[go: up one dir, main page]

US20090321085A1 - Pump off junk mill - Google Patents

Pump off junk mill Download PDF

Info

Publication number
US20090321085A1
US20090321085A1 US12/493,078 US49307809A US2009321085A1 US 20090321085 A1 US20090321085 A1 US 20090321085A1 US 49307809 A US49307809 A US 49307809A US 2009321085 A1 US2009321085 A1 US 2009321085A1
Authority
US
United States
Prior art keywords
mill body
core
milling core
collet
milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/493,078
Inventor
Troy Austin Rodgers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/493,078 priority Critical patent/US20090321085A1/en
Publication of US20090321085A1 publication Critical patent/US20090321085A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • E21B31/002Destroying the objects to be fished, e.g. by explosive means

Definitions

  • the present invention relates to a downhole junk removal tool for use in removing junk from a well bore.
  • Junk mills are frequently used to clean out various metallic and non-metallic obstructions that are in a downhole.
  • Junk is anything that is not supposed to be in the downhole and can include various objects that are accidentally dropped downhole from the surface such as hand tools, wrenches, or parts that have broken off during drilling such as drill bit teeth, nozzles, etc., or accumulated cement or other sediment left behind from a previous downhole operation.
  • a downhole mill is typically located at an end of a work string so that the cutting head of the mill can be rotated and axially loaded against the material that is to be cut.
  • a “mill” is a tool that grinds metal downhole.
  • a mill is normally used to remove junk in the downhole or to grind away all or part of a casing string. In the case of junk, the metal must be broken into smaller pieces to facilitate its removal from the wellbore so that the drilling operation can continue. Virtually all mills utilize tungsten carbide cutting surfaces.
  • a typical downhole mill includes rotary cutters with hardened cutting surfaces that cut or grind material such as metal, plastic, etc.
  • a downhole drill bit is typically used to cut rock or downhole formation.
  • Mills are run down a borehole to cut man-made obstructions referred to as junk, so that a drilling operation can continue.
  • a further category of junk are larger objects. These may include portions of tools which have been discarded or been broken within the well bore, or large sections of tubes which have been cut away when portions of a casing have been milled or drilled.
  • Apparatus within a well bore designed to collect junk primarily fall into two categories that are dependent upon the location of the tool on a work string.
  • the first category relates to apparatus mounted at the bottom of the work string.
  • This apparatus collects all fluids and materials within the well bore as fluids are circulated up the well bore or as the tool is run into the well bore.
  • Such tools are typically referred to as junk catchers.
  • This tool has a collection of petals arranged at the distal end of the work string. As the tool is run into the well, the petals are forced outward to the walls of the well bore where they act to siphon all material through a single large port on the longitudinal axis of the tool. When the tool is pulled from the well the petals close thereby catching large debris and pulling it from the well.
  • a significant disadvantage of this tool is that it must be positioned at the end of a work string and thus is typically used on a single run. To operate a dedicated run merely for the purposes of clearing junk is both time-consuming and expensive.
  • the second category of junk catchers can be mounted at any position on a work string to allow the tool to be run at the same time as other tools.
  • the tool has a wiper or scraper blade arranged to prevent the fluid including the junk to pass up the annulus between the tool and the well bore wall.
  • the fluid including the junk is forced into a port and through a passage in the tool around the wiper.
  • a filter and a trap are positioned within the passage to catch the junk, which is too large to pass through the filter.
  • Such tools have an input port that is sized to ensure that a significant flow velocity is maintained to circulate the fluid through the tool.
  • These tools generally include a by-pass means which rupture to allow the fluid to escape when the filter has been clogged with large debris.
  • a by-pass means which rupture to allow the fluid to escape when the filter has been clogged with large debris.
  • the tool cannot function correctly and, in fact, generally shuts down into a mode that allows the fluid including the junk to by-pass the tool.
  • junk tends to ‘ball-up’ at the scrapers or wipers as the larger pieces of junk are swept away from the inlet port up the annulus to become jammed or located around the wiper blades.
  • a device for removing junk from a well by attaching the tubing string to the mill body and lowering the assembly into a well.
  • a movable collet located inside the core couples the mill body to the milling core and a check valve is located inside the core.
  • the milling core is controllably separated from the mill body by dropping a ball bearing into the tubing and then feeding water under pressure into the tubing on top of the ball bearing.
  • FIG. 1 is an exploded diagram showing the pump off junk mill components
  • FIG. 2 is a flow diagram of the process of using the pump off junk mill.
  • This invention relates to a pump off junk mill that does not have to be removed from a downhole.
  • the tungsten carbide mill has a full opening through the center with a back pressure valve and core which is connected to a string of tubing that latches into the system.
  • a check valve assembly and the mill core is removed from the tubing by dropping a ball bearing down the tubing and then pumping fluid.
  • a collet located in the milling core is urged to shift, allowing the milling core and its components to be released and drop to the bottom leaving the mill body in tact with the tubing string.
  • the mill body can be used for future cleanouts without removing it from the tubing string.
  • the core here disclosed which is attached to a mill can be retrieved and a new core with valve assembly can be added resulting in a unit that can be used again. It is not left in the well as junk which may have to be removed at some future time.
  • the core here disclosed has a collet that shifts, it does not shear, which allows the mill core to be released and subsequently retrieved when desired.
  • FIG. 1 there is shown an exploded view of the new improved milling core 10 .
  • a check valve assembly 12 is located within a milling core 14 that is located within a mill body 16 .
  • the check valve assembly comprises, as is shown in FIG. 1 , a collet 18 that is inserted into an upper housing 20 through an end 22 of the upper housing 20 .
  • the upper housing 20 has openings that receive ball bearings 24 .
  • a ball seat 26 is coupled to end 28 of the upper housing 20 , and receives seal ball 28 that is held against the ball seat by spring 30 .
  • O rings are located between the various parts to provide fluid tight seals.
  • An assembly instruction pamphlet for assembling the various parts of FIG. 1 contains the following information.
  • the process begins by placing a junk mill on the bottom of a tubing string and placing the junk mill in a well. Block 50 . Then the tubing is hooked up to a Kelly and fluid water or drilling mud is pumped down the tubing, block 52 . The tubing is lowered until the junk in the well is contacted, block 54 . Now 2 barrels per minute of water or drilling mud are pumped through the tubing as the pipe is rotated to the right with about 2000 pounds of weight on the junk mill, block 56 . The particles are washed to the surface, block 58 . After all of the particles are removed, the tubing is pulled to a desired depth for producing gas, block 60 .
  • a ball bearing having a diameter of 15/16 is dropped into the tubing, block 62 .
  • water pressure of between 450 psi and 550 psi where a preferable pressure of approximately 500 psi is applied to the tubing, block 64 .
  • the pressure shifts the collet inside the junk mill detaching the 2 inch core of the mill, block 66 .
  • the core is released to the bottom of the well allowing gas or oil to flow up the tubing back to the production unit, block 68 .
  • the method eliminates the removal of the tubing string under pressure and subsequent reentry, and leaves a useful cleanout tool in the well for future flow problems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crushing And Grinding (AREA)

Abstract

A device for removing junk from a well by attaching to a tubing string a mill body with a removable milling core and lowering the assembly into a well. A movable collet and check valve are located in the milling core. The milling core can be separated from the mill body by dropping a ball bearing into the tubing and then feeding water under pressure into the tubing behind the ball bearing.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This patent application claims the benefit of U.S. Provisional Application No. 61076089 filed on 26 Jun. 2008, the disclosure of which is incorporated herein in its entirety by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a downhole junk removal tool for use in removing junk from a well bore.
  • 2. Description of Related Art
  • Pump off junk mills are used to remove various downhole obstructions, commonly referred to in the petroleum recovery industry as “junk.” Junk mills are frequently used to clean out various metallic and non-metallic obstructions that are in a downhole. Junk is anything that is not supposed to be in the downhole and can include various objects that are accidentally dropped downhole from the surface such as hand tools, wrenches, or parts that have broken off during drilling such as drill bit teeth, nozzles, etc., or accumulated cement or other sediment left behind from a previous downhole operation. A downhole mill is typically located at an end of a work string so that the cutting head of the mill can be rotated and axially loaded against the material that is to be cut.
  • A “mill” is a tool that grinds metal downhole. A mill is normally used to remove junk in the downhole or to grind away all or part of a casing string. In the case of junk, the metal must be broken into smaller pieces to facilitate its removal from the wellbore so that the drilling operation can continue. Virtually all mills utilize tungsten carbide cutting surfaces.
  • A typical downhole mill includes rotary cutters with hardened cutting surfaces that cut or grind material such as metal, plastic, etc. In contrast, a downhole drill bit is typically used to cut rock or downhole formation.
  • Mills, are run down a borehole to cut man-made obstructions referred to as junk, so that a drilling operation can continue. A further category of junk are larger objects. These may include portions of tools which have been discarded or been broken within the well bore, or large sections of tubes which have been cut away when portions of a casing have been milled or drilled.
  • Apparatus within a well bore designed to collect junk primarily fall into two categories that are dependent upon the location of the tool on a work string. The first category relates to apparatus mounted at the bottom of the work string. This apparatus collects all fluids and materials within the well bore as fluids are circulated up the well bore or as the tool is run into the well bore. Such tools are typically referred to as junk catchers. This tool has a collection of petals arranged at the distal end of the work string. As the tool is run into the well, the petals are forced outward to the walls of the well bore where they act to siphon all material through a single large port on the longitudinal axis of the tool. When the tool is pulled from the well the petals close thereby catching large debris and pulling it from the well.
  • A significant disadvantage of this tool is that it must be positioned at the end of a work string and thus is typically used on a single run. To operate a dedicated run merely for the purposes of clearing junk is both time-consuming and expensive.
  • The second category of junk catchers can be mounted at any position on a work string to allow the tool to be run at the same time as other tools. The tool has a wiper or scraper blade arranged to prevent the fluid including the junk to pass up the annulus between the tool and the well bore wall. The fluid including the junk is forced into a port and through a passage in the tool around the wiper. A filter and a trap are positioned within the passage to catch the junk, which is too large to pass through the filter.
  • Such tools have an input port that is sized to ensure that a significant flow velocity is maintained to circulate the fluid through the tool. These tools generally include a by-pass means which rupture to allow the fluid to escape when the filter has been clogged with large debris. Thus, when large debris is present the tool cannot function correctly and, in fact, generally shuts down into a mode that allows the fluid including the junk to by-pass the tool. Additionally, junk tends to ‘ball-up’ at the scrapers or wipers as the larger pieces of junk are swept away from the inlet port up the annulus to become jammed or located around the wiper blades.
  • SUMMARY OF THE INVENTION
  • A device for removing junk from a well by attaching the tubing string to the mill body and lowering the assembly into a well. A movable collet located inside the core couples the mill body to the milling core and a check valve is located inside the core. The milling core is controllably separated from the mill body by dropping a ball bearing into the tubing and then feeding water under pressure into the tubing on top of the ball bearing.
  • The foregoing has outlined, rather broadly, the preferred feature of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present invention and that such other structures do not depart from the spirit and scope of the invention in its broadest form.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other aspects, features, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claim, and the accompanying drawings.
  • FIG. 1 is an exploded diagram showing the pump off junk mill components; and
  • FIG. 2 is a flow diagram of the process of using the pump off junk mill.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention relates to a pump off junk mill that does not have to be removed from a downhole. The tungsten carbide mill has a full opening through the center with a back pressure valve and core which is connected to a string of tubing that latches into the system. A check valve assembly and the mill core is removed from the tubing by dropping a ball bearing down the tubing and then pumping fluid. A collet located in the milling core is urged to shift, allowing the milling core and its components to be released and drop to the bottom leaving the mill body in tact with the tubing string.
  • Thus, the mill body can be used for future cleanouts without removing it from the tubing string.
  • Existing mills must be pumped off entirely which leaves the mill as “junk” in the well in addition to junk hanging up in perforations, all of which can result in blocking the well. With existing mills, the premature releasing of the mill prior to the completion of the drilling process can result in increased cost and added time to the drilling process. Current pump out cores use a one piece mill design that utilizes shear/set screws that will shear off during deployment in the well. When the shear/set screws shear, the mill separates from the tubing and drops down to the bottom of a well to become junk which cannot be used in the future.
  • The core here disclosed which is attached to a mill can be retrieved and a new core with valve assembly can be added resulting in a unit that can be used again. It is not left in the well as junk which may have to be removed at some future time.
  • Existing cores use shear/set pins which can shear and allow a mill to be released and drop down to the bottom of the well. Retrieving the dropped mill can be time consuming and costly. The core here disclosed has a collet that shifts, it does not shear, which allows the mill core to be released and subsequently retrieved when desired.
  • Referring to FIG. 1 there is shown an exploded view of the new improved milling core 10. A check valve assembly 12 is located within a milling core 14 that is located within a mill body 16. The check valve assembly comprises, as is shown in FIG. 1, a collet 18 that is inserted into an upper housing 20 through an end 22 of the upper housing 20. The upper housing 20 has openings that receive ball bearings 24. A ball seat 26 is coupled to end 28 of the upper housing 20, and receives seal ball 28 that is held against the ball seat by spring 30. O rings are located between the various parts to provide fluid tight seals.
  • An assembly instruction pamphlet for assembling the various parts of FIG. 1 contains the following information.
  • Assemble the milling core and the check vale assembly, making certain that all the proper O rings are installed.
  • Put the collet in through the top of the check valve assembly and tap in with an assembly tool
  • Insert the spiral lock ring into the gland located inside the upper housing.
  • Lower the mill body over the entire check valve assembly and milling core.
  • Using a “Tap-in tool”, strike the upper end gently until the collet bottoms out inside the upper housing. This will be about one inch of travel.
  • Insert the four ball bearings through holes in the upper housing. Place a small amount of grease on the ball bearings to hold in place, if necessary.
  • Using an insertion/retraction tool, screw the tool into the collet (located inside the CVA assembly) which will shoulder at the right depth. Put base plate on the shoulder of the assembly and screw on the nut provided.
  • Turn the nut clockwise until the collet is pulled up against the spiral lock ring. This is exactly one inch travel.
  • The assembly is now ready for shipment.
  • Prior art mills have shear/set pins which can be damaged and can result in the mill being released into the well. This results in a fishing job and additional cost. This can not happen with this invention.
  • Referring to FIG. 2, the process begins by placing a junk mill on the bottom of a tubing string and placing the junk mill in a well. Block 50. Then the tubing is hooked up to a Kelly and fluid water or drilling mud is pumped down the tubing, block 52. The tubing is lowered until the junk in the well is contacted, block 54. Now 2 barrels per minute of water or drilling mud are pumped through the tubing as the pipe is rotated to the right with about 2000 pounds of weight on the junk mill, block 56. The particles are washed to the surface, block 58. After all of the particles are removed, the tubing is pulled to a desired depth for producing gas, block 60. A ball bearing having a diameter of 15/16 is dropped into the tubing, block 62. Upon arrival of the ball bearing at the junk mill, water pressure of between 450 psi and 550 psi where a preferable pressure of approximately 500 psi is applied to the tubing, block 64. The pressure shifts the collet inside the junk mill detaching the 2 inch core of the mill, block 66. The core is released to the bottom of the well allowing gas or oil to flow up the tubing back to the production unit, block 68.
  • The method eliminates the removal of the tubing string under pressure and subsequent reentry, and leaves a useful cleanout tool in the well for future flow problems.
  • While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiments, it will be understood that various omissions and substitutions and changes of the form and details of the apparatus illustrated and in the operation may be done by those skilled in the art, without departing from the spirit of the invention.

Claims (20)

1. A device for removing junk from a well comprising:
a mill body coupled to a milling core;
a collet located inside the milling core; and
a check valve located in side milling core;
wherein said mill body is threaded for attachment to a tubing string for receiving water or drilling mud and being lowering into a well.
2. The device of claim 1 wherein said collet is movable.
3. The device of claim 1 wherein said milling core is located in the center of the mill body
4. The device of claim 1, wherein the milling core is releasably connected to an end of the mill body.
5. The device of claim 1 wherein said milling core is attached to cutting blades.
6. The device of claim 5 wherein said cutting blades have an opening in the center of the blades.
7. The device of claim 4 wherein the milling core is configured to be detached from the mill body when the collet is moved.
8. The device mill of claim 7 wherein the collet is configured to be primed to be moved when a ball bearing is dropped down the tubing string attached to the top of the mill body.
9. The device of claim 8 wherein the collet is moved to disengage the milling core from the mill body when water is pumped down the tubing on top of the ball.
10. The device of claim 9 wherein the pressure of the water on the ball is between 450 psi and 550 psi.
11. The device of claim 8 wherein the pressure of water on the ball is 500 psi.
12. The device of claim 8 wherein a check valve is located between said milling core and said ball.
13. The device of claim 12 wherein the check valve in the milling core prevents fluid flow from the cutting blades to the internal cavity.
14. The device of claim 13 wherein the cutting blades are tungsten carbide.
15. The device of claim 1 wherein said mill body is releasably connected to the milling core.
16. The device of claim 15 wherein the mill body is configured to be detached from the milling core when the collet is moved.
17. The device of claim 15 wherein the collet is configured to move when a ball bearing is dropped down a tubing string attached to the end of the mill body and water under pressure is applied to the ball.
18. A method of removing junk from a well comprising;
providing a mill body;
coupling a milling core to said mill body;
locating a collet in said milling core; and
locating a check valve in said milling core;
wherein said mill body is threaded to be attached to a tubing string for receiving water or drilling mud, being lowered into a well and allowing the milling core to be controllably detached from said mill body.
19. The method of claim 18 wherein said milling core is designed to be detached from said mill body by placing a ball bearing into the tubing and feeding water under pressure into the tube.
20. The method of claim 19 wherein said water under pressure being fed to the tubing is between 450 psi and 550 psi.
US12/493,078 2008-06-26 2009-06-26 Pump off junk mill Abandoned US20090321085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/493,078 US20090321085A1 (en) 2008-06-26 2009-06-26 Pump off junk mill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7608908P 2008-06-26 2008-06-26
US12/493,078 US20090321085A1 (en) 2008-06-26 2009-06-26 Pump off junk mill

Publications (1)

Publication Number Publication Date
US20090321085A1 true US20090321085A1 (en) 2009-12-31

Family

ID=41446018

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/493,078 Abandoned US20090321085A1 (en) 2008-06-26 2009-06-26 Pump off junk mill

Country Status (1)

Country Link
US (1) US20090321085A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199064B2 (en) 2018-10-31 2021-12-14 Halliburton Energy Services, Inc. Integrated debris catcher and plug system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429387A (en) * 1967-03-06 1969-02-25 Cicero C Brown Pump out drill bit
US20050061551A1 (en) * 2003-08-13 2005-03-24 Baker Hughes Incorporated Releasable mill
US20070023188A1 (en) * 2005-07-29 2007-02-01 Smith International, Inc. Mill and pump-off sub

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429387A (en) * 1967-03-06 1969-02-25 Cicero C Brown Pump out drill bit
US20050061551A1 (en) * 2003-08-13 2005-03-24 Baker Hughes Incorporated Releasable mill
US20070023188A1 (en) * 2005-07-29 2007-02-01 Smith International, Inc. Mill and pump-off sub

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199064B2 (en) 2018-10-31 2021-12-14 Halliburton Energy Services, Inc. Integrated debris catcher and plug system

Similar Documents

Publication Publication Date Title
US7243740B2 (en) Filter assembly having a bypass passageway and method
US8453724B2 (en) Tool for recovering junk and debris from a wellbore of a well
US8651181B2 (en) Downhole filter tool
US7497260B2 (en) Junk removal tool
US8141627B2 (en) Expandable mill and methods of use
US8746340B2 (en) Fish-thru screen apparatus and method
US10557323B2 (en) Drilling fluid filter screen and method of use
US7188688B1 (en) Down-hole tool filter and method for protecting such tools from fluid entrained debris
US20090321085A1 (en) Pump off junk mill
US10590735B2 (en) Fish through filter device
JP6543104B2 (en) Coring bit, hole adjusting member and drilling method
US7980330B1 (en) Well tubular, retrievable joint strainer and method
US11959343B2 (en) Drilling system with annular flush separation device and method
CA2589580A1 (en) Cuttings bed removal tool
US20110308786A1 (en) Diverter cup assembly
Murchie et al. Electric Line Deployed Orientated Suction Cleanout Device Enables Gas Lift Valve Retrieval from Debris Blocked Side Pocket Mandrel in a Highly Deviated Well
Carpenter Subsea Multilateral Oil Producer Evaluated With Acoustic and Production-Logging Tools
WO2017058220A1 (en) Modified filter screen

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION