[go: up one dir, main page]

US20090141119A1 - Self-contained secure videoconferencing console - Google Patents

Self-contained secure videoconferencing console Download PDF

Info

Publication number
US20090141119A1
US20090141119A1 US12/369,551 US36955109A US2009141119A1 US 20090141119 A1 US20090141119 A1 US 20090141119A1 US 36955109 A US36955109 A US 36955109A US 2009141119 A1 US2009141119 A1 US 2009141119A1
Authority
US
United States
Prior art keywords
secure
switch
vws
mode
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/369,551
Inventor
Robert Winegard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Criticom Inc
Original Assignee
Criticom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Criticom Inc filed Critical Criticom Inc
Priority to US12/369,551 priority Critical patent/US20090141119A1/en
Publication of US20090141119A1 publication Critical patent/US20090141119A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/147Communication arrangements, e.g. identifying the communication as a video-communication, intermediate storage of the signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols

Definitions

  • the present invention relates generally to security systems and more particularly to a bypass switch for secure and non-secure video conferencing.
  • Teleconferencing systems allow virtual meetings among two or more remotely located participants to take place using public switched telephone networks (PSTN) or data networks.
  • Data networks can include local area networks (LAN), wide area networks (WAN), the Internet, etc.
  • a simple teleconference may involve audio conferencing in which the participants share a speakerphone over one or more of the aforementioned networks.
  • a more sophisticated teleconference may involve videoconferencing in which participants can see images of one another during the conference.
  • Videoconferencing typically utilizes non-secure data lines for routing communications data among the participants. Accordingly, due to the inherently unsecured nature of the typical network connections, if users need to communicate sensitive or classified data, special arrangements have to be made before the secured videoconferencing can take place. For example, in the United States (U.S.), the U.S. Department of Defense's Communication Security (COMSEC) and Electro-Magnetic Security (EMSEC) guidance and policy requirements for providing secure and non-secure applications require secure videoconferencing when communicating highly sensitive national security data.
  • U.S. United States
  • CMSEC U.S. Department of Defense's Communication Security
  • EMSEC Electro-Magnetic Security
  • VTC videoconferencing system
  • a secure/non-secure bypass switch that includes a secure mode signal path, and a non-secure mode signal path, wherein signals are routed through an external encryption device connected to the secure mode signal path when no power is supplied to the switch, and the signals are routed through the non-secure path when power is supplied to the switch.
  • FIG. 1 is a diagram illustrating the secure/non-secure bypass switch according to an embodiment of the present invention.
  • FIG. 2 is a flow diagram illustrating an operating method of the secure/non-secure bypass switch according to an embodiment of the present invention.
  • the present invention is a self-contained secure console providing switch selectable secure and non-secure communications using a predetermined encoding standard.
  • the present invention offers a standardized switch selectable secure/non-secure Internet protocol (IP) videoconferencing communications system.
  • IP Internet protocol
  • the present invention integrates IP network termination equipment with encryption signal isolation for use with any Ethernet based IP encryptor, for example the KG 175 encryption device or Taclane currently manufactured by General Dynamics. Other encryption/decryption devices are contemplated.
  • This integration creates a single user-friendly console to support switch selectable access to secure and non-secure Ethernet IP networks.
  • the design enables clients to meet the U.S. Department of Defense COMSEC/EMSEC guidance and policy requirements while maintaining the ease of use features such as on-screen dialing and switch selectable security modes.
  • the present invention provides a standard commercial-off-the-shelf (COTS) solution for the installation of secure/non-secure IP video teleconferencing (VTC) systems at multiple locations throughout the world.
  • COTS commercial-off-the-shelf
  • the present invention optimizes particular communications, however, the communications can be extended beyond the basic design to support other protocols and applications.
  • Future applications or protocols include, but are not limited to, Voice over IP (VoIP), session initiation protocol (SIP), other data networks or speeds other than 10/100 MB Ethernet, including Internet 2 and IPv6, and a secure/non-secure path for data terminals/PCs that require access to different security level data/voice or video.
  • Current applications include cascading VWS-IPs to create a selection or network of three (3) or more.
  • Typical examples of this include endpoints or equipment requiring access to multiple levels of secure data traffic, i.e. unclassified, Secret or Top Secret.
  • Another configuration allows an endpoint access to secure data at times and by selection, and to isolate the endpoint from all IP networks. This is accomplished by connecting the secure network interface to a secure network and leaving the non-secure interface unconnected from any network. Any IP LAN domain or device that requires switching and isolation between secure and non-secure or any two physical IP LAN domains on a periodic basis is a candidate application.
  • the present invention provides a “turn-key” solution for clients requiring shared utilization of VTC systems in both secure and non-secure applications.
  • Other applications such as providing a secure network switch between various network components are also contemplated.
  • the present invention employs fiber optic coupling, wave-guide technologies and a secure/non-secure signal switching module (VWS-IP) design to provide failsafe certified separation and isolation.
  • VWS-IP secure/non-secure signal switching module
  • An incorporated mode indicator for example a lighting system or other visual display, and toggle switch can be provided for additional visual confirmation of status, and further eliminates any opportunity for user error.
  • the present invention provides verifiable failsafe compliance.
  • bypass switch design addresses secure/non-secure video communications with the desire to meet and exceed COMSEC/EMSEC security criteria.
  • the present invention provides a reliable and failsafe bypass switch designed in a self-contained security console providing user-friendly, switch selectable, secure and non-secure communications.
  • a typical system would integrate network termination equipment, the VWS-IP, encryption signal isolation, ISEC control module, Taclane or encryptor mounting rack, and a special mounting rack to create a single, user-friendly system.
  • the VWS-IP is a self-contained module allowing remote controlled switching between secure and non-secure paths while maintaining the highest degree of red/black separation.
  • the VWS-IP can be contained in a rack mountable metal EMI/RFI housing. The housing would be divided into two separate chambers by an internal metal bulkhead. Secure/non-secure mode selection is accomplished with presence/absence of A/C power to the VWS-IP. Each chamber contains at least one set of 4 non-latching electromechanical relay contacts. The number of contacts depends on the signal formats being processed. The default (de-energized) relay state is the secure mode.
  • the VWS-IP is a completely passive connection with no active electronics. In fact, it has no power applied.
  • the separate EMI/RFI chambers provide shielding between the red and black signals contained within each compartment.
  • FIG. 1 is a diagram illustrating the secure/non-secure bypass switch according to an embodiment of the present invention.
  • the present invention connects to both red (secure) and black (non-secure) Ethernet IP networks.
  • the Ethernet networks terminate onto RJ-45/DB-9 connections contained on the system. This termination can be one of the optional routers 250 or 251 , or connect directly to the VWS-IP switch network interfaces 101 and 201 .
  • the network interfaces 101 and 201 are designed to accommodate two types of networks that require isolation from each other.
  • Typical examples are a secure and a non-secure network, but other configurations are possible including the option of having two types of secure networks and configuring the switch in reverse, e.g., have two endpoints, and the option of selecting one of the endpoints to connect to the network one at time.
  • the term “secure LAN network” typically describes a physical Ethernet RJ-45/DB-9 interface that carries various levels of classified (i.e., sensitive to Top Secret) data, and must be encrypted so that it can only be read after it has been decrypted by an encryption device with an appropriate key.
  • the term “non-secure LAN Network” describes a physical Ethernet RJ-45/DB-9 interface that carries unclassified data that does not require an encryption device to decrypt the data but can be read by anyone receiving the data.
  • the term “Red Data” is data that has been decrypted and can be viewed by anyone in the public domain.
  • Black Data refers to data that has been encrypted for transmission and cannot be viewed in the public domain.
  • the Secure LAN network interface may be a trunk-encrypted network that has already been decrypted; hence the ISEC-IP would not contain a local encryptor as it is elsewhere in the network.
  • a typical configuration would include a jumper cable between 301 and 401 .
  • the non-secure LAN interface 201 is typically designed for unclassified data or unencrypted information; the secure LAN interface 101 is typically designed for classified data or encrypted information; the encryptor Black side interface 301 is typically designed for connection to the encryptor black side or cipher text port; and, the encryptor Red side interface 401 is typically designed for connection to the encryptor Red side or the plain text port.
  • the Video Codec port 501 is typically designed to connect to the video codec 600 or to an optional Red side router 700 .
  • a user selects the mode of the present invention by positioning the tabletop Switch 900 into one of two modes, secure or non-secure. This causes the ISEC Control Module 800 to either apply or deny power to the VWS-IP switch 1000 . This also illuminates the proper status on a wall sign 950 that denotes “SECURE” or “NON-SECURE.” The denial or application of power is a core element to the design of the present invention.
  • secure operation, or Mode “A” there is no power applied to the switch and therefore no active path to the non-secure side, only the powered down fiber optic modems 452 and 152 and a dark or unlit fiber connection. This provides complete and thorough isolation between the Red 450 and Black 150 compartments.
  • the actual data flow into the VWS-IP can include either a Red 700 or LAN side IP router ( 250 and/or 251 ) or both for IP address translation. For the purposes of this description, the routers are a convenience and are not material to this unique design.
  • the denial of power to the VWS-IP switch 1000 puts the switch into Mode “A” Secure.
  • the secure network interface RJ-45/DB-9 Ethernet 101 is connected to an electronic A/B relay switch 151 in the VWS-IP that in the secure mode (VWS-IP power off mode) is in mode “A”.
  • This by default, creates a data path from the Secure LAN interface 101 on the Black side of the VWS-IP 150 to the encryption device 350 , using Ethernet RJ-45/DB-9 connection 301 .
  • the data path is then encrypted by the encryption device 350 with the plain text or decrypted data interface connected to the VWS-IP switch Ethernet RJ-45/DB-9 connection 401 .
  • connection 401 is connected to a second A/B relay 451 on the Red side 450 of the VWS-IP, which defaults the data path to the codec port interface 501 .
  • Interface 501 can be directly connected to the codec device 600 or a Red side IP router 700 , which provides the alias IP address translation to the codec.
  • the router 700 can be used for many reasons including enabling the codec to have a bogus or false non-routable IP address or if data needs to be routed to subnet addresses on the network.
  • the application of power to the VWS-IP switch 1000 by the ISEC Control Module 800 puts the VWS-IP switch 1000 into Mode “B” Non Secure or the Powered mode.
  • Black A/B relay switch 151 is open in mode “B” when power is applied. This opens the connection between 101 and 301 to provide a break in the signal path leading to the encryption device 350 .
  • the non-secure network RJ-45/DB-9 Ethernet interface is connected to the VWS-IP switch non-secure LAN interface 201 in the VWS-IP 1000 , which in the non-secure mode (VWS-IP powered mode) is in mode “B”. This interface is always connected to the Black side fiber optic modem 152 in the VWS-IP.
  • the output light stream from the modem connects to the Black side bulkhead wave-guide connector via a fiber optic cable.
  • the light output is then received on the Red side bulkhead connector into a Red side fiber, which is connected to the Red side fiber optic modem 452 .
  • the output of the Red side fiber optic modem 452 is routed to the Red side A/B switch relay 451 and, in the powered on mode “B”, routes all data to the codec port 501 of the VWS-IP.
  • Interface 501 can be directly connected to the codec device 600 or a Red side IP router 700 , which provides the alias address translation to the codec. This router can be used for many reasons including enabling the codec to have a bogus or false non-routable IP address or if data needs to be routed to subnet addresses on the network.
  • the video codec 600 is connected to I/O devices. These devices may include microphones, displays, speakers, etc.
  • the power supply also contains an IEC 122 , universal offline converter 123 , and power filter 124 . Other power supply configurations are contemplated.
  • the power supply applies current to the relays and the fiber-optic modems 452 and 152 . If the system is operating in secure mode, the power to the fiber optic modems 452 and 152 is also terminated to prevent an unintended signal being conducted on the unencrypted path.
  • a user simply flips a switch on a tabletop switch module 900 into the “SECURE” or “NON-SECURE” mode. This triggers the system control module to perform several functions. Among them are:
  • the system can include automated secure/non-secure status indicators. This provides a prominent visual reminder of the security level for the current conference.
  • FIG. 2 is a flow diagram illustrating an operating method of the secure/non-secure bypass switch according to an embodiment of the present invention.
  • a determination is made as to whether the system is in a secure or non-secure mode. If it is determined at 1101 that the current mode is the non-secure mode, at 1103 the signals are received at interface 201 and then sent to the first or Black side fiber optic modem 152 , and simultaneously relay 151 disconnects to the secure path between 101 and 301 .
  • the signals are sent to the second or Red side fiber optic modem 452 .
  • signals pass through energized relay 451 .
  • the signals are routed from 451 to interface 501 .
  • the signals are processed by video codec 600 .
  • the reverse non-secure path processes signals in the reverse direction.
  • the connection is switched to secure routing through the VWS-IP 1000 , and routing is done via the encryption device 350 .
  • the signal is received at interface 101 and then to black side relay 151 .
  • the signal is routed to interface 301 through relay 151 .
  • the signal is routed through encryption device 350 for encryption/decryption, and then to interface 401 at step 1108 .
  • the signal is routed to the Red side relay 451 , and then routed through interface 501 at step 1112 .
  • the signal is sent to video codec 600 for processing.
  • the reverse path processes secure signals in the reverse direction.
  • the system provides an automated secure/non-secure status indicator display. This provides a prominent visual reminder of the security level for the current conference.
  • the VWS-IP design increases the isolation and separation level by terminating all power during secure operation.
  • the VWS-IP provides the convenience and ease of use of an electro-mechanically controlled switch while exceeding the electronic separation of manual red and black patch panels in separate EMI/RFI enclosures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

Disclosed is a secure/non-secure bypass switch, that includes a secure mode signal path, and a non-secure mode signal path, wherein signals are routed through an external encryption device connected to the secure mode signal path when no power is supplied to the switch, and the signals are routed through the non-secure path when power is supplied to the switch.

Description

    PRIORITY
  • This application is a continuation of U.S. application Ser. No. 11/140,209, filed May 27, 2005, which is a continuation of application Ser. No. 10/733,125, filed Dec. 11, 2003 which claims the benefit of U.S. Provisional Application No. 60/432,478 filed on Dec. 11, 2002, and this application claims the benefit of U.S. Provisional Application No. 60/574,813 filed on May 27, 2004, the contents of each of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates generally to security systems and more particularly to a bypass switch for secure and non-secure video conferencing.
  • BACKGROUND
  • Teleconferencing systems allow virtual meetings among two or more remotely located participants to take place using public switched telephone networks (PSTN) or data networks. Data networks can include local area networks (LAN), wide area networks (WAN), the Internet, etc. A simple teleconference may involve audio conferencing in which the participants share a speakerphone over one or more of the aforementioned networks. In addition to the audio capabilities, a more sophisticated teleconference may involve videoconferencing in which participants can see images of one another during the conference.
  • Videoconferencing typically utilizes non-secure data lines for routing communications data among the participants. Accordingly, due to the inherently unsecured nature of the typical network connections, if users need to communicate sensitive or classified data, special arrangements have to be made before the secured videoconferencing can take place. For example, in the United States (U.S.), the U.S. Department of Defense's Communication Security (COMSEC) and Electro-Magnetic Security (EMSEC) guidance and policy requirements for providing secure and non-secure applications require secure videoconferencing when communicating highly sensitive national security data.
  • Secure conferencing system installations, however, are traditionally labor intensive and require a site-survey and design by specialized secure integration engineers. In addition, the installations are usually designed with little consideration for ease of use. Frequently, a full time on-site technician is needed to complete the numerous “patches” and rerouting to transition between secure and non-secure connections. Thus, there is a need for a videoconferencing system (VTC) that enables users to perform videoconferencing in a secure and non-secure environment while maintaining features such as on-screen dialing for ease of use.
  • SUMMARY
  • To solve the foregoing problems, provided is a secure/non-secure bypass switch, that includes a secure mode signal path, and a non-secure mode signal path, wherein signals are routed through an external encryption device connected to the secure mode signal path when no power is supplied to the switch, and the signals are routed through the non-secure path when power is supplied to the switch.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a diagram illustrating the secure/non-secure bypass switch according to an embodiment of the present invention; and
  • FIG. 2 is a flow diagram illustrating an operating method of the secure/non-secure bypass switch according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may obscure the subject matter of the present invention.
  • Supplying videoconferencing that supports secure and non-secure videoconferencing within the same system requires compliance with COMSEC/EMSEC criteria. Essentially, the criteria require red/black signal separation and isolation as well as Tempest emanation management. The secure and non-secure operations are achieved by engineering systems so that non-encrypted sensitive classified data is not transmitted, intentionally or unintentionally, outside of the Tempest zone, which could lead to the potential interception by adversarial third parties.
  • The present invention is a self-contained secure console providing switch selectable secure and non-secure communications using a predetermined encoding standard. The present invention offers a standardized switch selectable secure/non-secure Internet protocol (IP) videoconferencing communications system.
  • The present invention integrates IP network termination equipment with encryption signal isolation for use with any Ethernet based IP encryptor, for example the KG 175 encryption device or Taclane currently manufactured by General Dynamics. Other encryption/decryption devices are contemplated. This integration creates a single user-friendly console to support switch selectable access to secure and non-secure Ethernet IP networks. The design enables clients to meet the U.S. Department of Defense COMSEC/EMSEC guidance and policy requirements while maintaining the ease of use features such as on-screen dialing and switch selectable security modes.
  • The present invention provides a standard commercial-off-the-shelf (COTS) solution for the installation of secure/non-secure IP video teleconferencing (VTC) systems at multiple locations throughout the world. The present invention optimizes particular communications, however, the communications can be extended beyond the basic design to support other protocols and applications. Future applications or protocols include, but are not limited to, Voice over IP (VoIP), session initiation protocol (SIP), other data networks or speeds other than 10/100 MB Ethernet, including Internet 2 and IPv6, and a secure/non-secure path for data terminals/PCs that require access to different security level data/voice or video. Current applications include cascading VWS-IPs to create a selection or network of three (3) or more. Typical examples of this include endpoints or equipment requiring access to multiple levels of secure data traffic, i.e. unclassified, Secret or Top Secret. Another configuration allows an endpoint access to secure data at times and by selection, and to isolate the endpoint from all IP networks. This is accomplished by connecting the secure network interface to a secure network and leaving the non-secure interface unconnected from any network. Any IP LAN domain or device that requires switching and isolation between secure and non-secure or any two physical IP LAN domains on a periodic basis is a candidate application.
  • The present invention provides a “turn-key” solution for clients requiring shared utilization of VTC systems in both secure and non-secure applications. Other applications such as providing a secure network switch between various network components are also contemplated.
  • The present invention employs fiber optic coupling, wave-guide technologies and a secure/non-secure signal switching module (VWS-IP) design to provide failsafe certified separation and isolation. An incorporated mode indicator, for example a lighting system or other visual display, and toggle switch can be provided for additional visual confirmation of status, and further eliminates any opportunity for user error. Unlike systems built upon untested and unconfirmable manual A/B switching, the present invention provides verifiable failsafe compliance.
  • To overcome the shortcomings of existing secure/non-secure switches, and to address security issues for users that desire to utilize their video conferencing system in a secure or non-secure mode, the present invention has been developed. The bypass switch design according to the present invention addresses secure/non-secure video communications with the desire to meet and exceed COMSEC/EMSEC security criteria.
  • The present invention provides a reliable and failsafe bypass switch designed in a self-contained security console providing user-friendly, switch selectable, secure and non-secure communications. A typical system would integrate network termination equipment, the VWS-IP, encryption signal isolation, ISEC control module, Taclane or encryptor mounting rack, and a special mounting rack to create a single, user-friendly system.
  • The VWS-IP is a self-contained module allowing remote controlled switching between secure and non-secure paths while maintaining the highest degree of red/black separation. The VWS-IP can be contained in a rack mountable metal EMI/RFI housing. The housing would be divided into two separate chambers by an internal metal bulkhead. Secure/non-secure mode selection is accomplished with presence/absence of A/C power to the VWS-IP. Each chamber contains at least one set of 4 non-latching electromechanical relay contacts. The number of contacts depends on the signal formats being processed. The default (de-energized) relay state is the secure mode. During secure operation, the VWS-IP is a completely passive connection with no active electronics. In fact, it has no power applied. The separate EMI/RFI chambers provide shielding between the red and black signals contained within each compartment.
  • FIG. 1 is a diagram illustrating the secure/non-secure bypass switch according to an embodiment of the present invention. The present invention connects to both red (secure) and black (non-secure) Ethernet IP networks. The Ethernet networks terminate onto RJ-45/DB-9 connections contained on the system. This termination can be one of the optional routers 250 or 251, or connect directly to the VWS-IP switch network interfaces 101 and 201. The network interfaces 101 and 201 are designed to accommodate two types of networks that require isolation from each other. Typical examples are a secure and a non-secure network, but other configurations are possible including the option of having two types of secure networks and configuring the switch in reverse, e.g., have two endpoints, and the option of selecting one of the endpoints to connect to the network one at time.
  • For purposes of this description, the term “secure LAN network” typically describes a physical Ethernet RJ-45/DB-9 interface that carries various levels of classified (i.e., sensitive to Top Secret) data, and must be encrypted so that it can only be read after it has been decrypted by an encryption device with an appropriate key. Also for purposes of this document, the term “non-secure LAN Network” describes a physical Ethernet RJ-45/DB-9 interface that carries unclassified data that does not require an encryption device to decrypt the data but can be read by anyone receiving the data. For purposes of this document, the term “Red Data” is data that has been decrypted and can be viewed by anyone in the public domain. For purposes of this document, the term “Black Data” refers to data that has been encrypted for transmission and cannot be viewed in the public domain.
  • It is also contemplated that the Secure LAN network interface may be a trunk-encrypted network that has already been decrypted; hence the ISEC-IP would not contain a local encryptor as it is elsewhere in the network. In this scenario, a typical configuration would include a jumper cable between 301 and 401. The non-secure LAN interface 201 is typically designed for unclassified data or unencrypted information; the secure LAN interface 101 is typically designed for classified data or encrypted information; the encryptor Black side interface 301 is typically designed for connection to the encryptor black side or cipher text port; and, the encryptor Red side interface 401 is typically designed for connection to the encryptor Red side or the plain text port. The Video Codec port 501 is typically designed to connect to the video codec 600 or to an optional Red side router 700.
  • A user selects the mode of the present invention by positioning the tabletop Switch 900 into one of two modes, secure or non-secure. This causes the ISEC Control Module 800 to either apply or deny power to the VWS-IP switch 1000. This also illuminates the proper status on a wall sign 950 that denotes “SECURE” or “NON-SECURE.” The denial or application of power is a core element to the design of the present invention. During secure operation, or Mode “A”, there is no power applied to the switch and therefore no active path to the non-secure side, only the powered down fiber optic modems 452 and 152 and a dark or unlit fiber connection. This provides complete and thorough isolation between the Red 450 and Black 150 compartments. The actual data flow into the VWS-IP can include either a Red 700 or LAN side IP router (250 and/or 251) or both for IP address translation. For the purposes of this description, the routers are a convenience and are not material to this unique design.
  • The denial of power to the VWS-IP switch 1000 puts the switch into Mode “A” Secure. The secure network interface RJ-45/DB-9 Ethernet 101 is connected to an electronic A/B relay switch 151 in the VWS-IP that in the secure mode (VWS-IP power off mode) is in mode “A”. This, by default, creates a data path from the Secure LAN interface 101 on the Black side of the VWS-IP 150 to the encryption device 350, using Ethernet RJ-45/DB-9 connection 301. The data path is then encrypted by the encryption device 350 with the plain text or decrypted data interface connected to the VWS-IP switch Ethernet RJ-45/DB-9 connection 401. The input from connection 401 is connected to a second A/B relay 451 on the Red side 450 of the VWS-IP, which defaults the data path to the codec port interface 501. Interface 501 can be directly connected to the codec device 600 or a Red side IP router 700, which provides the alias IP address translation to the codec. The router 700 can be used for many reasons including enabling the codec to have a bogus or false non-routable IP address or if data needs to be routed to subnet addresses on the network.
  • The application of power to the VWS-IP switch 1000 by the ISEC Control Module 800 puts the VWS-IP switch 1000 into Mode “B” Non Secure or the Powered mode. Black A/B relay switch 151 is open in mode “B” when power is applied. This opens the connection between 101 and 301 to provide a break in the signal path leading to the encryption device 350. The non-secure network RJ-45/DB-9 Ethernet interface is connected to the VWS-IP switch non-secure LAN interface 201 in the VWS-IP 1000, which in the non-secure mode (VWS-IP powered mode) is in mode “B”. This interface is always connected to the Black side fiber optic modem 152 in the VWS-IP. The output light stream from the modem connects to the Black side bulkhead wave-guide connector via a fiber optic cable. The light output is then received on the Red side bulkhead connector into a Red side fiber, which is connected to the Red side fiber optic modem 452. The output of the Red side fiber optic modem 452 is routed to the Red side A/B switch relay 451 and, in the powered on mode “B”, routes all data to the codec port 501 of the VWS-IP. Interface 501 can be directly connected to the codec device 600 or a Red side IP router 700, which provides the alias address translation to the codec. This router can be used for many reasons including enabling the codec to have a bogus or false non-routable IP address or if data needs to be routed to subnet addresses on the network.
  • In either the secure or non-secure mode, the video codec 600 is connected to I/O devices. These devices may include microphones, displays, speakers, etc.
  • The power supply also contains an IEC 122, universal offline converter 123, and power filter 124. Other power supply configurations are contemplated. The power supply applies current to the relays and the fiber- optic modems 452 and 152. If the system is operating in secure mode, the power to the fiber optic modems 452 and 152 is also terminated to prevent an unintended signal being conducted on the unencrypted path.
  • In the preferred embodiment, a user simply flips a switch on a tabletop switch module 900 into the “SECURE” or “NON-SECURE” mode. This triggers the system control module to perform several functions. Among them are:
  • A. In NON-SECURE mode:
      • 1. Power up the system VWS- IP sides 150 and 450, which in turn places the system into the non-secure mode, and
      • 2. Changes a security status indicator display 950 to “NON-SECURE”.
  • B. In SECURE mode:
      • 1. Powers down the system VWS- IP sides 150 and 450 and places the system into the default secure mode, and
      • 2. Changes the security status indicator display 950 to “SECURE”.
  • To prevent the unintentional disclosure of sensitive information during a non-secure conference in situations such as this, the system can include automated secure/non-secure status indicators. This provides a prominent visual reminder of the security level for the current conference.
  • FIG. 2 is a flow diagram illustrating an operating method of the secure/non-secure bypass switch according to an embodiment of the present invention. At 1101 a determination is made as to whether the system is in a secure or non-secure mode. If it is determined at 1101 that the current mode is the non-secure mode, at 1103 the signals are received at interface 201 and then sent to the first or Black side fiber optic modem 152, and simultaneously relay 151 disconnects to the secure path between 101 and 301. At 1105 the signals are sent to the second or Red side fiber optic modem 452. At step 1107, signals pass through energized relay 451. At step 1107 in non-secure mode, the signals are routed from 451 to interface 501. Finally, the signals are processed by video codec 600. The reverse non-secure path processes signals in the reverse direction.
  • At 1101, if it is determined that the current mode is secure, the connection is switched to secure routing through the VWS-IP 1000, and routing is done via the encryption device 350. At 1102, the signal is received at interface 101 and then to black side relay 151. At 1104 the signal is routed to interface 301 through relay 151. At 1106 the signal is routed through encryption device 350 for encryption/decryption, and then to interface 401 at step 1108. Next at step 1110 the signal is routed to the Red side relay 451, and then routed through interface 501 at step 1112. Finally, in secure mode, the signal is sent to video codec 600 for processing. The reverse path processes secure signals in the reverse direction.
  • As stated earlier, human error can unintentionally defeat the most robust COMSEC/EMSEC countermeasures. The physical appearances of the VTC system will be the same in either mode of operation and a participant in a secure VTC may logically assume that they can freely discuss classified information on subsequent conferences over the same system. To prevent the unintentional disclosure of sensitive information during a non-secure conference, the system according to the present invention provides an automated secure/non-secure status indicator display. This provides a prominent visual reminder of the security level for the current conference.
  • The VWS-IP design increases the isolation and separation level by terminating all power during secure operation. The VWS-IP provides the convenience and ease of use of an electro-mechanically controlled switch while exceeding the electronic separation of manual red and black patch panels in separate EMI/RFI enclosures.
  • While the invention has been described with reference to several embodiments, it will be understood by those skilled in the art that the invention is not limited to the specific forms shown and described. Thus, various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (1)

1. A secure/non-secure bypass switch, comprising:
a secure mode signal path; and
a non-secure mode signal path,
wherein signals are routed through an external encryption device connected to the secure mode signal path when no power is supplied to the switch, and the signals are routed through the non-secure path when power is supplied to the switch.
US12/369,551 2002-12-11 2009-02-11 Self-contained secure videoconferencing console Abandoned US20090141119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/369,551 US20090141119A1 (en) 2002-12-11 2009-02-11 Self-contained secure videoconferencing console

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US43247802P 2002-12-11 2002-12-11
US10/733,125 US7519298B2 (en) 2002-12-11 2003-12-11 VWS secure/non-secure bypass switch
US57481304P 2004-05-27 2004-05-27
US11/140,209 US7539421B2 (en) 2002-12-11 2005-05-27 Self-contained secure videoconferencing console
US12/369,551 US20090141119A1 (en) 2002-12-11 2009-02-11 Self-contained secure videoconferencing console

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/140,209 Continuation US7539421B2 (en) 2002-12-11 2005-05-27 Self-contained secure videoconferencing console

Publications (1)

Publication Number Publication Date
US20090141119A1 true US20090141119A1 (en) 2009-06-04

Family

ID=32600092

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/733,125 Expired - Fee Related US7519298B2 (en) 2002-12-11 2003-12-11 VWS secure/non-secure bypass switch
US11/140,209 Expired - Fee Related US7539421B2 (en) 2002-12-11 2005-05-27 Self-contained secure videoconferencing console
US12/369,540 Expired - Fee Related US8103169B2 (en) 2002-12-11 2009-02-11 VWS secure/non-secure bypass switch
US12/369,551 Abandoned US20090141119A1 (en) 2002-12-11 2009-02-11 Self-contained secure videoconferencing console

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/733,125 Expired - Fee Related US7519298B2 (en) 2002-12-11 2003-12-11 VWS secure/non-secure bypass switch
US11/140,209 Expired - Fee Related US7539421B2 (en) 2002-12-11 2005-05-27 Self-contained secure videoconferencing console
US12/369,540 Expired - Fee Related US8103169B2 (en) 2002-12-11 2009-02-11 VWS secure/non-secure bypass switch

Country Status (1)

Country Link
US (4) US7519298B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288142B2 (en) * 2011-01-07 2016-03-15 Bae Systems Plc Router and system for interconnecting networks having differing levels of security classification

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519298B2 (en) * 2002-12-11 2009-04-14 Criticom Critical Communications VWS secure/non-secure bypass switch
US7477614B2 (en) * 2004-04-29 2009-01-13 Sandia Corporation Secure videoconferencing equipment switching system and method
US8200792B2 (en) * 2009-08-10 2012-06-12 Freeport Technologies, Incorporated Desktop secure video teleconferencing
US8548417B2 (en) 2009-08-10 2013-10-01 Freeport Technologies, Inc. Secure control for desktop secure video teleconferencing
US8432835B1 (en) * 2010-02-03 2013-04-30 Sandia Corporation Secure videoconferencing equipment switching system and method
FR2989854B1 (en) * 2012-04-23 2014-05-09 Team SWITCH FOR SELECTIVELY CONNECTING A RECEIVER TO ONE OF TWO SOURCES OF SIGNALS, AND COMMUNICATION MANAGEMENT PLANT COMPRISING SUCH A SWITCH
US20240097435A1 (en) * 2022-09-19 2024-03-21 Industrial Technology Research Institute Bypass seamless switching apparatus and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903298A (en) * 1988-07-27 1990-02-20 Sunstrand Data Control, Inc. System for providing encryption and decryption of voice and data transmissions to and from an aircraft
US7519298B2 (en) * 2002-12-11 2009-04-14 Criticom Critical Communications VWS secure/non-secure bypass switch
US7623149B2 (en) * 2002-09-13 2009-11-24 Criticom, Inc. Integrated secure encryption apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666402A (en) * 1994-04-05 1997-09-09 Electro-Metrics, Inc. Fiber optic telephone line extension system
US6202153B1 (en) * 1996-11-22 2001-03-13 Voltaire Advanced Data Security Ltd. Security switching device
GB9705770D0 (en) * 1997-03-20 1997-05-07 Scherer Corp R P Gelatin encapsulation techniques
US20050025302A1 (en) * 2002-07-23 2005-02-03 Greg Schmid Virtual private switched telecommunications network
US6578089B1 (en) * 1999-04-19 2003-06-10 Emcon Emanation Control Ltd. Multi-computer access secure switching system
US6643783B2 (en) * 1999-10-27 2003-11-04 Terence T. Flyntz Multi-level secure computer with token-based access control
US6763226B1 (en) * 2002-07-31 2004-07-13 Computer Science Central, Inc. Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903298A (en) * 1988-07-27 1990-02-20 Sunstrand Data Control, Inc. System for providing encryption and decryption of voice and data transmissions to and from an aircraft
US7623149B2 (en) * 2002-09-13 2009-11-24 Criticom, Inc. Integrated secure encryption apparatus
US7519298B2 (en) * 2002-12-11 2009-04-14 Criticom Critical Communications VWS secure/non-secure bypass switch
US7539421B2 (en) * 2002-12-11 2009-05-26 Criticom Critical Communication Self-contained secure videoconferencing console

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cycomm-1000 Series Voice Scrambler brochure, CYCOMM, Inc., 1988. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288142B2 (en) * 2011-01-07 2016-03-15 Bae Systems Plc Router and system for interconnecting networks having differing levels of security classification

Also Published As

Publication number Publication date
US20090147069A1 (en) 2009-06-11
US7539421B2 (en) 2009-05-26
US20040120707A1 (en) 2004-06-24
US20090087178A1 (en) 2009-04-02
US7519298B2 (en) 2009-04-14
US8103169B2 (en) 2012-01-24

Similar Documents

Publication Publication Date Title
US20090141119A1 (en) Self-contained secure videoconferencing console
US9531776B2 (en) Multimedia communication control unit as a secure device for multimedia communication between LAN users and other network users
US6831675B2 (en) System and method for videoconference initiation
US9094739B2 (en) Internet protocol switching system and associated method of use
EP1145521B1 (en) SYSTEM AND METHOD FOR ENABLING SECURE CONNECTIONS FOR H.323 VoIP CALLS
US20010056466A1 (en) Communication system architecture for voice first collaboration
US7623149B2 (en) Integrated secure encryption apparatus
WO2002019644A1 (en) Firewall control for secure private networks with public voip access
CN114553509A (en) Information internal and external network video conference intercommunication system and method based on isolation device
US8200792B2 (en) Desktop secure video teleconferencing
US8442228B2 (en) Multi-class switching system and associated method of use
US20030083009A1 (en) Access device internet lock out reature
EP1949682A1 (en) Method for gatekeeper streaming
CN100379231C (en) A multimedia communication safe proxy gateway and safety proxy method
US7477614B2 (en) Secure videoconferencing equipment switching system and method
Ayokunle Integrating Voice over Internet Protocol (VoIP) technology as a communication tool on a converged network in Nigeria
US20050243803A1 (en) Dual-path data network connection method and devices utilizing the public switched telephone network
EP2154863A2 (en) Communications Network Bridge
US8032934B2 (en) Network security system and the method thereof
KR100602600B1 (en) VoIP Traffic Processing System
US20070019635A1 (en) Method and system for call processing
RU2749879C1 (en) Mobile multifunctional communication complex
US7187763B1 (en) Secure method for conferencing through a remote PBX
KR20030041712A (en) Video conference system using network
Eze et al. Design, Simulation and Pilot Implementation of a Campus Area Network That Supports Teleconferencing

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION