[go: up one dir, main page]

US20090126195A1 - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
US20090126195A1
US20090126195A1 US11/979,030 US97903007A US2009126195A1 US 20090126195 A1 US20090126195 A1 US 20090126195A1 US 97903007 A US97903007 A US 97903007A US 2009126195 A1 US2009126195 A1 US 2009126195A1
Authority
US
United States
Prior art keywords
race
plate material
roller bearing
rollers
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/979,030
Inventor
Noriyuki Takeo
Satoshi Kodokawa
Akira Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003327914A external-priority patent/JP2005090696A/en
Priority claimed from JP2003407487A external-priority patent/JP2005180459A/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to US11/979,030 priority Critical patent/US20090126195A1/en
Publication of US20090126195A1 publication Critical patent/US20090126195A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/008Identification means, e.g. markings, RFID-tags; Data transfer means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/906Antirotation key
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing

Definitions

  • the present invention relates to a roller bearing used in an internal combustion engine and an internal combustion engine using the same.
  • a pair of cam lobes are generally formed in each cylinder, and journal portions which are supported by rolling bearings are disposed between the cam lobes or between the cam lobe and a large-diameter end portion. Therefore, there is a problem in that ordinary rolling bearings cannot be fitted on the journal portions by passing the cam lobes and the like which project more radially outward. Accordingly, it has been conceived to circumferentially split retainers of rolling bearings and to build these split retainers onto the journal portions from the radially outer side without passing the cam lobes and the like, in the same way as conventionally used sliding bearings (refer to JP-A-2001-12214).
  • the present invention has been devised in view of the above-described problems, and its object is to provide a roller bearing which is capable of appropriately supporting a camshaft or a crankshaft with lower friction, as well as an internal combustion engine using the same.
  • the invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap of the internal combustion engine
  • the roller bearing includes: a plurality of rollers; a retainer which is circumferentially splittable and supports the plurality of rollers; and an outer race which is circumferentially splittable and forms a raceway surface for the plurality of rollers; wherein the retainer is split into a plurality of retaining members; the outer race is split into a plurality of race plates; and at least one of the race plates is provided with one of a projection and a cavity to be engaged with one of the main body and the cap to restrict a relative movement between the one of the race plates and the one of the cylinder head and the cap.
  • the invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap of the internal combustion engine
  • the roller bearing includes: a plurality of rollers; a retainer which is circumferentially splittable and supports the rollers; and an inner race which is circumferentially splittable and forms a raceway surface for the rollers; wherein the retainer is split into a plurality of retaining members; the inner race is split into a plurality of race plates; and at least one of the race plates is provided with one of a projection and a cavity to be engaged with the rotating shaft to restrict a relative movement between the one of the race plates and the rotating shaft.
  • the invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap, including: a plurality of rollers; a retainer which is circumferentially splittable and supports the rollers; and an outer race which is circumferentially splittable and forms a raceway surface for the rollers; wherein the retainer is split into a plurality of split retaining members; the outer race is split into a plurality of split race plates; the race plates are disposed into concave portions of the main body and the cap; and the race plates in a free state have greater radii of curvature than radii of curvature of the concave portions.
  • the invention provides a method of manufacturing a race plate in a roller bearing for an internal combustion engine, wherein the roller bearing includes a plurality of rollers, a retainer which is circumferentially splittable into a plurality of retaining members for supporting the rollers, and an outer race which is circumferentially splittable into a plurality of race plates for forming a raceway surface for the rollers, the method including: stamping out a plate material such that at least one end thereof is formed in such a shape as to be complementary to an end of another plate material; surface pressing at least one end side of the stamped-out plate material; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to barreling.
  • the invention provides a method of manufacturing a retainer in a roller bearing for an internal combustion engine, wherein the roller bearing includes a plurality of rollers, a retainer which is circumferentially splittable into a plurality of retaining members for supporting the rollers, and an outer race which is circumferentially splittable into a plurality of race plates for forming a raceway surface for the rollers, the method includes: stamping out a plate material such that the width of a column portion located closest to an end portion formed in the retainer is narrower than the width of other column portions; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to at least one of copper plating and silver plating.
  • FIG. 1 is an exploded view of a cylinder head of an internal combustion engine in accordance with an embodiment of the invention
  • FIG. 2 is a partially enlarged view of a camshaft
  • FIG. 3 is a perspective view of a race plate and a cap illustrating a modification of this embodiment
  • FIG. 4 is an exploded view of a cylinder block of an internal combustion engine in accordance with this embodiment
  • FIG. 5 is a partially enlarged view of the camshaft
  • FIG. 6 is a flowchart illustrating a process for manufacturing the race plates in accordance with this embodiment
  • FIG. 7 is a diagram illustrating the shape a plate material M after its stamping for forming the race plate
  • FIG. 8 is a side elevational view illustrating a state in which a race in accordance with this embodiment is built in a cap or the like;
  • FIG. 9 is a flowchart illustrating the process of manufacturing a retaining member in accordance with this embodiment.
  • FIG. 10 is a diagram illustrating the shape of a plate material N after its stamping for forming the retaining member
  • FIG. 11 is an exploded view of an engine block of an internal combustion engine in accordance with this embodiment.
  • FIG. 12A is a view illustrating a state in which ends of retaining members in accordance with another embodiment are abutted against each other, and is a view taken from a radial direction;
  • FIG. 12B is a view illustrating a state in which the ends of the retaining members are abutted against each other, and is a view taken from an axial direction;
  • FIG. 13 is a diagram illustrating a connecting rod to which roller bearings in accordance with still another embodiment are applied.
  • FIG. 1 is an exploded view of a cylinder head of an internal combustion engine in accordance with this embodiment, but a camshaft is not shown.
  • FIG. 2 is a partially enlarged view of the camshaft.
  • the unillustrated camshaft is assembled to a cylinder head 10 as semiannular caps 11 are fitted on the camshaft and fastened to the cylinder head 10 by means of bolts 12 (only one bolt is shown).
  • a camshaft 13 has a pair of cam lobes 13 a , a cylindrical journal portion 13 b supported by a roller bearing 14 , and a large-diameter end portion 13 d .
  • the outside diameter of the journal portion 13 b is smaller than the largest dimension of each cam lobe 13 a and the outside diameter of the large-diameter end portion 13 d .
  • the roller bearing 14 in this embodiment has a plurality of rollers 14 a , circumferentially two-split substantially semicylindrical retaining members 14 c and 14 d , and circumferentially two-split substantially semicylindrical race plates 14 e and 14 f disposed between the cylinder head 10 and the caps 11 .
  • the retaining members 14 c and 14 d constitute a retainer
  • the race plates 14 e and 14 f constitute an outer race
  • inner peripheral surfaces of the race plates 14 e and 14 f constitute raceway surfaces for the rollers.
  • circumferential both ends of the retaining member 14 c have waveform shapes (combinations of recessed and projecting shapes) similar to sine curves, while circumferential both ends of the retaining member 14 d opposing thereto have complementary waveform shapes (combinations of projecting and recessed shapes).
  • a circumferential end of the race plate 14 e has a wedge shape, and the other end thereof has a V-shape.
  • a circumferential end of the race plate 14 f opposing thereto has a complementary V-shape, and the other end thereof has a complementary wedge shape.
  • the race plate 14 e on the cap 11 side has a pair of projections (formed by bending projecting pieces) 14 g projecting radially outwardly from both sides of its central portion. Meanwhile, cavities 11 a (only one is shown) corresponding to the projections 14 g are formed in the cap 11 .
  • the arrangement provided is such that when the race plate 14 e is assembled to the cap 11 , its projections 14 g respectively engage the cavities 11 a , thereby preventing the circumferential movement and axial movement of the race plate 14 e with respect to the cap 11 .
  • the race plate 14 f has a pair of projections (formed by bending projecting pieces) 14 h projecting radially outwardly from both sides of its central portion. Meanwhile, cavities 10 b (only one is shown) corresponding to the projections 14 h are formed in a receiving portion 10 a of the cylinder head.
  • the arrangement provided is such that when the race plate 14 f is assembled to the receiving portion 10 a , its projections 14 h respectively engage the cavities 10 b , thereby preventing the circumferential movement and axial movement of the race plate 14 f with respect to the receiving portion 10 a.
  • the cylindrical retainer is formed by combining the ends of the retaining members 14 c and 14 d , the movement of load between the retaining members 14 c and 14 d ceases to be abrupt by virtue of the combination of the waveform shapes of their ends during the operation of the roller bearing 14 .
  • the waveform projecting shapes at their ends restrict the axial movement of the retaining members 14 c and 14 d , the operation of the roller bearing 14 can be effected smoothly.
  • the cylindrical outer race is formed by combining the ends of the race plates 14 e and 14 f , the movement of load when the roller 14 a crosses over between the race plates 14 e and 14 f ceases to be abrupt by virtue of the combination of the wedge shape and the V-shape at their ends during the operation of the roller bearing 14 .
  • the axial movement of the race plates 14 e and 14 f is restricted, the operation of the roller bearing 14 can be effected smoothly.
  • race plates 14 e and 14 f are separately subjected to hardening treatment or the like, their hardness can be increased, and their wear resistance can be improved. Therefore, it becomes unnecessary to provide hardening treatment to supporting portions of the cylinder head 10 , and it becomes possible to simplify the manufacturing process.
  • an inner race which is split in the same way as the outer race is provided between the roller bearing 14 and the journal portion 13 b of the camshaft 13 , it becomes unnecessary to provide hardening treatment to the journal portion 13 b of the camshaft 13 , so that it is possible to simplify the manufacturing process.
  • ends of the retaining members 14 c and 14 d may be formed in a wedge shape and a V-shape
  • the ends of the race plates 14 e and 14 f may be formed in waveform shapes, or may be formed in such straight end shapes as are not perpendicular to both side edges (the race plate, when developed into a plan, assumes the shape of a parallelogram). Namely, it suffices if the ends overlap each other in the axial direction when the opposing race plates are abutted against each other.
  • FIG. 3 is a perspective view of the race plate and the cap illustrating a modification of this embodiment.
  • a race plate 14 e ′ has a shape in which its both ends are cut in a plane including the axis of the race.
  • Two projections 14 g ′ are formed at outer peripheries of the respective ends.
  • cavities 11 a ′ corresponding to the projections 14 g ′ are formed in a cylindrical inner peripheral surface of the cap 11 ′.
  • the arrangement provided is such that when the race plate 14 e ′ is assembled to the cap 11 ′, its projections 14 g ′ respectively engage the cavities 11 a ′, thereby preventing the circumferential movement and axial movement of the race plate 14 e ′ with respect to the cap 11 ′.
  • cavities may be provided in the race, and projections may be provided on the cap.
  • a similar arrangement may be provided between the receiving portion of the cylinder head and the race plate fitted to the bottom.
  • FIG. 4 is an exploded view of the cylinder block of an internal combustion engine in accordance with this embodiment.
  • a crankshaft 23 is assembled to a cylinder block 20 as a bearing cap (also called a cap) 21 is fitted on the crankshaft 23 and fastened to the cylinder block 20 by means of unillustrated bolts.
  • the crankshaft 23 has cylindrical journal portions 23 b supported by roller bearings 24 .
  • the roller bearing 24 in this embodiment has a plurality of rollers 24 a and circumferentially two-split retaining members 24 c and 24 d .
  • the retaining members 24 c and 24 d constitute a retainer.
  • race plates such as those shown in FIGS. 1 and 2 are disposed between, on the one hand, the retaining members 24 c and 24 d and, on the other hand, the cylinder block 20 and the cap 21 .
  • FIG. 5 is a partially enlarged view of the camshaft in accordance with a modification of this embodiment.
  • a roller bearing 14 ′ in accordance with this modification has the plurality of rollers 14 a , the circumferentially two-split substantially semicylindrical retaining members 14 c and 14 d , and circumferentially two-split substantially semicylindrical race plates 14 s and 14 t disposed between, on the one hand, the retaining members 14 c and 14 d and, on the other hand, a camshaft 13 ′.
  • the retaining members 14 c and 14 d having shapes similar to those of the embodiment shown in FIG. 2 constitute a retainer
  • the race plates 14 s and 14 t constitute an inner race
  • outer peripheral surfaces of the race plates 14 s and 14 t constitute raceway surfaces for the rollers.
  • a circumferential end of the race plate 14 s has a wedge shape, and the other end thereof has a V-shape.
  • a circumferential end of the race plate 14 t opposing thereto has a complementary V-shape, and the other end thereof has a complementary wedge shape.
  • each of the race plates 14 s and 14 t has a pair of projections (formed by bending projecting pieces) 14 m and 14 n projecting radially inwardly from both sides of their central portions.
  • cavities 13 e ′ corresponding to the projections 14 m and 14 n are formed in a journal portion 13 b ′ of the camshaft 13 ′.
  • the arrangement provided is such that when the race plates 14 s and 14 t are assembled to the camshaft 13 ′, their projections 14 m and 14 n respectively engage the cavities 113 e ′, thereby preventing the circumferential movement and axial movement of the race plates 14 s and 14 t with respect to the camshaft 13 ′.
  • the cylindrical inner race is formed by combining the ends of the race plates 14 s and 14 t , the movement of load when the roller 14 a crosses over between the race plates 14 s and 14 t ceases to be abrupt by virtue of the combination of the wedge shape and the V-shape at their ends during the operation of the roller bearing 14 .
  • the axial movement of the race plates 14 s and 14 t is restricted, the operation of the roller bearing 14 can be effected smoothly.
  • race plates 14 s and 14 t are separately subjected to hardening treatment or the like, their hardness can be increased, and their wear resistance can be improved. Therefore, it becomes unnecessary to provide hardening treatment to the journal portion 13 b ′ of the camshaft 13 , and it becomes possible to simplify the manufacturing process.
  • a similar inner race may be used jointly with the outer race shown in FIG. 2 , and can similarly be mounted on a crankshaft as well.
  • the retainer may be circumferentially split into three or more parts.
  • roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging one of the cylinder head and the cap to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the cylinder head or the cap is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the cylinder head or the cap. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging camshaft to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the camshaft is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the camshaft. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • At least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to and at least overlap in an axial direction with a circumferential end of an opposing one of the retaining members, the arrangement is preferable for a similar reason.
  • roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging one of the cylinder block and the cap to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the cylinder block or the cap is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the cylinder block or the cap. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging crankshaft to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the crankshaft is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the crankshaft. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • At least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to and at least overlap in an axial direction with a circumferential end of an opposing one of the retaining members, the arrangement is preferable for a similar reason.
  • the gap between the opposing ends of the retaining members 14 c and 14 d at the time of assembly is greater than 0 mm at a minimum reference temperature (e.g., ⁇ 40° C.) (the gap being 0.1 to 2.5 mm at normal temperature), even when the internal combustion engine is cold started, the deformation of the retainers does not occur, and it is possible to ensure proper operation of the roller bearings 14 .
  • a minimum reference temperature e.g., ⁇ 40° C.
  • the gap between the opposing ends of the race plates 14 e and 14 f at the time of assembly is greater than 0 mm at a minimum reference temperature (e.g., ⁇ 40° C.) (preferably, the gap being not less than 0.1 mm and not more than 1.0% of the outside diameter of the race), even when the internal combustion engine is cold started, the deformation of the races does not occur, and it is possible to ensure proper operation of the roller bearings 14 .
  • a minimum reference temperature e.g., ⁇ 40° C.
  • FIG. 6 is a flowchart illustrating a process for manufacturing the race plates in accordance with this embodiment.
  • the thickness of the plate material which is used as the material of the race plates is preferably 0.5 to 1.5 mm. The reason is that if the thickness is smaller than 0.5 mm, the race plates are liable to crack during heat treatment, whereas if the thickness exceeds 1.5 mm, their rigidity becomes excessively high, and the degree of close contact declines, possibly making it impossible to obtain satisfactory roundness.
  • such a plate material M is stamped out.
  • the shape of such a plate material M is shown in FIG. 7 .
  • vicinities of both ends of the plate material M are subjected to surface pressing.
  • burrs at the ends of the stamped plate material M are corrected, and since the shapes of the ends are corrected, the accuracy at the time of assembly improves.
  • the radius of curvature r 1 at the tip of the pointed end of the plate material M is greater than the radius of curvature r 2 at the innermost portion of the opposite recessed end.
  • Step S 103 the plate material M is subjected to rolling.
  • the plate material M is bent such that, in FIG. 8 , the radius curvature R 2 on the outer peripheral surface of the plate material M in a free state (i.e., the race plate) becomes slightly greater than the radius of curvature R 1 of a concave portion C of the receiving portion or the cap.
  • the race plate is made to conform thereto, and the roller rolls along the truly round raceway surface. Therefore, it is possible to suppress unwanted vibrations and prolong the life of the roller bearing.
  • the plate material M is rolled such that the shear plane occurring at the time of stamping is located on the inner side (raceway surface side), it is possible to avoid effects such as burrs occurring at the fractured surface.
  • Step S 104 in FIG. 6 the rolled plate material M is subjected to heat treatment including quenching and tempering.
  • Step S 105 the plate material M is subjected to barreling to remove burrs and the like, thereby completing the race plate.
  • FIG. 9 is a flowchart illustrating the process of manufacturing the retainer in accordance with this embodiment.
  • Step S 201 in FIG. 9 such a plate material N is stamped out.
  • the shape of such a plate material N is shown in FIG. 10 .
  • column portions Na and Nb are produced as pockets are formed by being punched out in the plate material N.
  • the width (P/2) of the column portion Na at each end is half the width (P) of each of the other column portions Nb. Accordingly, in a case where a retainer is formed by combining a pair of retaining members formed from such plate materials N, intervals between rollers retained in the pockets can be set to be equal intervals irrespective of places.
  • the width of the column portion Na at each end is not limited to half the width of each of the other column portions Nb, and is sufficient if it is smaller than the same.
  • Step S 202 in FIG. 9 the plate material N is subjected to rolling.
  • Step S 203 the rolled plate material N is subjected to heat treatment including quenching and tempering, and is subjected to barreling to remove burrs and the like in Step S 204 .
  • Step S 205 the plate material N is subjected to copper plating or copper plus silver plating, thereby completing the retainer.
  • FIG. 11 is an exploded view of an engine block of an internal combustion engine in accordance with this embodiment.
  • the bearing cap (also called the cap) 21 is fastened to the engine block 20 by means of unillustrated bolts to form cylindrical surfaces.
  • the crankshaft 23 is assembled to the engine block 20 by means of the bearings 24 which are disposed on the inner sides of the cylindrical surfaces.
  • the crankshaft 23 has the cylindrical journal portions 23 b supported by the roller bearings 24 .
  • Each of the roller bearings 24 has the plurality of rollers 24 a and the circumferentially two-split retaining members 24 c and 24 d .
  • the retaining members 24 c and 24 d constitute the retainer.
  • race plates such as those shown in FIGS. 1 and 2 are disposed between, on the one hand, the retaining members 24 c and 24 d and, on the other hand, the engine block 20 and the cap 21 . In this embodiment as well, advantages similar to those of the above-described embodiments are obtained.
  • FIG. 12A is a view illustrating a state in which ends of retaining members 23 ′ in accordance with another embodiment are abutted against each other, and is a view taken from a radial direction.
  • FIG. 12B is a view illustrating a state in which the ends of the retaining members 23 ′ are abutted against each other, and is a view taken from an axial direction.
  • chamfered portions RC of an arbitrary angle or radius of curvature are formed at corners of the ends of the retaining members 23 ′ as viewed in the radial direction.
  • the chamfered portions RC of the arbitrary angle or radius of curvature are also formed at inner corners of the ends of the retaining members 23 ′ as viewed in the axial direction. It should be noted that although outer peripheral surfaces at the ends of the retaining members 23 ′ should essentially form portions of the cylindrical surface by rolling, it suffices if the outer peripheral surfaces at the ends of the retaining members 23 ′ are subjected to cutting or surface pressing so that flat surfaces will be formed over a distance ⁇ (e.g., 1 mm) from the respective ends.
  • e.g., 1 mm
  • FIG. 13 is a diagram illustrating a connecting rod to which the roller bearings in accordance with still another embodiment are applied.
  • a connecting rod 30 is splittable, and is comprised of a cap 31 and a main body 32 .
  • a race member 34 f similar to that of the above-described embodiments is fitted in the concave portion of the main body 32 , and a similar race member 34 e is also fitted in the concave portion of the cap 31 .
  • the cap 31 and the main body 32 are made to approach a pin portion 23 c of the crankshaft from both sides thereof with the interposition of retaining members 34 c and 34 d having shapes similar to the above-described ones and adapted to retain the rollers, and are fastened to each other by means of two bolts 35 .
  • the connecting rod 30 is thereby integrally fitted to the crankshaft. It should be noted that a bush 30 a is disposed at a small end portion of the connecting rod 30 to hold an unillustrated piston pin relatively rotatably.
  • the race plates are built on concave portions of the main body and the cap, and the race plates in a free state have greater radii of curvature than radii of curvature of the concave portions. Therefore, even if the accuracy of the race plates in a free state is slightly poor, by building the race plates are built on the concave portions, the race plates are deformed in such a manner as to conform to the roundness of the concave portions. Hence, it is possible to ensure that the roller rolls appropriately on the raceway surface which became close to the roundness in the state in which the race plates are incorporated.
  • Each of the retaining members is preferably provided with at least one of copper plating and silver plating, since lubricity improves.
  • the method of manufacturing a race plate in accordance with the embodiment as described above includes the steps of: stamping out a plate material such that the width of a column portion located closest to an end portion formed in the retainer is narrower than the width of other column portions; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to at least one of copper plating and silver plating. Therefore, when the retainer is formed by combining the retaining members, the interval between the rollers which are retained at a position closest to the abutted ends of the retaining portions can be brought close to intervals between the other rollers. Therefore, it is possible to suppress fluctuations in the load during the operation of the roller bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap of the internal combustion engine. The roller bearing including: a plurality of rollers; a retainer which is circumferentially splittable and supports the plurality of rollers; and an outer race which is circumferentially splittable and forms a raceway surface for the plurality of rollers. The retainer is split into a plurality of retaining members. The outer race is split into a plurality of race plates. At least one of the race plates is provided with one of a projection and a cavity to be engaged with one of the main body and the cap to restrict a relative movement between the one of the race plates and the one of the cylinder head and the cap.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a roller bearing used in an internal combustion engine and an internal combustion engine using the same.
  • 2. Background Art
  • In an internal combustion engine, for example, in a case where a camshaft is rotatably supported in a cylinder head, sliding bearings are generally used. In recent years, however, the actual situation is such that attention has been focused on less fuel-consuming internal combustion engines from the viewpoints of such as effective utilization of resources and reduction of carbon dioxides. Accordingly, attempts have been made to further reduce the power loss in internal combustion engines by changing sliding bearings to rolling bearings whose drag resistance is generally smaller (refer to JP-A-8-128306). In particular, in the so-called DOHC-type internal combustion engines and V-type internal combustion engines, the number of camshafts becomes relatively numerous in the light of their structures, so that it is expected that the change of the rolling bearings leads to some degree of improvement in fuel consumption.
  • Incidentally, a pair of cam lobes are generally formed in each cylinder, and journal portions which are supported by rolling bearings are disposed between the cam lobes or between the cam lobe and a large-diameter end portion. Therefore, there is a problem in that ordinary rolling bearings cannot be fitted on the journal portions by passing the cam lobes and the like which project more radially outward. Accordingly, it has been conceived to circumferentially split retainers of rolling bearings and to build these split retainers onto the journal portions from the radially outer side without passing the cam lobes and the like, in the same way as conventionally used sliding bearings (refer to JP-A-2001-12214).
  • SUMMARY OF THE INVENTION
  • However, it is desirable to build races on the cylinder head and the cap so as to secure raceway surfaces for the rollers to roll. For this reason, it is considered necessary to circumferentially split the races and incorporate them in the same way as the retainers. Nevertheless, since the races themselves are generally thin cylinders, if they are split circumferentially and are merely built on the cylinder head and the cap, there is a possibility of the races rotating in circular holes formed by the cylinder head and the cap and coming off in an axial direction. A similar problem occurs in a case where a crankshaft is supported between a cylinder block and a bearing cap.
  • In the case where the races and retainers are thus built in by being split, problems, such as the securing of roundness, are expected to occur which are essentially different from those of the case where cylindrical races are built in.
  • The present invention has been devised in view of the above-described problems, and its object is to provide a roller bearing which is capable of appropriately supporting a camshaft or a crankshaft with lower friction, as well as an internal combustion engine using the same.
  • The invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap of the internal combustion engine, the roller bearing includes: a plurality of rollers; a retainer which is circumferentially splittable and supports the plurality of rollers; and an outer race which is circumferentially splittable and forms a raceway surface for the plurality of rollers; wherein the retainer is split into a plurality of retaining members; the outer race is split into a plurality of race plates; and at least one of the race plates is provided with one of a projection and a cavity to be engaged with one of the main body and the cap to restrict a relative movement between the one of the race plates and the one of the cylinder head and the cap.
  • The invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap of the internal combustion engine, the roller bearing includes: a plurality of rollers; a retainer which is circumferentially splittable and supports the rollers; and an inner race which is circumferentially splittable and forms a raceway surface for the rollers; wherein the retainer is split into a plurality of retaining members; the inner race is split into a plurality of race plates; and at least one of the race plates is provided with one of a projection and a cavity to be engaged with the rotating shaft to restrict a relative movement between the one of the race plates and the rotating shaft.
  • The invention provides a roller bearing for rotatably supporting a rotating shaft of an internal combustion engine between a main body and a cap, including: a plurality of rollers; a retainer which is circumferentially splittable and supports the rollers; and an outer race which is circumferentially splittable and forms a raceway surface for the rollers; wherein the retainer is split into a plurality of split retaining members; the outer race is split into a plurality of split race plates; the race plates are disposed into concave portions of the main body and the cap; and the race plates in a free state have greater radii of curvature than radii of curvature of the concave portions.
  • The invention provides a method of manufacturing a race plate in a roller bearing for an internal combustion engine, wherein the roller bearing includes a plurality of rollers, a retainer which is circumferentially splittable into a plurality of retaining members for supporting the rollers, and an outer race which is circumferentially splittable into a plurality of race plates for forming a raceway surface for the rollers, the method including: stamping out a plate material such that at least one end thereof is formed in such a shape as to be complementary to an end of another plate material; surface pressing at least one end side of the stamped-out plate material; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to barreling.
  • The invention provides a method of manufacturing a retainer in a roller bearing for an internal combustion engine, wherein the roller bearing includes a plurality of rollers, a retainer which is circumferentially splittable into a plurality of retaining members for supporting the rollers, and an outer race which is circumferentially splittable into a plurality of race plates for forming a raceway surface for the rollers, the method includes: stamping out a plate material such that the width of a column portion located closest to an end portion formed in the retainer is narrower than the width of other column portions; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to at least one of copper plating and silver plating.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention may be more readily described with reference to the accompanying drawings:
  • FIG. 1 is an exploded view of a cylinder head of an internal combustion engine in accordance with an embodiment of the invention;
  • FIG. 2 is a partially enlarged view of a camshaft;
  • FIG. 3 is a perspective view of a race plate and a cap illustrating a modification of this embodiment;
  • FIG. 4 is an exploded view of a cylinder block of an internal combustion engine in accordance with this embodiment;
  • FIG. 5 is a partially enlarged view of the camshaft;
  • FIG. 6 is a flowchart illustrating a process for manufacturing the race plates in accordance with this embodiment;
  • FIG. 7 is a diagram illustrating the shape a plate material M after its stamping for forming the race plate;
  • FIG. 8 is a side elevational view illustrating a state in which a race in accordance with this embodiment is built in a cap or the like;
  • FIG. 9 is a flowchart illustrating the process of manufacturing a retaining member in accordance with this embodiment;
  • FIG. 10 is a diagram illustrating the shape of a plate material N after its stamping for forming the retaining member;
  • FIG. 11 is an exploded view of an engine block of an internal combustion engine in accordance with this embodiment;
  • FIG. 12A is a view illustrating a state in which ends of retaining members in accordance with another embodiment are abutted against each other, and is a view taken from a radial direction;
  • FIG. 12B is a view illustrating a state in which the ends of the retaining members are abutted against each other, and is a view taken from an axial direction; and
  • FIG. 13 is a diagram illustrating a connecting rod to which roller bearings in accordance with still another embodiment are applied.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereafter, a detailed description will be given of an embodiment of the invention with reference to the drawings. FIG. 1 is an exploded view of a cylinder head of an internal combustion engine in accordance with this embodiment, but a camshaft is not shown. FIG. 2 is a partially enlarged view of the camshaft. In FIG. 1, the unillustrated camshaft is assembled to a cylinder head 10 as semiannular caps 11 are fitted on the camshaft and fastened to the cylinder head 10 by means of bolts 12 (only one bolt is shown).
  • In FIG. 2, a camshaft 13 has a pair of cam lobes 13 a, a cylindrical journal portion 13 b supported by a roller bearing 14, and a large-diameter end portion 13 d. The outside diameter of the journal portion 13 b is smaller than the largest dimension of each cam lobe 13 a and the outside diameter of the large-diameter end portion 13 d. The roller bearing 14 in this embodiment has a plurality of rollers 14 a, circumferentially two-split substantially semicylindrical retaining members 14 c and 14 d, and circumferentially two-split substantially semicylindrical race plates 14 e and 14 f disposed between the cylinder head 10 and the caps 11. It should be noted that the retaining members 14 c and 14 d constitute a retainer, while the race plates 14 e and 14 f constitute an outer race, and inner peripheral surfaces of the race plates 14 e and 14 f constitute raceway surfaces for the rollers.
  • As shown in FIG. 2, circumferential both ends of the retaining member 14 c have waveform shapes (combinations of recessed and projecting shapes) similar to sine curves, while circumferential both ends of the retaining member 14 d opposing thereto have complementary waveform shapes (combinations of projecting and recessed shapes). Meanwhile, a circumferential end of the race plate 14 e has a wedge shape, and the other end thereof has a V-shape. A circumferential end of the race plate 14 f opposing thereto has a complementary V-shape, and the other end thereof has a complementary wedge shape.
  • Further, the race plate 14 e on the cap 11 side has a pair of projections (formed by bending projecting pieces) 14 g projecting radially outwardly from both sides of its central portion. Meanwhile, cavities 11 a (only one is shown) corresponding to the projections 14 g are formed in the cap 11. The arrangement provided is such that when the race plate 14 e is assembled to the cap 11, its projections 14 g respectively engage the cavities 11 a, thereby preventing the circumferential movement and axial movement of the race plate 14 e with respect to the cap 11.
  • The race plate 14 f has a pair of projections (formed by bending projecting pieces) 14 h projecting radially outwardly from both sides of its central portion. Meanwhile, cavities 10 b (only one is shown) corresponding to the projections 14 h are formed in a receiving portion 10 a of the cylinder head. The arrangement provided is such that when the race plate 14 f is assembled to the receiving portion 10 a, its projections 14 h respectively engage the cavities 10 b, thereby preventing the circumferential movement and axial movement of the race plate 14 f with respect to the receiving portion 10 a.
  • According to this embodiment, since the cylindrical retainer is formed by combining the ends of the retaining members 14 c and 14 d, the movement of load between the retaining members 14 c and 14 d ceases to be abrupt by virtue of the combination of the waveform shapes of their ends during the operation of the roller bearing 14. In addition, since the waveform projecting shapes at their ends restrict the axial movement of the retaining members 14 c and 14 d, the operation of the roller bearing 14 can be effected smoothly.
  • Furthermore, since the cylindrical outer race is formed by combining the ends of the race plates 14 e and 14 f, the movement of load when the roller 14 a crosses over between the race plates 14 e and 14 f ceases to be abrupt by virtue of the combination of the wedge shape and the V-shape at their ends during the operation of the roller bearing 14. In addition, since the axial movement of the race plates 14 e and 14 f is restricted, the operation of the roller bearing 14 can be effected smoothly.
  • Furthermore, as the race plates 14 e and 14 f are separately subjected to hardening treatment or the like, their hardness can be increased, and their wear resistance can be improved. Therefore, it becomes unnecessary to provide hardening treatment to supporting portions of the cylinder head 10, and it becomes possible to simplify the manufacturing process. For similar reasons, if an inner race which is split in the same way as the outer race is provided between the roller bearing 14 and the journal portion 13 b of the camshaft 13, it becomes unnecessary to provide hardening treatment to the journal portion 13 b of the camshaft 13, so that it is possible to simplify the manufacturing process.
  • It should be noted that ends of the retaining members 14 c and 14 d may be formed in a wedge shape and a V-shape, and the ends of the race plates 14 e and 14 f may be formed in waveform shapes, or may be formed in such straight end shapes as are not perpendicular to both side edges (the race plate, when developed into a plan, assumes the shape of a parallelogram). Namely, it suffices if the ends overlap each other in the axial direction when the opposing race plates are abutted against each other.
  • FIG. 3 is a perspective view of the race plate and the cap illustrating a modification of this embodiment. In FIG. 3, a race plate 14 e′ has a shape in which its both ends are cut in a plane including the axis of the race. Two projections 14 g′ are formed at outer peripheries of the respective ends. On the other hand, cavities 11 a′ corresponding to the projections 14 g′ are formed in a cylindrical inner peripheral surface of the cap 11′. The arrangement provided is such that when the race plate 14 e′ is assembled to the cap 11′, its projections 14 g′ respectively engage the cavities 11 a′, thereby preventing the circumferential movement and axial movement of the race plate 14 e′ with respect to the cap 11′.
  • It should be noted that cavities may be provided in the race, and projections may be provided on the cap. A similar arrangement may be provided between the receiving portion of the cylinder head and the race plate fitted to the bottom.
  • FIG. 4 is an exploded view of the cylinder block of an internal combustion engine in accordance with this embodiment. In FIG. 4, a crankshaft 23 is assembled to a cylinder block 20 as a bearing cap (also called a cap) 21 is fitted on the crankshaft 23 and fastened to the cylinder block 20 by means of unillustrated bolts.
  • The crankshaft 23 has cylindrical journal portions 23 b supported by roller bearings 24. The roller bearing 24 in this embodiment has a plurality of rollers 24 a and circumferentially two- split retaining members 24 c and 24 d. It should be noted that the retaining members 24 c and 24 d constitute a retainer. Although not shown, race plates (races) such as those shown in FIGS. 1 and 2 are disposed between, on the one hand, the retaining members 24 c and 24 d and, on the other hand, the cylinder block 20 and the cap 21. In this embodiment as well, advantages similar to those of the above-described embodiment can be obtained.
  • FIG. 5 is a partially enlarged view of the camshaft in accordance with a modification of this embodiment. A roller bearing 14′ in accordance with this modification has the plurality of rollers 14 a, the circumferentially two-split substantially semicylindrical retaining members 14 c and 14 d, and circumferentially two-split substantially semicylindrical race plates 14 s and 14 t disposed between, on the one hand, the retaining members 14 c and 14 d and, on the other hand, a camshaft 13′. It should be noted that the retaining members 14 c and 14 d having shapes similar to those of the embodiment shown in FIG. 2 constitute a retainer, while the race plates 14 s and 14 t constitute an inner race, and outer peripheral surfaces of the race plates 14 s and 14 t constitute raceway surfaces for the rollers.
  • In this modification as well, a circumferential end of the race plate 14 s has a wedge shape, and the other end thereof has a V-shape. A circumferential end of the race plate 14 t opposing thereto has a complementary V-shape, and the other end thereof has a complementary wedge shape.
  • Further, each of the race plates 14 s and 14 t has a pair of projections (formed by bending projecting pieces) 14 m and 14 n projecting radially inwardly from both sides of their central portions. Meanwhile, cavities 13 e′ corresponding to the projections 14 m and 14 n are formed in a journal portion 13 b′ of the camshaft 13′. The arrangement provided is such that when the race plates 14 s and 14 t are assembled to the camshaft 13′, their projections 14 m and 14 n respectively engage the cavities 113 e′, thereby preventing the circumferential movement and axial movement of the race plates 14 s and 14 t with respect to the camshaft 13′.
  • Furthermore, since the cylindrical inner race is formed by combining the ends of the race plates 14 s and 14 t, the movement of load when the roller 14 a crosses over between the race plates 14 s and 14 t ceases to be abrupt by virtue of the combination of the wedge shape and the V-shape at their ends during the operation of the roller bearing 14. In addition, since the axial movement of the race plates 14 s and 14 t is restricted, the operation of the roller bearing 14 can be effected smoothly.
  • Furthermore, as the race plates 14 s and 14 t are separately subjected to hardening treatment or the like, their hardness can be increased, and their wear resistance can be improved. Therefore, it becomes unnecessary to provide hardening treatment to the journal portion 13 b′ of the camshaft 13, and it becomes possible to simplify the manufacturing process. A similar inner race may be used jointly with the outer race shown in FIG. 2, and can similarly be mounted on a crankshaft as well.
  • Although a description has been given above of the embodiments of the invention, the invention should not be construed as being limited to the embodiments, and it goes without saying that various modifications and improvements can be made, as required. For example, the retainer may be circumferentially split into three or more parts.
  • In the roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging one of the cylinder head and the cap to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the cylinder head or the cap is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the cylinder head or the cap. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • When at least one circumferential end of one of the race plates is formed in such a shape as to be complementary to a circumferential end of an opposing one of the race plates and to at least overlap each other in an axial direction, fluctuations in load become gentle when the roller rolls from one race plate to the other race plate. Hence, this arrangement is advantageous in the light of vibrations and noise. In addition, there is another advantage in that the mutual axial movement of the race plates is suppressed by virtue of such shapes of the ends.
  • When at least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to a circumferential end of an opposing one of the retaining members and to at least overlap each other in an axial direction, fluctuations in load can be suppressed when the retaining members move together with the roller. Hence, this arrangement is advantageous in the light of vibrations and noise. In addition, there is another advantage in that the mutual axial movement of the retaining members is suppressed by virtue of such shapes of the ends.
  • In the roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging camshaft to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the camshaft is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the camshaft. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • When at least one circumferential end of one of the race plates is formed in such a shape as to be complementary to a circumferential end of an opposing one of the race plates and to at least overlap each other in an axial direction, the arrangement is preferable for a similar reason.
  • When at least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to and at least overlap in an axial direction with a circumferential end of an opposing one of the retaining members, the arrangement is preferable for a similar reason.
  • In the roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging one of the cylinder block and the cap to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the cylinder block or the cap is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the cylinder block or the cap. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • When at least one circumferential end of one of the race plates is formed in such a shape as to be complementary to a circumferential end of an opposing one of the race plates and to at least overlap each other in an axial direction, fluctuations in load become gentle when the roller rolls from one race plate to the other race plate. Hence, this arrangement is advantageous in the light of vibrations and noise. In addition, there is another advantage in that the mutual axial movement of the race plates is suppressed by virtue of such shapes of the ends.
  • When at least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to a circumferential end of an opposing one of the retaining members and to at least overlap each other in an axial direction, fluctuations in load can be suppressed when the retaining members move together with the roller. Hence, this arrangement is advantageous in the light of vibrations and noise. In addition, there is another advantage in that the mutual axial movement of the retaining members is suppressed by virtue of such shapes of the ends.
  • In the roller bearing in accordance with the embodiments as described above, since one of a projection and a cavity for engaging crankshaft to inhibit relative movement is formed on at least one of the race plates, if the projection or cavity corresponding to the crankshaft is formed in advance, the projection and the cavity are engaged. Therefore, it is possible to prevent the rotational movement or axial movement of the race plate with respect to the crankshaft. Furthermore, by the use of such a roller bearing, the drag torque is smaller than the sliding bearing conventionally in use, so that an advantage can be obtained in that the dynamic loss becomes small.
  • When at least one circumferential end of one of the race plates is formed in such a shape as to be complementary to a circumferential end of an opposing one of the race plates and to at least overlap each other in an axial direction, the arrangement is preferable for a similar reason.
  • When at least one circumferential end of one of the retaining members is formed in such a shape as to be complementary to and at least overlap in an axial direction with a circumferential end of an opposing one of the retaining members, the arrangement is preferable for a similar reason.
  • In addition, since the gap between the opposing ends of the retaining members 14 c and 14 d at the time of assembly is greater than 0 mm at a minimum reference temperature (e.g., −40° C.) (the gap being 0.1 to 2.5 mm at normal temperature), even when the internal combustion engine is cold started, the deformation of the retainers does not occur, and it is possible to ensure proper operation of the roller bearings 14.
  • In addition, since the gap between the opposing ends of the race plates 14 e and 14 f at the time of assembly is greater than 0 mm at a minimum reference temperature (e.g., −40° C.) (preferably, the gap being not less than 0.1 mm and not more than 1.0% of the outside diameter of the race), even when the internal combustion engine is cold started, the deformation of the races does not occur, and it is possible to ensure proper operation of the roller bearings 14.
  • FIG. 6 is a flowchart illustrating a process for manufacturing the race plates in accordance with this embodiment. The thickness of the plate material which is used as the material of the race plates is preferably 0.5 to 1.5 mm. The reason is that if the thickness is smaller than 0.5 mm, the race plates are liable to crack during heat treatment, whereas if the thickness exceeds 1.5 mm, their rigidity becomes excessively high, and the degree of close contact declines, possibly making it impossible to obtain satisfactory roundness.
  • As shown in Fig. Step S101 in FIG. 6, such a plate material M is stamped out. The shape of such a plate material M is shown in FIG. 7. Subsequently, vicinities of both ends of the plate material M (positions indicated by dotted lines) are subjected to surface pressing. By virtue of surface pressing, burrs at the ends of the stamped plate material M are corrected, and since the shapes of the ends are corrected, the accuracy at the time of assembly improves. It should be noted that the radius of curvature r1 at the tip of the pointed end of the plate material M is greater than the radius of curvature r2 at the innermost portion of the opposite recessed end.
  • In Step S103, the plate material M is subjected to rolling. At this time, the plate material M is bent such that, in FIG. 8, the radius curvature R2 on the outer peripheral surface of the plate material M in a free state (i.e., the race plate) becomes slightly greater than the radius of curvature R1 of a concave portion C of the receiving portion or the cap. If such a shape is adopted, when the race plate is built in the concave portion of the receiving portion or the cap, by setting the roundness of the concave portion appropriately, the race plate is made to conform thereto, and the roller rolls along the truly round raceway surface. Therefore, it is possible to suppress unwanted vibrations and prolong the life of the roller bearing. It should be noted that if the plate material M is rolled such that the shear plane occurring at the time of stamping is located on the inner side (raceway surface side), it is possible to avoid effects such as burrs occurring at the fractured surface.
  • In Step S104 in FIG. 6, the rolled plate material M is subjected to heat treatment including quenching and tempering. In Step S105, the plate material M is subjected to barreling to remove burrs and the like, thereby completing the race plate.
  • FIG. 9 is a flowchart illustrating the process of manufacturing the retainer in accordance with this embodiment. As shown in Step S201 in FIG. 9, such a plate material N is stamped out. The shape of such a plate material N is shown in FIG. 10. At this time, column portions Na and Nb are produced as pockets are formed by being punched out in the plate material N. Here, the width (P/2) of the column portion Na at each end is half the width (P) of each of the other column portions Nb. Accordingly, in a case where a retainer is formed by combining a pair of retaining members formed from such plate materials N, intervals between rollers retained in the pockets can be set to be equal intervals irrespective of places. It should be noted that the width of the column portion Na at each end is not limited to half the width of each of the other column portions Nb, and is sufficient if it is smaller than the same.
  • Furthermore, in Step S202 in FIG. 9, the plate material N is subjected to rolling. In Step S203, the rolled plate material N is subjected to heat treatment including quenching and tempering, and is subjected to barreling to remove burrs and the like in Step S204. In Step S205, the plate material N is subjected to copper plating or copper plus silver plating, thereby completing the retainer.
  • FIG. 11 is an exploded view of an engine block of an internal combustion engine in accordance with this embodiment. In FIG. 11, the bearing cap (also called the cap) 21 is fastened to the engine block 20 by means of unillustrated bolts to form cylindrical surfaces. The crankshaft 23 is assembled to the engine block 20 by means of the bearings 24 which are disposed on the inner sides of the cylindrical surfaces.
  • The crankshaft 23 has the cylindrical journal portions 23 b supported by the roller bearings 24. Each of the roller bearings 24 has the plurality of rollers 24 a and the circumferentially two- split retaining members 24 c and 24 d. It should be noted that the retaining members 24 c and 24 d constitute the retainer. Although not shown, race plates (race) such as those shown in FIGS. 1 and 2 are disposed between, on the one hand, the retaining members 24 c and 24 d and, on the other hand, the engine block 20 and the cap 21. In this embodiment as well, advantages similar to those of the above-described embodiments are obtained.
  • FIG. 12A is a view illustrating a state in which ends of retaining members 23′ in accordance with another embodiment are abutted against each other, and is a view taken from a radial direction. FIG. 12B is a view illustrating a state in which the ends of the retaining members 23′ are abutted against each other, and is a view taken from an axial direction. As shown in FIG. 12A, chamfered portions RC of an arbitrary angle or radius of curvature are formed at corners of the ends of the retaining members 23′ as viewed in the radial direction.
  • Furthermore, as shown in FIG. 12B, the chamfered portions RC of the arbitrary angle or radius of curvature are also formed at inner corners of the ends of the retaining members 23′ as viewed in the axial direction. It should be noted that although outer peripheral surfaces at the ends of the retaining members 23′ should essentially form portions of the cylindrical surface by rolling, it suffices if the outer peripheral surfaces at the ends of the retaining members 23′ are subjected to cutting or surface pressing so that flat surfaces will be formed over a distance Δ (e.g., 1 mm) from the respective ends.
  • FIG. 13 is a diagram illustrating a connecting rod to which the roller bearings in accordance with still another embodiment are applied. In FIG. 13, a connecting rod 30 is splittable, and is comprised of a cap 31 and a main body 32. A race member 34 f similar to that of the above-described embodiments is fitted in the concave portion of the main body 32, and a similar race member 34 e is also fitted in the concave portion of the cap 31.
  • At the time of assembly, the cap 31 and the main body 32 are made to approach a pin portion 23 c of the crankshaft from both sides thereof with the interposition of retaining members 34 c and 34 d having shapes similar to the above-described ones and adapted to retain the rollers, and are fastened to each other by means of two bolts 35. The connecting rod 30 is thereby integrally fitted to the crankshaft. It should be noted that a bush 30 a is disposed at a small end portion of the connecting rod 30 to hold an unillustrated piston pin relatively rotatably.
  • In the roller bearing in accordance with the embodiments as described above, the race plates are built on concave portions of the main body and the cap, and the race plates in a free state have greater radii of curvature than radii of curvature of the concave portions. Therefore, even if the accuracy of the race plates in a free state is slightly poor, by building the race plates are built on the concave portions, the race plates are deformed in such a manner as to conform to the roundness of the concave portions. Hence, it is possible to ensure that the roller rolls appropriately on the raceway surface which became close to the roundness in the state in which the race plates are incorporated.
  • Each of the retaining members is preferably provided with at least one of copper plating and silver plating, since lubricity improves.
  • The method of manufacturing a race plate in accordance with the embodiment as described above includes the steps of: stamping out a plate material such that the width of a column portion located closest to an end portion formed in the retainer is narrower than the width of other column portions; rolling the plate material; subjecting the plate material to heat treatment; and subjecting the plate material to at least one of copper plating and silver plating. Therefore, when the retainer is formed by combining the retaining members, the interval between the rollers which are retained at a position closest to the abutted ends of the retaining portions can be brought close to intervals between the other rollers. Therefore, it is possible to suppress fluctuations in the load during the operation of the roller bearing.

Claims (5)

1. A method of manufacturing a race plate in a roller bearing for an internal combustion engine, wherein the roller bearing includes a plurality of rollers, a retainer supports the rollers, and an outer race which is circumferentially splittable into a plurality of race plates for forming a raceway surface for the rollers, the method comprising:
stamping out a plate material;
rolling the plate material;
subjecting the plate material to heat treatment; and
subjecting the plate material to barreling.
2. The method of manufacturing the race plate in the roller bearing for the internal combustion engine asset forth in claim 1, wherein
the stamping comprises stamping out two pieces of plate material such that at least one end of the first piece of plate material is formed in such a shape as to be complementary to an end of the second piece of the plate material.
3. The method of manufacturing the race plate in the roller bearing for the internal combustion engine as set forth in claim 1, further comprising:
surface pressing at least one end side of the stamped-out plate material after stamping out the plate material and before rolling the plate material.
4. The method of manufacturing the race plate in the roller bearing for the internal combustion engine as set forth in claim 1, wherein
the stamping is performed so as to form a pair of projections or recesses on the plate material.
5. The method of manufacturing the race plate in the roller bearing for the internal combustion engine as set forth in claim 1, wherein
the rolling is performed such that a shear plane occurring at the time of stamping is located on a raceway surface side for the rollers.
US11/979,030 2003-09-19 2007-10-30 Roller bearing Abandoned US20090126195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/979,030 US20090126195A1 (en) 2003-09-19 2007-10-30 Roller bearing

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JPP.2003-327914 2003-09-19
JP2003327914A JP2005090696A (en) 2003-09-19 2003-09-19 Roller bearing and internal combustion engine
JP2003397274 2003-11-27
JPP.2003-397274 2003-11-27
JP2003407487A JP2005180459A (en) 2003-11-27 2003-12-05 Roller bearing, race board manufacturing method and holding body manufacturing method
JPP.2003-407487 2003-12-05
US10/929,438 US7311447B2 (en) 2003-09-19 2004-08-31 Roller bearing
US11/979,030 US20090126195A1 (en) 2003-09-19 2007-10-30 Roller bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/929,438 Division US7311447B2 (en) 2003-09-19 2004-08-31 Roller bearing

Publications (1)

Publication Number Publication Date
US20090126195A1 true US20090126195A1 (en) 2009-05-21

Family

ID=34527577

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/929,438 Expired - Lifetime US7311447B2 (en) 2003-09-19 2004-08-31 Roller bearing
US11/979,030 Abandoned US20090126195A1 (en) 2003-09-19 2007-10-30 Roller bearing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/929,438 Expired - Lifetime US7311447B2 (en) 2003-09-19 2004-08-31 Roller bearing

Country Status (1)

Country Link
US (2) US7311447B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172607A1 (en) * 2007-08-31 2010-07-08 Jtekt Corporation Bearing structure and manufacturing method thereof
US20110064350A1 (en) * 2008-05-19 2011-03-17 Kazuyoshi Yamakawa Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328681B2 (en) * 2005-01-28 2008-02-12 Vrb, L.L.C. V-roller bearing and engine
JP4790341B2 (en) 2005-07-26 2011-10-12 Ntn株式会社 Needle roller bearing and bearing structure
US20090123104A1 (en) * 2005-07-29 2009-05-14 Katsufumi Abe Needle Roller Bearing
US20070116393A1 (en) * 2005-11-22 2007-05-24 Shinji Oishi Needle roller bearing, crank shaft supporting structure, and split method of outer ring of needle roller bearing
FR2900703B1 (en) * 2006-05-05 2009-01-16 Peugeot Citroen Automobiles Sa CONNECTING DEVICE BETWEEN A CRANKSHAFT AND RODS
FR2900702B1 (en) * 2006-05-05 2009-01-16 Peugeot Citroen Automobiles Sa SYSTEM FOR MOUNTING A CRANKSHAFT MOUNTED ON BEARINGS
FR2901571B1 (en) * 2006-05-29 2013-07-26 Peugeot Citroen Automobiles Sa SYSTEM FOR MOUNTING A CAMSHAFT PROVIDED WITH BEARINGS
WO2008029715A1 (en) * 2006-09-04 2008-03-13 Ntn Corporation Roller bearing, camshaft supporting structure, and internal combustion engine
EP2060808B1 (en) * 2006-09-04 2012-10-10 NTN Corporation Roller bearing, cam shaft support structure, internal combustion engine, and method of assembling roller bearing
FR2906167B1 (en) * 2006-09-21 2008-12-19 Peugeot Citroen Automobiles Sa MOTOR VEHICLE CRANKSHAFT ON BEARINGS
DE102007010148A1 (en) * 2007-03-02 2008-09-04 Audi Ag Valve gear for internal combustion engine, includes bearing which can be slid along cam shaft with cam carriers, relative to engine casing
JP2008232310A (en) * 2007-03-21 2008-10-02 Jtekt Corp Roller bearing
EP2065603B1 (en) * 2007-11-27 2011-11-02 JTEKT Corporation Shaft apparatus with roller bearing
JP5296503B2 (en) * 2008-11-25 2013-09-25 Ntn株式会社 Roller with cage
DE102009051470B4 (en) 2009-10-30 2019-08-22 Audi Ag Plain bearing and internal combustion engine
US10494959B2 (en) 2010-05-11 2019-12-03 Agap Hb Camshaft with detachable bearing journals
US20120137994A1 (en) * 2010-12-06 2012-06-07 Hyundai Motor Company Rollerized camshaft support for type 1 direct acting valvetrain and internal combustion engine embodying same
JP5938271B2 (en) * 2012-05-21 2016-06-22 Ntn株式会社 Roller bearing and shaft support structure
US9702411B2 (en) 2014-04-10 2017-07-11 Roller Bearing Company Of America, Inc. Bearing assembly with split outer ring having interference fit tabs and method of assembly of bearing
GB2572940A (en) * 2018-02-27 2019-10-23 Cooper Roller Bearings Company Ltd Double row spherical roller bearing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1821873A (en) * 1928-03-06 1931-09-01 Clarence E Best Separable antifriction bearing
US1921488A (en) * 1932-09-03 1933-08-08 Smith Thomas Noah Bearing
US2170545A (en) * 1937-11-22 1939-08-22 Edward J Marcus Replaceable shaft surfacing bearing element
US2528987A (en) * 1940-05-11 1950-11-07 Albett Charles Antony Ball and roller bearing
US2682435A (en) * 1953-07-17 1954-06-29 Walter G Rien Split roller bearing assembly
US3163477A (en) * 1962-05-02 1964-12-29 Roller Bearing Co Of America Self contained cage for retaining bearing rollers
US3244463A (en) * 1961-12-06 1966-04-05 Torrington Co Hardened liner for anti-friction bearing and split housing
US4074518A (en) * 1975-11-15 1978-02-21 Meyer, Roth & Pastor Maschinenfabrik Gmbh Apparatus for making a link-type conveyor belt
US4231623A (en) * 1978-10-02 1980-11-04 Tecumseh Products Company Steel connecting rod bearing liner for internal combustion engines
US5172986A (en) * 1990-08-03 1992-12-22 Nippon Thompson Co., Ltd. Roller bearing having roller holding projections formed by calking
US6526798B2 (en) * 2000-05-26 2003-03-04 Honda Giken Kogyo Kabushiki Kaisha Method of blanking element for belt for continuously variable transmission

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US926966A (en) * 1908-07-02 1909-07-06 Hyatt Roller Bearing Co Detachable lining for roller-bearing casings.
US955120A (en) * 1909-12-23 1910-04-12 Hyatt Roller Bearing Co Means for retaining roller-bearing sleeves on shafts.
US5028153A (en) * 1987-02-11 1991-07-02 Cincinnati Milacron Inc. Bearing block for robotic manipulator
JPH08128306A (en) 1994-11-02 1996-05-21 Suzuki Motor Corp Camshaft structure for engine
JP2001012214A (en) 1999-06-24 2001-01-16 Unisia Jecs Corp Camshaft bearing device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1821873A (en) * 1928-03-06 1931-09-01 Clarence E Best Separable antifriction bearing
US1921488A (en) * 1932-09-03 1933-08-08 Smith Thomas Noah Bearing
US2170545A (en) * 1937-11-22 1939-08-22 Edward J Marcus Replaceable shaft surfacing bearing element
US2528987A (en) * 1940-05-11 1950-11-07 Albett Charles Antony Ball and roller bearing
US2682435A (en) * 1953-07-17 1954-06-29 Walter G Rien Split roller bearing assembly
US3244463A (en) * 1961-12-06 1966-04-05 Torrington Co Hardened liner for anti-friction bearing and split housing
US3163477A (en) * 1962-05-02 1964-12-29 Roller Bearing Co Of America Self contained cage for retaining bearing rollers
US4074518A (en) * 1975-11-15 1978-02-21 Meyer, Roth & Pastor Maschinenfabrik Gmbh Apparatus for making a link-type conveyor belt
US4231623A (en) * 1978-10-02 1980-11-04 Tecumseh Products Company Steel connecting rod bearing liner for internal combustion engines
US5172986A (en) * 1990-08-03 1992-12-22 Nippon Thompson Co., Ltd. Roller bearing having roller holding projections formed by calking
US6526798B2 (en) * 2000-05-26 2003-03-04 Honda Giken Kogyo Kabushiki Kaisha Method of blanking element for belt for continuously variable transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100172607A1 (en) * 2007-08-31 2010-07-08 Jtekt Corporation Bearing structure and manufacturing method thereof
US8523452B2 (en) 2007-08-31 2013-09-03 Jtekt Corporation Bearing structure and manufacturing method thereof
US20110064350A1 (en) * 2008-05-19 2011-03-17 Kazuyoshi Yamakawa Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing
US8894292B2 (en) 2008-05-19 2014-11-25 Jtekt Corporation Split outer ring, split rolling bearing using the same ring and construction and method of mounting the same rolling bearing

Also Published As

Publication number Publication date
US20050084192A1 (en) 2005-04-21
US7311447B2 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
US20090126195A1 (en) Roller bearing
US8539860B2 (en) Shaft apparatus with bearing
JP4772035B2 (en) Needle roller bearing
JP2005180459A (en) Roller bearing, race board manufacturing method and holding body manufacturing method
US8220423B2 (en) Roller bearing, camshaft support structure, and internal combustion engine
JP2005090696A (en) Roller bearing and internal combustion engine
US9500269B2 (en) Cam follower for rocker arm and cam follower device
US8393800B2 (en) Needle roller bearing and crankshaft support structure
WO2008029713A1 (en) Roller bearing, cam shaft support structure, internal combustion engine, and method of assembling roller bearing
US20130291817A1 (en) Cam follower apparatus
US20060064872A1 (en) Camshaft and assembling method thereof
EP1696143B1 (en) Double split bearing
JP2009014078A (en) Needle roller bearing and crankshaft supporting structure
JP2590701Y2 (en) Cam follower for engine valve train
CN101512108B (en) Roller bearing, camshaft supporting structure, and internal combustion engine
JP5223814B2 (en) Crankshaft bearing device
JP5064910B2 (en) Needle roller bearing and crankshaft support structure
JP3846250B2 (en) Rocker arm
JP5361120B2 (en) Roller bearing
JP5994318B2 (en) Bearing device
JPWO2003044330A1 (en) Cam follower with sheet metal rocker arm
JP2009014079A (en) Outer ring for rolling bearing, needle roller bearing, and crankshaft support structure
JP5071452B2 (en) Crankshaft bearing device
JP2007010012A (en) Needle roller bearing
JP4009839B2 (en) Cam follower

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION