US20110106220A1 - Extracranial implantable devices, systems and methods for the treatment of neurological disorders - Google Patents
Extracranial implantable devices, systems and methods for the treatment of neurological disorders Download PDFInfo
- Publication number
- US20110106220A1 US20110106220A1 US12/898,696 US89869610A US2011106220A1 US 20110106220 A1 US20110106220 A1 US 20110106220A1 US 89869610 A US89869610 A US 89869610A US 2011106220 A1 US2011106220 A1 US 2011106220A1
- Authority
- US
- United States
- Prior art keywords
- nerve
- electrode
- trigeminal
- stimulation
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0456—Specially adapted for transcutaneous electrical nerve stimulation [TENS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0476—Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0492—Patch electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0504—Subcutaneous electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36021—External stimulators, e.g. with patch electrodes for treatment of pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/36025—External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36053—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for vagal stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36057—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for stimulating afferent nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36064—Epilepsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36067—Movement disorders, e.g. tremor or Parkinson disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36071—Pain
- A61N1/36075—Headache or migraine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
- A61N1/36096—Mood disorders, e.g. depression, anxiety or panic disorder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/3615—Intensity
- A61N1/3616—Voltage density or current density
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36171—Frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36175—Pulse width or duty cycle
Definitions
- the present disclosure generally relates to neurostimulator systems, devices, and methods of using the same and more particularly relates to neurostimulator systems, devices and methods including at least one implantable electrode for treating neurological disorders by stimulating superficial, cutaneous elements of cranial nerve(s).
- Neurological disorders and conditions such as seizure disorders that are characterized by epileptic seizures, acute or chronic brain injury, coma, chronic headache or migraine, and movement and related disorders may be treated with medication.
- seizure disorders frequently referred to as epilepsy
- seizure disorders are treated initially with anti-epileptic drugs.
- anti-epileptic drugs fail; for these patients, respective epilepsy surgery or neurostimulation are therapeutic options.
- Neurostimulation for epilepsy and seizure disorders may include stimulation of the nervous system by vagus nerve stimulation (VNS), which has been shown to be therapeutically useful and has been approved by the U.S. Food and Drug Administration.
- VNS vagus nerve stimulation
- stimulating electrodes are surgically implanted on the vagus nerve in the neck.
- many of the subjects who undergo VNS treatments do not achieve relief from their seizures, and there is no reliable predictor of good outcomes from the implanted VNS device.
- RNS intracranial implantable approaches, such as deep brain stimulation (DBS) of the anterior thalamus and responsive neurostimulation (RNS) of the epileptic zone may be utilized.
- DBS deep brain stimulation
- RNS responsive neurostimulation
- these methods are highly surgically invasive because they involve placement of electrodes within the brain, on the surface of the brain, or near sensitive neuro-vascular structures.
- these treatments may also have increased costs and side effects compared with other, less invasive approaches. Despite this range of options, a substantial percentage of patients do not recover from or get adequate relief for the neurological disorder despite multiple trials of pharmaceutical or surgical treatment.
- One aspect of the subject matter of the present disclosure addresses the aforementioned needs by providing systems and devices configured to stimulate cutaneous or superficial branches of the trigeminal nerve, located in the face, including the following nerves: the ophthalmic (supra-orbital), supratrochlear and infratrochlear, auriculotemporal and zygomaticotemporal, zygomaticofacial, zygomaticoorbital, infraorbital, nasal and mentalis nerve(s) and methods of using the same to treat neurological disorders.
- This disclosure also provides a method of treating neurological disorders using trigeminal nerve stimulation (TNS) with minimally invasive, implantable and easy-to-use devices and systems.
- TNS trigeminal nerve stimulation
- an implantable subcutaneous electrode assembly configured for trigeminal nerve stimulation.
- a method of treating neurological disorders using the disclosed implantable or subcutaneous electrode assembly is provided.
- the subcutaneous electrode assembly includes a first electrode comprising a first pair of contacts configured for subcutaneous placement at a first region of a patient's face; and a second electrode comprising a second pair of contacts configured for subcutaneous placement at a second region of a patient's face, wherein the first pair of contacts and the second pair of contacts are configured to be bilaterally implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve for treatment of a neurological disorder by trigeminal nerve stimulation.
- the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve and auriculotemporal nerve.
- the subcutaneous electrode assembly includes a first electrode comprising a first plurality of contacts configured for subcutaneous placement at a first region of a patient's face; and a second electrode comprising a second plurality of contacts configured for subcutaneous placement at a second region of a patient's face; wherein the first plurality of contacts and the second plurality of contacts are configured to be unilaterally implanted in proximity to, adjacent to or in contact with at least two different branches of the trigeminal nerve for treatment of a neurological disorder by trigeminal nerve stimulation.
- the at least two different branches of the trigeminal nerve are selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, nasal nerve, zygomaticoorbital nerve, and auriculotemporal nerve.
- the method includes implanting an electrode assembly in a patient, the electrode assembly includes: a first electrode comprising a first plurality of contacts configured for subcutaneous placement at a first region of the patient's face; a second electrode comprising a second plurality of contacts configured for subcutaneous placement at a second region of the patient's face; and wherein the first plurality of contacts and the second plurality of contacts are configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve; and applying electrical signals to the electrode assembly at specified operational parameters to treat a neurological disorder or condition.
- the step of applying electrical signals includes applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a current of 0.05 to 5 milliamperes (mA), at a pulse duration of less than or equal to 500 microseconds. In one embodiment, the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a current of 0.05 to 2 milliamperes (mA) and at a pulse duration not exceeding 500 microseconds.
- the neurological disorder or condition is selected from the group consisting of: epilepsy and other seizure related disorders, acute or chronic brain injury, chronic daily headache and migraine and related disorders, and movement disorders.
- the system includes: a pulse generator; and a subcutaneous electrode assembly including: a first electrode comprising a first plurality of contacts configured for subcutaneous placement at a first region of the patient's face; a second electrode comprising a second plurality of contacts configured for subcutaneous placement at a second region of the patient's face; and wherein the first plurality of contacts and the second plurality of contacts are configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve.
- the system may further comprise a wire operably connecting the pulse generator and the subcutaneous electrode assembly.
- the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, nasal nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, and auriculotemporal nerve.
- the subcutaneous electrode assembly includes: a first electrode comprising a first single contact configured for subcutaneous placement at a first region of a patient's face; and a second electrode comprising a second single contact configured for subcutaneous placement at a second region of a patient's face; wherein the first contact and the second contact are configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve for treatment of a neurological disorder by trigeminal nerve stimulation.
- the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, and auriculotemporal nerve.
- the system includes: a pulse generator; and a subcutaneous electrode assembly in electrical communication with the pulse generator, the assembly comprising: a first electrode comprising at least one contact configured for subcutaneous placement at a first region of the patient's face, wherein the first electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve for treatment of a neurological disorder or condition by trigeminal nerve stimulation, wherein the system is configured for minimal current penetration into a brain of a patient, and wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve.
- the assembly further comprises a second electrode comprising at least one contact configured for subcutaneous placement at a second region of the patient's face, wherein the second electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve.
- the first electrode and the second electrode are configured for implantation in proximity to, adjacent to or in contact with a same branch of the trigeminal nerve. In some embodiments, the first electrode and the second electrode are configured for implantation in proximity to, adjacent to or in contact with a different branch of the trigeminal nerve.
- the system may further include a wire operably connecting the pulse generator and the subcutaneous electrode assembly. In some embodiments, the system may further include a regulating device configured to regulate the maximum charge balanced output current below approximately 30-50 mA.
- the neurological disorder or condition is selected from the group consisting of: epilepsy, seizure related disorders, acute brain injury, chronic brain injury, chronic daily headache, migraine, disorders related to migraine and headache and movement disorders.
- the pulse generator is configured to apply electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not greater than approximately 25 mA/cm 2 and an output charge density of not greater than approximately 10 microCoulomb/cm 2 at the cerebral cortex.
- the assembly includes: a first electrode comprising at least one contact configured for subcutaneous placement at a first region of the patient's face, wherein the first electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve for treatment of a neurological disorder or condition by trigeminal nerve stimulation, wherein the assembly is configured for minimal current penetration into a brain of a patient, and wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve.
- the assembly may further include a second electrode comprising at least one contact configured for subcutaneous placement at a second region of the patient's face, wherein the second electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve.
- the first electrode and the second electrode are configured for implantation in proximity to, adjacent to or in contact with a same branch of the trigeminal nerve. In some embodiments, the first electrode and the second electrode are configured for implantation in proximity to, adjacent to or in contact with a different branch of the trigeminal nerve.
- the neurological disorder or condition is selected from the group consisting of: epilepsy, seizure related disorders, acute brain injury, chronic brain injury, chronic daily headache, migraine, disorders related to migraine and headache, and movement disorders
- the method includes implanting an electrode assembly in a patient, the subcutaneous electrode assembly comprising: a first electrode comprising at least one contact configured for subcutaneous placement at a first region of the patient's face, wherein the first electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve for treatment of a neurological disorder or condition by trigeminal nerve stimulation, wherein the assembly is configured for minimal current penetration into a brain of a patient, and wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve; and applying electrical signals to the electrode assembly at specified
- the method further includes an assembly comprising a second electrode comprising at least one contact configured for subcutaneous placement at a second region of the patient's face, wherein the second electrode is configured to be implanted in proximity to, adjacent to or in contact with at least one branch of the trigeminal nerve, wherein the at least one branch of the trigeminal nerve is selected from the group consisting of: ophthalmic nerve, infraorbital nerve, mentalis nerve, supratrochlear nerve, infratrochlear nerve, zygomaticotemporal nerve, zygomaticofacial nerve, zygomaticoorbital nerve, nasal nerve, and auriculotemporal nerve.
- the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a current of 0.05 to 5 milliamperes (mA) and at a pulse duration of less than or equal to 500 microseconds. In some embodiments, the step of applying electrical signals comprises applying electrical signals at a frequency between approximately 20 and 300 Hertz, at a pulse duration between approximately 50 and 500 microseconds, at an output current density of not greater than approximately 25 mA/cm 2 and a charge density of not greater than approximately 10 microCoulomb/cm 2 at the cerebral cortex.
- the neurological disorder or condition is selected from the group consisting of: epilepsy, seizure related disorders, acute brain injury, chronic brain injury, chronic daily headache, migraine, disorders related to migraine and headache and movement disorders.
- kits for trigeminal nerve stimulation for treatment of a neurological disorder or condition includes a subcutaneous electrode assembly as disclosed herein; and instructions for implanting the electrode assembly in a patient for treatment of a neurological disorder or condition.
- the kit may further include: a pulse generator; and instructions for applying electrical signals to the electrode assembly for treatment of a neurological disorder or condition.
- FIGS. 1A and 1B illustrate the location of several branches (nerves) of the trigeminal nerve and the location of the major foramina for the superficial branches of the trigeminal nerve;
- FIG. 2A shows a subject wearing an embodiment of a system for trigeminal nerve stimulation including a subcutaneous electrode assembly provided according to aspects of the present disclosure
- FIG. 2B is the subcutaneous electrode assembly of FIG. 2A , wherein a multicontact electrode is shown;
- FIG. 3 depicts another embodiment of a subcutaneous electrode assembly configured for stimulation of a plurality of nerve branches which may be used with the system of FIG. 2A ;
- FIG. 4 depicts another embodiment of a subcutaneous electrode assembly configured for stimulation of the auriculotemporal or zygomaticofacial nerve branches which may be used with the system of FIG. 2A ;
- FIG. 5 illustrates the results from a pilot study of external trigeminal nerve stimulation (“TNS”).
- FIG. 6 summarizes one embodiment of current, charge, current density and charge density parameters for a subject exposed to transcutaneous stimulation of the supraorbital nerve.
- the present disclosure relates to methods, devices and systems used for the treatment of neurological disorders via stimulation of the superficial elements of the trigeminal nerve (“TNS”). More specifically, minimally invasive methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infratrochlear, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infraorbital, and mentalis nerves (also referred to collectively as the superficial trigeminal nerve) are disclosed herein. Systems and devices configured for therapeutic stimulation of the branches of the trigeminal nerves, such as the superficial trigeminal nerve, and their methods of application are also described.
- the cutaneous branches of the trigeminal nerve in the face provide an opportunity for a minimally invasive method of stimulating structures of the brain and the brainstem including, but not limited to, the trigeminal nerve nuclei and tracts, locus coeruleus, nucleus tractus solitarius, ventral posterior and ventral medial thalamus, the cerebral cortex, and other structures which may play a role in the disorders listed above.
- the systems, devices and methods disclosed herein provide a less invasive form of neurostimulation to treat a variety of neurological disorders including, but not limited to, seizures, headache, migraine and related disorders, movement disorders, coma, and brain injury. More specifically, an implantable or subcutaneous electrode assembly and a system comprising the same configured for trigeminal nerve stimulation are disclosed herein. As described in more detail below, electrodes are not placed within the brain or near critical structures like the vagus nerve, carotid artery, or jugular vein. The electrodes are also not directly or physically attached or anchored to the nerve (e.g. by suturing), which requires intracranial invasion and may cause a spinal fluid leak, infection, nerve damage and/or severe pain.
- subcutaneous electrodes are placed at or near a region of a patient's face or cranium that is in proximity to, adjacent to, in contact with, or distal to the trigeminal nerve (or the relevant branch(es) thereof) by attaching to subcutaneous or connective tissues above the periosteum or pericranium (a membrane that lines the outer surface of the skull) and below the epidermis (the outermost layer of skin).
- the nerve is stimulated at operational parameters within a defined range to minimize current penetration into the brain and further determined by factors such as patient history, disorder to be treated, or individual sensitivity to the stimulation.
- the electrode assembly placement as described herein does not require intracranial invasion (i.e.
- the electrode assembly may be placed or otherwise configured to stimulate the smaller branches of the trigeminal nerve. That is, the assembly is placed further away from the brain and the main branch of the nerve. Surprisingly, placement of the assembly further away from the brain and the main branch of the nerve is believed to be as efficacious as direct attachment to the main branch of the nerve and may provide increased safety for the patient.
- brain stimulation has been found to be of sufficient clinical use to have been approved by the US Food and Drug Administration, for example, electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) for psychiatric conditions.
- ECT electroconvulsive therapy
- rTMS repetitive transcranial magnetic stimulation
- Some brain stimulation methods aim to generate currents in large volumes of the cortex and treat the brain as a bulk conductor, for example, ECT at the whole-lobe level and rTMS at the large regional level (i.e. dorsolateral prefrontal cortex).
- deep brain stimulation is generally predicated on stimulation of small but regional volumes that lead to discharges in a very large number of cells.
- the systems, devices and methods of the present disclosure send minimal, if any, current into the brain; instead, signals are sent into the brain in order to modulate the activity of relevant neuroanatomical structures.
- the electrical pulses generate signals in the cutaneous branches of the trigeminal nerve and the electric fields are generally confined to the skin tissue and there is minimal, if any, leakage into the brain. These electrical pulses trigger a cascade of change in neuronal signaling events that involve very limited and precise recruitment of specific networks of neurons.
- the neuroanatomic pathways allow targeted modulation of activity in areas involved in depression (locus coeruleus, anterior cingulate, insular cortex).
- minimal current penetration means (1) a charge density of approximately 0 uC/cm 2 at the cerebral cortex, or (2) calculated, measured, or modeled charge densities below the following thresholds at the cerebral cortex: (a) at currents, charge densities, or charge per phase not likely to cause activation of pyramidal neurons and axons; and (b) to prevent brain injury, a charge density of less than 10 uC/cm 2 in one embodiment, and, in other embodiments, a charge density of less than 0.001 to 0.1 uC/cm 2 , and at combinations of charge density and charge per phase not known to cause brain injury.
- a lower charge density may be used when the central nervous system of an individual patient is sufficiently sensitive to lower levels of stimulation that the lower level will still permit clinical benefit to accrue.
- FIGS. 1A-1B illustrate the location of several branches of the trigeminal nerve and the location of the major foramina for the superficial branches of the trigeminal nerve.
- the trigeminal nerve is the largest of the 12 paired cranial nerves, and has extensive connections with the brainstem and other brain structures.
- the trigeminal nerve (frequently identified as the fifth cranial nerve, cranial nerve V, or CN V) has three major divisions, the cutaneous branches of which are all bilateral and highly accessible.
- the supraorbital nerve, or ophthalmic nerve is frequently referred to as the V1 division and this division also includes the supratrochlear nerve and the infratrochlear nerve.
- the infraorbital branch or maxillary nerve is commonly referred to as the V2 division and this division also includes the zygomaticofacial nerve and the infraorbital nerve.
- the mentalis branch of the mandibular nerve is referred to as the V3 division and this division also includes the auriculotemporal nerve.
- the supraorbital nerve supplies sensory information about the forehead, the upper eyelid, the anterior part of the nose, and the eye.
- the infraorbital branch supplies sensory information about the lower eyelid, cheek, and upper lip.
- the mentalis branch supplies sensory information about the skin of the lower face (e.g. jaw and tongue) and lips.
- the supraorbital nerve or ophthalmic nerve exits at foramen 1 , approximately 2.1-2.6 cm from the nasal midline (in adults), and is located immediately above the orbital ridge that is located below the eyebrow.
- the infraorbital branch or maxillary nerve exits at foramen 2 , approximately 2.4-3.0 cm from the nasal midline (in adults) and the mentalis nerve exits at foramen 3 , approximately 2.0-2.3 cm from the nasal midline (in adults).
- the nasal nerve is a division of the ophthalmic nerve.
- Other sensory branches including the zygomaticofacial, zygomaticoorbital, zygomaticotemporal, and auriculotemporal, arise from other foramina.
- VPM ventral posterior medial nucleus
- Light touch sensory fibers are large myelinated fibers, which ascend to the ventral posterior lateral (VPL) nucleus of the thalamus, and also project to the cerebral cortex.
- the trigeminal nuclei have projections to other cranial nerve structures, including the nucleus tractus solitarius (NTS), and the locus coeruleus, among others.
- NTS nucleus tractus solitarius
- the NTS receives afferents from the vagus nerve and trigeminal nerve.
- NTS integrates input from multiple sources, and projects to structures in the brainstem and forebrain, including the locus coeruleus.
- the locus coeruleus is a paired nuclear structure in the dorsal pons, and is located just beneath the floor of the fourth ventricle.
- the locus coeruleus has extensive axonal projections to a large number of brainstem, sub-cortical and cortical structures, and is an important part of the reticular activating system.
- the locus coeruleus is a core part of the brainstem noradrenergic pathway, and produces the neurotransmitter norepinephrine. Norepinephrine may play a role in attention, alertness, blood pressure and heart rate regulation, anxiety, and mood.
- the connections between the trigeminal nerve, locus coeruleus, nucleus and tractus solitarius, thalamus, and cerebral cortex may be relevant to a potential role of the trigeminal nerve in numerous neurological disorders, including coma and brain injury, seizure disorders, headache, migraine, and movement disorders, as may be apparent to one skilled in the art.
- subcutaneous stimulation of the trigeminal nerve at custom tailored settings and parameters could be effective in the treatment of multiple neurological disorders.
- Subcutaneous neurostimulation may improve consciousness in persons in coma and vegetative state.
- the brainstem reticular activating system including locus coeruleus
- thalamus may play a role in alerting, awakening, and activating higher cortical structures. Stimulation of these and other brain structures, to which the trigeminal nerve and nuclei project, could assist in promoting awakening in coma, as well as recovery of cognition and motor function after various forms of brain injury.
- the trigeminal nerve represents one method to activate these key structures.
- headache and migraine involve pathways linked to the trigeminal nerve. Activation of specific trigeminal structures and pathways may play a role in headache.
- Afferent trigeminal nerve fibers from vascular structures in the pia covering the cerebral cortex are activated, and activate or sensitize the trigeminal ganglion and the caudal trigeminal nuclei, which in turn activate the superior salvitory nucleus and the sphenopalatine ganglia.
- acute or chronic electrical stimulation of the trigeminal nerve via its cutaneous or superficial branches in the face is one method to modulate this trigeminal-vascular reflex response, and reduce or inhibit headaches or migraines in which the trigeminal nuclei and nerves play a role.
- Movement disorders are characterized by involuntary movements of the body, and include, but are not limited to, tremors, twitches, and spasms, involuntary increases in tone of muscles, such as dystonias, and complex movements, such as dyskinesias and choreas.
- TNS may modulate activity in key structures involved in movement disorders, including but not limited to the thalamus, basal ganglia, brain stem, and cerebral cortex, and may inhibit, by afferent stimulation, abnormal neuronal activity in motor systems which give rise to these involuntary phenomena.
- dyskinesia syndromes consist of involuntary movements that usually start oro-facially, with the muscles of the tongue, lips, mouth or face, but can increase in severity and come to involve other parts of body.
- the exact mechanisms by which these dyskinesias arise is not clear, but surgical treatment approaches have implicated the thalamus and the globus pallidum as locations where deep brain stimulation can lead to improvement (Kupsch et al., J Neurol 250 Suppl 1:147-152 2003).
- the connections between the trigeminal nerve, nucleus and tractus solitarius, and thalamus may provide a mechanism by which trigeminal nerve stimulation can ameliorate symptoms of dyskinesia by activating these key structures.
- trigeminal nerve stimulation may modulate activity in the locus coeruleus, brainstem, thalamus, and cerebral cortex, and may activate inhibitory mechanisms and pathways which affect neuronal excitability. Trigeminal nerve stimulation may also inhibit excitatory mechanisms and pathways, resulting in inhibition of epileptic discharges and their spread in cortex, and subcortical structures. These processes may have a direct or indirect effect on activity in the epileptic focus itself.
- stimulation of the superficial or cutaneous branches of the trigeminal nerve as disclosed herein provide a minimally invasive neuromodulation option.
- stimulation parameters can be tailored for the individual condition, such that the brainstem, thalamic, or cortical structures involved in the individual condition can be activated or inhibited depending on the pathophysiology of the condition being treated.
- FIGS. 2A-4 show various embodiments of the systems and devices that may be used for the subcutaneous stimulation of the superficial branches of the trigeminal nerve and methods of using the same.
- a method of treating neurological disorders using trigeminal nerve stimulation comprises implanting electrodes adjacent to, in proximity to, in contact with, or distal to at least one of the three paired foramina or superficial branches of the trigeminal nerves in the face ( FIGS. 1A-1B ), and stimulating the electrodes using a pulse generator for a period of time at specified operational parameters.
- the electrode assembly placement does not require intracranial invasion (i.e.
- the electrode assembly is attached or otherwise anchored to subcutaneous or connective tissues located above the periosteum or pericranium and below the epidermis in order to place the electrode assembly in proximity to, adjacent to, in contact with or distal to the target nerve branch.
- the electrode assembly may be configured to stimulate the smaller branches of the trigeminal nerve. Surprisingly, placement of the assembly further away from the brain and the main branch of the nerve is believed to be as efficacious as direct attachment or other contact with the main branch of the nerve and may provide increased safety for the patient.
- the implanted electrodes are positioned adjacent to the foramina of the supraorbital or ophthalmic nerves ( FIGS. 1A-1B , Foramen 1 ) since unilateral stimulation or bilateral stimulation of the trigeminal nerve is achievable by placing single or separate electrodes on the right and/or left sides.
- the electrode assembly is configured for unilateral stimulation.
- the electrode assembly is configured for bilateral stimulation.
- bilateral stimulation may offer similar or better efficacy than unilateral stimulation because the function of different brain structures may not be the same on right and left (e.g.
- verbal expression is most commonly localized to speech centers in the left hemisphere, and injury there produces catastrophic loss of the ability to speak, while damage to the corresponding region on the right does not produce this profound loss of function, but may alter subtle functions). There may also be synergistic effects that arise with bilateral stimulation.
- a patient may be implanted with two separate electrodes in the soft tissues of the forehead, with each electrode near the foramen or branches of the ophthalmic nerve.
- the implanted/implantable electrode(s) can also be positioned adjacent to, in proximity to, or in contact with the infraorbital foramen (infraorbital nerves) ( FIGS. 1A-1B , Foramen 2 ) or the mentalis foramen (mentalis nerves) ( FIGS. 1A-1B , Foramen 3 ).
- electrodes may be placed adjacent to, in proximity to, or in contact with the supratrochlear nerve, infratrochlear nerve, zygomaticotemporal, zygomaticofacial, zygomaticoorbital, nasal, and/or auriculotemporal nerves and their respective foramina.
- Unilateral stimulation or bilateral stimulation of the trigeminal nerve is achievable by placing single or separate electrodes on the right and/or left sides of the face to unilaterally apply stimulation near one superficial foramen of the trigeminal nerves.
- the electrodes may be implanted over a plurality of superficial foramina in the face to simultaneously or asynchronously stimulate different trigeminal nerves.
- the stimulation may take place in the cutaneous territories of branches of the trigeminal nerves, without attachment to the nerves.
- a system 10 for the treatment of neurological disorders and conditions via subcutaneous TNS includes an implantable or subcutaneous electrode assembly 20 , a pulse generator 30 and electrical cable or wire 40 which may be placed under the skin.
- the pulse generator may be any of a variety of appropriate stimulating, signal generating devices.
- the pulse generator 30 may include electronic circuitry for receiving data and/or power from outside the body by inductive, radio-frequency (RF), or other electromagnetic coupling.
- electronic circuitry includes an inductive coil for receiving and transmitting RF data and/or power, an integrated circuit (IC) chip for decoding and storing stimulation parameters and generating stimulation pulses, and additional discrete electronic components required to complete the electronic circuit functions, e.g. capacitor(s), resistor(s), transistor(s), coil(s), and the like.
- pulse generator 30 may include a programmable memory for storing a set(s) of data, stimulation, and control parameters.
- memory may allow stimulation and control parameters to be adjusted to settings that are safe and efficacious with minimal discomfort for each individual.
- Specific parameters may provide therapeutic advantages for various neurological disorders. For instance, some patients may respond favorably to intermittent stimulation, while others may require continuous stimulation to treat their symptoms.
- the implantable pulse generator 30 may include a power source and/or power storage device.
- a power source and/or power storage device Possible options for providing power to the system include but are not limited to: an external power source coupled to pulse generator 30 , e.g., via an RF link, a self-contained power source utilizing any suitable means of generation or storage of energy (e.g., a primary battery, a replenishable or rechargeable battery such as a lithium ion battery, an electrolytic capacitor, a super-capacitor, a kinetic generator, or the like), and if the self-contained power source is replenishable or rechargeable, means of replenishing or recharging the power source (e.g., an RF link, an optical link, a thermal link, an inductive link, or other energy-coupling link).
- a self-contained power source utilizing any suitable means of generation or storage of energy (e.g., a primary battery, a replenishable or rechargeable battery such as a lithium ion battery, an
- pulse generator 30 operates independently. In other embodiments, pulse generator 30 operates in coordination with other implanted device(s) or other device(s) external to the patient's body.
- a pulse generator may communicate with other implanted pulse generators or neurostimulators, other implanted devices, and/or devices external to a patient's body via, e.g., an RF link, an ultrasonic link, a thermal link, an optical link, or the like.
- a pulse generator may communicate with an external remote control (e.g., patient and/or physician programmer) that is capable of sending commands and/or data to a pulse generator and that may also be capable of receiving commands and/or data from a pulse generator.
- an external remote control e.g., patient and/or physician programmer
- the system may include a regulation device.
- the regulation device is configured to be attached to the pulse generator 15 and is configured to govern the maximum charge balanced output current below approximately 30-50 mA to minimize current penetration to the brain and increase patient tolerance.
- the regulation device may be internally programmed to range from 0.25-5.0, 0-10, 0-15, depending on the surface area, placement, and orientation of the electrode, and whether the electrode is stimulating near or adjacent to the skull, or away from the skull, (e.g. mentalis nerve), where current ranges may be higher or lower.
- Current TENS units stimulate with maximum output currents of up to 100 mA, which result in currents which may penetrate the skull and which may not be well tolerated.
- the electrical cable or wire 40 is configured to provide a physical and electrical link between the pulse generator 30 and the electrode assembly 20 .
- the pulse generator 30 and the electrode assembly 20 communicate wirelessly (i.e. the wire 40 is not used).
- the system 10 and/or the electrode assembly 20 may be part of a kit.
- the kit may also include instructions for treatment of a neurological disorder or condition according to a method disclosed herein.
- the electrode assembly 20 shown in the illustrated embodiment is also referred to as a bilateral supraorbital electrode.
- the electrode assembly 20 is connectable to an implanted/implantable pulse generator by electrical cables 40 .
- the electrodes may be connectable to an external pulse generator wirelessly, with transfer of energy across the skin by inductive coupling between a coil implanted in the patient and a coil in the external pulse generator (not shown).
- the implantable or subcutaneous electrode assembly 20 may include a set of multicontact electrodes 20 a , 20 b configured for the bilateral simultaneous and asynchronous stimulation of the ophthalmic nerves.
- the multicontact electrodes 20 a , 20 b of the electrode assembly 20 comprise an electrode including a first pair of contacts 112 a , 112 b for implantation at a first region of the patient's face, such as the patient's right forehead or the right side of the patient's face, and an electrode including a second pair of contacts 112 c , 112 d for implantation at a second region of the patient's face, such as in the patient's left forehead or the left side of the patient's face.
- the first and second region of the patient's face may be on the same side of the face but each region may correspond to a different nerve branch, foramina or etc.
- the first region may correspond to the supraorbital nerve and the second region may correspond to the infraorbital nerve.
- the electrode assembly 20 may also include an insulated region 116 or a plurality of insulated regions 116 configured to separate the individual electrode contacts.
- the first pair of contacts comprises a first upper contact 112 a and a first lower contact 112 b
- the second pair of contacts comprises a second upper contact 112 c and a second lower contact 112 d .
- the electrode assembly 20 comprises four electrodes that deliver the stimulation pulses to the nerves bilaterally.
- Electrode assembly 20 is shown in FIG. 2B with only pairs of electrical contacts ( 112 a/b , 112 c/d ), in other embodiments, there may be a greater or lesser number of contacts on each of the electrodes 20 a and 20 b.
- the electrode assembly 20 may comprise a multicontact electrode 20 c with a plurality of contacts 112 and a plurality of insulated regions 116 .
- the electrode assembly of FIG. 3 is configured to unilaterally stimulate both the supraorbital nerve and the infraorbital nerve.
- the electrode assembly may comprise a plurality of multicontact electrodes which may include a plurality of contacts and a plurality of insulated regions.
- the geometry or layout of the electrode assembly may be a linear electrode with a single contact or a series or plurality of conductive contacts and insulating spaces, or a flatter, “ribbon” or “strip” electrode, also with the possibility of one or more conductive area(s) and insulated area(s) on the surface(s).
- a flatter, “ribbon” or “strip” electrode also with the possibility of one or more conductive area(s) and insulated area(s) on the surface(s).
- FIG. 4 depicts still another embodiment of an electrode assembly 20 that may be used in the system 200 .
- the electrode assembly 20 may comprise a multicontact electrode 20 d with a plurality of contacts 112 and a plurality of insulated regions 116 .
- the electrode assembly of FIG. 4 is configured to unilaterally stimulate at least one of the auriculotemporal nerve or the zygomaticofacial nerve.
- the electrode assembly 20 d may be configured to stimulate both the auriculotemporal nerve and the zygomaticofacial nerve.
- the electrode assembly may be implanted unilaterally.
- the electrode assembly is configured to be placed at, near or over a superficial foramina in the face and simultaneously or asynchronously stimulate one or more different trigeminal nerves (e.g. the auriculotemporal nerve and/or the zygomaticofacial nerve).
- the electrode assembly may be implanted bilaterally to stimulate the target nerve on both sides of a patient's face.
- one embodiment of the present device comprises a unilateral electrode assembly configured for the unilateral stimulation of ophthalmic nerves (see FIG. 3 ).
- the implantable electrode assembly may be configured for the stimulation of the infraorbital nerves or the mentalis nerves.
- an electrode assembly may be configured for the simultaneous or asynchronous stimulation of a plurality of elements of the trigeminal nerves, either unilaterally or bilaterally.
- both external, transcutaneous electrodes and implanted subcutaneous electrodes are used to simultaneously or asynchronously stimulate one or more branches of the trigeminal nerves.
- FIG. 2B For ease of the reader, the remaining discussion is made with respect to FIG. 2B . However, it is understood that the disclosure also applies to embodiments which include a single multicontact electrode with a plurality of contacts, a single contact electrode, and embodiments which include a plurality of multicontact electrodes with a plurality of contacts and embodiments configured for unilateral or bilateral stimulation and other embodiments within the spirit and scope of the present disclosure.
- the electrode assembly 20 is configured to stimulate both the right and left ophthalmic nerves either simultaneously or asynchronously.
- the placement of the first implanted electrode contact pair 112 a , 112 b and the second electrode contact pair 112 c , 112 d on opposite sides of the nasal midline assures that stimulation current moves orthodromically or in the direction of the afferent ophthalmic or supraorbital nerve.
- this configuration of the electrode assembly 20 allows the electrode contact points 112 a / 112 b and 112 c / 112 d to be stimulated independently and/or unilaterally, as the response to stimulus may be localized and thus varied from one side of the midline to the other side.
- the electrodes and/or their connectors are longer than 150 mm where the supraorbital, infraorbital and/or the mentalis branch is the desired target.
- a shorter electrode/connector length may be desired depending on the placement of the pulse generator.
- the upper electrode contact points 112 a , 112 c and lower contact points 112 b , 112 d have fixed polarities.
- the upper contact points 112 a , 112 c and lower contact points 112 b , 112 d have alternating polarities.
- Each of the contacts 112 a , 112 b , 112 c , and 112 d is configured to deliver an electrical pulse with minimal risk of scalp tissue injury due to excess charge accumulation, and with minimal potential for current penetration beyond the inner surface of the skull bone.
- the distance between the first implanted electrode pair 112 a , 112 b and the second electrode pair 112 c , 112 d is configured to stimulate the ophthalmic nerves while minimizing any current delivery to the surface of the brain.
- the electrode size and the inter-electrode distance of electrode placement may vary for children and adults, males and females, depending upon the dimensions of an individual person's anatomy.
- Electrode assembly 20 may be made of a noble or refractory metal or compound, such as titanium, titanium nitride, platinum, iridium, tantalum, niobium, rhenium, palladium, gold, nichrome, stainless steel, or alloys of any of these, in order to avoid corrosion or electrolysis which could damage the surrounding tissues and the device.
- a noble or refractory metal or compound such as titanium, titanium nitride, platinum, iridium, tantalum, niobium, rhenium, palladium, gold, nichrome, stainless steel, or alloys of any of these, in order to avoid corrosion or electrolysis which could damage the surrounding tissues and the device.
- Other compounds for implantable electrodes will be apparent to one skilled in the art.
- the distance between contacts 112 a and 112 b and the distance between contacts 112 c and 112 d can be in a range greater than, equal to, and/or less than one or more of 0.1 cm, 0.5 cm, 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, 8 cm, 9 cm, or cm.
- 0.1 cm 0.5 cm, 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, 6 cm, 7 cm, 8 cm, 9 cm, or cm.
- sensing electrodes may be included in the electrode assembly to monitor physiological parameters, such as electroencephalographic data, and permit a feedback system that can adaptively adjust the stimulation parameters to optimize therapeutic benefit and safety.
- the sensing electrode is one of the stimulating electrodes and is used for sensing during the ‘off’ part of the duty cycle.
- the sensing electrode is an additional electrode and is dedicated to sensing only.
- the electrode assembly may comprise two implanted electrodes 20 a , 20 b which are placed adjacent to the supraorbital foramina of a patient 5 , which is located over the orbital ridge approximately 2.1 to 2.6 cm lateral to the nasal midline.
- the superior ends 13 a , 13 b of the electrodes 20 a , 20 b indicate the place at which the electrodes 20 a , 20 b connect to leads (not shown) for conveying the electrical stimuli from the pulse generator (not shown).
- the pulse generator itself may be placed in a variety of locations under the skin, such as pectorally, on the back, in the tissues of the neck, or under the scalp, and the leads placed under the skin of the patient to connect them. In other embodiments, the pulse generator may located externally, such as attached to the patient's clothing.
- the neurostimulation is provided using an electrical pulse generator at the following exemplary settings: frequency between approximately 20-150 Hz, current between approximately 0.05-20 mA, pulse duration of between approximately 50-250 microseconds, a duty cycle of 10% to 50%, for at least one hour per day.
- frequency between approximately 20-150 Hz
- current between approximately 0.05-20 mA
- pulse duration of between approximately 50-250 microseconds
- a duty cycle 10% to 50%, for at least one hour per day.
- stimulation parameters at the lower end of these ranges may be preferred.
- different values of the operational parameters may be used as described in more detail below.
- a single implanted electrode may be used.
- the electrode assembly may be implanted unilaterally.
- the electrode assembly may also be configured to stimulate more than one nerve.
- the electrode assembly is configured to be placed at, near or over a plurality of superficial foramina in the face and simultaneously or asynchronously stimulate different trigeminal nerves (e.g. the supraorbital nerve and the infraorbital nerve).
- the electrode assembly 20 is implanted in the soft tissues of the forehead of the patient 5 .
- the electrode assembly 20 is then connected to an implanted pulse generator 30 via the implanted electrical cables 40 , which are placed under or in the patient's skin.
- the stimulation via the pulse generator 30 is via electrical cables 40 .
- the electrical stimulation can be performed wirelessly, with an external, non-implanted pulse generator, which uses inductive coupling to deliver energy to the implanted electrode assembly 20 .
- the electrode assembly may be connected to an external pulse generator via wires or wirelessly.
- the stimulation is carried out at the operational parameters as described herein.
- the values of the operational parameters are within a range that produces minimal current penetration into the brain and may further be selected such that a patient will experience a stimulation sensation, such as mild tingling over the forehead, scalp, or teeth, without causing the patient significant discomfort or pain. These values may vary according to the treatment of interest.
- the method of treating neurological disorders comprises implanting the electrode assembly 20 subcutaneously (e.g. in the forehead of a patient), connecting the electrode assembly 20 to an implanted pulse generator 30 , and stimulating the electrode assembly 20 at defined values of the operational parameters.
- the bilateral supraorbital electrode 20 illustrated in FIGS. 2A-2B is stimulated at a stimulus frequency between about 20 and about 300 Hz, at a pulse-duration between 50 microseconds ( ⁇ sec) to 250 ⁇ sec, at an output current of less than 10 mA at the cerebral cortex for at least one-half to one hour per day. In some cases, stimulation can be provided for less than one-half hour per day or may be provided for up to 24 hours per day.
- Accepted standards of safe stimulation may be incorporated for chronic stimulation. Parameters may be selected or calculated to deliver no stimulation or negligible stimulation to the surface of the brain.
- the currently accepted safe parameters for chronic stimulation are less than a charge per phase of ⁇ 20 ⁇ C/cm 2 /phase at the surface of the brain (Exp Neurol 1983; 79:397-41). In general, for any region of the surface of the brain, the cumulative charge per phase resulting from all the electrode contacts should not exceed this threshold. It is recognized that these guidelines are subject to change, and that parameters should be selected which deliver no current or negligible current to the surface of the brain, while still being sufficient to stimulate the nerves disclosed herein.
- the method of treating neurological disorders by TNS comprises selecting optimal values for the operational parameters for the stimulation of each individual patient.
- the values of the operational parameters are selected such that a patient will experience a stimulation sensation, such as a mild tingling over the forehead, scalp, or face, without being in discomfort or in pain.
- lower currents e.g. 0.05-5 mA
- careful electrode placement may be selected to avoid recruitment of nerves supplying pain sensation to the teeth.
- lower currents e.g. 0.05-5 mA
- the method of selecting operational parameters comprises evaluating variables such as the pulse duration, the electrode current, the duty cycle and the stimulation frequency; the parameters are selected to ensure that the total charge, the charge density, and charge per phase are well within accepted safety limits for the scalp or facial tissue, nerve and brain while preventing or minimizing current penetration beneath the bone tissue of the skull. Additionally, in some embodiments, selection of the electrical stimulation parameters, electrode design, and inter-electrode distance is made such that the electrical stimulation zone includes the superficial elements of the trigeminal nerves (approximately 3-4 mm deep), while preventing or minimizing current penetration beneath the bone tissue of the skull.
- the stimulation parameters delivered by the implanted pulse generator may be determined (programmed) at the time the device is surgically implanted. In other embodiments, these parameters may be modified, controlled, or otherwise programmed by an external device. This external programming element communicates with the implanted components wirelessly. This may take place, for example, by radiofrequency signals, by inductive coupling, or other means apparent to one skilled in the art.
- the stimulation is delivered at a specific pulse width or range of pulse widths.
- the stimulation can be set to deliver pulse widths in the range greater than, equal to, and/or less than one or more of 50 ⁇ s, 60 ⁇ s, 70 ⁇ s, 80 ⁇ s, 90 ⁇ s, 100 ⁇ s, 125 ⁇ s, 150 ⁇ s, 175 ⁇ s, 200 ⁇ s, 225 ⁇ s, 250 ⁇ s, up to 500 ⁇ s.
- Those of skill in the art will recognized that one or more of the above times can be used as a border of a range of pulse widths.
- the stimulation amplitude is delivered as a voltage or current controlled stimulation. In other embodiments it can be delivered as a capacitive discharge.
- the current amplitude can be in any range within a lower limit of about 300 ⁇ A and an upper limit of about 30 mA-35 mA, depending on the surface area of the electrodes, inter-electrode distance, the branch(es) stimulated, and the modeling data as described above.
- the current used will range from 0.1 mA to 10 mA. In other embodiments, the current used will range from 0.1-3 mA.
- the amplitude can be in a range greater than, equal to, and/or less than one or more of 50 ⁇ A, 75 ⁇ A, 100 ⁇ A, 125 ⁇ A, 150 ⁇ A, 175 ⁇ A, 200 ⁇ A, 225 ⁇ A, 250 ⁇ A, 275 ⁇ A, 300 ⁇ A, 325 ⁇ A, 350 ⁇ A, 375 ⁇ A, 400 ⁇ A, 425 ⁇ A, 450 ⁇ A, 475 ⁇ A, 500 ⁇ A, 525 ⁇ A, 550 ⁇ A, 575 ⁇ A, 600 ⁇ A, 625 ⁇ A, 650 ⁇ A, 675 ⁇ A, 700 ⁇ A, 725 ⁇ A, 850 ⁇ A, 875 ⁇ A, 900 ⁇ A, 925 ⁇ A, 950 ⁇ A, 975 ⁇ A, 1 mA, 2 mA, 3 mA, 4 mA, 5 mA, 6 mA, 7 m
- treatment at a given current amplitude is delivered so as to minimize or eliminate any spread of current to the cerebral cortex, while ensuring that accepted limits of charge density and charge per phase at the brain surface (e.g., generally ⁇ 20 ⁇ C/cm 2 /phase, Exp Neurol 1983; 79:397-411) are adhered to, for the safety of the patient.
- accepted limits of charge density and charge per phase at the brain surface e.g., generally ⁇ 20 ⁇ C/cm 2 /phase, Exp Neurol 1983; 79:397-411
- charge densities may be employed because more fibers within the nerves may be engaged in the neurostimulation process.
- the stimulation can be delivered at one or more frequencies, or within a range of frequencies.
- the stimulation can be set to be delivered at frequencies less than, equal to, and/or greater than one or more of 50 Hz, 45 Hz, 40 Hz, 35 Hz, 30 Hz, 25 Hz, 20 Hz, 15 Hz, or 10 Hz.
- the stimulation can be set to be delivered at frequencies greater than, equal to, and/or less than, one or more of 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, 80 Hz, 90 Hz, 100 Hz, 125 Hz, 150 Hz, up to 300 Hz.
- Those of skill in the art will recognize that one or more of the above frequencies can be used as a border of a range of frequencies.
- the stimulation is delivered at a specific duty cycle or range of duty cycles.
- the stimulation can be set to be delivered at a duty cycle in the range greater than, equal to, and/or less than one or more of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.
- a duty cycle of 10% to 50% may be preferable.
- duty cycles up to 100% may be useful in particular circumstances. Those of skill in the art will recognize that one or more of the above percentages can be used as a border of a range of duty cycles.
- an external device may be used to identify the location of the branch or branches of the trigeminal nerve that will be targeted in an individual patient for stimulation by the implanted electrode assembly disclosed herein.
- the external device may be used for mapping and targeting the desired branch or branches of the trigeminal nerve and for identifying the individual stimulation parameters that are optimal for efficacy and safety.
- the device may include a plurality of external (transcutaneous) TNS electrodes. The practitioner approximates the location of the target branch and affixes the electrodes to the patient's skin above the target location. Stimulation may be applied and the actual location or preferred (optimal) stimulation location of the target branch or branches may be determined Stimulation parameters may also be established. Once the location and/or stimulation parameters have been established via the external device, that data may be used to help guide the placement of the implanted electrodes for an individual patient and to establish the customized stimulation parameters for that patient.
- the use of external electrodes for stimulation of the trigeminal nerve may identify individuals who are likely to derive therapeutic benefit from this minimally invasive system in addition to the optimal specific locations and parameters of stimulation based on person-to-person variability.
- Various neurodiagnostic, imaging, or cutaneous nerve mapping methods may be able to delineate differences in individual anatomy to optimize stimulation for efficacy and/or safety.
- the use of this minimally invasive system may allow screening and identification of those individuals who are likely to derive benefit from other implantable systems, such as deep brain stimulation.
- stage I external TNS of the trigeminal nerve
- stage II implantanted TNS of the superficial trigeminal nerve
- stage III deep brain stimulation
- a method of evaluating the use of trigeminal nerve stimulation for treatment of a neurological disorder in a patient is disclosed herein.
- the method may include applying a transcutaneous system for stimulation of the trigeminal nerve to the patient and monitoring the patient for at least one of evidence of a useful therapeutic response or evidence of tolerability of TNS treatment, providing a subcutaneous electrode assembly or system as disclosed herein, and implanting the subcutaneous electrode assembly or system as disclosed herein in the patient for treatment of a neurological disorder.
- a method of evaluating the use of deep brain stimulation for treatment of a neurological disorder in a patient is disclosed herein.
- the method may include applying a transcutaneous system for stimulation of the trigeminal nerve to the patient and monitoring the patient for at least one of evidence of a useful therapeutic response or evidence of tolerability of TNS treatment thereby generating external measurement criteria, providing a subcutaneous electrode assembly or system as disclosed herein, implanting the subcutaneous electrode assembly or system as disclosed herein in the patient for treatment of a neurological disorder, monitoring the patient for at least one of a useful therapeutic response or tolerability of the implanted device, thereby generating extracranial measurement criteria, and analyzing the external measurement criteria and extracranial measurement criteria to determine whether the patient will benefit from deep brain stimulation.
- Example 1 patients with epilepsy were treated by TNS with external transcutaneous electrodes.
- TNS transcutaneous electrodes for bilateral supraorbital stimulation.
- FIG. 5 illustrates the results from a pilot study of external trigeminal nerve stimulation.
- Research subjects with epilepsy who met inclusion and exclusion criteria for a pilot feasibility study of external trigeminal nerve stimulation were enrolled in this study. Subjects initially participated in a 1-month baseline period where seizures were counted, followed by active stimulation of the infraorbital or ophthalmic branch of the trigeminal nerve. Inclusion criteria were: subjects with poorly controlled epilepsy; ages 18-65 years; at least three complex-partial or generalized tonic-clonic seizures per month; no serious or progressive medical or psychiatric conditions; and exposure to at least 2 antiepileptic drugs (AED's). Subjects with a vagus nerve stimulator were excluded from the study.
- AED's antiepileptic drugs
- an electrical stimulator such as the EMS Model 7500 commercially available from TENS Products, Inc. (www.tensproducts.com, Grand Lake Colo.) at a frequency of 120 Hertz, a current less than 20 mA, pulse duration of 250 ⁇ sec, and a duty cycle at 15 to 30 seconds on and 15 to 30 seconds off, for a minimum of 8 hours per day.
- FIG. 5 illustrates the clinical results from this pilot study showing the effectiveness of external trigeminal nerve stimulation.
- Five of twelve subjects experienced greater than 50% reduction in adjusted mean daily seizure rate at 6 and 12 months of treatment. Mean reduction at 3 months was 66% and was 59% at 12 months. (DeGiorgio et al., Neurology 2009; 72:936-938).
- the data from the table of FIG. 5 show that the trigeminal nerve stimulation using the described operational parameter values was effective in reducing seizures and was well tolerated by the subjects tested. No serious adverse events were reported.
- the therapeutic effect of the device was observed in several standard measures, indicating the broad-reaching benefits of this treatment on a variety of outcome measures.
- FIG. 6 summarizes current, charge, current density and charge density in a subject exposed to transcutaneous stimulation of the supraorbital nerve.
- Transcutaneous electrical stimulation of the supraorbital branch of the trigeminal nerve with round 1.25-inch TENS patch electrodes results in current densities and charge density/phase that are well within the limits of safety.
- the maximum current comfortably tolerated by TNS patients studied previously is approximately 25 mA's, and patients typically are stimulated at an amplitude setting well below 25 mA's (6-10 mA's).
- the 1.25-inch TENS electrodes are circular electrodes with a radius of 1.59 cm.
- typical stimulation current ranges from 6-10 mA at pulse durations of 150-250 usec.
- the charge density is generally 12 to 120 fold less at the stimulating electrode than the maximum allowed at the cerebral cortex. Since the cortex is a minimum of 10-13 mm from the stimulating electrodes, and given the interposed layers of skin, fat, bone, dura, and CSF, the actual charge densities will be significantly lower. This is of importance in avoiding the undesired passage of current directly through brain tissue as a bulk conductor.
- Stimulation of the target nerve may be accomplished by application of energy in many forms, such as magnetic or ultrasonic. Therefore, it is to be understood that the subject matter of this disclosure may be practiced other than as specifically described herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Cardiology (AREA)
- Biophysics (AREA)
- Pain & Pain Management (AREA)
- Social Psychology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Electrotherapy Devices (AREA)
- Electroluminescent Light Sources (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/898,696 US20110106220A1 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US14/252,658 US9238139B2 (en) | 2009-10-05 | 2014-04-14 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US15/001,096 US9682236B2 (en) | 2009-10-05 | 2016-01-19 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US15/144,499 US20160317814A1 (en) | 2009-10-05 | 2016-05-02 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US15/624,640 US20170348521A1 (en) | 2009-10-05 | 2017-06-15 | Extracranial implantable devices, systems and methods for the treatment of medical disorders |
US15/949,987 US10238862B2 (en) | 2009-10-05 | 2018-04-10 | Extracranial implantable devices, systems and methods for the treatment of medical disorders |
US16/291,763 US20190269922A1 (en) | 2009-10-05 | 2019-03-04 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/854,952 US20220331581A1 (en) | 2009-10-05 | 2022-06-30 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/936,334 US20230093826A1 (en) | 2009-10-05 | 2022-09-28 | Devices, systems and methods for the treatment of neurological disorders and neuropsychiatric disorders |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24882709P | 2009-10-05 | 2009-10-05 | |
US28982909P | 2009-12-23 | 2009-12-23 | |
US30551410P | 2010-02-17 | 2010-02-17 | |
US35464110P | 2010-06-14 | 2010-06-14 | |
US12/898,696 US20110106220A1 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/898,685 Continuation-In-Part US8958880B2 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/065003 Continuation-In-Part WO2012082961A2 (en) | 2009-10-05 | 2011-12-14 | Extracranial implantable devices, systems and methods for the treatment of medical disorders |
US13/994,512 Continuation-In-Part US20140142669A1 (en) | 2010-12-14 | 2011-12-14 | Extracranial implantable devices, systems and methods for the treatment of medical disorders |
US15/144,499 Continuation US20160317814A1 (en) | 2009-10-05 | 2016-05-02 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110106220A1 true US20110106220A1 (en) | 2011-05-05 |
Family
ID=43857099
Family Applications (17)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/898,696 Abandoned US20110106220A1 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US12/898,685 Active 2031-03-31 US8958880B2 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US12/898,675 Active US8688220B2 (en) | 2009-10-05 | 2010-10-05 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US12/898,686 Active - Reinstated US8380315B2 (en) | 2009-10-05 | 2010-10-05 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US13/769,074 Active US8700164B2 (en) | 2009-10-05 | 2013-02-15 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US14/196,990 Abandoned US20140188200A1 (en) | 2009-10-05 | 2014-03-04 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US14/252,658 Active US9238139B2 (en) | 2009-10-05 | 2014-04-14 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US14/619,898 Active US9511223B2 (en) | 2009-10-05 | 2015-02-11 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US14/721,300 Active US9504827B2 (en) | 2000-03-06 | 2015-05-26 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US15/001,096 Active US9682236B2 (en) | 2009-10-05 | 2016-01-19 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US15/144,499 Abandoned US20160317814A1 (en) | 2009-10-05 | 2016-05-02 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US15/295,160 Active US10058704B2 (en) | 2009-10-05 | 2016-10-17 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US15/348,097 Active US10195435B2 (en) | 2009-10-05 | 2016-11-10 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US15/605,288 Active US10322283B2 (en) | 2009-10-05 | 2017-05-25 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US16/291,763 Abandoned US20190269922A1 (en) | 2009-10-05 | 2019-03-04 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/854,952 Abandoned US20220331581A1 (en) | 2009-10-05 | 2022-06-30 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/936,334 Pending US20230093826A1 (en) | 2009-10-05 | 2022-09-28 | Devices, systems and methods for the treatment of neurological disorders and neuropsychiatric disorders |
Family Applications After (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/898,685 Active 2031-03-31 US8958880B2 (en) | 2009-10-05 | 2010-10-05 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US12/898,675 Active US8688220B2 (en) | 2009-10-05 | 2010-10-05 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US12/898,686 Active - Reinstated US8380315B2 (en) | 2009-10-05 | 2010-10-05 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US13/769,074 Active US8700164B2 (en) | 2009-10-05 | 2013-02-15 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US14/196,990 Abandoned US20140188200A1 (en) | 2009-10-05 | 2014-03-04 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US14/252,658 Active US9238139B2 (en) | 2009-10-05 | 2014-04-14 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US14/619,898 Active US9511223B2 (en) | 2009-10-05 | 2015-02-11 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US14/721,300 Active US9504827B2 (en) | 2000-03-06 | 2015-05-26 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US15/001,096 Active US9682236B2 (en) | 2009-10-05 | 2016-01-19 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US15/144,499 Abandoned US20160317814A1 (en) | 2009-10-05 | 2016-05-02 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US15/295,160 Active US10058704B2 (en) | 2009-10-05 | 2016-10-17 | Systems, devices and methods for the treatment of neurological disorders and conditions |
US15/348,097 Active US10195435B2 (en) | 2009-10-05 | 2016-11-10 | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US15/605,288 Active US10322283B2 (en) | 2009-10-05 | 2017-05-25 | Devices, systems and methods for treatment of neuropsychiatric disorders |
US16/291,763 Abandoned US20190269922A1 (en) | 2009-10-05 | 2019-03-04 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/854,952 Abandoned US20220331581A1 (en) | 2009-10-05 | 2022-06-30 | Extracranial implantable devices, systems and methods for the treatment of neurological disorders |
US17/936,334 Pending US20230093826A1 (en) | 2009-10-05 | 2022-09-28 | Devices, systems and methods for the treatment of neurological disorders and neuropsychiatric disorders |
Country Status (9)
Country | Link |
---|---|
US (17) | US20110106220A1 (ja) |
EP (4) | EP2485799A4 (ja) |
JP (8) | JP2013506533A (ja) |
KR (6) | KR20120101649A (ja) |
AU (4) | AU2010303583B2 (ja) |
BR (4) | BR112012008028A2 (ja) |
CA (4) | CA2776693C (ja) |
MX (4) | MX2012004053A (ja) |
WO (4) | WO2011044179A1 (ja) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110112603A1 (en) * | 2009-10-05 | 2011-05-12 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
EP2524717A1 (de) * | 2011-05-14 | 2012-11-21 | cerboMed GmbH | Stimulationsvorrichtung |
US20130200824A1 (en) * | 2010-07-02 | 2013-08-08 | Robert Bosch Gmbh | Method for controlling the power supply of an electric motor |
WO2013152316A1 (en) | 2012-04-05 | 2013-10-10 | The Regents Of The University Of California | Subcutaneous electrodes for cranial nerve stimulation |
WO2013165697A1 (en) * | 2012-04-30 | 2013-11-07 | Vigilant Medical Solutions, Inc. | Indirect and non-invasive trigeminal neuromodulation for the treatment of disease |
US20140058481A1 (en) * | 2011-01-28 | 2014-02-27 | Stimwave Technologies Incorporated | Neural stimulator system |
US8805512B1 (en) | 2011-08-30 | 2014-08-12 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for reducing hypertension |
US8880173B2 (en) | 2013-03-12 | 2014-11-04 | Ethicon Endo-Surgery, Inc. | Device for providing transdermal electrical stimulation at an adjustable position on a head |
US8938297B2 (en) | 2011-09-23 | 2015-01-20 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating cardiovascular disease |
US8942808B2 (en) | 2012-03-12 | 2015-01-27 | Valencia Technologies Corporation | Stimulation paradigm to improve blood pressure dipping in an implantable electroacupuncture device |
US8942816B2 (en) | 2012-03-06 | 2015-01-27 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating dyslipidemia |
US8954143B2 (en) | 2012-03-06 | 2015-02-10 | Valencia Technologies Corporation | Radial feed through packaging for an implantable electroacupuncture device |
US8965511B2 (en) | 2011-08-30 | 2015-02-24 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for reducing hypertension |
US8996125B2 (en) | 2011-09-23 | 2015-03-31 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating cardiovascular disease |
US9066845B2 (en) | 2012-03-06 | 2015-06-30 | Valencia Technologies Corporation | Electrode configuration for an implantable electroacupuncture device |
US9078801B2 (en) | 2012-03-06 | 2015-07-14 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating erectile dysfunction |
US9089716B2 (en) | 2012-03-12 | 2015-07-28 | Valencia Technologies Corporation | Circuits and methods for using a high impedance, thin, coin-cell type battery in an implantable electroacupuncture device |
US9173811B2 (en) | 2011-09-29 | 2015-11-03 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating depression and similar mental conditions |
US20150321004A1 (en) * | 2013-08-14 | 2015-11-12 | Syntilla Medical LLC | Implantable head mounted neurostimulation system for head pain |
US9199089B2 (en) | 2011-01-28 | 2015-12-01 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US9198828B2 (en) | 2011-09-29 | 2015-12-01 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating depression, bipolar disorder and anxiety |
US9220897B2 (en) | 2011-04-04 | 2015-12-29 | Micron Devices Llc | Implantable lead |
US9242103B2 (en) | 2011-09-15 | 2016-01-26 | Micron Devices Llc | Relay module for implant |
US20160030746A1 (en) * | 2013-08-14 | 2016-02-04 | Syntilla Medical LLC | Surgical method for implantable head mounted neurostimulation system for head pain |
US9314399B2 (en) | 2012-03-06 | 2016-04-19 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating dyslipidemia and obesity |
US9327134B2 (en) | 2012-03-12 | 2016-05-03 | Valencia Technologies Corporation | Implantable electroacupuncture device and method |
US9364390B2 (en) | 2012-03-06 | 2016-06-14 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating obesity |
US9364674B2 (en) | 2010-11-30 | 2016-06-14 | Ian A. Cook | Pulse generator for cranial nerve stimulation |
US9409029B2 (en) | 2014-05-12 | 2016-08-09 | Micron Devices Llc | Remote RF power system with low profile transmitting antenna |
US9433786B2 (en) | 2012-03-06 | 2016-09-06 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating Parkinson's disease and essential tremor |
US9724512B2 (en) | 2012-09-28 | 2017-08-08 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating parkinson's disease and essential tremor through application of stimului at or near an acupoint on the chorea line |
US20170252552A1 (en) * | 2014-11-19 | 2017-09-07 | Neurosigma, Inc. | Trigeminal neurostimulation based upon pulse counting and chronobiology |
US9827421B2 (en) | 2012-03-12 | 2017-11-28 | Valencia Technologies Corporation | Methods and systems for treating a chronic low back pain condition using an implantable electroacupuncture device |
US20180070870A1 (en) * | 2016-09-09 | 2018-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | Autonomous Sweat Extraction and Analysis Using a Fully-Integrated Wearable Platform |
EP2651497B1 (en) * | 2010-12-14 | 2019-02-20 | The Regents of The University of California | Extracranial implantable systems for the treatment of medical disorders |
US10315039B2 (en) | 2011-01-28 | 2019-06-11 | Stimwave Technologies Incorporated | Microwave field stimulator |
US10639468B2 (en) | 2009-10-05 | 2020-05-05 | The Regents Of The University Of California | Devices, systems and methods for the treatment of medical disorders |
US10953228B2 (en) | 2011-04-04 | 2021-03-23 | Stimwave Technologies Incorporated | Implantable lead |
US10960215B2 (en) | 2013-10-23 | 2021-03-30 | Nuxcel, Inc. | Low profile head-located neurostimulator and method of fabrication |
US11060541B2 (en) | 2015-10-02 | 2021-07-13 | The Regents Of The University Of California | System and method for optical transient liquid molding of microparticles and uses for the same |
US20220118253A1 (en) * | 2019-01-18 | 2022-04-21 | Ist, Llc | Systems and methods for craniocervical and auricular neuromodulation |
US11583683B2 (en) | 2012-12-26 | 2023-02-21 | Stimwave Technologies Incorporated | Wearable antenna assembly |
US12115374B2 (en) | 2011-01-28 | 2024-10-15 | Curonix Llc | Microwave field stimulator |
US12144987B2 (en) | 2015-01-04 | 2024-11-19 | Ist, Llc | Methods and apparatuses for transdermal stimulation of the outer ear |
US12151107B2 (en) | 2018-02-01 | 2024-11-26 | Curonix Llc | Systems and methods to sense stimulation electrode tissue impedance |
US12179011B2 (en) * | 2018-08-14 | 2024-12-31 | Neurotrigger Ltd. | Method and apparatus for transcutaneous facial nerve stimulation and applications thereof |
US12233407B2 (en) | 2017-02-24 | 2025-02-25 | The Regents Of The University Of California | Particle-drop structures and methods for making and using the same |
Families Citing this family (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6907884B2 (en) | 2002-09-30 | 2005-06-21 | Depay Acromed, Inc. | Method of straddling an intraosseous nerve |
US7258690B2 (en) | 2003-03-28 | 2007-08-21 | Relievant Medsystems, Inc. | Windowed thermal ablation probe |
US8361067B2 (en) | 2002-09-30 | 2013-01-29 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
US10912712B2 (en) | 2004-03-25 | 2021-02-09 | The Feinstein Institutes For Medical Research | Treatment of bleeding by non-invasive stimulation |
AU2009296474B2 (en) | 2008-09-26 | 2015-07-02 | Relievant Medsystems, Inc. | Systems and methods for navigating an instrument through bone |
US10028753B2 (en) | 2008-09-26 | 2018-07-24 | Relievant Medsystems, Inc. | Spine treatment kits |
US9375571B2 (en) * | 2013-01-15 | 2016-06-28 | ElectroCore, LLC | Mobile phone using non-invasive nerve stimulation |
US20120220812A1 (en) * | 2011-02-27 | 2012-08-30 | Mishelevich David J | Ultrasound neuromodulation for stroke mitigation and rehabilitation |
US8702584B2 (en) * | 2010-05-12 | 2014-04-22 | Cefaly Technology Sprl | Neurostimulation method to induce relaxation or sleep |
US9821159B2 (en) | 2010-11-16 | 2017-11-21 | The Board Of Trustees Of The Leland Stanford Junior University | Stimulation devices and methods |
AU2011328900B2 (en) | 2010-11-16 | 2015-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for treatment of dry eye |
CA2823592C (en) | 2011-01-03 | 2021-11-23 | The Regents Of The University Of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
JP6060146B2 (ja) | 2011-03-24 | 2017-01-11 | カリフォルニア インスティテュート オブ テクノロジー | 神経刺激装置 |
DE102011101662A1 (de) * | 2011-05-14 | 2012-11-15 | Cerbomed Gmbh | Stimulationsvorrichtung |
EP2758126B1 (en) | 2011-09-22 | 2020-01-01 | Djo, Llc | Devices and system for treating pain with electrical stimulation |
IN2014MN00916A (ja) * | 2011-10-19 | 2015-04-17 | Neuro Resource Group Inc | |
WO2013071307A1 (en) | 2011-11-11 | 2013-05-16 | Edgerton Victor Reggie | Non invasive neuromodulation device for enabling recovery of motor, sensory, autonomic, sexual, vasomotor and cognitive function |
US10092750B2 (en) | 2011-11-11 | 2018-10-09 | Neuroenabling Technologies, Inc. | Transcutaneous neuromodulation system and methods of using same |
RU2506968C2 (ru) * | 2011-11-30 | 2014-02-20 | Федеральное Государственное бюджетное учреждение "Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева" (НИПИ им. В.М. Бехтерева) | Способ лечения вегетативного состояния |
US20130147381A1 (en) * | 2011-12-08 | 2013-06-13 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Driving circuit and driving method for light emitting diode and display apparatus using the same |
AU2012362524B2 (en) | 2011-12-30 | 2018-12-13 | Relievant Medsystems, Inc. | Systems and methods for treating back pain |
AU2013256232B2 (en) | 2012-05-03 | 2018-02-15 | Ioannis Mihail Skaribas | External, head-worn electrical stimulator for treating headache conditions |
US10588691B2 (en) | 2012-09-12 | 2020-03-17 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
CA3093398C (en) | 2012-11-05 | 2022-05-24 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
US10814131B2 (en) | 2012-11-26 | 2020-10-27 | Thync Global, Inc. | Apparatuses and methods for neuromodulation |
US10537703B2 (en) | 2012-11-26 | 2020-01-21 | Thync Global, Inc. | Systems and methods for transdermal electrical stimulation to improve sleep |
US9474891B2 (en) | 2014-05-25 | 2016-10-25 | Thync Global, Inc. | Transdermal neurostimulator adapted to reduce capacitive build-up |
US9440070B2 (en) | 2012-11-26 | 2016-09-13 | Thyne Global, Inc. | Wearable transdermal electrical stimulation devices and methods of using them |
CN103830841B (zh) | 2012-11-26 | 2018-04-06 | 赛威医疗公司 | 可穿戴的经皮肤的电刺激设备及其使用方法 |
BR112015017042B1 (pt) | 2013-01-21 | 2022-03-03 | Cala Health, Inc | Dispositivo para tratar tremor |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US9717627B2 (en) | 2013-03-12 | 2017-08-01 | Oculeve, Inc. | Implant delivery devices, systems, and methods |
US9259576B2 (en) | 2013-03-12 | 2016-02-16 | University Health Network | Functional electrical stimulation method, use and apparatus for mood alteration |
JP5345256B1 (ja) | 2013-03-26 | 2013-11-20 | 謙輔 山川 | 電気的刺激装置 |
EP2986338B8 (en) * | 2013-04-15 | 2021-12-15 | GSK Consumer Healthcare SARL | Transcutaneous electrical nerves stimulator with automatic detection of user sleep-wake state |
AU2014253754C1 (en) | 2013-04-19 | 2015-07-30 | Oculeve, Inc. | Nasal stimulation devices and methods |
US9731127B2 (en) | 2013-04-24 | 2017-08-15 | Neurosigma, Inc. | Modulation of autonomic nervous system activity and integrated electrode assemblies for trigeminal neurostimulation |
WO2014189327A1 (ko) * | 2013-05-24 | 2014-11-27 | 고려대학교 산학협력단 | 뇌-뇌 인터페이스를 처리하는 초음파 출력 시스템 및 방법 |
KR101470588B1 (ko) * | 2013-05-24 | 2014-12-10 | 고려대학교 산학협력단 | 뇌-뇌 인터페이스 장치 및 방법 |
ES2696707T3 (es) | 2013-06-29 | 2019-01-17 | Cerevast Medical Inc | Dispositivos de estimulación eléctrica transcutánea y métodos para modificar o inducir el estado cognitivo |
US10293161B2 (en) | 2013-06-29 | 2019-05-21 | Thync Global, Inc. | Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state |
US9427595B2 (en) * | 2013-07-10 | 2016-08-30 | Pacesetter, Inc. | Neurostimulation patch |
US9724151B2 (en) | 2013-08-08 | 2017-08-08 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
US9839777B2 (en) | 2013-08-14 | 2017-12-12 | Syntilla Medical LLC | Implantable neurostimulation lead for head pain |
CA2925754C (en) | 2013-09-27 | 2023-02-21 | The Regents Of The University Of California | Engaging the cervical spinal cord circuitry to re-enable volitional control of hand function in tetraplegic subjects |
US9498635B2 (en) | 2013-10-16 | 2016-11-22 | Syntilla Medical LLC | Implantable head located radiofrequency coupled neurostimulation system for head pain |
US10258805B2 (en) | 2013-10-23 | 2019-04-16 | Syntilla Medical, Llc | Surgical method for implantable head mounted neurostimulation system for head pain |
WO2015106286A1 (en) | 2014-01-13 | 2015-07-16 | California Institute Of Technology | Neuromodulation systems and methods of using same |
CN106470673B (zh) | 2014-02-25 | 2020-01-31 | 奥库利维公司 | 用于鼻泪刺激的聚合物制剂 |
CN106573138A (zh) * | 2014-02-27 | 2017-04-19 | 赛威医疗公司 | 用于神经刺激的用户控制的方法和装置 |
WO2015179281A2 (en) | 2014-05-17 | 2015-11-26 | Thync, Inc. | Methods and apparatuses for the application of ensemble waveforms using transdermal neurostimulation |
US9333334B2 (en) | 2014-05-25 | 2016-05-10 | Thync, Inc. | Methods for attaching and wearing a neurostimulator |
CN106413805A (zh) | 2014-06-02 | 2017-02-15 | 卡拉健康公司 | 用于外周神经刺激来治疗震颤的系统和方法 |
US10130809B2 (en) | 2014-06-13 | 2018-11-20 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US9782584B2 (en) | 2014-06-13 | 2017-10-10 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
WO2016015025A1 (en) | 2014-07-25 | 2016-01-28 | Oculeve, Inc. | Stimulation patterns for treating dry eye |
EP3180069B1 (en) | 2014-08-17 | 2020-05-13 | Nine Continents Medical, Inc. | Miniature implatable neurostimulator system for sciatic nerves and their branches |
US12053630B2 (en) | 2014-08-17 | 2024-08-06 | Coloplast A/S | Implantable pulse generator with automatic jump-start |
WO2016044659A1 (en) * | 2014-09-17 | 2016-03-24 | Neurosigma, Inc. | Template for trigeminal neurostimulation |
CA2965514A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Contact lens for increasing tear production |
AU2015335776B2 (en) | 2014-10-22 | 2020-09-03 | Oculeve, Inc. | Stimulation devices and methods for treating dry eye |
US10207108B2 (en) | 2014-10-22 | 2019-02-19 | Oculeve, Inc. | Implantable nasal stimulator systems and methods |
KR20170078640A (ko) | 2014-10-31 | 2017-07-07 | 아벤트, 인크. | 비침습적 신경 자극 시스템 |
CN107427663A (zh) | 2015-01-04 | 2017-12-01 | 赛威医疗公司 | 用于外耳的经皮刺激的方法和装置 |
DE102015004064A1 (de) * | 2015-03-28 | 2016-09-29 | Albrecht Molsberger | Therapeutisch anwendbare Gleichstromabgabevorrichtung mit einer Mehrzahl flächiger Gebilde |
EP3277369B1 (en) | 2015-03-30 | 2019-12-25 | CEFALY Technology Sprl | Device for the transcutaneous electrical stimulation of the trigeminal nerve |
CN107847732A (zh) | 2015-05-29 | 2018-03-27 | 赛威医疗公司 | 用于经皮电刺激的方法和装置 |
CN107847744A (zh) | 2015-06-01 | 2018-03-27 | 赛威医疗公司 | 用于神经调节的装置和方法 |
EP4342516A3 (en) | 2015-06-10 | 2024-07-10 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units |
US10603482B2 (en) | 2015-09-23 | 2020-03-31 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors |
US10426958B2 (en) | 2015-12-04 | 2019-10-01 | Oculeve, Inc. | Intranasal stimulation for enhanced release of ocular mucins and other tear proteins |
WO2017106411A1 (en) | 2015-12-15 | 2017-06-22 | Cerevast Medical, Inc. | Electrodes having surface exclusions |
WO2017106878A1 (en) | 2015-12-18 | 2017-06-22 | Thync Global, Inc. | Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state |
US9956405B2 (en) | 2015-12-18 | 2018-05-01 | Thyne Global, Inc. | Transdermal electrical stimulation at the neck to induce neuromodulation |
US9717917B2 (en) | 2016-01-06 | 2017-08-01 | Syntilla Medical LLC | Charging system incorporating independent charging and communication with multiple implanted devices |
IL286747B2 (en) | 2016-01-21 | 2024-05-01 | Cala Health Inc | Wearable device for treating urinary symptoms |
GB201601536D0 (en) | 2016-01-27 | 2016-03-09 | Neurolief Ltd | Resilient head mounted device for neurostimulation and sensing of body parameters |
US10252048B2 (en) | 2016-02-19 | 2019-04-09 | Oculeve, Inc. | Nasal stimulation for rhinitis, nasal congestion, and ocular allergies |
WO2017189132A1 (en) | 2016-04-25 | 2017-11-02 | SloMo Technologies, LLC | Reducing brain injury by limiting brain motion during sudden deceleration or acceleration of the head |
US12041997B2 (en) | 2016-04-25 | 2024-07-23 | Preactive Technologies Inc. | Reducing brain injury by limiting brain motion during sudden deceleration or acceleration of the head |
AU2017260237A1 (en) | 2016-05-02 | 2018-11-22 | Oculeve, Inc. | Intranasal stimulation for treatment of meibomian gland disease and blepharitis |
US10646708B2 (en) | 2016-05-20 | 2020-05-12 | Thync Global, Inc. | Transdermal electrical stimulation at the neck |
JP7077297B2 (ja) | 2016-07-08 | 2022-05-30 | カラ ヘルス,インコーポレイテッド | 厳密にn個の電極および改善された乾式電極を用いてn個の神経を刺激するためのシステムおよび方法 |
IL264904B1 (en) | 2016-08-25 | 2025-01-01 | Cala Health Inc | Systems and methods for treating cardiac dysfunction by peripheral nerve stimulation |
EP3533486B1 (en) * | 2016-10-31 | 2020-12-09 | Y-Brain Inc | Electrical stimulation apparatus |
RU2019118600A (ru) | 2016-12-02 | 2021-01-11 | Окулив, Инк. | Аппарат и способ составления прогноза синдрома сухого глаза и рекомендаций по лечению |
WO2021067751A1 (en) | 2019-10-03 | 2021-04-08 | Noctrix Health, Inc. | Peripheral nerve stimulation for restless legs syndrome |
JP7159169B2 (ja) | 2017-01-05 | 2022-10-24 | ノクトリックス ヘルス インコーポレイテッド | レストレスレッグス症候群または過活動神経治療 |
US11331480B2 (en) | 2017-04-03 | 2022-05-17 | Cala Health, Inc. | Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder |
DE202018001803U1 (de) * | 2017-05-19 | 2018-06-27 | Cefaly Technology Sprl | Externe Trigeminusnervenstimulation für die Akutbehandlung von Migräneattacken |
EP3974021B1 (en) | 2017-06-30 | 2023-06-14 | ONWARD Medical N.V. | A system for neuromodulation |
WO2019110400A1 (en) | 2017-12-05 | 2019-06-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | A system for planning and/or providing neuromodulation |
EP3740274A4 (en) | 2018-01-17 | 2021-10-27 | Cala Health, Inc. | SYSTEMS AND METHODS FOR TREATING INFLAMMATORY INTESTINAL DISEASE USING PERIPHERAL NERVE STIMULATION |
US11660443B2 (en) | 2018-04-20 | 2023-05-30 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via electrical trigeminal nerve stimulation |
WO2019209969A1 (en) | 2018-04-24 | 2019-10-31 | Thync Global, Inc. | Streamlined and pre-set neuromodulators |
US11467665B2 (en) | 2018-06-14 | 2022-10-11 | Meron Gribetz | Virtual user interface system and methods for use thereof |
US11260229B2 (en) | 2018-09-25 | 2022-03-01 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
EP3643357A1 (en) * | 2018-10-25 | 2020-04-29 | PreActive Technologies Inc. | Reducing brain injury by limiting brain motion during sudden deceleration or acceleration of the head |
EP3653260A1 (en) | 2018-11-13 | 2020-05-20 | GTX medical B.V. | Sensor in clothing of limbs or footwear |
EP3653256B1 (en) | 2018-11-13 | 2022-03-30 | ONWARD Medical N.V. | Control system for movement reconstruction and/or restoration for a patient |
EP3695878B1 (en) | 2019-02-12 | 2023-04-19 | ONWARD Medical N.V. | A system for neuromodulation |
WO2020185666A1 (en) * | 2019-03-13 | 2020-09-17 | Nuxcel, Inc. | Implantable neurostimulator to treat chronic migraine headaches |
US11065461B2 (en) | 2019-07-08 | 2021-07-20 | Bioness Inc. | Implantable power adapter |
US11911620B2 (en) * | 2019-07-22 | 2024-02-27 | Ismail Mohammed Yousif Musallam | Neuromodulation for treatment of brain and eye strokes and/or acute dysregulated reduced cerebral or ocular blood flow |
US12251560B1 (en) | 2019-08-13 | 2025-03-18 | Cala Health, Inc. | Connection quality determination for wearable neurostimulation systems |
EP4027912B1 (en) | 2019-09-12 | 2024-12-18 | Relievant Medsystems, Inc. | Systems for tissue modulation |
JP7369435B2 (ja) * | 2019-09-24 | 2023-10-26 | 学校法人関西医科大学 | 神経機能向上装置 |
US11890468B1 (en) | 2019-10-03 | 2024-02-06 | Cala Health, Inc. | Neurostimulation systems with event pattern detection and classification |
CA3153343A1 (en) | 2019-10-03 | 2021-04-08 | Jonathan David CHARLESWORTH | Peripheral nerve stimulation for restless legs syndrome |
DE19211698T1 (de) | 2019-11-27 | 2021-09-02 | Onward Medical B.V. | Neuromodulation system |
JP6845445B2 (ja) * | 2019-12-27 | 2021-03-17 | 国立大学法人千葉大学 | 網膜に電気刺激を与えるための装置および方法 |
US12082876B1 (en) | 2020-09-28 | 2024-09-10 | Relievant Medsystems, Inc. | Introducer drill |
EP4268150A4 (en) | 2020-12-22 | 2024-12-18 | Relievant Medsystems, Inc. | PREDICTION OF CANDIDATES FOR SPINAL CORD NEUROMODULATION |
WO2024002448A1 (en) | 2022-06-29 | 2024-01-04 | Alpha Holding Brande Aps | Elevated pressure hybrid wood modification |
WO2024155471A1 (en) * | 2023-01-17 | 2024-07-25 | Carnegie Mellon University | System and method for training a subject to self-regulate neural variability |
CN116077789A (zh) * | 2023-04-07 | 2023-05-09 | 深圳尤尼智康医疗科技有限公司 | 一种兼有吸氢或氧及鼻脑途径给药的脑疾病综合干预系统 |
Citations (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279468A (en) * | 1963-05-14 | 1966-10-18 | Vine Sidney Le | Electrotherapeutic facial mask apparatus |
US4233986A (en) * | 1978-07-18 | 1980-11-18 | Agar Ginosar Electronics And Metal Products | Apparatus and method for controlling pain by transcutaneous electrical stimulation (TES) |
US5514175A (en) * | 1994-11-09 | 1996-05-07 | Cerebral Stimulation, Inc. | Auricular electrical stimulator |
US5540734A (en) * | 1994-09-28 | 1996-07-30 | Zabara; Jacob | Cranial nerve stimulation treatments using neurocybernetic prosthesis |
US6405079B1 (en) * | 2000-09-22 | 2002-06-11 | Mehdi M. Ansarinia | Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions |
US20020077670A1 (en) * | 2000-04-05 | 2002-06-20 | Archer Stephen T. | Stimulation signal generator for an implantable device |
US6567702B1 (en) * | 1999-10-15 | 2003-05-20 | The Board Of Trustees Of The Leland Stanford Junior University | Eliciting analgesia by transcranial electrical stimulation |
US6735475B1 (en) * | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
US20040127965A1 (en) * | 1999-07-21 | 2004-07-01 | Borkan William N. | Method of forming a ball grid array package |
US20040138097A1 (en) * | 2002-11-01 | 2004-07-15 | Bahman Guyuron | Method and treatment for treating and preventing pain associated with compression of a nerve |
US20040176820A1 (en) * | 2002-06-13 | 2004-09-09 | Paul Edward L. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US20040243207A1 (en) * | 2003-05-30 | 2004-12-02 | Olson Donald R. | Medical implant systems |
US6950707B2 (en) * | 2000-11-21 | 2005-09-27 | Advanced Bionics Corporation | Systems and methods for treatment of obesity and eating disorders by electrical brain stimulation and/or drug infusion |
US20050222657A1 (en) * | 2004-03-30 | 2005-10-06 | Wahlstrand Carl D | MRI-safe implantable lead |
US6954668B1 (en) * | 2001-10-11 | 2005-10-11 | Cuozzo John W | Apparatus and method for intra-oral stimulation of the trigeminal nerve |
US20050283198A1 (en) * | 2004-06-18 | 2005-12-22 | Haubrich Gregory J | Conditional requirements for remote medical device programming |
US20060064140A1 (en) * | 2001-01-30 | 2006-03-23 | Whitehurst Todd K | Methods and systems for stimulating a trigeminal nerve to treat a psychiatric disorder |
US20060167500A1 (en) * | 2002-08-19 | 2006-07-27 | Bruce Towe | Neurostimulator |
US20060173510A1 (en) * | 2003-10-16 | 2006-08-03 | Besio Walter G | Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto |
US20060200208A1 (en) * | 2005-03-04 | 2006-09-07 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US20060206165A1 (en) * | 2005-03-14 | 2006-09-14 | Jaax Kristen N | Occipital nerve stimulation to treat headaches and other conditions |
US20060293723A1 (en) * | 2003-12-19 | 2006-12-28 | Whitehurst Todd K | Skull-mounted electrical stimulation system and method for treating patients |
US7171276B2 (en) * | 2001-06-29 | 2007-01-30 | Abbott Laboratories | Hydrogel and scrim assembly for use with electro-acupuncture device with stimulation electrodes |
US20070049988A1 (en) * | 2005-03-14 | 2007-03-01 | Rafael Carbunaru | Optimal electrode contact polarity configurations for implantable stimulation systems |
US20070060975A1 (en) * | 1999-07-08 | 2007-03-15 | Mannheimer Jeffrey S | Combination electrode-battery and programming assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit |
US20070150027A1 (en) * | 2005-12-22 | 2007-06-28 | Rogers Lesco L | Non-invasive device and method for electrical stimulation of neural tissue |
US20070150025A1 (en) * | 2005-12-28 | 2007-06-28 | Dilorenzo Daniel J | Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US20070173908A1 (en) * | 2006-01-20 | 2007-07-26 | Cyberonics, Inc. | Transcutaneous trigeminal nerve stimulation to treat motion sickness |
US20070179557A1 (en) * | 2006-01-27 | 2007-08-02 | Maschino Steven E | Controlling neuromodulation using stimulus modalities |
US20070233194A1 (en) * | 2006-03-29 | 2007-10-04 | Catholic Healthcare West (D/B/A St. Joseph's Hospital And Medical Center) | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US20070276451A1 (en) * | 2004-12-14 | 2007-11-29 | Stx-Med Sprl | Apparatus For Electro-Inhibition Of Facial Muscles |
US20080046013A1 (en) * | 2006-08-15 | 2008-02-21 | Lozano Andres M | Method for treating eating disorders |
US20080103547A1 (en) * | 2004-09-21 | 2008-05-01 | University Of Florida Research Foundation, Inc. | Multiple lead method for deep brain stimulation |
US20080128215A1 (en) * | 2006-05-24 | 2008-06-05 | Gershon Nowitz | Portable Scissor Lift |
US20080132980A1 (en) * | 2006-11-30 | 2008-06-05 | Medtronic, Inc. | Attached implantable medical elongated members |
US20080140151A1 (en) * | 2006-12-11 | 2008-06-12 | Brodkey Jason A | Nerve stimulation apparatus and method for the treatment of head pain |
US20080147141A1 (en) * | 2006-12-15 | 2008-06-19 | Testerman Roy L | Method and apparatus for assisting deglutition |
US20080161713A1 (en) * | 2006-12-27 | 2008-07-03 | Kent Leyde | Low Power Device With Variable Scheduling |
US20080172101A1 (en) * | 2000-09-27 | 2008-07-17 | Cvrx, Inc. | Non-linear electrode array |
US20080262566A1 (en) * | 2007-04-23 | 2008-10-23 | Boston Scientific Neuromodulation Corporation | Methods and systems of treating medication overuse headache |
US20080269716A1 (en) * | 2007-04-25 | 2008-10-30 | Medtronic, Inc. | Medical device implantation |
US20080275327A1 (en) * | 2005-03-09 | 2008-11-06 | Susanne Holm Faarbaek | Three-Dimensional Adhesive Device Having a Microelectronic System Embedded Therein |
US20090048642A1 (en) * | 2006-02-21 | 2009-02-19 | Teodor Goroszeniuk | Neurostimulation |
US7502652B2 (en) * | 2004-01-22 | 2009-03-10 | Rehabtronics, Inc. | Method of routing electrical current to bodily tissues via implanted passive conductors |
US20090210028A1 (en) * | 2008-02-20 | 2009-08-20 | Stx-Med Sprl | Device for the electrotherapeutic treatment of tension headaches |
US20090287035A1 (en) * | 2008-05-13 | 2009-11-19 | Cerbomed Gmbh | Method to enhance neural tissue operation |
US20100030227A1 (en) * | 2008-07-31 | 2010-02-04 | Medtronic, Inc. | Medical lead implantation |
US7734340B2 (en) * | 2004-10-21 | 2010-06-08 | Advanced Neuromodulation Systems, Inc. | Stimulation design for neuromodulation |
US20100198282A1 (en) * | 2007-01-11 | 2010-08-05 | Rogers Lesco L | Devices for vestibular or cranial nerve stimulation |
US20100198044A1 (en) * | 2007-07-06 | 2010-08-05 | Koninklijke Philips Electronics N.V. | Shielded biomedical electrode patch |
US20100222847A1 (en) * | 2007-10-24 | 2010-09-02 | Medtronic, Inc. | Transmission of power source usage information over a network |
US20100228113A1 (en) * | 2006-01-23 | 2010-09-09 | Koninklijke Philips Electronics N.V. | Improved biomedical electrode for extended patient wear featuring a tap, or snap, which is isolated from the retentional seal |
US20100228105A1 (en) * | 2005-03-24 | 2010-09-09 | Metacure N.V. | Wireless Leads For Gastrointestinal Tract Applications |
US20110093033A1 (en) * | 2009-10-16 | 2011-04-21 | Stanford University | Eliciting analgesia by transcranial electrical stimulation |
US20110112603A1 (en) * | 2009-10-05 | 2011-05-12 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US20110184489A1 (en) * | 2007-09-26 | 2011-07-28 | Duke University | Method of treating parkinson's disease and other movement disorders |
US20110282129A1 (en) * | 2010-05-12 | 2011-11-17 | Stx-Med Sprl | Neurostimulation Method to Induce Relaxation or Sleep |
US20110282412A1 (en) * | 2008-06-27 | 2011-11-17 | Bioness Inc. | Treatment of indications using electrical stimulation |
US20110288610A1 (en) * | 2008-11-21 | 2011-11-24 | Burkhard Brocke | Mobile device for transcranial auto-stimulation and method for controlling and regulating the device |
US20120203301A1 (en) * | 2011-02-07 | 2012-08-09 | Advanced Neuromodulation Systems, Inc. | Methods using trigeminal nerve stimulation to treat neurological diseases |
US8315704B2 (en) * | 2005-03-14 | 2012-11-20 | Boston Scientific Neuromodulation Corporation | Stimulation of a stimulation site within the neck or head |
US20120330380A1 (en) * | 2006-08-18 | 2012-12-27 | Medtronic, Inc. | Secure telemetric link |
US8494641B2 (en) * | 2009-04-22 | 2013-07-23 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US8512715B2 (en) * | 2008-08-14 | 2013-08-20 | The Cleveland Clinic Foundation | Apparatus and method for treating a neuromuscular defect |
US8565896B2 (en) * | 2010-11-22 | 2013-10-22 | Bio Control Medical (B.C.M.) Ltd. | Electrode cuff with recesses |
US8591419B2 (en) * | 2008-07-14 | 2013-11-26 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Methods and devices for modulating cellular activity using ultrasound |
US20140046407A1 (en) * | 2001-08-31 | 2014-02-13 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
US8666498B2 (en) * | 2008-10-27 | 2014-03-04 | Serene Medical, Inc. | Treatment of headache |
US20140081353A1 (en) * | 2010-11-30 | 2014-03-20 | Neurosigma, Inc. | Pulse generator for cranial nerve stimulation |
US20140081369A1 (en) * | 2011-05-11 | 2014-03-20 | Alejandro Covalin | Headache-treatment device with gel dispensing kit and method |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709228A (en) * | 1971-01-07 | 1973-01-09 | D Barker | Apparatus for facial stimulation |
US4305402A (en) | 1979-06-29 | 1981-12-15 | Katims Jefferson J | Method for transcutaneous electrical stimulation |
US4635641A (en) | 1985-10-16 | 1987-01-13 | Murray Electronics Associates Limited | Multi-element electrode |
JPH0310963Y2 (ja) * | 1986-04-17 | 1991-03-18 | ||
SU1718976A1 (ru) | 1989-10-31 | 1992-03-15 | 1-Й Московский Медицинский Институт Им.И.М.Сеченова | Способ купировани болей при невралгии тройничного нерва |
RU2086227C1 (ru) | 1994-04-05 | 1997-08-10 | Российский научно-исследовательский нейрохирургический институт им.проф.А.Л.Поленова | Способ лечения поражений нервно-сосудистых структур орбиты |
JPH07289649A (ja) * | 1994-04-22 | 1995-11-07 | Hayashibara Takeshi | 眼神経の刺激信号発生装置 |
US5549734A (en) | 1995-03-08 | 1996-08-27 | Astec Industries, Inc. | Baghouse cleaning method |
JPH08299141A (ja) | 1995-05-08 | 1996-11-19 | Mori Mihoko | 枕カバー |
US5814095A (en) | 1996-09-18 | 1998-09-29 | Implex Gmbh Spezialhorgerate | Implantable microphone and implantable hearing aids utilizing same |
US6016449A (en) * | 1997-10-27 | 2000-01-18 | Neuropace, Inc. | System for treatment of neurological disorders |
US6549808B1 (en) * | 2000-10-19 | 2003-04-15 | Heinz R. Gisel | Devices and methods for the transcutaneous delivery of ions and the electrical stimulation of tissue and cells at targeted areas in the eye |
RU2185092C1 (ru) | 2000-12-21 | 2002-07-20 | Ремнев Андрей Геннадьевич | Способ диагностики поражения первой и второй ветвей тройничного нерва |
US6788975B1 (en) * | 2001-01-30 | 2004-09-07 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy |
US20030045922A1 (en) * | 2001-08-29 | 2003-03-06 | Nancy Northrop | Skin treatment method and apparatus |
US7689277B2 (en) | 2002-03-22 | 2010-03-30 | Leptos Biomedical, Inc. | Neural stimulation for treatment of metabolic syndrome and type 2 diabetes |
US20030195588A1 (en) | 2002-04-16 | 2003-10-16 | Neuropace, Inc. | External ear canal interface for the treatment of neurological disorders |
US7003352B1 (en) | 2002-05-24 | 2006-02-21 | Advanced Bionics Corporation | Treatment of epilepsy by brain stimulation |
JP2003339884A (ja) | 2002-05-31 | 2003-12-02 | Fes:Kk | 顔面電気刺激装置 |
US7187977B2 (en) * | 2002-06-13 | 2007-03-06 | Atlantic Medical, Inc. | Transcutaneous electrical nerve stimulation device and method using microcurrent |
US7209791B2 (en) * | 2003-08-16 | 2007-04-24 | Joseph Odom | Electromagnetic delivery system to influence a biological system |
CA2573763A1 (en) | 2004-07-15 | 2006-02-23 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
US20060050912A1 (en) | 2004-09-09 | 2006-03-09 | Earcraft, Inc. | Shell and tip for hearing aid |
US7685817B2 (en) | 2004-10-18 | 2010-03-30 | Ceti, Inc. | Method and system for providing a rotational output using a non-combustion heat source |
WO2006044793A2 (en) | 2004-10-18 | 2006-04-27 | Louisiana Tech University Foundation | Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto |
FR2877583B1 (fr) * | 2004-11-10 | 2007-05-11 | Patrick Cosson | Dispositif d'electrotherapie |
US8825166B2 (en) | 2005-01-21 | 2014-09-02 | John Sasha John | Multiple-symptom medical treatment with roving-based neurostimulation |
DE102005003735B4 (de) | 2005-01-26 | 2008-04-03 | Cerbomed Gmbh | Vorrichtung zur transkutanen Stimulation eines Nervs des menschlichen Körpers |
US20070025608A1 (en) | 2005-07-29 | 2007-02-01 | Cyberonics, Inc. | Enhancing intrinsic neural activity using a medical device to treat a patient |
US7499752B2 (en) | 2005-07-29 | 2009-03-03 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of eating disorders |
JP2007054299A (ja) | 2005-08-24 | 2007-03-08 | Sharp Corp | 電気治療装置、およびそれを構成するためのシステム |
JP2007061267A (ja) | 2005-08-30 | 2007-03-15 | Nova Medico:Kk | 鼻炎又は結膜炎治療器具 |
CA2652565A1 (en) | 2006-05-18 | 2007-11-29 | Ndi Medical, Llc | Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation |
KR101247409B1 (ko) * | 2006-12-15 | 2013-03-25 | 나소플렉스 비. 브이. | 소생 장치 및 소생을 위한 방법 |
US20080171929A1 (en) | 2007-01-11 | 2008-07-17 | Katims Jefferson J | Method for standardizing spacing between electrodes, and medical tape electrodes |
AU2008214349B2 (en) | 2007-02-05 | 2012-06-07 | University Of Southern California | Treatment of consumption disorders with biostimulation |
US7949403B2 (en) | 2007-02-27 | 2011-05-24 | Accelerated Care Plus Corp. | Electrical stimulation device and method for the treatment of neurological disorders |
JP4961558B2 (ja) | 2007-03-30 | 2012-06-27 | 国立大学法人信州大学 | 三叉神経固有知覚枝刺激装置 |
EP2136872A4 (en) * | 2007-04-13 | 2010-05-12 | Alejandro Covalin | DEVICE AND METHOD FOR THE TREATMENT OF HEADACHE |
US8849407B1 (en) * | 2008-01-04 | 2014-09-30 | Yuri P. Danilov | Non-invasive neuromodulation (NINM) for rehabilitation of brain function |
US8280515B2 (en) * | 2008-09-16 | 2012-10-02 | Joshua Greenspan | Occipital neuromodulation |
RU2511082C2 (ru) * | 2008-10-21 | 2014-04-10 | Медел Электромедицинише Герэте Гмбх | Система и способ стимуляции лицевого нерва |
US20110071595A1 (en) * | 2009-09-22 | 2011-03-24 | Muccio Philip | System for using electrical muscle stimulation to increase blood flow in body parts |
EA201291153A1 (ru) | 2010-05-02 | 2013-09-30 | ЛЭЙК БАЙОСАЙЕНСИЗ, ЭлЭлСи | Модуляция функций системы лицевого нерва или связанных нервных структур через ухо |
JP6130789B2 (ja) | 2010-12-14 | 2017-05-17 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 医学的障害の治療のためのデバイス |
JP6559395B2 (ja) | 2010-12-14 | 2019-08-14 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 医学的障害の治療のための、頭蓋外に埋め込み可能なシステム |
BE1020458A3 (fr) | 2012-01-13 | 2013-10-01 | Stx Med Sprl | Appareil electronique autonome et dipositif de fixation de celui-ci sur une electrode localisee au niveau de la tete pour une utilisation en position couchee du patient. |
WO2013152316A1 (en) | 2012-04-05 | 2013-10-10 | The Regents Of The University Of California | Subcutaneous electrodes for cranial nerve stimulation |
US20140039572A1 (en) | 2012-08-03 | 2014-02-06 | Boston Scientific Neuromodulation Corporation | System and method for treating depression and epilepsy |
CN103830841B (zh) | 2012-11-26 | 2018-04-06 | 赛威医疗公司 | 可穿戴的经皮肤的电刺激设备及其使用方法 |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
-
2010
- 2010-10-05 BR BR112012008028A patent/BR112012008028A2/pt not_active Application Discontinuation
- 2010-10-05 CA CA2776693A patent/CA2776693C/en active Active
- 2010-10-05 KR KR1020127011819A patent/KR20120101649A/ko active Application Filing
- 2010-10-05 WO PCT/US2010/051545 patent/WO2011044179A1/en active Application Filing
- 2010-10-05 KR KR1020177032427A patent/KR20170127057A/ko not_active Ceased
- 2010-10-05 US US12/898,696 patent/US20110106220A1/en not_active Abandoned
- 2010-10-05 BR BR112012008038A patent/BR112012008038A2/pt not_active Application Discontinuation
- 2010-10-05 JP JP2012533256A patent/JP2013506533A/ja active Pending
- 2010-10-05 US US12/898,685 patent/US8958880B2/en active Active
- 2010-10-05 US US12/898,675 patent/US8688220B2/en active Active
- 2010-10-05 CA CA2776696A patent/CA2776696C/en active Active
- 2010-10-05 JP JP2012533255A patent/JP6035147B2/ja active Active
- 2010-10-05 EP EP10822565.7A patent/EP2485799A4/en not_active Withdrawn
- 2010-10-05 WO PCT/US2010/051544 patent/WO2011044178A1/en active Application Filing
- 2010-10-05 BR BR112012008033A patent/BR112012008033A2/pt not_active Application Discontinuation
- 2010-10-05 EP EP10822560.8A patent/EP2485797A4/en not_active Withdrawn
- 2010-10-05 KR KR1020127011817A patent/KR101749607B1/ko active Active
- 2010-10-05 AU AU2010303583A patent/AU2010303583B2/en not_active Ceased
- 2010-10-05 KR KR1020127011818A patent/KR20120101648A/ko active Application Filing
- 2010-10-05 MX MX2012004053A patent/MX2012004053A/es active IP Right Grant
- 2010-10-05 AU AU2010303589A patent/AU2010303589B2/en not_active Ceased
- 2010-10-05 EP EP10822563.2A patent/EP2485798A4/en not_active Withdrawn
- 2010-10-05 WO PCT/US2010/051539 patent/WO2011044173A1/en active Application Filing
- 2010-10-05 KR KR1020177032426A patent/KR20170127056A/ko not_active Ceased
- 2010-10-05 MX MX2012004050A patent/MX337120B/es active IP Right Grant
- 2010-10-05 KR KR1020127011816A patent/KR101749605B1/ko active Active
- 2010-10-05 MX MX2012004051A patent/MX2012004051A/es active IP Right Grant
- 2010-10-05 MX MX2012004052A patent/MX2012004052A/es active IP Right Grant
- 2010-10-05 US US12/898,686 patent/US8380315B2/en active Active - Reinstated
- 2010-10-05 CA CA2776694A patent/CA2776694C/en active Active
- 2010-10-05 CA CA2776697A patent/CA2776697A1/en not_active Abandoned
- 2010-10-05 JP JP2012533257A patent/JP5858920B2/ja not_active Expired - Fee Related
- 2010-10-05 AU AU2010303588A patent/AU2010303588B2/en active Active
- 2010-10-05 AU AU2010303586A patent/AU2010303586B2/en not_active Ceased
- 2010-10-05 JP JP2012533258A patent/JP2013506535A/ja active Pending
- 2010-10-05 EP EP10822566.5A patent/EP2485800B1/en not_active Not-in-force
- 2010-10-05 BR BR112012008029A patent/BR112012008029A2/pt not_active Application Discontinuation
- 2010-10-05 WO PCT/US2010/051542 patent/WO2011044176A1/en active Application Filing
-
2013
- 2013-02-15 US US13/769,074 patent/US8700164B2/en active Active
-
2014
- 2014-03-04 US US14/196,990 patent/US20140188200A1/en not_active Abandoned
- 2014-04-14 US US14/252,658 patent/US9238139B2/en active Active
-
2015
- 2015-02-11 US US14/619,898 patent/US9511223B2/en active Active
- 2015-05-26 US US14/721,300 patent/US9504827B2/en active Active
- 2015-07-29 JP JP2015150133A patent/JP6118373B2/ja active Active
-
2016
- 2016-01-19 US US15/001,096 patent/US9682236B2/en active Active
- 2016-05-02 US US15/144,499 patent/US20160317814A1/en not_active Abandoned
- 2016-09-20 JP JP2016182754A patent/JP2017000835A/ja active Pending
- 2016-10-17 US US15/295,160 patent/US10058704B2/en active Active
- 2016-11-10 US US15/348,097 patent/US10195435B2/en active Active
-
2017
- 2017-05-25 US US15/605,288 patent/US10322283B2/en active Active
-
2018
- 2018-12-05 JP JP2018228425A patent/JP7133453B2/ja active Active
-
2019
- 2019-03-04 US US16/291,763 patent/US20190269922A1/en not_active Abandoned
-
2022
- 2022-06-10 JP JP2022094165A patent/JP7541547B2/ja active Active
- 2022-06-30 US US17/854,952 patent/US20220331581A1/en not_active Abandoned
- 2022-09-28 US US17/936,334 patent/US20230093826A1/en active Pending
Patent Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279468A (en) * | 1963-05-14 | 1966-10-18 | Vine Sidney Le | Electrotherapeutic facial mask apparatus |
US4233986A (en) * | 1978-07-18 | 1980-11-18 | Agar Ginosar Electronics And Metal Products | Apparatus and method for controlling pain by transcutaneous electrical stimulation (TES) |
US5540734A (en) * | 1994-09-28 | 1996-07-30 | Zabara; Jacob | Cranial nerve stimulation treatments using neurocybernetic prosthesis |
US5514175A (en) * | 1994-11-09 | 1996-05-07 | Cerebral Stimulation, Inc. | Auricular electrical stimulator |
US20070060975A1 (en) * | 1999-07-08 | 2007-03-15 | Mannheimer Jeffrey S | Combination electrode-battery and programming assembly for a miniature wireless transcutaneous electrical neuro or muscular-stimulation unit |
US20040127965A1 (en) * | 1999-07-21 | 2004-07-01 | Borkan William N. | Method of forming a ball grid array package |
US6567702B1 (en) * | 1999-10-15 | 2003-05-20 | The Board Of Trustees Of The Leland Stanford Junior University | Eliciting analgesia by transcranial electrical stimulation |
US20020077670A1 (en) * | 2000-04-05 | 2002-06-20 | Archer Stephen T. | Stimulation signal generator for an implantable device |
US6405079B1 (en) * | 2000-09-22 | 2002-06-11 | Mehdi M. Ansarinia | Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions |
US20080172101A1 (en) * | 2000-09-27 | 2008-07-17 | Cvrx, Inc. | Non-linear electrode array |
US6950707B2 (en) * | 2000-11-21 | 2005-09-27 | Advanced Bionics Corporation | Systems and methods for treatment of obesity and eating disorders by electrical brain stimulation and/or drug infusion |
US6735475B1 (en) * | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
US20060064140A1 (en) * | 2001-01-30 | 2006-03-23 | Whitehurst Todd K | Methods and systems for stimulating a trigeminal nerve to treat a psychiatric disorder |
US7171276B2 (en) * | 2001-06-29 | 2007-01-30 | Abbott Laboratories | Hydrogel and scrim assembly for use with electro-acupuncture device with stimulation electrodes |
US20140046407A1 (en) * | 2001-08-31 | 2014-02-13 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
US6954668B1 (en) * | 2001-10-11 | 2005-10-11 | Cuozzo John W | Apparatus and method for intra-oral stimulation of the trigeminal nerve |
US20040176820A1 (en) * | 2002-06-13 | 2004-09-09 | Paul Edward L. | Method and apparatus for performing microcurrent stimulation (MSC) therapy |
US20060167500A1 (en) * | 2002-08-19 | 2006-07-27 | Bruce Towe | Neurostimulator |
US20040138097A1 (en) * | 2002-11-01 | 2004-07-15 | Bahman Guyuron | Method and treatment for treating and preventing pain associated with compression of a nerve |
US20040243207A1 (en) * | 2003-05-30 | 2004-12-02 | Olson Donald R. | Medical implant systems |
US20060173510A1 (en) * | 2003-10-16 | 2006-08-03 | Besio Walter G | Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto |
US20060293723A1 (en) * | 2003-12-19 | 2006-12-28 | Whitehurst Todd K | Skull-mounted electrical stimulation system and method for treating patients |
US7502652B2 (en) * | 2004-01-22 | 2009-03-10 | Rehabtronics, Inc. | Method of routing electrical current to bodily tissues via implanted passive conductors |
US20050222657A1 (en) * | 2004-03-30 | 2005-10-06 | Wahlstrand Carl D | MRI-safe implantable lead |
US20050283198A1 (en) * | 2004-06-18 | 2005-12-22 | Haubrich Gregory J | Conditional requirements for remote medical device programming |
US20080103547A1 (en) * | 2004-09-21 | 2008-05-01 | University Of Florida Research Foundation, Inc. | Multiple lead method for deep brain stimulation |
US20100262205A1 (en) * | 2004-10-21 | 2010-10-14 | Advanced Neuromodulation Systems, Inc. | Stimulation design for neuromodulation |
US7734340B2 (en) * | 2004-10-21 | 2010-06-08 | Advanced Neuromodulation Systems, Inc. | Stimulation design for neuromodulation |
US20070276451A1 (en) * | 2004-12-14 | 2007-11-29 | Stx-Med Sprl | Apparatus For Electro-Inhibition Of Facial Muscles |
US20060200208A1 (en) * | 2005-03-04 | 2006-09-07 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US20080275327A1 (en) * | 2005-03-09 | 2008-11-06 | Susanne Holm Faarbaek | Three-Dimensional Adhesive Device Having a Microelectronic System Embedded Therein |
US20070049988A1 (en) * | 2005-03-14 | 2007-03-01 | Rafael Carbunaru | Optimal electrode contact polarity configurations for implantable stimulation systems |
US8315704B2 (en) * | 2005-03-14 | 2012-11-20 | Boston Scientific Neuromodulation Corporation | Stimulation of a stimulation site within the neck or head |
US20060206165A1 (en) * | 2005-03-14 | 2006-09-14 | Jaax Kristen N | Occipital nerve stimulation to treat headaches and other conditions |
US20100228105A1 (en) * | 2005-03-24 | 2010-09-09 | Metacure N.V. | Wireless Leads For Gastrointestinal Tract Applications |
US20070150027A1 (en) * | 2005-12-22 | 2007-06-28 | Rogers Lesco L | Non-invasive device and method for electrical stimulation of neural tissue |
US20070150025A1 (en) * | 2005-12-28 | 2007-06-28 | Dilorenzo Daniel J | Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US20070173908A1 (en) * | 2006-01-20 | 2007-07-26 | Cyberonics, Inc. | Transcutaneous trigeminal nerve stimulation to treat motion sickness |
US20100228113A1 (en) * | 2006-01-23 | 2010-09-09 | Koninklijke Philips Electronics N.V. | Improved biomedical electrode for extended patient wear featuring a tap, or snap, which is isolated from the retentional seal |
US7801601B2 (en) * | 2006-01-27 | 2010-09-21 | Cyberonics, Inc. | Controlling neuromodulation using stimulus modalities |
US20070179557A1 (en) * | 2006-01-27 | 2007-08-02 | Maschino Steven E | Controlling neuromodulation using stimulus modalities |
US20090048642A1 (en) * | 2006-02-21 | 2009-02-19 | Teodor Goroszeniuk | Neurostimulation |
US20070233194A1 (en) * | 2006-03-29 | 2007-10-04 | Catholic Healthcare West (D/B/A St. Joseph's Hospital And Medical Center) | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US20080128215A1 (en) * | 2006-05-24 | 2008-06-05 | Gershon Nowitz | Portable Scissor Lift |
US20080046013A1 (en) * | 2006-08-15 | 2008-02-21 | Lozano Andres M | Method for treating eating disorders |
US20120330380A1 (en) * | 2006-08-18 | 2012-12-27 | Medtronic, Inc. | Secure telemetric link |
US20080132980A1 (en) * | 2006-11-30 | 2008-06-05 | Medtronic, Inc. | Attached implantable medical elongated members |
US20080140151A1 (en) * | 2006-12-11 | 2008-06-12 | Brodkey Jason A | Nerve stimulation apparatus and method for the treatment of head pain |
US20080147141A1 (en) * | 2006-12-15 | 2008-06-19 | Testerman Roy L | Method and apparatus for assisting deglutition |
US20080161713A1 (en) * | 2006-12-27 | 2008-07-03 | Kent Leyde | Low Power Device With Variable Scheduling |
US20100198282A1 (en) * | 2007-01-11 | 2010-08-05 | Rogers Lesco L | Devices for vestibular or cranial nerve stimulation |
US20080262566A1 (en) * | 2007-04-23 | 2008-10-23 | Boston Scientific Neuromodulation Corporation | Methods and systems of treating medication overuse headache |
US20080269716A1 (en) * | 2007-04-25 | 2008-10-30 | Medtronic, Inc. | Medical device implantation |
US20100198044A1 (en) * | 2007-07-06 | 2010-08-05 | Koninklijke Philips Electronics N.V. | Shielded biomedical electrode patch |
US20110184489A1 (en) * | 2007-09-26 | 2011-07-28 | Duke University | Method of treating parkinson's disease and other movement disorders |
US20100222847A1 (en) * | 2007-10-24 | 2010-09-02 | Medtronic, Inc. | Transmission of power source usage information over a network |
US20090210028A1 (en) * | 2008-02-20 | 2009-08-20 | Stx-Med Sprl | Device for the electrotherapeutic treatment of tension headaches |
US8428734B2 (en) * | 2008-02-20 | 2013-04-23 | Stx-Med Sprl | Device for the electrotherapeutic treatment of tension headaches |
US20090287035A1 (en) * | 2008-05-13 | 2009-11-19 | Cerbomed Gmbh | Method to enhance neural tissue operation |
US20110282412A1 (en) * | 2008-06-27 | 2011-11-17 | Bioness Inc. | Treatment of indications using electrical stimulation |
US8591419B2 (en) * | 2008-07-14 | 2013-11-26 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Methods and devices for modulating cellular activity using ultrasound |
US20100030227A1 (en) * | 2008-07-31 | 2010-02-04 | Medtronic, Inc. | Medical lead implantation |
US8512715B2 (en) * | 2008-08-14 | 2013-08-20 | The Cleveland Clinic Foundation | Apparatus and method for treating a neuromuscular defect |
US8666498B2 (en) * | 2008-10-27 | 2014-03-04 | Serene Medical, Inc. | Treatment of headache |
US8554324B2 (en) * | 2008-11-21 | 2013-10-08 | Burkhard Brocke | Mobile device for transcranial auto-stimulation and method for controlling and regulating the device |
US20110288610A1 (en) * | 2008-11-21 | 2011-11-24 | Burkhard Brocke | Mobile device for transcranial auto-stimulation and method for controlling and regulating the device |
US8494641B2 (en) * | 2009-04-22 | 2013-07-23 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US20110218589A1 (en) * | 2009-10-05 | 2011-09-08 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US20130158626A1 (en) * | 2009-10-05 | 2013-06-20 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US8380315B2 (en) * | 2009-10-05 | 2013-02-19 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110218590A1 (en) * | 2009-10-05 | 2011-09-08 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110112603A1 (en) * | 2009-10-05 | 2011-05-12 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US8688220B2 (en) * | 2009-10-05 | 2014-04-01 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US8700164B2 (en) * | 2009-10-05 | 2014-04-15 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110093033A1 (en) * | 2009-10-16 | 2011-04-21 | Stanford University | Eliciting analgesia by transcranial electrical stimulation |
US20110282129A1 (en) * | 2010-05-12 | 2011-11-17 | Stx-Med Sprl | Neurostimulation Method to Induce Relaxation or Sleep |
US8565896B2 (en) * | 2010-11-22 | 2013-10-22 | Bio Control Medical (B.C.M.) Ltd. | Electrode cuff with recesses |
US20140081353A1 (en) * | 2010-11-30 | 2014-03-20 | Neurosigma, Inc. | Pulse generator for cranial nerve stimulation |
US20120203301A1 (en) * | 2011-02-07 | 2012-08-09 | Advanced Neuromodulation Systems, Inc. | Methods using trigeminal nerve stimulation to treat neurological diseases |
US20140081369A1 (en) * | 2011-05-11 | 2014-03-20 | Alejandro Covalin | Headache-treatment device with gel dispensing kit and method |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8688220B2 (en) | 2009-10-05 | 2014-04-01 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US10322283B2 (en) | 2009-10-05 | 2019-06-18 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110218590A1 (en) * | 2009-10-05 | 2011-09-08 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US10639468B2 (en) | 2009-10-05 | 2020-05-05 | The Regents Of The University Of California | Devices, systems and methods for the treatment of medical disorders |
US10058704B2 (en) * | 2009-10-05 | 2018-08-28 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US8380315B2 (en) | 2009-10-05 | 2013-02-19 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US8958880B2 (en) | 2009-10-05 | 2015-02-17 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US10195435B2 (en) | 2009-10-05 | 2019-02-05 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US9682236B2 (en) | 2009-10-05 | 2017-06-20 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US9238139B2 (en) | 2009-10-05 | 2016-01-19 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110218589A1 (en) * | 2009-10-05 | 2011-09-08 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US8700164B2 (en) | 2009-10-05 | 2014-04-15 | The Regents Of The University Of California | Devices, systems and methods for treatment of neuropsychiatric disorders |
US20110112603A1 (en) * | 2009-10-05 | 2011-05-12 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US20170028198A1 (en) * | 2009-10-05 | 2017-02-02 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
US9511223B2 (en) | 2009-10-05 | 2016-12-06 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of neuropsychiatric disorders |
US10238862B2 (en) | 2009-10-05 | 2019-03-26 | The Regents Of The University Of California | Extracranial implantable devices, systems and methods for the treatment of medical disorders |
US20130200824A1 (en) * | 2010-07-02 | 2013-08-08 | Robert Bosch Gmbh | Method for controlling the power supply of an electric motor |
US9184692B2 (en) * | 2010-07-02 | 2015-11-10 | Robert Bosch Gmbh | Method for controlling the power supply of an electric motor |
US9364674B2 (en) | 2010-11-30 | 2016-06-14 | Ian A. Cook | Pulse generator for cranial nerve stimulation |
US10016601B2 (en) | 2010-11-30 | 2018-07-10 | The Regents Of The University Of California | Pulse generator for cranial nerve stimulation |
EP2651497B1 (en) * | 2010-12-14 | 2019-02-20 | The Regents of The University of California | Extracranial implantable systems for the treatment of medical disorders |
US9199089B2 (en) | 2011-01-28 | 2015-12-01 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US20140058481A1 (en) * | 2011-01-28 | 2014-02-27 | Stimwave Technologies Incorporated | Neural stimulator system |
US10315039B2 (en) | 2011-01-28 | 2019-06-11 | Stimwave Technologies Incorporated | Microwave field stimulator |
US10420947B2 (en) | 2011-01-28 | 2019-09-24 | Stimwave Technologies Incorporated | Polarity reversing lead |
US10471262B2 (en) | 2011-01-28 | 2019-11-12 | Stimwave Technologies Incorporated | Neural stimulator system |
US9757571B2 (en) | 2011-01-28 | 2017-09-12 | Micron Devices Llc | Remote control of power or polarity selection for a neural stimulator |
US9566449B2 (en) * | 2011-01-28 | 2017-02-14 | Micro Devices, LLC | Neural stimulator system |
US9925384B2 (en) | 2011-01-28 | 2018-03-27 | Micron Devices Llc | Neural stimulator system |
US12115374B2 (en) | 2011-01-28 | 2024-10-15 | Curonix Llc | Microwave field stimulator |
US9409030B2 (en) | 2011-01-28 | 2016-08-09 | Micron Devices Llc | Neural stimulator system |
US9220897B2 (en) | 2011-04-04 | 2015-12-29 | Micron Devices Llc | Implantable lead |
US10238874B2 (en) | 2011-04-04 | 2019-03-26 | Stimwave Technologies Incorporated | Implantable lead |
US9789314B2 (en) | 2011-04-04 | 2017-10-17 | Micron Devices Llc | Implantable lead |
US11872400B2 (en) | 2011-04-04 | 2024-01-16 | Curonix Llc | Implantable lead |
US10953228B2 (en) | 2011-04-04 | 2021-03-23 | Stimwave Technologies Incorporated | Implantable lead |
WO2012156052A3 (de) * | 2011-05-14 | 2013-01-17 | Cerbomed Gmbh | Stimulationsvorrichtung |
EP2524717A1 (de) * | 2011-05-14 | 2012-11-21 | cerboMed GmbH | Stimulationsvorrichtung |
US8805512B1 (en) | 2011-08-30 | 2014-08-12 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for reducing hypertension |
US10518082B2 (en) | 2011-08-30 | 2019-12-31 | Valencia Technologies Corporation | Methods and systems for treating hypertension using an implantable electroacupuncture device |
US11400278B2 (en) | 2011-08-30 | 2022-08-02 | Valencia Bioscience, Inc. | Methods and systems for treating hypertension using an implantable stimulator |
US9789304B2 (en) | 2011-08-30 | 2017-10-17 | Valencia Technologies Corporation | Methods and systems for treating hypertension using an implantable electroacupuncture device |
US8965511B2 (en) | 2011-08-30 | 2015-02-24 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for reducing hypertension |
US12251555B2 (en) | 2011-08-30 | 2025-03-18 | Valencia Bioscience, Inc. | Methods and systems for treating hypertension using an implantable stimulator |
US9974965B2 (en) | 2011-09-15 | 2018-05-22 | Micron Devices Llc | Relay module for implant |
US11745020B2 (en) | 2011-09-15 | 2023-09-05 | Curonix Llc | Relay module for implant |
US9242103B2 (en) | 2011-09-15 | 2016-01-26 | Micron Devices Llc | Relay module for implant |
US11707624B2 (en) | 2011-09-23 | 2023-07-25 | Valencia Bioscience, Inc. | Methods and systems for treating cardiovascular disease using an implantable electroacupuncture device |
US9603773B2 (en) | 2011-09-23 | 2017-03-28 | Valencia Technologies Corporation | Methods and systems for treating cardiovascular disease using an implantable electroacupuncture device |
US11013921B2 (en) | 2011-09-23 | 2021-05-25 | Valencia Bioscience, Inc. | Methods and systems for treating cardiovascular disease using an implantable electroacupuncture device |
US8996125B2 (en) | 2011-09-23 | 2015-03-31 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating cardiovascular disease |
US8938297B2 (en) | 2011-09-23 | 2015-01-20 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating cardiovascular disease |
US10299986B2 (en) | 2011-09-23 | 2019-05-28 | Valencia Technologies Corporation | Methods and systems for treating cardiovascular disease using an implantable electroacupuncture device |
US9198828B2 (en) | 2011-09-29 | 2015-12-01 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating depression, bipolar disorder and anxiety |
US11478403B2 (en) | 2011-09-29 | 2022-10-25 | Valencia Bioscience, Inc. | Implantable electroacupuncture system and method for treating depression and similar mental conditions |
US9173811B2 (en) | 2011-09-29 | 2015-11-03 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating depression and similar mental conditions |
US10307331B2 (en) | 2011-09-29 | 2019-06-04 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating depression and similar mental conditions |
US10792219B2 (en) | 2012-03-06 | 2020-10-06 | Valencia Technologies Corporation | Implantable electroacupuncture system and method |
US10299987B2 (en) | 2012-03-06 | 2019-05-28 | Valencia Technologies Corporation | Implantable electroacupuncture system and method |
US11730672B2 (en) | 2012-03-06 | 2023-08-22 | Valencia Bioscience, Inc. | Implantable electroacupuncture system and method |
US11730673B2 (en) | 2012-03-06 | 2023-08-22 | Valencia Bioscience, Inc. | Implantable electroacupuncture system and method |
US9949893B2 (en) | 2012-03-06 | 2018-04-24 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating dyslipidemia and obesity |
US8942816B2 (en) | 2012-03-06 | 2015-01-27 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating dyslipidemia |
US8954143B2 (en) | 2012-03-06 | 2015-02-10 | Valencia Technologies Corporation | Radial feed through packaging for an implantable electroacupuncture device |
US9827134B2 (en) | 2012-03-06 | 2017-11-28 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating erectile dysfunction |
US9066845B2 (en) | 2012-03-06 | 2015-06-30 | Valencia Technologies Corporation | Electrode configuration for an implantable electroacupuncture device |
US9078801B2 (en) | 2012-03-06 | 2015-07-14 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating erectile dysfunction |
US10940033B2 (en) | 2012-03-06 | 2021-03-09 | Valencia Bioscience, Inc. | Implantable electroacupuncture device and method for treating erectile dysfunction |
US9314399B2 (en) | 2012-03-06 | 2016-04-19 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating dyslipidemia and obesity |
US9364390B2 (en) | 2012-03-06 | 2016-06-14 | Valencia Technologies Corporation | Implantable electroacupuncture device and method for treating obesity |
US9566212B2 (en) | 2012-03-06 | 2017-02-14 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating dyslipidemia and obesity |
US9566213B2 (en) | 2012-03-06 | 2017-02-14 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating dyslipidemia and obesity |
US9433786B2 (en) | 2012-03-06 | 2016-09-06 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating Parkinson's disease and essential tremor |
US9089716B2 (en) | 2012-03-12 | 2015-07-28 | Valencia Technologies Corporation | Circuits and methods for using a high impedance, thin, coin-cell type battery in an implantable electroacupuncture device |
US9827428B2 (en) | 2012-03-12 | 2017-11-28 | Valencia Technologies Corporation | Circuits and methods for using a high impedance, thin, coin-cell type battery in an implantable electroacupuncture device |
US10940313B2 (en) | 2012-03-12 | 2021-03-09 | Valencia Bioscience, Inc. | Methods and systems for treating a chronic low back pain condition using an implantable electroacupuncture device |
US9827421B2 (en) | 2012-03-12 | 2017-11-28 | Valencia Technologies Corporation | Methods and systems for treating a chronic low back pain condition using an implantable electroacupuncture device |
US9327134B2 (en) | 2012-03-12 | 2016-05-03 | Valencia Technologies Corporation | Implantable electroacupuncture device and method |
US10576293B2 (en) | 2012-03-12 | 2020-03-03 | Valencia Technologies Corporation | Circuits and methods for using a high impedance, thin, coin-cell type battery in an implantable electroacupuncture device |
US8942808B2 (en) | 2012-03-12 | 2015-01-27 | Valencia Technologies Corporation | Stimulation paradigm to improve blood pressure dipping in an implantable electroacupuncture device |
EP2833960A4 (en) * | 2012-04-05 | 2015-12-09 | Univ California | SUBCUTANEOUS ELECTRODES FOR CRANIAL NERVE STIMULATION |
US10035013B2 (en) | 2012-04-05 | 2018-07-31 | The Regents Of The University Of California | Subcutaneous electrodes for cranial nerve stimulation |
AU2013243309B2 (en) * | 2012-04-05 | 2017-05-11 | Neurosigma, Inc. | Subcutaneous electrodes for cranial nerve stimulation |
JP2015513980A (ja) * | 2012-04-05 | 2015-05-18 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 脳神経刺激のための皮下電極 |
WO2013152316A1 (en) | 2012-04-05 | 2013-10-10 | The Regents Of The University Of California | Subcutaneous electrodes for cranial nerve stimulation |
WO2013165697A1 (en) * | 2012-04-30 | 2013-11-07 | Vigilant Medical Solutions, Inc. | Indirect and non-invasive trigeminal neuromodulation for the treatment of disease |
US9724512B2 (en) | 2012-09-28 | 2017-08-08 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating parkinson's disease and essential tremor through application of stimului at or near an acupoint on the chorea line |
US11583683B2 (en) | 2012-12-26 | 2023-02-21 | Stimwave Technologies Incorporated | Wearable antenna assembly |
US8880173B2 (en) | 2013-03-12 | 2014-11-04 | Ethicon Endo-Surgery, Inc. | Device for providing transdermal electrical stimulation at an adjustable position on a head |
US9974968B2 (en) * | 2013-08-14 | 2018-05-22 | Syntilla Medical LLC | Implantable head mounted neurostimulation system for head pain |
US9884190B2 (en) * | 2013-08-14 | 2018-02-06 | Syntilla Medical LLC | Surgical method for implantable head mounted neurostimulation system for head pain |
US20160030746A1 (en) * | 2013-08-14 | 2016-02-04 | Syntilla Medical LLC | Surgical method for implantable head mounted neurostimulation system for head pain |
US20150321004A1 (en) * | 2013-08-14 | 2015-11-12 | Syntilla Medical LLC | Implantable head mounted neurostimulation system for head pain |
US10695571B2 (en) | 2013-10-23 | 2020-06-30 | Nuxcel, Inc. | Implantable head located radiofrequency coupled neurostimulation system for head pain |
US11612756B2 (en) | 2013-10-23 | 2023-03-28 | Shiratronics, Inc. | Implantable head mounted neurostimulation system for head pain |
US11357995B2 (en) | 2013-10-23 | 2022-06-14 | Shiratronics, Inc. | Implantable head located radiofrequency coupled neurostimulation system for head pain |
US10850112B2 (en) | 2013-10-23 | 2020-12-01 | Nuxcel, Inc. | Surgical method for implantable neurostimulation system for pain |
US11400302B2 (en) | 2013-10-23 | 2022-08-02 | Shiratronics, Inc. | Surgical method for implantable neurostimulation system for pain |
US12070610B2 (en) | 2013-10-23 | 2024-08-27 | Shiratronics, Inc. | Low profile head-located neurostimulator |
US10960215B2 (en) | 2013-10-23 | 2021-03-30 | Nuxcel, Inc. | Low profile head-located neurostimulator and method of fabrication |
US20180256903A1 (en) * | 2013-10-23 | 2018-09-13 | Syntilla Medical LLC | Implantable head mounted neurostimulation system for head pain |
US11623100B2 (en) | 2013-10-23 | 2023-04-11 | Shiratronics, Inc. | Low profile head-located neurostimulator |
US10946205B2 (en) * | 2013-10-23 | 2021-03-16 | Nuxcel, Inc. | Implantable head mounted neurostimulation system for head pain |
US10258800B2 (en) | 2014-05-12 | 2019-04-16 | Stimwave Technologies Incorporated | Remote RF power system with low profile transmitting antenna |
US9409029B2 (en) | 2014-05-12 | 2016-08-09 | Micron Devices Llc | Remote RF power system with low profile transmitting antenna |
US20170252552A1 (en) * | 2014-11-19 | 2017-09-07 | Neurosigma, Inc. | Trigeminal neurostimulation based upon pulse counting and chronobiology |
US10537729B2 (en) * | 2014-11-19 | 2020-01-21 | Neurosigma, Inc. | Trigeminal neurostimulation based upon pulse counting and chronobiology |
US12144987B2 (en) | 2015-01-04 | 2024-11-19 | Ist, Llc | Methods and apparatuses for transdermal stimulation of the outer ear |
US11060541B2 (en) | 2015-10-02 | 2021-07-13 | The Regents Of The University Of California | System and method for optical transient liquid molding of microparticles and uses for the same |
US20180070870A1 (en) * | 2016-09-09 | 2018-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | Autonomous Sweat Extraction and Analysis Using a Fully-Integrated Wearable Platform |
US12233407B2 (en) | 2017-02-24 | 2025-02-25 | The Regents Of The University Of California | Particle-drop structures and methods for making and using the same |
US12239973B2 (en) | 2017-02-24 | 2025-03-04 | The Regents Of The University Of California | Particle-drop structures and methods for making and using the same |
US12151107B2 (en) | 2018-02-01 | 2024-11-26 | Curonix Llc | Systems and methods to sense stimulation electrode tissue impedance |
US12179011B2 (en) * | 2018-08-14 | 2024-12-31 | Neurotrigger Ltd. | Method and apparatus for transcutaneous facial nerve stimulation and applications thereof |
US20220118253A1 (en) * | 2019-01-18 | 2022-04-21 | Ist, Llc | Systems and methods for craniocervical and auricular neuromodulation |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220331581A1 (en) | Extracranial implantable devices, systems and methods for the treatment of neurological disorders | |
AU2015264879B2 (en) | Extracranial Implantable Devices, Systems and Methods for the Treatment of Neuropsychiatric Disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEGIORGIO, CHRISTOPHER M.;COOK, IAN A.;SIGNING DATES FROM 20101213 TO 20110118;REEL/FRAME:026230/0921 Owner name: NEUROSIGMA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EKCHIAN, LEON;REEL/FRAME:026230/0647 Effective date: 20110203 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |