US20090093409A1 - Neuroprotective synergy of erythropoietin and insulin-like growth factors - Google Patents
Neuroprotective synergy of erythropoietin and insulin-like growth factors Download PDFInfo
- Publication number
- US20090093409A1 US20090093409A1 US12/252,093 US25209308A US2009093409A1 US 20090093409 A1 US20090093409 A1 US 20090093409A1 US 25209308 A US25209308 A US 25209308A US 2009093409 A1 US2009093409 A1 US 2009093409A1
- Authority
- US
- United States
- Prior art keywords
- epo
- igf
- analog
- active fragment
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000394 Erythropoietin Proteins 0.000 title claims abstract description 427
- 102000003951 Erythropoietin Human genes 0.000 title claims abstract description 426
- 229940105423 erythropoietin Drugs 0.000 title claims abstract description 426
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 title claims abstract description 425
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 title claims abstract description 400
- 102000013275 Somatomedins Human genes 0.000 title claims abstract description 175
- 230000000324 neuroprotective effect Effects 0.000 title claims abstract description 35
- 239000012634 fragment Substances 0.000 claims abstract description 226
- 238000000034 method Methods 0.000 claims abstract description 219
- 210000002569 neuron Anatomy 0.000 claims abstract description 140
- 230000001154 acute effect Effects 0.000 claims abstract description 62
- 230000004112 neuroprotection Effects 0.000 claims abstract description 31
- 230000002964 excitative effect Effects 0.000 claims abstract description 24
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 15
- 230000002195 synergetic effect Effects 0.000 claims abstract description 15
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 14
- 206010012289 Dementia Diseases 0.000 claims abstract description 12
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims abstract description 12
- 239000003814 drug Substances 0.000 claims abstract description 11
- 208000023105 Huntington disease Diseases 0.000 claims abstract description 10
- 206010015037 epilepsy Diseases 0.000 claims abstract description 9
- 201000006417 multiple sclerosis Diseases 0.000 claims abstract description 9
- 208000010412 Glaucoma Diseases 0.000 claims abstract description 8
- 229940079593 drug Drugs 0.000 claims abstract description 7
- 208000004296 neuralgia Diseases 0.000 claims abstract description 7
- 208000021722 neuropathic pain Diseases 0.000 claims abstract description 7
- 206010013663 drug dependence Diseases 0.000 claims abstract description 6
- 208000011117 substance-related disease Diseases 0.000 claims abstract description 6
- 208000019901 Anxiety disease Diseases 0.000 claims abstract description 5
- 230000036506 anxiety Effects 0.000 claims abstract description 5
- 208000033808 peripheral neuropathy Diseases 0.000 claims abstract description 5
- 208000019695 Migraine disease Diseases 0.000 claims abstract description 4
- 208000016285 Movement disease Diseases 0.000 claims abstract description 4
- 208000007271 Substance Withdrawal Syndrome Diseases 0.000 claims abstract description 4
- 206010027599 migraine Diseases 0.000 claims abstract description 4
- 201000001119 neuropathy Diseases 0.000 claims abstract description 4
- 230000007823 neuropathy Effects 0.000 claims abstract description 4
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 claims description 224
- 102000005962 receptors Human genes 0.000 claims description 83
- 108020003175 receptors Proteins 0.000 claims description 83
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 claims description 57
- 102000044890 human EPO Human genes 0.000 claims description 57
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 claims description 49
- 102000044162 human IGF1 Human genes 0.000 claims description 41
- 239000000816 peptidomimetic Substances 0.000 claims description 37
- 241000282414 Homo sapiens Species 0.000 claims description 32
- 150000003384 small molecules Chemical class 0.000 claims description 25
- 102000028416 insulin-like growth factor binding Human genes 0.000 claims description 17
- 108091022911 insulin-like growth factor binding Proteins 0.000 claims description 17
- 208000014674 injury Diseases 0.000 claims description 13
- 230000008733 trauma Effects 0.000 claims description 11
- 108010031794 IGF Type 1 Receptor Proteins 0.000 claims description 10
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 claims description 10
- 238000000338 in vitro Methods 0.000 claims description 9
- 210000000278 spinal cord Anatomy 0.000 claims description 8
- 206010010904 Convulsion Diseases 0.000 claims description 7
- 238000001727 in vivo Methods 0.000 claims description 7
- 230000009692 acute damage Effects 0.000 claims description 6
- 102100033183 Epithelial membrane protein 1 Human genes 0.000 claims description 3
- 101000850989 Homo sapiens Epithelial membrane protein 1 Proteins 0.000 claims description 3
- 230000019491 signal transduction Effects 0.000 abstract description 9
- 230000001939 inductive effect Effects 0.000 abstract description 8
- 210000004027 cell Anatomy 0.000 description 171
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 92
- 108090000765 processed proteins & peptides Proteins 0.000 description 86
- 230000001537 neural effect Effects 0.000 description 75
- 239000002243 precursor Substances 0.000 description 64
- 230000000694 effects Effects 0.000 description 52
- 238000011282 treatment Methods 0.000 description 50
- 108090000397 Caspase 3 Proteins 0.000 description 48
- 102100029855 Caspase-3 Human genes 0.000 description 47
- 150000001413 amino acids Chemical group 0.000 description 45
- 102000039446 nucleic acids Human genes 0.000 description 43
- 108020004707 nucleic acids Proteins 0.000 description 43
- 102000004196 processed proteins & peptides Human genes 0.000 description 40
- 150000007523 nucleic acids Chemical class 0.000 description 39
- 101100456626 Homo sapiens MEF2A gene Proteins 0.000 description 33
- 101100079042 Mus musculus Myef2 gene Proteins 0.000 description 33
- 102100021148 Myocyte-specific enhancer factor 2A Human genes 0.000 description 33
- 101150014102 mef-2 gene Proteins 0.000 description 33
- 229920001184 polypeptide Polymers 0.000 description 33
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 26
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 26
- 238000011534 incubation Methods 0.000 description 26
- 230000004913 activation Effects 0.000 description 24
- 108090000623 proteins and genes Proteins 0.000 description 23
- 102000011727 Caspases Human genes 0.000 description 22
- 108010076667 Caspases Proteins 0.000 description 22
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 22
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 22
- 230000009223 neuronal apoptosis Effects 0.000 description 22
- 102100037024 E3 ubiquitin-protein ligase XIAP Human genes 0.000 description 20
- 108700031544 X-Linked Inhibitor of Apoptosis Proteins 0.000 description 20
- 230000006907 apoptotic process Effects 0.000 description 20
- 230000026731 phosphorylation Effects 0.000 description 19
- 238000006366 phosphorylation reaction Methods 0.000 description 19
- 230000001965 increasing effect Effects 0.000 description 18
- 230000001404 mediated effect Effects 0.000 description 18
- 230000001640 apoptogenic effect Effects 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 17
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 16
- 235000001014 amino acid Nutrition 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 16
- 239000003112 inhibitor Substances 0.000 description 16
- 239000008194 pharmaceutical composition Substances 0.000 description 16
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 15
- 241000700159 Rattus Species 0.000 description 15
- 238000006471 dimerization reaction Methods 0.000 description 15
- 230000000926 neurological effect Effects 0.000 description 15
- 239000013598 vector Substances 0.000 description 15
- 230000001684 chronic effect Effects 0.000 description 14
- -1 nucleic acid EPO analog Chemical class 0.000 description 14
- 230000037361 pathway Effects 0.000 description 14
- 208000006011 Stroke Diseases 0.000 description 13
- 230000027455 binding Effects 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 12
- 210000001671 embryonic stem cell Anatomy 0.000 description 12
- 229940123169 Caspase inhibitor Drugs 0.000 description 11
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 11
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 11
- 102000055120 MEF2 Transcription Factors Human genes 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 230000004083 survival effect Effects 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 10
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 10
- 230000006576 neuronal survival Effects 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 210000000130 stem cell Anatomy 0.000 description 9
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 8
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 8
- 108010018650 MEF2 Transcription Factors Proteins 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 208000015122 neurodegenerative disease Diseases 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000007850 degeneration Effects 0.000 description 7
- 230000004069 differentiation Effects 0.000 description 7
- 238000010790 dilution Methods 0.000 description 7
- 239000012895 dilution Substances 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 7
- 238000001114 immunoprecipitation Methods 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 108091007065 BIRCs Proteins 0.000 description 6
- 101710163270 Nuclease Proteins 0.000 description 6
- 241000288906 Primates Species 0.000 description 6
- 201000007737 Retinal degeneration Diseases 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 210000002459 blastocyst Anatomy 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000000539 dimer Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 6
- 210000003128 head Anatomy 0.000 description 6
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 239000006166 lysate Substances 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 108091008695 photoreceptors Proteins 0.000 description 6
- 238000011533 pre-incubation Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000002797 proteolythic effect Effects 0.000 description 6
- 230000004258 retinal degeneration Effects 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 102000014914 Carrier Proteins Human genes 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 101001076292 Homo sapiens Insulin-like growth factor II Proteins 0.000 description 5
- 101000962077 Homo sapiens Myocyte-specific enhancer factor 2C Proteins 0.000 description 5
- 206010021143 Hypoxia Diseases 0.000 description 5
- 102000055031 Inhibitor of Apoptosis Proteins Human genes 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 5
- 208000012902 Nervous system disease Diseases 0.000 description 5
- 108010015793 Non-Receptor Type 6 Protein Tyrosine Phosphatase Proteins 0.000 description 5
- 102000002001 Non-Receptor Type 6 Protein Tyrosine Phosphatase Human genes 0.000 description 5
- 229920001213 Polysorbate 20 Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000012190 activator Substances 0.000 description 5
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 230000005754 cellular signaling Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000012133 immunoprecipitate Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 208000002780 macular degeneration Diseases 0.000 description 5
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 5
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 229930002330 retinoic acid Natural products 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 108010074604 Epoetin Alfa Proteins 0.000 description 4
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 4
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- 102000008763 Neurofilament Proteins Human genes 0.000 description 4
- 108010088373 Neurofilament Proteins Proteins 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000002490 cerebral effect Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000002518 glial effect Effects 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 230000003394 haemopoietic effect Effects 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 102000057877 human IGF2 Human genes 0.000 description 4
- 102000043473 human MEF2C Human genes 0.000 description 4
- 238000003119 immunoblot Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004770 neurodegeneration Effects 0.000 description 4
- 230000016273 neuron death Effects 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229960001727 tretinoin Drugs 0.000 description 4
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000012130 whole-cell lysate Substances 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- BFCDFTHTSVTWOG-PXNSSMCTSA-N (1r,2s)-2-(octylamino)-1-(4-propan-2-ylsulfanylphenyl)propan-1-ol Chemical compound CCCCCCCCN[C@@H](C)[C@H](O)C1=CC=C(SC(C)C)C=C1 BFCDFTHTSVTWOG-PXNSSMCTSA-N 0.000 description 3
- AOUOVFRSCMDPFA-QSDJMHMYSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC(O)=O AOUOVFRSCMDPFA-QSDJMHMYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 3
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 241000252212 Danio rerio Species 0.000 description 3
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 3
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 3
- 102400001368 Epidermal growth factor Human genes 0.000 description 3
- 101800003838 Epidermal growth factor Proteins 0.000 description 3
- 102100031939 Erythropoietin Human genes 0.000 description 3
- 101000614841 Homo sapiens Myocyte-specific enhancer factor 2A Proteins 0.000 description 3
- 101000614850 Homo sapiens Myocyte-specific enhancer factor 2B Proteins 0.000 description 3
- 101000962086 Homo sapiens Myocyte-specific enhancer factor 2D Proteins 0.000 description 3
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 description 3
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 3
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 206010029350 Neurotoxicity Diseases 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 description 3
- 102100027188 Thyroid peroxidase Human genes 0.000 description 3
- 101710113649 Thyroid peroxidase Proteins 0.000 description 3
- 206010044221 Toxic encephalopathy Diseases 0.000 description 3
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 229940116977 epidermal growth factor Drugs 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 102000043475 human MEF2A Human genes 0.000 description 3
- 238000003125 immunofluorescent labeling Methods 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000005291 magnetic effect Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000000626 neurodegenerative effect Effects 0.000 description 3
- 210000005044 neurofilament Anatomy 0.000 description 3
- 231100000228 neurotoxicity Toxicity 0.000 description 3
- 230000007135 neurotoxicity Effects 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 210000000287 oocyte Anatomy 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229940126586 small molecule drug Drugs 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- 210000004340 zona pellucida Anatomy 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 206010002660 Anoxia Diseases 0.000 description 2
- 241000976983 Anoxia Species 0.000 description 2
- 101100099844 Arabidopsis thaliana TMN6 gene Proteins 0.000 description 2
- 101100099845 Arabidopsis thaliana TMN7 gene Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 201000006474 Brain Ischemia Diseases 0.000 description 2
- 108090000567 Caspase 7 Proteins 0.000 description 2
- 102100038902 Caspase-7 Human genes 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 206010008120 Cerebral ischaemia Diseases 0.000 description 2
- 101800004419 Cleaved form Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108010069514 Cyclic Peptides Proteins 0.000 description 2
- 102000001189 Cyclic Peptides Human genes 0.000 description 2
- 102100030497 Cytochrome c Human genes 0.000 description 2
- 108010075031 Cytochromes c Proteins 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 102100033176 Epithelial membrane protein 2 Human genes 0.000 description 2
- 102100030146 Epithelial membrane protein 3 Human genes 0.000 description 2
- 108010075944 Erythropoietin Receptors Proteins 0.000 description 2
- 102100036509 Erythropoietin receptor Human genes 0.000 description 2
- 201000011240 Frontotemporal dementia Diseases 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 2
- 101000851002 Homo sapiens Epithelial membrane protein 2 Proteins 0.000 description 2
- 101001011788 Homo sapiens Epithelial membrane protein 3 Proteins 0.000 description 2
- 101000920686 Homo sapiens Erythropoietin Proteins 0.000 description 2
- 102000003746 Insulin Receptor Human genes 0.000 description 2
- 108010001127 Insulin Receptor Proteins 0.000 description 2
- 102100039064 Interleukin-3 Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 2
- 208000001089 Multiple system atrophy Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 2
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 2
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 102000008730 Nestin Human genes 0.000 description 2
- 108010088225 Nestin Proteins 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 229940116355 PI3 kinase inhibitor Drugs 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 108010059712 Pronase Proteins 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 241000219492 Quercus Species 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 108010042291 Serum Response Factor Proteins 0.000 description 2
- 102100022056 Serum response factor Human genes 0.000 description 2
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000007953 anoxia Effects 0.000 description 2
- 230000002424 anti-apoptotic effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008499 blood brain barrier function Effects 0.000 description 2
- 210000001218 blood-brain barrier Anatomy 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 206010008118 cerebral infarction Diseases 0.000 description 2
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 108010002601 epoetin beta Proteins 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 102000043477 human MEF2B Human genes 0.000 description 2
- 102000043474 human MEF2D Human genes 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000004068 intracellular signaling Effects 0.000 description 2
- 238000000185 intracerebroventricular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001617 migratory effect Effects 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 229940100662 nasal drops Drugs 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 210000005055 nestin Anatomy 0.000 description 2
- 230000004031 neuronal differentiation Effects 0.000 description 2
- 231100000189 neurotoxic Toxicity 0.000 description 2
- 230000002887 neurotoxic effect Effects 0.000 description 2
- 239000003900 neurotrophic factor Substances 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 208000020911 optic nerve disease Diseases 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 210000002243 primary neuron Anatomy 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000003531 protein hydrolysate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- LPIARALSGDVZEP-SJVNDZIOSA-N (3s)-3-[[(2s)-2-[[(2s)-2-[[(2s)-2-acetamido-3-(4-hydroxyphenyl)propanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]-4-oxobutanoic acid Chemical compound OC(=O)C[C@@H](C=O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(C)=O)CC1=CC=C(O)C=C1 LPIARALSGDVZEP-SJVNDZIOSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- JCIIKRHCWVHVFF-UHFFFAOYSA-N 1,2,4-thiadiazol-5-amine;hydrochloride Chemical compound Cl.NC1=NC=NS1 JCIIKRHCWVHVFF-UHFFFAOYSA-N 0.000 description 1
- KIHNTPDWZLWMNO-UHFFFAOYSA-N 2,3-dioxoindole-1-sulfonamide Chemical class C1=CC=C2N(S(=O)(=O)N)C(=O)C(=O)C2=C1 KIHNTPDWZLWMNO-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- PKGWLCZTTHWKIZ-UHFFFAOYSA-N 4-Hydroxypheoxyacetate Chemical class OC(=O)COC1=CC=C(O)C=C1 PKGWLCZTTHWKIZ-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical class OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 description 1
- 150000005168 4-hydroxybenzoic acids Chemical class 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- UMBVAPCONCILTL-MRHIQRDNSA-N Ac-Asp-Glu-Val-Asp-H Chemical compound OC(=O)C[C@@H](C=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(C)=O UMBVAPCONCILTL-MRHIQRDNSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 206010001939 Aminoaciduria Diseases 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000051485 Bcl-2 family Human genes 0.000 description 1
- 108700038897 Bcl-2 family Proteins 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 102000004018 Caspase 6 Human genes 0.000 description 1
- 108090000425 Caspase 6 Proteins 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 102100026550 Caspase-9 Human genes 0.000 description 1
- 108090000566 Caspase-9 Proteins 0.000 description 1
- 208000001387 Causalgia Diseases 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 101000749287 Clitocybe nebularis Clitocypin Proteins 0.000 description 1
- 101000767029 Clitocybe nebularis Clitocypin-1 Proteins 0.000 description 1
- 208000023890 Complex Regional Pain Syndromes Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 229940094664 Cysteine protease inhibitor Drugs 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108010086821 DEVDase Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 231100001074 DNA strand break Toxicity 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010015720 Dopamine beta-Hydroxylase Proteins 0.000 description 1
- 102100033156 Dopamine beta-hydroxylase Human genes 0.000 description 1
- 101100291385 Drosophila melanogaster p38a gene Proteins 0.000 description 1
- 206010013647 Drowning Diseases 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010029961 Filgrastim Proteins 0.000 description 1
- 102100020715 Fms-related tyrosine kinase 3 ligand protein Human genes 0.000 description 1
- 101710162577 Fms-related tyrosine kinase 3 ligand protein Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000018899 Glutamate Receptors Human genes 0.000 description 1
- 108010027915 Glutamate Receptors Proteins 0.000 description 1
- 102000008214 Glutamate decarboxylase Human genes 0.000 description 1
- 108091022930 Glutamate decarboxylase Proteins 0.000 description 1
- JJGBXTYGTKWGAT-YUMQZZPRSA-N Gly-Pro-Glu Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O JJGBXTYGTKWGAT-YUMQZZPRSA-N 0.000 description 1
- 102100033495 Glycine dehydrogenase (decarboxylating), mitochondrial Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 206010019196 Head injury Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 208000032087 Hereditary Leber Optic Atrophy Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000852145 Homo sapiens Erythropoietin receptor Proteins 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 101000701142 Homo sapiens Transcription factor ATOH1 Proteins 0.000 description 1
- 101000617285 Homo sapiens Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 208000033892 Hyperhomocysteinemia Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000004374 Insulin-like growth factor binding protein 3 Human genes 0.000 description 1
- 108090000965 Insulin-like growth factor binding protein 3 Proteins 0.000 description 1
- 102000003815 Interleukin-11 Human genes 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 1
- 241000713321 Intracisternal A-particles Species 0.000 description 1
- 208000004404 Intractable Pain Diseases 0.000 description 1
- 208000021342 Isolated sulfite oxidase deficiency Diseases 0.000 description 1
- 101710177504 Kit ligand Proteins 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- PWOLHTNHGNWQMH-UHFFFAOYSA-N LGPVTQE Natural products CC(C)CC(N)C(=O)NCC(=O)N1CCCC1C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(O)=O)C(O)=O PWOLHTNHGNWQMH-UHFFFAOYSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 201000003533 Leber congenital amaurosis Diseases 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 1
- 208000009564 MELAS Syndrome Diseases 0.000 description 1
- 208000035172 MERRF Diseases 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108090000192 Methionyl aminopeptidases Proteins 0.000 description 1
- 102100021118 Microtubule-associated protein 2 Human genes 0.000 description 1
- 102100035971 Molybdopterin molybdenumtransferase Human genes 0.000 description 1
- 101710119577 Molybdopterin molybdenumtransferase Proteins 0.000 description 1
- 101150079937 NEUROD1 gene Proteins 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 206010028923 Neonatal asphyxia Diseases 0.000 description 1
- 208000037212 Neonatal hypoxic and ischemic brain injury Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 102100038550 Neurogenin-1 Human genes 0.000 description 1
- 101710096136 Neurogenin-1 Proteins 0.000 description 1
- 102100038554 Neurogenin-2 Human genes 0.000 description 1
- 101710096140 Neurogenin-2 Proteins 0.000 description 1
- 102100038553 Neurogenin-3 Human genes 0.000 description 1
- 101710096141 Neurogenin-3 Proteins 0.000 description 1
- 102000004230 Neurotrophin 3 Human genes 0.000 description 1
- 108090000742 Neurotrophin 3 Proteins 0.000 description 1
- 208000035544 Nonketotic hyperglycinaemia Diseases 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- XVZUMQAMCYSUMS-SIUGBPQLSA-N OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 XVZUMQAMCYSUMS-SIUGBPQLSA-N 0.000 description 1
- 102000002584 Octamer Transcription Factor-3 Human genes 0.000 description 1
- 108010068425 Octamer Transcription Factor-3 Proteins 0.000 description 1
- 206010061323 Optic neuropathy Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 239000012826 P38 inhibitor Substances 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 101150056500 Ptpn6 gene Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 208000006289 Rett Syndrome Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 102000004584 Somatomedin Receptors Human genes 0.000 description 1
- 108010017622 Somatomedin Receptors Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108700036932 Sulfite oxidase deficiency Proteins 0.000 description 1
- 102000000763 Survivin Human genes 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 102000004874 Synaptophysin Human genes 0.000 description 1
- 108090001076 Synaptophysin Proteins 0.000 description 1
- 102000004183 Synaptosomal-Associated Protein 25 Human genes 0.000 description 1
- 108010057722 Synaptosomal-Associated Protein 25 Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 208000016620 Tourette disease Diseases 0.000 description 1
- 102000000474 Transcription Factor Brn-3 Human genes 0.000 description 1
- 108010041250 Transcription Factor Brn-3 Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100029373 Transcription factor ATOH1 Human genes 0.000 description 1
- 102000000887 Transcription factor STAT Human genes 0.000 description 1
- 108050007918 Transcription factor STAT Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 1
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 208000010045 Wernicke encephalopathy Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 108010066665 acetyl-aspartyl-glutamyl-valyl-aspartal Proteins 0.000 description 1
- 108010038177 acetyl-tryptophyl-glutamyl-histidyl-aspartal Proteins 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 210000001642 activated microglia Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 208000036815 beta tubulin Diseases 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 210000001109 blastomere Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 230000005821 brain abnormality Effects 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 108010066057 cabin-1 Proteins 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 210000002932 cholinergic neuron Anatomy 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 208000022371 chronic pain syndrome Diseases 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 208000014439 complex regional pain syndrome type 2 Diseases 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 210000005257 cortical tissue Anatomy 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 210000005064 dopaminergic neuron Anatomy 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000004970 emotional disturbance Effects 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 208000028329 epileptic seizure Diseases 0.000 description 1
- 229960003388 epoetin alfa Drugs 0.000 description 1
- 229960004579 epoetin beta Drugs 0.000 description 1
- 108010090921 epoetin omega Proteins 0.000 description 1
- 229950008767 epoetin omega Drugs 0.000 description 1
- 229940089118 epogen Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003013 erythroid precursor cell Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 231100000318 excitotoxic Toxicity 0.000 description 1
- 230000003492 excitotoxic effect Effects 0.000 description 1
- 239000004060 excitotoxin Substances 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 201000011205 glycine encephalopathy Diseases 0.000 description 1
- 108010079413 glycyl-prolyl-glutamic acid Proteins 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 208000007386 hepatic encephalopathy Diseases 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 102000046157 human CSF2 Human genes 0.000 description 1
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 1
- 230000003225 hyperhomocysteinemia Effects 0.000 description 1
- 208000023399 hyperprolinemia Diseases 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000006662 intracellular pathway Effects 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 229940087875 leukine Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000007625 mitochondrial abnormality Effects 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- ZAHQPTJLOCWVPG-UHFFFAOYSA-N mitoxantrone dihydrochloride Chemical compound Cl.Cl.O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO ZAHQPTJLOCWVPG-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229940029345 neupogen Drugs 0.000 description 1
- 101150006061 neur gene Proteins 0.000 description 1
- 230000010004 neural pathway Effects 0.000 description 1
- 230000004766 neurogenesis Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 238000011859 neuroprotective therapy Methods 0.000 description 1
- 229940032018 neurotrophin 3 Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 208000031237 olivopontocerebellar atrophy Diseases 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 208000033300 perinatal asphyxia Diseases 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 208000027232 peripheral nervous system disease Diseases 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229940096826 phenylmercuric acetate Drugs 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 229940029359 procrit Drugs 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 239000002684 recombinant hormone Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002629 repopulating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 229940001474 sodium thiosulfate Drugs 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 208000023516 stroke disease Diseases 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000007801 sublethal irradiation Methods 0.000 description 1
- 210000003523 substantia nigra Anatomy 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000012622 synthetic inhibitor Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 210000002993 trophoblast Anatomy 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/30—Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/30—Drugs for disorders of the nervous system for treating abuse or dependence
- A61P25/36—Opioid-abuse
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the invention relates to the prevention and treatment of acute and chronic neurodegenerative conditions, and to erythropoietin and insulin-like growth factors and analogs of these factors.
- Parkinson's disease is a progressive and ultimately fatal neurodegenerative disorder characterized by loss of the pigmented dopaminergic neurons of the substantia nigra.
- the symptoms of Parkinson's disease often can be managed initially by administration of L-DOPA, the immediate precursor of dopamine.
- L-DOPA the immediate precursor of dopamine.
- reduced efficacy of L-DOPA treatment typically occurs over time.
- Programmed cell death apoptosis
- Alzheimer's disease the most common neurodegenerative disease and most frequent cause of dementia, progressive failure of memory and degeneration of temporal and parietal association cortex result in speech impairment and loss of coordination, and, in some cases, emotional disturbance. Alzheimer's disease generally progresses over many years, with patients gradually becoming immobile, emaciated and susceptible to pneumonia.
- Neuroprotective therapy has been sought for a variety of acute and chronic neurological conditions, including stroke, Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy and pain.
- Present therapies are relatively ineffective or are accompanied by unwanted side effects.
- erythropoietin (EPO) can be neuroprotective when administered in high doses; however, such doses also promote the formation of new red blood cells, consequently causing side effects such as “sludging” of the blood and leading to increased risk of stroke.
- EPO erythropoietin
- the present invention satisfies this need and provides related advantages as well.
- the present invention provides a method of providing acute neuroprotection by inducing the erythropoietin (EPO) pathway in neuronal cells close to or subsequent to the time of excitatory insult; and inducing an insulin-like growth factor (IGF) pathway in the neuronal cells close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- EPO erythropoietin
- IGF insulin-like growth factor
- the present invention further provides a method of providing acute neuroprotection by contacting neuronal cells with EPO or an active fragment or analog thereof close to or subsequent to the time of excitatory insult; and contacting the neuronal cells with an IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- neuronal cells are contacted with EPO or an active fragment thereof, for example, with human EPO or an active fragment thereof.
- neuronal cells are contacted with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog.
- the invention is practiced with an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVC
- the invention is practiced with EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYS CHFGPLTWVC KPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO.
- the invention is practiced by contacting neuronal cells with Darbepoietin.
- soluble EPO receptor can be optionally included, for example, to prolong the half-life of EPO or an active fragment or analog thereof.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by contacting neuronal cells with an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by contacting neuronal cells with human IGF-I or an active fragment thereof.
- the invention is practiced with an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid IGF analog including, without limitation, peptide, peptidomimetic, small molecule and nucleic acid IGF-I analogs.
- the invention is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein (IBP).
- IBP IGF-binding protein
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF-I.
- the two contacting steps can be performed in vitro or in vivo and further can be performed simultaneously or in any order.
- Also provided herein is a method of preventing or reducing the severity of an acute neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof close to or subsequent to the time of acute injury; and administering to the subject an IGF or an active fragment or analog thereof close to or subsequent to the time of acute injury, thereby providing a synergistic acute neuroprotective effect and preventing or reducing the severity of the acute neurologic condition.
- an acute neurologic condition can be, without limitation, stroke, head or spinal cord trauma, or seizure.
- a method of the invention for preventing or reducing the severity of an acute neurologic condition can be practiced, for example, with EPO or an active fragment thereof, such as human EPO or an active fragment thereof.
- a method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog.
- the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- the invention is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- a method of the invention can be practiced with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYS CHFGPLTWVC KPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO.
- EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin.
- the methods of the invention also optionally include the step of administering soluble EPO receptor to the subject.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by administering IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by administering human IGF-I or an active fragment thereof.
- the invention also can be practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- a method of the invention for preventing or reducing the severity of an acute neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein.
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- EPO and IGF, or active fragments or analogs thereof can be administered simultaneously or in any order and in the same or different pharmaceutical compositions.
- Also provided by the invention is a method of preventing or reducing the severity of a neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and administering to the subject an IGF or an active fragment or analog thereof, thereby providing neuroprotection and preventing or reducing the severity of the neurologic condition.
- the EPO and IGF, or active fragments or analogs thereof can be administered to the subject simultaneously or in any order and in the same or different pharmaceutical compositions.
- a variety of acute and chronic neurologic conditions can be treated according to a method of the invention including, but not limited to, Alzheimer's disease; Parkinson's disease; Huntington's disease; epilepsy; amyotrophic lateral sclerosis; multiple sclerosis; movement disorders; HIV-associated dementia; HIV-associated neuropathy; retinal degeneration including macular degeneration and light-induced retinal degeneration such as photoreceptor degeneration; neuropathic pain; migraine; glaucoma; drug addiction; drug withdrawal; drug dependency; and depression or anxiety.
- EPO and active fragments and analogs thereof are useful for preventing or reducing the severity of a neurologic condition according to a method of the invention.
- the invention can be practiced with EPO or an active fragment thereof such as human EPO or an active fragment thereof.
- a method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog.
- the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- a method of the invention for preventing or reducing the severity of a neurologic condition is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- the invention can be practiced, for example, with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYS CHFGPLTWVC KPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO.
- Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin.
- the methods of the invention further optionally include the step of administering soluble EPO receptor to the subject.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by administering an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by administering human IGF-I or an active fragment thereof.
- the invention is practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- a method of the invention for preventing or reducing the severity of a neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein.
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- the present invention also provides a method of preventing or reducing the severity of a cerebral neurologic condition in a subject by transnasally administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and transnasally administering to the subject an IGF or an active fragment or analog thereof, thereby providing acute neuroprotection and preventing or reducing the severity of the neurologic condition.
- FIG. 1 shows the nucleic acid and corresponding amino acid sequence of human erythropoietin (EPO).
- EPO erythropoietin
- A Nucleotide sequence (SEQ ID NO: 1) of human EPO (Genbank accession X02157, version X02157.1). The coding sequence is shown as nucleotides 182 to 763 of SEQ ID NO: 1, with nucleotides 263 to 763 of SEQ ID NO: 1 encoding mature EPO.
- B The corresponding amino acid sequence (SEQ ID NO: 2) of human EPO. Residues 1 to 27 make up the signal sequence, with residues 28 to 193 constituting mature human EPO.
- C The amino acid sequence (SEQ ID NO: 3) of mature human EPO.
- FIG. 2 shows the nucleic acid and corresponding amino acid sequence of human insulin-like growth factor-I (IGF-I).
- IGF-I insulin-like growth factor-I
- A The nucleotide sequence (SEQ ID NO: 4) human IGF-I (Genbank accession X00173, version X00173.1). The coding sequence is shown as nucleotides 12 to 473 of SEQ ID NO: 4.
- B The corresponding amino acid sequence (SEQ ID NO: 5) of human IGF-I. Residues 1 to 21 make up the signal sequence; residues 22 to 48 constitute a propeptide; residues 49 to 118 constitute mature IGF-I; and residues 119 to 153 make up the carboxy-terminal propeptide (domain E).
- C Mature human IGF-I (SEQ ID NO: 6) is shown schematically.
- FIG. 3 shows that simultaneous co-administration of EPO and IGF-I ameliorates neuronal apoptosis induced by the excitotoxin N-methyl-D-aspartate (NMDA) acting at the NMDA receptor, a glutamate receptor in the brain.
- NMDA excitotoxin N-methyl-D-aspartate
- Overstimulation of this receptor mediates, at least in part, a wide range of acute and chronic neurologic disorders by permitting excessive Ca 2+ influx and subsequent free radical formation (nitric oxide and reactive oxygen species).
- FIG. 4 shows that inhibition of PI3-kinase abrogates the anti-apoptotic effects of combined EPO and IGF-I treatment.
- Cerebrocortical cultures were exposed to 10 ⁇ M LY294002 (gray bars) for 30 minutes prior to incubation with EPO, IGF-I or EPO and IGF-I for three hours, at which time cells were subject to NMDA exposure.
- Neuronal apoptosis was assessed 16 hours after NMDA exposure by determining the percentage of MAP2 positive cells that were also TUNEL positive.
- FIG. 5 shows that EPO and IGF-I each signal through PI3-kinase.
- A Treatment with EPO induces association of the p85 subunit of PI3-kinase with the EPO-R. Cerebrocortical cells were stimulated with 5 or 10 U/ml EPO for 30 minutes. EPO-R was immunoprecipitated from total cell lysates and separated on a SDS-polyacrylamide gel. The blot was then probed with anti-EPO-R antibody, stripped and reblotted with anti-p85 antibody.
- B Cerebrocortical cells were stimulated with EPO (5 U/ml, upper panel) or IGF-I (100 ng/ml, lower panel) for the indicated amount of time. Whole cell lysates were run on SDS-polyacrylamide gels; blots were probed with anti-phospho-p85 antibody, stripped, and then reprobed with anti-p85 antibody.
- FIG. 6 shows that combined treatment with EPO and IGF-I induces Akt phosphorylation.
- Mixed neuronal/glial rat cerebrocortical cultures were treated for 20 minutes with 10 U/ml EPO, 100 ng/ml IGF-I, or both EPO and IGF-I, with or without simultaneous application of 200 ⁇ M NMDA.
- NIH3T3 cells stimulated with 100 ⁇ g/ml platelet-derived growth factor (PDGF) for 10 minutes served as a positive control. After three hours, cells were lysed, and whole-cell lysates subjected to immunoblot analysis with anti-phospho-Akt antibody; the blot was stripped and reprobed with an anti-Akt antibody.
- PDGF platelet-derived growth factor
- FIG. 7 shows that Akt contributes to neuroprotection mediated by combined treatment with EPO and IGF-I.
- Cerebrocortical cultures were exposed to an adenoviral vector encoding a wild-type (wt) or dominant-negative (dn) form of Akt for four hours.
- Other cultures were coinfected with wt and dn Akt in a molar ratio of 1:1 or 2:1 (wt-Akt:dn-Akt).
- wt-Akt:dn-Akt a molar ratio of 1:1 or 2:1
- FIG. 8 shows that combined treatment with EPO and IGF-I promotes long-term neuronal survival downstream of caspase activation.
- A Survival of neurons in mixed neuronal-glial cultures after exposure to 200 ⁇ M NMDA for 20 minutes (black bars). EPO/IGF-I treatment (10 U/ml and 100 ng/ml, respectively) at the time of NMDA exposure promoted neuronal survival for up to 48 hours after the insult (white bars; *, p ⁇ 0.05).
- B Cerebrocortical cultures were exposed to NMDA or EPO/IGF-I, or concurrently exposed to EPO/IGF-I and NMDA. Culture lysates were subjected to immunoprecipitation with an antibody specifically reactive with the active form of caspase-3.
- EPO/IGF-I led to an increase in the amount of XIAP associated with active caspase-3.
- C Densitometry of XIAP, a protein inhibitor of apoptosis, revealed a 2.5 to 3-fold increase in the amount of XIAP bound to active caspase-3.
- D Caspase-3-like activity is reduced by EPO/IGF-I. Rat cerebrocortical cells were infected with an adenoviral vector encoding dominant-negative Akt (dn-Akt) or control vector.
- EPO EPO
- IGF-I 100 ng/ml
- EPO/IGF-I EPO/IGF-I
- Cells were exposed to 200 ⁇ M NMDA three hours after or simultaneously with EPO/IGF-I incubation. Caspase activity in cell lysates was assessed 16 hours after NMDA exposure and is shown as relative DEVDase activity expressed as percent increase over control levels.
- E Neuron-enriched cultures were exposed to NMDA insult (200 ⁇ M for 20 minutes) with or without EPO/IGF-I, and neuronal survival assessed at the indicated time points. Even in the absence of non-neuronal cells, EPO/IGF-I was equally effective in promoting long-term neuronal survival after exposure to NMDA.
- FIG. 9 shows that combined treatment with EPO and IGF-I can be effective in promoting neuronal survival when applied several hours following NMDA exposure.
- Cells were exposed to NMDA as described above and treated with 10 U/ml EPO and 100 ng/ml IGF-I three hours or one hour prior to NMDA exposure, at the time of NMDA exposure, or one hour, two hours, three hours or five hours subsequent to NMDA exposure. The percentage of apoptotic neurons was determined as described above.
- FIG. 10 shows that EPO and IGF-I together are more effective at reducing neuronal apoptosis than when used individually.
- Cells were exposed to 200 ⁇ M NMDA as described above and simultaneously treated with EPO alone, IGF-I alone, or EPO in combination with IGF-I at varying concentrations.
- Incubation 1 0.5 U/ml EPO and 1 ng/ml IGF-1, alone or in combination.
- Incubation 2 1.0 U/ml EPO and 10 ng/ml IGF-1, alone or in combination.
- Incubation 3 2.0 U/ml EPO and 20 ng/ml IGF-1, alone or in combination.
- Incubation 4 5.0 U/ml EPO and 50 ng/ml IGF-1, alone or in combination.
- Incubation 5 10 U/ml EPO and 20 ng/ml IGF-1, alone or in combination.
- Incubation 6 20 U/ml EPO and 400 ng/ml IGF-1, alone or in combination.
- the percentage of apoptotic neurons was determined 18 hours following NMDA exposure as described above.
- Incubations 3, 4 and 5 produced results with the EPO/IGF combination which were significantly different (p ⁇ 0.02) from treatment with each cytokine alone.
- the present invention is directed to the surprising discovery that erythropoietin and insulin-like growth factor (IGF) together mediate more rapid neuroprotection than either factor mediates alone, indicating that combined EPO and IGF treatment can be useful in providing neuroprotection in acute neurological conditions such as stroke, trauma and seizure.
- IGF insulin-like growth factor
- the invention also is directed to the surprising discovery that, together, EPO and IGF-I synergize to reduce apoptosis in neurons, providing enhanced neuroprotection at reduced concentrations, indicating that reduced concentrations of EPO and IGF-I can be useful in treating acute and chronic neurological disorders such as, without limitation, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Huntington's disease, glaucoma, HIV-associated dementia, multiple sclerosis, Parkinson's disease, and neuropathic pain.
- ALS amyotrophic lateral sclerosis
- glaucoma Huntington's disease
- HIV-associated dementia multiple sclerosis
- Parkinson's disease Parkinson's disease
- neuropathic pain neuropathic pain
- Example I the neuroprotective effects of concurrent EPO and IGF-I administration were compared to treatment with EPO or IGF-I individually in rat primary cerebrocortical cultures exposed to NMDA, an excitatory insult.
- Neuronal apoptosis was quantified by double labeling for TUNEL reactivity, which is indicative of apoptosis, and a neuron-specific marker, microtubule associated protein-2 (MAP2) 16 hours after NMDA insult.
- TUNEL reactivity a neuron-specific marker, microtubule associated protein-2
- rat cerebrocortical neurons were preincubated for three hours with EPO, IGF-I, or EPO in combination with IGF-I (EPO/IGF-I) in the presence or absence of 10 ⁇ M LY294002, a specific PI3-kinase inhibitor.
- EPO/IGF-I IGF-I
- LY294002 a specific PI3-kinase inhibitor.
- the results shown in FIG. 4 demonstrate that LY294002 abolished the neuroprotective effect of EPO and IGF-I either alone or in combination (p ⁇ 0.05) but did not itself cause neuronal apoptosis in cerebrocortical cultures or increase the amount of apoptosis induced by NMDA, indicating that PI3-kinase activity is required for EPO- and IGF-I-mediated neuroprotection.
- EPO and IGF-I treatment of neuronal cells can cooperatively activate Akt kinase, which is a kinase activated downstream of PI3-kinase-mediated production of 3′ phospholipids.
- the Akt kinase is phosphorylated at two critical sites, serine-473 and threonine-308.
- FIG. 6A a three hour incubation with EPO or IGF-I alone resulted in moderate Akt activation, as evidenced by increased phospho-serine-473 Akt, while co-incubation with maximally effective concentrations of EPO and IGF-I together resulted in a much larger increase in phospho-serine-473 Akt.
- Akt serine-473 phosphorylation is synergistically induced by the combination of EPO and IGF-I and that Akt phosphorylation and activation play a role in the neuroprotection mediated by combined EPO/IGF-I treatment.
- Example VA The results disclosed in Example VA show that treatment with EPO in combination with IGF-I prevents NMDA-induced neurotoxicity in cerebrocortical cultures in the presence of the active form of caspase-3.
- this result shows that prolonged survival of neurons following NMDA exposure and EPO/IGF-I treatment indicated that EPO/IGF-I neuroprotection occurs, at least in part, downstream of initial caspase-3 activation, which is typically associated with neuronal apoptosis within 16 hours of NMDA insult.
- FIG. 8A combined EPO/IGF-I treatment resulted in long-term neuronal survival.
- FIG. 8B shows that active caspase-3 was associated with XIAP in cultured neurons and that treatment with EPO and IGF-I increased the relative amount of XIAP associated with active caspase-3, consistent with negative regulation of the active form of caspase-3 by association with XIAP. Furthermore, the proteolytic activity of caspase-3 was modulated by combined EPO/IGF-I treatment. As shown in FIG.
- NMDA exposure resulted in increased caspase-3 proteolytic activity as indicated by enhanced DEVD substrate cleavage, while simultaneous application or 3 hour preincubation with EPO/IGF-I diminished the NMDA-induced increase in caspase-3-like activity.
- This reduction in caspase-3 activity was partially inhibited by infection with a dominant negative Akt in cultures preincubated with EPO and IGF-I, demonstrating that Akt can play a role in regulating the proteolytic activity of neuronal caspase-3 (see FIG. 8D ).
- the present invention provides a method of providing acute neuroprotection by inducing the erythropoietin (EPO) pathway in neuronal cells close to or subsequent to the time of excitatory insult; and inducing an insulin-like growth factor (IGF) pathway in the neuronal cells close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- EPO erythropoietin
- IGF insulin-like growth factor
- the present invention further provides a method of providing acute neuroprotection by contacting neuronal cells with EPO or an active fragment or analog thereof close to or subsequent to the time of excitatory insult; and contacting the neuronal cells with an IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- neuronal cells are contacted with EPO or an active fragment thereof, for example, with human EPO or an active fragment thereof.
- neuronal cells are contacted with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog.
- the invention is practiced with an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVC
- the invention is practiced with EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYS CHFGPLTWVC KPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO.
- the invention is practiced by contacting neuronal cells with Darbepoietin.
- soluble EPO receptor optionally can be included, for example, to increase the half-life of EPO or an active fragment or analog thereof.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by contacting neuronal cells with an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by contacting neuronal cells with human IGF-I or an active fragment thereof.
- the invention is practiced with an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid IGF analog including, without limitation, peptide, peptidomimetic, small molecule and nucleic acid IGF-I analogs.
- the invention is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein (IBP).
- IBP IGF-binding protein
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF-I.
- the two contacting steps can be performed in vitro or in vivo and further can be performed simultaneously or in any order.
- neuronal cell means a nerve cell and is characterized, in part, by containing one or more markers of neuronal differentiation. Such a marker can be, for example, neurofilament, NeuN or MAP2.
- a neuronal cell further generally is characterized as containing neuronal-like processes.
- the methods of the invention produce a synergistic acute neuroprotective effect in neuronal cells.
- acute neuroprotective effect means a rapid effect that functions to reduce neuronal cell death or deterioration.
- An acute neuroprotective effect generally occurs within several minutes to about several hours.
- medicaments that produce an “acute neuroprotective effect” need not be pre-incubated with the neuronal cells prior to the time of excitatory insult, such as stroke, trauma or seizure, etc.
- An acute neuroprotective effect can rapidly function to reduce neuronal apoptosis.
- the extent of apoptotic cell death can be determined by a variety of assays well known in the art. Such methods include light microscopy for determining the presence of one or more morphological characteristics of apoptosis, such as condensed or rounded morphology, shrinking and blebbing of the cytoplasm, preservation of the structure of cellular organelles including mitochondria, and condensation and margination of chromatin.
- the percentage of apoptotic cells also can be determined by assaying apoptotic activity using terminal deoxytransferase-mediated (TdT) dUTP biotin nick end-labeling (TUNEL) in conjunction with condensed cell morphology (Gavriel et al., J. Cell Biol.
- ApopTagTM (ONCOR, Inc., Gaithersburg, Md.) is a commercially available kit for identification of apoptotic cells using digoxygenin labeling.
- apoptotic cells can be identified by detecting characteristic nucleosomal DNA fragments using agarose gel electrophoresis (Studzinski, supra, 1995; Gong et al., Anal. Biochem.
- synergistic in reference to an acute neuroprotective effect means an acute neuroprotective effect achieved by the combination of a particular dose of EPO, or active fragment or analog thereof, and a particular dose of IGF, or active fragment or analog thereof, that is significantly greater than the additive acute neuroprotective effect ensuing from individual treatment with the same doses of EPO and IGF, or active fragments or analogs thereof.
- the synergistic acute neuroprotective effect reduces neuronal cell death by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more.
- neuronal cells are contacted with EPO or an active fragment or analog thereof and IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult.
- close to or subsequent to the time of excitatory insult means that the treatment or contact occurs at any time after the stroke, trauma, seizure, poisoning or other excitatory insult or that the treatment or contact occurs at most an hour prior to the time of excitatory insult.
- the neuronal cells are contacted with EPO and IGF from about the time of insult to about 48 hours later and can be contacted, for example, between 30 minutes and 8 hours following the insult.
- the EPO and IGF contacting steps occur within 30 minutes following excitatory insult. In another embodiment, the EPO and IGF contacting steps occur within the first hour following excitatory insult. In further embodiments, the EPO and IGF contacting steps occur within the first two hours following the excitatory insult, within the first three hours following the excitatory insult, within the first 12 hours following the excitatory insult, or within the first 24 hours following excitatory insult.
- EPO Erythropoietin
- EPO receptor activation has been shown to follow a sequential dimerization mechanism, with binding to a high affinity site 1 on EPO preceding binding of the second receptor to a lower affinity site 2 (Matthews et al., Proc. Natl. Acad. Sci., USA 93: 9471-9476 (1996)).
- EPO erythropoietin
- EPOs useful in the invention include human and other primate EPOs, mammalian EPOs such as bovine, porcine, murine and rat homologs and other vertebrate homologs such as Danio rerio homologs.
- EPO encompasses species homologs, alternatively spliced forms, isotype and glycosylation variants and precursors of the mature human EPO sequence (SEQ ID NO: 3) shown in FIG. 1 .
- An EPO generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring, mature human EPO (SEQ ID NO: 3) and can have, for example, 90% or 95% or more amino acid identity with SEQ ID NO: 3.
- EPOGEN Amgen; Thousand Oaks, Calif.
- EPOGIN Chougai Pharmaceuticals; Tokyo, Japan
- EPOMAX Eslanex; Bothell, Wash.
- EPREX Janssen-Cilag; Beerse, Belgium
- NEORECORMON and RECORMON Roche; Basel, Switzerland
- PROCRIT Ortho Biotech; Raritan, N.J.
- various forms of EPO also are available generically as EPOETIN ALFA, EPOETIN BETA and EPOETIN OMEGA.
- an EPO useful in the invention can be obtained commercially or by a variety of well known methods, including, without limitation, purification from a natural source, recombinant expression, or peptide or chemical synthesis
- EPO analog means a molecule that induces or enhances the expression, activity or intracellular signaling of the erythropoietin receptor and that, in combination with an insulin-like growth factor, produces a synergistic acute neuroprotective effect in neurons.
- EPO analog can be, without limitation, a protein, peptide, peptidomimetic, small molecule, ribozyme, nucleic acid molecule, oligonucleotide, oligosaccharide, cell, phage or virus, or a combination thereof.
- EPO analogs useful in the invention encompass, yet are not limited to, erythropoietin mimetic peptides (EMPs); cyclic molecules such as cyclic peptides or peptidomimetics; dimeric and oligomeric EPO analogs; analogs with increased plasma half-life; anti-EPO receptor antibodies; small molecule drugs that induce EPO receptor dimerization; hyper-glycosylated forms of EPO; EPO-encoding nucleic acid molecules; and constitutive forms of the EPO receptor. It is understood that the term EPO analog encompasses active fragments of EPO, which are described hereinabove.
- An EPO analog can be an erythropoietin mimetic peptide (EMP) containing at least one copy of the amino acid sequence YXCXXGPXTWXCXP, where X is any amino acid (Wrighton et al., Science 273:458-463 (1996)).
- EPO analog contains two or more copies of YXCXXGPXTWXCXP (Wrighton et al., Nature Biotechn. 15:1261-1265 (1997).
- the EPO analog contains the sequence YX CXXGPXTWXC XP, where X is any amino acid and the cyclic portion is indicated by underlining.
- Erythropoietin mimetic peptides are known in the art and include EMP1 (SEQ ID NO: 7), EMP2 (SEQ ID NO: 8), EMP3 (SEQ ID NO: 9), EMP4 (SEQ ID NO: 10), EMP5 (SEQ ID NO: 11) and AF11154 (SEQ ID NO: 12) as shown in Table 1.
- Additional cyclic molecules including cyclic peptides and peptidomimetics and disulfide-bonded peptides and peptidomimetics also can be EPO analogs useful in the invention.
- oligomeric forms of erythropoietin, as well as oligomeric EPO fragments and analogs thereof, can be useful in the invention. See, in general, DePaolis et al., J. Pharm. Sci. 84:1280-1284 (1995), and Derby et al., Int. J. Peptide Protein Res. 47:201-208 (1996).
- Oligomeric forms of EPO or active fragments or analogs thereof useful in the invention include dimers and trimers as well as higher multimeric forms.
- An oligomeric form of EPO can include two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, fifteen or more, twenty or more, 50 or more, 100 or more, 200 or more, 500 or more, or 1000 or more copies of EPO or an active fragment or analog thereof.
- chemical cross-linking, synthetic peptide chemistry, phage display and conjugation of biotin-tagged EPO with streptavidin can be useful in generating oligomeric EPO analogs.
- Dimeric and trimeric EPO analogs can be formed using heterobifunctional crosslinking reagents, for example, by chemically modifying a first pool of erythropoietin monomers to contain free sulfhydryl residues and mixing this pool with a second pool containing maleimido groups; the oligomeric EPO subsequently can be purified, for example, by size exclusion HPLC as described, in Sytkowski et al., supra, 1998.
- Native human erythropoietin has a relatively short plasma half-life of about 4 to 13 hours, while EPO analogs with a larger molecular size can have a reduced rate of clearance and, therefore, increased plasma survival and in vivo biological activity.
- higher molecular weight EPO analogs including oligomeric forms of EPO, or active fragments or analogs thereof can exhibit an increased plasma half-life as compared to the half-life of native monomeric human EPO (Sytkowski et al., Proc. Natl. Acad. Sci. USA 95:1184-1188 (1998)).
- An oligomeric form of EPO can have, for example, a half-life of at least 15, 18, 21, 24, 48, 72 or 96 hours.
- soluble EPO receptor can be included to increase the half-life of native erythropoietin, or an active fragment or analog thereof, and, therefore, therapeutic value.
- an EPO analog useful in the invention can promote dimerization of the EPO receptor.
- the invention is practiced with an EPO analog which is a multivalent antibody, such as a bivalent monoclonal antibody, that binds the extracellular domain of the erythropoietin receptor and promotes receptor dimerization.
- bivalent anti-EPO receptor antibodies have been shown to mimic EPO activity as described, for example, in Schneider et al., Blood 89:473-482 (1997), and Elliot et al., J. Biol. Chem. 271: 24691-24697 (1996).
- antibody includes polyclonal and monoclonal antibodies, as well as polypeptide fragments of antibodies that retain binding activity for an EPO receptor of at least about 1 ⁇ 10 ⁇ 5 M.
- anti-EPO receptor antibody fragments such as Fab, F(ab′) 2 and Fv fragments, can retain binding activity for EPO receptor and, thus, are included within the definition of the term antibody as used herein.
- the term antibody also encompasses non-naturally occurring antibodies and fragments containing, at a minimum, one V H and one V L domain, such as chimeric antibodies, humanized antibodies and single chain antibodies that specifically bind EPO receptor.
- Such non-naturally occurring antibodies can be constructed using solid phase peptide synthesis, produced recombinantly or obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains as described by Borrebaeck (Ed.), Antibody Engineering (Second edition) New York: Oxford University Press (1995).
- bivalent antibodies are useful in the invention, including, without limitation, naturally occurring monoclonal and polyclonal antibodies such as monoclonal antibody MoAb34 (Schneider et al., supra, 1997); F(ab′) 2 fragments; and “miniantibodies,” which are functional analogs of bivalent whole antibodies that assemble in E. coli .
- a miniantibody includes two scFv fragments linked to a dimerization domain via a hinge region, such as the murine IgG3 long upper hinge.
- Useful dimerization domains include anti-parallel amphipathic helices, arranged as a helix-turn-helix bundle (dHLX; see, for example, Borrebaeck, supra, 1995).
- a primary screen can be an ELISA utilizing, for example, immobilized EPO receptor extracellular domain (EPObp), and a secondary screen for EPO agonist activity can be, for example, a thymidine uptake proliferation assay using a cell line stably expressing EPO receptor (Schneider et al., supra, 1997).
- EPObp immobilized EPO receptor extracellular domain
- Anti-EPO receptor antibodies can be prepared, for example, using as an immunogen an EPO receptor fusion protein or a synthetic peptide encoding a portion of the EPO receptor extracellular domain.
- an immunogen an EPO receptor fusion protein or a synthetic peptide encoding a portion of the EPO receptor extracellular domain.
- purified EPO receptor or an extracellular domain thereof, including peptide portions such as synthetic peptides, can be produced recombinantly and used as immunogens.
- non-immunogenic fragments or synthetic peptides of an EPO receptor can be made immunogenic by coupling the hapten to a carrier molecule such as bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) by well known methods as described, for example, by Harlow and Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988).
- BSA bovine serum albumin
- KLH keyhole limpet hemocyanin
- An EPO analog also can be a small molecule drug that can induce EPO receptor dimerization and mimic one or more biological activities of naturally occurring erythropoietin.
- a small molecule EPO analog can contain, for example, eight copies of N-3-[2-(4-biphenyl)-6-chloro-5-methyl]indoyl-acetyl-L-lysine methyl ester, for example, attached to a polyamidoamino-octa-4-hydroxymethylbenzamide support via a chemical linker and can be prepared as described in Qureshi et al., Proc. Natl. Acad. Sci., USA 96:12156-12161 (1999).
- EPO analogs can be routinely identified, for example, by screening compound libraries for molecules able to induce dimerization of soluble EPO receptor.
- Convenient assays for dimerization include assaying for retention of labeled recombinant EPO-binding protein (rEBP), which is the extracellular domain of the EPO receptor, to unlabeled rEMP immobilized on a plate in the presence of test compound (see Qureshi et al., supra, 1999).
- rEBP labeled recombinant EPO-binding protein
- Native erythropoietin is heavily glycosylated, and EPO prepared from Chinese hamster ovary (CHO) cells has three N-linked and one O-linked glycosylation sites with the average carbohydrate content being about 40%.
- carbohydrate plays an important role in stability, biosynthesis, apical secretion and biological activity.
- glycosylation appears to increase both conformational stability and solubility of EPO, although conformation is not affected.
- an EPO analog also can be a form of EPO that is hyper-glycosylated compared to native human EPO.
- Such analogs are known in the art and include, without limitation, Darbepoietin.
- An EPO analog also can be a nucleic acid molecule encoding erythropoietin or an active fragment or analog thereof.
- An exemplary nucleic acid analog of human EPO is provided herein as SEQ ID NO: 1 (see FIG. 1 ).
- SEQ ID NO: 1 see FIG. 1 .
- a nucleic acid molecule encoding an active fragment of EPO or a peptide analog of EPO such as one of those described hereinabove also can be an EPO analog useful in the methods of the invention.
- nucleic acid molecule means any polymer of two or more nucleotides, which are linked by a covalent bond such as a phosphodiester bond, a thioester bond, or any of various other bonds known in the art as useful and effective for linking nucleotides.
- a nucleic acid molecule can be linear, circular or supercoiled, and can be single stranded or double stranded.
- a nucleic acid molecule can be, for example, DNA or RNA, or a DNA/RNA hybrid.
- a nucleic acid EPO analog including a sense or antisense nucleic acid molecule or oligonucleotide, also can contain one or more nucleotide analogs or phosphothioate bonds, which protect against degradation by nucleases.
- non-naturally occurring organic molecules include RNA containing 2′-aminopyrimidines, such RNA being 1000 ⁇ more stable in human serum as compared to naturally occurring RNA (see Lin et al., Nucl. Acids Res. 22:5229-5234 (1994); and Jellinek et al., Biochemistry 34:11363-11372 (1995)).
- RNA molecules containing 2′-O-methylpurine substitutions on the ribose residues and short phosphorothioate caps at the 3′- and 5′-ends exhibit enhanced resistance to nucleases (Green et al., Chem. Biol. 2:683-695 (1995)).
- RNA containing 2′-amino-2′-deoxypyrimidines or 2′-fluoro-2′-deoxypyrimidines is less susceptible to nuclease activity (Pagratis et al., Nature Biotechnol. 15:68-73 (1997)).
- L-RNA which is a stereoisomer of naturally occurring D-RNA, is resistant to nuclease activity (Nolte et al., Nature Biotechnol. 14:1116-1119 (1996)); Klobmann et al., Nature Biotechnol. 14:1112-1115 (1996)).
- RNA molecules and methods of producing them are well known and routine in the art (see Eaton and Piekern, Ann. Rev. Biochem. 64:837-863 (1995)).
- DNA molecules containing phosphorothioate linked oligodeoxynucleotides are nuclease-resistant and can be useful EPO analogs (Reed et al., Cancer Res. 50:6565-6570 (1990)).
- Phosphorothioate-3′ hydroxypropylamine modification of the phosphodiester bond also reduces the susceptibility of a DNA molecule to nuclease degradation (see Tam et al., Nucl. Acids Res. 22:977-986 (1994)). Furthermore, thymidine can be replaced with 5-(1-pentynyl)-2′-deoxoridine (Latham et al., Nucl. Acids Res. 22:2817-2822 (1994)).
- Viral vectors can be particularly useful for introducing a nucleic acid analog into a neuronal cell or neuronal precursor cell in a method of the invention.
- Such vectors include, for example, retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated vectors (AAV) and herpesvirus vectors (see, for example, Kaplitt and Loewy, Viral Vectors: Gene Therapy and Neuroscience Applications Academic Press, San Diego, Calif. (1995); Chang, Somatic Gene Therapy CRC Press, Boca Raton, Fla. (1995)).
- Lentiviral, retroviral and adeno-associated vectors can be useful, for example, for permanent expression, and adenovirus and herpesvirus can be used to achieve transient expression lasting for several months to about one year. It is understood that both permanent and transient expression can be useful in the methods of the invention.
- a variety of techniques are known in the art for introducing a nucleic acid molecule into a neuronal cell or neuronal precursor cell. Such methods include microinjection, electroporation, lipofection, calcium-phosphate mediated transfection, DEAE-Dextran-mediated transfection, polybrene- or polylysine-mediated transfection, and conjugation to an antibody, gramacidin S, artificial viral envelope or other intracellular carrier such as TAT. See Cibelli et al., Nat. Biotech. 16:642-646 (1998); Lamb and Gearhart, Cur. Opin. Gen. Dev. 5:342-348 (1995); Choi (U.S. Pat. No. 6,069,010); and Current Protocols in Molecular Biology , John Wiley and Sons, pp 9.16.4-9.16.11 (2000).
- constitutively active EPO receptor is another EPO analog that can produce acute neuroprotective benefits according to a method of the invention.
- constitutively active EPO receptor is synonymous with “constitutively active EPO receptor” and means a polypeptide having structural similarity to the native human erythropoietin receptor and which has one or more hormone-independent biological activities of the native EPO receptor.
- Such a constitutive EPO receptor can have a modified dimerization interface such that the receptor dimerizes in the absence of ligand.
- the constitutive EPO receptor is a variant of the native human EPO receptor which has an arginine to cysteine mutation at position 129 and which forms disulfide-linked homodimers in the absence of EPO.
- a constitutive EPO receptor is a variant of a native EPO receptor containing one or more non-naturally occurring cysteines within the dimerization interface (see, for example, Watowich et al., supra, 1992; Watowich et al., supra, 1994; and Longmore et al., supra, 1994).
- An EPO analog also can be a molecule that induces or enhances the intracellular signal transduction cascade of the EPO receptor. Signal is initiated following binding of EPO ligand and results in dimerization of receptor. JAK2 is autophosphorylated and subsequently phosphorylates the EPO receptor and STAT proteins, which then are free to translocate to the nucleus and activate transcription. In addition, cross talk between the JAK2 and NF- ⁇ B signaling pathways, as well as Akt and bcl-X L upregulation, can lead to neuroprotection (Digicaylioglu and Lipton, Nature 412:641-647 (2001)).
- Hematopoietic cell phosphatase also known as SHP1 or PTP1C, binds to phosphorylated EPO receptor and dephosphorylates JAK2, thereby acting as a negative regulator of the EPO receptor intracellular pathway.
- an EPO analog also can be an inhibitor of HCP such as an HCP antisense molecule.
- HCP inhibitors are known in the art and further can be identified by routine methods (Barbone et al., Nephrol. Dial. Transplant. 14-[Suppl. 2]:80-84 (1999)).
- Naturally occurring human IGF-I also known as somatomedin C, is a hormone of 70 amino acids.
- IGF-I is a basic peptide (pI 8.4) with about 43% amino acid homology to proinsulin.
- Naturally occurring IGF-II is a relatively neutral peptide (pI 6.4) with 60% amino acid homology to native IGF-I.
- the sequence of mature human IGF-I (SEQ ID NO: 6) is known in the art and is shown in FIG. 2 (Rotwein et al., J. Biol. Chem. 261:4828-4832 (1986); and Jansen et al., Nature 306:609-611 (1983)).
- the 70 amino acids that make up mature human IGF-I have been divided into four principle domains.
- the first 29 residues of IGF-I bear a strong resemblance to the B chain of insulin and are therefore denoted the “B domain.”
- IGF-I residues 42-62 are homologous to the insulin A chain and are consequently denoted the “A domain.”
- Intervening between the B and A domains (residues 30-41) is the “C domain;” the carboxy-terminal 7 amino acids (residues 63-70) are known as the “D domain.”
- NMR solution structure of the core of human IGF-I shows striking similarity to insulin (Cooke et al., Biochem. 30:5484-5491 (1991)), and IGF-I is known to bind the insulin receptor, although with lower affinity than to the IGF type I receptor. Consistent with this model, the IGF-I C and D domains may be “flaps,” which flank the insulin-conserved receptor binding cleft, and which contribute to specific binding to the type 1 receptor. Mutagenesis experiments have revealed that residues in the carboxy-terminal extended region of the B domain and residues in the C domain proximal to the B domain are involved in receptor binding, and that tyrosines 24 and 31 are involved in specific receptor interactions.
- the IGFs are present in high concentrations in the circulation; however, only a relatively small fraction is available in a “free” or unbound form.
- Specific binding proteins of high molecular weight and with a high binding capacity for IGF-I and IGF-II act as carrier proteins and modulate IGF functions (Holly et al., Endocrin. 118:7-18 (1988)).
- Most IGFs in blood circulate as part of a non-covalently associated ternary complex made up of IGF-I or IGF-II, IGFBP-3 and a protein known as the “acid-labile subunit” (ALS).
- ALS acid-labile subunit
- insulin-like growth factor is synonymous with “IGF” and means a polypeptide that has substantially the amino acid sequence of naturally occurring human IGF-I or naturally occurring human IGF-II or a homolog of one of these proteins.
- Insulin-like growth factors useful in the invention include human and other primate IGFs, mammalian IGFs such as bovine, porcine, murine and rat homologs, and other vertebrate homologs such as chicken and Danio rerio homologs.
- IGF encompasses species homologs, alternatively spliced forms, isotype variants and precursors of the mature human IGF-I sequence shown in FIG.
- an IGF-I generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring mature human IGF-I (SEQ ID NO: 6) and can have, for example, 90% or 95% or more amino acid identity with SEQ ID NO: 6.
- an IGF-II generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring mature human IGF-II and can have 90% or 95% or more amino acid identity with mature human IGF-II.
- an IGF useful in the invention can be obtained by a variety of well known methods, including, without limitation, purification from a natural source, recombinant expression, and peptide or chemical synthesis.
- IGF-I can be prepared in bacteria as a fusion peptide, followed by subsequent cleavage of the fusion product as described, for example, in U.S. Pat. No. 5,708,134.
- An active fragment of an IGF also can be useful in the invention.
- An active fragment has an amino acid sequence corresponding to a portion of full-length IGF-I or IGF-II and retains the ability to synergize with EPO to produce an acute neuroprotective effect.
- Active fragments of IGF-I and IGF-II useful in the invention include fragments with similar activity or with improved activity or stability relative to the naturally occurring full-length IGF.
- such an active fragment can lack the first 1 to 5 amino terminal residues of IGF-I.
- Destripeptide IGF-I which lacks the native N-terminal residues Gly Pro Glu, stimulates protein and DNA synthesis at concentrations between 4 and 50-fold lower than the levels required for full-length IGF-I. The elimination of 1 to 5 amino acids from the N-terminus of bovine or porcine IGF-I also results in enhanced potency.
- IGF analog means a molecule that induces or enhances expression, activity or intracellular signaling of the type 1 insulin-like growth factor receptor and that, in combination with EPO, produces a synergistic acute neuroprotective effect in neurons.
- IGF analog can be, without limitation, a protein, peptide, peptidomimetic, small molecule, ribozyme, nucleic acid molecule, oligonucleotide, oligosaccharide, cell, phage or virus, or a combination thereof. It is understood that the term IGF analog encompasses active fragments of IGF-I and IGF-II.
- IGF analogs include molecules with improved characteristics relative to native human IGF-I or IGF-II, for example, that facilitate commercial production of the analog; that have improved potency, size, stability or solubility; or that provide a more desirable pharmaceutical formulation.
- more active IGF analogs can be produced, for example, by a modification affecting the interaction of the IGF with its receptor, an IGF-binding protein (IBP) or heparin.
- IBP IGF-binding protein
- An IGF analog can be a molecule retaining IGF activity but having reduced affinity for one or more serum components, as described, for example, in Applebaum et al. (U.S. Pat. No. 4,876,242). Such an analog can have equal potency relative to IGF-I at the type I IGF receptor and can display, for example, a 5- to 10-fold increase in activity relative to human IGF-I.
- an IGF analog can be a 71 amino acid analog of human IGF-I containing the first 17 residues of the B chain of human insulin in place of the first 16 residues of human IGF-I or another analog incorporating a portion of insulin in place of the native IGF sequence (see, also, Cascieri and Bayne in LeRoith and Raizada, Current Directions in Insulin - like Growth Factor Research Plenum Press: New York 1994).
- An IGF analog also can be a peptide or peptidomimetic analog with a non-naturally occurring amino-terminal sequence. Ballard et al. (U.S. Pat. Nos.
- IGF-I and IGF-II analogs where there is a substitution of Glu3 in IGF-I, or a substitution of Glu5 and Glu6 in IGF-II.
- the one or more glutamic acid residues can be substituted, without limitation, with Ala, Asn, Phe, Ile, Met, Val, Ser, Pro, Thr, Tyr or Cys. If desired, at least one of the surrounding Gly, Pro or Thr residues also can be absent from the IGF analog.
- an IGF analog can have two or more chains.
- Two-chain IGF analogs include disulfide-bonded heterodimers composed of a first chain containing the B and C domains, and a second chain containing the A domain.
- Such a two-chain IGF analog can be an IGF-I analog in which the C domain contains a deletion of the first 8, 10 or 12 residues and can have increased IGF-I activity as compared to native human IGF-I (see, for example, U.S. Pat. No. 5,622,932).
- An IGF pathway also can be induced using a molecule which increases the active concentration of an IGF, for example, by inhibiting the interaction of IGF-I or IGF-II with one of their binding proteins but not with the type 1 IGF receptor; such an IGF analog can be used alone or in combination with IGF-I or IGF-II, or an active fragment or analog thereof.
- IGF analogs which can be a small antagonist mimetics of an IGF binding protein acting as indirect agonists, include peptides and peptidomimetics such as those shown in Table 2. These molecules are well known in the art as described, for example, in U.S. Pat. No. 6,251,865 and Lowman et al., Biochemistry 37:8870-8878 (1998).
- IGF analogs useful in the invention include but are not limited to LR3IGF-I, which contains an Arg for Glu substitution at position 3 and a 13 residue amino-terminal extension (Francis et al., J. Mol. Endocrinol. 8:213-223 (1992)) as well as forms containing [Leu24] or [Leu24][Arg31] (Bayne et al., J. Biol. Chem. 265:15648-15652 (1990); Seigel et al., Molecular Vision 6:157-163 (2000)), and the Val 59 IGF-I analog that simplifies production through application of cyanogen bromide (Ueda et al., U.S. Pat. No. 4,745,179).
- An IGF analog also can be a nucleic acid molecule that, for example, encodes IGF-I or IGF-II or an active fragment or analog thereof.
- An exemplary nucleic acid analog of human IGF-I is provided herein as SEQ ID NO: 4.
- SEQ ID NO: 4 The skilled person understands that a nucleic acid molecule encoding an active fragment of IGF-I or IGF-II, or a peptide analog thereof, such as those described hereinabove also can be a nucleic acid analog of IGF-I or IGF-II useful in the methods of the invention.
- kinase receptor activation assay can be used to measure activation of the human type I IGF-I receptor and thereby identify an IGF analog as described in Lowman et al., Biochemistry 37:8870-8878 (1998). Briefly, human MCF-7 cells (ATCC-HTB 22), which express IGF and insulin receptors, are grown overnight in 96 well plates with 50/50 F12/DMEM medium (Gibco) at 37° C. in 5% CO2.
- Supernatants are decanted, and stimulation media (50/50 F12/DMEM with 25 mM HEPES and 2.0% BSA) containing either test compound or recombinant human IGF-I standards are added. After stimulation at 37° C. for 15 minutes, supernatants are decanted, and the cells lysed. Lysates are transferred to an immunosorbant plate coated with polyclonal anti-IGF-I receptor (Santa Cruz Biotechnology) and blocked with BSA.
- stimulation media 50/50 F12/DMEM with 25 mM HEPES and 2.0% BSA
- EPO or IGF analog useful in the invention also can be a bifunctional molecule such as a biofunctional peptide having the activity of EPO as well as an IGF. It is understood that such a chimeric EPO/IGF peptide, which has the activity of both EPO and an IGF, can be used in the methods of the invention in the absence of additional EPO or IGF or an active fragment or analog thereof or, if desired, in combination with one or both of EPO or IGF or active fragments or analogs thereof.
- the methods of the invention are practiced by contacting neuronal cells or administering a combination of two factors (EPO and an IGF), the methods of the invention also can be practiced by contacting neuronal cells with or by administering to a subject a single bifunctional analog in place of individual EPO and IGF proteins or active fragments or analogs thereof.
- the invention is practiced by contacting neuronal cells with an EPO/IGF bifunctional analog which is cleaved after uptake into the neuronal cells to produce individual EPO and IGF analogs.
- the invention is practiced by administering to a subject an EPO/IGF bifunctional analog, which is cleaved subsequent to administration to produce individual EPO and IGF analogs.
- Peptide analogs can be synthesized by well known methodology, for example, utilizing an Applied Biosystems 430A Peptide Synthesizer (Foster City, Calif.). Boc amino acid resins and other reagents can be obtained from Applied Biosystems and other commercial sources. Sequential Boc chemistry, using double couple protocols and acetic anhydride capping can be applied to the desired Boc-amino acid-4-(oxymethyl)phenylacetamidomethyl [PAM] resin.
- PAM Boc-amino acid-4-(oxymethyl)phenylacetamidomethyl
- Recombinant hormones and active fragments and analogs thereof also can be prepared using recombinant methods in prokaryotic host cells or in yeast or other eukaryotic host cells as described, for example, in U.S. Pat. No. 5,104,796 and U.S. Pat. No. 5,084,384 (see, also, U.S. Pat. No. 5,622,932). It is understood that recombinant forms of EPO or IGF can be prepared as fusion proteins and can contain additional heterologous sequences such as signal sequences.
- the present invention also provides a method of preventing or reducing the severity of an acute neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof close to or subsequent to the time of acute injury; and administering to the subject an IGF or an active fragment or analog thereof close to or subsequent to the time of acute injury, thereby providing a synergistic acute neuroprotective effect and preventing or reducing the severity of the acute neurologic condition.
- an acute neurologic condition can be, without limitation, stroke, head or spinal cord trauma, or seizure.
- a method of the invention for preventing or reducing the severity of an acute neurologic condition can be practiced, for example, with EPO or an active fragment thereof, such as human EPO or an active fragment thereof.
- a method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog.
- the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- the invention is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- a method of the invention can be practiced with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYS CHFGPLTWVC KPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO.
- Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin.
- the methods of the invention also optionally include the step of administering soluble EPO receptor to the subject.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by administering IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by administering human IGF-I or an active fragment thereof.
- the invention also can be practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- a method of the invention for preventing or reducing the severity of an acute neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein.
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- EPO and IGF, or active fragments or analogs thereof can be administered simultaneously or in any order and in the same or different pharmaceutical compositions.
- the term “subject” means any animal containing neurons, for example, a mammal such as a mouse, rat, dog, primate or human.
- a subject typically suffers from an acute or chronic neurologic condition or is at high risk of developing a neurologic condition.
- an “acute neurological condition” means any neurological disorder or disease having a short and relatively severe course.
- an “acute neurologic condition” can be cerebral ischemia associated with stroke; hypoxia; anoxia; poisoning by carbon monoxide, manganese or cyanide; hypoglycemia; perinatal asphyxia; near death drowning; mechanical trauma to the nervous system such as trauma to the head or spinal cord; epileptic seizure; cardiac arrest; or cerebral asphyxia associated, for example, with coronary bipass surgery.
- Acute neurological conditions generally are distinguished from chronic neurological conditions, in which the neurological condition is of a relatively long duration, for example, several months or years.
- Also provided by the invention is a method of preventing or reducing the severity of a neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and administering to the subject an IGF or an active fragment or analog thereof, thereby providing neuroprotection and preventing or reducing the severity of the neurologic condition.
- the EPO and IGF, or active fragments or analogs thereof can be administered to the subject simultaneously or in any order and in the same or different pharmaceutical compositions using any of a variety of routes of administration including, without limitation, oral, intravenous, intraperitoneal, subcutaneous, intracerebroventricular, intrathecal, transnasal, intravitreal and transcleral administration.
- a variety of acute and chronic neurologic conditions can be treated according to a method of the invention including, but not limited to, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-associated dementia, glaucoma, epilepsy, light-induced retinal degeneration such as photoreceptor degeneration, macular degeneration, and pain.
- the present invention also provides a method of preventing or reducing the severity of a cerebral neurologic condition in a subject by transnasally administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg;
- transnasally administering to the subject an IGF or an active fragment or analog thereof, thereby providing acute neuroprotection and preventing or reducing the severity of the neurologic condition.
- EPO and active fragments and analogs thereof are useful for preventing or reducing the severity of a neurologic condition according to a method of the invention.
- the invention can be practiced with EPO or an active fragment thereof such as human EPO or an active fragment thereof.
- a method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog.
- the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- a method of the invention for preventing or reducing the severity of a neurologic condition is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- the invention can be practiced, for example, with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO.
- Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin.
- the methods of the invention further optionally include the step of administering soluble EPO receptor to the subject.
- IGF and active fragments and analogs thereof are useful in the invention.
- the invention is practiced by administering an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof.
- the invention is practiced by administering human IGF-I or an active fragment thereof.
- the invention is practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- a method of the invention for preventing or reducing the severity of a neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I.
- the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein.
- the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- neurological condition encompasses all acute and chronic neurological conditions.
- neurological conditions encompass, without limitation, hypoxia-ischemia (stroke); head or spinal cord injury; epilepsy; neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis or multiple sclerosis; optic neuropathies such as glaucoma, light-induced retinal degeneration such as photoreceptor degeneration, and macular degeneration; disorders of photoreceptor degeneration such as retinitis pigmentosa; metabolic, mitochondrial and infectious brain abnormalities such as encephalitis; and neuropathic pain (Lipton and Rosenberg, New Engl. J. Med. 330: 613 (1994)).
- Chronic neurological conditions encompass neurodegenerative diseases such as Alzheimer's disease, Huntington's disease; disorders of photoreceptor degeneration such as retinitis pigmentosa and light-induced retinal degeneration; macular degeneration of the retina; forms of dementia including fronto-temporal dementia and HIV-associated dementia (acquired immunodeficiency syndrome dementia complex); neuropathic pain syndromes such as causalgia or painful peripheral neuropathies and other chronic pain syndromes; olivopontocerebellar atrophy; Parkinson's disease; Parkinsonism; amyotrophic lateral sclerosis; mitochondrial abnormalities and other biochemical disorders such as MELAS syndrome, MERRF, Leber's disease, Wernicke's encephalopathy, Rett syndrome, homocysteinuria, hyperhomocysteinemia, hyperprolinemia, nonketotic hyperglycinemia, hydroxybutyric aminoaciduria, sulfite oxidase deficiency, combined systems disease, lead encephalopathy; hepati
- the methods of the invention for preventing or reducing the severity of a neurologic condition in a subject are based, in part, on the discovery that, when administered in conjunction with an IGF such as IGF-I, EPO can be neuroprotective at much lower doses than previously observed.
- the methods of the invention are practiced by administering a dose of at most 2000 U/kg EPO, or active fragment or analog thereof.
- the invention is practiced by administering a dose of at most 1500 U/kg, 1000 U/kg, 750 U/kg, 500 U/kg, 250 U/kg, 100 U/kg, 90 U/kg, 80 U/kg, 70 U/kg, 60 U/kg, 50 U/kg, 40 U/kg, 30 U/kg, 20 U/kg, 10 U/kg, 5 U/kg, 2.5 U/kg or 1 U/kg EPO or active fragment or analog thereof.
- the invention is practiced by administering at most 2000 U/kg/day, 1500 U/kg/day, 1000 U/kg/day, 750 U/kg/day, 500 U/kg/day, 250 U/kg/day, 100 U/kg/day, 90 U/kg/day, 80 U/kg/day, 70 U/kg/day, 60 U/kg/day, 50 U/kg/day, 40 U/kg/day, 30 U/kg/day, 20 U/kg/day, 10 U/kg/day, 5 U/kg/day, 2.5 U/kg/day or 1 U/kg/day EPO or active fragment or analog thereof.
- a method of the invention for preventing or reducing the severity of a neurologic condition in a subject is practiced by administering EPO, or active fragment or analog thereof, in the range of 0.5 U/kg/day to 200 U/kg/day, 0.5 U/kg/day to 100 U/kg/day, 0.5 U/kg/day to 50 U/kg/day, 0.5 U/kg/day to 25 U/kg/day, 0.5 U/kg/day to 15 U/kg/day, 0.5 U/kg/day to 10 U/kg/day, 0.5 U/kg/day to 5 U/kg/day, 1 U/kg/day to 200 U/kg/day, 1 U/kg/day to 100 U/kg/day, 1 U/kg/day to 50 U/kg/day, 1 U/kg/day to 25 U/kg/day, 1 U/kg/day to 15 U/kg/day, 1 U/kg/day to 10 U/kg/day, 1 U/kg/day to 5 U/kg/day, 2 U
- a method of the invention for preventing or reducing the severity of a neurologic condition in a subject is practiced by administering EPO, or active fragment or analog thereof, at 3 U/kg/day, 5 U/kg/day, 10 U/kg/day, 15 U/kg/day, 20 U/kg/day or 25 U/kg/day.
- a unit of EPO, as defined by the World Health Organization and as used herein, is the equivalent of 1.2 international units of EPO activity.
- the methods of the invention additionally involve administering an IGF or active fragment or analog thereof to the subject.
- Such an IGF or active fragment or analog thereof generally is administered to a subject at from 0.5 ng/kg/day to 500 ng/kg/day.
- a method of the invention is practiced by administering an IGF such as IGF-I, IGF-II or an active fragment of analog of one of these factors, in a range of 1 ng/kg/day to 500 ng/kg/day, 1 ng/kg/day to 250 ng/kg/day, 1 ng/kg/day to 100 ng/kg/day, 1 ng/kg/day to 50 ng/kg/day, 1 ng/kg/day to 20 ng/kg/day, 1 ng/kg/day to 10 ng/kg/day, 5 ng/kg/day to 500 ng/kg/day, 5 ng/kg/day to 250 ng/kg/day, 5 ng/kg/day to 100 ng/kg/day, 5 ng/
- a method of the invention is practiced by administering 5 ng/kg/day, 10 ng/kg/day, 20 ng/kg/day, 25 ng/kg/day, 30 ng/kg/day or 50 ng/kg/day of an IGF or active fragment or analog thereof.
- a method of the invention is practiced by administering EPO, or an active fragment or analog thereof, in a range of 1 U/kg/day to 100 U/kg/day, 1 to 50 U/kg/day, 1 U/kg/day to 15 U/kg/day, 2 U/kg/day to 100 U/kg/day, 2 U/kg/day to 50 U/kg/day, 2 U/kg/day to 15 U/kg/day, 3 U/kg/day to 100 U/kg/day, 3 U/kg/day to 50 U/kg/day, or 3 U/kg/day to 15 U/kg/day in combination with an IGF, or active fragment or analog thereof, administered in a range of 1 ng/kg/day to 500 ng/kg/day, 5 ng/kg/day to 200 ng/kg/day or 10 ng/kg/day to 100 ng/kg/day.
- EPO, or an active fragment or analog thereof, and an IGF or an active fragment or analog thereof generally are administered to a subject in a pharmaceutical composition. It is understood that the EPO and IGF can be administered in the same or separate pharmaceutical compositions and further can be administered simultaneously or in any order, and by the same or different routes of administration.
- a pharmaceutical composition useful in the invention includes EPO or an active fragment or analog thereof, or an IGF or an active fragment or analog thereof, or both, each in a concentration range of, for example, approximately 0.0001% to approximately 0.1% weight by volume but not to exceed 2000 U/kg EPO or active fragment or analog thereof.
- a pharmaceutical composition useful in the methods of the invention further can include an excipient well known in the art for preparing pharmaceutical compositions including compositions suitable for intranasal administration.
- Pharmaceutical compositions useful in the invention further encompass, without limitation, those containing carrier proteins such as albumin.
- a pharmaceutical composition of the invention can include about 0.1% to 0.4% of a carrier protein such as albumin.
- a pharmaceutical composition includes a pharmaceutically acceptable carrier, which is any carrier that has substantially no long term or permanent detrimental effect when administered.
- pharmaceutically acceptable carriers include, without limitation, water, such as distilled or deionized water; saline; and other aqueous media. It is understood that the active ingredients can be soluble or can be delivered as a suspension in a suitable carrier.
- a preservative or tonicity adjustor can be included, if desired, in a pharmaceutical composition useful in the invention.
- Useful preservatives include, without limitation, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate, and phenylmercuric nitrate.
- Tonicity adjustors useful in the invention include salts such as sodium chloride, potassium chloride, mannitol or glycerin and other pharmaceutically acceptable tonicity adjustor.
- buffers and means for adjusting pH can be used to prepare a pharmaceutical composition useful in the invention, provided that the resulting preparation is pharmaceutically acceptable.
- buffers include, without limitation, acetate buffers, citrate buffers, phosphate buffers and borate buffers. It is understood that acids or bases can be used to adjust the pH of the composition as needed.
- Pharmaceutically acceptable antioxidants useful in the invention include, yet are not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
- routes of administration can be useful in the invention depending, in part, on the size and characteristics of the polypeptide or analog to be administered and the history, risk factors and symptoms of the subject to be treated.
- Routes of administration suitable for the methods of the invention include both systemic and local administration.
- EPO or an active fragment or analog thereof is administered through oral, intravenous, subcutaneous, intraperitoneal, intravitreal, transcleral, intranasal, intrathecal or epidural administration, or via intracerebro ventricular injection or a shunt surgically inserted into the cerebro ventricle.
- IGF-I or an active fragment or analog thereof is administered orally, intravenously, intranasally, intrathecally, epidurally, or via cerebro ventricular injection or a shunt surgically inserted into the cerebro ventricle.
- Routes of administration useful in the methods of the invention encompass, without limitation, oral delivery; intravenous injection; intramuscular injection; subcutaneous injection; intraperitoneal injection; transdermal diffusion and electrophoresis; topical eye drops and ointments; periocular and intraocular injection including subconjunctival injection; extended release delivery devices including locally implanted extended release devices including a bioerodible or reservoir-based implants. It is understood that an implant useful in the invention generally releases the implanted pharmaceutical composition over an extended period of time.
- Intranasal administration can be useful in the methods of the invention for preventing or reducing the severity of a neurological condition that affects the brain.
- Such conditions include yet are not limited to cerebral ischemia; stroke; hypoxia or anoxia; mechanical trauma to the head; HIV-associated dementia (AIDs dementia complex); Alzheimer's disease or Parkinson's disease; and drug addiction, tolerance and dependency, as well as other neurological disorders that affect the brain described hereinabove or known in the art.
- intranasal administration is used to deliver a peptide or peptidomimetic analog of EPO.
- intranasal administration is used to deliver a peptide or peptidomimetic analog of IGF-I.
- intranasal administration is used to deliver a peptide or peptidomimetic analog of EPO and a peptide or peptidomimetic analog of IGF-I.
- the peptide or peptidomimetic analogs of EPO administered intranasally have a length of up to 50 residues, 40 residues, 30 residues, 25 residues, 20 residues, 15 residues, 12 residues or 10 residues.
- the peptide or peptidomimetic analogs of IGF administered intranasally have a length of up to 50 residues, 40 residues, 30 residues, 25 residues, 20 residues, 15 residues, 12 residues or 10 residues.
- Intranasal administration of EPO or IGF-I, or a peptide or peptidomimetic of one of these factors, can bypass the blood-brain barrier and thereby deliver the therapeutic agent to the brain.
- Liu et al., J. Neur. Sci. 187:91-97 (2001) demonstrate that recombinant human IGF-I can protect against focal cerebral ischemic damage when administered intranasally.
- Intranasal administration can be accomplished by routine methods, for example, using a Rhinüle (Ferring; Germany) to blow a liquid substance containing the desired active ingredients into each nostril (Pietrowsky et al., Biol. Psych. 39:332-240 (1996)).
- Rhinüle is a small, flexible tube with a tip on one end that allows one to deliver a defined volume of 0.2 ml of a liquid substance into a nostril. Additional means of intranasal administration, including the use of nose drops (Liu et al., supra, 2001), also are encompassed by the methods of the invention.
- Nasal formulations of EPO, IGF-I or both can be prepared by routine methods.
- a nasal formulation of IGF-I can contain 0.1-10% IGF-I and 0.05 to 2.0% by weight carboxyvinyl polymer.
- any of the methods of the invention can include the additional step of expressing in the neuronal cells, or in neuronal precursor cells as described further below, one or more nucleic acid molecules encoding gene products that are therapeutically useful.
- a neuronal cell or neuronal precursor cell can express, for example, a nucleic acid molecule encoding the catecholamine enzyme tyrosine hydroxylase, thereby increasing dopamine- ⁇ -hydroxylase activity upon intracerebral grafting (Jiao et al., Nature 362:450 (1993); see, also, Dhawan et al., Science 254: 1509 (1991); and Barr and Leiden, Science 254:1507 (1991)).
- a neuronal cell or neuronal precursor cell can express a nucleic acid molecule encoding nerve growth factor, thereby promoting cell survival of the cholinergic neurons that are typically lost in Alzheimer's disease (Rosenberg et al., Science 242:1575-1578 (1988)).
- a neuronal cell or neuronal precursor cell can be engineered to express encephalin for treatment of neuropathic disorders involving intractable pain.
- a neuronal cell or neuronal precursor cell further can be engineered to express one or more anti-apoptotic gene products including, without limitation, members of the Bcl-2 family such as Bcl-2 and BC1-X L and members of the inhibitor of apoptosis (IAP) family such as c-IAP-1, c-IAP-2, XIAP or NIAP ((Anderson, Trends Pharm. Sci. 18:51 (1997); Gross and et al., Genes Dev. 13:1899-1911 (1999); and Deveraux and Reed, Genes Dev. 13:239-252 (1999)).
- members of the Bcl-2 family such as Bcl-2 and BC1-X L
- IAP inhibitor of apoptosis family
- the neuronal cells or neuronal precursor cells optionally can be treated to promote cell survival.
- mature neuronal cells are treated with a p38 inhibitor.
- neuronal cells or neuronal precursor cells are treated to inhibit caspase activity.
- caspase inhibitors are useful in the invention including, for example, nucleic acids, polypeptides, peptides, peptidomimetics and non-peptide inhibitors such as small molecule drugs known in the art.
- caspase inhibitor means any molecule that binds to and inhibits the activity of one or more caspases.
- Caspase inhibitors useful in the methods of the invention generally are cell permeable and have inhibitory activity in vivo and include viral and cellular gene products as well as synthetic inhibitors such as synthetic small molecules (Ekert et al., Cell Death and Differentiation 6:1081-1086 (1999)).
- a caspase inhibitor can be a general (non-selective) caspase inhibitor or can be a selective caspase inhibitor.
- Selective inhibitors are those inhibitors which do not inhibit non-caspase cysteine proteases or serine proteases.
- Non-selective caspase inhibitors, which also inhibit one or more non-caspase protease inhibitors include, for example, the cysteine protease inhibitor iodoacetamide.
- a caspase inhibitor also can be selective for one or more specific caspases.
- a caspase inhibitor can selectively inhibit caspase-3 or caspase-7 or a combination thereof and can be combined, for example, with any form of EPO or IGF or an active fragment or analog thereof disclosed herein or known in the art.
- Caspase inhibitors selective for caspases-3 and -7 include non-peptide inhibitors such as isatin sulfonamides (see, for example, Lee et al., J. Biol. Chem. 275:16007-16014 (2000)).
- a selective caspase inhibitor also can be selective for caspase-3, caspase-6, caspase-7 or caspase-8, or any combination thereof, and can be combined, for example, with any form of EPO and IGF.
- a caspase inhibitor can be, for example, the cytokine response modifier A (CrmA) polypeptide, or an encoding nucleic acid molecule, which inhibits caspases-1 and -8; or the p35 baculovirus protein, or an encoding nucleic acid molecule, which inhibits caspases-1, -3, -6, -7, -8 and -10 but does not inhibit non-caspase cysteine proteases or serine proteases (Clem et al., Science 254:1388-1390 (1991)).
- a caspase inhibitor also can be an inhibitor of apoptosis protein (IAP) or an encoding nucleic acid molecule.
- IAPs useful as caspase inhibitors in a method of the invention include XIAP and Survivin.
- a caspase inhibitor also can be a synthetic caspase inhibitor such as a pseudosubstrate which acts as a reversible or irreversible competitive inhibitor of one or more caspases.
- Active site mimetic peptide ketones are useful, for example, as selective caspase inhibitors.
- caspase inhibitors include, for example, benzylcarbonyl (z)-VAD-fluoromethylketone (fmk), z-VAD-fmk/chloromethylketone (CMK), z-DEVD-fmk/cmk; and z-D-cmk.
- caspase inhibitors include the halomethyl ketone-linked peptide YVAD, Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO (Ekert et al., supra, 1999).
- caspase inhibitors known in the art can be useful in the methods of the invention. See, for example, Nicholson, Nature 407:810-816 (2000); WO 00/55114; and Garcia-Calvo et al., J. Biol. Chem. 273:32608-32613 (1998)).
- EPO or an active fragment or analog thereof can cross the blood-brain barrier following intranasal administration, whereby unwanted systemic effects such as increased hematocrit can be avoided.
- intranasally applied radiolabeled EPO migrated into olfactory tissue and was observed in the rostral migratory stream (RMS).
- RMS rostral migratory stream
- autoradiography demonstrated that radiolabeled erythropoietin accumulated in brain tissue when applied intranasally.
- intranasal administration can be used to deliver erythropoietin and active fragments and analogs thereof to the brain, for example, via the rostral migratory stream.
- intranasal administration of EPO, or active fragments or analogs thereof can be useful for treating neurologic conditions such as stroke or neurodegenerative conditions while avoiding side effects associated with chronic systemic erythropoietin administration.
- the present invention provides a method of preventing or reducing the severity of a neurologic condition in a subject by intranasally administering to the subject EPO or an active fragment or analog thereof, thereby preventing or reducing the severity of the neurologic condition.
- the EPO or an active fragment or analog thereof is administered at a dose of at most 2000 U/kg.
- erythropoietin can be administered intranasally in the methods of the invention.
- a method of the invention is practiced by intranasal administration of EPO or an active fragment thereof, for example, by intranasal administration of human EPO or an active fragment thereof.
- a method of the invention is practiced by intranasal administration of an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog.
- a method of the invention is practiced by intranasal administration of an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO
- a method of the invention is practiced by intranasal administration of EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO.
- a method of the invention is practiced by intranasal administration of EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric.
- such a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7).
- the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO, or with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO, for example, Darbepoietin.
- soluble EPO receptor can be optionally included, for example, to prolong the half-life of EPO or the active fragment or analog thereof.
- any of a variety of acute and chronic neurologic conditions can be treated by intranasal administration of EPO, or an active fragment or analog thereof, in a method of the invention.
- Such neurologic conditions include, for example, stroke and neurodegenerative disorders.
- the methods of the invention which rely on intranasal administration of EPO or an active fragment or analog thereof can be useful for preventing or reducing the severity of neurologic conditions such as, without limitation, stroke, head or spinal cord trauma, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, amyotrophic lateral sclerosis, multiple sclerosis, a movement disorder, dementia, HIV-associated dementia, fronto-temporal dementia, HIV-associated neuropathy, chronic pain, neuropathic pain, migraine, glaucoma, drug addiction, drug withdrawal, drug dependency, depression and anxiety.
- these and other acute and chronic neurologic conditions can be treated by intranasal administration of EPO or an active fragment or analog thereof according to a method of the invention.
- Intranasal administration can be accomplished by any method wherein the EPO or an active fragment or analog thereof is introduced via the nasal cavity, with or without enhancers or mechanical devices such as a Rhinüle (Pietrowsky et al., supra, 1996).
- enhancers or mechanical devices such as a Rhinüle (Pietrowsky et al., supra, 1996).
- nose drops can be useful for intranasal administration, as can other nasal formulations including polymers and formulations as described in Shimoda et al., Biol. Pharm. Bull. 18:734-739 (1995).
- the present invention also provides a method of differentiating neuronal precursor cells to produce an enriched neuronal cell population by contacting the neuronal precursor cells with EPO or an active fragment or analog thereof; and contacting the neuronal precursor cells with IGF-I or an active fragment or analog thereof, thereby differentiating the neuronal precursor cells to produce an enriched cell population containing at least 70% neurons.
- a method of the invention produces an enriched cell population containing at least 80% neurons, at least 90% neurons or at least 95% neurons.
- the neuronal precursor cells further can be contacted with a differentiating agent, for example, retinoic acid.
- the invention is practiced by contacting the neuronal precursor cells with a concentration of at most 2000 U/ml, 1500 U/ml, 1000 U/ml, 750 U/ml, 500 U/ml, 250 U/ml, 100 U/ml or 50 U/ml EPO or active fragment or analog thereof.
- Neuronal precursor cells useful in the methods of the invention can be, for example, human stem cells; embryonic stem cells such as human embryonic stem cells; or hematopoietic neuronal precursor cells such as human hematopoietic stem cells.
- Neuronal precursor cells useful in the methods of the invention also can be, without limitation, selected CD133-positive (AC133-positive); CD133-positive/CD34-positive; CD133-positive/CD34-negative; CD133-positive/CD34-negative/CD45-negative; CD34-negative/CD38-negative/Lin-negative; or CD34-positive/CD38-negative/Lin-negative/Thy-1-negative human neuronal precursor cells.
- a method of the invention for differentiating neuronal precursor cells can further include the step of introducing into the neuronal precursor cells a nucleic acid molecule encoding a MEF2 polypeptide or an active fragment thereof.
- a MEF2 polypeptide can be, for example, human MEF2C, or an active fragment thereof, and further can be, if desired, a constitutively active MEF2 polypeptide such as a MEF2/VP16 fusion protein or a constitutively active MEF2 polypeptide containing one or more serine/threonine to aspartic acid/glutamic acid substitutions in the MEF2 transactivation domain.
- a method of the invention also can include, if desired, the step of inhibiting caspase activity; treating with a protective factor such as minocycline or another tetracycline derivative; or expressing a Bcl-X L family member in the neuronal precursor cells, for example, to prolong survival during subsequent transplantation.
- a protective factor such as minocycline or another tetracycline derivative
- expressing a Bcl-X L family member in the neuronal precursor cells for example, to prolong survival during subsequent transplantation.
- MEF2 polypeptide means a polypeptide that has MEF2 DNA binding activity in addition to activity as a transcriptional activator and includes polypeptides having substantially the amino acid sequence of MEF2A, MEF2B, MEF2C or MEF2D.
- a MEF2 polypeptide can have, for example, substantially the amino acid sequence of human MEF2A; human MEF2B; human MEF2C; or human MEF2D.
- a MEF2 polypeptide includes a MADS domain, a MEF2 domain and a transcriptional activation domain.
- the transcriptional activation domain of a MEF2 polypeptide may be structurally unrelated and can be, for example, a synthetic transcriptional activation or a heterologous transcriptional activation domain derived, for example, from VP16 or GAL4.
- a fragment of a MEF2 polypeptide that retains MEF2 DNA binding activity and transcriptional activity also can be useful in the methods of the invention.
- MEF2 polypeptide encompasses a polypeptide having the sequence of a naturally occurring human MEF2A polypeptide (GenBank accession NM 005587), naturally occurring human MEF2B polypeptide (GenBank accession NM 005919), naturally occurring human MEF2C polypeptide (GenBank accession L08895) or naturally occurring human MEF2D polypeptide (GenBank accession NM 005920) and is intended to include related polypeptides having substantial amino acid sequence similarity to one of these polypeptides.
- Such related polypeptides typically exhibit greater sequence similarity to hMEF2A, hMEF2B, hMEF2C or hMEF2D than to other MADS box proteins such as serum response factor (SRF) and include species homologs such as primate, mouse, rat and D. rerio homologs, alternatively spliced forms, and isotype variants of human MEF2A, MEF2B, MEF2C and MEF2D.
- SRF serum response factor
- MEF2 activator which is a small molecule that results in increased expression or activity of a MEF2 polypeptide or which is a mimetic of MEF2 function.
- a MEF2 activator can result in increased expression or activity of one or more MEF2 polypeptides, for example, may result in increased expression or activity of MEF2C without effecting expression or activity of MEF2A, MEF2B or MEF2D.
- MEF2 activator can be an organic chemical, drug, nucleic acid molecule, peptide, peptidomimetic, polypeptide or other naturally or non-naturally occurring organic molecule, and can be, for example, a MEF2 mimetic.
- Exemplary MEF2 activators are transcription factors that upregulate MEF2 expression, molecules that compete for binding to a MEF2 inhibitor such as Cabin1, histone deacetylase inhibitors including, but not limited to, VX-563 (Vertex Pharmaceuticals; Cambridge, Mass.), and kinases that activate MEF2 polypeptides such as p38a. It is understood that a MEF2 activator can be useful in any of the methods of the invention disclosed herein.
- differentiating agents optionally are useful in the methods of the invention including, for example, retinoic acid.
- Other differentiating agents useful in a method of the invention include, without limitation, neurotrophic factor 3, epidermal growth factor, IGF-I, platelet-derived growth factor and other agents that increase cAMP.
- a method of the invention for differentiating neuronal cells optionally includes the step of transplanting into a subject cells treated to induce the EPO and IGF pathways.
- cells can be transplanted, for example, into the brain, eye (retina) or spinal cord after neuronal injury or damage.
- cells treated to induce the EPO and IGF pathways can be transplanted into a subject having or at risk of, for example, stroke or a neurodegenerative disease such as Alzheimer's disease; Huntington's disease; amyotrophic lateral sclerosis; Parkinson's disease; epilepsy; brain or spinal cord trauma; multiple sclerosis; optic neuropathy such as glaucoma, macular degeneration, or light-induced retinal degeneration such as photoreceptor degeneration; infection of the central nervous system; multiple system atrophy affecting the brain; or another acute or chronic neurodegenerative condition.
- the cells Upon transplantation, the cells begin to differentiate or continue differentiating to produce a cell population containing protected neuronal cells.
- Cells can be transplanted into a subject, for example, into the eye, brain or spinal cord using well known methods for transplanting or “grafting” neurons as described, for example, in McDonald et al., Nat. Med. 5:1410-1412 (1999), and summarized in Dunnett et al., Brit. Med. Bulletin 53:757-776 (1997).
- Methods for preventing or ameliorating rejection, for example, using cyclosporine A treatment also are known in the art.
- a neuronal precursor population in which the EPO and IGF pathways have been induced can be transplanted into a subject prior to, during or after differentiation of the neuronal precursor cells into neuronal cells.
- cells are transplanted prior to or during differentiation.
- the neuronal environment can drive the cells into the desired neuronal cell type due to the presence of the appropriate environmental cues.
- the term “protected” means a cell that is more resistant to injury, apoptosis or cell death than a cell in which EPO and IGF pathways have not been induced, or in which these pathways have been induced to a lesser extent.
- a population containing protected neuronal cells can exhibit reduced apoptosis as compared to a population that does not contain “protected” neuronal cells.
- Assays for determining the extent of apoptosis are known in the art, as described hereinabove.
- a method of the invention can be used to produce a population that contains protected neuronal cells and in which a large proportion of the cell population is neuronal.
- a method of the invention can be used to produce a cell population containing, for example, at least 50% neuronal cells.
- the population produced includes at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more neuronal cells.
- the proportion of neuronal cells can be determined by assaying for one or more characteristic neuronal markers such as the presence of NeuN, neurofilament or MAP2.
- the methods of the invention for differentiating neuronal precursor cells can include, if desired, contacting the neuronal precursor cells with a differentiating agent.
- a differentiating agent means a naturally occurring or synthetic cytokine, growth factor or other compound that causes or enhances a neuronal precursor cell to have one or more characteristics of a neuronal cell.
- a differentiating agent useful in the invention can be, for example, a retinoic acid such as all-trans retinoic acid; neurotrophic factor 3 (NT3); epidermal growth factor (EGF); EPO; IGF-I; platelet derived growth factor (PDGF), or a combination of two or more of these factors.
- EGF, IGF-I and PDGF can be used together as a differentiating agent.
- Basic fibroblast growth factor (bFGF) or another factor that enhances proliferation of precursor cells optionally can be used prior to treating with a differentiating agent such as EGF, IGF-I and PDGF.
- bFGF Basic fibroblast growth factor
- one or more factors such as brain-derived neurotrophic factor (BDNF) also can be added to promote neuronal cell survival.
- a neuronal precursor cell also can be engineered to express one or more factors that promote differentiation including, for example, MEF2, neuroD, neuroD2, neuroD3, neurogenin1, neurogenin2, neurogenin3, MATH1 or MATH2 (Lee, Curr. Opin. Neurobiol. 7:13-20 (1997)).
- MEF2 neuroD, neuroD2, neuroD3, neurogenin1, neurogenin2, neurogenin3, MATH1 or MATH2
- Neuronal precursor cell means any cell that is not a neuron but which is capable of differentiating into a neuron under the appropriate conditions.
- Neuronal precursor cells can be multipotent or unipotent and can be stem cells, precursor cells, primary cells or established cells.
- Neuronal precursor cells such as stem cells generally can be distinguished from neurons in that they lack neuronal markers such as the nuclear protein NeuN, neurofilament and microtubule-associated protein 2 (MAP2) as well as the neuronal-like processes characteristic of mature neurons.
- the neuronal precursor cells are primary cells, which is a well known term in the art for cells which are derived directly from an organism and which have limited growth capacity in culture.
- a neuronal precursor cell useful in the invention can be multipotent or unipotent.
- multipotent is synonymous with “pluripotent” and means a neuronal precursor cell capable of differentiating into two or more distinct lineages, including the neuronal lineage.
- Multipotent neuronal precursor cells such as stem cells, which are generally nestin-positive cells, are distinguished from unipotent precursor cells, which are generally Hu-positive cells. Expression of nestin and Hu can be determined, for example, by well-established immunocytochemistry methods.
- a multipotent neuronal precursor cell is capable of differentiating into at least three or more, four or more, or five or more distinct lineages, including the neuronal lineage.
- stem cell means a pluripotent cell type which can differentiate under the appropriate conditions to give rise to all cellular lineages.
- a stem cell differentiates to neuronal cells, hematopoietic cells, muscle cells, adipose cells, germ cells and all other cellular lineages.
- a stem cell can be an embryonic stem cell.
- hematopoietic stem cell it is understood that this term refers to cells that are committed to the hematopoietic lineage but which can differentiate to all cells of the hematopoietic lineage.
- embryonic stem cell is synonymous with “ES cell” and means a pluripotent cell type derived from an embryo which can differentiate to give rise to all cellular lineages.
- cell markers that indicate a human embryonic stem cell include the Oct-4 transcription factor, alkaline phosphatase, SSEA-4, TRA 1-60, and the GCTM-2 epitope.
- cell markers that indicate a differentiated neuronal cell including neurofilament proteins, ⁇ -tubulin, Map2a+b, synaptophysin, glutamic acid decarboxylase, TuJ1, SNAP 25, transcription factor Brn-3, and GABA A ⁇ 2 receptor subunit as described in Reubinoff et al., Nat. Biotech.
- Embryonic stem cells useful in the methods of the invention can be obtained from a variety of sources. Embryonic stem cells can be obtained, for example, from mice, cows, primates and humans by methods well known in the art. As an example, murine embryonic cells can be isolated from a mouse as described in Forrester et al., Proc. Natl. Acad. Sci. USA 88:7514-7517 (1991), or Bain et al., Devel. Biol. 168:342-357 (1995). Briefly, two-stage cell embryos are isolated from fertilized female mice about 45 hours after injection with human chorionic gonadotropin. The two blastomeres are fused by electrical impulse and cultured in M16 medium until the four cell stage is reached.
- the ES cells are grown on gelatin coated tissue culture flasks in DMEM (Dulbeco's modified Eagle's medium) containing high glucose and 1 mM glutamine (BRL) supplemented with 10% fetal bovine serum, 10% newborn calf serum, nucleosides, 1000 units/ml leukemia inhibitory factor, and 0.1 mM 2-mercaptoethanol.
- DMEM Dulbeco's modified Eagle's medium
- BBL glutamine
- Embryonic stem cells also can be isolated from primates as described in Thomson (U.S. Pat. No. 5,843,780). Briefly, blastocysts are removed from fertilized female monkeys 6-8 days after onset of ovulation, treated with pronase (Sigma) to remove the zona pellucida, rabbit anti-rhesus monkey spleen cell antiserum and guinea pig complement (Gibco BRL), and washed in DMEM. The inner cell mass (ICM) is removed from the lysed blastocyst with a pipette and plated on mouse gamma irradiated embryonic fibroblasts.
- pronase Sigma
- ICM inner cell mass
- the ICM derived masses are removed with a micropipette, treated with 0.05% trypsin-EDTA (Gibco BRL) and 1% chicken serum, and replated on embryonic feeder cells. Colonies demonstrating ES morphology, characterized by compact colonies with a high nucleus to cytoplasm ratio and prominent nucleoli, are subcultured. The ES cells are divided, for example, by trypsinization or exposure to Dulbecco's phosphate buffered saline containing 2 mM EDTA every 1-2 weeks when cultures become dense.
- Embryonic stem-like cells also can be isolated from cows as described in Cibelli et al., Nat. Biotech. 16:642-646 (1998). Briefly, oocytes are removed from freshly slaughtered cows and placed in maturation medium M199 (Gibco), 10% fetal calf serum (FCS), 5 ug/ml bovine leutinizing hormone (Nobl) and 10 ug/ml pen-strep (Sigma) for 22 hours at 38.5° C. Oocytes are subsequently fertilized in vitro and cultured on mouse embryonic fibroblast feeder layers and CR2 with 6 mg/ml BSA until they reach the blastocyst stage.
- M199 Gibco
- FCS fetal calf serum
- Nobl bovine leutinizing hormone
- pen-strep Sigma
- ES cells are isolated from the blastocyst by mechanical removal of the zona pellucida and trophoblast with a 22 gauge needle and placed under mouse embryonic fibroblast feeder layers for one week. A small colony of the resulting cell mass is removed and cultured on top of a gamma irradiated mouse embryonic fibroblast feeder layer as cultures become dense.
- Embryonic stem cells also can be isolated from human blastocysts as described in Reubinoff et al., supra, 2000. Briefly, fertilized oocytes are cultured to the blastocyst stage and the zona pellucida digested by pronase (Sigma).
- the inner cell mass is removed by immunosurgery with anti-human serum antibody (Sigma) and exposure to Guinea pig complement (BRL), and cultured on a mitomycin C mitotically inactivated mouse embryonic feeder cell layer in DMEM (BRL) supplemented with 20% fetal bovine serum (Hyclone), 0.1 mM 2-mercaptoethanol, 1% non essential amino acids, 2 mM glutamine, 50 units/ml penicillin and 50 ug/ml streptomycin (BRL) and 2,000 units/ml recombinant leukemia inhibitory factor. Cell mass clumps are removed with a micropipette and replated on fresh feeder layer every six to eight days.
- Human stem cells can be obtained, for example, from cord blood, which is highly enriched in primitive cells and contains a CD133-positive/CD34-positive population. These cells can be efficiently isolated by methods well known in the art, for example, the Miltinyl MACS system. If desired, the CD133-positive/CD34-positive population can be expanded by culturing in vitro with Flt3L+TPO to produce as much as an 160-fold expansion in long-term culture potential and a 2 ⁇ 10 6 fold expansion in the number of neuronal precursor cells.
- Human neuronal precursor cells useful in the invention include human embryonic stem cells, human hematopoietic stem cells and other neuronal precursor cells isolated from adult human blood or from cord blood of newborn infants.
- a neuronal precursor cell population can be enriched, for example, in CD133 (AC133)-positive/CD34-positive or CD133-positive/CD34-negative neuronal precursor cells.
- Such enriched neuronal precursor cells can be isolated, for example, with magnetic-activated cell sorting, fluorescence-activated cell sorting (FACS), or related methods well known in the art as described further below.
- neuronal precursor cells such as human stem cells
- in vitro expansion of neuronal precursor cells can be performed, if desired, in the presence of one or more of the following factors: SCF, IL-3, IL-6, flt3L, LIF, IL-11, TGF- ⁇ , TPO, and bFGF, which are commercially available, for example, from Biosource (Camarillo, Calif.), R & D Systems (Minneapolis, Minn.) and Chemicon (Temecula, Calif.).
- Various protocols for expansion and useful concentrations of particular factors are well known in the art.
- Human neuronal precursor cells can be obtained, for example, from peripheral blood. Donors can be treated with recombinant human G-CSF (rhG-CSF), such as Neupogen (Amgen; Thousand Oaks, Calif.), or recombinant human GM-CSF (rhGM-CSF), such as Leukine (Immunex; Seattle, Wash.), or both.
- the human neuronal precursor cells can be primitive cells characterized as CD34+, Thy-/dim, CD38 ⁇ , which can be obtained, if desired, from G-CSF or GM-CSF treated to donors to increase long-term culture potential.
- Apheresis can be used to collect white blood cells, for example, four to five days following treatment with G-CSF, GM-CSF or a combination of G-CSF and GM-CSF, generally yielding 4 ⁇ 10 6 CD34-positive cells per kilogram of body weight.
- a Ceprate SC immunoaffinity column commercially available from Cellpro (Bothell, Wash.) can be used to isolate a CD133-positive neuronal precursor cell population.
- the desired cell population binds the column matrix via a biotin conjugated antibody linked to the column matrix and is released by mechanical shaking.
- Ceprate SC immunoaffinity can be used to yield about 50% CD34-positive cells with about 16-99% purity.
- CD133-positive human neuronal precursor cells also can be isolated, for example, using an Isolex 300 magnetic cell separator (Baxter Healthcare Corporation; Deerfield, Ill.), which relies on mouse monoclonal IgG1 antibodies and magnetic beads coated with anti-mouse IgG1 antibody. Release of the precursor cells by peptidase treatment yields about 50% CD34-positive cells with 33-100% purity.
- FACS fluorescence-activated cell sorting
- isolated stem or other neuronal precursor cells can be assayed for the ability to repopulate bone marrow of a sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse using methods well known in the art, as described, for example, in Miyoshi et al., Science 283: 682-686 (1999).
- NOD-SCID sublethally irradiated nonobese diabetic/severe combined immunodeficient
- Human CD34-negative bone marrow cells such as CD133-positive/CD34-negative cells or CD133-positive/CD34-negative/Lin-negative cells can be useful in the methods of the invention.
- Such cells can be, for example, CD34-negative/Lin-negative cells, which can have characteristics of stromal cells and are capable of repopulating the bone marrow of NOD/SCID mice following sublethal irradiation.
- Methods of preparing neuronal precursor cell populations enriched for particular markers are well known in the art.
- CD133-positive/CD34-positive hematopoietic stem and other neuronal precursor cells can be prepared as set forth in Yin et al., Blood 90:5002-5012 (1997); CD133-positive/CD34-negative/CD45-negative neuronal precursor cells can be prepared as described, for example, in Uchida et al., Proc. Natl. Acad.
- CD34-negative/CD38-negative/Lin-negative human hematopoietic stem cells and CD34-positive/CD38-negative/Lin-negative/Thy-1-negative hematopoietic stem cells can be prepared, for example, as described in Bhatia et al., Nature Medicine 4:1038-1045 (1998).
- neuronal precursor cells such as embryonic stem cells can be contacted with a differentiating agent to induce differentiation of the cells along the neuronal pathway.
- a differentiating agent such as basic fibroblast growth factor (bFGF) followed by removal of bFGF are described in Johe et al., Genes Develop. 10:3129-3140 (1996).
- Induction of neurogenesis by addition of growth factors can be achieved with platelet derived growth factor (PDGF) such as PDGF-AA, PDGF-AB or PDGF-BB administered in the absence of bFGF as described in Johe et al., supra, 1996.
- PDGF platelet derived growth factor
- Induction of neuronal differentiation also can be achieved in vitro by removal of fibroblast growth factor-2 and subsequent addition of insulin like growth factor-1, heparin or neurotrophin-3 as described in Brooker et al., J. Nerosci. Res.
- This example demonstrates that simultaneous application of EPO and IGF-I at the time of neurotoxic insult effectively reduces apoptosis of mature neurons in rat primary cerebrocortical cultures exposed to NMDA.
- Neuronal apoptosis was quantified by double labeling for TUNEL reactivity, which in conjunction with condensed morphology is indicative of apoptosis, and the neuron-specific protein microtubule associated protein-2 (MAP2) 16 hours after NMDA insult.
- TUNEL reactivity As shown in FIG. 3 , a brief 20 minute exposure to NMDA produced an apoptotic appearance and TUNEL reactivity in 76 ⁇ 7% of MAP2-labeled neurons.
- the EPO and IGF-I doses assayed represent maximally effective concentrations of these factors as previously determined from dose-response curves (Heck et al., Biol. Chem. 274:9828-9835 (1999); and Digicaylioglu and Lipton, Nature 412:641-647 (2001)). Control incubations with IGF-I or EPO in the absence of NMDA exposure did not affect neuronal viability.
- EPO and IGF-I incubations were performed essentially as follows.
- Human recombinant EPO purchased from Amgen (Epoietin alfa, 2000 IU/ml) was diluted in cell culture medium to a final concentration of 5-10 U/ml.
- Insulin-like growth factor-I IGF-I
- NMDA incubations were performed as follows. Cerebrocortical cultures were exposed to 200 ⁇ M NMDA in nominally Mg 2+ -free Earle's Balanced Salt Solution (EBSS), containing 1.8 mM CaCl 2 and 5 ⁇ M glycine for 20 minutes. After NMDA exposure, cultures were washed with EBSS and then placed in conditioned tissue culture medium filtered with a 0.2 ⁇ M Acrodisk filter (Perkin-Elmer; Wellesley, Mass.) to remove activated microglia. Where indicated, EPO, IGF-I or both EPO and IGF-I were added to the conditioned media.
- EBSS Earle's Balanced Salt Solution
- Detection of apoptotic neurons was performed essentially as follows. After experimental incubation, cerebrocortical cultures were fixed in PBS (150 mM NaCl, 1.7 mM monobasic sodium phosphate, 9.1 mM dibasic sodium phosphate) with 4% paraformaldehyde, and permeabilized in PBS containing 1% Tween-20. Apoptotic cells were identified by condensed morphology in conjunction with TUNEL using the Apoptosis Detection System (Promega; Madison, Wis.). Cultures were labeled according to the manufacturer's protocol using FITC-labeled 12-dUTP to visualize DNA strand breaks.
- MAP-2 staining was performed essentially as described in Budd et al., Proc. Natl. Acad. Sci. USA 97:6161-6166 (2000). Apoptotic neurons were identified using a Zeiss inverted Axiovert microscope equipped with camera and software for deconvolution (Intelligent Imaging Innovations; Denver, Colo.).
- PI3-Kinase is Required for Neuroprotection by EPO and IGF-I
- This example demonstrates that the PI3 kinase can play a role in mediating the neuroprotective effects of EPO and IGF-I.
- PI3-kinase is involved in IGF-I and EPO signaling (Mayeux et al., supra, 1993; Kermer et al., supra, 2000; and Vogel et al., J. Biol. Chem. 270:23402-23408 (1995)).
- rat cerebrocortical neurons were preincubated for three hours with EPO, IGF-I, or EPO in combination with IGF-I (EPO/IGF-I) in the presence or absence of 10 ⁇ M LY294002, a specific PI3-kinase inhibitor. As shown in FIG.
- neuronal apoptosis resulting from NMDA exposure 200 ⁇ M NMDA and 5 ⁇ M glycine for 20 minutes decreased in cells preincubated with EPO, IGF-I or EPO/IGF-I.
- LY294002 abolished the neuroprotective effect of EPO and IGF-I either alone or in combination (p ⁇ 0.05) but did not itself cause neuronal apoptosis in cerebrocortical cultures or increase the amount of apoptosis induced by NMDA.
- PI3-kinase inhibition cultures were prepared and incubated with NMDA alone, or with EPO or IGF-I individually, or EPO in combination with IGF-I, as described above.
- PI3-kinase activity was inhibited pharmacologically with 10 ⁇ M LY294002 (Calbiochem; San Diego, Calif.) dissolved in dimethylsulfoxide (DMSO, Sigma) and added to cultures 30 minutes prior to the addition of the indicated growth factor or factors.
- Neuronal apoptosis was assessed 16 hours after NMDA application by determining the percentage of MAP2-positive cells that were also TUNEL positive, as described above.
- PI3-kinase is activated by phosphorylation of a p85 regulatory subunit, which leads to release of the catalytic subunit (Pleiman et al., Science 263:1609-1612 (1994)).
- EPO or IGF-I induces phosphorylation of the p85 subunit of PI3-kinase
- rat cerebrocortical cultures were treated with EPO or IGF-I for 10, 20 or 30 minutes, and protein lysates from these cultures analyzed by immunoblotting for the presence of phospho-p85. As shown in FIG. 5B (upper and lower panels), both factors induced p85 phosphorylation in a time-dependent manner.
- EPO-R liganded EPO receptor
- Immunoblotting was performed as follows. Total protein (30 mg) was resolved on a 10% NuPage Bis-Tris SDS gel (Invitrogen; Carlsbad, Calif.) with MOPS electrode buffer under reducing conditions and electroblotted onto a nitrocellulose membrane (Amersham; Piscataway, N.J.) for three hours. Nonspecific binding was blocked by incubation with 5% non-fat dry milk in Tris-buffered saline (pH 7.5) containing 0.1% Tween-20 for one hour at room temperature. After blocking, the blots were incubated overnight at 4° C. with the appropriate primary antibody diluted in blocking buffer.
- Anti-EPO-R was used at 1:200 dilution (R&D; Minneapolis, Minn.), and anti-p85 was used at 1:400 dilution (Upstate; Waltham, Mass.).
- membranes were washed in Tris buffered saline with 0.1% Tween-20 for 10 minutes with three changes and incubated with the secondary antibody conjugated with horseradish peroxidase (Vector Labs, 1:400) for one hour at room temperature and washed again in Tris buffered saline with 0.1% Tween-20. Blots were developed with an enhanced chemiluminescence kit obtained from Amersham and exposed to X-ray film.
- Immunoprecipitations were performed using precleared whole-cell lysates, which were incubated with 2 ⁇ g of anti-EPO-R antibody (Cell Signaling Technologies; Beverly, Mass.) for one hour at room temperature, followed by addition of protein A/G-Sepharose beads (Santa Cruz Biotechnology; Santa Cruz, Calif.). Immunoprecipitates were run on SDS gels as described above and probed with the appropriate antibody. For loading controls, blots were stripped and reprobed with the indicated primary antibody and appropriate secondary antibody.
- Akt kinase can be cooperatively activated by EPO and IGF-I in neuronal cells.
- Akt-kinase is activated downstream of PI3-kinase-mediated production of 3′ phospholipids.
- Akt is phosphorylated at two critical sites: serine-473 and threonine-308 (Russell et al., Nuerobiol. 36:455-467 (1998); Scheid and Woodgett, supra, 2001).
- Akt kinase cerebrocortical cultures were exposed to EPO or IGF-I for three hours and immunoblotted as described above using anti-phospho Akt (anti-pAkt) and anti-Akt antibodies from Cell Signaling Technologies at 1:2000 dilution.
- a three hour incubation with EPO or IGF-I resulted in moderate Akt activation, as evidenced by increased phospho-serine-473 Akt detected by western blotting ( FIG. 6A ).
- Co-incubation with EPO and IGF-I resulted in a much larger increase in phospho-serine-473 Akt.
- rat cerebrocortical cultures contain a mixture of neuronal and glial cells.
- Double immunofluorescence labeling with anti-phosphorylated Akt (serine-473) and neuron-specific MAP2 antibodies demonstrated that Akt activation in response to EPO/IGF-I treatment occurred predominantly in neurons.
- Akt activation in response to EPO/IGF-I treatment occurred predominantly in neurons.
- IGF-I and exposed to NMDA there was an increase in phospho-Akt labeling similar to that observed in cultures treated with EPO/IGF-I alone.
- Double immunofluorescence staining for phosphorylated Akt and the neuron-specific marker MAP2 was performed as follows. Cerebrocortical cells were fixed in ice-cold PBS containing 4% paraformaldehyde for 10 minutes at 4° C., rinsed 3 times in PBS, and permeabilized in PBS containing 1% Tween-20 for 10 minutes at room temperature. Phosphorylated Akt was detected by incubation with specific polyclonal antibodies (Cell Signaling Technologies) diluted 1:1000, followed by detection with FITC-conjugated secondary antibody at 1:125 dilution (Sigma; St. Louis, Mo.). Neurons were identified by using a primary antibody against MAP2 (Sigma) and a secondary antibody conjugated to Texas-Red (Vector Labs; Irvine, Calif.).
- This example demonstrates that inhibition of Akt activity with a dominant negative form of Akt reduces the neuroprotective effects of EPO and IGF-I.
- Akt Akt in the EPO/IGF-I signaling pathway
- dn-Akt a dominant negative Akt construct in which a critical phosphorylation site has been mutated
- Cerebrocortical cultures were infected with an adenoviral vector encoding dn-Akt (Fujio and Walsh, supra, 1999) and assayed for the effects of NMDA alone or in cultures also treated with EPO in combination with IGF-I.
- Parallel cerebrocortical cultures were infected with an adenoviral vector encoding wild-type Akt (wt-Akt) as a control. As shown in FIG.
- EPO-IGF-I treated neurons showed reduced immunoreactivity for active caspase-3 and did not lose MAP2 labeling in their processes. Prolonged survival of the neurons following treatment indicates that neuroprotection mediated by the combination of EPO and IGF-I occurs, at least in part, downstream of initial caspase-3 activation, which is typically associated with neuronal apoptosis within 16 hours of NMDA insult (Tenneti et al., supra, 1998, Budd et al., supra, 2000).
- neuron-rich cerebrocortical cultures were continuously exposed to EPO and IGF-I (10 U/ml and 100 ng/ml, respectively) from the time of NMDA exposure (200 ⁇ M for 20 minutes) until they were fixed.
- Immunofluorescence assays were performed as described above, with neurons expressing active caspase-3 identified by double labeling with monoclonal anti-MAP2 and a polyclonal antibody specific for the cleaved form of caspase-3 (Cell Signaling Technologies) using a 1:100 dilution.
- EPO In mixed cerebrocortical cultures, EPO is known to induce expression of XIAP and c-IAP, two related factors capable of inhibiting caspase-3 proteolytic activity (Digicaylioglu and Lipton, supra, 2001; and Holcik and Korneluk, Nat. Rev. Mol. Cell. Biol. 2:550-556 (2001)).
- cerebrocortical cultures were analyzed for the effect of combined EPO and IGF-I treatment on association of XIAP and active caspase-3. Cultures were incubated with EPO, IGF-I and NMDA and, after immunoprecipitation of the active form of caspase-3, immunoprecipitates were probed for the presence of XIAP using western blotting.
- active caspase-3 was associated with XIAP in cultured neurons, and treatment with EPO and IGF-I increased the relative amount of XIAP associated with active caspase-3.
- densitometric analysis revealed a 2.5 to 3-fold increase in the amount of XIAP bound to active caspase-3 (see FIG. 8C ), although NMDA exposure alone also produced a modest increase in the amount of XIAP associated with active caspase-3.
- the presence of an active caspase-3/XIAP complex in neurons indicates that, following activation of caspase-3 by proteolytic cleavage, the active form can be negatively regulated by association with XIAP.
- FIG. 8D shows that, despite the presence of basal levels of XIAP in the lysates, NMDA exposure resulted in increased DEVD cleavage.
- Simultaneous application or 3 hour preincubation with EPO in combination with IGF-I diminished the NMDA-induced increase in caspase-3-like activity by increased XIAP expression.
- cerebrocortical cultures were exposed to NMDA, or EPO and IGF-I, or concurrently exposed to NMDA and EPO/IGF-I as described above.
- Immunoprecipitation of culture lysates was performed using precleared whole-cell lysates, incubated with a 1:100 dilution of antibody specifically recognizing the cleaved form of caspase-3 (Cell Signaling Technologies) for one hour at room temperature, followed by addition of protein A/G-Sepharose beads and immunoprecipitation as described above.
- the immunoprecipitates were separated by electrophoresis and transferred to a nitrocellulose membrane, which was blotted with a 1:200 dilution of anti-XIAP antibody (Trevigen; Gaithersburg, Md.).
- Caspase-3 (DEVD) cleavage assays were performed as described previously. Briefly, cerebrocortical cultures were lysed in cold buffer containing 10% sucrose, 0.1% CHAPS, 100 mM HEPES (pH 7.5), and 10 mM dithiothreitol (DTT). Cytoplasmic protein extracts (200 ⁇ g) were incubated for 30 minutes at 37° C. with 80 ⁇ M caspase-3 peptide substrate DEVD-AFC (Enzyme Systems Products; Livermore, Calif.). Free fluorescent AFC released by caspase-3 activity was measured on a FluoroMax2 fluorometer at 400 nm excitation and 505 nm emission.
- Relatively pure neuronal cultures were prepared from rat cortices in a similar manner as preparation of mixed neuronal/glial cultures but with the following modifications. Culture medium was replaced on the second day after plating with Neurobasal medium containing B27 supplements (Life Technologies; Carlsbad, Calif.). The cultures were then maintained for an additional 15 to 16 days; the cultures were composed of greater than 95% neurons (Johnson et al., J. Neurosci. 19:2996-3006 (1999)).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Molecular Biology (AREA)
- Addiction (AREA)
- Ophthalmology & Optometry (AREA)
- Psychology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Virology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Communicable Diseases (AREA)
- Vascular Medicine (AREA)
- Tropical Medicine & Parasitology (AREA)
- Hospice & Palliative Care (AREA)
- Cardiology (AREA)
- Oncology (AREA)
- Urology & Nephrology (AREA)
- AIDS & HIV (AREA)
Abstract
Description
- This application is a divisional of U.S. application Ser. No. 10/460,550, filed Jun. 11, 2003, which claims the benefit of priority of U.S. Provisional Application No. 60/388,058, filed Jun. 11, 2002, and of U.S. Provisional Application No. 60/458,145, filed Mar. 26, 2003, each of which the entire contents are incorporated herein by reference.
- This application was made with government support under P01 HD29587, R01NS43242 and NS43242 awarded by the National Institute of Health. The government has certain rights in the invention.
- The invention relates to the prevention and treatment of acute and chronic neurodegenerative conditions, and to erythropoietin and insulin-like growth factors and analogs of these factors.
- For a variety of serious neurodegenerative diseases, there exist no effective therapies or cures. For example, Parkinson's disease is a progressive and ultimately fatal neurodegenerative disorder characterized by loss of the pigmented dopaminergic neurons of the substantia nigra. The symptoms of Parkinson's disease often can be managed initially by administration of L-DOPA, the immediate precursor of dopamine. However, reduced efficacy of L-DOPA treatment typically occurs over time. Programmed cell death (apoptosis) has been implicated in this neurodegenerative disorder.
- In Alzheimer's disease, the most common neurodegenerative disease and most frequent cause of dementia, progressive failure of memory and degeneration of temporal and parietal association cortex result in speech impairment and loss of coordination, and, in some cases, emotional disturbance. Alzheimer's disease generally progresses over many years, with patients gradually becoming immobile, emaciated and susceptible to pneumonia.
- Neuroprotective therapy has been sought for a variety of acute and chronic neurological conditions, including stroke, Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy and pain. Present therapies are relatively ineffective or are accompanied by unwanted side effects. In particular, erythropoietin (EPO) can be neuroprotective when administered in high doses; however, such doses also promote the formation of new red blood cells, consequently causing side effects such as “sludging” of the blood and leading to increased risk of stroke. Thus, there is a need for novel methods of using erythropoietin to achieve neuroprotection, that do not rely on excessively high doses of the factor. The present invention satisfies this need and provides related advantages as well.
- The present invention provides a method of providing acute neuroprotection by inducing the erythropoietin (EPO) pathway in neuronal cells close to or subsequent to the time of excitatory insult; and inducing an insulin-like growth factor (IGF) pathway in the neuronal cells close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- The present invention further provides a method of providing acute neuroprotection by contacting neuronal cells with EPO or an active fragment or analog thereof close to or subsequent to the time of excitatory insult; and contacting the neuronal cells with an IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- Many forms of erythropoietin, as well as active fragments and analogs thereof, can be useful in the methods of the invention. In one embodiment, neuronal cells are contacted with EPO or an active fragment thereof, for example, with human EPO or an active fragment thereof. In another embodiment, neuronal cells are contacted with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog. In further embodiments, the invention is practiced with an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In another embodiment, the invention is practiced with EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. As an example, such a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7).
- In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO. In an additional embodiment, the invention is practiced with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO. In yet a further embodiment, the invention is practiced by contacting neuronal cells with Darbepoietin. In any embodiment of the invention, soluble EPO receptor can be optionally included, for example, to prolong the half-life of EPO or an active fragment or analog thereof.
- A variety of forms of IGF and active fragments and analogs thereof also are useful in the invention. In one embodiment, the invention is practiced by contacting neuronal cells with an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by contacting neuronal cells with human IGF-I or an active fragment thereof. In further embodiments, the invention is practiced with an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid IGF analog including, without limitation, peptide, peptidomimetic, small molecule and nucleic acid IGF-I analogs.
- In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein (IBP). In yet a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF-I. In the methods of the invention, the two contacting steps can be performed in vitro or in vivo and further can be performed simultaneously or in any order.
- Also provided herein is a method of preventing or reducing the severity of an acute neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof close to or subsequent to the time of acute injury; and administering to the subject an IGF or an active fragment or analog thereof close to or subsequent to the time of acute injury, thereby providing a synergistic acute neuroprotective effect and preventing or reducing the severity of the acute neurologic condition. Such an acute neurologic condition can be, without limitation, stroke, head or spinal cord trauma, or seizure.
- A method of the invention for preventing or reducing the severity of an acute neurologic condition can be practiced, for example, with EPO or an active fragment thereof, such as human EPO or an active fragment thereof. A method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog. In particular embodiments, the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In one embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. As an example, a method of the invention can be practiced with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7).
- In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO. Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin. The methods of the invention also optionally include the step of administering soluble EPO receptor to the subject.
- A variety of forms of IGF and active fragments and analogs thereof are useful in the invention. In one embodiment, the invention is practiced by administering IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by administering human IGF-I or an active fragment thereof. The invention also can be practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- In one embodiment, a method of the invention for preventing or reducing the severity of an acute neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF. In the methods of the invention, EPO and IGF, or active fragments or analogs thereof, can be administered simultaneously or in any order and in the same or different pharmaceutical compositions.
- Also provided by the invention is a method of preventing or reducing the severity of a neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and administering to the subject an IGF or an active fragment or analog thereof, thereby providing neuroprotection and preventing or reducing the severity of the neurologic condition. The EPO and IGF, or active fragments or analogs thereof, can be administered to the subject simultaneously or in any order and in the same or different pharmaceutical compositions. A variety of acute and chronic neurologic conditions can be treated according to a method of the invention including, but not limited to, Alzheimer's disease; Parkinson's disease; Huntington's disease; epilepsy; amyotrophic lateral sclerosis; multiple sclerosis; movement disorders; HIV-associated dementia; HIV-associated neuropathy; retinal degeneration including macular degeneration and light-induced retinal degeneration such as photoreceptor degeneration; neuropathic pain; migraine; glaucoma; drug addiction; drug withdrawal; drug dependency; and depression or anxiety.
- Various forms of EPO and active fragments and analogs thereof are useful for preventing or reducing the severity of a neurologic condition according to a method of the invention. As an example, the invention can be practiced with EPO or an active fragment thereof such as human EPO or an active fragment thereof. A method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog. In particular embodiments, the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In one embodiment, a method of the invention for preventing or reducing the severity of a neurologic condition is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. The invention can be practiced, for example, with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7). In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO. Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin. The methods of the invention further optionally include the step of administering soluble EPO receptor to the subject.
- A variety of forms of IGF and active fragments and analogs thereof also are useful in the invention. In one embodiment, the invention is practiced by administering an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by administering human IGF-I or an active fragment thereof. In a further embodiment, the invention is practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- In one embodiment, a method of the invention for preventing or reducing the severity of a neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- The present invention also provides a method of preventing or reducing the severity of a cerebral neurologic condition in a subject by transnasally administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and transnasally administering to the subject an IGF or an active fragment or analog thereof, thereby providing acute neuroprotection and preventing or reducing the severity of the neurologic condition.
-
FIG. 1 shows the nucleic acid and corresponding amino acid sequence of human erythropoietin (EPO). (A) Nucleotide sequence (SEQ ID NO: 1) of human EPO (Genbank accession X02157, version X02157.1). The coding sequence is shown as nucleotides 182 to 763 of SEQ ID NO: 1, with nucleotides 263 to 763 of SEQ ID NO: 1 encoding mature EPO. (B) The corresponding amino acid sequence (SEQ ID NO: 2) of human EPO.Residues 1 to 27 make up the signal sequence, with residues 28 to 193 constituting mature human EPO. (C) The amino acid sequence (SEQ ID NO: 3) of mature human EPO. -
FIG. 2 shows the nucleic acid and corresponding amino acid sequence of human insulin-like growth factor-I (IGF-I). (A) The nucleotide sequence (SEQ ID NO: 4) human IGF-I (Genbank accession X00173, version X00173.1). The coding sequence is shown as nucleotides 12 to 473 of SEQ ID NO: 4. (B) The corresponding amino acid sequence (SEQ ID NO: 5) of human IGF-I. Residues 1 to 21 make up the signal sequence; residues 22 to 48 constitute a propeptide; residues 49 to 118 constitute mature IGF-I; and residues 119 to 153 make up the carboxy-terminal propeptide (domain E). (C) Mature human IGF-I (SEQ ID NO: 6) is shown schematically. -
FIG. 3 shows that simultaneous co-administration of EPO and IGF-I ameliorates neuronal apoptosis induced by the excitotoxin N-methyl-D-aspartate (NMDA) acting at the NMDA receptor, a glutamate receptor in the brain. Overstimulation of this receptor mediates, at least in part, a wide range of acute and chronic neurologic disorders by permitting excessive Ca2+ influx and subsequent free radical formation (nitric oxide and reactive oxygen species). Cultured rat cerebrocortical cells were incubated with NMDA (200 μM) for 20 minutes, a paradigm known to induce apoptotic neuronal cell death (Bonfoco et al., PNAS 92:7162-7166 (1995); Budd et al., PNAS 97:6161-6166 (2000)). EPO (10 U/ml), IGF-I (100 ng/ml), or 10 U/ml EPO plus 100 ng/ml IGF-I were applied three hours prior to or concurrent with NMDA exposure. Apoptotic neurons are represented by the percentage of MAP2-positive cells co-labeled by TUNEL 16 hours after NMDA exposure. In this and subsequent figures, results are mean±S.E. (n=3-5). p<0.05 by ANOVA versus NMDA (*) or versus simultaneous addition of NMDA and EPO or IGF-I (t). -
FIG. 4 shows that inhibition of PI3-kinase abrogates the anti-apoptotic effects of combined EPO and IGF-I treatment. Cerebrocortical cultures were exposed to 10 μM LY294002 (gray bars) for 30 minutes prior to incubation with EPO, IGF-I or EPO and IGF-I for three hours, at which time cells were subject to NMDA exposure. Neuronal apoptosis was assessed 16 hours after NMDA exposure by determining the percentage of MAP2 positive cells that were also TUNEL positive. *, p<0.05 or †, p<0.01 by ANOVA versus same treatment plus LY294002. -
FIG. 5 shows that EPO and IGF-I each signal through PI3-kinase. (A) Treatment with EPO induces association of the p85 subunit of PI3-kinase with the EPO-R. Cerebrocortical cells were stimulated with 5 or 10 U/ml EPO for 30 minutes. EPO-R was immunoprecipitated from total cell lysates and separated on a SDS-polyacrylamide gel. The blot was then probed with anti-EPO-R antibody, stripped and reblotted with anti-p85 antibody. (B) Cerebrocortical cells were stimulated with EPO (5 U/ml, upper panel) or IGF-I (100 ng/ml, lower panel) for the indicated amount of time. Whole cell lysates were run on SDS-polyacrylamide gels; blots were probed with anti-phospho-p85 antibody, stripped, and then reprobed with anti-p85 antibody. -
FIG. 6 shows that combined treatment with EPO and IGF-I induces Akt phosphorylation. Mixed neuronal/glial rat cerebrocortical cultures were treated for 20 minutes with 10 U/ml EPO, 100 ng/ml IGF-I, or both EPO and IGF-I, with or without simultaneous application of 200 μM NMDA. NIH3T3 cells stimulated with 100 μg/ml platelet-derived growth factor (PDGF) for 10 minutes served as a positive control. After three hours, cells were lysed, and whole-cell lysates subjected to immunoblot analysis with anti-phospho-Akt antibody; the blot was stripped and reprobed with an anti-Akt antibody. -
FIG. 7 shows that Akt contributes to neuroprotection mediated by combined treatment with EPO and IGF-I. Cerebrocortical cultures were exposed to an adenoviral vector encoding a wild-type (wt) or dominant-negative (dn) form of Akt for four hours. Other cultures were coinfected with wt and dn Akt in a molar ratio of 1:1 or 2:1 (wt-Akt:dn-Akt). Thirty-six hours later, cells were incubated with 10 U/ml EPO, 100 ng/ml IGF-I, or both EPO/IGF-I, with or without simultaneous application of 200 μM NMDA. After an additional 16 hours, cells staining positive for TUNEL (to identify apoptotic cells) and MAP2 (to specifically identify neurons) were scored as apoptotic neurons. *, p<0.05 by ANOVA versus EPO/IGF-I plus NMDA; †, p<0.01 versus EPO/IGF-I plus NMDA with or without wt-Akt. -
FIG. 8 shows that combined treatment with EPO and IGF-I promotes long-term neuronal survival downstream of caspase activation. (A) Survival of neurons in mixed neuronal-glial cultures after exposure to 200 μM NMDA for 20 minutes (black bars). EPO/IGF-I treatment (10 U/ml and 100 ng/ml, respectively) at the time of NMDA exposure promoted neuronal survival for up to 48 hours after the insult (white bars; *, p<0.05). (B) Cerebrocortical cultures were exposed to NMDA or EPO/IGF-I, or concurrently exposed to EPO/IGF-I and NMDA. Culture lysates were subjected to immunoprecipitation with an antibody specifically reactive with the active form of caspase-3. The immunoprecipitates were separated by electrophoresis and transferred to nitrocellulose membranes. EPO/IGF-I (with or without NMDA exposure) led to an increase in the amount of XIAP associated with active caspase-3. (C) Densitometry of XIAP, a protein inhibitor of apoptosis, revealed a 2.5 to 3-fold increase in the amount of XIAP bound to active caspase-3. (D) Caspase-3-like activity is reduced by EPO/IGF-I. Rat cerebrocortical cells were infected with an adenoviral vector encoding dominant-negative Akt (dn-Akt) or control vector. After 36 hours, cultures were incubated with EPO (10 U/ml), IGF-I (100 ng/ml) or EPO/IGF-I. Cells were exposed to 200 μM NMDA three hours after or simultaneously with EPO/IGF-I incubation. Caspase activity in cell lysates was assessed 16 hours after NMDA exposure and is shown as relative DEVDase activity expressed as percent increase over control levels. (E) Neuron-enriched cultures were exposed to NMDA insult (200 μM for 20 minutes) with or without EPO/IGF-I, and neuronal survival assessed at the indicated time points. Even in the absence of non-neuronal cells, EPO/IGF-I was equally effective in promoting long-term neuronal survival after exposure to NMDA. -
FIG. 9 shows that combined treatment with EPO and IGF-I can be effective in promoting neuronal survival when applied several hours following NMDA exposure. Cells were exposed to NMDA as described above and treated with 10 U/ml EPO and 100 ng/ml IGF-I three hours or one hour prior to NMDA exposure, at the time of NMDA exposure, or one hour, two hours, three hours or five hours subsequent to NMDA exposure. The percentage of apoptotic neurons was determined as described above. -
FIG. 10 shows that EPO and IGF-I together are more effective at reducing neuronal apoptosis than when used individually. Cells were exposed to 200 μM NMDA as described above and simultaneously treated with EPO alone, IGF-I alone, or EPO in combination with IGF-I at varying concentrations. Incubation 1: 0.5 U/ml EPO and 1 ng/ml IGF-1, alone or in combination. Incubation 2: 1.0 U/ml EPO and 10 ng/ml IGF-1, alone or in combination. Incubation 3: 2.0 U/ml EPO and 20 ng/ml IGF-1, alone or in combination. Incubation 4: 5.0 U/ml EPO and 50 ng/ml IGF-1, alone or in combination. Incubation 5: 10 U/ml EPO and 20 ng/ml IGF-1, alone or in combination. Incubation 6: 20 U/ml EPO and 400 ng/ml IGF-1, alone or in combination. The percentage of apoptotic neurons was determined 18 hours following NMDA exposure as described above.Incubations - The present invention is directed to the surprising discovery that erythropoietin and insulin-like growth factor (IGF) together mediate more rapid neuroprotection than either factor mediates alone, indicating that combined EPO and IGF treatment can be useful in providing neuroprotection in acute neurological conditions such as stroke, trauma and seizure. The invention also is directed to the surprising discovery that, together, EPO and IGF-I synergize to reduce apoptosis in neurons, providing enhanced neuroprotection at reduced concentrations, indicating that reduced concentrations of EPO and IGF-I can be useful in treating acute and chronic neurological disorders such as, without limitation, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Huntington's disease, glaucoma, HIV-associated dementia, multiple sclerosis, Parkinson's disease, and neuropathic pain.
- As disclosed herein in Example I, the neuroprotective effects of concurrent EPO and IGF-I administration were compared to treatment with EPO or IGF-I individually in rat primary cerebrocortical cultures exposed to NMDA, an excitatory insult. Neuronal apoptosis was quantified by double labeling for TUNEL reactivity, which is indicative of apoptosis, and a neuron-specific marker, microtubule associated protein-2 (MAP2) 16 hours after NMDA insult. As shown in
FIG. 3 , a brief 20 minute exposure to NMDA produced an apoptotic appearance and TUNEL reactivity in 76±7% of MAP2-labeled neurons. Preincubation for three hours with either EPO (10 U/ml) or IGF-I (100 ng/ml) alone significantly attenuated neuronal apoptosis (p<0.05); however, treatment of neurons with EPO or IGF-I individually at the time of NMDA insult did not significantly reduce cell death (seeFIG. 3 ). In contrast, application of EPO together with IGF-I at the time of NMDA exposure revealed a synergistic effect between the two factors, which together reduced neuronal apoptosis from about 76% to about 35%. As further shown inFIG. 9 , combined EPO/IGF-I treatment dramatically reduced apoptosis when applied concurrently with NMDA exposure or when applied one hour, two hours or three hours following NMDA exposure. These results demonstrate that IGF-I and EPO synergize to mediate more rapid neuroprotection than either factor mediates in the absence of the other. - As further disclosed herein in Example IIA, rat cerebrocortical neurons were preincubated for three hours with EPO, IGF-I, or EPO in combination with IGF-I (EPO/IGF-I) in the presence or absence of 10 μM LY294002, a specific PI3-kinase inhibitor. The results shown in
FIG. 4 demonstrate that LY294002 abolished the neuroprotective effect of EPO and IGF-I either alone or in combination (p<0.05) but did not itself cause neuronal apoptosis in cerebrocortical cultures or increase the amount of apoptosis induced by NMDA, indicating that PI3-kinase activity is required for EPO- and IGF-I-mediated neuroprotection. Furthermore, individual treatment with either EPO or IGF-I induced phosphorylation of the p85 regulatory subunit of PI3-kinase in a time-dependent manner; IGF-I incubation resulted in maximal phosphorylation of the p85 subunit after 10 minutes and EPO-induced phosphorylation was observed after 20 to 30 minutes (Example IIB;FIG. 5A ). Given that phosphorylation of the p85 regulatory subunit is known to activate PI3-kinase by leading to release of the catalytic subunit, these results indicate that both EPO and IGF-I activate PI3-kinase. - As further disclosed herein in Example III, EPO and IGF-I treatment of neuronal cells can cooperatively activate Akt kinase, which is a kinase activated downstream of PI3-kinase-mediated production of 3′ phospholipids. The Akt kinase is phosphorylated at two critical sites, serine-473 and threonine-308. As shown in
FIG. 6A , a three hour incubation with EPO or IGF-I alone resulted in moderate Akt activation, as evidenced by increased phospho-serine-473 Akt, while co-incubation with maximally effective concentrations of EPO and IGF-I together resulted in a much larger increase in phospho-serine-473 Akt. Furthermore, cerebrocortical cultures expressing dominant negative Akt (dn-Akt) and incubated with EPO/IGF-I displayed significantly higher levels of NMDA-induced neuronal apoptosis in comparison with uninfected cultures or cultures infected with wild type Akt (wt-Akt; p<0.01). In sum, these results indicate that Akt serine-473 phosphorylation is synergistically induced by the combination of EPO and IGF-I and that Akt phosphorylation and activation play a role in the neuroprotection mediated by combined EPO/IGF-I treatment. - The results disclosed in Example VA show that treatment with EPO in combination with IGF-I prevents NMDA-induced neurotoxicity in cerebrocortical cultures in the presence of the active form of caspase-3. In particular, this result shows that prolonged survival of neurons following NMDA exposure and EPO/IGF-I treatment indicated that EPO/IGF-I neuroprotection occurs, at least in part, downstream of initial caspase-3 activation, which is typically associated with neuronal apoptosis within 16 hours of NMDA insult. Furthermore, as shown in
FIG. 8A , combined EPO/IGF-I treatment resulted in long-term neuronal survival. - As disclosed herein in Example VC, cultures were incubated with EPO, IGF-I and NMDA and, after immunoprecipitation of the active form of caspase-3, immunoprecipitates were probed for the presence of XIAP, an anti-apoptotic protein that functions to inhibit caspase-3 activity.
FIG. 8B shows that active caspase-3 was associated with XIAP in cultured neurons and that treatment with EPO and IGF-I increased the relative amount of XIAP associated with active caspase-3, consistent with negative regulation of the active form of caspase-3 by association with XIAP. Furthermore, the proteolytic activity of caspase-3 was modulated by combined EPO/IGF-I treatment. As shown inFIG. 8D , NMDA exposure resulted in increased caspase-3 proteolytic activity as indicated by enhanced DEVD substrate cleavage, while simultaneous application or 3 hour preincubation with EPO/IGF-I diminished the NMDA-induced increase in caspase-3-like activity. This reduction in caspase-3 activity was partially inhibited by infection with a dominant negative Akt in cultures preincubated with EPO and IGF-I, demonstrating that Akt can play a role in regulating the proteolytic activity of neuronal caspase-3 (seeFIG. 8D ). - Furthermore, as shown in
FIG. 8E , prolonged survival afforded by combined EPO and IGF-I treatment did not require non-neuronal cells present in the mixed cerebrocortical cultures. Taken together with the results described above, this experiment demonstrates that combined EPO and IGF-I treatment promotes neuronal survival downstream of caspase-3 activation by a signal transduction pathway intrinsic to neurons. - Based on these discoveries, the present invention provides a method of providing acute neuroprotection by inducing the erythropoietin (EPO) pathway in neuronal cells close to or subsequent to the time of excitatory insult; and inducing an insulin-like growth factor (IGF) pathway in the neuronal cells close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- The present invention further provides a method of providing acute neuroprotection by contacting neuronal cells with EPO or an active fragment or analog thereof close to or subsequent to the time of excitatory insult; and contacting the neuronal cells with an IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult, thereby producing a synergistic acute neuroprotective effect in the neuronal cells.
- Many forms of erythropoietin, as well as active fragments and analogs thereof, can be useful in the methods of the invention. In one embodiment, neuronal cells are contacted with EPO or an active fragment thereof, for example, with human EPO or an active fragment thereof. In another embodiment, neuronal cells are contacted with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog. In further embodiments, the invention is practiced with an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In another embodiment, the invention is practiced with EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. As an example, such a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7).
- In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO. In an additional embodiment, the invention is practiced with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO. In yet a further embodiment, the invention is practiced by contacting neuronal cells with Darbepoietin. In any embodiment of the invention, soluble EPO receptor optionally can be included, for example, to increase the half-life of EPO or an active fragment or analog thereof.
- A variety of forms of IGF and active fragments and analogs thereof also are useful in the invention. In one embodiment, the invention is practiced by contacting neuronal cells with an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by contacting neuronal cells with human IGF-I or an active fragment thereof. In further embodiments, the invention is practiced with an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid IGF analog including, without limitation, peptide, peptidomimetic, small molecule and nucleic acid IGF-I analogs.
- In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein (IBP). In yet a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF-I. In the methods of the invention, the two contacting steps can be performed in vitro or in vivo and further can be performed simultaneously or in any order.
- As used herein, the term “neuronal cell” means a nerve cell and is characterized, in part, by containing one or more markers of neuronal differentiation. Such a marker can be, for example, neurofilament, NeuN or MAP2. A neuronal cell further generally is characterized as containing neuronal-like processes.
- The methods of the invention produce a synergistic acute neuroprotective effect in neuronal cells. As used herein, the term “acute neuroprotective effect” means a rapid effect that functions to reduce neuronal cell death or deterioration. An acute neuroprotective effect generally occurs within several minutes to about several hours. Thus, medicaments that produce an “acute neuroprotective effect” need not be pre-incubated with the neuronal cells prior to the time of excitatory insult, such as stroke, trauma or seizure, etc. An acute neuroprotective effect can rapidly function to reduce neuronal apoptosis.
- The extent of apoptotic cell death can be determined by a variety of assays well known in the art. Such methods include light microscopy for determining the presence of one or more morphological characteristics of apoptosis, such as condensed or rounded morphology, shrinking and blebbing of the cytoplasm, preservation of the structure of cellular organelles including mitochondria, and condensation and margination of chromatin. The percentage of apoptotic cells also can be determined by assaying apoptotic activity using terminal deoxytransferase-mediated (TdT) dUTP biotin nick end-labeling (TUNEL) in conjunction with condensed cell morphology (Gavriel et al., J. Cell Biol. 119:493 (1992); Gorczyca et al., Int. J. Oncol. 1:639 (1992); Studzinski (Ed.), Cell Growth and Apoptosis, Oxford: Oxford University Press (1995)). ApopTag™ (ONCOR, Inc., Gaithersburg, Md.) is a commercially available kit for identification of apoptotic cells using digoxygenin labeling. In addition, apoptotic cells can be identified by detecting characteristic nucleosomal DNA fragments using agarose gel electrophoresis (Studzinski, supra, 1995; Gong et al., Anal. Biochem. 218:314 (1994)) or using DNA filter elution methodology to detect apoptosis-associated DNA fragmentation (Bertrand et al., Drug Devel. 34:138 (1995)). One skilled in the art understands that these, or other assays for apoptosis, can be performed using methodologies routine in the art.
- The term “synergistic,” as used herein in reference to an acute neuroprotective effect means an acute neuroprotective effect achieved by the combination of a particular dose of EPO, or active fragment or analog thereof, and a particular dose of IGF, or active fragment or analog thereof, that is significantly greater than the additive acute neuroprotective effect ensuing from individual treatment with the same doses of EPO and IGF, or active fragments or analogs thereof. In particular embodiments, the synergistic acute neuroprotective effect reduces neuronal cell death by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more.
- In the methods of the invention for providing acute neuroprotection, neuronal cells are contacted with EPO or an active fragment or analog thereof and IGF or an active fragment or analog thereof close to or subsequent to the time of excitatory insult. As used herein, the term “close to or subsequent to the time of excitatory insult” means that the treatment or contact occurs at any time after the stroke, trauma, seizure, poisoning or other excitatory insult or that the treatment or contact occurs at most an hour prior to the time of excitatory insult. Generally, the neuronal cells are contacted with EPO and IGF from about the time of insult to about 48 hours later and can be contacted, for example, between 30 minutes and 8 hours following the insult. In one embodiment, the EPO and IGF contacting steps occur within 30 minutes following excitatory insult. In another embodiment, the EPO and IGF contacting steps occur within the first hour following excitatory insult. In further embodiments, the EPO and IGF contacting steps occur within the first two hours following the excitatory insult, within the first three hours following the excitatory insult, within the first 12 hours following the excitatory insult, or within the first 24 hours following excitatory insult.
- Erythropoietin (EPO) is the principal growth factor that induces proliferation and differentiation of erythroid progenitor cells and is a member of the cytokine family that includes
interleukins 2 through 7, G-CSF, GM-CSF, TPO, growth hormone and leptin (Koury and Bondurant, Transfusion 30:673-674 (1992)). - Binding of EPO to its receptor triggers signal transduction by ligand-mediated receptor dimerization on the cell surface. Point mutations that introduce cysteine residues into the membrane proximal part of the extracellular domain of the EPO receptor, and which result in disulfide-linked receptor dimers on the cell surface, are constitutively active. Such receptors lead to cell proliferation of EPO-dependent cell lines and other biological effects of EPO in the absence of the hormone (Yoshimura et al., Nature 348:647-649 (1990); Watowich et al., Proc. Natl. Acad. Sci., USA 89:2140-2144 (1992); and Watowich et al., Mol. Cell. Biol. 14:3539-3549 (1994)). Expression of these constitutive EPO receptors in mice results in erythroleukemia through unregulated activation of the signaling pathway (Longmore and Lodish, Cell 67:1089-1102 (1991); Longmore et al., Mol. Cell. Biol. 14:2266-2277 (1994)). EPO receptor activation has been shown to follow a sequential dimerization mechanism, with binding to a
high affinity site 1 on EPO preceding binding of the second receptor to a lower affinity site 2 (Matthews et al., Proc. Natl. Acad. Sci., USA 93: 9471-9476 (1996)). - As used herein, the term “erythropoietin” is synonymous with “EPO” and means a polypeptide that has substantially the amino acid sequence of naturally occurring human EPO or a homolog thereof. EPOs useful in the invention include human and other primate EPOs, mammalian EPOs such as bovine, porcine, murine and rat homologs and other vertebrate homologs such as Danio rerio homologs. Thus, the term EPO encompasses species homologs, alternatively spliced forms, isotype and glycosylation variants and precursors of the mature human EPO sequence (SEQ ID NO: 3) shown in
FIG. 1 . An EPO generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring, mature human EPO (SEQ ID NO: 3) and can have, for example, 90% or 95% or more amino acid identity with SEQ ID NO: 3. - A variety of forms of erythropoietin with varying glycosylation patterns are available commercially, including but not limited to, EPOGEN (Amgen; Thousand Oaks, Calif.); EPOGIN (Chugai Pharmaceuticals; Tokyo, Japan); EPOMAX (Elanex; Bothell, Wash.); EPREX (Janssen-Cilag; Beerse, Belgium); NEORECORMON and RECORMON (Roche; Basel, Switzerland) and PROCRIT (Ortho Biotech; Raritan, N.J.); various forms of EPO also are available generically as EPOETIN ALFA, EPOETIN BETA and EPOETIN OMEGA. Thus, it is understood that an EPO useful in the invention can be obtained commercially or by a variety of well known methods, including, without limitation, purification from a natural source, recombinant expression, or peptide or chemical synthesis
- A method of the invention can be practiced, if desired, with an “EPO analog.” As used herein, the term “EPO analog” means a molecule that induces or enhances the expression, activity or intracellular signaling of the erythropoietin receptor and that, in combination with an insulin-like growth factor, produces a synergistic acute neuroprotective effect in neurons. Such an analog can be, without limitation, a protein, peptide, peptidomimetic, small molecule, ribozyme, nucleic acid molecule, oligonucleotide, oligosaccharide, cell, phage or virus, or a combination thereof. As described further below, EPO analogs useful in the invention encompass, yet are not limited to, erythropoietin mimetic peptides (EMPs); cyclic molecules such as cyclic peptides or peptidomimetics; dimeric and oligomeric EPO analogs; analogs with increased plasma half-life; anti-EPO receptor antibodies; small molecule drugs that induce EPO receptor dimerization; hyper-glycosylated forms of EPO; EPO-encoding nucleic acid molecules; and constitutive forms of the EPO receptor. It is understood that the term EPO analog encompasses active fragments of EPO, which are described hereinabove.
- An EPO analog can be an erythropoietin mimetic peptide (EMP) containing at least one copy of the amino acid sequence YXCXXGPXTWXCXP, where X is any amino acid (Wrighton et al., Science 273:458-463 (1996)). In one embodiment, the EPO analog contains two or more copies of YXCXXGPXTWXCXP (Wrighton et al., Nature Biotechn. 15:1261-1265 (1997). In another embodiment, the EPO analog contains the sequence YXCXXGPXTWXCXP, where X is any amino acid and the cyclic portion is indicated by underlining. Erythropoietin mimetic peptides are known in the art and include EMP1 (SEQ ID NO: 7), EMP2 (SEQ ID NO: 8), EMP3 (SEQ ID NO: 9), EMP4 (SEQ ID NO: 10), EMP5 (SEQ ID NO: 11) and AF11154 (SEQ ID NO: 12) as shown in Table 1. Additional cyclic molecules including cyclic peptides and peptidomimetics and disulfide-bonded peptides and peptidomimetics also can be EPO analogs useful in the invention.
-
TABLE 1 SEQ IC50 ID Analog Sequence (μm) NO: EMP1 GGT Y S C HF GP L TW V C K P QGG 0.2 7 EMP2 GGD Y H C RM GP L TW V C K P LGG 0.2 8 EMP3 GGV Y A C RM GP I TW V C S P LGG 0.3 9 EMP4 VGN Y M C HF GP I TW V C R P GGG 0.5 10 EMP5 GGL Y L C RF GP V TW D C GYKGG 1.0 11 AF11154 GG C RI GP I TW V C GG 10.0 12 - Recombinant human EPO forms a dimer upon extensive heating, based on intermolecular disulfide bond formation involving cysteines-7 and -161 as described, for example, in Derby et al., supra, 1996. Thus, oligomeric forms of erythropoietin, as well as oligomeric EPO fragments and analogs thereof, can be useful in the invention. See, in general, DePaolis et al., J. Pharm. Sci. 84:1280-1284 (1995), and Derby et al., Int. J. Peptide Protein Res. 47:201-208 (1996).
- Oligomeric forms of EPO or active fragments or analogs thereof useful in the invention include dimers and trimers as well as higher multimeric forms. An oligomeric form of EPO can include two or more, three or more, four or more, five or more, six or more, seven or more, eight or more, nine or more, ten or more, fifteen or more, twenty or more, 50 or more, 100 or more, 200 or more, 500 or more, or 1000 or more copies of EPO or an active fragment or analog thereof. As examples, chemical cross-linking, synthetic peptide chemistry, phage display and conjugation of biotin-tagged EPO with streptavidin can be useful in generating oligomeric EPO analogs. Dimeric and trimeric EPO analogs can be formed using heterobifunctional crosslinking reagents, for example, by chemically modifying a first pool of erythropoietin monomers to contain free sulfhydryl residues and mixing this pool with a second pool containing maleimido groups; the oligomeric EPO subsequently can be purified, for example, by size exclusion HPLC as described, in Sytkowski et al., supra, 1998.
- Native human erythropoietin has a relatively short plasma half-life of about 4 to 13 hours, while EPO analogs with a larger molecular size can have a reduced rate of clearance and, therefore, increased plasma survival and in vivo biological activity. Thus, higher molecular weight EPO analogs including oligomeric forms of EPO, or active fragments or analogs thereof, can exhibit an increased plasma half-life as compared to the half-life of native monomeric human EPO (Sytkowski et al., Proc. Natl. Acad. Sci. USA 95:1184-1188 (1998)). An oligomeric form of EPO can have, for example, a half-life of at least 15, 18, 21, 24, 48, 72 or 96 hours. One skilled in the art recognizes that, if desired, soluble EPO receptor can be included to increase the half-life of native erythropoietin, or an active fragment or analog thereof, and, therefore, therapeutic value.
- As discussed above, binding of EPO to the EPO receptor results in receptor dimerization, as is common for growth factor and cytokine receptors. Dimerization of the EPO receptor can be sufficient to induce a biological response characteristic of EPO. Thus, an EPO analog useful in the invention can promote dimerization of the EPO receptor. In one embodiment, the invention is practiced with an EPO analog which is a multivalent antibody, such as a bivalent monoclonal antibody, that binds the extracellular domain of the erythropoietin receptor and promotes receptor dimerization. Such bivalent anti-EPO receptor antibodies have been shown to mimic EPO activity as described, for example, in Schneider et al., Blood 89:473-482 (1997), and Elliot et al., J. Biol. Chem. 271: 24691-24697 (1996).
- As used herein, the term “antibody” includes polyclonal and monoclonal antibodies, as well as polypeptide fragments of antibodies that retain binding activity for an EPO receptor of at least about 1×10−5 M. One skilled in the art understands that anti-EPO receptor antibody fragments, such as Fab, F(ab′)2 and Fv fragments, can retain binding activity for EPO receptor and, thus, are included within the definition of the term antibody as used herein. The term antibody also encompasses non-naturally occurring antibodies and fragments containing, at a minimum, one VH and one VL domain, such as chimeric antibodies, humanized antibodies and single chain antibodies that specifically bind EPO receptor. Such non-naturally occurring antibodies can be constructed using solid phase peptide synthesis, produced recombinantly or obtained, for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains as described by Borrebaeck (Ed.), Antibody Engineering (Second edition) New York: Oxford University Press (1995).
- A variety of bivalent antibodies are useful in the invention, including, without limitation, naturally occurring monoclonal and polyclonal antibodies such as monoclonal antibody MoAb34 (Schneider et al., supra, 1997); F(ab′)2 fragments; and “miniantibodies,” which are functional analogs of bivalent whole antibodies that assemble in E. coli. A miniantibody includes two scFv fragments linked to a dimerization domain via a hinge region, such as the murine IgG3 long upper hinge. Useful dimerization domains include anti-parallel amphipathic helices, arranged as a helix-turn-helix bundle (dHLX; see, for example, Borrebaeck, supra, 1995). One skilled in the art can screen for bivalent antibody EPO analogs using routine assays. A primary screen can be an ELISA utilizing, for example, immobilized EPO receptor extracellular domain (EPObp), and a secondary screen for EPO agonist activity can be, for example, a thymidine uptake proliferation assay using a cell line stably expressing EPO receptor (Schneider et al., supra, 1997).
- Anti-EPO receptor antibodies can be prepared, for example, using as an immunogen an EPO receptor fusion protein or a synthetic peptide encoding a portion of the EPO receptor extracellular domain. One skilled in the art understands that purified EPO receptor or an extracellular domain thereof, including peptide portions such as synthetic peptides, can be produced recombinantly and used as immunogens. Furthermore, non-immunogenic fragments or synthetic peptides of an EPO receptor can be made immunogenic by coupling the hapten to a carrier molecule such as bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) by well known methods as described, for example, by Harlow and Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988).
- An EPO analog also can be a small molecule drug that can induce EPO receptor dimerization and mimic one or more biological activities of naturally occurring erythropoietin. A small molecule EPO analog can contain, for example, eight copies of N-3-[2-(4-biphenyl)-6-chloro-5-methyl]indoyl-acetyl-L-lysine methyl ester, for example, attached to a polyamidoamino-octa-4-hydroxymethylbenzamide support via a chemical linker and can be prepared as described in Qureshi et al., Proc. Natl. Acad. Sci., USA 96:12156-12161 (1999). Additional small molecule EPO analogs can be routinely identified, for example, by screening compound libraries for molecules able to induce dimerization of soluble EPO receptor. Convenient assays for dimerization include assaying for retention of labeled recombinant EPO-binding protein (rEBP), which is the extracellular domain of the EPO receptor, to unlabeled rEMP immobilized on a plate in the presence of test compound (see Qureshi et al., supra, 1999).
- Native erythropoietin is heavily glycosylated, and EPO prepared from Chinese hamster ovary (CHO) cells has three N-linked and one O-linked glycosylation sites with the average carbohydrate content being about 40%. In native EPO, carbohydrate plays an important role in stability, biosynthesis, apical secretion and biological activity. In particular, glycosylation appears to increase both conformational stability and solubility of EPO, although conformation is not affected. Thus, an EPO analog also can be a form of EPO that is hyper-glycosylated compared to native human EPO. Such analogs are known in the art and include, without limitation, Darbepoietin.
- An EPO analog also can be a nucleic acid molecule encoding erythropoietin or an active fragment or analog thereof. An exemplary nucleic acid analog of human EPO is provided herein as SEQ ID NO: 1 (see
FIG. 1 ). The skilled person understands that a nucleic acid molecule encoding an active fragment of EPO or a peptide analog of EPO such as one of those described hereinabove also can be an EPO analog useful in the methods of the invention. - As used herein, the term nucleic acid molecule means any polymer of two or more nucleotides, which are linked by a covalent bond such as a phosphodiester bond, a thioester bond, or any of various other bonds known in the art as useful and effective for linking nucleotides. A nucleic acid molecule can be linear, circular or supercoiled, and can be single stranded or double stranded. A nucleic acid molecule can be, for example, DNA or RNA, or a DNA/RNA hybrid.
- A nucleic acid EPO analog, including a sense or antisense nucleic acid molecule or oligonucleotide, also can contain one or more nucleotide analogs or phosphothioate bonds, which protect against degradation by nucleases. A ribonucleotide containing a 2-methyl group, instead of the normal hydroxyl group, bonded to the 2′-carbon atom of ribose residues, is an example of a non-naturally occurring RNA molecule that is resistant to enzymatic and chemical degradation. Other examples of non-naturally occurring organic molecules include RNA containing 2′-aminopyrimidines, such RNA being 1000× more stable in human serum as compared to naturally occurring RNA (see Lin et al., Nucl. Acids Res. 22:5229-5234 (1994); and Jellinek et al., Biochemistry 34:11363-11372 (1995)).
- Additional nucleotide analogs also are well known in the art and can be useful, for example, in an EPO analog. For example, RNA molecules containing 2′-O-methylpurine substitutions on the ribose residues and short phosphorothioate caps at the 3′- and 5′-ends exhibit enhanced resistance to nucleases (Green et al., Chem. Biol. 2:683-695 (1995)). Similarly, RNA containing 2′-amino-2′-deoxypyrimidines or 2′-fluoro-2′-deoxypyrimidines is less susceptible to nuclease activity (Pagratis et al., Nature Biotechnol. 15:68-73 (1997)). Furthermore, L-RNA, which is a stereoisomer of naturally occurring D-RNA, is resistant to nuclease activity (Nolte et al., Nature Biotechnol. 14:1116-1119 (1996)); Klobmann et al., Nature Biotechnol. 14:1112-1115 (1996)). Such RNA molecules and methods of producing them are well known and routine in the art (see Eaton and Piekern, Ann. Rev. Biochem. 64:837-863 (1995)). DNA molecules containing phosphorothioate linked oligodeoxynucleotides are nuclease-resistant and can be useful EPO analogs (Reed et al., Cancer Res. 50:6565-6570 (1990)). Phosphorothioate-3′ hydroxypropylamine modification of the phosphodiester bond also reduces the susceptibility of a DNA molecule to nuclease degradation (see Tam et al., Nucl. Acids Res. 22:977-986 (1994)). Furthermore, thymidine can be replaced with 5-(1-pentynyl)-2′-deoxoridine (Latham et al., Nucl. Acids Res. 22:2817-2822 (1994)).
- Viral vectors can be particularly useful for introducing a nucleic acid analog into a neuronal cell or neuronal precursor cell in a method of the invention. Such vectors include, for example, retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated vectors (AAV) and herpesvirus vectors (see, for example, Kaplitt and Loewy, Viral Vectors: Gene Therapy and Neuroscience Applications Academic Press, San Diego, Calif. (1995); Chang, Somatic Gene Therapy CRC Press, Boca Raton, Fla. (1995)). Lentiviral, retroviral and adeno-associated vectors can be useful, for example, for permanent expression, and adenovirus and herpesvirus can be used to achieve transient expression lasting for several months to about one year. It is understood that both permanent and transient expression can be useful in the methods of the invention.
- A variety of techniques are known in the art for introducing a nucleic acid molecule into a neuronal cell or neuronal precursor cell. Such methods include microinjection, electroporation, lipofection, calcium-phosphate mediated transfection, DEAE-Dextran-mediated transfection, polybrene- or polylysine-mediated transfection, and conjugation to an antibody, gramacidin S, artificial viral envelope or other intracellular carrier such as TAT. See Cibelli et al., Nat. Biotech. 16:642-646 (1998); Lamb and Gearhart, Cur. Opin. Gen. Dev. 5:342-348 (1995); Choi (U.S. Pat. No. 6,069,010); and Current Protocols in Molecular Biology, John Wiley and Sons, pp 9.16.4-9.16.11 (2000).
- The biological effects of erythropoietin also can be mimicked by a constitutively active EPO receptor, which is another EPO analog that can produce acute neuroprotective benefits according to a method of the invention. As used herein, the term “constitutive EPO receptor” is synonymous with “constitutively active EPO receptor” and means a polypeptide having structural similarity to the native human erythropoietin receptor and which has one or more hormone-independent biological activities of the native EPO receptor. Such a constitutive EPO receptor can have a modified dimerization interface such that the receptor dimerizes in the absence of ligand. In one embodiment, the constitutive EPO receptor is a variant of the native human EPO receptor which has an arginine to cysteine mutation at position 129 and which forms disulfide-linked homodimers in the absence of EPO. In other embodiments, a constitutive EPO receptor is a variant of a native EPO receptor containing one or more non-naturally occurring cysteines within the dimerization interface (see, for example, Watowich et al., supra, 1992; Watowich et al., supra, 1994; and Longmore et al., supra, 1994).
- An EPO analog also can be a molecule that induces or enhances the intracellular signal transduction cascade of the EPO receptor. Signal is initiated following binding of EPO ligand and results in dimerization of receptor. JAK2 is autophosphorylated and subsequently phosphorylates the EPO receptor and STAT proteins, which then are free to translocate to the nucleus and activate transcription. In addition, cross talk between the JAK2 and NF-κB signaling pathways, as well as Akt and bcl-XL upregulation, can lead to neuroprotection (Digicaylioglu and Lipton, Nature 412:641-647 (2001)). Hematopoietic cell phosphatase (HCP), also known as SHP1 or PTP1C, binds to phosphorylated EPO receptor and dephosphorylates JAK2, thereby acting as a negative regulator of the EPO receptor intracellular pathway. Thus, an EPO analog also can be an inhibitor of HCP such as an HCP antisense molecule. HCP inhibitors are known in the art and further can be identified by routine methods (Barbone et al., Nephrol. Dial. Transplant. 14-[Suppl. 2]:80-84 (1999)).
- Naturally occurring human IGF-I, also known as somatomedin C, is a hormone of 70 amino acids. IGF-I is a basic peptide (pI 8.4) with about 43% amino acid homology to proinsulin. Naturally occurring IGF-II is a relatively neutral peptide (pI 6.4) with 60% amino acid homology to native IGF-I.
- The sequence of mature human IGF-I (SEQ ID NO: 6) is known in the art and is shown in
FIG. 2 (Rotwein et al., J. Biol. Chem. 261:4828-4832 (1986); and Jansen et al., Nature 306:609-611 (1983)). The 70 amino acids that make up mature human IGF-I have been divided into four principle domains. The first 29 residues of IGF-I bear a strong resemblance to the B chain of insulin and are therefore denoted the “B domain.” Similarly, IGF-I residues 42-62 are homologous to the insulin A chain and are consequently denoted the “A domain.” Intervening between the B and A domains (residues 30-41) is the “C domain;” the carboxy-terminal 7 amino acids (residues 63-70) are known as the “D domain.” - NMR solution structure of the core of human IGF-I shows striking similarity to insulin (Cooke et al., Biochem. 30:5484-5491 (1991)), and IGF-I is known to bind the insulin receptor, although with lower affinity than to the IGF type I receptor. Consistent with this model, the IGF-I C and D domains may be “flaps,” which flank the insulin-conserved receptor binding cleft, and which contribute to specific binding to the
type 1 receptor. Mutagenesis experiments have revealed that residues in the carboxy-terminal extended region of the B domain and residues in the C domain proximal to the B domain are involved in receptor binding, and that tyrosines 24 and 31 are involved in specific receptor interactions. - Unlike most other growth factors, the IGFs are present in high concentrations in the circulation; however, only a relatively small fraction is available in a “free” or unbound form. Specific binding proteins of high molecular weight and with a high binding capacity for IGF-I and IGF-II act as carrier proteins and modulate IGF functions (Holly et al., Endocrin. 118:7-18 (1988)). Most IGFs in blood circulate as part of a non-covalently associated ternary complex made up of IGF-I or IGF-II, IGFBP-3 and a protein known as the “acid-labile subunit” (ALS).
- As used herein, the term “insulin-like growth factor” is synonymous with “IGF” and means a polypeptide that has substantially the amino acid sequence of naturally occurring human IGF-I or naturally occurring human IGF-II or a homolog of one of these proteins. Insulin-like growth factors useful in the invention include human and other primate IGFs, mammalian IGFs such as bovine, porcine, murine and rat homologs, and other vertebrate homologs such as chicken and Danio rerio homologs. Thus, the term IGF encompasses species homologs, alternatively spliced forms, isotype variants and precursors of the mature human IGF-I sequence shown in
FIG. 2 , and species homologs, alternatively spliced forms, isotype variants and precursors of mature human IGF-II. An IGF-I generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring mature human IGF-I (SEQ ID NO: 6) and can have, for example, 90% or 95% or more amino acid identity with SEQ ID NO: 6. Similarly, an IGF-II generally has an amino acid sequence with at least about 80% amino acid identity to the sequence of naturally occurring mature human IGF-II and can have 90% or 95% or more amino acid identity with mature human IGF-II. It is understood that an IGF useful in the invention can be obtained by a variety of well known methods, including, without limitation, purification from a natural source, recombinant expression, and peptide or chemical synthesis. As an example, IGF-I can be prepared in bacteria as a fusion peptide, followed by subsequent cleavage of the fusion product as described, for example, in U.S. Pat. No. 5,708,134. - An active fragment of an IGF also can be useful in the invention. An active fragment has an amino acid sequence corresponding to a portion of full-length IGF-I or IGF-II and retains the ability to synergize with EPO to produce an acute neuroprotective effect. Active fragments of IGF-I and IGF-II useful in the invention include fragments with similar activity or with improved activity or stability relative to the naturally occurring full-length IGF. As a non-limiting example, such an active fragment can lack the first 1 to 5 amino terminal residues of IGF-I. Destripeptide IGF-I, which lacks the native N-terminal residues Gly Pro Glu, stimulates protein and DNA synthesis at concentrations between 4 and 50-fold lower than the levels required for full-length IGF-I. The elimination of 1 to 5 amino acids from the N-terminus of bovine or porcine IGF-I also results in enhanced potency. These and other active fragments of IGF-I find use in the methods of the invention.
- A method of the invention can be practiced, if desired, with an “IGF analog.” As used herein, the term “IGF analog” means a molecule that induces or enhances expression, activity or intracellular signaling of the
type 1 insulin-like growth factor receptor and that, in combination with EPO, produces a synergistic acute neuroprotective effect in neurons. Such an IGF analog can be, without limitation, a protein, peptide, peptidomimetic, small molecule, ribozyme, nucleic acid molecule, oligonucleotide, oligosaccharide, cell, phage or virus, or a combination thereof. It is understood that the term IGF analog encompasses active fragments of IGF-I and IGF-II. - IGF analogs include molecules with improved characteristics relative to native human IGF-I or IGF-II, for example, that facilitate commercial production of the analog; that have improved potency, size, stability or solubility; or that provide a more desirable pharmaceutical formulation. As non-limiting examples, more active IGF analogs can be produced, for example, by a modification affecting the interaction of the IGF with its receptor, an IGF-binding protein (IBP) or heparin.
- An IGF analog can be a molecule retaining IGF activity but having reduced affinity for one or more serum components, as described, for example, in Applebaum et al. (U.S. Pat. No. 4,876,242). Such an analog can have equal potency relative to IGF-I at the type I IGF receptor and can display, for example, a 5- to 10-fold increase in activity relative to human IGF-I. As an example, an IGF analog can be a 71 amino acid analog of human IGF-I containing the first 17 residues of the B chain of human insulin in place of the first 16 residues of human IGF-I or another analog incorporating a portion of insulin in place of the native IGF sequence (see, also, Cascieri and Bayne in LeRoith and Raizada, Current Directions in Insulin-like Growth Factor Research Plenum Press: New York 1994). An IGF analog also can be a peptide or peptidomimetic analog with a non-naturally occurring amino-terminal sequence. Ballard et al. (U.S. Pat. Nos. 5,470,828 and 5,164,370) describe IGF-I and IGF-II analogs where there is a substitution of Glu3 in IGF-I, or a substitution of Glu5 and Glu6 in IGF-II. The one or more glutamic acid residues can be substituted, without limitation, with Ala, Asn, Phe, Ile, Met, Val, Ser, Pro, Thr, Tyr or Cys. If desired, at least one of the surrounding Gly, Pro or Thr residues also can be absent from the IGF analog.
- While naturally occurring IGFs are single chain molecules, an IGF analog can have two or more chains. Two-chain IGF analogs include disulfide-bonded heterodimers composed of a first chain containing the B and C domains, and a second chain containing the A domain. Such a two-chain IGF analog can be an IGF-I analog in which the C domain contains a deletion of the first 8, 10 or 12 residues and can have increased IGF-I activity as compared to native human IGF-I (see, for example, U.S. Pat. No. 5,622,932).
- An IGF pathway also can be induced using a molecule which increases the active concentration of an IGF, for example, by inhibiting the interaction of IGF-I or IGF-II with one of their binding proteins but not with the
type 1 IGF receptor; such an IGF analog can be used alone or in combination with IGF-I or IGF-II, or an active fragment or analog thereof. Such IGF analogs, which can be a small antagonist mimetics of an IGF binding protein acting as indirect agonists, include peptides and peptidomimetics such as those shown in Table 2. These molecules are well known in the art as described, for example, in U.S. Pat. No. 6,251,865 and Lowman et al., Biochemistry 37:8870-8878 (1998). -
TABLE 2 Peptide sequence SEQ ID NO: ASEEVCWPVAEWYLCNMWGR 13 ASEEVCWPVAEWYLC 14 GPETCWPVAEWYLCN 15 EEVCWPVAEWYLCN 16 EVCWPVAEWYLCN 17 CWPVAEWYLCN 18 CRAGPLQWLCEKYFG 19 SEVGCRAGPLQWLCEKYFG 20 - Additional IGF analogs useful in the invention include but are not limited to LR3IGF-I, which contains an Arg for Glu substitution at
position 3 and a 13 residue amino-terminal extension (Francis et al., J. Mol. Endocrinol. 8:213-223 (1992)) as well as forms containing [Leu24] or [Leu24][Arg31] (Bayne et al., J. Biol. Chem. 265:15648-15652 (1990); Seigel et al., Molecular Vision 6:157-163 (2000)), and the Val59 IGF-I analog that simplifies production through application of cyanogen bromide (Ueda et al., U.S. Pat. No. 4,745,179). - An IGF analog also can be a nucleic acid molecule that, for example, encodes IGF-I or IGF-II or an active fragment or analog thereof. An exemplary nucleic acid analog of human IGF-I is provided herein as SEQ ID NO: 4. The skilled person understands that a nucleic acid molecule encoding an active fragment of IGF-I or IGF-II, or a peptide analog thereof, such as those described hereinabove also can be a nucleic acid analog of IGF-I or IGF-II useful in the methods of the invention.
- Additional IGF analogs can be identified, if desired, by routine methods. As an example, a kinase receptor activation assay (KIRA) can be used to measure activation of the human type I IGF-I receptor and thereby identify an IGF analog as described in Lowman et al., Biochemistry 37:8870-8878 (1998). Briefly, human MCF-7 cells (ATCC-HTB 22), which express IGF and insulin receptors, are grown overnight in 96 well plates with 50/50 F12/DMEM medium (Gibco) at 37° C. in 5% CO2. Supernatants are decanted, and stimulation media (50/50 F12/DMEM with 25 mM HEPES and 2.0% BSA) containing either test compound or recombinant human IGF-I standards are added. After stimulation at 37° C. for 15 minutes, supernatants are decanted, and the cells lysed. Lysates are transferred to an immunosorbant plate coated with polyclonal anti-IGF-I receptor (Santa Cruz Biotechnology) and blocked with BSA. After incubation for two hours at room temperature, unbound receptor is removed by washing, and bound receptor detected with biotinylated antibody 4G10 (anti-phosphotyrosine), followed by development with HRP-conjugated dextran-streptavidin and tetramethylbenzidine substrate solution. The product absorbance is read at 450 nm with a reference at 650 nm.
- An EPO or IGF analog useful in the invention also can be a bifunctional molecule such as a biofunctional peptide having the activity of EPO as well as an IGF. It is understood that such a chimeric EPO/IGF peptide, which has the activity of both EPO and an IGF, can be used in the methods of the invention in the absence of additional EPO or IGF or an active fragment or analog thereof or, if desired, in combination with one or both of EPO or IGF or active fragments or analogs thereof. Thus, while in many cases, the methods of the invention are practiced by contacting neuronal cells or administering a combination of two factors (EPO and an IGF), the methods of the invention also can be practiced by contacting neuronal cells with or by administering to a subject a single bifunctional analog in place of individual EPO and IGF proteins or active fragments or analogs thereof. In one embodiment, the invention is practiced by contacting neuronal cells with an EPO/IGF bifunctional analog which is cleaved after uptake into the neuronal cells to produce individual EPO and IGF analogs. In another embodiment, the invention is practiced by administering to a subject an EPO/IGF bifunctional analog, which is cleaved subsequent to administration to produce individual EPO and IGF analogs.
- Peptide analogs can be synthesized by well known methodology, for example, utilizing an Applied Biosystems 430A Peptide Synthesizer (Foster City, Calif.). Boc amino acid resins and other reagents can be obtained from Applied Biosystems and other commercial sources. Sequential Boc chemistry, using double couple protocols and acetic anhydride capping can be applied to the desired Boc-amino acid-4-(oxymethyl)phenylacetamidomethyl [PAM] resin. Asparagine, histidine, glutamine, arginine, α-p-hydroxyphenyl) acetic acids, β-p-hydroxyphenyl proprionic acids, p-hydroxybenzoic acids, p-hydroxycinnamic acids and p-hydroxyphenoxy acetic acids can be coupled using preformed hydroxy benzotrizole esters. Other residues can be conveniently coupled using preformed symmetrical anhydrides with dicyclocarbodiamide (DCC). Recombinant hormones and active fragments and analogs thereof also can be prepared using recombinant methods in prokaryotic host cells or in yeast or other eukaryotic host cells as described, for example, in U.S. Pat. No. 5,104,796 and U.S. Pat. No. 5,084,384 (see, also, U.S. Pat. No. 5,622,932). It is understood that recombinant forms of EPO or IGF can be prepared as fusion proteins and can contain additional heterologous sequences such as signal sequences.
- The present invention also provides a method of preventing or reducing the severity of an acute neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof close to or subsequent to the time of acute injury; and administering to the subject an IGF or an active fragment or analog thereof close to or subsequent to the time of acute injury, thereby providing a synergistic acute neuroprotective effect and preventing or reducing the severity of the acute neurologic condition. Such an acute neurologic condition can be, without limitation, stroke, head or spinal cord trauma, or seizure.
- A method of the invention for preventing or reducing the severity of an acute neurologic condition can be practiced, for example, with EPO or an active fragment thereof, such as human EPO or an active fragment thereof. A method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog. In particular embodiments, the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In one embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. As an example, a method of the invention can be practiced with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7). In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO. Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin. The methods of the invention also optionally include the step of administering soluble EPO receptor to the subject.
- A variety of forms of IGF and active fragments and analogs thereof are useful in the invention. In one embodiment, the invention is practiced by administering IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by administering human IGF-I or an active fragment thereof. The invention also can be practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- In one embodiment, a method of the invention for preventing or reducing the severity of an acute neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF. In the methods of the invention, EPO and IGF, or active fragments or analogs thereof, can be administered simultaneously or in any order and in the same or different pharmaceutical compositions.
- As used herein, the term “subject” means any animal containing neurons, for example, a mammal such as a mouse, rat, dog, primate or human. A subject typically suffers from an acute or chronic neurologic condition or is at high risk of developing a neurologic condition.
- As used herein, the term “acute neurological condition” means any neurological disorder or disease having a short and relatively severe course. As non-limiting examples, an “acute neurologic condition” can be cerebral ischemia associated with stroke; hypoxia; anoxia; poisoning by carbon monoxide, manganese or cyanide; hypoglycemia; perinatal asphyxia; near death drowning; mechanical trauma to the nervous system such as trauma to the head or spinal cord; epileptic seizure; cardiac arrest; or cerebral asphyxia associated, for example, with coronary bipass surgery. Acute neurological conditions generally are distinguished from chronic neurological conditions, in which the neurological condition is of a relatively long duration, for example, several months or years.
- Also provided by the invention is a method of preventing or reducing the severity of a neurologic condition in a subject by administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and administering to the subject an IGF or an active fragment or analog thereof, thereby providing neuroprotection and preventing or reducing the severity of the neurologic condition. The EPO and IGF, or active fragments or analogs thereof, can be administered to the subject simultaneously or in any order and in the same or different pharmaceutical compositions using any of a variety of routes of administration including, without limitation, oral, intravenous, intraperitoneal, subcutaneous, intracerebroventricular, intrathecal, transnasal, intravitreal and transcleral administration. A variety of acute and chronic neurologic conditions can be treated according to a method of the invention including, but not limited to, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-associated dementia, glaucoma, epilepsy, light-induced retinal degeneration such as photoreceptor degeneration, macular degeneration, and pain.
- The present invention also provides a method of preventing or reducing the severity of a cerebral neurologic condition in a subject by transnasally administering to the subject EPO or an active fragment or analog thereof at a dose of at most 2000 U/kg; and
- transnasally administering to the subject an IGF or an active fragment or analog thereof, thereby providing acute neuroprotection and preventing or reducing the severity of the neurologic condition.
- Various forms of EPO and active fragments and analogs thereof are useful for preventing or reducing the severity of a neurologic condition according to a method of the invention. As an example, the invention can be practiced with EPO or an active fragment thereof such as human EPO or an active fragment thereof. A method of the invention also can be practiced with an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid analog. In particular embodiments, the invention is practiced with an EPO analog containing one of the following amino acid sequences: GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In one embodiment, a method of the invention for preventing or reducing the severity of a neurologic condition is practiced with EPO or an active fragment or analog thereof which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, the invention is practiced with EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. The invention can be practiced, for example, with a dimeric form of EPO in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7). In a further embodiment, the invention is practiced with EPO or an active fragment or analog thereof which has a half-life greater than the half-life of native human EPO. Such a form of EPO can be hyper-glycosylated as compared to native human EPO and further can be, for example, Darbepoietin. The methods of the invention further optionally include the step of administering soluble EPO receptor to the subject.
- A variety of forms of IGF and active fragments and analogs thereof also are useful in the invention. In one embodiment, the invention is practiced by administering an IGF or an active fragment thereof, for example, IGF-I or an active fragment thereof. In an additional embodiment, the invention is practiced by administering human IGF-I or an active fragment thereof. In a further embodiment, the invention is practiced by administering an IGF analog such as a peptide, peptidomimetic, small molecule or nucleic acid analog including, but not limited to, a variety of IGF-I analogs.
- In one embodiment, a method of the invention for preventing or reducing the severity of a neurological condition is practiced with an IGF or active fragment or analog thereof which has at least 10-fold higher affinity for the IGF-I receptor than native human IGF-I. In another embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has an altered affinity for an IGF-binding protein. In a further embodiment, the invention is practiced with an IGF or active fragment or analog thereof which has a half-life greater than the half-life of native human IGF.
- The term “neurological condition” as used herein, encompasses all acute and chronic neurological conditions. Thus, neurological conditions encompass, without limitation, hypoxia-ischemia (stroke); head or spinal cord injury; epilepsy; neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis or multiple sclerosis; optic neuropathies such as glaucoma, light-induced retinal degeneration such as photoreceptor degeneration, and macular degeneration; disorders of photoreceptor degeneration such as retinitis pigmentosa; metabolic, mitochondrial and infectious brain abnormalities such as encephalitis; and neuropathic pain (Lipton and Rosenberg, New Engl. J. Med. 330: 613 (1994)). Chronic neurological conditions encompass neurodegenerative diseases such as Alzheimer's disease, Huntington's disease; disorders of photoreceptor degeneration such as retinitis pigmentosa and light-induced retinal degeneration; macular degeneration of the retina; forms of dementia including fronto-temporal dementia and HIV-associated dementia (acquired immunodeficiency syndrome dementia complex); neuropathic pain syndromes such as causalgia or painful peripheral neuropathies and other chronic pain syndromes; olivopontocerebellar atrophy; Parkinson's disease; Parkinsonism; amyotrophic lateral sclerosis; mitochondrial abnormalities and other biochemical disorders such as MELAS syndrome, MERRF, Leber's disease, Wernicke's encephalopathy, Rett syndrome, homocysteinuria, hyperhomocysteinemia, hyperprolinemia, nonketotic hyperglycinemia, hydroxybutyric aminoaciduria, sulfite oxidase deficiency, combined systems disease, lead encephalopathy; hepatic encephalopathy, Tourette's syndrome; drug addiction, tolerance, dependency; and depression or anxiety syndromes.
- The methods of the invention for preventing or reducing the severity of a neurologic condition in a subject are based, in part, on the discovery that, when administered in conjunction with an IGF such as IGF-I, EPO can be neuroprotective at much lower doses than previously observed. Thus, the methods of the invention are practiced by administering a dose of at most 2000 U/kg EPO, or active fragment or analog thereof. In particular embodiments, the invention is practiced by administering a dose of at most 1500 U/kg, 1000 U/kg, 750 U/kg, 500 U/kg, 250 U/kg, 100 U/kg, 90 U/kg, 80 U/kg, 70 U/kg, 60 U/kg, 50 U/kg, 40 U/kg, 30 U/kg, 20 U/kg, 10 U/kg, 5 U/kg, 2.5 U/kg or 1 U/kg EPO or active fragment or analog thereof. In further embodiments, the invention is practiced by administering at most 2000 U/kg/day, 1500 U/kg/day, 1000 U/kg/day, 750 U/kg/day, 500 U/kg/day, 250 U/kg/day, 100 U/kg/day, 90 U/kg/day, 80 U/kg/day, 70 U/kg/day, 60 U/kg/day, 50 U/kg/day, 40 U/kg/day, 30 U/kg/day, 20 U/kg/day, 10 U/kg/day, 5 U/kg/day, 2.5 U/kg/day or 1 U/kg/day EPO or active fragment or analog thereof. In still further embodiments, a method of the invention for preventing or reducing the severity of a neurologic condition in a subject is practiced by administering EPO, or active fragment or analog thereof, in the range of 0.5 U/kg/day to 200 U/kg/day, 0.5 U/kg/day to 100 U/kg/day, 0.5 U/kg/day to 50 U/kg/day, 0.5 U/kg/day to 25 U/kg/day, 0.5 U/kg/day to 15 U/kg/day, 0.5 U/kg/day to 10 U/kg/day, 0.5 U/kg/day to 5 U/kg/day, 1 U/kg/day to 200 U/kg/day, 1 U/kg/day to 100 U/kg/day, 1 U/kg/day to 50 U/kg/day, 1 U/kg/day to 25 U/kg/day, 1 U/kg/day to 15 U/kg/day, 1 U/kg/day to 10 U/kg/day, 1 U/kg/day to 5 U/kg/day, 2 U/kg/day to 200 U/kg/day, 2 U/kg/day to 100 U/kg/day, 2 U/kg/day to 50 U/kg/day, 2 U/kg/day to 25 U/kg/day, 2 U/kg/day to 15 U/kg/day, 2 U/kg/day to 10 U/kg/day, 2 U/kg/day to 5 U/kg/day, 3 U/kg/day to 200 U/kg/day, 3 U/kg/day to 100 U/kg/day, 3 U/kg/day to 50 U/kg/day, 3 U/kg/day to 25 U/kg/day, 3 U/kg/day to 15 U/kg/day, 3 U/kg/day to 10 U/kg/day, 3 U/kg/day to 5 U/kg/day, 5 U/kg/day to 200 U/kg/day, 5 U/kg/day to 100 U/kg/day, 5 U/kg/day to 50 U/kg/day, 5 U/kg/day to 25 U/kg/day, 5 U/kg/day to 15 U/kg/day, or 5 U/kg/day to 10 U/kg/day. In still further embodiments, a method of the invention for preventing or reducing the severity of a neurologic condition in a subject is practiced by administering EPO, or active fragment or analog thereof, at 3 U/kg/day, 5 U/kg/day, 10 U/kg/day, 15 U/kg/day, 20 U/kg/day or 25 U/kg/day. A unit of EPO, as defined by the World Health Organization and as used herein, is the equivalent of 1.2 international units of EPO activity.
- The methods of the invention additionally involve administering an IGF or active fragment or analog thereof to the subject. Such an IGF or active fragment or analog thereof generally is administered to a subject at from 0.5 ng/kg/day to 500 ng/kg/day. In particular embodiments, a method of the invention is practiced by administering an IGF such as IGF-I, IGF-II or an active fragment of analog of one of these factors, in a range of 1 ng/kg/day to 500 ng/kg/day, 1 ng/kg/day to 250 ng/kg/day, 1 ng/kg/day to 100 ng/kg/day, 1 ng/kg/day to 50 ng/kg/day, 1 ng/kg/day to 20 ng/kg/day, 1 ng/kg/day to 10 ng/kg/day, 5 ng/kg/day to 500 ng/kg/day, 5 ng/kg/day to 250 ng/kg/day, 5 ng/kg/day to 100 ng/kg/day, 5 ng/kg/day to 50 ng/kg/day, 5 ng/kg/day to 20 ng/kg/day, 5 ng/kg/day to 10 ng/kg/day, 10 ng/kg/day to 500 ng/kg/day, 10 ng/kg/day to 250 ng/kg/day, 10 ng/kg/day to 100 ng/kg/day, 10 ng/kg/day to 50 ng/kg/day, 10 ng/kg/day to 20 ng/kg/day, 20 ng/kg/day to 500 ng/kg/day, 20 ng/kg/day to 250 ng/kg/day, 20 ng/kg/day to 100 ng/kg/day, 20 ng/kg/day to 50 ng/kg/day, 30 ng/kg/day to 500 ng/kg/day, 30 ng/kg/day to 250 ng/kg/day, 30 ng/kg/day to 100 ng/kg/day, 30 ng/kg/day to 50 ng/kg/day, 50 ng/kg/day to 500 ng/kg/day, 50 ng/kg/day to 250 ng/kg/day or 50 ng/kg/day to 100 ng/kg/day. In other embodiments, a method of the invention is practiced by administering 5 ng/kg/day, 10 ng/kg/day, 20 ng/kg/day, 25 ng/kg/day, 30 ng/kg/day or 50 ng/kg/day of an IGF or active fragment or analog thereof.
- In further embodiments, a method of the invention is practiced by administering EPO, or an active fragment or analog thereof, in a range of 1 U/kg/day to 100 U/kg/day, 1 to 50 U/kg/day, 1 U/kg/day to 15 U/kg/day, 2 U/kg/day to 100 U/kg/day, 2 U/kg/day to 50 U/kg/day, 2 U/kg/day to 15 U/kg/day, 3 U/kg/day to 100 U/kg/day, 3 U/kg/day to 50 U/kg/day, or 3 U/kg/day to 15 U/kg/day in combination with an IGF, or active fragment or analog thereof, administered in a range of 1 ng/kg/day to 500 ng/kg/day, 5 ng/kg/day to 200 ng/kg/day or 10 ng/kg/day to 100 ng/kg/day.
- EPO, or an active fragment or analog thereof, and an IGF or an active fragment or analog thereof, generally are administered to a subject in a pharmaceutical composition. It is understood that the EPO and IGF can be administered in the same or separate pharmaceutical compositions and further can be administered simultaneously or in any order, and by the same or different routes of administration. A pharmaceutical composition useful in the invention includes EPO or an active fragment or analog thereof, or an IGF or an active fragment or analog thereof, or both, each in a concentration range of, for example, approximately 0.0001% to approximately 0.1% weight by volume but not to exceed 2000 U/kg EPO or active fragment or analog thereof. A pharmaceutical composition useful in the methods of the invention further can include an excipient well known in the art for preparing pharmaceutical compositions including compositions suitable for intranasal administration. Pharmaceutical compositions useful in the invention further encompass, without limitation, those containing carrier proteins such as albumin. As non-limiting examples, a pharmaceutical composition of the invention can include about 0.1% to 0.4% of a carrier protein such as albumin.
- A pharmaceutical composition includes a pharmaceutically acceptable carrier, which is any carrier that has substantially no long term or permanent detrimental effect when administered. Examples of pharmaceutically acceptable carriers include, without limitation, water, such as distilled or deionized water; saline; and other aqueous media. It is understood that the active ingredients can be soluble or can be delivered as a suspension in a suitable carrier.
- A preservative or tonicity adjustor can be included, if desired, in a pharmaceutical composition useful in the invention. Useful preservatives include, without limitation, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate, and phenylmercuric nitrate. Tonicity adjustors useful in the invention include salts such as sodium chloride, potassium chloride, mannitol or glycerin and other pharmaceutically acceptable tonicity adjustor.
- Various buffers and means for adjusting pH can be used to prepare a pharmaceutical composition useful in the invention, provided that the resulting preparation is pharmaceutically acceptable. Such buffers include, without limitation, acetate buffers, citrate buffers, phosphate buffers and borate buffers. It is understood that acids or bases can be used to adjust the pH of the composition as needed. Pharmaceutically acceptable antioxidants useful in the invention include, yet are not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
- A variety of routes of administration can be useful in the invention depending, in part, on the size and characteristics of the polypeptide or analog to be administered and the history, risk factors and symptoms of the subject to be treated. Routes of administration suitable for the methods of the invention include both systemic and local administration. In specific embodiments, EPO or an active fragment or analog thereof, is administered through oral, intravenous, subcutaneous, intraperitoneal, intravitreal, transcleral, intranasal, intrathecal or epidural administration, or via intracerebro ventricular injection or a shunt surgically inserted into the cerebro ventricle. In further embodiments, IGF-I or an active fragment or analog thereof, is administered orally, intravenously, intranasally, intrathecally, epidurally, or via cerebro ventricular injection or a shunt surgically inserted into the cerebro ventricle.
- Routes of administration useful in the methods of the invention encompass, without limitation, oral delivery; intravenous injection; intramuscular injection; subcutaneous injection; intraperitoneal injection; transdermal diffusion and electrophoresis; topical eye drops and ointments; periocular and intraocular injection including subconjunctival injection; extended release delivery devices including locally implanted extended release devices including a bioerodible or reservoir-based implants. It is understood that an implant useful in the invention generally releases the implanted pharmaceutical composition over an extended period of time.
- Intranasal administration can be useful in the methods of the invention for preventing or reducing the severity of a neurological condition that affects the brain. Such conditions include yet are not limited to cerebral ischemia; stroke; hypoxia or anoxia; mechanical trauma to the head; HIV-associated dementia (AIDs dementia complex); Alzheimer's disease or Parkinson's disease; and drug addiction, tolerance and dependency, as well as other neurological disorders that affect the brain described hereinabove or known in the art. In one embodiment, intranasal administration is used to deliver a peptide or peptidomimetic analog of EPO. In another embodiment, intranasal administration is used to deliver a peptide or peptidomimetic analog of IGF-I. In a further embodiment, intranasal administration is used to deliver a peptide or peptidomimetic analog of EPO and a peptide or peptidomimetic analog of IGF-I. In further embodiments, the peptide or peptidomimetic analogs of EPO administered intranasally have a length of up to 50 residues, 40 residues, 30 residues, 25 residues, 20 residues, 15 residues, 12 residues or 10 residues. In yet further embodiments, the peptide or peptidomimetic analogs of IGF administered intranasally have a length of up to 50 residues, 40 residues, 30 residues, 25 residues, 20 residues, 15 residues, 12 residues or 10 residues.
- Intranasal administration of EPO or IGF-I, or a peptide or peptidomimetic of one of these factors, can bypass the blood-brain barrier and thereby deliver the therapeutic agent to the brain. As an example, Liu et al., J. Neur. Sci. 187:91-97 (2001), demonstrate that recombinant human IGF-I can protect against focal cerebral ischemic damage when administered intranasally. Intranasal administration can be accomplished by routine methods, for example, using a Rhinüle (Ferring; Germany) to blow a liquid substance containing the desired active ingredients into each nostril (Pietrowsky et al., Biol. Psych. 39:332-240 (1996)). The Rhinüle is a small, flexible tube with a tip on one end that allows one to deliver a defined volume of 0.2 ml of a liquid substance into a nostril. Additional means of intranasal administration, including the use of nose drops (Liu et al., supra, 2001), also are encompassed by the methods of the invention. Nasal formulations of EPO, IGF-I or both, can be prepared by routine methods. As an example, a nasal formulation of IGF-I can contain 0.1-10% IGF-I and 0.05 to 2.0% by weight carboxyvinyl polymer.
- Any of the methods of the invention can include the additional step of expressing in the neuronal cells, or in neuronal precursor cells as described further below, one or more nucleic acid molecules encoding gene products that are therapeutically useful. As an example, for treatment of Parkinson's disease, a neuronal cell or neuronal precursor cell can express, for example, a nucleic acid molecule encoding the catecholamine enzyme tyrosine hydroxylase, thereby increasing dopamine-β-hydroxylase activity upon intracerebral grafting (Jiao et al., Nature 362:450 (1993); see, also, Dhawan et al., Science 254: 1509 (1991); and Barr and Leiden, Science 254:1507 (1991)).
- Similarly, for treatment of Alzheimer's disease, a neuronal cell or neuronal precursor cell can express a nucleic acid molecule encoding nerve growth factor, thereby promoting cell survival of the cholinergic neurons that are typically lost in Alzheimer's disease (Rosenberg et al., Science 242:1575-1578 (1988)). In a similar manner, a neuronal cell or neuronal precursor cell can be engineered to express encephalin for treatment of neuropathic disorders involving intractable pain.
- One skilled in the art recognizes that these and other combinations are encompassed by the methods of the invention.
- A neuronal cell or neuronal precursor cell further can be engineered to express one or more anti-apoptotic gene products including, without limitation, members of the Bcl-2 family such as Bcl-2 and BC1-XL and members of the inhibitor of apoptosis (IAP) family such as c-IAP-1, c-IAP-2, XIAP or NIAP ((Anderson, Trends Pharm. Sci. 18:51 (1997); Gross and et al., Genes Dev. 13:1899-1911 (1999); and Deveraux and Reed, Genes Dev. 13:239-252 (1999)).
- In any of the methods of the invention, the neuronal cells or neuronal precursor cells optionally can be treated to promote cell survival. In one embodiment, mature neuronal cells are treated with a p38 inhibitor. In another embodiment, neuronal cells or neuronal precursor cells are treated to inhibit caspase activity. A variety of caspase inhibitors are useful in the invention including, for example, nucleic acids, polypeptides, peptides, peptidomimetics and non-peptide inhibitors such as small molecule drugs known in the art. As used herein, the term “caspase inhibitor” means any molecule that binds to and inhibits the activity of one or more caspases. Caspase inhibitors useful in the methods of the invention generally are cell permeable and have inhibitory activity in vivo and include viral and cellular gene products as well as synthetic inhibitors such as synthetic small molecules (Ekert et al., Cell Death and Differentiation 6:1081-1086 (1999)).
- A caspase inhibitor can be a general (non-selective) caspase inhibitor or can be a selective caspase inhibitor. Selective inhibitors are those inhibitors which do not inhibit non-caspase cysteine proteases or serine proteases. Non-selective caspase inhibitors, which also inhibit one or more non-caspase protease inhibitors, include, for example, the cysteine protease inhibitor iodoacetamide. A caspase inhibitor also can be selective for one or more specific caspases. A caspase inhibitor can selectively inhibit caspase-3 or caspase-7 or a combination thereof and can be combined, for example, with any form of EPO or IGF or an active fragment or analog thereof disclosed herein or known in the art. Caspase inhibitors selective for caspases-3 and -7 include non-peptide inhibitors such as isatin sulfonamides (see, for example, Lee et al., J. Biol. Chem. 275:16007-16014 (2000)). A selective caspase inhibitor also can be selective for caspase-3, caspase-6, caspase-7 or caspase-8, or any combination thereof, and can be combined, for example, with any form of EPO and IGF.
- A caspase inhibitor can be, for example, the cytokine response modifier A (CrmA) polypeptide, or an encoding nucleic acid molecule, which inhibits caspases-1 and -8; or the p35 baculovirus protein, or an encoding nucleic acid molecule, which inhibits caspases-1, -3, -6, -7, -8 and -10 but does not inhibit non-caspase cysteine proteases or serine proteases (Clem et al., Science 254:1388-1390 (1991)). A caspase inhibitor also can be an inhibitor of apoptosis protein (IAP) or an encoding nucleic acid molecule. IAPs useful as caspase inhibitors in a method of the invention include XIAP and Survivin.
- A caspase inhibitor also can be a synthetic caspase inhibitor such as a pseudosubstrate which acts as a reversible or irreversible competitive inhibitor of one or more caspases. Active site mimetic peptide ketones are useful, for example, as selective caspase inhibitors. Such caspase inhibitors include, for example, benzylcarbonyl (z)-VAD-fluoromethylketone (fmk), z-VAD-fmk/chloromethylketone (CMK), z-DEVD-fmk/cmk; and z-D-cmk. Additional caspase inhibitors include the halomethyl ketone-linked peptide YVAD, Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO (Ekert et al., supra, 1999). The skilled person understands that these and other caspase inhibitors known in the art can be useful in the methods of the invention. See, for example, Nicholson, Nature 407:810-816 (2000); WO 00/55114; and Garcia-Calvo et al., J. Biol. Chem. 273:32608-32613 (1998)).
- As disclosed herein, EPO or an active fragment or analog thereof can cross the blood-brain barrier following intranasal administration, whereby unwanted systemic effects such as increased hematocrit can be avoided. In particular, intranasally applied radiolabeled EPO migrated into olfactory tissue and was observed in the rostral migratory stream (RMS). Furthermore, autoradiography demonstrated that radiolabeled erythropoietin accumulated in brain tissue when applied intranasally. These results demonstrate that intranasal administration can be used to deliver erythropoietin and active fragments and analogs thereof to the brain, for example, via the rostral migratory stream. These results further indicate that intranasal administration of EPO, or active fragments or analogs thereof, can be useful for treating neurologic conditions such as stroke or neurodegenerative conditions while avoiding side effects associated with chronic systemic erythropoietin administration.
- Thus, the present invention provides a method of preventing or reducing the severity of a neurologic condition in a subject by intranasally administering to the subject EPO or an active fragment or analog thereof, thereby preventing or reducing the severity of the neurologic condition.
- In one embodiment, the EPO or an active fragment or analog thereof is administered at a dose of at most 2000 U/kg.
- A variety of forms of erythropoietin, as well as active fragments and analogs thereof, can be administered intranasally in the methods of the invention. In one embodiment, a method of the invention is practiced by intranasal administration of EPO or an active fragment thereof, for example, by intranasal administration of human EPO or an active fragment thereof. In another embodiment, a method of the invention is practiced by intranasal administration of an EPO analog, which can be, without limitation, a peptide, peptidomimetic, small molecule or nucleic acid EPO analog. In further embodiments, a method of the invention is practiced by intranasal administration of an EPO analog that includes the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7); GGDYHCRMGPLTWVCKPLGG (SEQ ID NO: 8); GGVYACRMGPITWVCSPLGG (SEQ ID NO: 9); VGNYMCHFGPITWVCRPGGG (SEQ ID NO: 10); GGLYLCRFGPVTWDCGYKGG (SEQ ID NO: 11); or GGCRIGPITWVCGG (SEQ ID NO: 12).
- In another embodiment, a method of the invention is practiced by intranasal administration of EPO, or an active fragment or analog thereof, which has at least 10-fold higher affinity for the EPO receptor than native human EPO. In another embodiment, a method of the invention is practiced by intranasal administration of EPO or an active fragment or analog thereof which is oligomeric, for example, dimeric. As an example, such a dimeric form of EPO can be a dimer in which each monomer contains the amino acid sequence GGTYSCHFGPLTWVCKPQGG (SEQ ID NO: 7). In further embodiments, the invention is practiced with EPO or an active fragment or analog thereof that has a half-life greater than the half-life of native human EPO, or with EPO or an active fragment or analog thereof that is hyper-glycosylated compared to native human EPO, for example, Darbepoietin. In any embodiment of the invention involving intranasal administration of EPO or an active fragment or analog thereof, soluble EPO receptor can be optionally included, for example, to prolong the half-life of EPO or the active fragment or analog thereof.
- It is understood that any of a variety of acute and chronic neurologic conditions can be treated by intranasal administration of EPO, or an active fragment or analog thereof, in a method of the invention. Such neurologic conditions include, for example, stroke and neurodegenerative disorders. The methods of the invention which rely on intranasal administration of EPO or an active fragment or analog thereof can be useful for preventing or reducing the severity of neurologic conditions such as, without limitation, stroke, head or spinal cord trauma, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, amyotrophic lateral sclerosis, multiple sclerosis, a movement disorder, dementia, HIV-associated dementia, fronto-temporal dementia, HIV-associated neuropathy, chronic pain, neuropathic pain, migraine, glaucoma, drug addiction, drug withdrawal, drug dependency, depression and anxiety. One skilled in the art understands that these and other acute and chronic neurologic conditions can be treated by intranasal administration of EPO or an active fragment or analog thereof according to a method of the invention.
- Intranasal administration can be accomplished by any method wherein the EPO or an active fragment or analog thereof is introduced via the nasal cavity, with or without enhancers or mechanical devices such as a Rhinüle (Pietrowsky et al., supra, 1996). One skilled in the art understands that nose drops can be useful for intranasal administration, as can other nasal formulations including polymers and formulations as described in Shimoda et al., Biol. Pharm. Bull. 18:734-739 (1995).
- The present invention also provides a method of differentiating neuronal precursor cells to produce an enriched neuronal cell population by contacting the neuronal precursor cells with EPO or an active fragment or analog thereof; and contacting the neuronal precursor cells with IGF-I or an active fragment or analog thereof, thereby differentiating the neuronal precursor cells to produce an enriched cell population containing at least 70% neurons. In particular embodiments, a method of the invention produces an enriched cell population containing at least 80% neurons, at least 90% neurons or at least 95% neurons. If desired, the neuronal precursor cells further can be contacted with a differentiating agent, for example, retinoic acid. In particular embodiments, the invention is practiced by contacting the neuronal precursor cells with a concentration of at most 2000 U/ml, 1500 U/ml, 1000 U/ml, 750 U/ml, 500 U/ml, 250 U/ml, 100 U/ml or 50 U/ml EPO or active fragment or analog thereof.
- Neuronal precursor cells useful in the methods of the invention can be, for example, human stem cells; embryonic stem cells such as human embryonic stem cells; or hematopoietic neuronal precursor cells such as human hematopoietic stem cells. Neuronal precursor cells useful in the methods of the invention also can be, without limitation, selected CD133-positive (AC133-positive); CD133-positive/CD34-positive; CD133-positive/CD34-negative; CD133-positive/CD34-negative/CD45-negative; CD34-negative/CD38-negative/Lin-negative; or CD34-positive/CD38-negative/Lin-negative/Thy-1-negative human neuronal precursor cells.
- A method of the invention for differentiating neuronal precursor cells can further include the step of introducing into the neuronal precursor cells a nucleic acid molecule encoding a MEF2 polypeptide or an active fragment thereof. Such a MEF2 polypeptide can be, for example, human MEF2C, or an active fragment thereof, and further can be, if desired, a constitutively active MEF2 polypeptide such as a MEF2/VP16 fusion protein or a constitutively active MEF2 polypeptide containing one or more serine/threonine to aspartic acid/glutamic acid substitutions in the MEF2 transactivation domain. A method of the invention also can include, if desired, the step of inhibiting caspase activity; treating with a protective factor such as minocycline or another tetracycline derivative; or expressing a Bcl-XL family member in the neuronal precursor cells, for example, to prolong survival during subsequent transplantation.
- As used herein, the term “MEF2 polypeptide” means a polypeptide that has MEF2 DNA binding activity in addition to activity as a transcriptional activator and includes polypeptides having substantially the amino acid sequence of MEF2A, MEF2B, MEF2C or MEF2D. Thus, a MEF2 polypeptide can have, for example, substantially the amino acid sequence of human MEF2A; human MEF2B; human MEF2C; or human MEF2D. A MEF2 polypeptide includes a MADS domain, a MEF2 domain and a transcriptional activation domain. It is understood that, while the MADS domain and MEF2 domains of a MEF2 polypeptide will be similar in structure to the MADS domain and MEF2 domain of a naturally occurring MEF2 polypeptide such as human MEF2C, the transcriptional activation domain of a MEF2 polypeptide may be structurally unrelated and can be, for example, a synthetic transcriptional activation or a heterologous transcriptional activation domain derived, for example, from VP16 or GAL4. One skilled in the art appreciates that a fragment of a MEF2 polypeptide that retains MEF2 DNA binding activity and transcriptional activity also can be useful in the methods of the invention.
- The term MEF2 polypeptide encompasses a polypeptide having the sequence of a naturally occurring human MEF2A polypeptide (GenBank accession NM 005587), naturally occurring human MEF2B polypeptide (GenBank accession NM 005919), naturally occurring human MEF2C polypeptide (GenBank accession L08895) or naturally occurring human MEF2D polypeptide (GenBank accession NM 005920) and is intended to include related polypeptides having substantial amino acid sequence similarity to one of these polypeptides. Such related polypeptides typically exhibit greater sequence similarity to hMEF2A, hMEF2B, hMEF2C or hMEF2D than to other MADS box proteins such as serum response factor (SRF) and include species homologs such as primate, mouse, rat and D. rerio homologs, alternatively spliced forms, and isotype variants of human MEF2A, MEF2B, MEF2C and MEF2D.
- Induction of the MEF2 pathway also can be achieved using a MEF2 activator, which is a small molecule that results in increased expression or activity of a MEF2 polypeptide or which is a mimetic of MEF2 function. A MEF2 activator can result in increased expression or activity of one or more MEF2 polypeptides, for example, may result in increased expression or activity of MEF2C without effecting expression or activity of MEF2A, MEF2B or MEF2D. Such a MEF2 activator can be an organic chemical, drug, nucleic acid molecule, peptide, peptidomimetic, polypeptide or other naturally or non-naturally occurring organic molecule, and can be, for example, a MEF2 mimetic. Exemplary MEF2 activators are transcription factors that upregulate MEF2 expression, molecules that compete for binding to a MEF2 inhibitor such as Cabin1, histone deacetylase inhibitors including, but not limited to, VX-563 (Vertex Pharmaceuticals; Cambridge, Mass.), and kinases that activate MEF2 polypeptides such as p38a. It is understood that a MEF2 activator can be useful in any of the methods of the invention disclosed herein.
- A variety of differentiating agents optionally are useful in the methods of the invention including, for example, retinoic acid. Other differentiating agents useful in a method of the invention include, without limitation, neurotrophic
factor 3, epidermal growth factor, IGF-I, platelet-derived growth factor and other agents that increase cAMP. - A method of the invention for differentiating neuronal cells optionally includes the step of transplanting into a subject cells treated to induce the EPO and IGF pathways. In a method of the invention, cells can be transplanted, for example, into the brain, eye (retina) or spinal cord after neuronal injury or damage. Thus, cells treated to induce the EPO and IGF pathways can be transplanted into a subject having or at risk of, for example, stroke or a neurodegenerative disease such as Alzheimer's disease; Huntington's disease; amyotrophic lateral sclerosis; Parkinson's disease; epilepsy; brain or spinal cord trauma; multiple sclerosis; optic neuropathy such as glaucoma, macular degeneration, or light-induced retinal degeneration such as photoreceptor degeneration; infection of the central nervous system; multiple system atrophy affecting the brain; or another acute or chronic neurodegenerative condition. Upon transplantation, the cells begin to differentiate or continue differentiating to produce a cell population containing protected neuronal cells.
- Cells can be transplanted into a subject, for example, into the eye, brain or spinal cord using well known methods for transplanting or “grafting” neurons as described, for example, in McDonald et al., Nat. Med. 5:1410-1412 (1999), and summarized in Dunnett et al., Brit. Med. Bulletin 53:757-776 (1997). Methods for preventing or ameliorating rejection, for example, using cyclosporine A treatment, also are known in the art.
- Those skilled in the art understand that the steps of inducing the EPO pathway, inducing an IGF pathway, and optionally contacting the neuronal precursor cells with a differentiating agent can be performed in any order or simultaneously. It further is understood that a neuronal precursor population in which the EPO and IGF pathways have been induced can be transplanted into a subject prior to, during or after differentiation of the neuronal precursor cells into neuronal cells. In one embodiment, cells are transplanted prior to or during differentiation. Where cells are transplanted prior to differentiation, the neuronal environment can drive the cells into the desired neuronal cell type due to the presence of the appropriate environmental cues. In view of the above, it is clear that differentiation can occur in vitro or in vivo, or can occur partially in vitro and partially in vivo.
- As used herein in reference to a neuronal cell, the term “protected” means a cell that is more resistant to injury, apoptosis or cell death than a cell in which EPO and IGF pathways have not been induced, or in which these pathways have been induced to a lesser extent. Thus, a population containing protected neuronal cells can exhibit reduced apoptosis as compared to a population that does not contain “protected” neuronal cells. Assays for determining the extent of apoptosis are known in the art, as described hereinabove.
- It is understood that a method of the invention can be used to produce a population that contains protected neuronal cells and in which a large proportion of the cell population is neuronal. For example, a method of the invention can be used to produce a cell population containing, for example, at least 50% neuronal cells. In other embodiments, the population produced includes at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more neuronal cells. The proportion of neuronal cells can be determined by assaying for one or more characteristic neuronal markers such as the presence of NeuN, neurofilament or MAP2.
- The methods of the invention for differentiating neuronal precursor cells can include, if desired, contacting the neuronal precursor cells with a differentiating agent. As used herein, the term “differentiating agent” means a naturally occurring or synthetic cytokine, growth factor or other compound that causes or enhances a neuronal precursor cell to have one or more characteristics of a neuronal cell. A differentiating agent useful in the invention can be, for example, a retinoic acid such as all-trans retinoic acid; neurotrophic factor 3 (NT3); epidermal growth factor (EGF); EPO; IGF-I; platelet derived growth factor (PDGF), or a combination of two or more of these factors. For example, EGF, IGF-I and PDGF can be used together as a differentiating agent. Basic fibroblast growth factor (bFGF) or another factor that enhances proliferation of precursor cells optionally can be used prior to treating with a differentiating agent such as EGF, IGF-I and PDGF. One skilled in the art understands that, if desired, one or more factors such as brain-derived neurotrophic factor (BDNF) also can be added to promote neuronal cell survival. A neuronal precursor cell also can be engineered to express one or more factors that promote differentiation including, for example, MEF2, neuroD, neuroD2, neuroD3, neurogenin1, neurogenin2, neurogenin3, MATH1 or MATH2 (Lee, Curr. Opin. Neurobiol. 7:13-20 (1997)). Such a factor can be expressed instead of or in addition to application of an extrinsic differentiating agent.
- As used herein, the term “neuronal precursor cell” means any cell that is not a neuron but which is capable of differentiating into a neuron under the appropriate conditions. Neuronal precursor cells can be multipotent or unipotent and can be stem cells, precursor cells, primary cells or established cells. Neuronal precursor cells such as stem cells generally can be distinguished from neurons in that they lack neuronal markers such as the nuclear protein NeuN, neurofilament and microtubule-associated protein 2 (MAP2) as well as the neuronal-like processes characteristic of mature neurons. In one embodiment, the neuronal precursor cells are primary cells, which is a well known term in the art for cells which are derived directly from an organism and which have limited growth capacity in culture.
- A neuronal precursor cell useful in the invention can be multipotent or unipotent. As used herein in reference to a neuronal precursor cell, the term “multipotent” is synonymous with “pluripotent” and means a neuronal precursor cell capable of differentiating into two or more distinct lineages, including the neuronal lineage. Multipotent neuronal precursor cells such as stem cells, which are generally nestin-positive cells, are distinguished from unipotent precursor cells, which are generally Hu-positive cells. Expression of nestin and Hu can be determined, for example, by well-established immunocytochemistry methods. A multipotent neuronal precursor cell is capable of differentiating into at least three or more, four or more, or five or more distinct lineages, including the neuronal lineage.
- As used herein, the term “stem cell” means a pluripotent cell type which can differentiate under the appropriate conditions to give rise to all cellular lineages. Thus, a stem cell differentiates to neuronal cells, hematopoietic cells, muscle cells, adipose cells, germ cells and all other cellular lineages. A stem cell can be an embryonic stem cell. Where the term “hematopoietic stem cell” is used, it is understood that this term refers to cells that are committed to the hematopoietic lineage but which can differentiate to all cells of the hematopoietic lineage.
- As used herein, the term “embryonic stem cell” is synonymous with “ES cell” and means a pluripotent cell type derived from an embryo which can differentiate to give rise to all cellular lineages. Examples of cell markers that indicate a human embryonic stem cell include the Oct-4 transcription factor, alkaline phosphatase, SSEA-4, TRA 1-60, and the GCTM-2 epitope. Examples of cell markers that indicate a differentiated neuronal cell including neurofilament proteins, β-tubulin, Map2a+b, synaptophysin, glutamic acid decarboxylase, TuJ1,
SNAP 25, transcription factor Brn-3, andGABA A□2 receptor subunit as described in Reubinoff et al., Nat. Biotech. 18:399-404 (2000); Ghosh and Greenberg, Neuron 15:89-103 (1995); Bain et al., Devel. Biol. 168:342-357 (1995); and Williams et al., Neuron 18:553-562 (1997). - Embryonic stem cells useful in the methods of the invention can be obtained from a variety of sources. Embryonic stem cells can be obtained, for example, from mice, cows, primates and humans by methods well known in the art. As an example, murine embryonic cells can be isolated from a mouse as described in Forrester et al., Proc. Natl. Acad. Sci. USA 88:7514-7517 (1991), or Bain et al., Devel. Biol. 168:342-357 (1995). Briefly, two-stage cell embryos are isolated from fertilized female mice about 45 hours after injection with human chorionic gonadotropin. The two blastomeres are fused by electrical impulse and cultured in M16 medium until the four cell stage is reached. The ES cells are grown on gelatin coated tissue culture flasks in DMEM (Dulbeco's modified Eagle's medium) containing high glucose and 1 mM glutamine (BRL) supplemented with 10% fetal bovine serum, 10% newborn calf serum, nucleosides, 1000 units/ml leukemia inhibitory factor, and 0.1 mM 2-mercaptoethanol.
- Embryonic stem cells also can be isolated from primates as described in Thomson (U.S. Pat. No. 5,843,780). Briefly, blastocysts are removed from fertilized female monkeys 6-8 days after onset of ovulation, treated with pronase (Sigma) to remove the zona pellucida, rabbit anti-rhesus monkey spleen cell antiserum and guinea pig complement (Gibco BRL), and washed in DMEM. The inner cell mass (ICM) is removed from the lysed blastocyst with a pipette and plated on mouse gamma irradiated embryonic fibroblasts. After 7 to 21 days, the ICM derived masses are removed with a micropipette, treated with 0.05% trypsin-EDTA (Gibco BRL) and 1% chicken serum, and replated on embryonic feeder cells. Colonies demonstrating ES morphology, characterized by compact colonies with a high nucleus to cytoplasm ratio and prominent nucleoli, are subcultured. The ES cells are divided, for example, by trypsinization or exposure to Dulbecco's phosphate buffered saline containing 2 mM EDTA every 1-2 weeks when cultures become dense.
- Embryonic stem-like cells also can be isolated from cows as described in Cibelli et al., Nat. Biotech. 16:642-646 (1998). Briefly, oocytes are removed from freshly slaughtered cows and placed in maturation medium M199 (Gibco), 10% fetal calf serum (FCS), 5 ug/ml bovine leutinizing hormone (Nobl) and 10 ug/ml pen-strep (Sigma) for 22 hours at 38.5° C. Oocytes are subsequently fertilized in vitro and cultured on mouse embryonic fibroblast feeder layers and CR2 with 6 mg/ml BSA until they reach the blastocyst stage. ES cells are isolated from the blastocyst by mechanical removal of the zona pellucida and trophoblast with a 22 gauge needle and placed under mouse embryonic fibroblast feeder layers for one week. A small colony of the resulting cell mass is removed and cultured on top of a gamma irradiated mouse embryonic fibroblast feeder layer as cultures become dense.
- Embryonic stem cells also can be isolated from human blastocysts as described in Reubinoff et al., supra, 2000. Briefly, fertilized oocytes are cultured to the blastocyst stage and the zona pellucida digested by pronase (Sigma). The inner cell mass is removed by immunosurgery with anti-human serum antibody (Sigma) and exposure to Guinea pig complement (BRL), and cultured on a mitomycin C mitotically inactivated mouse embryonic feeder cell layer in DMEM (BRL) supplemented with 20% fetal bovine serum (Hyclone), 0.1 mM 2-mercaptoethanol, 1% non essential amino acids, 2 mM glutamine, 50 units/ml penicillin and 50 ug/ml streptomycin (BRL) and 2,000 units/ml recombinant leukemia inhibitory factor. Cell mass clumps are removed with a micropipette and replated on fresh feeder layer every six to eight days.
- Human stem cells can be obtained, for example, from cord blood, which is highly enriched in primitive cells and contains a CD133-positive/CD34-positive population. These cells can be efficiently isolated by methods well known in the art, for example, the Miltinyl MACS system. If desired, the CD133-positive/CD34-positive population can be expanded by culturing in vitro with Flt3L+TPO to produce as much as an 160-fold expansion in long-term culture potential and a 2×106 fold expansion in the number of neuronal precursor cells.
- Human neuronal precursor cells useful in the invention include human embryonic stem cells, human hematopoietic stem cells and other neuronal precursor cells isolated from adult human blood or from cord blood of newborn infants. A neuronal precursor cell population can be enriched, for example, in CD133 (AC133)-positive/CD34-positive or CD133-positive/CD34-negative neuronal precursor cells. Such enriched neuronal precursor cells can be isolated, for example, with magnetic-activated cell sorting, fluorescence-activated cell sorting (FACS), or related methods well known in the art as described further below. It further is understood that in vitro expansion of neuronal precursor cells such as human stem cells can be performed, if desired, in the presence of one or more of the following factors: SCF, IL-3, IL-6, flt3L, LIF, IL-11, TGF-β, TPO, and bFGF, which are commercially available, for example, from Biosource (Camarillo, Calif.), R & D Systems (Minneapolis, Minn.) and Chemicon (Temecula, Calif.). Various protocols for expansion and useful concentrations of particular factors are well known in the art.
- Human neuronal precursor cells can be obtained, for example, from peripheral blood. Donors can be treated with recombinant human G-CSF (rhG-CSF), such as Neupogen (Amgen; Thousand Oaks, Calif.), or recombinant human GM-CSF (rhGM-CSF), such as Leukine (Immunex; Seattle, Wash.), or both. The human neuronal precursor cells can be primitive cells characterized as CD34+, Thy-/dim, CD38−, which can be obtained, if desired, from G-CSF or GM-CSF treated to donors to increase long-term culture potential. Apheresis can be used to collect white blood cells, for example, four to five days following treatment with G-CSF, GM-CSF or a combination of G-CSF and GM-CSF, generally yielding 4×106 CD34-positive cells per kilogram of body weight.
- A Ceprate SC immunoaffinity column commercially available from Cellpro (Bothell, Wash.) can be used to isolate a CD133-positive neuronal precursor cell population. The desired cell population binds the column matrix via a biotin conjugated antibody linked to the column matrix and is released by mechanical shaking. Ceprate SC immunoaffinity can be used to yield about 50% CD34-positive cells with about 16-99% purity. CD133-positive human neuronal precursor cells also can be isolated, for example, using an Isolex 300 magnetic cell separator (Baxter Healthcare Corporation; Deerfield, Ill.), which relies on mouse monoclonal IgG1 antibodies and magnetic beads coated with anti-mouse IgG1 antibody. Release of the precursor cells by peptidase treatment yields about 50% CD34-positive cells with 33-100% purity.
- Additional art-accepted procedures for isolation of human stem and other neuronal precursor cells include the magnetic activated cell sorting system (MACS) commercially available from Miltenyi Biotech (Auburn, Calif.) and fluorescence-activated cell sorting (FACS). In the MACS sorting system, small magnetic beads coated with secondary antibody are bound to the primary antibody-treated cells and retained on a ferromagnetic matrix column by a strong magnet. Cells are released by removal of the magnet to give greater than 50% recovery and greater than 90% purity of the desired cells. Fluorescence-activated cell sorting (FACS) is a well known method whereby cells are selected by attachment of fluorescent-conjugated antibodies to give greater than 90% purity of the recovered stem or other neuronal precursor cells. If desired, isolated stem or other neuronal precursor cells can be assayed for the ability to repopulate bone marrow of a sublethally irradiated nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse using methods well known in the art, as described, for example, in Miyoshi et al., Science 283: 682-686 (1999).
- Human CD34-negative bone marrow cells such as CD133-positive/CD34-negative cells or CD133-positive/CD34-negative/Lin-negative cells can be useful in the methods of the invention. Such cells can be, for example, CD34-negative/Lin-negative cells, which can have characteristics of stromal cells and are capable of repopulating the bone marrow of NOD/SCID mice following sublethal irradiation. Methods of preparing neuronal precursor cell populations enriched for particular markers are well known in the art. As an example, CD133-positive/CD34-positive hematopoietic stem and other neuronal precursor cells can be prepared as set forth in Yin et al., Blood 90:5002-5012 (1997); CD133-positive/CD34-negative/CD45-negative neuronal precursor cells can be prepared as described, for example, in Uchida et al., Proc. Natl. Acad. Sci., USA 97:14720-14725 (2000); and CD34-negative/CD38-negative/Lin-negative human hematopoietic stem cells and CD34-positive/CD38-negative/Lin-negative/Thy-1-negative hematopoietic stem cells can be prepared, for example, as described in Bhatia et al., Nature Medicine 4:1038-1045 (1998).
- In the methods of the invention, neuronal precursor cells such as embryonic stem cells can be contacted with a differentiating agent to induce differentiation of the cells along the neuronal pathway. Methods for differentiating embryonic stem cells by growth of the cells to high density are described in Reubinoff et al., supra, 2000. Methods differentiating expanded CNS cells by initial growth in the presence of a mitogen such as basic fibroblast growth factor (bFGF) followed by removal of bFGF are described in Johe et al., Genes Develop. 10:3129-3140 (1996). Induction of neurogenesis by addition of growth factors can be achieved with platelet derived growth factor (PDGF) such as PDGF-AA, PDGF-AB or PDGF-BB administered in the absence of bFGF as described in Johe et al., supra, 1996. Induction of neuronal differentiation also can be achieved in vitro by removal of fibroblast growth factor-2 and subsequent addition of insulin like growth factor-1, heparin or neurotrophin-3 as described in Brooker et al., J. Nerosci. Res. 59:332-341 (2000) and Ghosh and Greenberg, Neuron 15:89-103 (1995); addition of platelet-derived growth factor as described in Williams et al., Neuron 18:553-562 (1997); addition of insulin-like growth factor-1 alone or in combination with brain derived neurotrophic factor as described in Arsenijevic and Weiss, J. Neurosci. 18:2118-2128 (1998); and exposure to retinoic acid as described in Bain et al., Devel. Biol. 168:342-357 (1995).
- The following examples are intended to illustrate but not limit the present invention.
- This example demonstrates that simultaneous application of EPO and IGF-I at the time of neurotoxic insult effectively reduces apoptosis of mature neurons in rat primary cerebrocortical cultures exposed to NMDA.
- The neuroprotective effects of concurrent EPO and IGF-I administration were compared to individual treatment with EPO or IGF-I in rat primary cerebrocortical cultures. Incubation of the cultures with 200 μM NMDA for 20 minutes induced death only in neurons in the mixed neuronal/glial cultures as reported previously (Bonfoco et al., supra, 1995).
- Neuronal apoptosis was quantified by double labeling for TUNEL reactivity, which in conjunction with condensed morphology is indicative of apoptosis, and the neuron-specific protein microtubule associated protein-2 (MAP2) 16 hours after NMDA insult. As shown in
FIG. 3 , a brief 20 minute exposure to NMDA produced an apoptotic appearance and TUNEL reactivity in 76±7% of MAP2-labeled neurons. Preincubation for three hours with either EPO (10 U/ml) or IGF-I (100 ng/ml) alone significantly attenuated neuronal apoptosis (p<0.05). The EPO and IGF-I doses assayed represent maximally effective concentrations of these factors as previously determined from dose-response curves (Heck et al., Biol. Chem. 274:9828-9835 (1999); and Digicaylioglu and Lipton, Nature 412:641-647 (2001)). Control incubations with IGF-I or EPO in the absence of NMDA exposure did not affect neuronal viability. - As expected, treatment of neurons with EPO or IGF-I individually at the time of NMDA insult did not significantly reduce cell death (see
FIG. 3 ). In contrast, application of EPO together with IGF-I at the time of NMDA exposure was about as effective in preventing apoptosis as a three hour preincubation with both factors either alone or together. In particular, modest, 5-10%, reductions in neuronal apoptosis were seen with either EPO or IGF-I alone, while about 50% neuronal apoptosis was suppressed with combined EPO and IGF-I treatment at the time of NMDA insult. These results demonstrate that signal transduction pathways activated by IGF-I and EPO converge to promote more rapid neuroprotection than either factor mediates in the absence of the other. These results further indicate that IGF-I and EPO synergize to mediate acute neuroprotection. - For these experiments, mixed neuronal/glial cerebrocortical cultures were prepared as described previously (Bonfoco et al., supra, 1995); Lei et al., Neuron 8:1087-1099 (1992); and Lipton et al., Nature 364:626-632 (1993)). In brief, cortical tissue from embryonic day 16 Sprague-Dawley rats was dissociated in 0.5% trypsin and plated on poly-L-lysine coated glass coverslips at a density of 105 cells per 35 mm culture dish in serum-containing medium. Prior to experimental use, cerebrocortical neurons were kept at 37° C. and 5% CO2 for at least 17 days to permit full expression of NMDA receptors (Lei et al., supra, 1992; and Lipton et al., supra, 1993).
- EPO and IGF-I incubations were performed essentially as follows. Human recombinant EPO purchased from Amgen (Epoietin alfa, 2000 IU/ml) was diluted in cell culture medium to a final concentration of 5-10 U/ml. Insulin-like growth factor-I (IGF-I) (Calbiochem; La Jolla, Calif.) was diluted in cell culture medium to a final concentration of 50-100 ng/ml.
- NMDA incubations were performed as follows. Cerebrocortical cultures were exposed to 200 μM NMDA in nominally Mg2+-free Earle's Balanced Salt Solution (EBSS), containing 1.8 mM CaCl2 and 5 μM glycine for 20 minutes. After NMDA exposure, cultures were washed with EBSS and then placed in conditioned tissue culture medium filtered with a 0.2 μM Acrodisk filter (Perkin-Elmer; Wellesley, Mass.) to remove activated microglia. Where indicated, EPO, IGF-I or both EPO and IGF-I were added to the conditioned media.
- Detection of apoptotic neurons was performed essentially as follows. After experimental incubation, cerebrocortical cultures were fixed in PBS (150 mM NaCl, 1.7 mM monobasic sodium phosphate, 9.1 mM dibasic sodium phosphate) with 4% paraformaldehyde, and permeabilized in PBS containing 1% Tween-20. Apoptotic cells were identified by condensed morphology in conjunction with TUNEL using the Apoptosis Detection System (Promega; Madison, Wis.). Cultures were labeled according to the manufacturer's protocol using FITC-labeled 12-dUTP to visualize DNA strand breaks.
- In order to specifically evaluate neuronal apoptosis in cerebrocortical cultures, neurons were double-labeled for TUNEL reactivity and MAP2 16 hours after NMDA insult. MAP-2 staining was performed essentially as described in Budd et al., Proc. Natl. Acad. Sci. USA 97:6161-6166 (2000). Apoptotic neurons were identified using a Zeiss inverted Axiovert microscope equipped with camera and software for deconvolution (Intelligent Imaging Innovations; Denver, Colo.).
- This example demonstrates that the PI3 kinase can play a role in mediating the neuroprotective effects of EPO and IGF-I.
- PI3-kinase is involved in IGF-I and EPO signaling (Mayeux et al., supra, 1993; Kermer et al., supra, 2000; and Damen et al., J. Biol. Chem. 270:23402-23408 (1995)). In order to elucidate the role of PI3-kinase in the neuroprotective effects of EPO and IGF-I, rat cerebrocortical neurons were preincubated for three hours with EPO, IGF-I, or EPO in combination with IGF-I (EPO/IGF-I) in the presence or absence of 10 μM LY294002, a specific PI3-kinase inhibitor. As shown in
FIG. 4 , neuronal apoptosis resulting from NMDA exposure (200 μM NMDA and 5 μM glycine for 20 minutes) decreased in cells preincubated with EPO, IGF-I or EPO/IGF-I. As further shown inFIG. 4 , LY294002 abolished the neuroprotective effect of EPO and IGF-I either alone or in combination (p<0.05) but did not itself cause neuronal apoptosis in cerebrocortical cultures or increase the amount of apoptosis induced by NMDA. These results indicate that PI3-kinase activity is required for EPO- and IGF-I-mediated neuroprotection. - For PI3-kinase inhibition, cultures were prepared and incubated with NMDA alone, or with EPO or IGF-I individually, or EPO in combination with IGF-I, as described above. PI3-kinase activity was inhibited pharmacologically with 10 μM LY294002 (Calbiochem; San Diego, Calif.) dissolved in dimethylsulfoxide (DMSO, Sigma) and added to
cultures 30 minutes prior to the addition of the indicated growth factor or factors. Neuronal apoptosis was assessed 16 hours after NMDA application by determining the percentage of MAP2-positive cells that were also TUNEL positive, as described above. - PI3-kinase is activated by phosphorylation of a p85 regulatory subunit, which leads to release of the catalytic subunit (Pleiman et al., Science 263:1609-1612 (1994)). To determine if EPO or IGF-I induces phosphorylation of the p85 subunit of PI3-kinase, rat cerebrocortical cultures were treated with EPO or IGF-I for 10, 20 or 30 minutes, and protein lysates from these cultures analyzed by immunoblotting for the presence of phospho-p85. As shown in
FIG. 5B (upper and lower panels), both factors induced p85 phosphorylation in a time-dependent manner. However, IGF-I incubation resulted in maximal phosphorylation of p85 subunit of PI3-kinase after 10 minutes, whereas EPO-induced phosphorylation was observed after 20 to 30 minutes. Equal protein loading was confirmed by analyzing the amounts of total p85 with a second antibody. These results indicate that EPO and IGF-I induce phosphorylation of the p85 regulatory subunit of PI3 kinase, with IGF-I activation occurring more rapidly. - In the murine interleukin-3-dependent cell line DA-3, liganded EPO receptor (EPO-R) has been shown to directly associate with PI3-kinase (Damen et al., supra, 1995; He et al., Blood 82:1609-1612 (1993)). To determine if binding of EPO to the EPO receptor promotes a PI3-kinase/EPO-R interaction in primary neurons, EPO-R complex was immunoprecipitated from cerebrocortical culture lysates that were either untreated or treated with EPO for 5 or 10 minutes. Blots of the immunoprecipitated proteins were probed with antibody recognizing the p85 subunit of PI3-kinase (
FIG. 5A , top), and equal protein loading confirmed by probing with anti-EPO-R antibody (FIG. 5A , bottom). As shown in theFIG. 5B , brief incubation with EPO (5-10 minutes) promoted an association between EPO-R and the p85 subunit of PI3-kinase. However, in the absence of EPO, only very low levels of the p85/EPO-R complex were detected. These results demonstrate that ligand binding to neuronal EPO-R promotes the association of PI3-kinase with this receptor and indicate that this association can result in phosphorylation and activation of PI3-kinase (Scheid and Woodgett, Nat. Rev. Mol. Cell. Biol. 2:760-768 (2001)). - Preparation of Total Cell Extracts for Immunoblotting or Immunoprecipitation was performed essentially as follows. Cultures were washed briefly in cold PBS. After addition of ice cold lysis buffer (50 mM Tris-Cl, 150 mM NaCl, 1.1 mM PMSF, 10 μg/ml Aprotinin, 1% Triton X-100, pH 8.0, 2 mM Ortho-Vanadate, 0.1% deoxycholate), cells were scraped off the culture dishes. Lysates were transferred to a microcentrifuge tube, vortexed for 15 seconds at 4° C., and cleared by centrifugation for 20 minutes at 14,000×g at 4° C. Protein concentrations were determined using a BCAProtein assay kit (Pierce; Rockford, Ill.).
- Immunoblotting was performed as follows. Total protein (30 mg) was resolved on a 10% NuPage Bis-Tris SDS gel (Invitrogen; Carlsbad, Calif.) with MOPS electrode buffer under reducing conditions and electroblotted onto a nitrocellulose membrane (Amersham; Piscataway, N.J.) for three hours. Nonspecific binding was blocked by incubation with 5% non-fat dry milk in Tris-buffered saline (pH 7.5) containing 0.1% Tween-20 for one hour at room temperature. After blocking, the blots were incubated overnight at 4° C. with the appropriate primary antibody diluted in blocking buffer. Anti-EPO-R was used at 1:200 dilution (R&D; Minneapolis, Minn.), and anti-p85 was used at 1:400 dilution (Upstate; Waltham, Mass.). After the primary antibody incubations, membranes were washed in Tris buffered saline with 0.1% Tween-20 for 10 minutes with three changes and incubated with the secondary antibody conjugated with horseradish peroxidase (Vector Labs, 1:400) for one hour at room temperature and washed again in Tris buffered saline with 0.1% Tween-20. Blots were developed with an enhanced chemiluminescence kit obtained from Amersham and exposed to X-ray film.
- Immunoprecipitations were performed using precleared whole-cell lysates, which were incubated with 2 μg of anti-EPO-R antibody (Cell Signaling Technologies; Beverly, Mass.) for one hour at room temperature, followed by addition of protein A/G-Sepharose beads (Santa Cruz Biotechnology; Santa Cruz, Calif.). Immunoprecipitates were run on SDS gels as described above and probed with the appropriate antibody. For loading controls, blots were stripped and reprobed with the indicated primary antibody and appropriate secondary antibody.
- This example demonstrates that the Akt kinase can be cooperatively activated by EPO and IGF-I in neuronal cells.
- Akt-kinase is activated downstream of PI3-kinase-mediated production of 3′ phospholipids. In response to production of phosphotidylinositol-3,4,5-trisphosphate, Akt is phosphorylated at two critical sites: serine-473 and threonine-308 (Russell et al., Nuerobiol. 36:455-467 (1998); Scheid and Woodgett, supra, 2001).
- To assess possible activation of the Akt kinase, cerebrocortical cultures were exposed to EPO or IGF-I for three hours and immunoblotted as described above using anti-phospho Akt (anti-pAkt) and anti-Akt antibodies from Cell Signaling Technologies at 1:2000 dilution. A three hour incubation with EPO or IGF-I resulted in moderate Akt activation, as evidenced by increased phospho-serine-473 Akt detected by western blotting (
FIG. 6A ). Co-incubation with EPO and IGF-I resulted in a much larger increase in phospho-serine-473 Akt. Furthermore, a 20-minute exposure to NMDA reduced constitutive levels of Akt phosphorylation but did not inhibit the Akt phosphorylation mediated by EPO in combination with IGF-I. Total Akt, measured by reprobing with an anti-Akt antibody, was unchanged either by the addition of EPO/IGF-I or NMDA. Taken together, these results indicate that phosphorylation of Akt on serine-473 is synergistically induced by the combination of EPO and IGF-I. - As described above, rat cerebrocortical cultures contain a mixture of neuronal and glial cells. Double immunofluorescence labeling with anti-phosphorylated Akt (serine-473) and neuron-specific MAP2 antibodies demonstrated that Akt activation in response to EPO/IGF-I treatment occurred predominantly in neurons. In cerebrocortical cultures treated with EPO in combination with IGF-I and exposed to NMDA, there was an increase in phospho-Akt labeling similar to that observed in cultures treated with EPO/IGF-I alone. These results demonstrate that EPO and IGF-I synergize to produce activated Akt in neuronal cells.
- Double immunofluorescence staining for phosphorylated Akt and the neuron-specific marker MAP2 was performed as follows. Cerebrocortical cells were fixed in ice-cold PBS containing 4% paraformaldehyde for 10 minutes at 4° C., rinsed 3 times in PBS, and permeabilized in PBS containing 1% Tween-20 for 10 minutes at room temperature. Phosphorylated Akt was detected by incubation with specific polyclonal antibodies (Cell Signaling Technologies) diluted 1:1000, followed by detection with FITC-conjugated secondary antibody at 1:125 dilution (Sigma; St. Louis, Mo.). Neurons were identified by using a primary antibody against MAP2 (Sigma) and a secondary antibody conjugated to Texas-Red (Vector Labs; Irvine, Calif.).
- This example demonstrates that inhibition of Akt activity with a dominant negative form of Akt reduces the neuroprotective effects of EPO and IGF-I.
- The role of Akt in the EPO/IGF-I signaling pathway was analyzed using a dominant negative Akt construct (dn-Akt) in which a critical phosphorylation site has been mutated (Fujio and Walsh, J. Biol. Chem. 274:16349-16354 (1999)). Cerebrocortical cultures were infected with an adenoviral vector encoding dn-Akt (Fujio and Walsh, supra, 1999) and assayed for the effects of NMDA alone or in cultures also treated with EPO in combination with IGF-I. Parallel cerebrocortical cultures were infected with an adenoviral vector encoding wild-type Akt (wt-Akt) as a control. As shown in
FIG. 7 , infection for 36 hours with either dominant negative or wild type Akt had no significant effect on neuronal viability. Overexpression of wt-Akt also had no significant effect on NMDA-induced apoptosis or EPO/IGF-I-mediated neuroprotection of cultures exposed to NMDA. Furthermore, overexpression of dn-Akt did not affect neuronal apoptosis consequent to NMDA exposure. However, cerebrocortical cultures expressing dn-Akt and incubated with EPO/IGF-I displayed significantly higher levels of NMDA-induced neuronal apoptosis in comparison with uninfected cultures or cultures infected with wt-Akt (p<0.01). Overexpression of wt-Akt abrogated the pro-apoptotic effects of dn-Akt expression when co-infected in a molar excess ratio of 2:1 (wt-Akt:dn-Akt), indicating that the increased neuronal apoptosis seen in dn-Akt infected cells resulted from specific expression of dn-Akt rather than a non-specific effect of protein overexpression. In sum, these results indicate that Akt phosphorylation and activation play a role in the neuroprotection mediated by the combination of EPO and IGF-I. - Cultures were prepared and treated with NMDA, EPO, IGF-I, or EPO in combination with IGF-I, where indicated, as described above, and the percentage of apoptotic neurons was determined by TUNEL in combination with morphology and MAP2-reactivity as described above. An adenoviral vector expressing hemagglutinin (HA)-tagged, nonphosphorylatable, dominant-negative mutant of Akt (Fujio and Walsh, supra, 1999) was obtained from Dr. K. Walsh. Infections were performed with a multiplicity of infection (MOI) of 10 and using HA-tagged wild type Akt as a control. After a four hour exposure to the adenovirus, primary neurons were incubated in filtered preconditioned medium for 24-36 hours before being used in experiments. Expression of the viral Akt constructs was confirmed by immunofluorescence labeling with monoclonal anti-HA antibody (1:100, Roche; Basel, Switzerland).
- This example demonstrates that treatment with EPO in combination with IGF-I prevents NMDA-induced neurotoxicity in the presence of the active form of caspase-3, indicating that EPO/IGF-I-mediated neuroprotection occurs downstream of caspase-3.
- In cerebrocortical cultures briefly exposed to an excitotoxic dose of NMDA, mitochondrial cytochrome c is released, followed by activation of the intrinsic caspase pathway (Budd et al., Proc. Natl. Acad. Sci. USA 97:6161-6166 (2000); Yuan and Yankner, Nature 407:802-809 (2000)). Constitutively active Akt prevents activation of caspase-9 and caspase-3 downstream of cytochrome c release (Zhou et al., supra, 2000), indicating that Akt is an important factor that regulates the intrinsic caspase cascade (see, also, Kermer et al., supra, 2000).
- The effect of EPO/IGF-I incubation on caspase activation was analyzed in cerebrocortical cells following NMDA insult. Cerebrocortical cultures were exposed to NMDA with or without co-administration of EPO in combination with IGF-I, and the cultures fixed 6, 12, 16, or 48 hours following NMDA exposure. Caspase-3 activation was assessed by immunodetection using an antibody recognizing only the active form of caspase-3. The results showed that many MAP2 labeled neurons expressed the active form of caspase-3 in their condensed nuclei as early as 16 hours after NMDA exposure, and EPO/IGF-I treatment did not prevent initial activation of caspase-3 by NMDA. However, EPO-IGF-I treated neurons showed reduced immunoreactivity for active caspase-3 and did not lose MAP2 labeling in their processes. Prolonged survival of the neurons following treatment indicates that neuroprotection mediated by the combination of EPO and IGF-I occurs, at least in part, downstream of initial caspase-3 activation, which is typically associated with neuronal apoptosis within 16 hours of NMDA insult (Tenneti et al., supra, 1998, Budd et al., supra, 2000).
- For these experiments, neuron-rich cerebrocortical cultures were continuously exposed to EPO and IGF-I (10 U/ml and 100 ng/ml, respectively) from the time of NMDA exposure (200 μM for 20 minutes) until they were fixed. Immunofluorescence assays were performed as described above, with neurons expressing active caspase-3 identified by double labeling with monoclonal anti-MAP2 and a polyclonal antibody specific for the cleaved form of caspase-3 (Cell Signaling Technologies) using a 1:100 dilution.
- In order to determine if prolonged neuroprotective effects are mediated by combined EPO and IGF-I treatment, the number of surviving cerebrocortical neurons was determined at various intervals after exposure to NMDA. The total number of viable MAP2 positive cells was assayed to avoid the effects of secondary necrosis seen at longer survival times (Bonfoco et al., supra, 1995). As shown in
FIG. 8A , NMDA exposure alone resulted in a dramatic decrease in the number of surviving neurons. Combined application of EPO and IGF-I prevented neuronal cell death at 6, 12, 16 and 48 hours after NMDA exposure. These results demonstrate that EPO/IGF-I supports long-term neuronal survival after NMDA exposure to a greater extent than observed with either factor alone. - Primary cultures were prepared and incubated with NMDA with or without EPO/IGF-I as described above. Neuronal survival was assayed as the total number of MAP2 positive cells to avoid the confounding effects of secondary necrosis, which can occur at later time points and obfuscate the number of apoptotic cells (Bonfoco et al., supra, 1995).
- In mixed cerebrocortical cultures, EPO is known to induce expression of XIAP and c-IAP, two related factors capable of inhibiting caspase-3 proteolytic activity (Digicaylioglu and Lipton, supra, 2001; and Holcik and Korneluk, Nat. Rev. Mol. Cell. Biol. 2:550-556 (2001)). Here, cerebrocortical cultures were analyzed for the effect of combined EPO and IGF-I treatment on association of XIAP and active caspase-3. Cultures were incubated with EPO, IGF-I and NMDA and, after immunoprecipitation of the active form of caspase-3, immunoprecipitates were probed for the presence of XIAP using western blotting. As shown in
FIG. 8B , active caspase-3 was associated with XIAP in cultured neurons, and treatment with EPO and IGF-I increased the relative amount of XIAP associated with active caspase-3. In particular, in cultures treated with EPO and IGF-I for 16 hours, densitometric analysis revealed a 2.5 to 3-fold increase in the amount of XIAP bound to active caspase-3 (seeFIG. 8C ), although NMDA exposure alone also produced a modest increase in the amount of XIAP associated with active caspase-3. The presence of an active caspase-3/XIAP complex in neurons indicates that, following activation of caspase-3 by proteolytic cleavage, the active form can be negatively regulated by association with XIAP. - To study the effect of combined EPO/IGF-I treatment on proteolytic activity of caspase-3, protein lysates were prepared from cerebrocortical cultures 16 hours after NMDA exposure, and caspase-3 activity was assayed using the fluorescent caspase-3 substrate, DEVD-7-amino-4-trifluoromethyl-coumarin (DEVD-AFC).
FIG. 8D shows that, despite the presence of basal levels of XIAP in the lysates, NMDA exposure resulted in increased DEVD cleavage. Simultaneous application or 3 hour preincubation with EPO in combination with IGF-I diminished the NMDA-induced increase in caspase-3-like activity by increased XIAP expression. Furthermore, the reduction in caspase-3 activity was partially inhibited by infection with dn-Akt in cultures preincubated with EPO and IGF-I (FIG. 8D ). These results indicate that Akt can play a role in regulating the proteolytic activity of neuronal caspase-3. - To perform these experiments, cerebrocortical cultures were exposed to NMDA, or EPO and IGF-I, or concurrently exposed to NMDA and EPO/IGF-I as described above. Immunoprecipitation of culture lysates was performed using precleared whole-cell lysates, incubated with a 1:100 dilution of antibody specifically recognizing the cleaved form of caspase-3 (Cell Signaling Technologies) for one hour at room temperature, followed by addition of protein A/G-Sepharose beads and immunoprecipitation as described above. The immunoprecipitates were separated by electrophoresis and transferred to a nitrocellulose membrane, which was blotted with a 1:200 dilution of anti-XIAP antibody (Trevigen; Gaithersburg, Md.).
- Caspase-3 (DEVD) cleavage assays were performed as described previously. Briefly, cerebrocortical cultures were lysed in cold buffer containing 10% sucrose, 0.1% CHAPS, 100 mM HEPES (pH 7.5), and 10 mM dithiothreitol (DTT). Cytoplasmic protein extracts (200 μg) were incubated for 30 minutes at 37° C. with 80 μM caspase-3 peptide substrate DEVD-AFC (Enzyme Systems Products; Livermore, Calif.). Free fluorescent AFC released by caspase-3 activity was measured on a FluoroMax2 fluorometer at 400 nm excitation and 505 nm emission.
- To determine if the prolonged survival afforded by combined EPO and IGF-I treatment was mediated by non-neuronal cells in the mixed cerebrocortical cultures, primary cultures were grown under conditions that inhibit growth of non-neuronal cells. As shown in
FIG. 8E , the relatively pure neuronal cultures also were protected from NMDA-induced apoptosis by the combination of EPO and IGF-I treatment. These results indicate that non-neuronal cells are not required for the neuroprotective benefits of combined treatment with EPO and IGF-I. Taken together, these results demonstrate that combined EPO and IGF-I treatment promotes neuronal survival downstream of caspase-3 activation by a signal transduction pathway intrinsic to neurons. - Relatively pure neuronal cultures were prepared from rat cortices in a similar manner as preparation of mixed neuronal/glial cultures but with the following modifications. Culture medium was replaced on the second day after plating with Neurobasal medium containing B27 supplements (Life Technologies; Carlsbad, Calif.). The cultures were then maintained for an additional 15 to 16 days; the cultures were composed of greater than 95% neurons (Johnson et al., J. Neurosci. 19:2996-3006 (1999)).
- All journal article, reference and patent citations provided above, in parentheses or otherwise, whether previously stated or not, are incorporated herein by reference in their entirety.
- Although the invention has been described with reference to the examples provided above, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the claims.
Claims (88)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/252,093 US20090093409A1 (en) | 2002-06-11 | 2008-10-15 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38805802P | 2002-06-11 | 2002-06-11 | |
US45814503P | 2003-03-26 | 2003-03-26 | |
US10/460,550 US7439063B2 (en) | 2002-06-11 | 2003-06-11 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
US12/252,093 US20090093409A1 (en) | 2002-06-11 | 2008-10-15 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/460,550 Division US7439063B2 (en) | 2002-06-11 | 2003-06-11 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090093409A1 true US20090093409A1 (en) | 2009-04-09 |
Family
ID=29739984
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/460,550 Expired - Fee Related US7439063B2 (en) | 2002-06-11 | 2003-06-11 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
US12/252,093 Abandoned US20090093409A1 (en) | 2002-06-11 | 2008-10-15 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/460,550 Expired - Fee Related US7439063B2 (en) | 2002-06-11 | 2003-06-11 | Neuroprotective synergy of erythropoietin and insulin-like growth factors |
Country Status (6)
Country | Link |
---|---|
US (2) | US7439063B2 (en) |
EP (1) | EP1535065A4 (en) |
JP (1) | JP2005534650A (en) |
AU (1) | AU2003273615B2 (en) |
CA (1) | CA2488497A1 (en) |
WO (1) | WO2003103608A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090297527A1 (en) * | 2005-09-30 | 2009-12-03 | Muller Bernhard K | Binding Domains of Proteins of the Repulsive Guidance Molecule (RGM) Protein Family and Functional Fragments Thereof, and Their Use |
US20100028340A1 (en) * | 2008-02-29 | 2010-02-04 | Abbott Gmbh & Co. Kg | Antibodies against the rgm a protein and uses thereof |
US20100322948A1 (en) * | 2007-09-06 | 2010-12-23 | Abbott Gmbh & Co. Kg | Bone morphogenetic protein (BMP)-binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and use of same |
US20110112280A1 (en) * | 2000-12-22 | 2011-05-12 | Mueller Bernhard K | Use of rgm and its modulators |
US20110135664A1 (en) * | 2009-12-08 | 2011-06-09 | Abbott Gmbh & Co. Kg | Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration |
RU2446834C2 (en) * | 2010-06-15 | 2012-04-10 | Елена Александровна Лебедева | Method of treating patients with combined craniocerebral injury |
WO2013016223A3 (en) * | 2011-07-22 | 2013-04-04 | The University Of Chicago | Treatments for migraine and related disorders |
US9102722B2 (en) | 2012-01-27 | 2015-08-11 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of diseases associated with neurite degeneration |
RU2721282C2 (en) * | 2017-11-21 | 2020-05-18 | Илья Владимирович Духовлинов | Method for treating multiple sclerosis (versions) |
US12324827B2 (en) | 2019-09-09 | 2025-06-10 | The University Of Chicago | Combination therapy for the treatment of migraines |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9453251B2 (en) | 2002-10-08 | 2016-09-27 | Pfenex Inc. | Expression of mammalian proteins in Pseudomonas fluorescens |
US7459152B2 (en) * | 2003-04-23 | 2008-12-02 | Rush University Medical Center | Erythropoietin administration to improve graft survival |
DE102004063927A1 (en) * | 2004-01-23 | 2005-12-15 | Epoplus Gmbh Co.Kg | Use of low dose erythropoietin to stimulate endothelial progenitor cells as well as organ regeneration and progression slowing of end organ damage |
BRPI0513826A2 (en) | 2004-07-26 | 2010-06-22 | Dow Global Technologies Inc | process for improved protein expression through strain engineering |
US20060229354A1 (en) * | 2005-04-07 | 2006-10-12 | Honghao Yang | Use of Isatin in stimulating red blood cell production and treatment of anemia |
US20070072795A1 (en) * | 2005-09-28 | 2007-03-29 | Anton Haselbeck | Treatment of neurodegenerative disorders |
CA2650140A1 (en) * | 2006-04-14 | 2007-10-25 | Mriganka Sur | Identifying and modulating molecular pathways that mediate nervous system plasticity |
CN101062407A (en) * | 2006-04-29 | 2007-10-31 | 中国科学院上海生命科学研究院 | Function of erythropoietin in the preventing and treating of retinal injury |
ES2331342B1 (en) * | 2006-05-22 | 2010-10-13 | Consejo Superior Investg.Cientificas | USE OF PROINSULIN FOR THE PREPARATION OF A NEUROPROTECTING PHARMACEUTICAL COMPOSITION, THERAPEUTIC COMPOSITION CONTAINING IT AND ITS APPLICATIONS. |
US8042475B2 (en) * | 2007-03-05 | 2011-10-25 | Lifetime Products, Inc | Table |
US9580719B2 (en) | 2007-04-27 | 2017-02-28 | Pfenex, Inc. | Method for rapidly screening microbial hosts to identify certain strains with improved yield and/or quality in the expression of heterologous proteins |
CN101688213A (en) | 2007-04-27 | 2010-03-31 | 陶氏环球技术公司 | Be used for rapidly screening microbial hosts to identify some method at the bacterial strain of output that has improvement aspect the expressing heterologous protein and/or quality |
AU2008261212A1 (en) * | 2007-06-15 | 2008-12-18 | University Of Zurich | Treatment for Alzheimer' s disease |
HUP0800414A2 (en) * | 2008-07-04 | 2010-10-28 | Pecsi Tudomanyegyetem | Pharmaceutical combination |
WO2010064248A2 (en) * | 2008-12-05 | 2010-06-10 | Yeda Research And Development Co. Ltd. | Methods of diagnosing and treating motor neuron diseases |
JP2014502953A (en) * | 2010-08-16 | 2014-02-06 | ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | Intranasal delivery of cell permeable therapeutics |
WO2014151752A1 (en) | 2013-03-15 | 2014-09-25 | University Of Rochester | Composition and methods for the treatment of peripheral nerve injury |
RU2745300C2 (en) | 2014-06-27 | 2021-03-23 | Анджиокрин Биосайенс, Инк. | Nervous system cells expressing e4orf1 of adenovirus, and methods for their production and application |
KR20210052443A (en) * | 2018-07-17 | 2021-05-10 | 뉴로마이언 주식회사 | Treatment of neuropathy using DNA construct expressing IGF-1 isoform |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745179A (en) * | 1984-04-02 | 1988-05-17 | Fujisawa Pharmaceutical Co., Ltd. | 59 Valine insulin-like growth factor I and process for production thereof |
US4876242A (en) * | 1987-09-21 | 1989-10-24 | Merck & Co., Inc. | Human insulin-like growth factor analoges with reduced binding to serum carrier proteins and their production in yeast |
US5164370A (en) * | 1987-12-24 | 1992-11-17 | Gropep Pty. Ltd. | Peptide analogues of insulin-like growth factor 1 (igf-1) or factor 2 (igf-2) |
US5470828A (en) * | 1987-12-24 | 1995-11-28 | Gropep Pty. Ltd. | Peptide analogs of insulin-like growth factor II |
US5578324A (en) * | 1993-07-30 | 1996-11-26 | Teijin Limited | Peptide proteinaceous drug nasal powder composition |
US5622932A (en) * | 1995-05-05 | 1997-04-22 | Eli Lilly And Company | IGF-1 superagonists |
US5624898A (en) * | 1989-12-05 | 1997-04-29 | Ramsey Foundation | Method for administering neurologic agents to the brain |
US5652214A (en) * | 1989-06-05 | 1997-07-29 | Cephalon, Inc. | Treating disorders by application of insulin-like growth factors and analogs |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
US5767078A (en) * | 1995-06-07 | 1998-06-16 | Johnson; Dana L. | Agonist peptide dimers |
US5837675A (en) * | 1995-02-03 | 1998-11-17 | Brox; Alan G. | Synergistic effect of insulin-like growth factor-I and erythropoietin |
US5885962A (en) * | 1996-04-05 | 1999-03-23 | Amgen Inc. | Stem cell factor analog compositions and method |
US6153407A (en) * | 1992-07-28 | 2000-11-28 | Beth Israel Deaconess Medical Center | Erythropoietin DNA having modified 5' and 3' sequences and its use to prepare EPO therapeutics |
US6165783A (en) * | 1997-10-24 | 2000-12-26 | Neuro Spheres Holdings Ltd. | Erythropoietin-mediated neurogenesis |
US6201072B1 (en) * | 1997-10-03 | 2001-03-13 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
US6251865B1 (en) * | 1997-04-04 | 2001-06-26 | Genentech, Inc. | Insulin-like growth factor agonist molecules |
US6407061B1 (en) * | 1989-12-05 | 2002-06-18 | Chiron Corporation | Method for administering insulin-like growth factor to the brain |
US6464959B1 (en) * | 2000-05-01 | 2002-10-15 | Aeropharm Technology Incorporated | Non-aqueous aerosol suspension comprising troglitazone, a fluid propellant, and an amino acid stabilizer |
US6531121B2 (en) * | 2000-12-29 | 2003-03-11 | The Kenneth S. Warren Institute, Inc. | Protection and enhancement of erythropoietin-responsive cells, tissues and organs |
US6908902B2 (en) * | 2001-02-02 | 2005-06-21 | Ortho-Mcneil Pharmaceutical, Inc. | Treatment of neurological dysfunction comprising fructopyranose sulfamates and erythropoietin |
US7041794B2 (en) * | 2001-04-04 | 2006-05-09 | Genodyssee | Polynucleotides and polypeptides of the erythropoietin gene |
US7309687B1 (en) * | 1999-04-13 | 2007-12-18 | The Kenneth S. Warren Institute, Inc. | Methods for treatment and prevention of neuromuscular and muscular conditions by peripherally administered erythropoietin |
US7514072B1 (en) * | 1998-12-14 | 2009-04-07 | Hannelore Ehrenreich | Method for the treatment of cerebral ischaemia and use of erythropoietin or erythropoietin derivatives for the treatment of cerebral ischaemia |
-
2003
- 2003-06-11 AU AU2003273615A patent/AU2003273615B2/en not_active Ceased
- 2003-06-11 JP JP2004510729A patent/JP2005534650A/en active Pending
- 2003-06-11 CA CA002488497A patent/CA2488497A1/en not_active Abandoned
- 2003-06-11 US US10/460,550 patent/US7439063B2/en not_active Expired - Fee Related
- 2003-06-11 WO PCT/US2003/018645 patent/WO2003103608A2/en active Application Filing
- 2003-06-11 EP EP03741961A patent/EP1535065A4/en not_active Withdrawn
-
2008
- 2008-10-15 US US12/252,093 patent/US20090093409A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745179A (en) * | 1984-04-02 | 1988-05-17 | Fujisawa Pharmaceutical Co., Ltd. | 59 Valine insulin-like growth factor I and process for production thereof |
US4876242A (en) * | 1987-09-21 | 1989-10-24 | Merck & Co., Inc. | Human insulin-like growth factor analoges with reduced binding to serum carrier proteins and their production in yeast |
US5164370A (en) * | 1987-12-24 | 1992-11-17 | Gropep Pty. Ltd. | Peptide analogues of insulin-like growth factor 1 (igf-1) or factor 2 (igf-2) |
US5470828A (en) * | 1987-12-24 | 1995-11-28 | Gropep Pty. Ltd. | Peptide analogs of insulin-like growth factor II |
US5652214A (en) * | 1989-06-05 | 1997-07-29 | Cephalon, Inc. | Treating disorders by application of insulin-like growth factors and analogs |
US6180603B1 (en) * | 1989-12-05 | 2001-01-30 | Chiron Corporation | Method for administering neurologic agents to the brain |
US6313093B1 (en) * | 1989-12-05 | 2001-11-06 | Chiron Corporation | Method for administering insulin to the brain |
US6407061B1 (en) * | 1989-12-05 | 2002-06-18 | Chiron Corporation | Method for administering insulin-like growth factor to the brain |
US6342478B1 (en) * | 1989-12-05 | 2002-01-29 | Chiron Corporation | Method for administering fibroblast growth factor to the brain |
US5624898A (en) * | 1989-12-05 | 1997-04-29 | Ramsey Foundation | Method for administering neurologic agents to the brain |
US5750376A (en) * | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
US6153407A (en) * | 1992-07-28 | 2000-11-28 | Beth Israel Deaconess Medical Center | Erythropoietin DNA having modified 5' and 3' sequences and its use to prepare EPO therapeutics |
US5578324A (en) * | 1993-07-30 | 1996-11-26 | Teijin Limited | Peptide proteinaceous drug nasal powder composition |
US5837675A (en) * | 1995-02-03 | 1998-11-17 | Brox; Alan G. | Synergistic effect of insulin-like growth factor-I and erythropoietin |
US5622932A (en) * | 1995-05-05 | 1997-04-22 | Eli Lilly And Company | IGF-1 superagonists |
US5767078A (en) * | 1995-06-07 | 1998-06-16 | Johnson; Dana L. | Agonist peptide dimers |
US5885962A (en) * | 1996-04-05 | 1999-03-23 | Amgen Inc. | Stem cell factor analog compositions and method |
US6251865B1 (en) * | 1997-04-04 | 2001-06-26 | Genentech, Inc. | Insulin-like growth factor agonist molecules |
US6645775B1 (en) * | 1997-04-04 | 2003-11-11 | Genentech, Inc. | Insulin-like growth factor agonist molecules |
US6201072B1 (en) * | 1997-10-03 | 2001-03-13 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
US6165783A (en) * | 1997-10-24 | 2000-12-26 | Neuro Spheres Holdings Ltd. | Erythropoietin-mediated neurogenesis |
US7514072B1 (en) * | 1998-12-14 | 2009-04-07 | Hannelore Ehrenreich | Method for the treatment of cerebral ischaemia and use of erythropoietin or erythropoietin derivatives for the treatment of cerebral ischaemia |
US7309687B1 (en) * | 1999-04-13 | 2007-12-18 | The Kenneth S. Warren Institute, Inc. | Methods for treatment and prevention of neuromuscular and muscular conditions by peripherally administered erythropoietin |
US7410941B1 (en) * | 1999-04-13 | 2008-08-12 | The Kenneth S. Warren Institute, Inc. | Methods for treatment of neurodegenerative conditions by peripherally administered erythropoietin |
US6464959B1 (en) * | 2000-05-01 | 2002-10-15 | Aeropharm Technology Incorporated | Non-aqueous aerosol suspension comprising troglitazone, a fluid propellant, and an amino acid stabilizer |
US6531121B2 (en) * | 2000-12-29 | 2003-03-11 | The Kenneth S. Warren Institute, Inc. | Protection and enhancement of erythropoietin-responsive cells, tissues and organs |
US6908902B2 (en) * | 2001-02-02 | 2005-06-21 | Ortho-Mcneil Pharmaceutical, Inc. | Treatment of neurological dysfunction comprising fructopyranose sulfamates and erythropoietin |
US7041794B2 (en) * | 2001-04-04 | 2006-05-09 | Genodyssee | Polynucleotides and polypeptides of the erythropoietin gene |
Non-Patent Citations (2)
Title |
---|
Fletcher et al. Intranasal delivery of erythropoietin plus insulin-like growth Factor-1 for acute neuroprotection in stroke. J Neurosurg 111:164-170 (2009). * |
Imai et al. Physicochemical and biological characterization of asialoerythropoietin. Suppressive effects of sialic acid in the expression of biological activity of human erythropoietin in vitro. European Journal of Biochemistry 194:457-462 (1990). * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110112280A1 (en) * | 2000-12-22 | 2011-05-12 | Mueller Bernhard K | Use of rgm and its modulators |
US7981420B2 (en) | 2000-12-22 | 2011-07-19 | Max-Planck-Gesellschaft Zur Foederung Der Wissenschaften E.V. | Therapeutic use of antibodies directed against repulsive guidance molecule (RGM) |
US8680239B2 (en) | 2000-12-22 | 2014-03-25 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Use of RGM and its modulators |
US20090297527A1 (en) * | 2005-09-30 | 2009-12-03 | Muller Bernhard K | Binding Domains of Proteins of the Repulsive Guidance Molecule (RGM) Protein Family and Functional Fragments Thereof, and Their Use |
US8906864B2 (en) | 2005-09-30 | 2014-12-09 | AbbVie Deutschland GmbH & Co. KG | Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use |
US20100322948A1 (en) * | 2007-09-06 | 2010-12-23 | Abbott Gmbh & Co. Kg | Bone morphogenetic protein (BMP)-binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and use of same |
US20100028340A1 (en) * | 2008-02-29 | 2010-02-04 | Abbott Gmbh & Co. Kg | Antibodies against the rgm a protein and uses thereof |
US9605069B2 (en) | 2008-02-29 | 2017-03-28 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM a protein and uses thereof |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
US9175075B2 (en) | 2009-12-08 | 2015-11-03 | AbbVie Deutschland GmbH & Co. KG | Methods of treating retinal nerve fiber layer degeneration with monoclonal antibodies against a retinal guidance molecule (RGM) protein |
US20110135664A1 (en) * | 2009-12-08 | 2011-06-09 | Abbott Gmbh & Co. Kg | Monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration |
RU2446834C2 (en) * | 2010-06-15 | 2012-04-10 | Елена Александровна Лебедева | Method of treating patients with combined craniocerebral injury |
US9399053B2 (en) | 2011-07-22 | 2016-07-26 | The University Of Chicago | Treatments for migraine and related disorders |
AU2012287120B2 (en) * | 2011-07-22 | 2017-02-23 | The University Of Chicago | Treatments for migraine and related disorders |
WO2013016223A3 (en) * | 2011-07-22 | 2013-04-04 | The University Of Chicago | Treatments for migraine and related disorders |
US9827294B2 (en) | 2011-07-22 | 2017-11-28 | The University Of Chicago | Treatments for migraine and related disorders |
AU2017203461B2 (en) * | 2011-07-22 | 2018-09-06 | The University Of Chicago | Treatments for migraine and related disorders |
US10391150B2 (en) | 2011-07-22 | 2019-08-27 | The Universit of Chicago | Treatments for migraine and related disorders |
EP3628325A1 (en) * | 2011-07-22 | 2020-04-01 | The University of Chicago | Treatments for migraine and related disorders |
US9102722B2 (en) | 2012-01-27 | 2015-08-11 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of diseases associated with neurite degeneration |
US9365643B2 (en) | 2012-01-27 | 2016-06-14 | AbbVie Deutschland GmbH & Co. KG | Antibodies that bind to repulsive guidance molecule A (RGMA) |
US10106602B2 (en) | 2012-01-27 | 2018-10-23 | AbbVie Deutschland GmbH & Co. KG | Isolated monoclonal anti-repulsive guidance molecule A antibodies and uses thereof |
RU2721282C2 (en) * | 2017-11-21 | 2020-05-18 | Илья Владимирович Духовлинов | Method for treating multiple sclerosis (versions) |
US12324827B2 (en) | 2019-09-09 | 2025-06-10 | The University Of Chicago | Combination therapy for the treatment of migraines |
Also Published As
Publication number | Publication date |
---|---|
EP1535065A2 (en) | 2005-06-01 |
US20040092444A1 (en) | 2004-05-13 |
US7439063B2 (en) | 2008-10-21 |
EP1535065A4 (en) | 2007-07-11 |
CA2488497A1 (en) | 2003-12-18 |
AU2003273615B2 (en) | 2010-07-29 |
US20050197284A9 (en) | 2005-09-08 |
JP2005534650A (en) | 2005-11-17 |
AU2003273615A1 (en) | 2003-12-22 |
WO2003103608A3 (en) | 2004-07-01 |
WO2003103608A2 (en) | 2003-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7439063B2 (en) | Neuroprotective synergy of erythropoietin and insulin-like growth factors | |
US8039253B2 (en) | Pharmaceutical for prevention and treatment of demyelinating disease | |
US8617889B2 (en) | Methods and compositions for the repair and/or regeneration of damaged myocardium using cytokines and variants thereof | |
Valerio et al. | Soluble interleukin-6 (IL-6) receptor/IL-6 fusion protein enhances in vitro differentiation of purified rat oligodendroglial lineage cells | |
US20110212070A1 (en) | Methods of differentiating and protecting cells by modulating the p38/mef2 pathway | |
EP3209306B1 (en) | Stable neural stem cells comprising an exogenous polynucleotide coding for a growth factor and methods of use thereof | |
US8986676B2 (en) | MNTF differentiation and growth of stem cells | |
Weiss et al. | Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo | |
EP0535148A4 (en) | ||
US20240309328A1 (en) | Use of Fibroblast Growth Factor-8 For Tissue Regeneration | |
US20140296153A1 (en) | Oligodendrocyte Differentiation | |
Wang et al. | Erythropoietin promotes spinal cord-derived neural progenitor cell proliferation by regulating cell cycle | |
US8999928B2 (en) | Methods for treating diseases using a bone morphogenetic protein | |
US7427597B2 (en) | Method of treating brain tissue damages | |
Lichtenwalner | Regulation of neurogenesis in the adult rat hippocampus by insulin-like growth factor-I |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANFORD-BURNHAM MEDICAL RESEARCH INSTITUTE, CALIFO Free format text: CHANGE OF NAME;ASSIGNOR:BURNHAM INSTITUTE FOR MEDICAL RESEARCH;REEL/FRAME:025859/0801 Effective date: 20100208 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SANFORD BURNHAM PREBYS MEDICAL DISCOVERY INSTITUTE;REEL/FRAME:060575/0335 Effective date: 20220720 |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:SANFORD BURNHAM PREBYS MEDICAL DISCOVERY INSTITUTE;REEL/FRAME:060600/0280 Effective date: 20220720 |