anti-CD3 antibodies
US11/581,008 Expired - Fee Related US7993641B2 (en) 1998-07-21 2006-10-16 Methods of treatment using anti-CD3 antibodies

Country Status (16)

Country Link
US (4) US20020131968A1 (en)
EP (2) EP1098909B1 (en)
JP (1) JP4629228B2 (en)
KR (1) KR100629017B1 (en)
AT (1) ATE551366T1 (en)
AU (1) AU766486B2 (en)
CA (1) CA2334047C (en)
CY (1) CY1113296T1 (en)
DK (1) DK1098909T3 (en)
ES (1) ES2384319T3 (en)
GB (1) GB9815909D0 (en)
NZ (1) NZ509074A (en)
PT (1) PT1098909E (en)
RU (1) RU2244720C2 (en)
WO (1) WO2000005268A1 (en)
ZA (1) ZA200100478B (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020147312A1 (en) * 2001-02-02 2002-10-10 O'keefe Theresa Hybrid antibodies and uses thereof
GB2380127A (en) * 2001-09-26 2003-04-02 Isis Innovation Treatment of chronic joint inflammation
US7084257B2 (en) 2001-10-05 2006-08-01 Amgen Inc. Fully human antibody Fab fragments with human interferon-gamma neutralizing activity
EP1400534B1 (en) 2002-09-10 2015-10-28 Affimed GmbH Human CD3-specific antibody with immunosuppressive properties
WO2005003175A2 (en) * 2003-06-13 2005-01-13 Biogen Idec Ma Inc. Aglycosyl anti-cd154 (cd40 ligand) antibodies and uses thereof
JP2007503206A (en) * 2003-08-22 2007-02-22 バイオジェン・アイデック・エムエイ・インコーポレイテッド Improved antibody with altered effector function and method for producing the antibody
KR101229731B1 (en) 2003-10-16 2013-03-07 암젠 리서치 (뮌헨) 게엠베하 Multispecific deimmunized cd3-binders
JP5102028B2 (en) 2004-07-26 2012-12-19 バイオジェン・アイデック・エムエイ・インコーポレイテッド Anti-CD154 antibody
JP2009539841A (en) * 2006-06-06 2009-11-19 トラークス,インコーポレイテッド Administration of anti-CD3 antibodies in the treatment of autoimmune diseases
WO2008013918A2 (en) * 2006-07-26 2008-01-31 Myelin Repair Foundation, Inc. Cell cycle regulation and differentiation
ES2388003T3 (en) * 2006-09-20 2012-10-05 Genzyme Corporation A system based on FACS and the indicator protein for high-performance development of therapeutic proteins
US8252286B2 (en) 2007-05-21 2012-08-28 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8178101B2 (en) 2007-05-21 2012-05-15 Alderbio Holdings Inc. Use of anti-IL-6 antibodies having specific binding properties to treat cachexia
US8404235B2 (en) 2007-05-21 2013-03-26 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US7906117B2 (en) * 2007-05-21 2011-03-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
US8062864B2 (en) 2007-05-21 2011-11-22 Alderbio Holdings Llc Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies
LT3187506T (en) 2007-05-21 2019-04-25 Alderbio Holdings Llc Antibodies to il-6 and use thereof
TW201531484A (en) 2007-05-21 2015-08-16 Alder Biopharmaceuticals Inc Antibodies to TNF alpha and use thereof
US9701747B2 (en) 2007-05-21 2017-07-11 Alderbio Holdings Llc Method of improving patient survivability and quality of life by anti-IL-6 antibody administration
EP2111869A1 (en) 2008-04-23 2009-10-28 Stichting Sanquin Bloedvoorziening Compositions and methods to enhance the immune system
AU2009278386B2 (en) 2008-08-05 2015-05-21 Toray Industries, Inc. Pharmaceutical composition for treatment and prevention of cancers
ES2471379T3 (en) 2008-08-05 2014-06-26 Toray Industries, Inc. Method to detect cancer
US8420089B2 (en) 2008-11-25 2013-04-16 Alderbio Holdings Llc Antagonists of IL-6 to raise albumin and/or lower CRP
US9212223B2 (en) 2008-11-25 2015-12-15 Alderbio Holdings Llc Antagonists of IL-6 to prevent or treat thrombosis
US8323649B2 (en) 2008-11-25 2012-12-04 Alderbio Holdings Llc Antibodies to IL-6 and use thereof
US9452227B2 (en) 2008-11-25 2016-09-27 Alderbio Holdings Llc Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments
US8337847B2 (en) 2008-11-25 2012-12-25 Alderbio Holdings Llc Methods of treating anemia using anti-IL-6 antibodies
US8992920B2 (en) 2008-11-25 2015-03-31 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of arthritis
WO2011028952A1 (en) 2009-09-02 2011-03-10 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
CN102740888B (en) 2009-11-24 2016-10-12 奥尔德生物制药公司 IL-6 antibody and application thereof
US9775921B2 (en) 2009-11-24 2017-10-03 Alderbio Holdings Llc Subcutaneously administrable composition containing anti-IL-6 antibody
JP5953303B2 (en) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド Antibodies with modified isoelectric points
AU2011332810A1 (en) 2010-11-23 2013-06-13 Alderbio Holdings Llc Anti-IL-6 antibodies for the treatment of oral mucositis
US9249217B2 (en) 2010-12-03 2016-02-02 Secretary, DHHS Bispecific EGFRvIII x CD3 antibody engaging molecules
RU2595400C2 (en) * 2011-08-04 2016-08-27 Торэй Индастриз, Инк. Pharmaceutical composition for treating and/or preventing malignant growth
BR112014002616B1 (en) 2011-08-04 2022-01-18 Toray Industries, Inc METHOD TO DETECT PANCREATIC CANCER
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
EP2794652B1 (en) * 2011-12-21 2017-11-15 F. Hoffmann-La Roche AG Rapid method for cloning and expression of cognate antibody variable region gene segments
WO2013125654A1 (en) 2012-02-21 2013-08-29 東レ株式会社 Medicinal composition for treating and/or preventing cancer
EP2892924B1 (en) 2012-06-14 2020-11-25 Therapix Biosciences Ltd. Humanized antibodies to cluster of differentiation 3 (cd3)
CA2879185C (en) 2012-07-19 2021-08-24 Toray Industries, Inc. Method for detecting cancer
RU2646466C2 (en) 2012-07-19 2018-03-05 Торэй Индастриз, Инк. Method for cancer detection
WO2014028939A2 (en) 2012-08-17 2014-02-20 California Institute Of Technology Targeting phosphofructokinase and its glycosylation form for cancer
CA2898100C (en) 2013-01-14 2023-10-10 Xencor, Inc. Novel heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
EP2945969A1 (en) 2013-01-15 2015-11-25 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP3421495A3 (en) 2013-03-15 2019-05-15 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
ES2683268T3 (en) 2013-07-25 2018-09-25 Cytomx Therapeutics, Inc. Multispecific antibodies, multispecific activatable antibodies and methods for using them
US9770461B2 (en) 2013-08-02 2017-09-26 California Institute Of Technology Tailored glycopolymers as anticoagulant heparin mimetics
US10227370B2 (en) 2013-08-02 2019-03-12 California Institute Of Technology Heparan sulfate/heparin mimetics with anti-chemokine and anti-inflammatory activity
US9862774B2 (en) 2013-08-09 2018-01-09 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of cancer
WO2015149077A1 (en) 2014-03-28 2015-10-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
EP3172235A2 (en) 2014-07-25 2017-05-31 Cytomx Therapeutics Inc. Anti-cd3 antibodies, activatable anti-cd3 antibodies, multispecific anti-cd3 antibodies, multispecific activatable anti-cd3 antibodies, and methods of using the same
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
RS62332B1 (en) 2014-11-26 2021-10-29 Xencor Inc Heterodimeric antibodies that bind cd3 and cd20
WO2016086196A2 (en) 2014-11-26 2016-06-02 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cd38
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
CA3007030A1 (en) 2015-12-07 2017-06-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and psma
CN109154611B (en) 2015-12-09 2022-04-08 科尔沃斯制药股份有限公司 Humanized anti-CD 73 antibodies
IL263542B2 (en) 2016-06-14 2024-10-01 Xencor Inc Bispecific checkpoint inhibitor antibodies
KR102531889B1 (en) 2016-06-20 2023-05-17 키맵 리미티드 Anti-PD-L1 and IL-2 cytokines
CN109715663B (en) 2016-06-28 2022-11-25 Xencor股份有限公司 Heterodimeric antibodies binding to somatostatin receptor 2
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US10501543B2 (en) 2016-10-14 2019-12-10 Xencor, Inc. IL15/IL15Rα heterodimeric Fc-fusion proteins
TWI728250B (en) 2017-06-21 2021-05-21 美商基利科學股份有限公司 Multispecific antibodies that target hiv gp120 and cd3
US11084863B2 (en) 2017-06-30 2021-08-10 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains
IL312607B1 (en) 2017-08-03 2025-04-01 Amgen Inc Interleukin-21 muteins and methods of treatment
ES2985118T3 (en) 2017-09-08 2024-11-04 Amgen Inc KRAS G12C inhibitors and methods of using them
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
KR20200085828A (en) 2017-11-08 2020-07-15 젠코어 인코포레이티드 Bispecific and monospecific antibodies using novel anti-PD-1 sequences
IL275426B2 (en) 2017-12-19 2025-03-01 Xencor Inc Engineered il-2 fc fusion proteins
ES2941740T3 (en) 2018-01-12 2023-05-25 Amgen Inc Anti-PD-1 antibodies and treatment methods
EP3773911A2 (en) 2018-04-04 2021-02-17 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
SG11202010163QA (en) 2018-04-18 2020-11-27 Xencor Inc Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
US11505595B2 (en) 2018-04-18 2022-11-22 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains
CA3105729A1 (en) 2018-07-31 2020-02-06 Amgen Research (Munich) Gmbh Dosing regimen for bcma-cd3 bispecific antibodies
JOP20210022A1 (en) 2018-08-03 2021-01-28 Amgen Inc Antibody constructs for cldn18.2 and cd3
TW202028239A (en) 2018-09-28 2020-08-01 美商安進公司 Antibodies against soluble bcma
AU2019355971A1 (en) 2018-10-03 2021-05-06 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
CN113166263A (en) 2018-10-11 2021-07-23 印希比股份有限公司 DLL3 single domain antibody and therapeutic composition thereof
EP3864049A1 (en) 2018-10-11 2021-08-18 Inhibrx, Inc. Pd-1 single domain antibodies and therapeutic compositions thereof
US20210340273A1 (en) 2018-10-11 2021-11-04 Inhlbrx, inc. 5t4 single domain antibodies and therapeutic compositions thereof
EP3864044A1 (en) 2018-10-11 2021-08-18 Inhibrx, Inc. B7h3 single domain antibodies and therapeutic compositions thereof
MX2021005155A (en) 2018-11-01 2021-09-30 Shandong New Time Pharmaceutical Co Ltd Bispecific antibody and use thereof.
JP7612596B2 (en) 2019-03-01 2025-01-14 ゼンコア インコーポレイテッド Heterodimeric antibodies that bind to ENPP3 and CD3
US20230002487A1 (en) * 2019-06-07 2023-01-05 Adimab, Llc High affinity anti-cd3 antibodies, and methods for their generation and use
TWI845231B (en) 2019-07-05 2024-06-11 日商小野藥品工業股份有限公司 Treatment of hematological cancer with pd-1/cd3 bispecific protein
EP3819007B1 (en) 2019-11-11 2024-07-10 Amgen Research (Munich) GmbH Dosing regimen for anti-bcma agents
EP4093771A1 (en) 2020-01-22 2022-11-30 Amgen Research (Munich) GmbH Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
IL298046A (en) 2020-05-11 2023-01-01 Janssen Biotech Inc Treatment methods for multiple myeloma
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
CA3183756A1 (en) 2020-05-19 2021-11-25 Amgen Inc. Mageb2 binding constructs
MX2023001962A (en) 2020-08-19 2023-04-26 Xencor Inc Anti-cd28 and/or anti-b7h3 compositions.
WO2022096704A1 (en) 2020-11-06 2022-05-12 Amgen Inc. Antigen binding domain with reduced clipping rate
CR20230235A (en) 2020-11-06 2023-10-05 Amgen Res Munich Gmbh POLYPEPTIDE CONSTRUCTIONS THAT SELECTIVELY BIND CLDN6 AND CD3
TW202233682A (en) 2020-11-10 2022-09-01 美商安進公司 Methods for administering a bcmaxcd3 binding molecule
IL305736A (en) 2021-03-09 2023-11-01 Xencor Inc Heterodimeric antibodies that bind cd3 and cldn6
WO2022192586A1 (en) 2021-03-10 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and gpc3
EP4426437A1 (en) 2021-11-03 2024-09-11 Janssen Biotech, Inc. Methods of treating cancers and enhancing efficacy of bcmaxcd3 bispecific antibodies
CN117264043B (en) 2022-06-14 2024-05-10 上海镔铁生物科技有限责任公司 T cell receptor targeting KRAS G12V mutant polypeptide and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361549A (en) 1979-04-26 1982-11-30 Ortho Pharmaceutical Corporation Complement-fixing monoclonal antibody to human T cells, and methods of preparing same
US4361539A (en) 1980-05-05 1982-11-30 Instrumentation Laboratory Inc. Analysis system
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
GB8318575D0 (en) 1983-07-08 1983-08-10 Cobbold S P Antibody preparations
GB8725529D0 (en) 1987-10-30 1987-12-02 Delta Biotechnology Ltd Polypeptides
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
GB8928874D0 (en) * 1989-12-21 1990-02-28 Celltech Ltd Humanised antibodies
GB9021679D0 (en) 1990-10-05 1990-11-21 Gorman Scott David Antibody preparation
US5968509A (en) * 1990-10-05 1999-10-19 Btp International Limited Antibodies with binding affinity for the CD3 antigen
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
ES2136092T3 (en) 1991-09-23 1999-11-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF HUMANIZED ANTIBODIES.
GB9206422D0 (en) * 1992-03-24 1992-05-06 Bolt Sarah L Antibody preparation
GB2391480B (en) 2002-08-05 2007-02-28 Caretek Medical Ltd Drug delivery system

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Caldas et al. (Mol. Immunol. 2003 May; 39 (15): 941-952) *
Chien et al. (Proc. Natl. Acad. Sci. USA. 1989 Jul; 86 (14): 5532-5536) *
De Pascalis et al. (J. Immunol. 2002; 169 (6): 3076-3084) *
Giusti et al. (Proc. Natl. Acad. Sci. USA. 1987 May; 84 (9): 2926-2930) *
Gussow et al. (Methods in Enzymology. 1991; 203: 99-121) *
Holm et al. (Mol. Immunol. 2007 Feb; 44 (6): 1075-1084) *
Mariuzza et al. (Annu. Rev. Biophys. Biophys. Chem. 1987; 16: 139-159) *
Vajdos et al. (J. Mol. Biol. 2002 Jul 5; 320 (2): 415-428) *
Winkler et al. (J. Immunol. 2000 Oct 15; 165 (8): 4505-4514) *
Wu et al. (J. Mol. Biol. 1999 Nov 19; 294 (1): 151-162) *

Also Published As

Publication number Publication date
ZA200100478B (en) 2001-07-30
JP2002521022A (en) 2002-07-16
CA2334047A1 (en) 2000-02-03
KR100629017B1 (en) 2006-09-26
GB9815909D0 (en) 1998-09-16
WO2000005268A1 (en) 2000-02-03
PT1098909E (en) 2012-06-25
US20020131968A1 (en) 2002-09-19
US7994289B2 (en) 2011-08-09
US20070092516A1 (en) 2007-04-26
EP2388275A3 (en) 2013-04-03
US7993641B2 (en) 2011-08-09
AU766486B2 (en) 2003-10-16
ES2384319T3 (en) 2012-07-03
EP1098909A1 (en) 2001-05-16
EP1098909B1 (en) 2012-03-28
KR20010082010A (en) 2001-08-29
CY1113296T1 (en) 2016-04-13
CA2334047C (en) 2015-11-24
NZ509074A (en) 2003-09-26
JP4629228B2 (en) 2011-02-09
RU2244720C2 (en) 2005-01-20
EP2388275A2 (en) 2011-11-23
DK1098909T3 (en) 2012-06-25
AU5055299A (en) 2000-02-14
ATE551366T1 (en) 2012-04-15
US20040006216A1 (en) 2004-01-08

Similar Documents

Publication Publication Date Title
US7994289B2 (en) Humanized anti-CD3 antibodies
US5585097A (en) Humanized anti-CD3 specific antibodies
CA2070659C (en) Antibody preparation

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION