US20090062132A1 - Alternative nucleic acid sequencing methods - Google Patents
Alternative nucleic acid sequencing methods Download PDFInfo
- Publication number
- US20090062132A1 US20090062132A1 US12/200,595 US20059508A US2009062132A1 US 20090062132 A1 US20090062132 A1 US 20090062132A1 US 20059508 A US20059508 A US 20059508A US 2009062132 A1 US2009062132 A1 US 2009062132A1
- Authority
- US
- United States
- Prior art keywords
- sequencing
- nucleic acid
- polynucleotide
- reagents
- chemistry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003203 nucleic acid sequencing method Methods 0.000 title 1
- 238000012163 sequencing technique Methods 0.000 claims abstract description 473
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 245
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 223
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 223
- 238000000034 method Methods 0.000 claims abstract description 105
- 239000003153 chemical reaction reagent Substances 0.000 claims description 245
- 108091033319 polynucleotide Proteins 0.000 claims description 243
- 239000002157 polynucleotide Substances 0.000 claims description 243
- 102000040430 polynucleotide Human genes 0.000 claims description 243
- 239000002773 nucleotide Substances 0.000 claims description 74
- 125000003729 nucleotide group Chemical group 0.000 claims description 72
- 238000012175 pyrosequencing Methods 0.000 claims description 46
- 238000007841 sequencing by ligation Methods 0.000 claims description 46
- 230000002441 reversible effect Effects 0.000 claims description 42
- 230000003321 amplification Effects 0.000 claims description 40
- 239000012634 fragment Substances 0.000 claims description 40
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 40
- 239000007787 solid Substances 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 32
- 238000004458 analytical method Methods 0.000 claims description 29
- 239000011324 bead Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 21
- 239000000839 emulsion Substances 0.000 claims description 14
- 108091093088 Amplicon Proteins 0.000 claims description 3
- 238000000429 assembly Methods 0.000 claims description 3
- 230000000712 assembly Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 230000007812 deficiency Effects 0.000 abstract 1
- 238000003752 polymerase chain reaction Methods 0.000 description 35
- 239000000523 sample Substances 0.000 description 31
- 239000000872 buffer Substances 0.000 description 19
- 108091034117 Oligonucleotide Proteins 0.000 description 17
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 17
- 238000001514 detection method Methods 0.000 description 15
- 238000003776 cleavage reaction Methods 0.000 description 14
- 230000007017 scission Effects 0.000 description 14
- 230000000295 complement effect Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 11
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 11
- 235000011180 diphosphates Nutrition 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- -1 oligoribonucleotides Proteins 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000008346 aqueous phase Substances 0.000 description 7
- 238000001298 force spectroscopy Methods 0.000 description 7
- 235000019689 luncheon sausage Nutrition 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000001226 triphosphate Substances 0.000 description 6
- 235000011178 triphosphate Nutrition 0.000 description 6
- 102000007347 Apyrase Human genes 0.000 description 5
- 108010007730 Apyrase Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004523 Sulfate Adenylyltransferase Human genes 0.000 description 5
- 108010022348 Sulfate adenylyltransferase Proteins 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 102000003960 Ligases Human genes 0.000 description 4
- 108090000364 Ligases Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000005546 dideoxynucleotide Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000001632 sodium acetate Substances 0.000 description 4
- 235000017281 sodium acetate Nutrition 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 108060002716 Exonuclease Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- 108010066717 Q beta Replicase Proteins 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 3
- IRLPACMLTUPBCL-FCIPNVEPSA-N adenosine-5'-phosphosulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO[P@](O)(=O)OS(O)(=O)=O)[C@H](O)[C@H]1O IRLPACMLTUPBCL-FCIPNVEPSA-N 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 102000013165 exonuclease Human genes 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003260 vortexing Methods 0.000 description 3
- 239000007762 w/o emulsion Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical group N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 230000006154 adenylylation Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000005289 controlled pore glass Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002777 nucleoside Substances 0.000 description 2
- 125000003835 nucleoside group Chemical group 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- IHDBZCJYSHDCKF-UHFFFAOYSA-N 4,6-dichlorotriazine Chemical compound ClC1=CC(Cl)=NN=N1 IHDBZCJYSHDCKF-UHFFFAOYSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-ULQXZJNLSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidin-2-one Chemical compound O=C1N=C(N)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-ULQXZJNLSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 239000004160 Ammonium persulphate Substances 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 241000589500 Thermus aquaticus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- CCPIKNHZOWQALM-DLQJRSQOSA-N [[(2r,3s,5r)-5-(6-aminopurin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl] phosphono hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=S)OP(O)(=O)OP(O)(O)=O)O1 CCPIKNHZOWQALM-DLQJRSQOSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003505 heat denaturation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- IIRDTKBZINWQAW-UHFFFAOYSA-N hexaethylene glycol Chemical compound OCCOCCOCCOCCOCCOCCO IIRDTKBZINWQAW-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000005257 nucleotidylation Effects 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- FRGKKTITADJNOE-UHFFFAOYSA-N sulfanyloxyethane Chemical compound CCOS FRGKKTITADJNOE-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
- G16B30/20—Sequence assembly
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B20/00—Methods specially adapted for identifying library members
- C40B20/08—Direct analysis of the library members per se by physical methods, e.g. spectroscopy
Definitions
- the present disclosure relates to methods and compositions for nucleic acid sequencing.
- the present teachings provide, among other things, methods and apparatuses that facilitate more effective sequencing, such as through more accurate nucleic acid sequencing and/or greater read length.
- Various embodiments of a method of the present teachings comprise: determining a sequence of a first region of a polynucleotide using a first set of nucleic acid sequencing reagents; and determining a sequence of a second region of the polynucleotide using a second set of nucleic acid sequencing reagents, wherein the first set of nucleic acid sequencing reagents are different from the second set of nucleic acid sequencing reagents.
- Various embodiments of a method of the present teachings comprise: applying a first nucleic acid sequencing chemistry to a clonal library derived from a polynucleotide of interest; determining a sequence of a first region of the polynucleotide using a first set of nucleic acid sequencing reagents; and determining a sequence of a second region of the polynucleotide using a second set of nucleic acid sequencing reagents, wherein the first set of nucleic acid sequencing reagents are different than the second set of nucleic acid sequencing reagents.
- Various embodiments of a method of the present teachings comprise: determining a sequence of a first region of a polynucleotide of interest using a first nucleic acid sequencing chemistry; and determining a sequence of a second region of the polynucleotide using a second nucleic acid sequencing chemistry. In some embodiments, all or a portion of determining a sequence of a first and second region can be carried out simultaneously.
- Various embodiments of a method of the present teachings comprise: determining a sequence of a first region of the polynucleotide using a first set of nucleic acid sequencing reagents, whereby a first nucleic acid sequence is produced; determining a sequence of a second region of the polynucleotide using a second set of nucleic acid sequencing reagents, wherein the first set of nucleic acid sequencing reagents are different than the second set of nucleic acid sequencing reagents, whereby a second nucleic acid sequence is produced, wherein the first region and the second region have at least 1 nucleotide base position in common; and comparing the first nucleic acid sequence and the second nucleic acid.
- all or a portion of determining a sequence of a first and second region can be carried out simultaneously.
- Various embodiments of a method of the present teachings comprise: fragmenting a polynucleotide for analysis into a plurality of polynucleotide fragments; clonally amplifying at least a part of the polynucleotide fragments, whereby a set of fragment clones is produced; sequencing a first portion of the set of fragment clones, with a first set of nucleic acid sequencing reagents, whereby a first nucleotide base sequence assembly is produced; producing error values for at least some of the bases in the second nucleotide base sequence assembly; sequencing a second portion of the set of fragment clones, with a second set of nucleic acid sequencing reagents, whereby a second nucleotide base sequence assembly is produced; producing error values for at least some of the bases in the second nucleotide base sequence assembly; comparing the first nucleotide base sequence assembly with the second nucleotide base sequence assembly; and selecting at least one base identity between the first and second base
- the polynucleotide is immobilized on a solid support.
- the solid support can be a bead or other particles.
- the amplified clone is present on an array.
- the polynucleotide can be a single molecule. In some embodiments, the polynucleotide can be an amplified clone. In some embodiments, the amplified clone is produced by PCR. In some embodiments, the PCR is emulsion PCR. In some embodiments, the amplification takes place in a semisolid support. In some embodiments, the amplification takes place on a solid support.
- the first sequencing chemistry or the second sequencing chemistry can be a sequencing by ligation chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a reversible terminator chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a pyrosequencing chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be sequencing by ligation chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry are reversible terminator chemistry.
- the clonal library comprises the genome of an organism of interest.
- the organism of interest is prokaryotic.
- the organism of interest is eukaryotic.
- the clonal library comprises clones derived from amplicons derived from a genome of interest.
- the clonal library is derived from a nucleic acid library.
- Still further aspects of the present teachings relate to systems for determining a base sequence of polynucleotides.
- the system for determining a base sequence of a polynucleotide of interest comprises an array of polynucleotides for analysis; a flow cell containing the array and having at least one input port; a reservoir set comprising a first set of nucleic acid sequencing reagents, wherein the reservoir set is connection with an input port; a reservoir set comprising a second set of nucleic acid sequencing reagents, wherein the reservoir set is in fluid connection with an input port; a first optical signal collector configured to detect optical signal generated by reactions between the first set of nucleic acid sequencing reagents and the polynucleotides for analysis; and a second optical signal collector configured to detect optical signal generated by reactions between the second set of nucleic acid sequencing reagents and the polynucleotides for analysis.
- imaging of reactions from two or more sets of sequencing reagents can be carried out simultaneously.
- the first optical signal collector and the second optical signal collector are the same component.
- at least one of the optical signal collectors comprises a CCD.
- the system further comprises a laser configured to induce excitation of fluorescent signal present on the array of polynucleotides.
- FIG. 1 depicts a flow chart demonstrating one embodiment for analyzing a sequence of a polynucleotide. Two different sequencing chemistries are used to determine a sequence.
- FIG. 2 depicts a flow chart demonstrating another embodiment for analyzing a sequence of a polynucleotide. Two different sets of nucleic acid sequencing reagents are used to determine a sequence.
- FIG. 3 depicts a flow chart demonstrating another embodiment for analyzing a sequence of a polynucleotide. Sequencing by ligation and pyrosequencing are used to determine a sequence.
- the present teachings provide, among other things, methods and apparatuses that facilitate more effective sequencing, such as through more accurate nucleic acid sequencing and/or greater read length.
- the present teachings provide methods and apparatus for the highly multiplexed parallel sequencing of nucleic acids.
- a sequence can be analyzed by at least two different sequencing chemistries. This use of multiple sequencing chemistries can increase the accuracy of the sequence of individual clones and the accuracy of a final compiled sequence derived from multiple clones. Different sequencing chemistries tend to produce different errors. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination. In various embodiments, three or more different sequencing chemistries are employed. In some embodiments, all or part of the sequencing steps using the various chemistries can be carried out simultaneously.
- the present teachings further provide, among other things, systems, methods, kits and apparatuses for detecting the sequencing reactions.
- nucleic acid sequencing chemistry refers to a type of chemistry and associated methods used to sequence a polynucleotide to produce a sequencing result.
- a wide variety of sequencing chemistries are known in the art. Examples of various types of sequencing chemistries useful in various embodiments disclosed herein include, but are not limited to, Maxam-Gilbert sequencing, chain termination methods, dye-labeled terminator methods, sequencing using reversible terminators, sequencing of nucleic acid by pyrophosphate detection (“pyrophosphate sequencing” or “pyrosequencing”) and sequencing by ligation.
- pyrophosphate sequencing or “pyrosequencing”
- sequencing reagents refers to reagents used for sequencing of nucleic acid. Depending on the type of sequencing chemistry, various sequencing reagents can be used. “Sequencing reagents” includes, but are not limited to, appropriate primers, nucleotides, dideoxynucleotides, reverse transcriptase, RNAse, nucleic acid polymerizing agent (e.g. Taq polymerase), RNA polymerizing agents (e.g. Q ⁇ replicase), detectable labels, cleavable linkers, magnesium, ligation agents, cleavage reagents, universal bases, etc.
- nucleic acid polymerizing agent e.g. Taq polymerase
- RNA polymerizing agents e.g. Q ⁇ replicase
- the four different dideoxynucleotides are labeled with different fluorescent dyes (e.g., for automated nucleic acid sequence analysis).
- fluorescent dyes e.g., for automated nucleic acid sequence analysis.
- Skilled artisans can select appropriate reagents. Exemplary types of sequencing chemistries are listed above, and several are described in more detail below.
- different strands of a polynucleotide refers to nucleic acid strands which are not from the same strand of a duplex polynucleotide.
- the different strands may or may not be complementary, or may share an overlapping region of complementarity.
- the number of overlapping nucleotides can vary from one nucleotide to complete overlap of the entire region.
- the different strands of a polynucleotide share an overlapping region of complementarity of at least five nucleotides.
- the different strands of a polynucleotide share an overlapping region of complementarity of at least ten nucleotides.
- first region of a polynucleotide refers to a first segment of a polynucleotide for which sequence information is desired.
- the first region may be of any length or sequence.
- the first region of a polynucleotide may comprise a fragment of a larger polynucleotide.
- the first region of a polynucleotide and second region of the polynucleotide may be on different strands, or the same strand, of the polynucleotide.
- the second region of a polynucleotide may comprise a fragment of a polynucleotide.
- the second region of a polynucleotide is on a different polynucleotide fragment than a first region of the polynucleotide.
- the second region of a polynucleotide is on the same polynucleotide fragment as a first region of the polynucleotide.
- a third or additional regions are contemplated.
- first set of nucleic acid sequencing reagents refers to a set of reagents used for sequencing to produce a sequencing result that is to be compared to the sequencing result obtained using one or more other sets of nucleic acid sequencing reagents.
- second set of nucleic acid sequencing reagents refers to a set of reagents used for sequencing to produce a sequencing result that is to be compared to the sequencing result of one or more other sets of nucleic acid sequencing reagents. Sequencing reagents may vary depending on the type of sequencing. The second set of nucleic acid sequencing reagents may or may not be the same as the first set of nucleic acid sequencing reagents. In various embodiments, a third or additional sets can be employed.
- first set of nucleic acid sequencing reagents are different from the second set of nucleic acid
- first or second set of nucleic acid sequencing reagents contains at least one component that is not in the other set.
- the first and second sets of nucleic acid sequencing reagents can be used to perform different types of sequencing chemistry, but with at least one differing reagent.
- the first and second sets of nucleic acid sequencing reagents can be used to perform the same type of sequencing chemistry, but with at least one differing reagent.
- polynucleotide and “oligonucleotide” are used interchangeably and mean single-stranded and double-stranded polymers of nucleotide monomers (nucleic acids), including, but not limited to, 2′-deoxyribonucleotides (nucleic acid) and ribonucleotides (RNA) linked by internucleotide phosphodiester bond linkages, e.g. 3′-5′ and 2′-5′, inverted linkages, e.g. 3′-3′ and 5′-5′, branched structures, or analog nucleic acids.
- nucleotide monomers nucleic acids
- nucleic acids including, but not limited to, 2′-deoxyribonucleotides (nucleic acid) and ribonucleotides (RNA) linked by internucleotide phosphodiester bond linkages, e.g. 3′-5′ and 2′-5′, inverted linkages, e.g. 3′-3′
- Polynucleotides have associated counter ions, such as H + , NH 4 + , trialkylammonium, Mg 2+ , Na + and the like.
- a polynucleotide can be composed entirely of deoxyribonucleotides, entirely of ribonucleotides, or chimeric mixtures thereof.
- Polynucleotides can be comprised of nucleobase and sugar analogs. Polynucleotides typically range in size from a few monomeric units, e.g. 5-40 when they are more commonly frequently referred to in the art as oligonucleotides, to several thousands of monomeric nucleotide units.
- nucleotides are in 5′ to 3′ order from left to right and that “A” denotes deoxyadenosine, “C” denotes deoxycytidine, “G” denotes deoxyguanosine, and “T” denotes thymidine.
- nucleic acid sequence or “nucleobase sequence” is any section of a polymer that comprises nucleobase-containing subunits.
- suitable polymers or polymer segments include oligonucleotides, oligoribonucleotides, peptide nucleic acids and analogs and chimeras thereof.
- immobilized is art-recognized and, when used with respect to a nucleic acid, refers to a condition in which the nucleic acid is attached to a surface with an attractive force stronger than attractive forces that are present in the intended environment of use of the surface, and that act on the species.
- organism is used herein to indicate any living or nonliving entity that comprises nucleic acid that is capable of being replicated and is of interest for sequence determination. It includes, without limitation, plasmids, viruses, prokaryotic, archaebacterial and eukaryotic cells, cell lines, fungi, protozoa, plants, animals, etc.
- closed complex single molecule sequencing refers to a sequencing chemistry based on pyrosequencing involving the natural catalytic cycle of DNA polymerase to capture a single nucleotide on an immobilized primer/template. Closed complex single molecule sequencing chemistry and corresponding sequencing reagents are described, for example, in U.S. Pat. No. 7,264,934.
- nanoscale fluidic sequencing refers to a sequencing chemistry involving nanopores to measure an electric current from individual DNA molecules that will identify individual bases.
- FIG. 1 depicts a flowchart showing steps that can be used to perform a variety of methods or procedures.
- the sequence of a first region of a polynucleotide is determined using a first sequencing chemistry 10 .
- a sequence of a second region of the polynucleotide is determined using a second sequencing chemistry 20 .
- the two sequences are then compared 30 . Any differences in the two sequences are thereby identified, thus obtaining a more accurate sequencing result.
- FIG. 2 depicts a flowchart showing steps that can be used in some embodiments.
- a first nucleic acid sequence can be determined for a first region of a polynucleotide using a first set of nucleic acid sequencing reagents 40 .
- a second nucleic acid sequence can be determined for second region of the polynucleotide using a second set of nucleic acid sequencing reagents 50 .
- the second set of nucleic acid sequencing reagents is different from the first set of nucleic acid sequencing reagents.
- the first and second region can have at least 1 nucleotide base position in common.
- the first nucleic acid sequence can then be compared to the second nucleic acid sequence 60 . Additional sequences can be determined using additional sets of nucleic acid sequencing reagents and compared to the first and second nucleic acid sequences.
- At least one error value for at least one of the bases in the first or second region of a polynucleotide can be produced using known methods.
- error values are calculated according to methods disclosed in, for example, U.S. Patent Application Publication No. 20040053246, filed Oct. 23, 2002, which is incorporated herein by reference in its entirety. The error values may be used as a basis for choosing a base identity where there is a discrepancy when comparing nucleic acid sequences.
- the base identity is selected between the first and second nucleic acid sequences based upon a lower error value for the base identity in the corresponding nucleic acid sequence compared to the base identity of the base in the other nucleic acid sequence.
- a region that may contain errors based on known issues with a sequencing chemistry is identified.
- the sequence of this region is compared to a sequence obtained using a sequencing chemistry that does not have the same error issues. For example, where the error rate for sequencing a region (e.g., an area of high GC content) is known to be higher for a first sequencing chemistry versus a second sequencing chemistry, the base identity can be selected from the sequence determined using the second sequencing chemistry.
- the sequence of a polynucleotide can be determined using a sequencing chemistry.
- sequencing chemistries known in the art.
- examples of various types of sequencing chemistries useful in various embodiments disclosed herein include, but are not limited to, Maxam-Gilbert sequencing, chain termination methods, dye terminator methods, sequencing using reversible terminators, sequencing of nucleic acid by pyrophosphate detection (“pyrophosphate sequencing” or “pyrosequencing”), sequencing by ligation, closed complex single molecule sequencing, nanoscale fluidic sequencing, and force spectroscopy platform sequencing.
- pyrophosphate sequencing or “pyrosequencing”
- sequencing by ligation sequencing by ligation
- closed complex single molecule sequencing closed complex single molecule sequencing
- nanoscale fluidic sequencing and force spectroscopy platform sequencing.
- Reversible terminator methods use reversible versions of labeled terminators, adding one nucleotide at a time, detecting the label corresponding to that position, then removing the blocking group to allow the polymerization of another nucleotide.
- Blocking groups of reversible terminators may be present at either the 3′ position or the 5′ position.
- the reversible terminators may have removable blocking groups on the nucleotide base or 2′ position that serve to prevent extension of polynucleotide after incorporating of the reversible terminator until the blocking group is removed.
- sequencing using reversible terminators include, but are not limited to, sequencing using nucleosides and nucleotides that are linked to detectable labels via a cleavable linker group as described in U.S. Pat. Nos. 7,057,026 and 6,664,079; sequencing using protected nucleotides as described in U.S. Pat. Nos. 5,763,594, 5,808,045, 5,990,300, 6,232,465 and 5,872,244; sequencing using reversibly blocked nucleotides as described in PCT Publication Nos. WO 91/06678 and WO 2006/074351; sequencing by a base addition sequencing scheme as disclosed in PCT Publication No.
- Pyrosequencing is a technique in which a complementary sequence is polymerized using an unknown sequence (the sequence to be determined) as the template. Each time a new nucleotide is polymerized onto the growing complementary strand, a pyrophosphate (PPi) molecule is released. This release of pyrophosphate is then detected. Iterative addition of the four nucleotides (dATP, dCTP, dGTP, dTTP) or of analogs thereof (e.g., ⁇ -thio-dATP), accompanied by monitoring of the time and extent of pyrophosphate release, permits identification of the nucleotide that is incorporated into the growing complementary strand.
- dATP dCTP
- dGTP dGTP
- dTTP dTTP
- analogs thereof e.g., ⁇ -thio-dATP
- Examples of pyrosequencing include, but are not limited to, sequencing using sulfurylase-luciferase fusion proteins as disclosed in PCT Publication No. WO 03/054142; sequencing using a system as described in U.S. Pat. No. 6,841,128; sequencing using enzymatic detection of release of pyrophosphate as described in U.S. Pat. No. 6,210,891; sequencing using base incorporation by the release of pyrophosphate and simultaneous enzymatic nucleotide degradation as described in U.S. Pat. No. 6,258,568; sequencing using densely packed, independent chemical reactions in parallel in a substantially two-dimensional array as described in PCT Publication No. WO 03/004690; and sequencing using 3′-O-modified deoxynucleoside triphosphates as described in PCT Publication No. WO 2007/002204.
- Sequencing by stepwise ligation and cleavage is based on repeated cycles of ligation to and cleavage of probes at the terminus of a target polynucleotide. For example, at each such cycle one or more terminal nucleotides are identified and one or more nucleotides are removed from the end of the target polynucleotide, such that further cycles of ligation and cleavage can take place. At each cycle the target sequence is shortened by one or more nucleotides until the nucleotide sequence of the target polynucleotide is determined. Examples of sequencing by ligation include, but are not limited to, sequencing by cycled oligonucleotide ligation and cleavage as described in PCT Publication No.
- WO 2006/084132 sequencing by counting fluorescently-labeled particles via flow cytometry as described in PCT Publication No. WO 2005/010145; sequencing based on repeated cycles of duplex extension along a single stranded template as described in U.S. Pat. No. 6,306,597; sequencing by producing a ligation product hybridized to a template nucleic acid as described in U.S. Pat. No. 5,403,708; and sequencing by stepwise ligation and cleavage as described in U.S. Pat. No. 5,552,278.
- a sequence may be analyzed by at least two different sequencing chemistries. In various embodiments, three or more different sequencing chemistries are employed.
- the sequence of a first region of a polynucleotide can be determined using a first sequencing chemistry. In some embodiments the first and second regions are different regions of the same strand or complementary strands and they do not overlap. In some embodiments, the sequence of a second region of a polynucleotide can be determined using a second sequencing chemistry. The first and second sequencing chemistries can be the same or they can be different. The first and second regions can be the same, or they can be different. In other embodiments, a third sequencing chemistry is used to determine the sequence of a third region of a polynucleotide. The third region can be the same as the first and/or second regions, or it can be different. The third sequencing chemistry can be the same as the first and/or second sequencing chemistry, or it can be different. Sequencing a first, second and additional regions can be carried out simultaneously in some embodiments.
- the first sequencing chemistry or the second sequencing chemistry can be a sequencing by ligation chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a reversible terminator chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a pyrosequencing chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a closed complex single molecule sequencing chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a nanoscale fluidic sequencing chemistry. In some embodiments, the first sequencing chemistry or the second sequencing chemistry can be a force spectroscopy platform sequencing chemistry.
- the first sequencing chemistry and the second sequencing chemistry can be sequencing by ligation chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be reversible terminator chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be pyrosequencing chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be closed complex single molecule sequencing chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be nanoscale fluidic sequencing chemistry. In some embodiments, the first sequencing chemistry and the second sequencing chemistry can be force spectroscopy platform sequencing chemistry.
- the first sequencing chemistry can be a sequencing by ligation chemistry
- the second sequencing chemistry can be a reversible terminator chemistry.
- the first sequencing chemistry can be a reversible terminator chemistry
- the second sequencing chemistry can be a sequencing by ligation chemistry.
- the first sequencing chemistry can be a reversible terminator chemistry
- the second sequencing chemistry can be a pyrosequencing chemistry.
- the first sequencing chemistry can be a pyrosequencing chemistry
- the second sequencing chemistry can be a reversible terminator chemistry.
- the first sequencing chemistry can be a sequencing by ligation chemistry
- the second sequencing chemistry can be a pyrosequencing chemistry
- the first sequencing chemistry can be a pyrosequencing chemistry
- the second sequencing chemistry can be a sequencing by ligation chemistry.
- the sequencing can be carried out in an array format.
- polynucleotide fragments on an array may be subjected to a first sequencing chemistry. Subsequently, the polynucleotide fragments on the array can be subjected to a second sequencing chemistry. In other embodiments, the polynucleotide fragments on the array can be subjected to a third or more sequencing chemistries.
- a particular type of sequencing chemistry can be performed using a variety of different sets of nucleic acid sequencing reagents.
- a set of nucleic acid sequencing reagents for pyrosequencing can include apyrase.
- Another set of nucleic acid sequencing reagents for pyrosequencing may not include apyrase, but may include a dATP analogue capable of acting as a substrate for a polymerase but incapable of acting as a substrate for a PPi-detection enzyme.
- Different sets of nucleic acid sequencing reagents for sequencing with reversible terminators can include various different reversible terminators known in the art.
- a set of nucleic acid sequencing reagents can include, for example, appropriate primers, nucleic acid nucleotides, dideoxynucleotides, reverse transcriptase, RNAse, and a nucleic acid polymerizing agent (e.g. Taq polymerase).
- a set of nucleic acid sequencing reagents for stepwise ligation and cleavage sequencing can include, for example, an RNA polymerizing agent (e.g. Q ⁇ replicase), detectable labels, cleavable linkers, magnesium, ligation agents, cleavage reagents, and universal bases.
- a set of nucleic acid sequencing reagents for sequencing by ligation can include, for example, an appropriate primers, ligase (e.g., T4 DNA ligase), and AgNO 3 .
- a set of nucleic acid sequencing reagents for sequencing by ligation can include, for example, octanucleotide probes with 4-fold degenerate bases and DNA ligase.
- a set of nucleic acid sequencing reagents for sequencing by ligation can include, for example, labeled oligonucleotides, such as those described in, for example, U.S. Pat. No. 5,750,341.
- a set of nucleic acid sequencing reagents for sequencing by ligation can include, for example, any of the reagents for the SOLiD method as described in PCT Publication No. WO 06/084132.
- a set of nucleic acid sequencing reagents for pyrosequencing can include, for example, ATP sulfurylase, apyrase, luciferin and luciferase.
- set of nucleic acid sequencing reagents for pyrosequencing can include, for example, a specific primer that hybridizes to a sample nucleic acid such that the target position is directly adjacent to the 3′ end of the primer, a polymerase, a detection enzyme means for identifying pyrophosphate release, deoxynucleotides including a dATP analogue capable of acting as a substrate for a polymerase but incapable of acting as a substrate for a PPi-detection enzyme, and optionally, dideoxynucleotides.
- the sequence of the first region of a polynucleotide can be determined using a first set of nucleic acid sequencing reagents. In some embodiments, the sequence of the second region of a polynucleotide can be determined using a second set of nucleic acid sequencing reagents. In some embodiments, the first set of nucleic acid sequencing reagents is different from the second set of nucleic acid sequencing reagents. In some embodiments, the first set of nucleic acid sequencing reagents is used to perform the same type of sequencing chemistry as a second set of nucleic acid sequencing reagents.
- the first set of nucleic acid sequencing reagents is different from the second set of nucleic acid sequencing reagents; and the first set of nucleic acid sequencing reagents is used to perform the same type of sequencing chemistry as a second set of nucleic acid sequencing reagents. In some embodiments, the first set of nucleic acid sequencing reagents is used to perform a different type of sequencing chemistry than the second set of nucleic acid sequencing reagents.
- the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry. In some embodiments, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry. In some embodiments, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry.
- the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a closed complex single molecule sequencing chemistry. In some embodiments, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a nanoscale fluidic sequencing chemistry. In some embodiments, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a force spectroscopy platform sequencing chemistry.
- the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry. In some embodiments, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry. In some embodiments, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry. In some embodiments, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a closed complex single molecule sequencing chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry.
- the first region of a polynucleotide and the second region of the polynucleotide can overlap.
- the first and second regions of a polynucleotide can overlap by at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30 or more nucleotides.
- the overlapping regions can be on the same strand or may be determined from a complementary strand, wherein different sequencing chemistries are applied to the different strands. Nucleic acid base sequence calls in the overlapping regions can be compared with one another to obtain greater accuracy in the overlapping regions.
- the first and second regions of a polynucleotide can overlap completely.
- the first and second regions of a polynucleotide do not overlap. In some embodiments, the first and second regions of a polynucleotide can be adjacent to one another.
- the first region can be bases 1-10, and the second region can be bases 11-20.
- the first region of a polynucleotide and the second region of the polynucleotide can be on different strands of the polynucleotide. In various embodiments, the first region of a polynucleotide and the second region of the polynucleotide can be on different strands of the polynucleotide and be complementary. In other embodiments, the first region of a polynucleotide and the second region of the polynucleotide can be on the same strand of the polynucleotide. In various embodiments, the first region of a polynucleotide and the second region of the polynucleotide can be on the same strand of the polynucleotide and overlap.
- the first and second sequencing chemistries can be used to sequence or resequence the same polynucleotide fragment. In other embodiments, the first and second sequencing chemistries can be used to sequence different regions of the same clone. In some embodiments, the first and second chemistries can be applied to different, non-overlapping regions of the same strand of a polynucleotide, or complementary strands. In other embodiments, the first and second sequencing chemistries can be used to sequence partially overlapping regions of the same clone. For example, the first and second sequencing chemistries can be used to sequence from different direct directions on the same strand.
- he polynucleotide for sequencing can be prepared in essentially the same manner as a sample for sequence analysis in any number of traditional methods of highly multiplexed parallel sequencing. Such methods result in the clonal amplification of single DNA molecules so as to provide large enough quantities of target DNA for the sequencing chemistry and detection system employed.
- the clonal amplification products can be on a solid support.
- multiple clones may be on a single solid support.
- multiple solid supports, each containing an individual clone may be immobilized on a second solid support so as to maintain separation between the clones.
- Emulsion PCR on solid supports is described, for example, in PCT Publication No. WO 02/103011A2, PCT Publication No.
- the polynucleotide to be sequenced can be a single molecule.
- the polynucleotide can consist of any number of nucleotides.
- the polynucleotide can consist of about 1 nucleotide to about 20,000 nucleotides. In some embodiments, the polynucleotide can consist of about 20 nucleotides to about 2,000 nucleotides. In some embodiments, the polynucleotide consists of about 100 to 500 nucleotides.
- the polynucleotide for sequencing may be fragmented. Fragmentation of the polynucleotide may be carried out by any of a number of different methods known in the art.
- the polynucleotide may be digested with a nuclease, such as DNAse I.
- the nucleic acid may be randomly sheared, for example, by sonication or by passage through a tube having a small orifice. It is also contemplated that the nucleic acid may also be partially digested with one or more restriction enzymes, such that certain points of cross-over may be retained statistically.
- the polynucleotide may be fragmented into a plurality of polynucleotide fragments.
- the polynucleotides to be sequenced can contain one or more universal priming sites or known or predetermined sequence. Universal priming sites can be introduced in a variety of ways, including, for example, ligation, amplification primers, and cloning vectors.
- oligonucleotide adapters can be ligated to one or both ends of the polynucleotide fragments.
- the oligonucleotide adapters may be useful for amplifying the polynucleotide fragments.
- the sequence of the ligated adapters may serve as binding sites for polymerase chain reaction (PCR)-based amplification.
- clonally amplifying at least a portion of the polynucleotide fragments produces a set of fragment clones.
- the polynucleotide can be clonally amplified through techniques such as PCR, for example, such as emulsion PCR and bridge PCR, or polony formation, which are described in, for example, U.S. Pat. Nos. 5,616,478, 5,958,698, 6,001,568, 5,641,658, 6,060,288, 6,090,592, PCT Publication Nos.
- the amplification can be solid phase amplification.
- emulsion PCR can be used to amplify polynucleotides.
- Methods for forming emulsions are known in the art.
- emulsions can be formed by mixing an aqueous phase with an oil phase.
- amplification can be carried out using a water-in-oil including, for example, numerous droplets of the PCR reaction mixture in a bulk oil phase.
- the PCR method can consist of a two-step thermal cycle. The first step can be carried out using the water-in-oil emulsion. During this step, the template DNA can be amplified in the limited volume of the droplets in the water-in-oil emulsion. The water-in-oil emulsion can then be broken and the second PCR step can be carried out.
- bridge PCR can be used to amplify polynucleotides.
- Bridge PCR is described in, among other places, U.S. Pat. No. 5,641,652 and PCT published application WO/08002502A2.
- Bridge PCR may be used to effect clonal amplification.
- Bridge amplification is a technology that uses primers bound to a solid phase for the extension and amplification of solution phase target nucleic acid sequences. During the annealing step, the extension product from one bound primer forms a bridge to the other bound primer. All amplified products are covalently bound to the surface, and can be detected and quantified without electrophoresis.
- primers carrying 5′-amines can be covalently attached to, for example, silica, polymethylmethacrylate, or polystyrene bead supports and used in place of solution phase primers under standard PCR reaction conditions. Amplification reactions can be monitored by the incorporation of 32 P-labeled deoxynucleotide triphosphates into support-bound form.
- polony formation can be used to amplify polynucleotides.
- Polony technology is a form of PCR in which the reaction is immobilized in, for example, a thin polyacrylamide gel attached to a microscope slide. As the PCR proceeds, the PCR products diffuse radially within the gel from its immobilized template (e.g., polynucleotides), giving rise to a circular PCR product, or polymerase colony.
- immobilized template e.g., polynucleotides
- the polynucleotide can be a clone, such as, for example, a gene that is transferred from one organism to another and replicated by genetic engineering techniques.
- the clone can be amplified.
- the nucleic acid sequencing chemistry can be applied to a clonal library derived from a polynucleotide of interest.
- the clonal library may comprise the genome of an organism of interest.
- the organism of interest is prokaryotic.
- the organism of interest is eukaryotic.
- the clonal library may comprise clones derived from amplicons derived from a genome of interest.
- the clonal library may be derived from a nucleic acid library.
- the polynucleotide or polynucleotide fragments can be immobilized on a solid support.
- Single clones of a polynucleotide fragment for analysis can be present on single solid supports, e.g., a single clone on a single bead. In other embodiments, multiples clones can be present and spacially separated from one another on a single solid support.
- amplification and/or sequencing of the polynucleotide or fragments can take place on a solid support.
- a solid support can be any solid phase material upon which a polynucleotide or oligonucleotide can be synthesized, attached or immobilized.
- a solid support can be composed of organic polymers such as polystyrene, polyethylene, polypropylene, polyfluoroethylene, polyethyleneoxy, and polyacrylamide, as well as co-polymers and grafts thereof.
- a solid support can also be inorganic, such as, for example, glass, silica, controlled-pore-glass (CPG), or reverse-phase silica.
- CPG controlled-pore-glass
- the configuration of a solid support can be in the form of beads, spheres, particles, granules, a gel, a surface, or combinations thereof. Surfaces can be planar, substantially planar, or non-planar.
- Solid supports can be porous or non-porous, and can have swelling or non-swelling characteristics.
- a solid support can be configured in the form of a well, depression or other container, vessel, feature or location or position.
- Useful solid supports are well known in the art and include those which bind nucleic acids either covalently or non-covalently.
- Noncovalent supports which are generally understood to involve hydrophobic bonding include naturally occurring and synthetic polymeric materials, such as nitrocellulose, derivatized nylon, and fluorinated polyhydrocarbons, in a variety of forms such as filters or solid sheets.
- Covalent binding supports are also useful and comprise materials having chemically reactive groups or groups, such as dichlorotriazine, diazobenzyloxymethyl, and the like, which can be activated for binding to polynucleotides.
- amplification of the polynucleotide can take place in a semisolid support.
- Solid refers to a compressible matrix with both a solid and a liquid component, wherein the liquid occupies pores, spaces or other interstices between the solid matrix elements.
- Exemplary semi-solid matrices include matrices made of polyacrylamide, cellulose, polyamide (nylon), and cross-linked agarose, dextran and polyethylene glycol.
- a semi-solid support may be provided on a second support, e.g., a substantially planar, rigid support, also referred to as a substrate, which supports the semi-solid support.
- the amplified polynucleotides or polynucleotide fragments can be present on an array.
- the array may comprise individual molecules rather than clones.
- an array of polynucleotides encompasses an arrangement of polynucleotides present on a solid support or in an arrangement of vessels.
- An array includes without limitation random arrays, such as, for example, bead arrays.
- zipcodes i.e., sequence tags, can be used to sort on an array. Certain array formats are referred to as a “chip” or “biochip” (M. Schena, Ed.
- An array can comprise a low-density number of addressable locations, e.g. 1 to about 12, medium-density, e.g. about a hundred or more locations, or a high-density number, e.g. a thousand or more.
- the array format can be a geometrically-regular shape that allows for fabrication, handling, placement, stacking, reagent introduction, detection, and storage.
- the array can be configured in a row and column format, with regular spacing between each location.
- the locations can be bundled, mixed, or homogeneously blended for equalized treatment and/or sampling.
- An array can comprise a plurality of addressable locations configured so that each location is spatially addressable for high-throughput handling, robotic delivery, masking, and/or sampling of reagents and/or by detection means including scanning by laser illumination and confocal and/or deflective light gathering.
- the array may comprise one or more “addressable locations,” e.g., “addressable positions,” that is, physical locations that comprise a known type of molecule.
- fiducials may be scattered among the samples to be analyzed to aid in the image analysis or alignment.
- the samples further comprise at least one fiducial.
- fiducial or “marker” or “registration point” herein is meant a physical reference feature or characteristic that allows precise comparisons of sequential data images of an array.
- the use of fiducials is useful for a variety of reasons.
- the sequencing methods can involve monitoring of objects, i.e. nucleic acids, located at spatially distinct locations (features) over the course of several data image frames taken over time. Any shifting that occurs from frame to frame complicates the analysis of the agents.
- each data image can be aligned, either manually or automatically, to allow accurate comparison of the images, and control for translation (i.e. a shift in an X-Y direction) and/or rotation as well as reduction or enlargement of the image.
- translation i.e. a shift in an X-Y direction
- rotation i.e. a shift in an X-Y direction
- reduction or enlargement of the image when fluorescence based assays are used (either for decoding or analyte assaying or both), in any given image, a particular region or feature may or may not emit fluorescence, depending on the label characteristics and the wavelength being interrogated, or the presence or absence of an analyte or DBL, etc.
- image analysis can be carried out simultaneously detectable signal produced by two or more sets of reagents.
- sequencing chemistries generate a detectable signal indicative of the presence of a specific nucleotide base.
- an optical signal such as a fluorescent, calorimetric, chemiluminescent, radioactive or mass tag (for use, for example, with mass spectrometry) signal may be generated. Therefore, it is desirable to have a system having multiple types of detection systems to detect each type of signal of interest.
- a system for determining a base sequence of a polynucleotide of interest can comprise a flow cell containing polynucleotides for analysis having at least one input port; a reservoir set comprising a first set of nucleic acid sequencing reagents, wherein the reservoir set is connection with an input port; a reservoir set comprising a second set of nucleic acid sequencing reagents, wherein the reservoir set is in fluid connection with an input port; a first optical signal collector configured to detect optical signal generated by reactions between the first set of nucleic acid sequencing reagents and the polynucleotides for analysis; and a second optical signal collector configured to detect optical signal generated by reactions between the second set of nucleic acid sequencing reagents and the polynucleotides for analysis.
- the body of the flow cell can comprise at least one inlet port and at least one reservoir set.
- the flow cell can comprise two reservoir sets.
- the inlet port and reservoir set can be formed by standard micromachining techniques, e.g. Ekstrom et al., International patent application PCT/SE91/00327; Brown, U.S. Pat. No. 4,911,782; Harrison et al., Anal. Chem. 64: 192-1932 (1992); and the like.
- the flow cell may be constructed from any of several different materials including glass, silicon, polyethylene, polyester, teflon, other plastics, and the like.
- key functions of the flow cell include i) holding a population of polynucleotides in a substantially immobilized planar array, or monolayer, during a sequence of processing steps, ii) ensuring that nucleic acid sequencing reagents can access each polynucleotide during each step of a process, and iii) minimizing processing reagent usage.
- the degree of immobilization required may vary among different embodiments.
- the first optical signal collector and the second optical signal collector are the same component.
- one of the optical signal collectors comprises a CCD.
- the system further comprises a laser configured to induce excitation of fluorescent signal present on the array of polynucleotides.
- the first optical signal collector or second optical signal collector detects fluorescent signals. In some embodiments of the system, the first optical signal collector and second optical signal collector detects fluorescent signals. In some embodiments of the system, the first optical signal collector or second optical signal collector detects chemiluminescent signals. In other embodiments, the system can have detection systems for detecting both calorimetric signals and chemiluminescent signals. In other embodiments, the system can have detection systems for detecting both fluorescent signals and chemiluminescent signals. In other embodiments, the system can have detection systems for detecting fluorescent, colorimetric signals and chemiluminescent signals.
- the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a closed complex single molecule sequencing chemistry.
- the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a nanoscale fluidic sequencing chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents or the second set of nucleic acid sequencing reagents can be a set of reagents for a force spectroscopy platform sequencing chemistry.
- the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry.
- the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a closed complex single molecule sequencing chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a nanoscale fluidic sequencing chemistry. In some embodiments of the system, the first set of nucleic acid sequencing reagents and the second set of nucleic acid sequencing reagents can be a set of reagents for a force spectroscopy platform sequencing chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a reversible terminator chemistry.
- the first set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the first set of nucleic acid sequencing reagents can be a set of reagents for a pyrosequencing chemistry
- the second set of nucleic acid sequencing reagents can be a set of reagents for a sequencing by ligation chemistry.
- the two or more sequencing techniques or sets of sequencing reagents used at the same, concurrent, or overlapping times that is, in some embodiments, two or more of the sequencing methods occur during a same time (although they need not start and stop at the same time in all embodiments). In some embodiments, the two techniques occur in a same room. In some embodiments, the two or more sequencing techniques (e.g., use of the sequencing reagents) can occur at separate times and the initial starting material (e.g., amplified product) can be from the same amplified sample. Thus, in some embodiments, after amplifying a sample one can divide the sample for subsequent application on the various sequencing methods.
- the initial starting material e.g., amplified product
- kits are provided for the multiple sequencing process.
- the kits can comprise reagents for amplification of a starting target nucleic acid sequence, a first set of reagents for sequencing a starting target nucleic acid sequence, a second set of reagents for sequencing the starting target nucleic acid sequence (where the two sets are different from one another).
- the amplification reagents are not included.
- a set of instructions and error identification guides can be included. Such material can be, for example, in print or in digital form.
- sequencing instruments are provided that are able to sequence nucleic acids using two or more sequencing techniques.
- the instrument can be used to simultaneously sequence two or more nucleic acids, in part or in whole, using two are more different sequencing techniques.
- the instrument can include, for example, one or more flow cells including one or more reservoirs and one or more optical signal collectors.
- the sequencing instruments can process signals from two more sequencing chemistries.
- instruments are provided that include data processing capability for comparing the results of the multiple sequencing techniques and selecting the optimal sequence (e.g., least error prone) from each identified sequence based upon the likelihood of an error (or error rate) in one sequence technique compared to the other sequencing technique.
- an instrument can have both sequencing signal processing capabilities and data processing capabilities for two or more sequencing chemistries.
- Instruments for processing signals from multiple sequencing chemistries and/or processing data for comparing results can include, for example, means for receiving raw or clean sequencing data, at least one processor, and/or a storage device for storing standard sequencing data.
- the instruments include or be connected to a video display or communications link to another instrument, such as, for example, a computer.
- a computer program is included (or can be provided separately) that compares the results of the multiple sequencing techniques and selects the optimal sequence (e.g., least error prone) from each identified sequence based upon the likelihood of an error (or error rate) in one sequence technique compared to the other sequencing technique.
- the program selects the most accurate sequence (or removes the least accurate sequence) for each sequence obtained based upon the likelihood of an error for the specific technique used to obtain the sequence and combines the sequences. In this manner, a single complete, highly accurate, sequence can be provided by the program.
- the program performs any of the methods described herein.
- the computer program can be used in conjunction with an instrument for processing data from multiple sequencing techniques.
- the computer program can be implemented using any multipurpose computer including those generally referred to as personal computers and mini-computers.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide using sequencing by ligation and pyrosequencing.
- the polynucleotide for sequencing is prepared by fragmenting the polynucleotide and clonally amplifying the fragments through emulsion PCR as described below. After amplification, a first region of the polynucleotide is subjected to sequencing using sequencing by ligation, as described below, to determine a first sequence ( FIG. 3 at 70 ). Next, a second region of the polynucleotide is subjected to pyrosequencing, as described below, using to determine a second sequence ( FIG. 3 at 80 ). The first sequence is compared to the second sequence ( FIG. 3 at 90 ).
- Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide using sequencing by ligation and pyrosequencing.
- the polynucleotide for sequencing is prepared by fragmenting the polynucleotide and clonally amplifying the fragments through emulsion PCR as described below. After amplification, a first region of the polynucleotide is subjected to sequencing using sequencing by ligation, as described below, to determine a first sequence. Next, a second region of the polynucleotide is subjected to sequencing using reversible terminators to determine a second sequence. The first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide using sequencing by ligation and pyrosequencing.
- the polynucleotide for sequencing is prepared by fragmenting the polynucleotide and clonally amplifying the fragments through emulsion PCR as described below. After amplification, a first region of the polynucleotide is subjected to sequencing using reversible terminators to determine a first sequence. Next, a second region of the polynucleotide is subjected to pyrosequencing, as described below, using to determine a second sequence. The first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence using a first set of nucleotide sequencing reagents and a second set of nucleotide sequencing reagents.
- the polynucleotide for sequencing is prepared by fragmenting the polynucleotide and clonally amplifying the fragments through, for example, polony amplification as described below. After amplification, a first region of the polynucleotide is subjected to sequencing using a first set of sequencing reagents to determine a first sequence.
- the first set of sequencing reagents comprises an RNA polymerizing agent (e.g. Q ⁇ replicase), detectable labels, cleavable linkers, magnesium, ligation agents, cleavage reagents, and universal bases.
- a second region of the polynucleotide is subjected to sequencing using a second set of sequencing reagents to determine a second sequence.
- the second set of sequencing reagents comprises primers, a modified T7 nucleic acid polymerase or exonuclease deficient Klenow nucleic acid polymerase, deoxynucleoside triphosphates, and apyrase.
- the first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence by determining a sequence of a first region of the polynucleotide with a first sequencing chemistry and determining a sequence of a second region of the polynucleotide with a second sequencing chemistry.
- a first region of the polynucleotide is subjected to sequencing using pyrosequencing to determine a first sequence.
- a second region on a different strand (i.e., the complementary strand) of the polynucleotide that is adjacent to the first region of the polynucleotide is subjected to sequencing using sequencing by ligation to determine a second sequence.
- the first sequence is compared to the second sequence.
- Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for the extension of read length by using two different sets of sequencing reagents to read along one strand of a polynucleotide.
- a first region of the polynucleotide is subjected to sequencing using a set of sequencing reagents for sequencing by ligation.
- a second region of the polynucleotide which is along the same strand as the first region of the polynucleotide is subjected to sequencing using a second set of sequencing reagents that is different from the first set of sequencing reagents, to extend the final ligation product from sequencing of the first region of the polynucleotide.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide that overlap by sequencing with reversible terminators and sequencing by ligation.
- a first region of the polynucleotide is subjected to sequencing using pyrosequencing to determine a first sequence.
- a second region on the same strand of the polynucleotide that overlaps the first region of the polynucleotide by ten nucleotides is subjected to sequencing using sequencing by ligation to determine a second sequence.
- the first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing the same polynucleotide region using two different sequencing chemistries.
- a region of the polynucleotide is subjected to sequencing using pyrosequencing to produce a first nucleic acid sequence.
- the same region of the polynucleotide is subjected to sequencing by ligation to produce a second nucleic acid sequence.
- the first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide, the two regions being on different strands and overlapping completely.
- a first region of the polynucleotide is subjected to sequencing using pyrosequencing to determine a first sequence.
- a second region on a different strand of the polynucleotide that overlaps completely with the first region of the polynucleotide is subjected to pyrosequencing to determine a second sequence.
- the first sequence is compared to the second sequence. Concordance or discordance between the data from the two different chemistries can be taken into account when making a final base call for a given position. Variations in the base and sequence biases of the different chemistries may be also be taken into account when making a final sequence determination.
- This example illustrates possible methods for analysis of a polynucleotide sequence using error values obtained by sequencing using a first set and a second set of nucleic acid sequencing reagents.
- a first portion of a set of fragment clones is sequenced using a first set of nucleic acid sequencing reagents. From this sequencing, a first nucleotide base sequence assembly is produced. Error values for at least some of the bases in a nucleic acid sequence in the first nucleotide base sequence are produced.
- a second portion of the set of fragment clones is sequenced with a second set of nucleic acid sequencing reagents. From this sequencing, a second nucleotide base sequence assembly is produced. Error values for at least some of the bases in the second nucleotide base sequence assembly are produced.
- the first nucleotide base sequence assembly is compared with the second nucleotide base sequence assembly.
- At least one base identity is selected between the first and second base sequence assemblies based upon a lower error value for the base identity in the corresponding nucleotide base sequence assembly compared to the base identity of the base in the other base sequence assembly. For example, if the error value of the base identity in the first nucleotide sequence assembly is X, and the error value of the base identity in the second nucleotide sequence is ⁇ X, then the identity for the base at that location is selected as the base identity in the second nucleotide sequence.
- Microemulsions for PCR can be prepared by slight modifications of previously described methods.
- the oil phase can be composed of 4.5% Span 80 (S6760, Sigma, St.
- the forward primer can be an oligonucleotide whose sequence is identical to the 3′ 20-22 nt of the polynucleotide of interest. In some embodiments, a small amount of forward primer is not modified with biotin to maximize the amplification reaction.
- water-in-oil microemulsions can be prepared by drop wise addition of 200 microliters of the aqueous phase to 400 microliters of the oil phase previously placed in a 2 ml round bottom cryogenic vial (430661, Coming, Coming, N.Y.). The drop wise addition may be performed over one minute while the mixture is stirred at 1400 RPM with a magnetic microstir bar (58948-353, VWR, Plainfield, N.J.) on, for example, a VWR model 565 magnetic stirrer. After the addition of the aqueous phase, the mixture is stirred continuously for a total time of about 30 minutes.
- a magnetic microstir bar 58948-353, VWR, Plainfield, N.J.
- Two emulsions can be made at once by placing two tubes in a rack placed at the center of a magnetic stirrer.
- PCR may be carried out under the following cycling conditions: 94° C. for 2 minutes followed by 40 cycles of: 94° C. for 15 seconds, 57° C. for 30 seconds, and 70° C. for 30 seconds.
- the PCR products analyzed can range from about 180 to 250 bp.
- the top oil phase and all but-300 microliters of the aqueous phase is removed.
- the addition of 600 microliters NX buffer, vortexing, and centrifugation is repeated once more and the top oil portion and all but 300 microliters of the aqueous phase is removed.
- the tube is then placed on a magnet (Dynal MPC-S) and the rest of the supernatant is carefully pipetted off.
- the beads are washed an additional 3 times with 1 ⁇ PCR buffer using magnetic separation rather than centrifugation and finally resuspended in 100 microliters of 1 ⁇ PCR buffer.
- Polony amplification is further described in, for example, U.S. Pat. Nos. 5,616,478, 5,958,698 and 6,001,568; and PCT Publication No. WO05082098A2, which are incorporated by reference in their entireties.
- Amplification of a polynucleotide may be carried out in a medium immobilized by using an organic and/or inorganic solid matrix penetrating the medium and having a porous, fibrous, reticulated, coiled, capillary, lamellar or folded texture and which includes the components of a cell-free enzyme system of exponential amplification of nucleic acids.
- the progeny of each molecule remain in the same zone of the reaction volume where the matrix molecule was initially located. The method permits cloning of nucleic acids in vitro as well as detection of solitary nucleic acid molecules in the sample studied.
- reaction components including buffer, a thermostable nucleic acid polymerase such as Thermus aquaticus nucleic acid polymerase, nucleic acid sample, primers, and substrates are mixed with a degassed acrylamide: N,N′-methylene bisacrylamide solution, and catalysts of acrylamide polymerization [ammonium persulphate and N,N,N′,N′-tetramethyl ethylene diamine (TEMED)].
- TEMED N,N,N′,N′-tetramethyl ethylene diamine
- a polynucleotide is sonicated to produce a polynucleotide fragment having an approximate length of 1 kb.
- Adapters containing a target sequence are annealed to at least one end of the polynucleotide fragment.
- An oligonucleotide is synthesized with a nucleotide sequence complementary to the target sequence of the polynucleotide fragment and the oligonucleotide is immobilized to an epoxy silane derivatized solid support by a 5′ amino group.
- Spacer groups of hexaethylene-glycol are included during synthesis of the oligonucleotide to eliminate steric hindrance during the hybridization reaction.
- the spacer region is introduced into the synthesized oligonucleotide prior to amino group addition, resulting in a calculated spacer region length of 25 angstroms.
- This example illustrates possible methods for amplification of a polynucleotide by pyrosequencing.
- an amplified polynucleotide of interest is used as a template for real-time nucleic acid sequencing.
- the polynucleotide is immobilized onto streptavidin-coated super paramagnetic beads (DynabeadsTM M280-Streptavidin or M450-Streptavidin), and a primer is hybridized to the immobilized template.
- the immobilized polynucleotides are incubated with either a modified T7 nucleic acid polymerase (Sequenase 2.0; U.S.
- the sequencing procedure is carried out by stepwise elongation of the primer strand upon sequential addition of the different deoxynucleoside triphosphates (Pharmacia, Biotech, Uppsala, Sweden).
- This example illustrates possible methods for the determination of a polynucleotide sequence by sequencing by ligation.
- AgNO 3 is added to this solution and the resulting mixture is incubated under conditions to allow cleavage. AgNO 3 is removed, and the beads were washed once in sodium acetate. The beads are then washed in a neutral buffer, and an aliquot is removed and saved for analysis.
- a fluorescent capillary electrophoresis gel shift assay can be used to monitor steps of ligation and cleavage.
- the primer is hybridized to a template strand such that the 5′ phosphate can serve as a ligation substrate for incoming oligonucleotide probes (the fluorophore serves as a reporter for mobility-based capillary gel electrophoresis). After each step an aliquot of beads is removed for analysis.
- the magnetic beads are collected using a magnet, and the ligated species consisting of the primer and probe(s) ligated thereto is released from the template beads by heat denaturation and subjected to fluorescent capillary electrophoresis using an automated nucleic acid sequencing instrument with labeled size standards.
- the potential peaks include, i) primer peaks (due to no extension or the lack of primer extension), ii) adenylation peaks (due to the attachment of an adenosine residue at the 5′ end of a nonproductive ligation junction by the action of nucleic acid ligase—see Lehman, I. R., Science, 186:790-797, 1974), and iii) completion peaks (due to the attachment of an oligo probe).
- This example illustrates possible methods for analysis of a polynucleotide sequence by sequencing two regions of the polynucleotide using sequencing by ligation and pyrosequencing.
- a primer means that more than one primer can, but need not, be present; for example but without limitation, one or more copies of a particular primer species, as well as one or more versions of a particular primer type, for example but not limited to, a multiplicity of different forward primers.
- the use of “comprise”, “comprises”, “comprising”, “contain”, “contains”, “containing”, “include”, “includes”, and “including” are not intended to be limiting. It is to be understood that both the foregoing general description and detailed description are exemplary and explanatory only and are not restrictive of the invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/200,595 US20090062132A1 (en) | 2007-08-29 | 2008-08-28 | Alternative nucleic acid sequencing methods |
US13/860,769 US9404155B2 (en) | 2007-08-29 | 2013-04-11 | Alternative nucleic acid sequencing methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96883407P | 2007-08-29 | 2007-08-29 | |
US12/200,595 US20090062132A1 (en) | 2007-08-29 | 2008-08-28 | Alternative nucleic acid sequencing methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/860,769 Continuation US9404155B2 (en) | 2007-08-29 | 2013-04-11 | Alternative nucleic acid sequencing methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090062132A1 true US20090062132A1 (en) | 2009-03-05 |
Family
ID=40387798
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/200,595 Abandoned US20090062132A1 (en) | 2007-08-29 | 2008-08-28 | Alternative nucleic acid sequencing methods |
US13/860,769 Active 2029-12-24 US9404155B2 (en) | 2007-08-29 | 2013-04-11 | Alternative nucleic acid sequencing methods |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/860,769 Active 2029-12-24 US9404155B2 (en) | 2007-08-29 | 2013-04-11 | Alternative nucleic acid sequencing methods |
Country Status (4)
Country | Link |
---|---|
US (2) | US20090062132A1 (fr) |
EP (2) | EP2201021A4 (fr) |
JP (1) | JP2010537643A (fr) |
WO (1) | WO2009029728A1 (fr) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090026082A1 (en) * | 2006-12-14 | 2009-01-29 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale FET arrays |
US20090127589A1 (en) * | 2006-12-14 | 2009-05-21 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale FET arrays |
US20100304982A1 (en) * | 2009-05-29 | 2010-12-02 | Ion Torrent Systems, Inc. | Scaffolded nucleic acid polymer particles and methods of making and using |
WO2010138187A1 (fr) * | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Particules de polymère d'acide nucléique échafaudées et procédés de fabrication et d'utilisation de celles-ci |
US20110217697A1 (en) * | 2008-06-25 | 2011-09-08 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale fet arrays |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8421437B2 (en) | 2010-06-30 | 2013-04-16 | Life Technologies Corporation | Array column integrator |
US8552771B1 (en) | 2012-05-29 | 2013-10-08 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US8592153B1 (en) | 2009-05-29 | 2013-11-26 | Life Technologies Corporation | Methods for manufacturing high capacitance microwell structures of chemically-sensitive sensors |
US8653567B2 (en) | 2010-07-03 | 2014-02-18 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
US8685324B2 (en) | 2010-09-24 | 2014-04-01 | Life Technologies Corporation | Matched pair transistor circuits |
US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US20140243224A1 (en) * | 2013-02-26 | 2014-08-28 | Illumina, Inc. | Gel patterned surfaces |
US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US8841075B1 (en) | 2010-04-13 | 2014-09-23 | Cleveland State University | Homologous pairing capture assay and related methods and applications |
US8858782B2 (en) | 2010-06-30 | 2014-10-14 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
US8936763B2 (en) | 2008-10-22 | 2015-01-20 | Life Technologies Corporation | Integrated sensor arrays for biological and chemical analysis |
US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
US9128044B2 (en) | 2013-03-15 | 2015-09-08 | Life Technologies Corporation | Chemical sensors with consistent sensor surface areas |
CN105400776A (zh) * | 2014-09-12 | 2016-03-16 | 深圳华大基因科技有限公司 | 寡核苷酸接头及其在构建核酸测序单链环状文库中的应用 |
CN105986020A (zh) * | 2015-02-11 | 2016-10-05 | 深圳华大基因研究院 | 构建测序文库的方法及装置 |
US9618475B2 (en) | 2010-09-15 | 2017-04-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US9671363B2 (en) | 2013-03-15 | 2017-06-06 | Life Technologies Corporation | Chemical sensor with consistent sensor surface areas |
US9823217B2 (en) | 2013-03-15 | 2017-11-21 | Life Technologies Corporation | Chemical device with thin conductive element |
US9835585B2 (en) | 2013-03-15 | 2017-12-05 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
US10100357B2 (en) | 2013-05-09 | 2018-10-16 | Life Technologies Corporation | Windowed sequencing |
US10379079B2 (en) | 2014-12-18 | 2019-08-13 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US10451585B2 (en) | 2009-05-29 | 2019-10-22 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US10605767B2 (en) | 2014-12-18 | 2020-03-31 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
US11307166B2 (en) | 2010-07-01 | 2022-04-19 | Life Technologies Corporation | Column ADC |
US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009029728A1 (fr) | 2007-08-29 | 2009-03-05 | Applied Biosystems Inc. | Procédé de séquençage alternatif d'acide nucléique |
US10329608B2 (en) | 2012-10-10 | 2019-06-25 | Life Technologies Corporation | Methods, systems, and computer readable media for repeat sequencing |
WO2015002789A1 (fr) | 2013-07-03 | 2015-01-08 | Illumina, Inc. | Séquençage par synthèse orthogonale |
CN109715827B (zh) | 2016-05-06 | 2023-01-10 | 明尼苏达大学董事会 | 分析标准品及其使用方法 |
WO2018213787A1 (fr) * | 2017-05-18 | 2018-11-22 | Ultima Genomics, Inc. | Séquençage utilisant des nucléotides non naturels |
US12110548B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Bi-directional in situ analysis |
US12209273B2 (en) | 2020-06-12 | 2025-01-28 | 10X Genomics, Inc. | Nucleic acid assays using click chemistry bioconjugation |
US12139751B2 (en) | 2021-07-30 | 2024-11-12 | 10X Genomics, Inc. | Circularizable probes for in situ analysis |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5080045A (en) * | 1991-06-17 | 1992-01-14 | Reese Sharon C | Jogger's pet leash |
US5302509A (en) * | 1989-08-14 | 1994-04-12 | Beckman Instruments, Inc. | Method for sequencing polynucleotides |
US5616478A (en) * | 1992-10-14 | 1997-04-01 | Chetverin; Alexander B. | Method for amplification of nucleic acids in solid media |
US5641658A (en) * | 1994-08-03 | 1997-06-24 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
US5750341A (en) * | 1995-04-17 | 1998-05-12 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
US5763594A (en) * | 1994-09-02 | 1998-06-09 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US5808045A (en) * | 1994-09-02 | 1998-09-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US5872244A (en) * | 1994-09-02 | 1999-02-16 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US5958698A (en) * | 1992-10-26 | 1999-09-28 | Institut Belka | Method for amplification and expression of nucleic acids in solid media and its application for nucleic acid cloning and diagnostics |
US5990300A (en) * | 1994-09-02 | 1999-11-23 | Andrew C. Hiatt | Enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6060288A (en) * | 1994-08-03 | 2000-05-09 | Mosaic Technologies | Method for performing amplification of nucleic acid on supports |
US6090592A (en) * | 1994-08-03 | 2000-07-18 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid on supports |
US6210891B1 (en) * | 1996-09-27 | 2001-04-03 | Pyrosequencing Ab | Method of sequencing DNA |
US6232465B1 (en) * | 1994-09-02 | 2001-05-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6255475B1 (en) * | 1995-01-31 | 2001-07-03 | Marek Kwiatkowski | Chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation |
US6258568B1 (en) * | 1996-12-23 | 2001-07-10 | Pyrosequencing Ab | Method of sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation |
US6309836B1 (en) * | 1999-10-05 | 2001-10-30 | Marek Kwiatkowski | Compounds for protecting hydroxyls and methods for their use |
US20020009744A1 (en) * | 1998-08-18 | 2002-01-24 | Valery Bogdanov | In-line complete spectral fluorescent imaging of nucleic acid molecules |
US6406848B1 (en) * | 1997-05-23 | 2002-06-18 | Lynx Therapeutics, Inc. | Planar arrays of microparticle-bound polynucleotides |
US6511803B1 (en) * | 1997-10-10 | 2003-01-28 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US20030148313A1 (en) * | 1999-10-26 | 2003-08-07 | Strathmann Michael Paul | Applications of parallel genomic analysis |
US6613523B2 (en) * | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
US6613513B1 (en) * | 1999-02-23 | 2003-09-02 | Caliper Technologies Corp. | Sequencing by incorporation |
US6654505B2 (en) * | 1994-10-13 | 2003-11-25 | Lynx Therapeutics, Inc. | System and apparatus for sequential processing of analytes |
US6664079B2 (en) * | 2000-10-06 | 2003-12-16 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
US6806058B2 (en) * | 2001-05-26 | 2004-10-19 | One Cell Systems, Inc. | Secretions of proteins by encapsulated cells |
US6841128B2 (en) * | 2000-03-17 | 2005-01-11 | Hitachi, Ltd. | DNA base sequencing system |
US7057026B2 (en) * | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
US20070087362A1 (en) * | 2004-02-27 | 2007-04-19 | President And Fellows Of Harvard College | Polony fluorescent in situ sequencing beads |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US600568A (en) | 1898-03-15 | Sylvania | ||
US4911782A (en) | 1988-03-28 | 1990-03-27 | Cyto-Fluidics, Inc. | Method for forming a miniaturized biological assembly |
WO1991006678A1 (fr) | 1989-10-26 | 1991-05-16 | Sri International | Sequençage d'adn |
US5641652A (en) | 1990-03-22 | 1997-06-24 | The Salk Institute For Biological Studies | Insect retinoid-like receptor compositions and methods |
JPH0818220B2 (ja) | 1991-07-12 | 1996-02-28 | オークマ株式会社 | 非接触回転シールの防水防塵方法 |
WO1993005183A1 (fr) | 1991-09-09 | 1993-03-18 | Baylor College Of Medicine | Procede et dispositif pour la determination rapide du sequençage d'adn ou d'arn au moyen d'une methode de sequençage par addition de base |
US5403708A (en) | 1992-07-06 | 1995-04-04 | Brennan; Thomas M. | Methods and compositions for determining the sequence of nucleic acids |
US5552278A (en) | 1994-04-04 | 1996-09-03 | Spectragen, Inc. | DNA sequencing by stepwise ligation and cleavage |
EP0972081B1 (fr) * | 1997-04-01 | 2007-06-13 | Solexa Ltd. | Methode d'amplification d'acide nucleique |
AR021833A1 (es) | 1998-09-30 | 2002-08-07 | Applied Research Systems | Metodos de amplificacion y secuenciacion de acido nucleico |
US6818395B1 (en) * | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
GB0114854D0 (en) | 2001-06-18 | 2001-08-08 | Medical Res Council | Selective gene amplification |
JP2005520484A (ja) | 2001-07-06 | 2005-07-14 | 454 コーポレイション | 多孔性フィルターを使用し、独立した並行する化学的微量反応を隔離するための方法 |
US7406385B2 (en) | 2001-10-25 | 2008-07-29 | Applera Corporation | System and method for consensus-calling with per-base quality values for sample assemblies |
US6902921B2 (en) | 2001-10-30 | 2005-06-07 | 454 Corporation | Sulfurylase-luciferase fusion proteins and thermostable sulfurylase |
US20040126765A1 (en) * | 2002-12-27 | 2004-07-01 | Adams Craig W. | Method and compositions for sequencing nucleic acid molecules |
CA2513889A1 (fr) | 2003-01-29 | 2004-08-19 | 454 Corporation | Sequencage a double extremite |
EP1641809B2 (fr) | 2003-07-05 | 2018-10-03 | The Johns Hopkins University | Procédé et compositions de détection et d'énumeration de variations génétiques |
EP1735458B1 (fr) | 2004-01-28 | 2013-07-24 | 454 Life Sciences Corporation | Amplification d'acide nucleique avec emulsion a flux continu |
US7483732B2 (en) | 2004-04-15 | 2009-01-27 | Boston Scientific Scimed, Inc. | Magnetic resonance imaging of a medical device and proximate body tissue |
US7264934B2 (en) | 2004-06-10 | 2007-09-04 | Ge Healthcare Bio-Sciences Corp. | Rapid parallel nucleic acid analysis |
WO2006073504A2 (fr) | 2004-08-04 | 2006-07-13 | President And Fellows Of Harvard College | Sequençage des oscillations dans l'anticodon |
EP1817572A2 (fr) * | 2004-11-16 | 2007-08-15 | Helicos Biosciences Corporation | Train optique et procede de detection et d'analyse tirf de molecule unique |
EP1879906A4 (fr) | 2005-01-05 | 2009-07-22 | Advanced Genetic Analysis Corp | Terminateurs nucleotidiques reversibles et leurs utilisations |
EP2230316A1 (fr) | 2005-02-01 | 2010-09-22 | AB Advanced Genetic Analysis Corporation | Sequencage nucléotidique comprenant des cycles sucessifs de fromation duplex |
WO2007002204A2 (fr) | 2005-06-21 | 2007-01-04 | The Trustees Of Columbia University In The City Of New York | Procedes de pyrosequencage et compositions associees |
GB0514910D0 (en) * | 2005-07-20 | 2005-08-24 | Solexa Ltd | Method for sequencing a polynucleotide template |
GB0524069D0 (en) | 2005-11-25 | 2006-01-04 | Solexa Ltd | Preparation of templates for solid phase amplification |
WO2007091077A1 (fr) * | 2006-02-08 | 2007-08-16 | Solexa Limited | Procédé de séquençage d'une matrice polynucléotidique |
WO2008002502A2 (fr) | 2006-06-23 | 2008-01-03 | Illumina, Inc. | Dispositifs et systèmes destinés à la création d'amas ordonnés d'adn |
WO2009029728A1 (fr) | 2007-08-29 | 2009-03-05 | Applied Biosystems Inc. | Procédé de séquençage alternatif d'acide nucléique |
-
2008
- 2008-08-28 WO PCT/US2008/074678 patent/WO2009029728A1/fr active Application Filing
- 2008-08-28 US US12/200,595 patent/US20090062132A1/en not_active Abandoned
- 2008-08-28 EP EP08798901A patent/EP2201021A4/fr not_active Withdrawn
- 2008-08-28 JP JP2010523141A patent/JP2010537643A/ja not_active Withdrawn
- 2008-08-28 EP EP13168115.7A patent/EP2657869A3/fr not_active Withdrawn
-
2013
- 2013-04-11 US US13/860,769 patent/US9404155B2/en active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302509A (en) * | 1989-08-14 | 1994-04-12 | Beckman Instruments, Inc. | Method for sequencing polynucleotides |
US5080045A (en) * | 1991-06-17 | 1992-01-14 | Reese Sharon C | Jogger's pet leash |
US5616478A (en) * | 1992-10-14 | 1997-04-01 | Chetverin; Alexander B. | Method for amplification of nucleic acids in solid media |
US5958698A (en) * | 1992-10-26 | 1999-09-28 | Institut Belka | Method for amplification and expression of nucleic acids in solid media and its application for nucleic acid cloning and diagnostics |
US6001568A (en) * | 1992-10-26 | 1999-12-14 | Institut Belka | Solid medium for amplification and expression of nucleic acids as colonies |
US6090592A (en) * | 1994-08-03 | 2000-07-18 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid on supports |
US6060288A (en) * | 1994-08-03 | 2000-05-09 | Mosaic Technologies | Method for performing amplification of nucleic acid on supports |
US5641658A (en) * | 1994-08-03 | 1997-06-24 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
US5808045A (en) * | 1994-09-02 | 1998-09-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US5872244A (en) * | 1994-09-02 | 1999-02-16 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US5763594A (en) * | 1994-09-02 | 1998-06-09 | Andrew C. Hiatt | 3' protected nucleotides for enzyme catalyzed template-independent creation of phosphodiester bonds |
US5990300A (en) * | 1994-09-02 | 1999-11-23 | Andrew C. Hiatt | Enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6232465B1 (en) * | 1994-09-02 | 2001-05-15 | Andrew C. Hiatt | Compositions for enzyme catalyzed template-independent creation of phosphodiester bonds using protected nucleotides |
US6654505B2 (en) * | 1994-10-13 | 2003-11-25 | Lynx Therapeutics, Inc. | System and apparatus for sequential processing of analytes |
US6255475B1 (en) * | 1995-01-31 | 2001-07-03 | Marek Kwiatkowski | Chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation |
US5750341A (en) * | 1995-04-17 | 1998-05-12 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
US6306597B1 (en) * | 1995-04-17 | 2001-10-23 | Lynx Therapeutics, Inc. | DNA sequencing by parallel oligonucleotide extensions |
US6210891B1 (en) * | 1996-09-27 | 2001-04-03 | Pyrosequencing Ab | Method of sequencing DNA |
US6258568B1 (en) * | 1996-12-23 | 2001-07-10 | Pyrosequencing Ab | Method of sequencing DNA based on the detection of the release of pyrophosphate and enzymatic nucleotide degradation |
US6406848B1 (en) * | 1997-05-23 | 2002-06-18 | Lynx Therapeutics, Inc. | Planar arrays of microparticle-bound polynucleotides |
US6831994B2 (en) * | 1997-05-23 | 2004-12-14 | Lynx Therapeutics, Inc. | System and apparatus for sequential processing of analytes |
US6806052B2 (en) * | 1997-05-23 | 2004-10-19 | Lynx Therapeutics, Inc. | Planar arrays of microparticle-bound polynucleotides |
US6511803B1 (en) * | 1997-10-10 | 2003-01-28 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US20020009744A1 (en) * | 1998-08-18 | 2002-01-24 | Valery Bogdanov | In-line complete spectral fluorescent imaging of nucleic acid molecules |
US6613513B1 (en) * | 1999-02-23 | 2003-09-02 | Caliper Technologies Corp. | Sequencing by incorporation |
US6309836B1 (en) * | 1999-10-05 | 2001-10-30 | Marek Kwiatkowski | Compounds for protecting hydroxyls and methods for their use |
US20030148313A1 (en) * | 1999-10-26 | 2003-08-07 | Strathmann Michael Paul | Applications of parallel genomic analysis |
US6841128B2 (en) * | 2000-03-17 | 2005-01-11 | Hitachi, Ltd. | DNA base sequencing system |
US6664079B2 (en) * | 2000-10-06 | 2003-12-16 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
US6806058B2 (en) * | 2001-05-26 | 2004-10-19 | One Cell Systems, Inc. | Secretions of proteins by encapsulated cells |
US6613523B2 (en) * | 2001-06-29 | 2003-09-02 | Agilent Technologies, Inc. | Method of DNA sequencing using cleavable tags |
US7057026B2 (en) * | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
US20070087362A1 (en) * | 2004-02-27 | 2007-04-19 | President And Fellows Of Harvard College | Polony fluorescent in situ sequencing beads |
Cited By (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039888B2 (en) | 2006-12-14 | 2015-05-26 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US20090026082A1 (en) * | 2006-12-14 | 2009-01-29 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale FET arrays |
US20100188073A1 (en) * | 2006-12-14 | 2010-07-29 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale fet arrays |
US20100197507A1 (en) * | 2006-12-14 | 2010-08-05 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale fet arrays |
US10502708B2 (en) | 2006-12-14 | 2019-12-10 | Life Technologies Corporation | Chemically-sensitive sensor array calibration circuitry |
US10415079B2 (en) | 2006-12-14 | 2019-09-17 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US7948015B2 (en) | 2006-12-14 | 2011-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US20090127589A1 (en) * | 2006-12-14 | 2009-05-21 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes using large scale FET arrays |
US20110230375A1 (en) * | 2006-12-14 | 2011-09-22 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale fet arrays |
US8264014B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8262900B2 (en) | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8269261B2 (en) | 2006-12-14 | 2012-09-18 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8293082B2 (en) | 2006-12-14 | 2012-10-23 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8306757B2 (en) | 2006-12-14 | 2012-11-06 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8313625B2 (en) | 2006-12-14 | 2012-11-20 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8313639B2 (en) | 2006-12-14 | 2012-11-20 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8317999B2 (en) | 2006-12-14 | 2012-11-27 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8415716B2 (en) | 2006-12-14 | 2013-04-09 | Life Technologies Corporation | Chemically sensitive sensors with feedback circuits |
US10203300B2 (en) | 2006-12-14 | 2019-02-12 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8426899B2 (en) | 2006-12-14 | 2013-04-23 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8426898B2 (en) | 2006-12-14 | 2013-04-23 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US10633699B2 (en) | 2006-12-14 | 2020-04-28 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US9023189B2 (en) | 2006-12-14 | 2015-05-05 | Life Technologies Corporation | High density sensor array without wells |
US8435395B2 (en) | 2006-12-14 | 2013-05-07 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8441044B2 (en) | 2006-12-14 | 2013-05-14 | Life Technologies Corporation | Methods for manufacturing low noise chemically-sensitive field effect transistors |
US8445945B2 (en) | 2006-12-14 | 2013-05-21 | Life Technologies Corporation | Low noise chemically-sensitive field effect transistors |
US8450781B2 (en) | 2006-12-14 | 2013-05-28 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US9989489B2 (en) | 2006-12-14 | 2018-06-05 | Life Technnologies Corporation | Methods for calibrating an array of chemically-sensitive sensors |
US9951382B2 (en) | 2006-12-14 | 2018-04-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8492799B2 (en) | 2006-12-14 | 2013-07-23 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8492800B2 (en) | 2006-12-14 | 2013-07-23 | Life Technologies Corporation | Chemically sensitive sensors with sample and hold capacitors |
US8496802B2 (en) | 2006-12-14 | 2013-07-30 | Life Technologies Corporation | Methods for operating chemically-sensitive sample and hold sensors |
US8502278B2 (en) | 2006-12-14 | 2013-08-06 | Life Technologies Corporation | Chemically-sensitive sample and hold sensors |
US8519448B2 (en) | 2006-12-14 | 2013-08-27 | Life Technologies Corporation | Chemically-sensitive array with active and reference sensors |
US10816506B2 (en) | 2006-12-14 | 2020-10-27 | Life Technologies Corporation | Method for measuring analytes using large scale chemfet arrays |
US8530941B2 (en) | 2006-12-14 | 2013-09-10 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8535513B2 (en) | 2006-12-14 | 2013-09-17 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8540865B2 (en) | 2006-12-14 | 2013-09-24 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8540866B2 (en) | 2006-12-14 | 2013-09-24 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8540867B2 (en) | 2006-12-14 | 2013-09-24 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8540868B2 (en) | 2006-12-14 | 2013-09-24 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US11435314B2 (en) | 2006-12-14 | 2022-09-06 | Life Technologies Corporation | Chemically-sensitive sensor array device |
US8558288B2 (en) | 2006-12-14 | 2013-10-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US9404920B2 (en) | 2006-12-14 | 2016-08-02 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US8575664B2 (en) | 2006-12-14 | 2013-11-05 | Life Technologies Corporation | Chemically-sensitive sensor array calibration circuitry |
US20220340965A1 (en) * | 2006-12-14 | 2022-10-27 | Life Technologies Corporation | Methods and Apparatus for Measuring Analytes Using Large Scale FET Arrays |
US9269708B2 (en) | 2006-12-14 | 2016-02-23 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US9134269B2 (en) | 2006-12-14 | 2015-09-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8658017B2 (en) | 2006-12-14 | 2014-02-25 | Life Technologies Corporation | Methods for operating an array of chemically-sensitive sensors |
US11732297B2 (en) * | 2006-12-14 | 2023-08-22 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8685230B2 (en) | 2006-12-14 | 2014-04-01 | Life Technologies Corporation | Methods and apparatus for high-speed operation of a chemically-sensitive sensor array |
US8692298B2 (en) | 2006-12-14 | 2014-04-08 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US8890216B2 (en) | 2006-12-14 | 2014-11-18 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US12066399B2 (en) | 2006-12-14 | 2024-08-20 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US12140560B2 (en) | 2006-12-14 | 2024-11-12 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8742472B2 (en) | 2006-12-14 | 2014-06-03 | Life Technologies Corporation | Chemically sensitive sensors with sample and hold capacitors |
US8766328B2 (en) | 2006-12-14 | 2014-07-01 | Life Technologies Corporation | Chemically-sensitive sample and hold sensors |
US8764969B2 (en) | 2006-12-14 | 2014-07-01 | Life Technologies Corporation | Methods for operating chemically sensitive sensors with sample and hold capacitors |
US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US20110217697A1 (en) * | 2008-06-25 | 2011-09-08 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale fet arrays |
US8470164B2 (en) | 2008-06-25 | 2013-06-25 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8524057B2 (en) | 2008-06-25 | 2013-09-03 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US9194000B2 (en) | 2008-06-25 | 2015-11-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US8936763B2 (en) | 2008-10-22 | 2015-01-20 | Life Technologies Corporation | Integrated sensor arrays for biological and chemical analysis |
US9964515B2 (en) | 2008-10-22 | 2018-05-08 | Life Technologies Corporation | Integrated sensor arrays for biological and chemical analysis |
US9944981B2 (en) | 2008-10-22 | 2018-04-17 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US12146853B2 (en) | 2008-10-22 | 2024-11-19 | Life Technologies Corporation | Methods and apparatus including array of reaction chambers over array of chemFET sensors for measuring analytes |
US11137369B2 (en) | 2008-10-22 | 2021-10-05 | Life Technologies Corporation | Integrated sensor arrays for biological and chemical analysis |
US11448613B2 (en) | 2008-10-22 | 2022-09-20 | Life Technologies Corporation | ChemFET sensor array including overlying array of wells |
US11874250B2 (en) | 2008-10-22 | 2024-01-16 | Life Technologies Corporation | Integrated sensor arrays for biological and chemical analysis |
US8592154B2 (en) | 2009-05-29 | 2013-11-26 | Life Technologies Corporation | Methods and apparatus for high speed operation of a chemically-sensitive sensor array |
US8822205B2 (en) | 2009-05-29 | 2014-09-02 | Life Technologies Corporation | Active chemically-sensitive sensors with source follower amplifier |
US8698212B2 (en) | 2009-05-29 | 2014-04-15 | Life Technologies Corporation | Active chemically-sensitive sensors |
US8912580B2 (en) | 2009-05-29 | 2014-12-16 | Life Technologies Corporation | Active chemically-sensitive sensors with in-sensor current sources |
US10451585B2 (en) | 2009-05-29 | 2019-10-22 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US12234452B2 (en) | 2009-05-29 | 2025-02-25 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
US20100304982A1 (en) * | 2009-05-29 | 2010-12-02 | Ion Torrent Systems, Inc. | Scaffolded nucleic acid polymer particles and methods of making and using |
WO2010138187A1 (fr) * | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Particules de polymère d'acide nucléique échafaudées et procédés de fabrication et d'utilisation de celles-ci |
US8748947B2 (en) | 2009-05-29 | 2014-06-10 | Life Technologies Corporation | Active chemically-sensitive sensors with reset switch |
US12038405B2 (en) | 2009-05-29 | 2024-07-16 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US10612017B2 (en) | 2009-05-29 | 2020-04-07 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
US11768171B2 (en) | 2009-05-29 | 2023-09-26 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US10718733B2 (en) | 2009-05-29 | 2020-07-21 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8742469B2 (en) | 2009-05-29 | 2014-06-03 | Life Technologies Corporation | Active chemically-sensitive sensors with correlated double sampling |
US11692964B2 (en) | 2009-05-29 | 2023-07-04 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8766327B2 (en) | 2009-05-29 | 2014-07-01 | Life Technologies Corporation | Active chemically-sensitive sensors with in-sensor current sources |
US9927393B2 (en) | 2009-05-29 | 2018-03-27 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US10809226B2 (en) | 2009-05-29 | 2020-10-20 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US9249461B2 (en) | 2009-05-29 | 2016-02-02 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
US8994076B2 (en) | 2009-05-29 | 2015-03-31 | Life Technologies Corporation | Chemically-sensitive field effect transistor based pixel array with protection diodes |
US8592153B1 (en) | 2009-05-29 | 2013-11-26 | Life Technologies Corporation | Methods for manufacturing high capacitance microwell structures of chemically-sensitive sensors |
US8841075B1 (en) | 2010-04-13 | 2014-09-23 | Cleveland State University | Homologous pairing capture assay and related methods and applications |
US8742471B2 (en) | 2010-06-30 | 2014-06-03 | Life Technologies Corporation | Chemical sensor array with leakage compensation circuit |
US8487790B2 (en) | 2010-06-30 | 2013-07-16 | Life Technologies Corporation | Chemical detection circuit including a serializer circuit |
US8858782B2 (en) | 2010-06-30 | 2014-10-14 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
US8432149B2 (en) | 2010-06-30 | 2013-04-30 | Life Technologies Corporation | Array column integrator |
US10641729B2 (en) | 2010-06-30 | 2020-05-05 | Life Technologies Corporation | Column ADC |
US8741680B2 (en) | 2010-06-30 | 2014-06-03 | Life Technologies Corporation | Two-transistor pixel array |
US12038406B2 (en) | 2010-06-30 | 2024-07-16 | Life Technologies Corporation | Semiconductor-based chemical detection device |
US9239313B2 (en) | 2010-06-30 | 2016-01-19 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
US8983783B2 (en) | 2010-06-30 | 2015-03-17 | Life Technologies Corporation | Chemical detection device having multiple flow channels |
US9164070B2 (en) | 2010-06-30 | 2015-10-20 | Life Technologies Corporation | Column adc |
US8421437B2 (en) | 2010-06-30 | 2013-04-16 | Life Technologies Corporation | Array column integrator |
US8432150B2 (en) | 2010-06-30 | 2013-04-30 | Life Technologies Corporation | Methods for operating an array column integrator |
US8731847B2 (en) | 2010-06-30 | 2014-05-20 | Life Technologies Corporation | Array configuration and readout scheme |
US10481123B2 (en) | 2010-06-30 | 2019-11-19 | Life Technologies Corporation | Ion-sensing charge-accumulation circuits and methods |
US11307166B2 (en) | 2010-07-01 | 2022-04-19 | Life Technologies Corporation | Column ADC |
US9960253B2 (en) | 2010-07-03 | 2018-05-01 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
US8653567B2 (en) | 2010-07-03 | 2014-02-18 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
US9958414B2 (en) | 2010-09-15 | 2018-05-01 | Life Technologies Corporation | Apparatus for measuring analytes including chemical sensor array |
US9958415B2 (en) | 2010-09-15 | 2018-05-01 | Life Technologies Corporation | ChemFET sensor including floating gate |
US12050195B2 (en) | 2010-09-15 | 2024-07-30 | Life Technologies Corporation | Methods and apparatus for measuring analytes using chemfet arrays |
US9618475B2 (en) | 2010-09-15 | 2017-04-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US8685324B2 (en) | 2010-09-24 | 2014-04-01 | Life Technologies Corporation | Matched pair transistor circuits |
US9110015B2 (en) | 2010-09-24 | 2015-08-18 | Life Technologies Corporation | Method and system for delta double sampling |
US8796036B2 (en) | 2010-09-24 | 2014-08-05 | Life Technologies Corporation | Method and system for delta double sampling |
US8912005B1 (en) | 2010-09-24 | 2014-12-16 | Life Technologies Corporation | Method and system for delta double sampling |
US10365321B2 (en) | 2011-12-01 | 2019-07-30 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
US10598723B2 (en) | 2011-12-01 | 2020-03-24 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
US10404249B2 (en) | 2012-05-29 | 2019-09-03 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US9985624B2 (en) | 2012-05-29 | 2018-05-29 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US8552771B1 (en) | 2012-05-29 | 2013-10-08 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US8786331B2 (en) | 2012-05-29 | 2014-07-22 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US9270264B2 (en) | 2012-05-29 | 2016-02-23 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US9852919B2 (en) | 2013-01-04 | 2017-12-26 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US10436742B2 (en) | 2013-01-08 | 2019-10-08 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
US10668444B2 (en) | 2013-02-26 | 2020-06-02 | Illumina, Inc. | Gel patterned surfaces |
US11173466B2 (en) | 2013-02-26 | 2021-11-16 | Illumina, Inc. | Gel patterned surfaces |
US20140243224A1 (en) * | 2013-02-26 | 2014-08-28 | Illumina, Inc. | Gel patterned surfaces |
US9512422B2 (en) * | 2013-02-26 | 2016-12-06 | Illumina, Inc. | Gel patterned surfaces |
US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
US9995708B2 (en) | 2013-03-13 | 2018-06-12 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
US10481124B2 (en) | 2013-03-15 | 2019-11-19 | Life Technologies Corporation | Chemical device with thin conductive element |
US9823217B2 (en) | 2013-03-15 | 2017-11-21 | Life Technologies Corporation | Chemical device with thin conductive element |
US9835585B2 (en) | 2013-03-15 | 2017-12-05 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US9671363B2 (en) | 2013-03-15 | 2017-06-06 | Life Technologies Corporation | Chemical sensor with consistent sensor surface areas |
US10422767B2 (en) | 2013-03-15 | 2019-09-24 | Life Technologies Corporation | Chemical sensor with consistent sensor surface areas |
US9128044B2 (en) | 2013-03-15 | 2015-09-08 | Life Technologies Corporation | Chemical sensors with consistent sensor surface areas |
US10655175B2 (en) | 2013-05-09 | 2020-05-19 | Life Technologies Corporation | Windowed sequencing |
US10100357B2 (en) | 2013-05-09 | 2018-10-16 | Life Technologies Corporation | Windowed sequencing |
US11028438B2 (en) | 2013-05-09 | 2021-06-08 | Life Technologies Corporation | Windowed sequencing |
US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US11499938B2 (en) | 2013-06-10 | 2022-11-15 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US11774401B2 (en) | 2013-06-10 | 2023-10-03 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US10816504B2 (en) | 2013-06-10 | 2020-10-27 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
CN105400776A (zh) * | 2014-09-12 | 2016-03-16 | 深圳华大基因科技有限公司 | 寡核苷酸接头及其在构建核酸测序单链环状文库中的应用 |
US10605767B2 (en) | 2014-12-18 | 2020-03-31 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
US10379079B2 (en) | 2014-12-18 | 2019-08-13 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US10767224B2 (en) | 2014-12-18 | 2020-09-08 | Life Technologies Corporation | High data rate integrated circuit with power management |
US11536688B2 (en) | 2014-12-18 | 2022-12-27 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
US12196704B2 (en) | 2014-12-18 | 2025-01-14 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
CN105986020A (zh) * | 2015-02-11 | 2016-10-05 | 深圳华大基因研究院 | 构建测序文库的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2201021A4 (fr) | 2012-01-25 |
JP2010537643A (ja) | 2010-12-09 |
US9404155B2 (en) | 2016-08-02 |
EP2201021A1 (fr) | 2010-06-30 |
WO2009029728A1 (fr) | 2009-03-05 |
EP2657869A2 (fr) | 2013-10-30 |
EP2657869A3 (fr) | 2015-06-03 |
US20130303381A1 (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9404155B2 (en) | Alternative nucleic acid sequencing methods | |
US6958217B2 (en) | Single-stranded polynucleotide tags | |
JP5951755B2 (ja) | 定量的ヌクレアーゼプロテクションアッセイ(qNPA)法および定量的ヌクレアーゼプロテクション配列決定(qNPS)法の改善 | |
CN106701715B (zh) | 固体支持物上的样品制备 | |
JP2020108387A (ja) | 酵素不要及び増幅不要の配列決定 | |
US9850482B2 (en) | Heterologous DNA barcoding method | |
US20240401030A1 (en) | Versatile amplicon single-cell droplet sequencing-based shotgun screening platform to accelerate functional genomics | |
WO2006099579A2 (fr) | Compositions et procedes d'amplification et d'analyse cloniques de polynucleotides | |
JP6020164B2 (ja) | 核酸の検出方法 | |
CA2258511A1 (fr) | Procede de sequencage de polynucleotides | |
CA2378822A1 (fr) | Methodes d'amplification en phase solide d'acides nucleiques multiples | |
JP2004531274A (ja) | 切断可能タグを用いたdna配列決定 | |
CN111527205B (zh) | 使用寡核苷酸的多样性文库合成多核苷酸的新方法 | |
CN106460065A (zh) | 用于基因组应用和治疗应用的核酸分子的克隆复制和扩增的系统和方法 | |
US6692915B1 (en) | Sequencing a polynucleotide on a generic chip | |
JP2017533709A (ja) | データの速度および密度を増大させるための多数のプライマーからのシーケンシング | |
US9771575B2 (en) | Methods for on-array fragmentation and barcoding of DNA samples | |
US20170130258A1 (en) | Multiplex on-array droplet pcr and quantitative pcr | |
US20050130213A1 (en) | Selective ligation and amplification assay | |
US9657337B2 (en) | Reaction buffer for microarray | |
EP1423529B1 (fr) | Dosage d'analyse d'expression genique | |
US20220162596A1 (en) | A library of polynucleotides | |
EP1262563A2 (fr) | Méthode de fixation d'ADN sur une surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED BIOSYSTEMS INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BORTNER, SCOTT R.;REEL/FRAME:021836/0802 Effective date: 20081028 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A, AS COLLATERAL AGENT, WASHING Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED BIOSYSTEMS, LLC;REEL/FRAME:021976/0001 Effective date: 20081121 Owner name: BANK OF AMERICA, N.A, AS COLLATERAL AGENT,WASHINGT Free format text: SECURITY AGREEMENT;ASSIGNOR:APPLIED BIOSYSTEMS, LLC;REEL/FRAME:021976/0001 Effective date: 20081121 |
|
AS | Assignment |
Owner name: APPLIED BIOSYSTEMS INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:ATOM ACQUISITION CORPORATION;REEL/FRAME:022922/0080 Effective date: 20081121 Owner name: APPLIED BIOSYSTEMS, LLC, CALIFORNIA Free format text: MERGER;ASSIGNOR:ATOM ACQUISITION, LLC & APPLIED BIOSYSTEMS INC.;REEL/FRAME:022922/0112 Effective date: 20081121 |
|
AS | Assignment |
Owner name: APPLIED BIOSYSTEMS, LLC,CALIFORNIA Free format text: MERGER;ASSIGNOR:APPLIED BIOSYSTEMS INC.;REEL/FRAME:023985/0801 Effective date: 20081121 Owner name: APPLIED BIOSYSTEMS, LLC, CALIFORNIA Free format text: MERGER;ASSIGNOR:APPLIED BIOSYSTEMS INC.;REEL/FRAME:023985/0801 Effective date: 20081121 |
|
AS | Assignment |
Owner name: APPLIED BIOSYSTEMS, INC., CALIFORNIA Free format text: LIEN RELEASE;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:030182/0677 Effective date: 20100528 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |