US20110253796A1 - Zone-based hvac system - Google Patents
Zone-based hvac system Download PDFInfo
- Publication number
- US20110253796A1 US20110253796A1 US13/087,175 US201113087175A US2011253796A1 US 20110253796 A1 US20110253796 A1 US 20110253796A1 US 201113087175 A US201113087175 A US 201113087175A US 2011253796 A1 US2011253796 A1 US 2011253796A1
- Authority
- US
- United States
- Prior art keywords
- zone
- comfort
- zones
- unit
- occupied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1927—Control of temperature characterised by the use of electric means using a plurality of sensors
- G05D23/193—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
- G05D23/1932—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
- G05D23/1934—Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
Definitions
- This invention relates generally to heating and cooling and, in particular to a zone-based heating, ventilating, and air conditioning (HVAC) system that uses occupant sensors and controllable vents to favor environmental conditions in occupied areas.
- HVAC heating, ventilating, and air conditioning
- U.S. Pat. No. 4,407,447 entitled “Energy Control System,” has a plurality of occupancy sensors, with each sensor adapted to detect the presence of a human being in a room.
- the occupancy sensors are all connected to a computer with the computer controlling a plurality of dampers that regulate the air flow in the air ducts into the various rooms.
- the computer Upon the detection of the presence of a human being in a room by the occupancy sensor, the computer sends a signal to the air damper controlling the air flow into that room to open the air flow through that air duct.
- This invention resides in a system for controlling a heating, ventilating, and air conditioning (HVAC) unit servicing a plurality of comfort zones.
- HVAC heating, ventilating, and air conditioning
- a plurality of comfort delivery devices are provided, each being associated with at least one of the zones, each comfort delivery device being responsible for delivering a change in climate to its respective zone through the HVAC unit.
- a sending unit is disposed in each zone, the sending unit including a first sensor for determining whether the zone is occupied by one or more persons, a second sensor for determining an environmental condition in the zone, and a communications device for outputting a signal relating to the occupancy and environmental condition.
- a control unit includes an input for receiving the signal from each sending unit and selectively activating and deactivating the comfort delivery devices to prioritize the climate control provided by the HVAC unit to zones that are occupied.
- the HVAC unit may be a furnace or an air conditioner, with the change in climate being temperature.
- the HVAC unit may cause a change in humidity.
- the comfort delivery devices may be controllable louvers or vents.
- the first sensors are infrared sensors and the second sensors are temperature sensors.
- the communications devices may be wireless transmitters.
- Each sending unit may be coded, enabling the control unit to determine the zone or zones within which the sending units are disposed.
- FIG. 1 is a simplified, schematic diagram illustrating the basic operation of one embodiment of the invention.
- FIG. 2 depicts an alternative embodiment of the invention wherein controlled vents are disposed at or near a furnace
- FIG. 3 is a simplified block diagram of a typical OSTTU according to the invention.
- This invention reduces energy consumption and enables potential equipment downsizing by providing a heating/cooling system that operates on a zone basis (i.e., room-by-room).
- the invention uses occupant sensors and controllable vents to favor environmental conditions in area(s) occupied by people, disfavoring other areas if/until people actually visit or frequent such places.
- the system reclaims warmed or cooled air that has been applied to now-vacated zones, and redirect the warmed or cooled air to zones that are currently occupied.
- the system may also utilize unoccupied zones to “store” heated or cooled air to be drawn upon at a later time, with the intention of advantageously utilizing this “reserve capacity” to mitigate the effects of other energy-saving features, such as electrical power distribution systems that automatically interrupt the power for air conditioners at peak periods of usage, or using lower overnight temperatures to store cool air in unoccupied zones so that it can be utilized during the hotter daylight hours.
- energy-saving features such as electrical power distribution systems that automatically interrupt the power for air conditioners at peak periods of usage, or using lower overnight temperatures to store cool air in unoccupied zones so that it can be utilized during the hotter daylight hours.
- heat-exchangers or other apparatus may be employed to optimize the efficiency of transfer of energy between zones.
- equivalent facilities may be implemented to redirect air from one zone to another, based on temperature, humidity, air purity, or other environmental considerations.
- the system makes intelligent decisions based upon various input factors, such as the allowable degree of variation in temperatures, or “learned behaviors,” such as patterns of movements throughout the zones at particular times of day or certain days of the week. For example, the system may “learn” that the occupant of a home likes to prepare a “midnight snack” in the kitchen 30 minutes before retiring for the night, and could adjust the temperatures of various zones based on an anticipated schedule, or remaining family members in other zones. External inputs can also be integrated into the decision-making process, as, for example, factoring in the setting of an alarm clock or other wake-up device to automatically raise the temperature of a bathroom in anticipation of a morning shower.
- various input factors such as the allowable degree of variation in temperatures, or “learned behaviors,” such as patterns of movements throughout the zones at particular times of day or certain days of the week.
- the system may “learn” that the occupant of a home likes to prepare a “midnight snack” in the kitchen 30 minutes before retiring for the night, and could adjust the temperatures of various zones
- Another option would be to apply different rules/considerations based on a pre-defined “profile” for a particular person. For example, a particular person may prefer to keep the room they are occupying at a higher or lower temperature than other potential occupants; in cases such as these, the system may identify particular occupants by their size, heat signature, or other methods of analysis and, based on their profile, define the environmental parameters to be applied to the rooms they are occupying at a particular time. When multiple occupants having dissimilar profiles are in the same room, the system would derive compromise settings based on pre-defined rules for factoring in the profiles of each occupant.
- some homes employ multiple heating systems (either because of long duct runs, or for redundancy), and the systems described herein are capable of interfacing multiple HVAC units to manage their functionality as a single integrated system.
- the resulting benefit could include alternating the use of the units to prevent one unit from becoming overloaded, or using all units simultaneously to speed the response to system-related demands.
- FIG. 1 is a simplified, schematic diagram illustrating the basic operation of one embodiment of the invention.
- the drawing shows three rooms, A, B, C, with the understanding that the invention is not limited in terms of the number of areas considered. Items labeled 140 and 142 are doors between the rooms.
- Item 102 represents a furnace, combined furnace/AC unit, boiler, humidifier, dehumidifier, or any other unit associated with heating, cooling or other faun of residential, commercial or industrial environmental control. Assuming unit 102 is a furnace, the furnace includes a hot air plenum 104 feeding registers 110 , 112 , 116 , with a cold-air return coupled to plenum 106 . Again, more or fewer hot/cold vents may be accommodated
- Each vent 110 , 112 , 114 , 116 may include controlled louvers 120 , 122 , 124 , 126 .
- louvers 120 are controlled by motor 128 .
- Each room A, B, C in this case also includes an Occupant Sensor/Thermostat Transmitter Unit (OSTTU) 130 , 132 , 134 described in further detail below.
- OSTTU Occupant Sensor/Thermostat Transmitter Unit
- Each OSTTU is characterized by a field of view (i.e., 131 ) used to detect persons entering, leaving, or remaining within a respective room.
- the OSTTUs include infrared sensors for this purpose.
- these sensing means can be combined with motion sensors or other detectors, and the sensitivities of these sensors can be adjusted, so as to moderate the impact of some events (such as entering a zone just for a few minutes before leaving again), or ignoring other events (such as a pet roaming the zones).
- the controlled louvers and OSTTUs are in communication with a control unit 160 which, in turn, communicates and controls unit 102 , whether a furnace or otherwise.
- the OSTTUs are battery operated devices which communicate wirelessly (i.e., RF or infrared) via broken lines 150 to the control unit 160 . This is preferred since an installer may wish to locate the OSTTUs in various wall-mounted locations, including locations having no continuous power supply available. In some embodiments, however, the OSTTUs may be incorporated into wall outlets, light fixtures, or the like and derive power through them without the need for batteries, or alternatively through power derived from batteries recharged by locally mounted solar-cells or recharged by other means.
- the louver controllers may also be battery operated and wirelessly controlled. However, there are some disadvantages to being battery operated, so they are more preferably hard-wired via broken lines 152 to control unit 160 to ensure reliable operation. Particularly as an after-market product, low-voltage wiring may be oriented through existing ductwork to louvers 120 , 122 , 124 , 126 , thereby forgoing the need for wiring nearby AC outlets, for example.
- louvers 120 , 122 may be closed since the rooms are void of occupants.
- cold-air return 124 may be partially open to circulate at least a portion of the air from room C.
- OSTTUs preferably include thermostats, which may be of the programmable set-back type. Alternatively, a subset of the OSTTUs may include thermostats, with the others simply including thermometers, depending upon the operational environment. If provided with thermostats, the OSTTUs may be set at the same temperature or at different temperatures.
- OSTTUs 130 , 132 , 134 include thermostats, that all are set to 65° F., and that the person just entered room C from room B. If OSTTU 134 detects that room C is cold—say, 60° F.—the furnace 102 may be turned ON (if not already ON), and louver 116 will be opened (again, if not already opened), until OSTTU 134 detects that the room has been heated to 65° F., at which time louver 126 may be closed and/or furnace 102 turned OFF. Cold-air return 114 may also be opened and closed as desired to attain the desired environmental condition(s).
- louver 126 may be closed and/or furnace 102 turned OFF when a desired condition is met depends upon various factors, including conditions in other rooms, time of day, movement of occupants, and so forth. For instance, if the person just entered room C from room B, and room B is at a desired temperature, louver 116 may be opened and louver 122 may be closed, as shown, with the furnace remaining ON, to favor heating room C over previously heated room B. Generally speaking, in a heating embodiment, the invention is used to open and close louvers, and turn the furnace ON/OFF, so that occupied rooms are comfortable while non-occupied rooms are allowed to cool down. For example, if thermostats are set to 65° F., occupied rooms may be heated to that temperature, while non-occupied rooms are allowed to cool to, say, 60° F. or lower (depending upon programming).
- the system is programmed to make intelligent decisions regarding overall operation beyond room occupancy, including number of occupants, occupant movement between rooms, length of stay in a room, time of day, and so forth.
- the infrared sensors may be used to detect activation of lights, televisions, and so forth for additional evidence of intent.
- movement is detected from a previously heated room, allowing that room to cool may be delayed, to determine if the person(s) intend to return to that room.
- the infrared sensors may be used to detect de-activation of the lights, televisions, and so forth for additional evidence of intent.
- louver 116 may be open with one or more other louvers being or remaining open to continue heating the rest of the house (though probably not to 65° F. for the reasons discussed above).
- FIG. 2 depicts an alternative embodiment of the invention wherein the controlled vents 220 , 222 , 224 , 226 are disposed at or near the furnace 102 .
- this embodiment allows all wiring and controls to be located away from comfort zones such as in a basement, thereby simplifying installation.
- the trade-off is that the ductwork within which the controlled vents are placed may feed multiple registers although this may actually be advantageous in some situations.
- FIG. 3 is a simplified block diagram of a typical OSTTU according to the invention.
- the device includes a microprocessor 302 providing overall control.
- the processor 302 receives occupant presence signals from IR sensor 304 and temperature signals from sensor 306 .
- Other sensor(s) represented by unit 308 may include a humidity sensor, etc.
- other occupant sensors may be used such as video cameras, including IR video cameras. Pattern recognition may be provided enabling the system to determine the number, and movement of, occupants, and prevent pets from exerting unintended influence on decision-making by the system.
- a power supply 312 powers the various components.
- Block 312 is preferably a battery, which may be rechargeable, with line 314 representing an auxiliary power source such as line voltage or input from a solar cell.
- Item 310 is a wireless transmitter relaying conditions to control unit 160 , which may utilize an RF signal, WiFi or any other suitable communication.
- Each OSTTU is coded with an ID number so that the signals received by the control unit 160 may be properly interpreted in terms of the different zones being accommodated.
- a wall-mounting adhesive film may be provided at 320 .
- additional vents or fans (not shown) to facilitate the movement of air through particular sections of ducts or zones. Control of these fans is managed by the system and coordinated with the opening and closing of the various vent openings, in order to supply or extract air from any particular zone as desired.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Air Conditioning Control Device (AREA)
Abstract
A zone-based heating, ventilating, and air conditioning (HVAC) system uses occupant sensors and controllable vents to favor environmental conditions in occupied areas. A plurality of comfort delivery devices are provided, each being associated with at least one of the zones, each comfort delivery device being responsible for delivering a change in climate to its respective zone through the HVAC unit. A sending unit is disposed in each zone, the sending unit including a first sensor for determining whether the zone is occupied by one or more persons, a second sensor for determining an environmental condition in the zone, and a communications device for outputting a signal relating to the occupancy and environmental condition. A control unit includes an input for receiving the signal from each sending unit and selectively activating and deactivating the comfort delivery devices to prioritize the climate control provided by the HVAC unit to zones that are occupied. The control unit further may incorporate information from other sources, both internal and external, and learned behavior from previous measurements. Unoccupied areas may be utilized as sources of pre-conditioned air, previously stored for efficiency or economy reasons.
Description
- This application claims priority from U.S. Provisional Patent Application Ser. No. 61/323,921, filed Apr. 14, 2010, the entire content of which is incorporated herein by reference.
- This invention relates generally to heating and cooling and, in particular to a zone-based heating, ventilating, and air conditioning (HVAC) system that uses occupant sensors and controllable vents to favor environmental conditions in occupied areas.
- Energy costs continue rise. Over the years, ideas have been proposed to control heat loss in buildings and limits to the use of air conditioning are being proposed.
- As one example of many, U.S. Pat. No. 4,407,447, entitled “Energy Control System,” has a plurality of occupancy sensors, with each sensor adapted to detect the presence of a human being in a room. The occupancy sensors are all connected to a computer with the computer controlling a plurality of dampers that regulate the air flow in the air ducts into the various rooms. Upon the detection of the presence of a human being in a room by the occupancy sensor, the computer sends a signal to the air damper controlling the air flow into that room to open the air flow through that air duct.
- While systems of the type just identified may prove beneficial in some situations, they could do more in terms of energy management. In the '447 patent, for example, there is no provision for any control of return-air. Nor is there any provision for shifting air [or energy] between rooms, or for using the heat capacity of unoccupied rooms for energy “storage.”
- This invention resides in a system for controlling a heating, ventilating, and air conditioning (HVAC) unit servicing a plurality of comfort zones. A plurality of comfort delivery devices are provided, each being associated with at least one of the zones, each comfort delivery device being responsible for delivering a change in climate to its respective zone through the HVAC unit. A sending unit is disposed in each zone, the sending unit including a first sensor for determining whether the zone is occupied by one or more persons, a second sensor for determining an environmental condition in the zone, and a communications device for outputting a signal relating to the occupancy and environmental condition. A control unit includes an input for receiving the signal from each sending unit and selectively activating and deactivating the comfort delivery devices to prioritize the climate control provided by the HVAC unit to zones that are occupied.
- The HVAC unit may be a furnace or an air conditioner, with the change in climate being temperature. The HVAC unit may cause a change in humidity. The comfort delivery devices may be controllable louvers or vents. In the preferred embodiment the first sensors are infrared sensors and the second sensors are temperature sensors. The communications devices may be wireless transmitters. Each sending unit may be coded, enabling the control unit to determine the zone or zones within which the sending units are disposed.
-
FIG. 1 is a simplified, schematic diagram illustrating the basic operation of one embodiment of the invention; and -
FIG. 2 depicts an alternative embodiment of the invention wherein controlled vents are disposed at or near a furnace; and -
FIG. 3 is a simplified block diagram of a typical OSTTU according to the invention. - This invention reduces energy consumption and enables potential equipment downsizing by providing a heating/cooling system that operates on a zone basis (i.e., room-by-room).
- Broadly, the invention uses occupant sensors and controllable vents to favor environmental conditions in area(s) occupied by people, disfavoring other areas if/until people actually visit or frequent such places.
- Advantageously, the system reclaims warmed or cooled air that has been applied to now-vacated zones, and redirect the warmed or cooled air to zones that are currently occupied.
- The system may also utilize unoccupied zones to “store” heated or cooled air to be drawn upon at a later time, with the intention of advantageously utilizing this “reserve capacity” to mitigate the effects of other energy-saving features, such as electrical power distribution systems that automatically interrupt the power for air conditioners at peak periods of usage, or using lower overnight temperatures to store cool air in unoccupied zones so that it can be utilized during the hotter daylight hours.
- Depending on the specific circumstances and financial considerations, heat-exchangers or other apparatus may be employed to optimize the efficiency of transfer of energy between zones. In addition, equivalent facilities may be implemented to redirect air from one zone to another, based on temperature, humidity, air purity, or other environmental considerations.
- The system makes intelligent decisions based upon various input factors, such as the allowable degree of variation in temperatures, or “learned behaviors,” such as patterns of movements throughout the zones at particular times of day or certain days of the week. For example, the system may “learn” that the occupant of a home likes to prepare a “midnight snack” in the kitchen 30 minutes before retiring for the night, and could adjust the temperatures of various zones based on an anticipated schedule, or remaining family members in other zones. External inputs can also be integrated into the decision-making process, as, for example, factoring in the setting of an alarm clock or other wake-up device to automatically raise the temperature of a bathroom in anticipation of a morning shower.
- Another option would be to apply different rules/considerations based on a pre-defined “profile” for a particular person. For example, a particular person may prefer to keep the room they are occupying at a higher or lower temperature than other potential occupants; in cases such as these, the system may identify particular occupants by their size, heat signature, or other methods of analysis and, based on their profile, define the environmental parameters to be applied to the rooms they are occupying at a particular time. When multiple occupants having dissimilar profiles are in the same room, the system would derive compromise settings based on pre-defined rules for factoring in the profiles of each occupant.
- In addition, some homes employ multiple heating systems (either because of long duct runs, or for redundancy), and the systems described herein are capable of interfacing multiple HVAC units to manage their functionality as a single integrated system. The resulting benefit could include alternating the use of the units to prevent one unit from becoming overloaded, or using all units simultaneously to speed the response to system-related demands.
-
FIG. 1 is a simplified, schematic diagram illustrating the basic operation of one embodiment of the invention. The drawing shows three rooms, A, B, C, with the understanding that the invention is not limited in terms of the number of areas considered. Items labeled 140 and 142 are doors between the rooms. -
Item 102 represents a furnace, combined furnace/AC unit, boiler, humidifier, dehumidifier, or any other unit associated with heating, cooling or other faun of residential, commercial or industrial environmental control. Assumingunit 102 is a furnace, the furnace includes ahot air plenum 104feeding registers plenum 106. Again, more or fewer hot/cold vents may be accommodated - Each
vent louvers louvers 120 are controlled bymotor 128. Each room A, B, C, in this case also includes an Occupant Sensor/Thermostat Transmitter Unit (OSTTU) 130, 132, 134 described in further detail below. Each OSTTU is characterized by a field of view (i.e., 131) used to detect persons entering, leaving, or remaining within a respective room. In the preferred embodiment, the OSTTUs include infrared sensors for this purpose. In practice, these sensing means can be combined with motion sensors or other detectors, and the sensitivities of these sensors can be adjusted, so as to moderate the impact of some events (such as entering a zone just for a few minutes before leaving again), or ignoring other events (such as a pet roaming the zones). - The controlled louvers and OSTTUs are in communication with a
control unit 160 which, in turn, communicates and controlsunit 102, whether a furnace or otherwise. In the preferred embodiment, the OSTTUs are battery operated devices which communicate wirelessly (i.e., RF or infrared) viabroken lines 150 to thecontrol unit 160. This is preferred since an installer may wish to locate the OSTTUs in various wall-mounted locations, including locations having no continuous power supply available. In some embodiments, however, the OSTTUs may be incorporated into wall outlets, light fixtures, or the like and derive power through them without the need for batteries, or alternatively through power derived from batteries recharged by locally mounted solar-cells or recharged by other means. - The louver controllers may also be battery operated and wirelessly controlled. However, there are some disadvantages to being battery operated, so they are more preferably hard-wired via
broken lines 152 to controlunit 160 to ensure reliable operation. Particularly as an after-market product, low-voltage wiring may be oriented through existing ductwork tolouvers - By way of a simple example, in operation OSTTU “sees” that a person is occupying room C. According, a signal is sent to control
unit 160, causinglouver 116 to open. Depending upon the way in which the system is programmed, as discussed in greater detail below,louvers air return 124 may be partially open to circulate at least a portion of the air from room C. - OSTTUs preferably include thermostats, which may be of the programmable set-back type. Alternatively, a subset of the OSTTUs may include thermostats, with the others simply including thermometers, depending upon the operational environment. If provided with thermostats, the OSTTUs may be set at the same temperature or at different temperatures.
- Continuing the simplified example of
FIG. 1 , assume that all of theOSTTUs B. If OSTTU 134 detects that room C is cold—say, 60° F.—thefurnace 102 may be turned ON (if not already ON), andlouver 116 will be opened (again, if not already opened), untilOSTTU 134 detects that the room has been heated to 65° F., at whichtime louver 126 may be closed and/orfurnace 102 turned OFF. Cold-air return 114 may also be opened and closed as desired to attain the desired environmental condition(s). - The reason why
louver 126 may be closed and/orfurnace 102 turned OFF when a desired condition is met depends upon various factors, including conditions in other rooms, time of day, movement of occupants, and so forth. For instance, if the person just entered room C from room B, and room B is at a desired temperature,louver 116 may be opened andlouver 122 may be closed, as shown, with the furnace remaining ON, to favor heating room C over previously heated room B. Generally speaking, in a heating embodiment, the invention is used to open and close louvers, and turn the furnace ON/OFF, so that occupied rooms are comfortable while non-occupied rooms are allowed to cool down. For example, if thermostats are set to 65° F., occupied rooms may be heated to that temperature, while non-occupied rooms are allowed to cool to, say, 60° F. or lower (depending upon programming). - In the preferred embodiments, the system is programmed to make intelligent decisions regarding overall operation beyond room occupancy, including number of occupants, occupant movement between rooms, length of stay in a room, time of day, and so forth.
- For example, if movement is detected to a previously unheated room, heating that room may be delayed to determine if the person(s) intend to stay in that room. The infrared sensors may be used to detect activation of lights, televisions, and so forth for additional evidence of intent. Similarly, if movement is detected from a previously heated room, allowing that room to cool may be delayed, to determine if the person(s) intend to return to that room. Again, the infrared sensors may be used to detect de-activation of the lights, televisions, and so forth for additional evidence of intent.
- If it is evident that one or more persons are continually moving between the same two rooms, both may be favored in terms of heating. If the person in room C just entered the room from work at 7 PM, and the entire dwelling is cold due to temperature set-back programming,
louver 116 may be open with one or more other louvers being or remaining open to continue heating the rest of the house (though probably not to 65° F. for the reasons discussed above). Those of skill in the art will appreciate that a complex state diagram readily may be derived in accordance with the invention to account for occupant movement, time of day/year, heating versus cooling, etc. -
FIG. 2 depicts an alternative embodiment of the invention wherein the controlledvents furnace 102. Whether for retrofit applications or new construction, this embodiment allows all wiring and controls to be located away from comfort zones such as in a basement, thereby simplifying installation. The trade-off is that the ductwork within which the controlled vents are placed may feed multiple registers although this may actually be advantageous in some situations. -
FIG. 3 is a simplified block diagram of a typical OSTTU according to the invention. The device includes amicroprocessor 302 providing overall control. Theprocessor 302 receives occupant presence signals fromIR sensor 304 and temperature signals fromsensor 306. Other sensor(s) represented byunit 308 may include a humidity sensor, etc. As discussed above, other occupant sensors may be used such as video cameras, including IR video cameras. Pattern recognition may be provided enabling the system to determine the number, and movement of, occupants, and prevent pets from exerting unintended influence on decision-making by the system. - Continuing the reference to
FIG. 3 , apower supply 312 powers the various components.Block 312 is preferably a battery, which may be rechargeable, withline 314 representing an auxiliary power source such as line voltage or input from a solar cell.Item 310 is a wireless transmitter relaying conditions to controlunit 160, which may utilize an RF signal, WiFi or any other suitable communication. Each OSTTU is coded with an ID number so that the signals received by thecontrol unit 160 may be properly interpreted in terms of the different zones being accommodated. A wall-mounting adhesive film may be provided at 320. - In some of the embodiments, it may be desirable to draw air from a zone or room after it becomes unoccupied (or even in some cases while still occupied, but with a different group of occupants. Depending on the configuration of the ductwork, it may be advantageous or even necessary to implement additional vents or fans (not shown) to facilitate the movement of air through particular sections of ducts or zones. Control of these fans is managed by the system and coordinated with the opening and closing of the various vent openings, in order to supply or extract air from any particular zone as desired.
- While the invention has been described in terms of a forced-air system in a residential setting, other environments, including commercial and industrial may be readily accommodated. Forced-air implementations are perhaps the most responsive in terms of temperature or humidity adjustment; however, other systems, including hot water (boiler), heated flooring, heat pumps and other equipment are not precluded. In addition, other facilities (such as humidifiers, de-humidifiers, heat exchangers, and air-filtration units) may be integrated into and managed by the overall system, as needed or desired. Further, other sources of information may be integrated into the control system decision-making processes, such as external sensors to detect outside temperature and humidity changes, or external communication links to connect to the Internet for receiving and interpreting programming information from the users, or weather forecasts for advance planning of environmental settings. Depending on these and other sources, the control system may be programmed to store heat or “store” cold in unused rooms, so that these sources of pre-conditioned air will be available for later use, thereby improving the efficiency and response time of the system.
Claims (9)
1. A system for controlling an HVAC unit servicing a plurality of comfort zones, comprising:
a plurality of comfort delivery devices, each associated with at least one of the zones, each comfort delivery device being responsible for delivering a change in climate to its respective zone through the HVAC unit;
a sending unit disposed in each zone, the sending unit including a first sensor for determining whether the zone is occupied by one or more persons, a second sensor for determining an environmental condition in the zone, and a communications device for outputting a signal relating to the occupancy and environmental condition; and
a control unit including an input for receiving the signal from each sending unit and selectively activating and deactivating the comfort delivery devices to prioritize the climate control provided by the HVAC unit to zones that are occupied.
2. The system of claim 1 , wherein the HVAC unit is a furnace and the change in climate is temperature.
3. The system of claim 1 , wherein the HVAC unit is an air conditioner and the change in climate is temperature.
4. The system of claim 1 , wherein the HVAC unit causes a change in humidity.
5. The system of claim 1 , wherein the comfort delivery devices are controllable louvers or vents.
6. The system of claim 1 , wherein the first sensors are infrared sensors.
7. The system of claim 1 , wherein the second sensors are temperature sensors.
8. The system of claim 1 , wherein the communications devices are wireless transmitters.
9. The system of claim 1 , wherein each sending unit is coded, enabling the control unit to determine the zone or zones within which the sending units are disposed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/087,175 US20110253796A1 (en) | 2010-04-14 | 2011-04-14 | Zone-based hvac system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32392110P | 2010-04-14 | 2010-04-14 | |
US13/087,175 US20110253796A1 (en) | 2010-04-14 | 2011-04-14 | Zone-based hvac system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110253796A1 true US20110253796A1 (en) | 2011-10-20 |
Family
ID=44787494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/087,175 Abandoned US20110253796A1 (en) | 2010-04-14 | 2011-04-14 | Zone-based hvac system |
Country Status (1)
Country | Link |
---|---|
US (1) | US20110253796A1 (en) |
Cited By (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110130881A1 (en) * | 2009-12-01 | 2011-06-02 | Denso Wave Incorporated | Central air-conditioning system |
US8478447B2 (en) | 2010-11-19 | 2013-07-02 | Nest Labs, Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US8511576B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Power management in energy buffered building control unit |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8523083B2 (en) | 2011-02-24 | 2013-09-03 | Nest Labs, Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US8532827B2 (en) | 2011-10-21 | 2013-09-10 | Nest Labs, Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US20130331995A1 (en) * | 2012-06-08 | 2013-12-12 | Howard Rosen | Thermostat with Selectable Embedded Preprogrammed Energy Savings Profiles |
US20130338837A1 (en) * | 2012-06-14 | 2013-12-19 | Ecofactor, Inc. | System and method for optimizing use of individual hvac units in multi-unit chiller-based systems |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
FR2992712A1 (en) * | 2012-07-02 | 2014-01-03 | Ct Scient Tech Batiment Cstb | METHOD FOR CONTROLLING AND CONTROLLING INTERNAL AIR CONTAINMENT LEVEL, APPARATUS AND ASSOCIATED ROOM STATION |
US8627127B2 (en) | 2011-02-24 | 2014-01-07 | Nest Labs, Inc. | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
US8659302B1 (en) | 2012-09-21 | 2014-02-25 | Nest Labs, Inc. | Monitoring and recoverable protection of thermostat switching circuitry |
US8695888B2 (en) | 2004-10-06 | 2014-04-15 | Nest Labs, Inc. | Electronically-controlled register vent for zone heating and cooling |
US8708242B2 (en) | 2012-09-21 | 2014-04-29 | Nest Labs, Inc. | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
US20140277760A1 (en) * | 2013-03-15 | 2014-09-18 | Honeywell International Inc. | Supervisory controller for hvac systems |
US20150028114A1 (en) * | 2013-07-29 | 2015-01-29 | Howard Rosen | Apparatus and method for controlling a heating ventilation and / or air conditioning system utilizing an infrared sensing or imaging device for determining radiated temperature of one or more objects or occupants in the conditioned space |
US8994540B2 (en) | 2012-09-21 | 2015-03-31 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US9007222B2 (en) | 2012-09-21 | 2015-04-14 | Google Inc. | Detector unit and sensing chamber therefor |
US9046414B2 (en) | 2012-09-21 | 2015-06-02 | Google Inc. | Selectable lens button for a hazard detector and method therefor |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US9092039B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
US9134710B2 (en) | 2008-07-07 | 2015-09-15 | Ecofactor, Inc. | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
EP2930439A3 (en) * | 2014-01-31 | 2015-11-04 | Pascal Blinn | Computer controlled control unit for a heating, cooling, ventilating and/or air conditioning device |
US9188994B2 (en) | 2010-08-20 | 2015-11-17 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US9194597B2 (en) | 2009-05-12 | 2015-11-24 | Ecofactor, Inc. | System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9244470B2 (en) | 2008-07-14 | 2016-01-26 | Ecofactor, Inc. | System and method for using a wireless device as a sensor for an energy management system |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US9279594B2 (en) | 2009-05-11 | 2016-03-08 | Ecofactor, Inc. | System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption |
JP2016070756A (en) * | 2014-09-29 | 2016-05-09 | アズビル株式会社 | Control system |
US20160146480A1 (en) * | 2014-11-21 | 2016-05-26 | Mitsubishi Electric Corporation | System and method for controlling an outdoor air conditioner |
US9396633B1 (en) | 2015-06-14 | 2016-07-19 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US9448567B2 (en) | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US9513642B2 (en) | 2010-11-19 | 2016-12-06 | Google Inc. | Flexible functionality partitioning within intelligent-thermostat-controlled HVAC systems |
US20160377305A1 (en) * | 2015-06-24 | 2016-12-29 | Dunan Sensing Llc | Systems and methods for controlling an environment based on occupancy |
US9543998B2 (en) | 2015-06-14 | 2017-01-10 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
CN106382718A (en) * | 2016-08-30 | 2017-02-08 | 广州穗剑实验室科技有限公司 | Ventilation and air-conditioning control system based on real-time video analysis |
US9568201B2 (en) | 2014-03-28 | 2017-02-14 | Google Inc. | Environmental control system retrofittable with multiple types of boiler-based heating systems |
US9581342B2 (en) | 2014-03-28 | 2017-02-28 | Google Inc. | Mounting stand for multi-sensing environmental control device |
US9609462B2 (en) | 2014-03-28 | 2017-03-28 | Google Inc. | Facilitating radio frequency communications among environmental control system components |
US9612031B2 (en) | 2015-01-07 | 2017-04-04 | Google Inc. | Thermostat switching circuitry robust against anomalous HVAC control line conditions |
US9679454B2 (en) | 2015-02-06 | 2017-06-13 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals |
US9709292B2 (en) | 2010-05-26 | 2017-07-18 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
US9794522B2 (en) | 2015-02-06 | 2017-10-17 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US9791839B2 (en) | 2014-03-28 | 2017-10-17 | Google Inc. | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
US9812926B1 (en) | 2014-08-15 | 2017-11-07 | Carlos Rodriguez | Micro-wind turbine for the power and recharge of satellite home automation sensors |
US9851728B2 (en) | 2010-12-31 | 2017-12-26 | Google Inc. | Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions |
US9903606B2 (en) | 2014-04-29 | 2018-02-27 | Vivint, Inc. | Controlling parameters in a building |
US9939333B2 (en) | 2007-09-17 | 2018-04-10 | Ecofactor, Inc. | System and method for evaluating changes in the efficiency of an HVAC system |
US20180320918A1 (en) * | 2016-01-29 | 2018-11-08 | Mitsubishi Electric Corporation | Air-conditioner remote controller and air-conditioning control system |
US10197979B2 (en) | 2014-05-30 | 2019-02-05 | Vivint, Inc. | Determining occupancy with user provided information |
CN109812929A (en) * | 2017-11-20 | 2019-05-28 | 开利公司 | Air handling system |
US20190187634A1 (en) * | 2017-12-15 | 2019-06-20 | Midea Group Co., Ltd | Machine learning control of environmental systems |
US10371399B1 (en) * | 2012-03-15 | 2019-08-06 | Carlos Rodriguez | Smart vents and systems and methods for operating an air conditioning system including such vents |
CN110486894A (en) * | 2019-07-26 | 2019-11-22 | 青岛海尔空调器有限总公司 | A kind of control method and conditioner of conditioner |
US10584890B2 (en) | 2010-05-26 | 2020-03-10 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
US10613213B2 (en) | 2016-05-13 | 2020-04-07 | Google Llc | Systems, methods, and devices for utilizing radar with smart devices |
US20200149753A1 (en) * | 2018-11-09 | 2020-05-14 | Jacob Twerski | Air control system for a building |
US10687184B2 (en) | 2016-05-13 | 2020-06-16 | Google Llc | Systems, methods, and devices for utilizing radar-based touch interfaces |
US10771868B2 (en) | 2010-09-14 | 2020-09-08 | Google Llc | Occupancy pattern detection, estimation and prediction |
US10816230B2 (en) | 2018-10-10 | 2020-10-27 | Ademco Inc. | Temperature sensing strategy with multiple temperature sensors |
US10830480B2 (en) | 2018-09-11 | 2020-11-10 | Komfort IQ, Inc. | System and method of single-zone duct control |
US10859281B2 (en) | 2018-10-10 | 2020-12-08 | Ademco Inc. | Thermostat assembly with removable trim ring |
US10895397B2 (en) | 2018-10-10 | 2021-01-19 | Ademco Inc. | Wire detection for an HVAC controller |
US10907852B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Remote sensor with improved occupancy sensing |
US10908001B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Wireless sensor with mounting plate |
US10907854B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Automatic changeover mode in an HVAC controller with reversible deadband enforcement |
US10992175B2 (en) | 2018-06-15 | 2021-04-27 | Google Llc | Communication circuit for 2-wire protocols between HVAC systems and smart-home devices |
US11054160B2 (en) | 2015-07-01 | 2021-07-06 | Carrier Corporation | Simultaneous heating and cooling of multiple zones |
US11067307B2 (en) | 2018-10-10 | 2021-07-20 | Ademco Inc. | Thermostat user interface with smart menu structure |
US11095469B2 (en) | 2018-10-10 | 2021-08-17 | Ademco Inc. | Wireless occupancy sensor with controllable light indicator |
US11099533B2 (en) | 2014-05-07 | 2021-08-24 | Vivint, Inc. | Controlling a building system based on real time events |
US11236923B2 (en) | 2018-10-10 | 2022-02-01 | Ademco Inc. | Thermostat with sensor priority screen |
US20220113924A1 (en) * | 2017-03-31 | 2022-04-14 | Honeywell International Inc. | Providing a comfort dashboard |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020102936A1 (en) * | 2001-01-29 | 2002-08-01 | Ray Daumler | Air circulation system |
US20040173690A1 (en) * | 2000-07-28 | 2004-09-09 | Kitz Corporation | Control system with communication function and facility control system |
US6919809B2 (en) * | 2003-11-03 | 2005-07-19 | American Standard International Inc. | Optimization of building ventilation by system and zone level action |
US20070130969A1 (en) * | 2004-01-07 | 2007-06-14 | Honeywell International Inc. | Adaptive intelligent circulation control methods and systems |
US7455237B2 (en) * | 2004-10-06 | 2008-11-25 | Lawrence Kates | System and method for zone heating and cooling |
US20100163633A1 (en) * | 2008-12-30 | 2010-07-01 | Aquante Llc | Automatically Balancing Register for HVAC Systems |
-
2011
- 2011-04-14 US US13/087,175 patent/US20110253796A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040173690A1 (en) * | 2000-07-28 | 2004-09-09 | Kitz Corporation | Control system with communication function and facility control system |
US20020102936A1 (en) * | 2001-01-29 | 2002-08-01 | Ray Daumler | Air circulation system |
US6919809B2 (en) * | 2003-11-03 | 2005-07-19 | American Standard International Inc. | Optimization of building ventilation by system and zone level action |
US20070130969A1 (en) * | 2004-01-07 | 2007-06-14 | Honeywell International Inc. | Adaptive intelligent circulation control methods and systems |
US7455237B2 (en) * | 2004-10-06 | 2008-11-25 | Lawrence Kates | System and method for zone heating and cooling |
US20100163633A1 (en) * | 2008-12-30 | 2010-07-01 | Aquante Llc | Automatically Balancing Register for HVAC Systems |
Cited By (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10215437B2 (en) | 2004-10-06 | 2019-02-26 | Google Llc | Battery-operated wireless zone controllers having multiple states of power-related operation |
US9273879B2 (en) | 2004-10-06 | 2016-03-01 | Google Inc. | Occupancy-based wireless control of multiple environmental zones via a central controller |
US8695888B2 (en) | 2004-10-06 | 2014-04-15 | Nest Labs, Inc. | Electronically-controlled register vent for zone heating and cooling |
US9194600B2 (en) | 2004-10-06 | 2015-11-24 | Google Inc. | Battery charging by mechanical impeller at forced air vent outputs |
US9618223B2 (en) | 2004-10-06 | 2017-04-11 | Google Inc. | Multi-nodal thermostat control system |
US9222692B2 (en) | 2004-10-06 | 2015-12-29 | Google Inc. | Wireless zone control via mechanically adjustable airflow elements |
US9182140B2 (en) | 2004-10-06 | 2015-11-10 | Google Inc. | Battery-operated wireless zone controllers having multiple states of power-related operation |
US9303889B2 (en) | 2004-10-06 | 2016-04-05 | Google Inc. | Multiple environmental zone control via a central controller |
US9194599B2 (en) | 2004-10-06 | 2015-11-24 | Google Inc. | Control of multiple environmental zones based on predicted changes to environmental conditions of the zones |
US10126011B2 (en) | 2004-10-06 | 2018-11-13 | Google Llc | Multiple environmental zone control with integrated battery status communications |
US9316407B2 (en) | 2004-10-06 | 2016-04-19 | Google Inc. | Multiple environmental zone control with integrated battery status communications |
US9995497B2 (en) | 2004-10-06 | 2018-06-12 | Google Llc | Wireless zone control via mechanically adjustable airflow elements |
US9353964B2 (en) | 2004-10-06 | 2016-05-31 | Google Inc. | Systems and methods for wirelessly-enabled HVAC control |
US9353963B2 (en) | 2004-10-06 | 2016-05-31 | Google Inc. | Occupancy-based wireless control of multiple environmental zones with zone controller identification |
US9939333B2 (en) | 2007-09-17 | 2018-04-10 | Ecofactor, Inc. | System and method for evaluating changes in the efficiency of an HVAC system |
US10612983B2 (en) | 2007-09-17 | 2020-04-07 | Ecofactor, Inc. | System and method for evaluating changes in the efficiency of an HVAC system |
US10254775B2 (en) | 2008-07-07 | 2019-04-09 | Ecofactor, Inc. | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
US9134710B2 (en) | 2008-07-07 | 2015-09-15 | Ecofactor, Inc. | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
US10289131B2 (en) | 2008-07-14 | 2019-05-14 | Ecofactor, Inc. | System and method for using a wireless device as a sensor for an energy management system |
US10534382B2 (en) | 2008-07-14 | 2020-01-14 | Ecofactor, Inc. | System and method for using a wireless device as a sensor for an energy management system |
US9244470B2 (en) | 2008-07-14 | 2016-01-26 | Ecofactor, Inc. | System and method for using a wireless device as a sensor for an energy management system |
US9982905B2 (en) | 2009-05-11 | 2018-05-29 | Ecofactor, Inc. | System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption |
US9279594B2 (en) | 2009-05-11 | 2016-03-08 | Ecofactor, Inc. | System, method and apparatus for use of dynamically variable compressor delay in thermostat to reduce energy consumption |
US10018371B2 (en) | 2009-05-12 | 2018-07-10 | Ecofactor, Inc. | System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat |
US9194597B2 (en) | 2009-05-12 | 2015-11-24 | Ecofactor, Inc. | System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat |
US20110130881A1 (en) * | 2009-12-01 | 2011-06-02 | Denso Wave Incorporated | Central air-conditioning system |
US8219252B2 (en) * | 2009-12-01 | 2012-07-10 | Denso Wave Incorporated | Central air-conditioning system |
US9709292B2 (en) | 2010-05-26 | 2017-07-18 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
US10584890B2 (en) | 2010-05-26 | 2020-03-10 | Ecofactor, Inc. | System and method for using a mobile electronic device to optimize an energy management system |
US10393398B2 (en) | 2010-08-20 | 2019-08-27 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US9188994B2 (en) | 2010-08-20 | 2015-11-17 | Ecofactor, Inc. | System and method for optimizing use of plug-in air conditioners and portable heaters |
US9702579B2 (en) | 2010-09-14 | 2017-07-11 | Google Inc. | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US10082307B2 (en) | 2010-09-14 | 2018-09-25 | Google Llc | Adaptive power-stealing thermostat |
US10771868B2 (en) | 2010-09-14 | 2020-09-08 | Google Llc | Occupancy pattern detection, estimation and prediction |
US9494332B2 (en) | 2010-09-14 | 2016-11-15 | Google Inc. | Thermostat wiring connector |
US9605858B2 (en) | 2010-09-14 | 2017-03-28 | Google Inc. | Thermostat circuitry for connection to HVAC systems |
US9261287B2 (en) | 2010-09-14 | 2016-02-16 | Google Inc. | Adaptive power stealing thermostat |
US9684317B2 (en) | 2010-09-14 | 2017-06-20 | Google Inc. | Thermostat facilitating user-friendly installation thereof |
US9696734B2 (en) | 2010-09-14 | 2017-07-04 | Google Inc. | Active power stealing |
US9715239B2 (en) | 2010-09-14 | 2017-07-25 | Google Inc. | Computational load distribution in an environment having multiple sensing microsystems |
US10309672B2 (en) | 2010-09-14 | 2019-06-04 | Google Llc | Thermostat wiring connector |
US9026254B2 (en) | 2010-09-14 | 2015-05-05 | Google Inc. | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
US9995499B2 (en) | 2010-11-19 | 2018-06-12 | Google Llc | Electronic device controller with user-friendly installation features |
US9092040B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC filter monitoring |
US10151501B2 (en) | 2010-11-19 | 2018-12-11 | Google Llc | Thermostat facilitating user-friendly installation thereof |
US10191727B2 (en) | 2010-11-19 | 2019-01-29 | Google Llc | Installation of thermostat powered by rechargeable battery |
US8757507B2 (en) | 2010-11-19 | 2014-06-24 | Nest Labs, Inc. | Thermostat facilitating user-friendly installation thereof |
US9448567B2 (en) | 2010-11-19 | 2016-09-20 | Google Inc. | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US10452083B2 (en) | 2010-11-19 | 2019-10-22 | Google Llc | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
US10481780B2 (en) | 2010-11-19 | 2019-11-19 | Google Llc | Adjusting proximity thresholds for activating a device user interface |
US8478447B2 (en) | 2010-11-19 | 2013-07-02 | Nest Labs, Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US8752771B2 (en) | 2010-11-19 | 2014-06-17 | Nest Labs, Inc. | Thermostat battery recharging during HVAC function active and inactive states |
US9092039B2 (en) | 2010-11-19 | 2015-07-28 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US9268344B2 (en) | 2010-11-19 | 2016-02-23 | Google Inc. | Installation of thermostat powered by rechargeable battery |
US8924027B2 (en) | 2010-11-19 | 2014-12-30 | Google Inc. | Computational load distribution in a climate control system having plural sensing microsystems |
US10175668B2 (en) | 2010-11-19 | 2019-01-08 | Google Llc | Systems and methods for energy-efficient control of an energy-consuming system |
US9575496B2 (en) | 2010-11-19 | 2017-02-21 | Google Inc. | HVAC controller with user-friendly installation features with wire insertion detection |
US9513642B2 (en) | 2010-11-19 | 2016-12-06 | Google Inc. | Flexible functionality partitioning within intelligent-thermostat-controlled HVAC systems |
US10732651B2 (en) | 2010-11-19 | 2020-08-04 | Google Llc | Smart-home proxy devices with long-polling |
US9459018B2 (en) | 2010-11-19 | 2016-10-04 | Google Inc. | Systems and methods for energy-efficient control of an energy-consuming system |
US9851728B2 (en) | 2010-12-31 | 2017-12-26 | Google Inc. | Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions |
US8511576B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Power management in energy buffered building control unit |
US8944338B2 (en) | 2011-02-24 | 2015-02-03 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US9086703B2 (en) | 2011-02-24 | 2015-07-21 | Google Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US9933794B2 (en) | 2011-02-24 | 2018-04-03 | Google Llc | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US9435559B2 (en) | 2011-02-24 | 2016-09-06 | Google Inc. | Power management in energy buffered building control unit |
US10684633B2 (en) | 2011-02-24 | 2020-06-16 | Google Llc | Smart thermostat with active power stealing an processor isolation from switching elements |
US9952608B2 (en) | 2011-02-24 | 2018-04-24 | Google Llc | Thermostat with power stealing delay interval at transitions between power stealing states |
US8511577B2 (en) | 2011-02-24 | 2013-08-20 | Nest Labs, Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8770491B2 (en) | 2011-02-24 | 2014-07-08 | Nest Labs Inc. | Thermostat with power stealing delay interval at transitions between power stealing states |
US8788103B2 (en) | 2011-02-24 | 2014-07-22 | Nest Labs, Inc. | Power management in energy buffered building control unit |
US9116529B2 (en) | 2011-02-24 | 2015-08-25 | Google Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US8627127B2 (en) | 2011-02-24 | 2014-01-07 | Nest Labs, Inc. | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
US9046898B2 (en) | 2011-02-24 | 2015-06-02 | Google Inc. | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
US8523083B2 (en) | 2011-02-24 | 2013-09-03 | Nest Labs, Inc. | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
US8532827B2 (en) | 2011-10-21 | 2013-09-10 | Nest Labs, Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US10678416B2 (en) | 2011-10-21 | 2020-06-09 | Google Llc | Occupancy-based operating state determinations for sensing or control systems |
US8558179B2 (en) | 2011-10-21 | 2013-10-15 | Nest Labs, Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US9194598B2 (en) | 2011-10-21 | 2015-11-24 | Google Inc. | Thermostat user interface |
US10048852B2 (en) | 2011-10-21 | 2018-08-14 | Google Llc | Thermostat user interface |
US9740385B2 (en) | 2011-10-21 | 2017-08-22 | Google Inc. | User-friendly, network-connected, smart-home controller and related systems and methods |
US9535589B2 (en) | 2011-10-21 | 2017-01-03 | Google Inc. | Round thermostat with rotatable user input member and temperature sensing element disposed in physical communication with a front thermostat cover |
US9720585B2 (en) | 2011-10-21 | 2017-08-01 | Google Inc. | User friendly interface |
US8942853B2 (en) | 2011-10-21 | 2015-01-27 | Google Inc. | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
US8766194B2 (en) | 2011-10-21 | 2014-07-01 | Nest Labs Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US9234669B2 (en) | 2011-10-21 | 2016-01-12 | Google Inc. | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
US9234668B2 (en) | 2011-10-21 | 2016-01-12 | Google Inc. | User-friendly, network connected learning thermostat and related systems and methods |
US9910577B2 (en) | 2011-10-21 | 2018-03-06 | Google Llc | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature |
US9857961B2 (en) | 2011-10-21 | 2018-01-02 | Google Inc. | Thermostat user interface |
US10371399B1 (en) * | 2012-03-15 | 2019-08-06 | Carlos Rodriguez | Smart vents and systems and methods for operating an air conditioning system including such vents |
US9091453B2 (en) | 2012-03-29 | 2015-07-28 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US9534805B2 (en) | 2012-03-29 | 2017-01-03 | Google Inc. | Enclosure cooling using early compressor turn-off with extended fan operation |
US10151503B2 (en) | 2012-04-05 | 2018-12-11 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US11118803B2 (en) | 2012-04-05 | 2021-09-14 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US9098096B2 (en) | 2012-04-05 | 2015-08-04 | Google Inc. | Continuous intelligent-control-system update using information requests directed to user devices |
US10502444B2 (en) | 2012-04-05 | 2019-12-10 | Google Llc | Continuous intelligent-control-system update using information requests directed to user devices |
US20130331995A1 (en) * | 2012-06-08 | 2013-12-12 | Howard Rosen | Thermostat with Selectable Embedded Preprogrammed Energy Savings Profiles |
US20130338837A1 (en) * | 2012-06-14 | 2013-12-19 | Ecofactor, Inc. | System and method for optimizing use of individual hvac units in multi-unit chiller-based systems |
US10048706B2 (en) * | 2012-06-14 | 2018-08-14 | Ecofactor, Inc. | System and method for optimizing use of individual HVAC units in multi-unit chiller-based systems |
WO2014006293A1 (en) * | 2012-07-02 | 2014-01-09 | Centre Scientifique Et Technique Du Batiment | Method for controlling and monitoring the level of confinement of internal air, and related environment device and station |
CN104541109A (en) * | 2012-07-02 | 2015-04-22 | 科学和技术中心 | Method for controlling and monitoring the level of confinement of internal air, and related environment device and station |
FR2992712A1 (en) * | 2012-07-02 | 2014-01-03 | Ct Scient Tech Batiment Cstb | METHOD FOR CONTROLLING AND CONTROLLING INTERNAL AIR CONTAINMENT LEVEL, APPARATUS AND ASSOCIATED ROOM STATION |
US10433032B2 (en) | 2012-08-31 | 2019-10-01 | Google Llc | Dynamic distributed-sensor network for crowdsourced event detection |
US9286781B2 (en) | 2012-08-31 | 2016-03-15 | Google Inc. | Dynamic distributed-sensor thermostat network for forecasting external events using smart-home devices |
US8620841B1 (en) | 2012-08-31 | 2013-12-31 | Nest Labs, Inc. | Dynamic distributed-sensor thermostat network for forecasting external events |
US8994540B2 (en) | 2012-09-21 | 2015-03-31 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US9746859B2 (en) | 2012-09-21 | 2017-08-29 | Google Inc. | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
US9007222B2 (en) | 2012-09-21 | 2015-04-14 | Google Inc. | Detector unit and sensing chamber therefor |
US9875631B2 (en) | 2012-09-21 | 2018-01-23 | Google Llc | Detector unit and sensing chamber therefor |
US9935455B2 (en) | 2012-09-21 | 2018-04-03 | Google Llc | Monitoring and recoverable protection of thermostat switching circuitry |
US8708242B2 (en) | 2012-09-21 | 2014-04-29 | Nest Labs, Inc. | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
US9349273B2 (en) | 2012-09-21 | 2016-05-24 | Google Inc. | Cover plate for a hazard detector having improved air flow and other characteristics |
US8659302B1 (en) | 2012-09-21 | 2014-02-25 | Nest Labs, Inc. | Monitoring and recoverable protection of thermostat switching circuitry |
US10298009B2 (en) | 2012-09-21 | 2019-05-21 | Google Llc | Monitoring and recoverable protection of switching circuitry for smart-home devices |
US9568370B2 (en) | 2012-09-21 | 2017-02-14 | Google Inc. | Selectable lens button for a smart home device and method therefor |
US9046414B2 (en) | 2012-09-21 | 2015-06-02 | Google Inc. | Selectable lens button for a hazard detector and method therefor |
US9460600B2 (en) | 2012-09-21 | 2016-10-04 | Google Inc. | Detector unit and sensing chamber therefor |
US10853733B2 (en) | 2013-03-14 | 2020-12-01 | Google Llc | Devices, methods, and associated information processing for security in a smart-sensored home |
US12055905B2 (en) | 2013-03-14 | 2024-08-06 | Google Llc | Smart-home environment networking systems and methods |
US9208676B2 (en) | 2013-03-14 | 2015-12-08 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US9798979B2 (en) | 2013-03-14 | 2017-10-24 | Google Inc. | Devices, methods, and associated information processing for security in a smart-sensored home |
US10101048B2 (en) * | 2013-03-15 | 2018-10-16 | Honeywell International Inc. | Supervisory controller for HVAC systems |
US20140277760A1 (en) * | 2013-03-15 | 2014-09-18 | Honeywell International Inc. | Supervisory controller for hvac systems |
US20150028114A1 (en) * | 2013-07-29 | 2015-01-29 | Howard Rosen | Apparatus and method for controlling a heating ventilation and / or air conditioning system utilizing an infrared sensing or imaging device for determining radiated temperature of one or more objects or occupants in the conditioned space |
EP2930439A3 (en) * | 2014-01-31 | 2015-11-04 | Pascal Blinn | Computer controlled control unit for a heating, cooling, ventilating and/or air conditioning device |
US9791839B2 (en) | 2014-03-28 | 2017-10-17 | Google Inc. | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
US9568201B2 (en) | 2014-03-28 | 2017-02-14 | Google Inc. | Environmental control system retrofittable with multiple types of boiler-based heating systems |
US9581342B2 (en) | 2014-03-28 | 2017-02-28 | Google Inc. | Mounting stand for multi-sensing environmental control device |
US10041690B2 (en) | 2014-03-28 | 2018-08-07 | Google Llc | Detection-facilitating mounting stand for multi-sensing smart home device |
US9609462B2 (en) | 2014-03-28 | 2017-03-28 | Google Inc. | Facilitating radio frequency communications among environmental control system components |
US10678200B2 (en) | 2014-03-28 | 2020-06-09 | Google Llc | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
US9903606B2 (en) | 2014-04-29 | 2018-02-27 | Vivint, Inc. | Controlling parameters in a building |
US10901379B2 (en) | 2014-04-29 | 2021-01-26 | Vivint, Inc. | Controlling parameters in a building |
US11099533B2 (en) | 2014-05-07 | 2021-08-24 | Vivint, Inc. | Controlling a building system based on real time events |
US11635737B1 (en) | 2014-05-30 | 2023-04-25 | Vivint, Inc. | Determining occupancy with user provided information |
US10197979B2 (en) | 2014-05-30 | 2019-02-05 | Vivint, Inc. | Determining occupancy with user provided information |
US9812926B1 (en) | 2014-08-15 | 2017-11-07 | Carlos Rodriguez | Micro-wind turbine for the power and recharge of satellite home automation sensors |
JP2016070756A (en) * | 2014-09-29 | 2016-05-09 | アズビル株式会社 | Control system |
US20160146480A1 (en) * | 2014-11-21 | 2016-05-26 | Mitsubishi Electric Corporation | System and method for controlling an outdoor air conditioner |
US10107509B2 (en) * | 2014-11-21 | 2018-10-23 | Mitsubishi Electric Corporation | System and method for controlling an outdoor air conditioner |
US9612031B2 (en) | 2015-01-07 | 2017-04-04 | Google Inc. | Thermostat switching circuitry robust against anomalous HVAC control line conditions |
US10088189B2 (en) | 2015-01-07 | 2018-10-02 | Google Llc | Smart-home device robust against anomalous electrical conditions |
US9794522B2 (en) | 2015-02-06 | 2017-10-17 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US10375356B2 (en) | 2015-02-06 | 2019-08-06 | Google Llc | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US9679454B2 (en) | 2015-02-06 | 2017-06-13 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals |
US10812762B2 (en) | 2015-02-06 | 2020-10-20 | Google Llc | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US9923589B2 (en) | 2015-06-14 | 2018-03-20 | Google Llc | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
US9543998B2 (en) | 2015-06-14 | 2017-01-10 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
US9396633B1 (en) | 2015-06-14 | 2016-07-19 | Google Inc. | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
US20160377305A1 (en) * | 2015-06-24 | 2016-12-29 | Dunan Sensing Llc | Systems and methods for controlling an environment based on occupancy |
US11054160B2 (en) | 2015-07-01 | 2021-07-06 | Carrier Corporation | Simultaneous heating and cooling of multiple zones |
US20180320918A1 (en) * | 2016-01-29 | 2018-11-08 | Mitsubishi Electric Corporation | Air-conditioner remote controller and air-conditioning control system |
US10895395B2 (en) * | 2016-01-29 | 2021-01-19 | Mitsubishi Electric Corporation | Air-conditioner remote controller and air-conditioning control system |
US11122398B2 (en) | 2016-05-13 | 2021-09-14 | Google Llc | Systems, methods, and devices for utilizing radar-based touch interfaces |
US10687184B2 (en) | 2016-05-13 | 2020-06-16 | Google Llc | Systems, methods, and devices for utilizing radar-based touch interfaces |
US11516630B2 (en) | 2016-05-13 | 2022-11-29 | Google Llc | Techniques for adjusting operation of an electronic device |
US10798539B2 (en) | 2016-05-13 | 2020-10-06 | Google Llc | Systems, methods, and devices for utilizing radar with smart devices |
US11272335B2 (en) | 2016-05-13 | 2022-03-08 | Google Llc | Systems, methods, and devices for utilizing radar with smart devices |
US10613213B2 (en) | 2016-05-13 | 2020-04-07 | Google Llc | Systems, methods, and devices for utilizing radar with smart devices |
CN106382718A (en) * | 2016-08-30 | 2017-02-08 | 广州穗剑实验室科技有限公司 | Ventilation and air-conditioning control system based on real-time video analysis |
US20220113924A1 (en) * | 2017-03-31 | 2022-04-14 | Honeywell International Inc. | Providing a comfort dashboard |
US11022337B2 (en) * | 2017-11-20 | 2021-06-01 | Carrier Corporation | Air conditioning system |
CN109812929A (en) * | 2017-11-20 | 2019-05-28 | 开利公司 | Air handling system |
US20190187634A1 (en) * | 2017-12-15 | 2019-06-20 | Midea Group Co., Ltd | Machine learning control of environmental systems |
US10992175B2 (en) | 2018-06-15 | 2021-04-27 | Google Llc | Communication circuit for 2-wire protocols between HVAC systems and smart-home devices |
US11664679B2 (en) | 2018-06-15 | 2023-05-30 | Google Llc | Communication circuit for 2-wire protocols between HVAC systems and smart-home devices |
US10830480B2 (en) | 2018-09-11 | 2020-11-10 | Komfort IQ, Inc. | System and method of single-zone duct control |
US10907852B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Remote sensor with improved occupancy sensing |
US11095469B2 (en) | 2018-10-10 | 2021-08-17 | Ademco Inc. | Wireless occupancy sensor with controllable light indicator |
US11067307B2 (en) | 2018-10-10 | 2021-07-20 | Ademco Inc. | Thermostat user interface with smart menu structure |
US10907854B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Automatic changeover mode in an HVAC controller with reversible deadband enforcement |
US11236923B2 (en) | 2018-10-10 | 2022-02-01 | Ademco Inc. | Thermostat with sensor priority screen |
US10908001B2 (en) | 2018-10-10 | 2021-02-02 | Ademco Inc. | Wireless sensor with mounting plate |
US10895397B2 (en) | 2018-10-10 | 2021-01-19 | Ademco Inc. | Wire detection for an HVAC controller |
US10859281B2 (en) | 2018-10-10 | 2020-12-08 | Ademco Inc. | Thermostat assembly with removable trim ring |
US10816230B2 (en) | 2018-10-10 | 2020-10-27 | Ademco Inc. | Temperature sensing strategy with multiple temperature sensors |
US11708991B2 (en) | 2018-10-10 | 2023-07-25 | Ademco Inc. | Automatic changeover mode in an HVAC controller with reversible deadband enforcement |
US20200149753A1 (en) * | 2018-11-09 | 2020-05-14 | Jacob Twerski | Air control system for a building |
CN110486894A (en) * | 2019-07-26 | 2019-11-22 | 青岛海尔空调器有限总公司 | A kind of control method and conditioner of conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110253796A1 (en) | Zone-based hvac system | |
US11692730B2 (en) | HVAC zoning devices, systems, and methods | |
US7347774B2 (en) | Remote autonomous intelligent air flow control system and network | |
US9618223B2 (en) | Multi-nodal thermostat control system | |
US9377209B2 (en) | Systems and methods for controlling the temperature of a room based on occupancy | |
CN102252408B (en) | Systems and methods for motorized vent covering in environment control system | |
US20110270446A1 (en) | Systems and methods for an environmental control system including a motorized vent covering | |
US20090065595A1 (en) | System and method for zone heating and cooling using controllable supply and return vents | |
US20080179053A1 (en) | System and method for zone thermostat budgeting | |
US11859851B2 (en) | System, apparatus and hybrid VAV device with multiple heating coils | |
WO2016044437A1 (en) | Conditioning an indoor environment | |
CN101625147A (en) | Air conditioning control system, supply air switching controller for use in the air conditioning control system, and air conditioning control method | |
JP2008516179A (en) | Section heating and cooling system and method | |
US10371399B1 (en) | Smart vents and systems and methods for operating an air conditioning system including such vents | |
WO2022246451A1 (en) | System and method for climate control | |
US20160320078A1 (en) | Controller and method for multi-zone air heating and cooling system with motorized vents | |
JP6845754B2 (en) | Building air conditioning system | |
US11274840B2 (en) | Vent for use in an HVAC system | |
US11940166B2 (en) | Air conditioning system for transferring air in an air-conditioned room | |
JP4581604B2 (en) | Ventilation system | |
Murphy | Using time-of-day scheduling to save energy | |
Sookoor et al. | Sustainable Computing: Informatics and Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |