US20090087262A1 - Method and system for repairing potholes in roads - Google Patents
Method and system for repairing potholes in roads Download PDFInfo
- Publication number
- US20090087262A1 US20090087262A1 US12/238,157 US23815708A US2009087262A1 US 20090087262 A1 US20090087262 A1 US 20090087262A1 US 23815708 A US23815708 A US 23815708A US 2009087262 A1 US2009087262 A1 US 2009087262A1
- Authority
- US
- United States
- Prior art keywords
- foam
- blowing agent
- pothole
- hfc
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011495 polyisocyanurate Substances 0.000 claims abstract description 25
- 229920000582 polyisocyanurate Polymers 0.000 claims abstract description 25
- 239000006261 foam material Substances 0.000 claims abstract description 17
- 239000012779 reinforcing material Substances 0.000 claims abstract description 13
- 239000006260 foam Substances 0.000 claims description 59
- 239000004604 Blowing Agent Substances 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 54
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 22
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 claims description 20
- 239000000654 additive Substances 0.000 claims description 17
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 16
- 239000011496 polyurethane foam Substances 0.000 claims description 16
- 230000000996 additive effect Effects 0.000 claims description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 14
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 14
- 230000008439 repair process Effects 0.000 claims description 11
- -1 rope Substances 0.000 claims description 11
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 claims description 10
- WXGNWUVNYMJENI-UHFFFAOYSA-N 1,1,2,2-tetrafluoroethane Chemical compound FC(F)C(F)F WXGNWUVNYMJENI-UHFFFAOYSA-N 0.000 claims description 9
- 238000009472 formulation Methods 0.000 claims description 9
- YFMFNYKEUDLDTL-UHFFFAOYSA-N 1,1,1,2,3,3,3-heptafluoropropane Chemical compound FC(F)(F)C(F)C(F)(F)F YFMFNYKEUDLDTL-UHFFFAOYSA-N 0.000 claims description 8
- WZLFPVPRZGTCKP-UHFFFAOYSA-N 1,1,1,3,3-pentafluorobutane Chemical compound CC(F)(F)CC(F)(F)F WZLFPVPRZGTCKP-UHFFFAOYSA-N 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 239000010426 asphalt Substances 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000003973 paint Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 2
- 229920002994 synthetic fiber Polymers 0.000 claims description 2
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 abstract description 22
- 239000004814 polyurethane Substances 0.000 abstract description 22
- 150000003077 polyols Chemical class 0.000 description 28
- 229920005862 polyol Polymers 0.000 description 27
- 239000003054 catalyst Substances 0.000 description 10
- 229920001228 polyisocyanate Polymers 0.000 description 7
- 239000005056 polyisocyanate Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical class OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000005829 trimerization reaction Methods 0.000 description 3
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 2
- UJPMYEOUBPIPHQ-UHFFFAOYSA-N 1,1,1-trifluoroethane Chemical compound CC(F)(F)F UJPMYEOUBPIPHQ-UHFFFAOYSA-N 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- UKACHOXRXFQJFN-UHFFFAOYSA-N heptafluoropropane Chemical compound FC(F)C(F)(F)C(F)(F)F UKACHOXRXFQJFN-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 239000013518 molded foam Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- NVSXSBBVEDNGPY-UHFFFAOYSA-N 1,1,1,2,2-pentafluorobutane Chemical compound CCC(F)(F)C(F)(F)F NVSXSBBVEDNGPY-UHFFFAOYSA-N 0.000 description 1
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- RLYCRLGLCUXUPO-UHFFFAOYSA-N 2,6-diaminotoluene Chemical compound CC1=C(N)C=CC=C1N RLYCRLGLCUXUPO-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 1
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 1
- BPINJMQATUWTID-UHFFFAOYSA-N 3,3-dimethylpentane-2,2-diamine Chemical compound CCC(C)(C)C(C)(N)N BPINJMQATUWTID-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005696 Diammonium phosphate Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000538 Poly[(phenyl isocyanate)-co-formaldehyde] Polymers 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- WYOFTXWVYIGTCT-UHFFFAOYSA-K [OH-].[Sb+3].OCC([O-])=O.OCC([O-])=O Chemical compound [OH-].[Sb+3].OCC([O-])=O.OCC([O-])=O WYOFTXWVYIGTCT-UHFFFAOYSA-K 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical class O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- KRJUSWXDFZSJQD-UHFFFAOYSA-N benzoic acid;lead Chemical compound [Pb].OC(=O)C1=CC=CC=C1 KRJUSWXDFZSJQD-UHFFFAOYSA-N 0.000 description 1
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002332 glycine derivatives Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- VXGABWCSZZWXPC-UHFFFAOYSA-N methyl 2-(methylamino)acetate Chemical compound CNCC(=O)OC VXGABWCSZZWXPC-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- OOHAUGDGCWURIT-UHFFFAOYSA-N n,n-dipentylpentan-1-amine Chemical compound CCCCCN(CCCCC)CCCCC OOHAUGDGCWURIT-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical class [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Chemical class 0.000 description 1
- 229920000915 polyvinyl chloride Chemical class 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- GTRSAMFYSUBAGN-UHFFFAOYSA-N tris(2-chloropropyl) phosphate Chemical compound CC(Cl)COP(=O)(OCC(C)Cl)OCC(C)Cl GTRSAMFYSUBAGN-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/06—Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/005—Methods or materials for repairing pavings
Definitions
- the disclosure generally relates to a unique method and system for repairing potholes.
- the disclosure pertains to a lightweight portable polyurethane and/or polyisocyanurate foam used in combination with a ground anchoring and reinforcement system.
- Such current technology typically involves the use of either asphalt or concrete.
- a concrete repair requires delivery of the concrete mix and water directly to the repair site, which may, in many instances, not be practical or expeditious.
- Such concrete systems require the delivery of, in some instances, twelve 60 lb. bags of concrete mix and 20 gallons of water.
- Another disadvantage is that it typically takes at least one day to cure, requiring monitoring during the cure period to avoid damage if used prior to curing.
- this disclosure provides numerous advantages over the asphalt and concrete system of the prior art.
- this disclosure is portable (i.e., light weight and can be carried by the user without the need for special transportation equipment used to deliver to the repair site), inexpensive, and cures in a fraction of the time required by conventional repair systems.
- a system and method for repairing potholes which comprises: placing a securing mechanism within the existing pothole bottom or sidewalls, securing a reinforcing material to the securing mechanism to ensure its retention within the pothole, and filling or injecting a foam material to fill the pothole such that it encapsulates the securing mechanism and reinforcing material so that it is securingly retained within the potholes and substantially level to the surface of the roadway.
- a preferred foam material is polyurethane and/or polyisocyanurate closed-cell foam prepared with a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof.
- a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof.
- the present disclosure includes a unique foam-based pothole repair method and kit, wherein the preferred foam is formed by a method of preparing polyurethane and polyisocyanurate foam compositions comprising the step of reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising one or more of the following: water, carbon dioxide, methyl formate, a hydrocarbon, and/or a hydrofluorocarbon; and an effective amount of a blowing agent additive.
- the foam can be a closed cell foam.
- the additive is present in the amount of from about 0.02 to about 10 weight percent, based on the amount of blowing agent.
- the additive includes ⁇ -methyl styrene.
- the ⁇ -methyl styrene is present in an amount of from about 0.02 to about 5 weight percent, based on the amount of blowing agent.
- the blowing agent preferably comprises 1,1,1,3,3-pentafluoropropane and an effective amount of ⁇ -methyl styrene.
- the ⁇ -methyl styrene is present in the amount of from about 0.02 to about 5 weight percent, based on the amount of blowing agent. More preferably, the ⁇ -methyl styrene is present in the amount of from about 0.02 to about 2 weight percent, based on the amount of blowing agent.
- the closed cell foam containing a cell gas comprises a blowing agent as defined above.
- FIG. 1 is an example of a pothole in a road surface
- FIG. 2 depicts a pair of securing members disposed within the pothole according to the present disclosure
- FIG. 3 depicts a reinforcing mesh disposed within the pothole and secured thereto by the pair of securing members according to the present disclosure
- FIG. 4 is an example of a two component polyurethane foam system which can be used according to the present disclosure
- FIG. 5 demonstrates the portability of the two component polyurethane foam system of FIG. 4 ;
- FIG. 6 demonstrates the application of the foam of the present disclosure to the secured reinforcing mesh of FIG. 3 ;
- FIG. 7 depicts the finished foam pothole repair system according to the present disclosure.
- FIG. 8 demonstrates a vehicle traveling over a newly repaired pothole filled with the foam-based repair system according to the present disclosure.
- FIG. 1 depicts a standard pothole or crater 1 disposed within a surface or roadway 3 .
- FIG. 2 depicts the initial preparation of the repair system according to the present disclosure, wherein a securing mechanism, such as a pair of securing rods or stakes 5 are disposed or embedded within the bottom or sidewalls of a pothole 1 for the purpose of securing a reinforcing material 7 , e.g., mesh or wire, within pothole 1 .
- a securing mechanism such as a pair of securing rods or stakes 5 are disposed or embedded within the bottom or sidewalls of a pothole 1 for the purpose of securing a reinforcing material 7 , e.g., mesh or wire, within pothole 1 .
- Securing rods or stakes 5 can be made from any suitable material, such as metal, wood, plastic, etc., wherein the length will be dependent upon the size of the pothole being repaired.
- Reinforcing material 7 can be any material which provides suitable reinforcement and/or strength to the foam material of the present disclosure.
- reinforcing material 7 can be any mesh or wire configuration and can be made out of metal, synthetic material, rope, fabric, or plastic wood.
- One preferred reinforcing material 7 is a wire made into a grid, preferably a metal wire.
- reinforcing material 7 can be a rope made into the form of a grid.
- FIGS. 4 and 5 depict an optional canister based system having two canisters 9 and 11 , a pair of hoses 13 and 15 , and a spray nozzle 17 , wherein hoses ( 13 , 15 ) are connected to canisters ( 9 , 11 ), respectively, at one end thereof, and connected to spray nozzle 17 , at the other end.
- FIG. 6 demonstrates the use of the canister based system of FIGS. 4 and 5 to inject a foam product 19 of the present disclosure into pothole 1 of roadway 3 .
- FIG. 7 demonstrates a completed repair, wherein the reinforced foam 19 is substantially level to the surface of roadway 3 .
- FIG. 8 demonstrates the strength of reinforced foam 19 , as a vehicle 21 traverses thereover.
- a foam material 19 that provides the quick set, strength and durability for roadways and the like.
- One preferred foam is recited in U.S. Pat. No. 6,545,063, “Hydrofluorocarbon blown foam and method for preparation thereof,” which is incorporated herein in its entirety.
- the preferred foam material is a polyurethane and/or polyisocyanurate closed-cell foam. More particularly, this foam material includes the addition of ⁇ -methyl styrene, isobutanol and/or isopropanol to reduce vapor pressure, improve k-factor, enhance the solubility of the blowing agent in the premix and/or improve the processing characteristics of polyurethane and polyisocyanurate closed-cell foams prepared with a blowing agent.
- the blowing agent can be, but is not limited to, water, carbon dioxide, methyl formate, a hydrocarbon, and/or a hydrofluorocarbon selected from the group consisting of HCFC, HFC, low GWP HFC, e.g., 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), and mixtures thereof.
- HFC-245fa 1,1,1,3,3-pentafluoropropane
- HFC-134a 1,1,1,2-tetrafluoroethane
- HFC-134 1,1,2,2-tetrafluoroethane
- HFC-365mfc 1,1,
- the preferred foam of the present disclosure includes the addition of one or more of ⁇ -methyl styrene, isobutanol and/or isopropanol to the B-side of a polyurethane or polyisocyanuate foam formulation comprising a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, resulting in reduced vapor pressure, improved k-factor, enhanced solubility of the blowing agent and/or improved processing characteristics of the foams.
- a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane
- ⁇ -methyl styrene added to the foam formulation results in improved thermal conductivity (k-factor) and thermal aging characteristics.
- thermal conductivity the term “improved” refers to a decrease in the k-factor of the foam.
- the polyurethane and polyisocyanurate foam compositions are preferably prepared by: reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, and an effective amount of a blowing agent additive (“additive”) selected from the group consisting of ⁇ -methyl styrene, isobutanol, isopropanol, and mixtures thereof, preferably from about 0.02 to about 10 weight percent of said additive, based on the amount of blowing agent.
- a blowing agent additive selected from the group consisting of ⁇ -methyl
- the method of preparing polyurethane and polyisocyanurate foam compositions comprises the step of reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising 1,1,1,3,3-pentafluoropropane and ⁇ -methyl styrene, preferably from about 0.02 to about 5 weight percent ⁇ -methyl styrene, based on the amount of blowing agent.
- a blowing agent comprising 1,1,1,3,3-pentafluoropropane and ⁇ -methyl styrene, preferably from about 0.02 to about 5 weight percent ⁇ -methyl styrene, based on the amount of blowing agent.
- the closed cell foam is prepared from a polymer foam formulation containing a blowing agent comprising 1,1,1,3,3-pentafluoropropane and ⁇ -methyl styrene, preferably from about 0.02 to about 5 weight percent ⁇ -methyl styrene, based on the amount of blowing agent.
- a blowing agent comprising 1,1,1,3,3-pentafluoropropane and ⁇ -methyl styrene, preferably from about 0.02 to about 5 weight percent ⁇ -methyl styrene, based on the amount of blowing agent.
- the closed cell foam contains a cell gas comprising a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, and an additive selected from the group consisting of ⁇ -methyl styrene, isobutanol, isopropanol, and mixtures thereof, preferably from about 0.02 to about 10 weight percent of said additive, based on the amount of blowing agent.
- a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-p
- the closed cell foam contains a cell gas comprising a blowing agent comprising 1,1,1,3,3-pentafluoropropane and ⁇ -methyl styrene, preferably from about 0.02 to about 5 weight percent ⁇ -methyl styrene, based on the amount of blowing agent.
- an effective amount of additive means an amount, based on the amount of blowing agent, which reduces the vapor pressure of a foam formulation B-side to below the vapor pressure of the corresponding foam prepared in the absence of additive.
- an effective amount is from about 0.02 to about 10 weight percent, based on the amount of blowing agent.
- the ⁇ -methyl styrene is preferably added in an amount of from about 0.5 to about 2 weight percent, based on the amount of blowing agent.
- blowing agent composition refers to HFC-245fa or HFC-134a singly or in combination with other non-ozone depleting blowing agents, such as, for example, other hydrofluorocarbons, e.g., difluoromethane (HFC-32), difluoroethane (HFC-152), trifluoroethane (HFC-143), tetrafluoroethane (HFC-134), pentafluoropropane (HFC-245), pentafluorobutane (HFC-365), hexafluoropropane (HFC-236), and heptafluoropropane (HFC-227); C 4 C 7 hydrocarbons, including, but not limited to, butane, isobutane, n-pentane, isopentane, cyclopentane, hexane and isohexane; inert gases, e.g., air, nitrogen, carbon dioxide
- HFC-245fa is a known material and can be prepared by methods known in the art such as those disclosed in WO 94/14736, WO 94/29251, WO 94/29252 and U.S. Pat. No. 5,574,192.
- Difluoroethane, trifluoroethane, tetrafluoroethane, heptafluoropropane and hexafluoropropane are available for purchase from Honeywell, Inc. of Morristown, N.J., USA.
- the ⁇ -methyl styrene, isobutanol and isopropanol components of the disclosure are also commercially available.
- polyurethane or polyisocyanurate foams are prepared by combining under suitable conditions an isocyanate (or isocyanurate), a polyol or mixture of polyols, a blowing agent or mixture of blowing agents, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
- the foam formulation is pre-blended into two components.
- the isocyanate or polyisocyanate composition comprises the first component, commonly referred to as the “A” component or “A-side.”
- the polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, water and other isocyanate reactive components comprise the second component, commonly referred to as the “B” component or “B-side.” While the surfactant and fluorocarbon blowing agent are usually placed on the polyol side, they may be placed on either side, or partly on one side and partly on the other side.
- polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix, for small preparations, or preferably machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like.
- other ingredients such as fire retardants, colorants, auxiliary blowing agents, water and even other polyols can be added as a third stream to the mix head or reaction site. Most conveniently, however, they are all incorporated into one B component.
- the ⁇ -methyl styrene, isobutanol and/or isopropanol additive of the present disclosure may be added to B-side of the foam formulation, or to the blowing agent per se, by any manner well known in the art.
- Any organic polyisocyanate can be employed in polyurethane or polyisocyanurate foam synthesis inclusive of aliphatic and aromatic polyisocyanates.
- Preferred as a class are the aromatic polyisocyanates.
- Preferred polyisocyanates for rigid polyurethane or polyisocyanurate foam synthesis are the polymethylene polyphenyl isocyanates, particularly the mixtures containing from about 30 to about 85 percent by weight of methylenebis(phenylisocyanate) with the remainder of the mixture comprising the polymethylene polyphenyl polyisocyanates of functionality higher than 2.
- Preferred polyisocyanates for flexible polyurethane foam synthesis are toluene diisocyanates including, without limitation, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and mixtures thereof.
- Typical polyols used in the manufacture of rigid polyurethane foams include, but are not limited to, aromatic amino-based polyether polyols such as those based on mixtures of 2,4- and 2,6-toluenediamine condensed with ethylene oxide and/or propylene oxide. These polyols find utility in pour-in-place molded foams.
- aromatic alkylamino-based polyether polyols such as those based on ethoxylated and/or propoxylated aminoethylated nonylphenol derivatives. These polyols generally find utility in spray applied polyurethane foams.
- sucrose-based polyols such as those based on sucrose derivatives and/or mixtures of sucrose and glycerine derivatives condensed with ethylene oxide and/or propylene oxide. These polyols generally find utility in pour-in-place molded foams.
- Typical polyols used in the manufacture of flexible polyurethane foams include, but are not limited to, those based on glycerol, ethylene glycol, trimethylolpropane, ethylene diamine, pentaerythritol, and the like condensed with ethylene oxide, propylene oxide, butylene oxide, and the like. These are generally referred to as “polyether polyols.”
- polyether polyols Another example is the graft copolymer polyols which include, but are not limited to, conventional polyether polyols with vinyl polymer grafted the polyether polyol chain.
- polyurea modified polyols which consist of conventional polyether polyols with polyurea particles dispersed in the polyol.
- polyols used in polyurethane modified polyisocyanurate foams include, but are not limited to, aromatic polyester polyols such as those based on complex mixtures of phthalate-type or terephthalate-type esters formed from polyols such as ethylene glycol, diethylene glycol, or propylene glycol. These polyols are used in rigid laminated boardstock, and may be blended with other types of polyols such as sucrose based polyols, and used in polyurethane foam applications.
- Catalysts used in the manufacture of polyurethane foams are typically tertiary amines including, but not limited to, N-alkylmorpholines, N-alkylalkanolamines, N,N-dialkylcyclohexylamines, and alkylamines where the alkyl groups are methyl, ethyl, propyl, butyl and the like and isomeric forms thereof, as well as heterocyclic amines.
- Typical, but not limiting, examples are triethylenediamine, tetramethylethylenediamine, bis(2-dimethylaminoethyl)ether, triethylamine, tripropylamine, tributylamine, triamylamine, pyridine, quinoline, dimethylpiperazine, piperazine, N,N-dimethylcyclohexylamine, N-ethylmorpholine, 2-methylpiperazine, N,N-dimethylethanolamine, tetramethylpropanediamine, methyltriethylenediamine, and mixtures thereof.
- non-amine polyurethane catalysts are used.
- Typical of such catalysts are organometallic compounds of lead, tin, titanium, antimony, cobalt, aluminum, mercury, zinc, nickel, copper, manganese, zirconium, and mixtures thereof.
- Exemplary catalysts include, without limitation, lead 2-ethylhexoate, lead benzoate, ferric chloride, antimony trichloride, and antimony glycolate.
- a preferred organo-tin class includes the stannous salts of carboxylic acids such as stannous octoate, stannous 2-ethylhexoate, stannous laurate, and the like, as well as dialkyl tin salts of carboxylic acids such as dibutyl tin diacetate, dibutyl tin dilaurate, dioctyl tin diacetate, and the like.
- trimerization catalysts are used for the purpose of converting the blends in conjunction with excess A component to polyisocyanurate-polyurethane foams.
- the trimerization catalysts employed can be any catalyst known to one skilled in the art including, but not limited to, glycine salts and tertiary amine trimerization catalysts, alkali metal carboxylic acid salts, and mixtures thereof.
- Preferred species within the classes are potassium acetate, potassium octoate, and N-(2-hydroxy-5-nonylphenol) methyl-N-methylglycinate.
- blowing agents or blowing agent blends are also included in the mixture.
- the amount of blowing agent present in the blended mixture is dictated by the desired foam densities of the final polyurethane or polyisocyanurate foams products.
- the polyurethane foams produced can vary in density, for example, from about 0.5 pound per cubic foot to about 40 pounds per cubic foot, preferably from about 1 to about 20 pounds per cubic foot, and most preferably from about 1 to about 6 pounds per cubic foot.
- the density obtained is a function of how much of the blowing agent, or blowing agent mixture, is present in the A and/or B components, or that is added at the time the foam is prepared.
- the proportions in parts by weight of the total blowing agent or blowing agent blend can fall within the range of from 1 to about 60 parts of blowing agent per 100 parts of polyol. Preferably from about 10 to about 35 parts by weight of blowing agent per 100 parts by weight of polyol are used.
- Dispersing agents may be incorporated into the blowing agent mixture.
- Surfactants better known as silicone oils, are added to serve as cell stabilizers.
- Some representative materials are sold under the names of DC-193, B-8404, and L-5340 which are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos. 2,834,748, 2,917,480, and 2,846,458.
- blowing agent mixture may include flame retardants such as tris(2-chloroethyl)phosphate, tris(2-chloropropyl)phosphate, tris(2,3-dibromopropyl)phosphate, tris(1,3-dichloropropyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- flame retardants such as tris(2-chloroethyl)phosphate, tris(2-chloropropyl)phosphate, tris(2,3-dibromopropyl)phosphate, tris(1,3-dichloropropyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- the foam kit includes the polyurethane foam system with disposable spray nozzle or dispensing apparatus or non-disposable dispensing apparatus.
- Surfacing compounds are optional, e.g., dirt, paint, asphalt or other coating disposed on top of the installed foam material.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
A system and method for repairing potholes in a road surface by securing a securing device within a pothole, affixing a reinforcing material to the securing device in the pothole, and adding a polyurethane and/or polyisocyanurate foam material to encapsulate the securing device and reinforcing material.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/995,526, filed on Sep. 27, 2007, the contents of which are incorporated by reference herein.
- 1. Field of the Disclosure
- The disclosure generally relates to a unique method and system for repairing potholes. In particular, the disclosure pertains to a lightweight portable polyurethane and/or polyisocyanurate foam used in combination with a ground anchoring and reinforcement system.
- 2. Description of Related Art
- Due to many environmental, usage and sabotage factors significant damage to road surfaces can occur which create large holes or craters which make movement of vehicular traffic and the like extremely difficult or dangerous. Unfortunately, current techniques for repairing such potholes or craters is very time consuming, labor intensive, costly, material intensive and requires a substantial transportation investment. Accordingly, in remote areas or areas of high traffic flow it is not always practical or financially feasible to await for the delivery and slow repairs to such potholes, as the current technology provides.
- Such current technology typically involves the use of either asphalt or concrete. As an example, a concrete repair requires delivery of the concrete mix and water directly to the repair site, which may, in many instances, not be practical or expeditious. Such concrete systems require the delivery of, in some instances, twelve 60 lb. bags of concrete mix and 20 gallons of water. Another disadvantage is that it typically takes at least one day to cure, requiring monitoring during the cure period to avoid damage if used prior to curing.
- The present disclosure provides numerous advantages over the asphalt and concrete system of the prior art. In particular, this disclosure is portable (i.e., light weight and can be carried by the user without the need for special transportation equipment used to deliver to the repair site), inexpensive, and cures in a fraction of the time required by conventional repair systems.
- The present disclosure also provides many additional advantages, which shall become apparent as described below.
- A system and method for repairing potholes which comprises: placing a securing mechanism within the existing pothole bottom or sidewalls, securing a reinforcing material to the securing mechanism to ensure its retention within the pothole, and filling or injecting a foam material to fill the pothole such that it encapsulates the securing mechanism and reinforcing material so that it is securingly retained within the potholes and substantially level to the surface of the roadway.
- A preferred foam material is polyurethane and/or polyisocyanurate closed-cell foam prepared with a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof.
- The present disclosure includes a unique foam-based pothole repair method and kit, wherein the preferred foam is formed by a method of preparing polyurethane and polyisocyanurate foam compositions comprising the step of reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising one or more of the following: water, carbon dioxide, methyl formate, a hydrocarbon, and/or a hydrofluorocarbon; and an effective amount of a blowing agent additive. The foam can be a closed cell foam.
- The additive is present in the amount of from about 0.02 to about 10 weight percent, based on the amount of blowing agent. Preferably, the additive includes α-methyl styrene. The α-methyl styrene is present in an amount of from about 0.02 to about 5 weight percent, based on the amount of blowing agent.
- The blowing agent preferably comprises 1,1,1,3,3-pentafluoropropane and an effective amount of α-methyl styrene. The α-methyl styrene is present in the amount of from about 0.02 to about 5 weight percent, based on the amount of blowing agent. More preferably, the α-methyl styrene is present in the amount of from about 0.02 to about 2 weight percent, based on the amount of blowing agent.
- Optionally, the closed cell foam containing a cell gas comprises a blowing agent as defined above.
- Further objects, features and advantages of the present disclosure will be understood by reference to the following drawings and detailed description.
-
FIG. 1 is an example of a pothole in a road surface; -
FIG. 2 depicts a pair of securing members disposed within the pothole according to the present disclosure; -
FIG. 3 depicts a reinforcing mesh disposed within the pothole and secured thereto by the pair of securing members according to the present disclosure; -
FIG. 4 is an example of a two component polyurethane foam system which can be used according to the present disclosure; -
FIG. 5 demonstrates the portability of the two component polyurethane foam system ofFIG. 4 ; -
FIG. 6 demonstrates the application of the foam of the present disclosure to the secured reinforcing mesh ofFIG. 3 ; -
FIG. 7 depicts the finished foam pothole repair system according to the present disclosure; and -
FIG. 8 demonstrates a vehicle traveling over a newly repaired pothole filled with the foam-based repair system according to the present disclosure. - The present disclosure can best be described by referring to the figures, wherein
FIG. 1 depicts a standard pothole orcrater 1 disposed within a surface orroadway 3.FIG. 2 depicts the initial preparation of the repair system according to the present disclosure, wherein a securing mechanism, such as a pair of securing rods orstakes 5 are disposed or embedded within the bottom or sidewalls of apothole 1 for the purpose of securing a reinforcing material 7, e.g., mesh or wire, withinpothole 1. - Securing rods or
stakes 5 can be made from any suitable material, such as metal, wood, plastic, etc., wherein the length will be dependent upon the size of the pothole being repaired. - Reinforcing material 7 can be any material which provides suitable reinforcement and/or strength to the foam material of the present disclosure. For example, reinforcing material 7 can be any mesh or wire configuration and can be made out of metal, synthetic material, rope, fabric, or plastic wood. One preferred reinforcing material 7 is a wire made into a grid, preferably a metal wire. Optionally, reinforcing material 7 can be a rope made into the form of a grid.
-
FIGS. 4 and 5 depict an optional canister based system having twocanisters hoses spray nozzle 17, wherein hoses (13,15) are connected to canisters (9,11), respectively, at one end thereof, and connected tospray nozzle 17, at the other end.FIG. 6 demonstrates the use of the canister based system ofFIGS. 4 and 5 to inject afoam product 19 of the present disclosure intopothole 1 ofroadway 3.FIG. 7 demonstrates a completed repair, wherein the reinforcedfoam 19 is substantially level to the surface ofroadway 3. Finally,FIG. 8 demonstrates the strength of reinforcedfoam 19, as avehicle 21 traverses thereover. - It is critical to the present disclosure that a
foam material 19 be used that provides the quick set, strength and durability for roadways and the like. One preferred foam is recited in U.S. Pat. No. 6,545,063, “Hydrofluorocarbon blown foam and method for preparation thereof,” which is incorporated herein in its entirety. - The preferred foam material is a polyurethane and/or polyisocyanurate closed-cell foam. More particularly, this foam material includes the addition of α-methyl styrene, isobutanol and/or isopropanol to reduce vapor pressure, improve k-factor, enhance the solubility of the blowing agent in the premix and/or improve the processing characteristics of polyurethane and polyisocyanurate closed-cell foams prepared with a blowing agent. The blowing agent can be, but is not limited to, water, carbon dioxide, methyl formate, a hydrocarbon, and/or a hydrofluorocarbon selected from the group consisting of HCFC, HFC, low GWP HFC, e.g., 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), and mixtures thereof.
- The preferred foam of the present disclosure includes the addition of one or more of α-methyl styrene, isobutanol and/or isopropanol to the B-side of a polyurethane or polyisocyanuate foam formulation comprising a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, resulting in reduced vapor pressure, improved k-factor, enhanced solubility of the blowing agent and/or improved processing characteristics of the foams. The addition of α-methyl styrene to the foam formulation results in improved thermal conductivity (k-factor) and thermal aging characteristics. With respect to thermal conductivity, the term “improved” refers to a decrease in the k-factor of the foam.
- The polyurethane and polyisocyanurate foam compositions are preferably prepared by: reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, and an effective amount of a blowing agent additive (“additive”) selected from the group consisting of α-methyl styrene, isobutanol, isopropanol, and mixtures thereof, preferably from about 0.02 to about 10 weight percent of said additive, based on the amount of blowing agent. In another embodiment, the method of preparing polyurethane and polyisocyanurate foam compositions comprises the step of reacting and foaming a mixture of ingredients which react to form polyurethane or polyisocyanurate foams in the presence of a blowing agent comprising 1,1,1,3,3-pentafluoropropane and α-methyl styrene, preferably from about 0.02 to about 5 weight percent α-methyl styrene, based on the amount of blowing agent.
- In one embodiment, the closed cell foam is prepared from a polymer foam formulation containing a blowing agent comprising 1,1,1,3,3-pentafluoropropane and α-methyl styrene, preferably from about 0.02 to about 5 weight percent α-methyl styrene, based on the amount of blowing agent.
- In another embodiment, the closed cell foam contains a cell gas comprising a blowing agent comprising a hydrofluorocarbon selected from the group consisting of 1,1,1,3,3-pentafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,3,3,3-heptafluoropropane, and mixtures thereof, and an additive selected from the group consisting of α-methyl styrene, isobutanol, isopropanol, and mixtures thereof, preferably from about 0.02 to about 10 weight percent of said additive, based on the amount of blowing agent. In one embodiment, the closed cell foam contains a cell gas comprising a blowing agent comprising 1,1,1,3,3-pentafluoropropane and α-methyl styrene, preferably from about 0.02 to about 5 weight percent α-methyl styrene, based on the amount of blowing agent.
- As used herein, an effective amount of additive means an amount, based on the amount of blowing agent, which reduces the vapor pressure of a foam formulation B-side to below the vapor pressure of the corresponding foam prepared in the absence of additive. Generally, an effective amount is from about 0.02 to about 10 weight percent, based on the amount of blowing agent. For example, the α-methyl styrene is preferably added in an amount of from about 0.5 to about 2 weight percent, based on the amount of blowing agent.
- As used herein, blowing agent composition refers to HFC-245fa or HFC-134a singly or in combination with other non-ozone depleting blowing agents, such as, for example, other hydrofluorocarbons, e.g., difluoromethane (HFC-32), difluoroethane (HFC-152), trifluoroethane (HFC-143), tetrafluoroethane (HFC-134), pentafluoropropane (HFC-245), pentafluorobutane (HFC-365), hexafluoropropane (HFC-236), and heptafluoropropane (HFC-227); C4C7 hydrocarbons, including, but not limited to, butane, isobutane, n-pentane, isopentane, cyclopentane, hexane and isohexane; inert gases, e.g., air, nitrogen, carbon dioxide; and water, in an amount of from about 0.5 to about 2 parts per 100 parts of polyol. Where isomerism is possible for the hydrofluorocarbons mentioned above, the respective isomers may be used either singly or in the form of a mixture.
- HFC-245fa is a known material and can be prepared by methods known in the art such as those disclosed in WO 94/14736, WO 94/29251, WO 94/29252 and U.S. Pat. No. 5,574,192. Difluoroethane, trifluoroethane, tetrafluoroethane, heptafluoropropane and hexafluoropropane are available for purchase from Honeywell, Inc. of Morristown, N.J., USA. The α-methyl styrene, isobutanol and isopropanol components of the disclosure are also commercially available.
- With respect to the preparation of rigid or flexible polyurethane or polyisocyanurate foams using a blowing agent comprising 1,1,1,3,3-pentafluoropropane or 1,1,1,2-tetrafluoroethane, any of the methods well known in the art can be employed. See Saunders and Frisch, Volumes I and II Polyurethanes Chemistry and Technology (1962). In general, polyurethane or polyisocyanurate foams are prepared by combining under suitable conditions an isocyanate (or isocyanurate), a polyol or mixture of polyols, a blowing agent or mixture of blowing agents, and other materials such as catalysts, surfactants, and optionally, flame retardants, colorants, or other additives.
- It is convenient in many applications to provide the components for polyurethane or polyisocyanurate foams in pre-blended foam formulations. Most typically, the foam formulation is pre-blended into two components. The isocyanate or polyisocyanate composition comprises the first component, commonly referred to as the “A” component or “A-side.” The polyol or polyol mixture, surfactant, catalysts, blowing agents, flame retardant, water and other isocyanate reactive components comprise the second component, commonly referred to as the “B” component or “B-side.” While the surfactant and fluorocarbon blowing agent are usually placed on the polyol side, they may be placed on either side, or partly on one side and partly on the other side. Accordingly, polyurethane or polyisocyanurate foams are readily prepared by bringing together the A and B side components either by hand mix, for small preparations, or preferably machine mix techniques to form blocks, slabs, laminates, pour-in-place panels and other items, spray applied foams, froths, and the like. Optionally, other ingredients such as fire retardants, colorants, auxiliary blowing agents, water and even other polyols can be added as a third stream to the mix head or reaction site. Most conveniently, however, they are all incorporated into one B component.
- The α-methyl styrene, isobutanol and/or isopropanol additive of the present disclosure may be added to B-side of the foam formulation, or to the blowing agent per se, by any manner well known in the art.
- Any organic polyisocyanate can be employed in polyurethane or polyisocyanurate foam synthesis inclusive of aliphatic and aromatic polyisocyanates. Preferred as a class are the aromatic polyisocyanates. Preferred polyisocyanates for rigid polyurethane or polyisocyanurate foam synthesis are the polymethylene polyphenyl isocyanates, particularly the mixtures containing from about 30 to about 85 percent by weight of methylenebis(phenylisocyanate) with the remainder of the mixture comprising the polymethylene polyphenyl polyisocyanates of functionality higher than 2. Preferred polyisocyanates for flexible polyurethane foam synthesis are toluene diisocyanates including, without limitation, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and mixtures thereof.
- Typical polyols used in the manufacture of rigid polyurethane foams include, but are not limited to, aromatic amino-based polyether polyols such as those based on mixtures of 2,4- and 2,6-toluenediamine condensed with ethylene oxide and/or propylene oxide. These polyols find utility in pour-in-place molded foams. Another example is aromatic alkylamino-based polyether polyols such as those based on ethoxylated and/or propoxylated aminoethylated nonylphenol derivatives. These polyols generally find utility in spray applied polyurethane foams. Another example is sucrose-based polyols such as those based on sucrose derivatives and/or mixtures of sucrose and glycerine derivatives condensed with ethylene oxide and/or propylene oxide. These polyols generally find utility in pour-in-place molded foams.
- Typical polyols used in the manufacture of flexible polyurethane foams include, but are not limited to, those based on glycerol, ethylene glycol, trimethylolpropane, ethylene diamine, pentaerythritol, and the like condensed with ethylene oxide, propylene oxide, butylene oxide, and the like. These are generally referred to as “polyether polyols.” Another example is the graft copolymer polyols which include, but are not limited to, conventional polyether polyols with vinyl polymer grafted the polyether polyol chain. Yet another example is polyurea modified polyols which consist of conventional polyether polyols with polyurea particles dispersed in the polyol.
- Examples of polyols used in polyurethane modified polyisocyanurate foams include, but are not limited to, aromatic polyester polyols such as those based on complex mixtures of phthalate-type or terephthalate-type esters formed from polyols such as ethylene glycol, diethylene glycol, or propylene glycol. These polyols are used in rigid laminated boardstock, and may be blended with other types of polyols such as sucrose based polyols, and used in polyurethane foam applications.
- Catalysts used in the manufacture of polyurethane foams are typically tertiary amines including, but not limited to, N-alkylmorpholines, N-alkylalkanolamines, N,N-dialkylcyclohexylamines, and alkylamines where the alkyl groups are methyl, ethyl, propyl, butyl and the like and isomeric forms thereof, as well as heterocyclic amines. Typical, but not limiting, examples are triethylenediamine, tetramethylethylenediamine, bis(2-dimethylaminoethyl)ether, triethylamine, tripropylamine, tributylamine, triamylamine, pyridine, quinoline, dimethylpiperazine, piperazine, N,N-dimethylcyclohexylamine, N-ethylmorpholine, 2-methylpiperazine, N,N-dimethylethanolamine, tetramethylpropanediamine, methyltriethylenediamine, and mixtures thereof.
- Optionally, non-amine polyurethane catalysts are used. Typical of such catalysts are organometallic compounds of lead, tin, titanium, antimony, cobalt, aluminum, mercury, zinc, nickel, copper, manganese, zirconium, and mixtures thereof. Exemplary catalysts include, without limitation, lead 2-ethylhexoate, lead benzoate, ferric chloride, antimony trichloride, and antimony glycolate. A preferred organo-tin class includes the stannous salts of carboxylic acids such as stannous octoate, stannous 2-ethylhexoate, stannous laurate, and the like, as well as dialkyl tin salts of carboxylic acids such as dibutyl tin diacetate, dibutyl tin dilaurate, dioctyl tin diacetate, and the like.
- In the preparation of polyisocyanurate foams, trimerization catalysts are used for the purpose of converting the blends in conjunction with excess A component to polyisocyanurate-polyurethane foams. The trimerization catalysts employed can be any catalyst known to one skilled in the art including, but not limited to, glycine salts and tertiary amine trimerization catalysts, alkali metal carboxylic acid salts, and mixtures thereof. Preferred species within the classes are potassium acetate, potassium octoate, and N-(2-hydroxy-5-nonylphenol) methyl-N-methylglycinate.
- Also included in the mixture are blowing agents or blowing agent blends. Generally speaking, the amount of blowing agent present in the blended mixture is dictated by the desired foam densities of the final polyurethane or polyisocyanurate foams products. The polyurethane foams produced can vary in density, for example, from about 0.5 pound per cubic foot to about 40 pounds per cubic foot, preferably from about 1 to about 20 pounds per cubic foot, and most preferably from about 1 to about 6 pounds per cubic foot. The density obtained is a function of how much of the blowing agent, or blowing agent mixture, is present in the A and/or B components, or that is added at the time the foam is prepared. The proportions in parts by weight of the total blowing agent or blowing agent blend can fall within the range of from 1 to about 60 parts of blowing agent per 100 parts of polyol. Preferably from about 10 to about 35 parts by weight of blowing agent per 100 parts by weight of polyol are used.
- Dispersing agents, cell stabilizers, and surfactants may be incorporated into the blowing agent mixture. Surfactants, better known as silicone oils, are added to serve as cell stabilizers. Some representative materials are sold under the names of DC-193, B-8404, and L-5340 which are, generally, polysiloxane polyoxyalkylene block co-polymers such as those disclosed in U.S. Pat. Nos. 2,834,748, 2,917,480, and 2,846,458.
- Other optional additives for the blowing agent mixture may include flame retardants such as tris(2-chloroethyl)phosphate, tris(2-chloropropyl)phosphate, tris(2,3-dibromopropyl)phosphate, tris(1,3-dichloropropyl)phosphate, diammonium phosphate, various halogenated aromatic compounds, antimony oxide, aluminum trihydrate, polyvinyl chloride, and the like.
- The foam kit includes the polyurethane foam system with disposable spray nozzle or dispensing apparatus or non-disposable dispensing apparatus. Surfacing compounds are optional, e.g., dirt, paint, asphalt or other coating disposed on top of the installed foam material.
- While I have shown and described several embodiments in accordance with my disclosure, it is to be clearly understood that the same may be susceptible to numerous changes apparent to one skilled in the art. Therefore, I do not wish to be limited to the details shown and described but intend to show all changes and modifications that come within the scope of the appended claims.
Claims (19)
1. A method for repairing a pothole in a road surface, comprising:
securing a securing device in said pothole;
affixing a reinforcing material to said securing device within said pothole; and
adding a foam material to said pothole, wherein said foam material encapsulates said securing device and said reinforcing device within said pothole.
2. The method according to claim 1 , wherein said securing device comprises one or more securing rods, one or more securing stakes, and/or combinations thereof.
3. The method according to claim 1 , wherein said securing device is disposed about the bottom of the pothole and/or in the sidewalls of the pothole.
4. The method according to claim 1 , wherein said securing device comprises a material selected from the group consisting of: metal, wood, plastic, and any combinations thereof.
5. The method according to claim 1 , wherein said reinforcing material comprises a material selected from the group consisting of: metal, prefabricated metal, plastic, wood, synthetic material, rope, fabric, and any combinations thereof.
6. The method according to claim 5 , wherein said reinforcing material is formed in a mesh and/or grid configuration.
7. The method according to claim 1 , wherein said foam material is lightweight.
8. The method according to claim 1 , wherein said foam material comprises a closed-cell foam.
9. The method according to claim 1 , wherein said foam material is selected from the group consisting of polyurethane foam, polyisocyanurate foam, and combinations thereof.
10. The method according to claim 9 , wherein said foam material further comprises:
a blowing agent selected from the group consisting of: water, carbon dioxide, methyl formate, hydrocarbon, hydrochlorofluorocarbon (HCFC), hydrofluorocarbon (HFC), low Global Warming Potential hydrofluorocarbon (low GWP HFC), and any combinations thereof; and
a blowing agent additive selected from the group consisting of: α-methyl styrene, isobutanol, isopropanol, and any combinations thereof,
wherein said blowing agent and said blowing agent additive contact a mixture of ingredients which react to form said polyurethane foam and/or polyisocyanurate foam.
11. The method according to claim 10 , wherein said hydrofluorocarbon is selected from the group consisting of: 1,1,1,3,3-pentafluoropropane (HFC-245fa), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,2,2-tetrafluoroethane (HFC-134), 1,1,1,3,3-pentafluorobutane (HFC-365mfc), 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), and any combinations thereof.
12. The method according to claim 10 , wherein said blowing agent additive is present in an amount of from between about 0.02 to about 10 weight percent, based on a total amount of said blowing agent.
13. The method according to claim 10 , wherein said blowing agent comprises 1,1,1,3,3-pentafluoropropane (HFC-245fa), and said blowing agent additive comprises α-methyl styrene; and
wherein said α-methyl styrene is present in an amount of from between about 0.02 to about 10 weight percent, based on a total amount of said 1,1,1,3,3-pentafluoropropane (HFC-245fa).
14. The method according to claim 10 , wherein said polyurethane foam and/or polyisocyanurate foam comprises a pre-blended foam formulation, wherein said pre-blended foam formulation comprises:
a first component that is an “A-side” component; and
a second component that is a “B-side” component,
wherein said blowing agent is incorporated in said first component (“A-side”) and/or said second component (“B-side”), and
wherein said polyurethane foam and/or polyisocyanurate foam are prepared by mixing said first component (“A-side”) and said second component (“B-side”), and placed in the pothole.
15. The method according to claim 1 , further comprising:
placing a surfacing compound on said foam material, said surfacing compound selected from the group consisting of: dirt, paint, asphalt, coating, and any combinations thereof.
16. A kit for repairing a pothole in a road surface, comprising:
a securing device;
a reinforcing material; and
a two-container foam dispensing system comprising a first container that contains a first composition, and a second container that contains a second composition, and a dispensing apparatus for each of said first container and said second container,
wherein said first composition and said second composition can be mixed to form a foam material to repair a pothole.
17. The kit according to claim 16 , wherein said foam material is selected from the group consisting of: polyurethane foam, polyisocyanurate foam, and combinations thereof.
18. The kit according to claim 16 , wherein the dispensing apparatus is a spray nozzle.
19. The kit according to claim 16 , further comprising:
a surfacing compound selected from the group consisting of: dirt, paint, asphalt, coating, and any combinations thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/238,157 US20090087262A1 (en) | 2007-09-27 | 2008-09-25 | Method and system for repairing potholes in roads |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99552607P | 2007-09-27 | 2007-09-27 | |
US12/238,157 US20090087262A1 (en) | 2007-09-27 | 2008-09-25 | Method and system for repairing potholes in roads |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090087262A1 true US20090087262A1 (en) | 2009-04-02 |
Family
ID=40508567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/238,157 Abandoned US20090087262A1 (en) | 2007-09-27 | 2008-09-25 | Method and system for repairing potholes in roads |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090087262A1 (en) |
WO (1) | WO2009042797A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013102653A1 (en) | 2012-01-04 | 2013-07-11 | Soudal | Filling of cavities in road construction and repair |
US20130216308A1 (en) * | 2012-02-20 | 2013-08-22 | Sean Somers Weaver | Polyurethane based road forming |
CN104302840A (en) * | 2012-04-03 | 2015-01-21 | 肖恩·萨默斯·韦弗 | Polyurethane-based road formation |
US20150078821A1 (en) * | 2013-09-19 | 2015-03-19 | Firestone Building Products Co, Llc | Polyisocyanurate foam composites for use in geofoam applications |
US8992118B2 (en) | 2013-03-15 | 2015-03-31 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US9057163B1 (en) | 2013-03-15 | 2015-06-16 | William B. Coe | Pavement repair system |
US20160376752A1 (en) * | 2014-01-10 | 2016-12-29 | Kangwon National University University-Industry Cooperation Foundation | Method for preparing paved road |
US9637870B1 (en) | 2013-03-15 | 2017-05-02 | William B. Coe | Pavement repair system |
US10041213B2 (en) * | 2014-11-06 | 2018-08-07 | Richard Giles | System and method for roadway maintenance and repair |
US11186959B2 (en) | 2017-02-14 | 2021-11-30 | William B. Coe | Apparatus and method for preparing asphalt and aggregate mixture |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1707391A (en) * | 1927-12-27 | 1929-04-02 | Fox Le Vern | Method of repairing cuts in pavements |
US2128480A (en) * | 1936-06-15 | 1938-08-30 | Louis S Wertz | Reinforcing concrete patch |
US2941900A (en) * | 1954-08-19 | 1960-06-21 | Schroder-Stranz Friedrich | Method and apparatus for producing insulating walls |
US4507013A (en) * | 1980-06-06 | 1985-03-26 | Bonifac Martinak | Device and method for repair of pot holes |
US5397609A (en) * | 1993-03-11 | 1995-03-14 | Chapman; Jeffrey A. | Carvable novelty articles and methods |
US5464303A (en) * | 1993-12-30 | 1995-11-07 | D.W.T. Innovative Recycling Corp. | Method for repairing pavement |
US5476340A (en) * | 1994-12-21 | 1995-12-19 | Contrasto; Sam | Method of using internal metal stitching for repairing cracks in concrete |
US20030026652A1 (en) * | 2001-06-18 | 2003-02-06 | Broadway Johnnie B. | Asphalt repair method |
US6532714B1 (en) * | 1998-03-16 | 2003-03-18 | Carl A. Ferm | Method for restoring load transfer capability |
US6652185B1 (en) * | 2002-08-28 | 2003-11-25 | William D. Frey | Fast efficient permanent pavement repair material system |
US6727260B2 (en) * | 1999-05-19 | 2004-04-27 | Neurosearch A/S | Inhibitors of proton-gated cation channels and their use in the treatment of ischaemic disorders |
US20050069692A1 (en) * | 2003-09-25 | 2005-03-31 | Koichi Ito | Method for coating porous polyurethane resin |
US6969214B2 (en) * | 2004-02-06 | 2005-11-29 | George Jay Lichtblau | Process and apparatus for highway marking |
US6988849B1 (en) * | 2004-09-17 | 2006-01-24 | Zimmerman Harold M | Pothole repair machine |
US20060204330A1 (en) * | 2005-03-11 | 2006-09-14 | Guy Boudreau | Method for repairing holes in pavement |
US20070082602A1 (en) * | 2005-10-06 | 2007-04-12 | Samsung Electronics Co., Ltd. | Broadcasting system and method for providing broadcasting service in a weak electric field area |
US20080193214A1 (en) * | 2007-02-13 | 2008-08-14 | Hall David R | Method for Adding Foaming Agents to Pavement Aggregate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6086788A (en) * | 1999-03-15 | 2000-07-11 | Alliedsignal Inc. | Hydrofluorocarbon blown foam and method for preparation thereof |
US6727290B2 (en) * | 2002-03-11 | 2004-04-27 | Hunter Paine Enterprises, Llc | Process of making rigid polyurethane foam |
US20070093602A1 (en) * | 2005-10-24 | 2007-04-26 | Bayer Materialscience Llc | Solid polyurethane compositions, infrastucture repair and geo-stabilization processes |
-
2008
- 2008-09-25 US US12/238,157 patent/US20090087262A1/en not_active Abandoned
- 2008-09-25 WO PCT/US2008/077730 patent/WO2009042797A1/en active Application Filing
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1707391A (en) * | 1927-12-27 | 1929-04-02 | Fox Le Vern | Method of repairing cuts in pavements |
US2128480A (en) * | 1936-06-15 | 1938-08-30 | Louis S Wertz | Reinforcing concrete patch |
US2941900A (en) * | 1954-08-19 | 1960-06-21 | Schroder-Stranz Friedrich | Method and apparatus for producing insulating walls |
US4507013A (en) * | 1980-06-06 | 1985-03-26 | Bonifac Martinak | Device and method for repair of pot holes |
US5397609A (en) * | 1993-03-11 | 1995-03-14 | Chapman; Jeffrey A. | Carvable novelty articles and methods |
US5464303A (en) * | 1993-12-30 | 1995-11-07 | D.W.T. Innovative Recycling Corp. | Method for repairing pavement |
US5476340A (en) * | 1994-12-21 | 1995-12-19 | Contrasto; Sam | Method of using internal metal stitching for repairing cracks in concrete |
US6532714B1 (en) * | 1998-03-16 | 2003-03-18 | Carl A. Ferm | Method for restoring load transfer capability |
US6727260B2 (en) * | 1999-05-19 | 2004-04-27 | Neurosearch A/S | Inhibitors of proton-gated cation channels and their use in the treatment of ischaemic disorders |
US20030026652A1 (en) * | 2001-06-18 | 2003-02-06 | Broadway Johnnie B. | Asphalt repair method |
US6652185B1 (en) * | 2002-08-28 | 2003-11-25 | William D. Frey | Fast efficient permanent pavement repair material system |
US20050069692A1 (en) * | 2003-09-25 | 2005-03-31 | Koichi Ito | Method for coating porous polyurethane resin |
US6969214B2 (en) * | 2004-02-06 | 2005-11-29 | George Jay Lichtblau | Process and apparatus for highway marking |
US6988849B1 (en) * | 2004-09-17 | 2006-01-24 | Zimmerman Harold M | Pothole repair machine |
US20060204330A1 (en) * | 2005-03-11 | 2006-09-14 | Guy Boudreau | Method for repairing holes in pavement |
US20070082602A1 (en) * | 2005-10-06 | 2007-04-12 | Samsung Electronics Co., Ltd. | Broadcasting system and method for providing broadcasting service in a weak electric field area |
US20080193214A1 (en) * | 2007-02-13 | 2008-08-14 | Hall David R | Method for Adding Foaming Agents to Pavement Aggregate |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013102653A1 (en) | 2012-01-04 | 2013-07-11 | Soudal | Filling of cavities in road construction and repair |
US9284694B2 (en) | 2012-02-20 | 2016-03-15 | Technisoil Industrial Llc | Polyurethane based roadway forming |
US20130216308A1 (en) * | 2012-02-20 | 2013-08-22 | Sean Somers Weaver | Polyurethane based road forming |
US8950972B2 (en) * | 2012-02-20 | 2015-02-10 | Technisoil Industrial Llc | Polyurethane based road forming |
US9957670B2 (en) | 2012-02-20 | 2018-05-01 | Technisoil Industrial Llc | Polyurethane based roadway forming |
CN104302840A (en) * | 2012-04-03 | 2015-01-21 | 肖恩·萨默斯·韦弗 | Polyurethane-based road formation |
US9481967B2 (en) | 2013-03-15 | 2016-11-01 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US9637870B1 (en) | 2013-03-15 | 2017-05-02 | William B. Coe | Pavement repair system |
US9127413B2 (en) | 2013-03-15 | 2015-09-08 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US9169606B2 (en) | 2013-03-15 | 2015-10-27 | William B. Coe | Emitter unit for asphalt pavement repair utilizing solid phase autoregenerative cohesion |
US9057163B1 (en) | 2013-03-15 | 2015-06-16 | William B. Coe | Pavement repair system |
US9347187B2 (en) | 2013-03-15 | 2016-05-24 | William B. Coe | Pavement repair system |
US8992118B2 (en) | 2013-03-15 | 2015-03-31 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US11078633B2 (en) * | 2013-03-15 | 2021-08-03 | Wiliam B. Coe | Pavement repair system |
US9551117B2 (en) | 2013-03-15 | 2017-01-24 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US9551114B2 (en) | 2013-03-15 | 2017-01-24 | William B. Coe | Pavement repair system |
US9624625B2 (en) | 2013-03-15 | 2017-04-18 | William B. Coe | Pavement repair system |
US9074328B1 (en) | 2013-03-15 | 2015-07-07 | William B. Coe | Pavement repair system utilizing solid phase autoregenerative cohesion |
US10934669B2 (en) | 2013-03-15 | 2021-03-02 | William B. Coe | Method for preparing asphalt paving material utilizing solid phase autoregenerative cohesion |
US10724183B2 (en) | 2013-03-15 | 2020-07-28 | William B. Coe | Pavement repair system |
US10364534B2 (en) | 2013-03-15 | 2019-07-30 | William B. Coe | Pavement repair system |
US10081920B2 (en) | 2013-03-15 | 2018-09-25 | William B. Coe | Hot asphalt pavement installation method utilizing solid phase autoregenerative cohesion |
US20150078821A1 (en) * | 2013-09-19 | 2015-03-19 | Firestone Building Products Co, Llc | Polyisocyanurate foam composites for use in geofoam applications |
US9926671B2 (en) * | 2014-01-10 | 2018-03-27 | Kangwon National University University—Industry Cooperation Foundation | Method for repairing paved road |
US20160376752A1 (en) * | 2014-01-10 | 2016-12-29 | Kangwon National University University-Industry Cooperation Foundation | Method for preparing paved road |
US10041213B2 (en) * | 2014-11-06 | 2018-08-07 | Richard Giles | System and method for roadway maintenance and repair |
US11186959B2 (en) | 2017-02-14 | 2021-11-30 | William B. Coe | Apparatus and method for preparing asphalt and aggregate mixture |
Also Published As
Publication number | Publication date |
---|---|
WO2009042797A1 (en) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090087262A1 (en) | Method and system for repairing potholes in roads | |
JP7238031B2 (en) | A mixture containing 1,1,1,4,4,4-hexafluorobutene and 1-chloro-3,3,3-trifluoropropene | |
US20100172701A1 (en) | Barrier fortification enhancement and building structural units | |
JP2017197768A (en) | Foamed body, and article produced from foamed body containing hcfo or hfo foaming agent | |
US7288211B2 (en) | Hydrofluorocarbon blown foam and method for preparation thereof | |
CA2829380C (en) | Method for filling concrete block cavities with expanding foam insulation | |
CN101694064A (en) | Method of insulating temporary polymeric structures with polyurethane or polyisocyanurate foam | |
US20060160911A1 (en) | Process for making polyurethane and polyisocyanurate foams using mixtures of a hydrofluorocarbon and methyl formate as a blowing agent | |
US8920714B2 (en) | Corrosion inhibiting self-expanding foam | |
US20090095401A1 (en) | Rural and urban camouflaged structures | |
EP1268595B1 (en) | Improved hydrofluorocarbon blown foam and method for preparation thereof | |
US20040204512A1 (en) | Foams and methods of producing foams | |
AU2002327808A1 (en) | Foams and methods of producing foams | |
AU2005248932B2 (en) | Improved hydrofluorocarbon blown foam and method for preparation thereof | |
WO2001018099A1 (en) | Use of 1,1,1,3,3-pentafluoropropane as a flame suppressant in c2-c6 hydrocarbon blown polyurethane foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUCKER, RICKY G;STRAMARA, KEVIN;CORNET, ALAN;REEL/FRAME:021981/0194 Effective date: 20081125 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |