US20080280946A1 - Azaindole-Derivatives As Factor Xa Inhibitors - Google Patents
Azaindole-Derivatives As Factor Xa Inhibitors Download PDFInfo
- Publication number
- US20080280946A1 US20080280946A1 US11/934,177 US93417707A US2008280946A1 US 20080280946 A1 US20080280946 A1 US 20080280946A1 US 93417707 A US93417707 A US 93417707A US 2008280946 A1 US2008280946 A1 US 2008280946A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- unsubstituted
- another
- mono
- alkylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940123583 Factor Xa inhibitor Drugs 0.000 title abstract 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims abstract description 45
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 13
- 230000023555 blood coagulation Effects 0.000 claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 7
- 208000001435 Thromboembolism Diseases 0.000 claims abstract description 6
- 208000024172 Cardiovascular disease Diseases 0.000 claims abstract description 5
- -1 phenylpyridyl Chemical group 0.000 claims description 373
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 144
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 104
- 125000000623 heterocyclic group Chemical group 0.000 claims description 100
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 95
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 93
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 90
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 87
- 125000000217 alkyl group Chemical group 0.000 claims description 79
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 73
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 70
- 239000000203 mixture Substances 0.000 claims description 69
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 68
- 125000003118 aryl group Chemical group 0.000 claims description 66
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 61
- WEQPBCSPRXFQQS-UHFFFAOYSA-N 4,5-dihydro-1,2-oxazole Chemical compound C1CC=NO1 WEQPBCSPRXFQQS-UHFFFAOYSA-N 0.000 claims description 55
- 229910052736 halogen Inorganic materials 0.000 claims description 55
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 54
- 125000004122 cyclic group Chemical group 0.000 claims description 53
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 52
- 150000002367 halogens Chemical class 0.000 claims description 52
- 229910052757 nitrogen Inorganic materials 0.000 claims description 51
- 150000003839 salts Chemical class 0.000 claims description 51
- 125000001544 thienyl group Chemical group 0.000 claims description 51
- 239000001257 hydrogen Substances 0.000 claims description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims description 50
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 46
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 46
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 45
- 125000004076 pyridyl group Chemical group 0.000 claims description 44
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical compound C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 claims description 44
- HONIICLYMWZJFZ-UHFFFAOYSA-N azetidine Chemical compound C1CNC1 HONIICLYMWZJFZ-UHFFFAOYSA-N 0.000 claims description 41
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 39
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 38
- IWELDVXSEVIIGI-UHFFFAOYSA-N piperazin-2-one Chemical compound O=C1CNCCN1 IWELDVXSEVIIGI-UHFFFAOYSA-N 0.000 claims description 38
- 125000005334 azaindolyl group Chemical group N1N=C(C2=CC=CC=C12)* 0.000 claims description 36
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 36
- 229910052731 fluorine Inorganic materials 0.000 claims description 36
- LRANPJDWHYRCER-UHFFFAOYSA-N 1,2-diazepine Chemical compound N1C=CC=CC=N1 LRANPJDWHYRCER-UHFFFAOYSA-N 0.000 claims description 35
- POXWDTQUDZUOGP-UHFFFAOYSA-N 1h-1,4-diazepine Chemical compound N1C=CC=NC=C1 POXWDTQUDZUOGP-UHFFFAOYSA-N 0.000 claims description 35
- MSRJJSCOWHWGGX-UHFFFAOYSA-N 2h-1,3-diazepine Chemical compound C1N=CC=CC=N1 MSRJJSCOWHWGGX-UHFFFAOYSA-N 0.000 claims description 35
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 35
- 230000015572 biosynthetic process Effects 0.000 claims description 35
- 239000000460 chlorine Substances 0.000 claims description 35
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 claims description 35
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 claims description 34
- 229910052801 chlorine Inorganic materials 0.000 claims description 34
- 125000002950 monocyclic group Chemical group 0.000 claims description 34
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 34
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 33
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 claims description 33
- CIISBYKBBMFLEZ-UHFFFAOYSA-N 1,2-oxazolidine Chemical compound C1CNOC1 CIISBYKBBMFLEZ-UHFFFAOYSA-N 0.000 claims description 33
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 claims description 33
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 claims description 33
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 33
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 claims description 33
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 33
- 125000005842 heteroatom Chemical group 0.000 claims description 33
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 claims description 33
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 33
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 33
- 150000003536 tetrazoles Chemical class 0.000 claims description 33
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 32
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 32
- 229910052717 sulfur Inorganic materials 0.000 claims description 32
- 239000011593 sulfur Substances 0.000 claims description 32
- 125000000335 thiazolyl group Chemical group 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- FQUYSHZXSKYCSY-UHFFFAOYSA-N 1,4-diazepane Chemical compound C1CNCCNC1 FQUYSHZXSKYCSY-UHFFFAOYSA-N 0.000 claims description 30
- ZNGWEEUXTBNKFR-UHFFFAOYSA-N 1,4-oxazepane Chemical compound C1CNCCOC1 ZNGWEEUXTBNKFR-UHFFFAOYSA-N 0.000 claims description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 30
- 125000002619 bicyclic group Chemical group 0.000 claims description 29
- 125000002883 imidazolyl group Chemical group 0.000 claims description 29
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 29
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 29
- 125000002098 pyridazinyl group Chemical group 0.000 claims description 29
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 claims description 29
- 125000001786 isothiazolyl group Chemical group 0.000 claims description 28
- 125000002971 oxazolyl group Chemical group 0.000 claims description 28
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 28
- OGYGFUAIIOPWQD-UHFFFAOYSA-N 1,3-thiazolidine Chemical compound C1CSCN1 OGYGFUAIIOPWQD-UHFFFAOYSA-N 0.000 claims description 27
- XYOVOXDWRFGKEX-UHFFFAOYSA-N azepine Chemical compound N1C=CC=CC=C1 XYOVOXDWRFGKEX-UHFFFAOYSA-N 0.000 claims description 27
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 claims description 27
- 239000011737 fluorine Substances 0.000 claims description 27
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 27
- CZSRXHJVZUBEGW-UHFFFAOYSA-N 1,2-thiazolidine Chemical compound C1CNSC1 CZSRXHJVZUBEGW-UHFFFAOYSA-N 0.000 claims description 26
- GUUULVAMQJLDSY-UHFFFAOYSA-N 4,5-dihydro-1,2-thiazole Chemical compound C1CC=NS1 GUUULVAMQJLDSY-UHFFFAOYSA-N 0.000 claims description 26
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 26
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 26
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 26
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 26
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 claims description 25
- BWCDLEQTELFBAW-UHFFFAOYSA-N 3h-dioxazole Chemical compound N1OOC=C1 BWCDLEQTELFBAW-UHFFFAOYSA-N 0.000 claims description 24
- VSWICNJIUPRZIK-UHFFFAOYSA-N 2-piperideine Chemical compound C1CNC=CC1 VSWICNJIUPRZIK-UHFFFAOYSA-N 0.000 claims description 23
- RSEBUVRVKCANEP-UHFFFAOYSA-N 2-pyrroline Chemical compound C1CC=CN1 RSEBUVRVKCANEP-UHFFFAOYSA-N 0.000 claims description 23
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 23
- 125000002541 furyl group Chemical group 0.000 claims description 23
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 claims description 23
- ZVJHJDDKYZXRJI-UHFFFAOYSA-N pyrroline Natural products C1CC=NC1 ZVJHJDDKYZXRJI-UHFFFAOYSA-N 0.000 claims description 23
- CBDKQYKMCICBOF-UHFFFAOYSA-N thiazoline Chemical compound C1CN=CS1 CBDKQYKMCICBOF-UHFFFAOYSA-N 0.000 claims description 23
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 claims description 22
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 22
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 22
- USPWKWBDZOARPV-UHFFFAOYSA-N pyrazolidine Chemical compound C1CNNC1 USPWKWBDZOARPV-UHFFFAOYSA-N 0.000 claims description 22
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 claims description 22
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 21
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 claims description 20
- 229910052794 bromium Inorganic materials 0.000 claims description 20
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 20
- 125000001153 fluoro group Chemical group F* 0.000 claims description 20
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 20
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 20
- 125000001113 thiadiazolyl group Chemical group 0.000 claims description 20
- ABADUMLIAZCWJD-UHFFFAOYSA-N 1,3-dioxole Chemical compound C1OC=CO1 ABADUMLIAZCWJD-UHFFFAOYSA-N 0.000 claims description 19
- 125000004429 atom Chemical group 0.000 claims description 19
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 claims description 19
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 claims description 19
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 claims description 19
- 125000003016 chromanyl group Chemical group O1C(CCC2=CC=CC=C12)* 0.000 claims description 19
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 claims description 19
- 125000001041 indolyl group Chemical group 0.000 claims description 19
- 125000003384 isochromanyl group Chemical group C1(OCCC2=CC=CC=C12)* 0.000 claims description 19
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 claims description 19
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 claims description 19
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 claims description 19
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 claims description 19
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 claims description 19
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 claims description 19
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 claims description 19
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 claims description 18
- KGWNRZLPXLBMPS-UHFFFAOYSA-N 2h-1,3-oxazine Chemical compound C1OC=CC=N1 KGWNRZLPXLBMPS-UHFFFAOYSA-N 0.000 claims description 18
- YHWMFDLNZGIJSD-UHFFFAOYSA-N 2h-1,4-oxazine Chemical compound C1OC=CN=C1 YHWMFDLNZGIJSD-UHFFFAOYSA-N 0.000 claims description 18
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 claims description 18
- 125000002053 thietanyl group Chemical group 0.000 claims description 18
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 claims description 17
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 claims description 17
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 17
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 17
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 17
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 claims description 17
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 16
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 claims description 16
- NTYABNDBNKVWOO-UHFFFAOYSA-N 2h-1,3-thiazine Chemical compound C1SC=CC=N1 NTYABNDBNKVWOO-UHFFFAOYSA-N 0.000 claims description 15
- ZAISDHPZTZIFQF-UHFFFAOYSA-N 2h-1,4-thiazine Chemical compound C1SC=CN=C1 ZAISDHPZTZIFQF-UHFFFAOYSA-N 0.000 claims description 15
- AGIJRRREJXSQJR-UHFFFAOYSA-N 2h-thiazine Chemical compound N1SC=CC=C1 AGIJRRREJXSQJR-UHFFFAOYSA-N 0.000 claims description 15
- JZFICWYCTCCINF-UHFFFAOYSA-N Thiadiazin Chemical compound S=C1SC(C)NC(C)N1CCN1C(=S)SC(C)NC1C JZFICWYCTCCINF-UHFFFAOYSA-N 0.000 claims description 15
- OOFGXDQWDNJDIS-UHFFFAOYSA-N oxathiolane Chemical compound C1COSC1 OOFGXDQWDNJDIS-UHFFFAOYSA-N 0.000 claims description 15
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 claims description 14
- 125000000524 functional group Chemical group 0.000 claims description 14
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 14
- 125000001425 triazolyl group Chemical group 0.000 claims description 14
- 229930192474 thiophene Natural products 0.000 claims description 13
- 125000003386 piperidinyl group Chemical group 0.000 claims description 12
- ZHKJHQBOAJQXQR-UHFFFAOYSA-N 1H-azirine Chemical compound N1C=C1 ZHKJHQBOAJQXQR-UHFFFAOYSA-N 0.000 claims description 11
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 claims description 11
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 claims description 11
- 125000000389 2-pyrrolyl group Chemical group [H]N1C([*])=C([H])C([H])=C1[H] 0.000 claims description 11
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 claims description 11
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 11
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 claims description 11
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 11
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 11
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 claims description 11
- 208000007536 Thrombosis Diseases 0.000 claims description 11
- 125000005602 azabenzimidazolyl group Chemical group 0.000 claims description 11
- 125000002785 azepinyl group Chemical group 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 125000001624 naphthyl group Chemical group 0.000 claims description 11
- OXUZCBDDXOMZAM-UHFFFAOYSA-N oxathiepane Chemical compound C1CCOSCC1 OXUZCBDDXOMZAM-UHFFFAOYSA-N 0.000 claims description 11
- SJGALSBBFTYSBA-UHFFFAOYSA-N oxaziridine Chemical compound C1NO1 SJGALSBBFTYSBA-UHFFFAOYSA-N 0.000 claims description 11
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 10
- 125000005871 1,3-benzodioxolyl group Chemical group 0.000 claims description 10
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 10
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims description 10
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 10
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 claims description 10
- 125000002757 morpholinyl group Chemical group 0.000 claims description 10
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 claims description 10
- 125000004502 1,2,3-oxadiazolyl group Chemical group 0.000 claims description 9
- 125000004511 1,2,3-thiadiazolyl group Chemical group 0.000 claims description 9
- 125000004529 1,2,3-triazinyl group Chemical group N1=NN=C(C=C1)* 0.000 claims description 9
- 125000004504 1,2,4-oxadiazolyl group Chemical group 0.000 claims description 9
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 claims description 9
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 claims description 9
- 125000004506 1,2,5-oxadiazolyl group Chemical group 0.000 claims description 9
- 125000004517 1,2,5-thiadiazolyl group Chemical group 0.000 claims description 9
- 125000001781 1,3,4-oxadiazolyl group Chemical group 0.000 claims description 9
- 125000004520 1,3,4-thiadiazolyl group Chemical group 0.000 claims description 9
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 claims description 9
- 125000000164 1,3-thiazinyl group Chemical group S1C(N=CC=C1)* 0.000 claims description 9
- 125000005962 1,4-oxazepanyl group Chemical group 0.000 claims description 9
- 125000000183 1,4-thiazinyl group Chemical group S1C(C=NC=C1)* 0.000 claims description 9
- 125000005955 1H-indazolyl group Chemical group 0.000 claims description 9
- JECYNCQXXKQDJN-UHFFFAOYSA-N 2-(2-methylhexan-2-yloxymethyl)oxirane Chemical compound CCCCC(C)(C)OCC1CO1 JECYNCQXXKQDJN-UHFFFAOYSA-N 0.000 claims description 9
- 125000002471 4H-quinolizinyl group Chemical group C=1(C=CCN2C=CC=CC12)* 0.000 claims description 9
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 claims description 9
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 claims description 9
- 125000002393 azetidinyl group Chemical group 0.000 claims description 9
- 125000004069 aziridinyl group Chemical group 0.000 claims description 9
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 claims description 9
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 claims description 9
- 125000005512 benztetrazolyl group Chemical group 0.000 claims description 9
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 9
- 125000004623 carbolinyl group Chemical group 0.000 claims description 9
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 claims description 9
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 9
- 125000003838 furazanyl group Chemical group 0.000 claims description 9
- 125000002632 imidazolidinyl group Chemical group 0.000 claims description 9
- 125000002636 imidazolinyl group Chemical group 0.000 claims description 9
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 claims description 9
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 claims description 9
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 claims description 9
- 125000005438 isoindazolyl group Chemical group 0.000 claims description 9
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 claims description 9
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 claims description 9
- 125000005969 isothiazolinyl group Chemical group 0.000 claims description 9
- 125000003965 isoxazolidinyl group Chemical group 0.000 claims description 9
- 125000003971 isoxazolinyl group Chemical group 0.000 claims description 9
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 claims description 9
- 125000004930 octahydroisoquinolinyl group Chemical group C1(NCCC2CCCC=C12)* 0.000 claims description 9
- 125000001715 oxadiazolyl group Chemical group 0.000 claims description 9
- 125000000160 oxazolidinyl group Chemical group 0.000 claims description 9
- 125000005968 oxazolinyl group Chemical group 0.000 claims description 9
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 claims description 9
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 claims description 9
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 claims description 9
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 claims description 9
- 125000005954 phenoxathiinyl group Chemical group 0.000 claims description 9
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 claims description 9
- 125000004193 piperazinyl group Chemical group 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 9
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 claims description 9
- 125000003072 pyrazolidinyl group Chemical group 0.000 claims description 9
- 125000002755 pyrazolinyl group Chemical group 0.000 claims description 9
- 125000001422 pyrrolinyl group Chemical group 0.000 claims description 9
- 125000004621 quinuclidinyl group Chemical group N12C(CC(CC1)CC2)* 0.000 claims description 9
- 125000004853 tetrahydropyridinyl group Chemical group N1(CCCC=C1)* 0.000 claims description 9
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 claims description 9
- 125000005247 tetrazinyl group Chemical group N1=NN=NC(=C1)* 0.000 claims description 9
- 125000004627 thianthrenyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3SC12)* 0.000 claims description 9
- 125000001984 thiazolidinyl group Chemical group 0.000 claims description 9
- 125000002769 thiazolinyl group Chemical group 0.000 claims description 9
- 125000004568 thiomorpholinyl group Chemical group 0.000 claims description 9
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 claims description 9
- 125000006565 (C4-C7) cyclic group Chemical group 0.000 claims description 8
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 claims description 8
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 7
- 239000003146 anticoagulant agent Substances 0.000 claims description 7
- DIXBSCZRIZDQGC-UHFFFAOYSA-N diaziridine Chemical compound C1NN1 DIXBSCZRIZDQGC-UHFFFAOYSA-N 0.000 claims description 7
- 229910052740 iodine Inorganic materials 0.000 claims description 7
- 208000037803 restenosis Diseases 0.000 claims description 7
- 238000001356 surgical procedure Methods 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- 230000002792 vascular Effects 0.000 claims description 7
- RFOHSZFQYMEWMH-UHFFFAOYSA-N 1,3-diazocan-2-one Chemical compound O=C1NCCCCCN1 RFOHSZFQYMEWMH-UHFFFAOYSA-N 0.000 claims description 6
- CXPUAWQOXQINEX-UHFFFAOYSA-N 1,4-diazocane Chemical compound C1CCNCCNC1 CXPUAWQOXQINEX-UHFFFAOYSA-N 0.000 claims description 6
- HIZVCIIORGCREW-UHFFFAOYSA-N 1,4-dioxene Chemical group C1COC=CO1 HIZVCIIORGCREW-UHFFFAOYSA-N 0.000 claims description 6
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 claims description 6
- VKJBICQSBBONRC-UHFFFAOYSA-N 2,3,4,5-tetrahydro-1h-azocin-8-one Chemical compound O=C1NCCCCC=C1 VKJBICQSBBONRC-UHFFFAOYSA-N 0.000 claims description 6
- CJYXCQLOZNIMFP-UHFFFAOYSA-N azocan-2-one Chemical compound O=C1CCCCCCN1 CJYXCQLOZNIMFP-UHFFFAOYSA-N 0.000 claims description 6
- QXNDZONIWRINJR-UHFFFAOYSA-N azocane Chemical compound C1CCCNCCC1 QXNDZONIWRINJR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 6
- WZVHPXGAWGWKTL-UHFFFAOYSA-N diazocan-3-one Chemical compound O=C1CCCCCNN1 WZVHPXGAWGWKTL-UHFFFAOYSA-N 0.000 claims description 6
- 230000020764 fibrinolysis Effects 0.000 claims description 6
- BTLSLHNLDQCWKS-UHFFFAOYSA-N oxocan-2-one Chemical compound O=C1CCCCCCO1 BTLSLHNLDQCWKS-UHFFFAOYSA-N 0.000 claims description 6
- HZIVRQOIUMAXID-UHFFFAOYSA-N oxocane Chemical compound C1CCCOCCC1 HZIVRQOIUMAXID-UHFFFAOYSA-N 0.000 claims description 6
- 210000003462 vein Anatomy 0.000 claims description 6
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 claims description 5
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 claims description 5
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 claims description 5
- WYNCHZVNFNFDNH-UHFFFAOYSA-N Oxazolidine Chemical compound C1COCN1 WYNCHZVNFNFDNH-UHFFFAOYSA-N 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 5
- 210000004369 blood Anatomy 0.000 claims description 5
- 239000008280 blood Substances 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 5
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 claims description 5
- 125000005493 quinolyl group Chemical group 0.000 claims description 5
- 125000003039 tetrahydroisoquinolinyl group Chemical group C1(NCCC2=CC=CC=C12)* 0.000 claims description 5
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 claims description 5
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 claims description 5
- TXLLFXVNIJXUQJ-UHFFFAOYSA-N 1,3-oxazocan-2-one Chemical compound O=C1NCCCCCO1 TXLLFXVNIJXUQJ-UHFFFAOYSA-N 0.000 claims description 4
- STPAJSBKCQJVQQ-UHFFFAOYSA-N 1,4-oxazepane;piperazine Chemical compound C1CNCCN1.C1CNCCOC1 STPAJSBKCQJVQQ-UHFFFAOYSA-N 0.000 claims description 4
- NZBVQPIZDGSDNN-UHFFFAOYSA-N 1,4-oxazocane Chemical compound C1CCOCCNC1 NZBVQPIZDGSDNN-UHFFFAOYSA-N 0.000 claims description 4
- 230000003187 abdominal effect Effects 0.000 claims description 4
- 238000002399 angioplasty Methods 0.000 claims description 4
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 claims description 4
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 4
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 claims description 4
- 239000004914 cyclooctane Substances 0.000 claims description 4
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 claims description 4
- 239000004913 cyclooctene Substances 0.000 claims description 4
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 4
- 210000003127 knee Anatomy 0.000 claims description 4
- 210000003141 lower extremity Anatomy 0.000 claims description 4
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 claims description 4
- 230000001575 pathological effect Effects 0.000 claims description 4
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 claims description 4
- 230000002537 thrombolytic effect Effects 0.000 claims description 4
- GYZMNNQUSLUCLP-UHFFFAOYSA-N 1,4-dioxocane Chemical compound C1CCOCCOC1 GYZMNNQUSLUCLP-UHFFFAOYSA-N 0.000 claims description 3
- 125000004008 6 membered carbocyclic group Chemical group 0.000 claims description 3
- 206010002388 Angina unstable Diseases 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- 208000007814 Unstable Angina Diseases 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 206010000891 acute myocardial infarction Diseases 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 230000028709 inflammatory response Effects 0.000 claims description 3
- 201000004332 intermediate coronary syndrome Diseases 0.000 claims description 3
- 125000005494 pyridonyl group Chemical group 0.000 claims description 3
- VVGBVIKEALGJBR-UHFFFAOYSA-N thiocan-2-one Chemical compound O=C1CCCCCCS1 VVGBVIKEALGJBR-UHFFFAOYSA-N 0.000 claims description 3
- AMIGYDGSJCJWSD-UHFFFAOYSA-N thiocane Chemical compound C1CCCSCCC1 AMIGYDGSJCJWSD-UHFFFAOYSA-N 0.000 claims description 3
- WWDVSDDDSOGBOK-UHFFFAOYSA-N thiocane 1,1-dioxide Chemical compound O=S1(=O)CCCCCCC1 WWDVSDDDSOGBOK-UHFFFAOYSA-N 0.000 claims description 3
- GGBSCFSQYZXHCM-UHFFFAOYSA-N thiocane 1-oxide Chemical compound O=S1CCCCCCC1 GGBSCFSQYZXHCM-UHFFFAOYSA-N 0.000 claims description 3
- OIWIYLWZIIJNHU-UHFFFAOYSA-N 1-sulfanylpyrazole Chemical compound SN1C=CC=N1 OIWIYLWZIIJNHU-UHFFFAOYSA-N 0.000 claims description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 2
- 206010002383 Angina Pectoris Diseases 0.000 claims description 2
- 206010053567 Coagulopathies Diseases 0.000 claims description 2
- 208000005189 Embolism Diseases 0.000 claims description 2
- 206010022562 Intermittent claudication Diseases 0.000 claims description 2
- 208000034486 Multi-organ failure Diseases 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 208000010378 Pulmonary Embolism Diseases 0.000 claims description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 claims description 2
- 206010040070 Septic Shock Diseases 0.000 claims description 2
- 208000006011 Stroke Diseases 0.000 claims description 2
- 208000032109 Transient ischaemic attack Diseases 0.000 claims description 2
- 206010047249 Venous thrombosis Diseases 0.000 claims description 2
- 208000036142 Viral infection Diseases 0.000 claims description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 claims description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 2
- 210000001367 artery Anatomy 0.000 claims description 2
- 239000004305 biphenyl Substances 0.000 claims description 2
- 235000010290 biphenyl Nutrition 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 238000007887 coronary angioplasty Methods 0.000 claims description 2
- 208000029078 coronary artery disease Diseases 0.000 claims description 2
- 238000001631 haemodialysis Methods 0.000 claims description 2
- 230000000322 hemodialysis Effects 0.000 claims description 2
- 208000021156 intermittent vascular claudication Diseases 0.000 claims description 2
- 230000007774 longterm Effects 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims description 2
- 208000029744 multiple organ dysfunction syndrome Diseases 0.000 claims description 2
- 208000010125 myocardial infarction Diseases 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000008194 pharmaceutical composition Substances 0.000 claims description 2
- 238000010577 post-coronary angioplasty Methods 0.000 claims description 2
- 230000036303 septic shock Effects 0.000 claims description 2
- 230000009885 systemic effect Effects 0.000 claims description 2
- 201000010875 transient cerebral ischemia Diseases 0.000 claims description 2
- 238000007891 venous angioplasty Methods 0.000 claims description 2
- 230000009385 viral infection Effects 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 15
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims 3
- 108010074860 Factor Xa Proteins 0.000 abstract description 35
- 108010054265 Factor VIIa Proteins 0.000 abstract description 32
- 229940012414 factor viia Drugs 0.000 abstract description 32
- 230000005764 inhibitory process Effects 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 19
- 239000003814 drug Substances 0.000 abstract description 12
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 12
- 238000011321 prophylaxis Methods 0.000 abstract description 12
- 230000002441 reversible effect Effects 0.000 abstract description 10
- 239000003112 inhibitor Substances 0.000 abstract description 9
- 239000004480 active ingredient Substances 0.000 abstract description 6
- 230000002265 prevention Effects 0.000 abstract description 4
- 230000002785 anti-thrombosis Effects 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 69
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 59
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 49
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 46
- 239000000047 product Substances 0.000 description 43
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 42
- 239000002904 solvent Substances 0.000 description 42
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 41
- 238000006243 chemical reaction Methods 0.000 description 37
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- 230000002829 reductive effect Effects 0.000 description 32
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 32
- 238000003786 synthesis reaction Methods 0.000 description 31
- 239000000651 prodrug Substances 0.000 description 29
- 229940002612 prodrug Drugs 0.000 description 29
- 238000000524 positive electrospray ionisation mass spectrometry Methods 0.000 description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 20
- 125000001309 chloro group Chemical group Cl* 0.000 description 20
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- 238000001914 filtration Methods 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 235000019439 ethyl acetate Nutrition 0.000 description 16
- 239000012071 phase Substances 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 16
- 238000005160 1H NMR spectroscopy Methods 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 14
- 238000002953 preparative HPLC Methods 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000003480 eluent Substances 0.000 description 12
- IRELEWXEFDQBIO-UHFFFAOYSA-N methyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-pyridin-4-ylpiperidin-4-yl)carbamoyl]pyrrolo[3,2-b]pyridine-5-carboxylate Chemical compound C1CN(C=2C=CN=CC=2)CCC1NC(=O)C1=CC2=NC(C(=O)OC)=CC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 IRELEWXEFDQBIO-UHFFFAOYSA-N 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000004587 chromatography analysis Methods 0.000 description 11
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 229910000104 sodium hydride Inorganic materials 0.000 description 10
- KLDLRDSRCMJKGM-UHFFFAOYSA-N 3-[chloro-(2-oxo-1,3-oxazolidin-3-yl)phosphoryl]-1,3-oxazolidin-2-one Chemical compound C1COC(=O)N1P(=O)(Cl)N1CCOC1=O KLDLRDSRCMJKGM-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 239000012074 organic phase Substances 0.000 description 9
- 125000006239 protecting group Chemical group 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 238000010561 standard procedure Methods 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- VFRSADQPWYCXDG-LEUCUCNGSA-N ethyl (2s,5s)-5-methylpyrrolidine-2-carboxylate;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC(=O)[C@@H]1CC[C@H](C)N1 VFRSADQPWYCXDG-LEUCUCNGSA-N 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- JRNVZBWKYDBUCA-UHFFFAOYSA-N N-chlorosuccinimide Chemical compound ClN1C(=O)CCC1=O JRNVZBWKYDBUCA-UHFFFAOYSA-N 0.000 description 6
- FPQVGDGSRVMNMR-JCTPKUEWSA-N [[(z)-(1-cyano-2-ethoxy-2-oxoethylidene)amino]oxy-(dimethylamino)methylidene]-dimethylazanium;tetrafluoroborate Chemical compound F[B-](F)(F)F.CCOC(=O)C(\C#N)=N/OC(N(C)C)=[N+](C)C FPQVGDGSRVMNMR-JCTPKUEWSA-N 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 125000004185 ester group Chemical group 0.000 description 6
- 238000004108 freeze drying Methods 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 5
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 229910004373 HOAc Inorganic materials 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- NMYSVCYIPOCLEC-UHFFFAOYSA-N ethyl 1h-benzimidazole-2-carboxylate Chemical class C1=CC=C2NC(C(=O)OCC)=NC2=C1 NMYSVCYIPOCLEC-UHFFFAOYSA-N 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- VSEAAEQOQBMPQF-UHFFFAOYSA-N morpholin-3-one Chemical compound O=C1COCCN1 VSEAAEQOQBMPQF-UHFFFAOYSA-N 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000012312 sodium hydride Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- UBIXPIXAVFHKMM-UHFFFAOYSA-N 3-(bromomethyl)-5-(5-chlorothiophen-2-yl)-1,2-oxazole Chemical compound S1C(Cl)=CC=C1C1=CC(CBr)=NO1 UBIXPIXAVFHKMM-UHFFFAOYSA-N 0.000 description 4
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- LQZMLBORDGWNPD-UHFFFAOYSA-N N-iodosuccinimide Substances IN1C(=O)CCC1=O LQZMLBORDGWNPD-UHFFFAOYSA-N 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 4
- 108090000190 Thrombin Proteins 0.000 description 4
- 102000002262 Thromboplastin Human genes 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000003130 blood coagulation factor inhibitor Substances 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- VLNZUSMTOFYNPS-UHFFFAOYSA-N diethylphosphorylformonitrile Chemical compound CCP(=O)(CC)C#N VLNZUSMTOFYNPS-UHFFFAOYSA-N 0.000 description 4
- LCGBPIFLBKLZLK-UHFFFAOYSA-N ethyl 5-(2-methoxyethoxy)-1h-pyrrolo[2,3-c]pyridine-2-carboxylate Chemical compound COCCOC1=NC=C2NC(C(=O)OCC)=CC2=C1 LCGBPIFLBKLZLK-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- KRGRHIQRVYJCIG-UHFFFAOYSA-N hydron;1-propan-2-ylpiperidin-4-amine;dichloride Chemical compound Cl.Cl.CC(C)N1CCC(N)CC1 KRGRHIQRVYJCIG-UHFFFAOYSA-N 0.000 description 4
- 150000002475 indoles Chemical class 0.000 description 4
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- IFFHYPWKJWLMRH-UHFFFAOYSA-N methyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]pyrrolo[2,3-b]pyridine-5-carboxylate Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC(C(=O)OC)=CN=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 IFFHYPWKJWLMRH-UHFFFAOYSA-N 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 229960004072 thrombin Drugs 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- BGJDEGLGOREKMO-UHFFFAOYSA-N 1-[(6-chloro-1-benzothiophen-2-yl)methyl]-5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C=1C2=CC=C(Cl)C=C2SC=1CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 BGJDEGLGOREKMO-UHFFFAOYSA-N 0.000 description 3
- YREBJGUGKMXPGE-UHFFFAOYSA-N 1-[2-[(5-chloropyridin-2-yl)amino]-2-oxoethyl]-5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C=1C=C(Cl)C=NC=1NC(=O)CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 YREBJGUGKMXPGE-UHFFFAOYSA-N 0.000 description 3
- PFXRYXPRYTZFLP-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]pyrrolo[2,3-b]pyridine-5-carboxylic acid Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC(C(O)=O)=CN=C2N1CC1=NOC(C=2SC(Cl)=CC=2)=C1 PFXRYXPRYTZFLP-UHFFFAOYSA-N 0.000 description 3
- JHSBJRHKOOHXDT-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]pyrrolo[3,2-b]pyridine-5-carboxylic acid Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=NC(C(O)=O)=CC=C2N1CC1=NOC(C=2SC(Cl)=CC=2)=C1 JHSBJRHKOOHXDT-UHFFFAOYSA-N 0.000 description 3
- CKIPRHGVOKOYCY-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-oxo-n-(1-propan-2-ylpiperidin-4-yl)-4h-pyrrolo[3,2-b]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C(N1CC2=NOC(=C2)C=2SC(Cl)=CC=2)=CC2=C1C=CC(=O)N2 CKIPRHGVOKOYCY-UHFFFAOYSA-N 0.000 description 3
- ZRKRAKQLRZOXQY-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-b]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC=CN=C2N1CC1=NOC(C=2SC(Cl)=CC=2)=C1 ZRKRAKQLRZOXQY-UHFFFAOYSA-N 0.000 description 3
- QOXOXCCRKJVYCD-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[3,2-b]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=NC=CC=C2N1CC1=NOC(C=2SC(Cl)=CC=2)=C1 QOXOXCCRKJVYCD-UHFFFAOYSA-N 0.000 description 3
- SKZUXKOWTWFPPH-UHFFFAOYSA-N 1-propan-2-ylpiperidin-4-amine;hydrochloride Chemical compound Cl.CC(C)N1CCC(N)CC1 SKZUXKOWTWFPPH-UHFFFAOYSA-N 0.000 description 3
- LUGPEBYUNXOUOI-UHFFFAOYSA-N 2-(2-methoxyethoxy)-4-methyl-5-nitropyridine Chemical compound COCCOC1=CC(C)=C([N+]([O-])=O)C=N1 LUGPEBYUNXOUOI-UHFFFAOYSA-N 0.000 description 3
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 3
- QLWYFQOVGWVNCK-UHFFFAOYSA-N 5-methoxycarbonyl-1h-pyrrolo[3,2-b]pyridine-2-carboxylic acid Chemical compound COC(=O)C1=CC=C2NC(C(O)=O)=CC2=N1 QLWYFQOVGWVNCK-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000032843 Hemorrhage Diseases 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000010716 Reissert indole synthesis reaction Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 108010000499 Thromboplastin Proteins 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 229940127219 anticoagulant drug Drugs 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 238000006254 arylation reaction Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 208000034158 bleeding Diseases 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 3
- 229960004132 diethyl ether Drugs 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- WLHHQAFEOMUKFU-UHFFFAOYSA-N ethyl 3-[2-(2-methoxyethoxy)-5-nitropyridin-4-yl]-2-oxopropanoate;potassium Chemical compound [K].CCOC(=O)C(=O)CC1=CC(OCCOC)=NC=C1[N+]([O-])=O WLHHQAFEOMUKFU-UHFFFAOYSA-N 0.000 description 3
- 238000003818 flash chromatography Methods 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 3
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 3
- BQSGLWDUZFTATJ-UHFFFAOYSA-N methyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]pyrrolo[3,2-b]pyridine-5-carboxylate Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=NC(C(=O)OC)=CC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 BQSGLWDUZFTATJ-UHFFFAOYSA-N 0.000 description 3
- BXBHZLHTTHMUTG-UHFFFAOYSA-N methyl 1h-pyrrolo[3,2-b]pyridine-2-carboxylate Chemical compound C1=CC=C2NC(C(=O)OC)=CC2=N1 BXBHZLHTTHMUTG-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- UWYZHKAOTLEWKK-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline Chemical compound C1=CC=C2CNCCC2=C1 UWYZHKAOTLEWKK-UHFFFAOYSA-N 0.000 description 2
- LBUJPTNKIBCYBY-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline Chemical compound C1=CC=C2CCCNC2=C1 LBUJPTNKIBCYBY-UHFFFAOYSA-N 0.000 description 2
- RUSUSNUQHGLRLN-UHFFFAOYSA-N 1-[(6-chloro-1-benzothiophen-2-yl)methyl]-5-(2-hydroxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC(OCCO)=NC=C2N1CC1=CC2=CC=C(Cl)C=C2S1 RUSUSNUQHGLRLN-UHFFFAOYSA-N 0.000 description 2
- NMMIYUOCIYXMRA-UHFFFAOYSA-N 1-[(6-chloro-1-benzothiophen-2-yl)methyl]-5-(2-methoxyethoxy)pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical compound C1=C(Cl)C=C2SC(CN3C(C(O)=O)=CC=4C=C(N=CC=43)OCCOC)=CC2=C1 NMMIYUOCIYXMRA-UHFFFAOYSA-N 0.000 description 2
- KYDFCAGYEWMXJD-UHFFFAOYSA-N 1-[2-[(5-chloropyridin-2-yl)amino]-2-oxoethyl]-5-(2-hydroxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC(OCCO)=NC=C2N1CC(=O)NC1=CC=C(Cl)C=N1 KYDFCAGYEWMXJD-UHFFFAOYSA-N 0.000 description 2
- PQFUKMHLKFDJKO-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-2-[(1-pyridin-4-ylpiperidin-4-yl)carbamoyl]pyrrolo[3,2-b]pyridine-5-carboxylic acid Chemical compound C1CN(C=2C=CN=CC=2)CCC1NC(=O)C1=CC2=NC(C(=O)O)=CC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 PQFUKMHLKFDJKO-UHFFFAOYSA-N 0.000 description 2
- COWWBSWHWVBSOT-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-(2-hydroxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C1CN(C(C)C)CCC1NC(=O)C1=CC2=CC(OCCO)=NC=C2N1CC1=NOC(C=2SC(Cl)=CC=2)=C1 COWWBSWHWVBSOT-UHFFFAOYSA-N 0.000 description 2
- OZJLBVYQJXVQCZ-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound C1=C(C=2SC(Cl)=CC=2)ON=C1CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 OZJLBVYQJXVQCZ-UHFFFAOYSA-N 0.000 description 2
- RZPRXRNWBKETPI-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide;hydrochloride Chemical compound Cl.C1=C(C=2SC(Cl)=CC=2)ON=C1CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 RZPRXRNWBKETPI-UHFFFAOYSA-N 0.000 description 2
- RPTIUTLKYGQUBB-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-(2-methoxyethoxy)pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical compound C1=2C=NC(OCCOC)=CC=2C=C(C(O)=O)N1CC(=NO1)C=C1C1=CC=C(Cl)S1 RPTIUTLKYGQUBB-UHFFFAOYSA-N 0.000 description 2
- RUCNAUQKBZWKMU-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]pyrrolo[2,3-b]pyridine-2,5-dicarboxylic acid Chemical compound OC(=O)C1=CC2=CC(C(O)=O)=CN=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 RUCNAUQKBZWKMU-UHFFFAOYSA-N 0.000 description 2
- YORLXSXETUJRDJ-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]pyrrolo[2,3-b]pyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC2=CC=CN=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 YORLXSXETUJRDJ-UHFFFAOYSA-N 0.000 description 2
- ASPGNCDILNOTCI-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]pyrrolo[3,2-b]pyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC2=NC=CC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 ASPGNCDILNOTCI-UHFFFAOYSA-N 0.000 description 2
- AAILEWXSEQLMNI-UHFFFAOYSA-N 1h-pyridazin-6-one Chemical compound OC1=CC=CN=N1 AAILEWXSEQLMNI-UHFFFAOYSA-N 0.000 description 2
- KBHQUFPZXCNYKN-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)=CC2=N1 KBHQUFPZXCNYKN-UHFFFAOYSA-N 0.000 description 2
- PAQZWJGSJMLPMG-UHFFFAOYSA-N 2,4,6-tripropyl-1,3,5,2$l^{5},4$l^{5},6$l^{5}-trioxatriphosphinane 2,4,6-trioxide Chemical compound CCCP1(=O)OP(=O)(CCC)OP(=O)(CCC)O1 PAQZWJGSJMLPMG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- XYYIHBSYADINEC-UHFFFAOYSA-N 2-bromo-n-(5-chloropyridin-2-yl)acetamide Chemical compound ClC1=CC=C(NC(=O)CBr)N=C1 XYYIHBSYADINEC-UHFFFAOYSA-N 0.000 description 2
- HKDVVTLISGIPFE-UHFFFAOYSA-N 2-bromopyridin-3-amine Chemical compound NC1=CC=CN=C1Br HKDVVTLISGIPFE-UHFFFAOYSA-N 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- APGFTRLSNWMMJU-UHFFFAOYSA-N 5-(2-methoxyethoxy)-1h-pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical compound C1=NC(OCCOC)=CC2=C1NC(C(O)=O)=C2 APGFTRLSNWMMJU-UHFFFAOYSA-N 0.000 description 2
- OAEZNWPDJVURAU-UHFFFAOYSA-N 5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)-1h-pyrrolo[2,3-c]pyridine-2-carboxamide Chemical compound N1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 OAEZNWPDJVURAU-UHFFFAOYSA-N 0.000 description 2
- GWGITNPFMIFYGH-UHFFFAOYSA-N 5-methoxycarbonyl-1h-pyrrolo[2,3-b]pyridine-2-carboxylic acid Chemical compound COC(=O)C1=CN=C2NC(C(O)=O)=CC2=C1 GWGITNPFMIFYGH-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- JNCMHMUGTWEVOZ-UHFFFAOYSA-N F[CH]F Chemical compound F[CH]F JNCMHMUGTWEVOZ-UHFFFAOYSA-N 0.000 description 2
- 238000006783 Fischer indole synthesis reaction Methods 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 238000007126 N-alkylation reaction Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 238000006619 Stille reaction Methods 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 125000002993 cycloalkylene group Chemical group 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- USHVSMUQLCPTSC-UHFFFAOYSA-N ethyl 1-[(6-chloro-1-benzothiophen-2-yl)methyl]-5-(2-methoxyethoxy)pyrrolo[2,3-c]pyridine-2-carboxylate Chemical compound C1=C(Cl)C=C2SC(CN3C4=CN=C(OCCOC)C=C4C=C3C(=O)OCC)=CC2=C1 USHVSMUQLCPTSC-UHFFFAOYSA-N 0.000 description 2
- HREOTTHBZKKOCD-UHFFFAOYSA-N ethyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-(2-methoxyethoxy)pyrrolo[2,3-c]pyridine-2-carboxylate Chemical compound CCOC(=O)C1=CC2=CC(OCCOC)=NC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 HREOTTHBZKKOCD-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 230000026045 iodination Effects 0.000 description 2
- 238000006192 iodination reaction Methods 0.000 description 2
- MGFYSGNNHQQTJW-UHFFFAOYSA-N iodonium Chemical compound [IH2+] MGFYSGNNHQQTJW-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- ZLDRKKARQQIARH-UHFFFAOYSA-N methyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-oxo-4h-pyrrolo[3,2-b]pyridine-2-carboxylate Chemical compound COC(=O)C1=CC=2NC(=O)C=CC=2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 ZLDRKKARQQIARH-UHFFFAOYSA-N 0.000 description 2
- WOYUUDITDMLNHN-UHFFFAOYSA-N methyl 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]pyrrolo[3,2-b]pyridine-2-carboxylate Chemical compound COC(=O)C1=CC2=NC=CC=C2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 WOYUUDITDMLNHN-UHFFFAOYSA-N 0.000 description 2
- HWOQCGSIDCQVRM-UHFFFAOYSA-N methyl 1h-pyrrolo[2,3-b]pyridine-2-carboxylate Chemical compound C1=CN=C2NC(C(=O)OC)=CC2=C1 HWOQCGSIDCQVRM-UHFFFAOYSA-N 0.000 description 2
- WGHUMFPCQSKYJY-UHFFFAOYSA-N methyl 2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]-1h-pyrrolo[2,3-b]pyridine-5-carboxylate Chemical compound C=1C2=CC(C(=O)OC)=CN=C2NC=1C(=O)NC1CCN(C(C)C)CC1 WGHUMFPCQSKYJY-UHFFFAOYSA-N 0.000 description 2
- LFDKBEPABCFKLM-UHFFFAOYSA-N methyl 2-[(1-propan-2-ylpiperidin-4-yl)carbamoyl]-1h-pyrrolo[3,2-b]pyridine-5-carboxylate Chemical compound C=1C2=NC(C(=O)OC)=CC=C2NC=1C(=O)NC1CCN(C(C)C)CC1 LFDKBEPABCFKLM-UHFFFAOYSA-N 0.000 description 2
- STQBRPIEZYFMJM-UHFFFAOYSA-N methyl 2-[(1-pyridin-4-ylpiperidin-4-yl)carbamoyl]-1h-pyrrolo[3,2-b]pyridine-5-carboxylate Chemical compound C=1C2=NC(C(=O)OC)=CC=C2NC=1C(=O)NC(CC1)CCN1C1=CC=NC=C1 STQBRPIEZYFMJM-UHFFFAOYSA-N 0.000 description 2
- BQRNYEXDPHWQLV-UHFFFAOYSA-N methyl 5-amino-6-bromopyridine-2-carboxylate Chemical compound COC(=O)C1=CC=C(N)C(Br)=N1 BQRNYEXDPHWQLV-UHFFFAOYSA-N 0.000 description 2
- CJSCVGMGFVSANX-UHFFFAOYSA-N methyl 6-amino-5-iodopyridine-3-carboxylate Chemical compound COC(=O)C1=CN=C(N)C(I)=C1 CJSCVGMGFVSANX-UHFFFAOYSA-N 0.000 description 2
- JACPDLJUQLKABC-UHFFFAOYSA-N methyl 6-aminopyridine-3-carboxylate Chemical compound COC(=O)C1=CC=C(N)N=C1 JACPDLJUQLKABC-UHFFFAOYSA-N 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 238000002531 positive electrospray ionisation time-of-flight mass spectrometry Methods 0.000 description 2
- 108010014806 prothrombinase complex Proteins 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000003001 serine protease inhibitor Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 238000005694 sulfonylation reaction Methods 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- SYXBLASQKPONBN-UHFFFAOYSA-N tert-butyl n-(1-propan-2-ylpiperidin-4-yl)carbamate Chemical compound CC(C)N1CCC(NC(=O)OC(C)(C)C)CC1 SYXBLASQKPONBN-UHFFFAOYSA-N 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- AMLYFGRCJXYRSH-UHFFFAOYSA-N (2-aminophenyl) trifluoromethanesulfonate Chemical class NC1=CC=CC=C1OS(=O)(=O)C(F)(F)F AMLYFGRCJXYRSH-UHFFFAOYSA-N 0.000 description 1
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- CFGDUGSIBUXRMR-UHFFFAOYSA-N 1,2-dihydropyrrol-2-ide Chemical compound C=1C=[C-]NC=1 CFGDUGSIBUXRMR-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- YNGDWRXWKFWCJY-UHFFFAOYSA-N 1,4-Dihydropyridine Chemical compound C1C=CNC=C1 YNGDWRXWKFWCJY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- WMKGGPCROCCUDY-UHFFFAOYSA-N 1,5-diphenylpenta-1,4-dien-3-one Chemical compound C=1C=CC=CC=1C=CC(=O)C=CC1=CC=CC=C1 WMKGGPCROCCUDY-UHFFFAOYSA-N 0.000 description 1
- DUNCEEUEBVPMEV-UHFFFAOYSA-N 1-(benzenesulfonyl)pyrrolo[2,3-b]pyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC2=CC=CN=C2N1S(=O)(=O)C1=CC=CC=C1 DUNCEEUEBVPMEV-UHFFFAOYSA-N 0.000 description 1
- VDHFBYNEVFRQDY-UHFFFAOYSA-N 1-[(6-chloro-1-benzothiophen-2-yl)methyl]-5-(2-methoxyethoxy)-n-(1-propan-2-ylpiperidin-4-yl)pyrrolo[2,3-c]pyridine-2-carboxamide;hydrochloride Chemical compound Cl.C=1C2=CC=C(Cl)C=C2SC=1CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 VDHFBYNEVFRQDY-UHFFFAOYSA-N 0.000 description 1
- GVMZQRLWMXLXGW-UHFFFAOYSA-N 1-[[5-(5-chlorothiophen-2-yl)-1,2-oxazol-3-yl]methyl]-5-oxo-4h-pyrrolo[3,2-b]pyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC=2NC(=O)C=CC=2N1CC(=NO1)C=C1C1=CC=C(Cl)S1 GVMZQRLWMXLXGW-UHFFFAOYSA-N 0.000 description 1
- PRIGFEJKMMRJSF-UHFFFAOYSA-M 1-fluoro-2,4,6-trimethylpyridin-1-ium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.CC1=CC(C)=[N+](F)C(C)=C1 PRIGFEJKMMRJSF-UHFFFAOYSA-M 0.000 description 1
- DPJHZJGAGIWXTD-UHFFFAOYSA-N 1-fluoro-4-methylsulfonylbenzene Chemical class CS(=O)(=O)C1=CC=C(F)C=C1 DPJHZJGAGIWXTD-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- ZRQQXFMGYSOKDF-UHFFFAOYSA-N 1-propan-2-ylpiperidin-4-amine Chemical compound CC(C)N1CCC(N)CC1 ZRQQXFMGYSOKDF-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- YIMBYMVSBQILFO-UHFFFAOYSA-N 1-pyridin-4-ylpiperidin-4-amine;dihydrochloride Chemical compound Cl.Cl.C1CC(N)CCN1C1=CC=NC=C1 YIMBYMVSBQILFO-UHFFFAOYSA-N 0.000 description 1
- HUTNOYOBQPAKIA-UHFFFAOYSA-N 1h-pyrazin-2-one Chemical compound OC1=CN=CC=N1 HUTNOYOBQPAKIA-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- QDKGOMZIPXGDDJ-UHFFFAOYSA-N 2,3-dihydro-1h-indazole Chemical class C1=CC=C2CNNC2=C1 QDKGOMZIPXGDDJ-UHFFFAOYSA-N 0.000 description 1
- BBTKFFLJVORJDU-UHFFFAOYSA-N 2-(bromomethyl)-6-chloro-1-benzothiophene Chemical compound ClC1=CC=C2C=C(CBr)SC2=C1 BBTKFFLJVORJDU-UHFFFAOYSA-N 0.000 description 1
- KBRRIEFTVXTTCR-UHFFFAOYSA-N 2-(nitromethyl)pyridine Chemical class [O-][N+](=O)CC1=CC=CC=N1 KBRRIEFTVXTTCR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- LSTRKXWIZZZYAS-UHFFFAOYSA-N 2-bromoacetyl bromide Chemical compound BrCC(Br)=O LSTRKXWIZZZYAS-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- HWZUMEVIIGNXGM-UHFFFAOYSA-N 2-chloro-4-methyl-5-nitropyridine Chemical compound CC1=CC(Cl)=NC=C1[N+]([O-])=O HWZUMEVIIGNXGM-UHFFFAOYSA-N 0.000 description 1
- 125000006029 2-methyl-2-butenyl group Chemical group 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- CGCWRLDEYHZQCW-UHFFFAOYSA-N 2-nitrophenylpyruvic acid Chemical class OC(=O)C(=O)CC1=CC=CC=C1[N+]([O-])=O CGCWRLDEYHZQCW-UHFFFAOYSA-N 0.000 description 1
- ZVUGFTIPIRNQPE-UHFFFAOYSA-N 3-(2-bromoethyl)-5-(5-chlorothiophen-2-yl)-1,2-oxazole Chemical compound S1C(Cl)=CC=C1C1=CC(CCBr)=NO1 ZVUGFTIPIRNQPE-UHFFFAOYSA-N 0.000 description 1
- MYDSAMPAYOLUMG-UHFFFAOYSA-N 3-aminothieno[3,2-b]pyridine-2-carboxylic acid Chemical compound C1=CN=C2C(N)=C(C(O)=O)SC2=C1 MYDSAMPAYOLUMG-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- MAXBVGJEFDMHNV-UHFFFAOYSA-N 5-chloropyridin-2-amine Chemical compound NC1=CC=C(Cl)C=N1 MAXBVGJEFDMHNV-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- XVMSFILGAMDHEY-UHFFFAOYSA-N 6-(4-aminophenyl)sulfonylpyridin-3-amine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=N1 XVMSFILGAMDHEY-UHFFFAOYSA-N 0.000 description 1
- ZCIFWRHIEBXBOY-UHFFFAOYSA-N 6-aminonicotinic acid Chemical compound NC1=CC=C(C(O)=O)C=N1 ZCIFWRHIEBXBOY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 206010003162 Arterial injury Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical group NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- AEPMYORAPCUVNC-UHFFFAOYSA-N Cl.C=1C=C(Cl)C=NC=1NC(=O)CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 Chemical compound Cl.C=1C=C(Cl)C=NC=1NC(=O)CN1C=2C=NC(OCCOC)=CC=2C=C1C(=O)NC1CCN(C(C)C)CC1 AEPMYORAPCUVNC-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 108010088842 Fibrinolysin Proteins 0.000 description 1
- 238000006641 Fischer synthesis reaction Methods 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007821 HATU Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 230000006181 N-acylation Effects 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical class [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 238000010640 amide synthesis reaction Methods 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000001499 aryl bromides Chemical class 0.000 description 1
- 150000001501 aryl fluorides Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 125000003725 azepanyl group Chemical group 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 1
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004651 carbonic acid esters Chemical class 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- BULLHNJGPPOUOX-UHFFFAOYSA-N chloroacetone Chemical compound CC(=O)CCl BULLHNJGPPOUOX-UHFFFAOYSA-N 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QPMLSUSACCOBDK-UHFFFAOYSA-N diazepane Chemical compound C1CCNNCC1 QPMLSUSACCOBDK-UHFFFAOYSA-N 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical class [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 description 1
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 238000007345 electrophilic aromatic substitution reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- ZULIQRPCKRRZTH-UHFFFAOYSA-N ethyl 3-chloro-1h-pyrrolo[3,2-b]pyridine-2-carboxylate Chemical compound C1=CN=C2C(Cl)=C(C(=O)OCC)NC2=C1 ZULIQRPCKRRZTH-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960004903 invert sugar Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 125000005905 mesyloxy group Chemical group 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- LJYSUEZSIXOJFK-UHFFFAOYSA-N methyl 5-aminopyridine-2-carboxylate Chemical compound COC(=O)C1=CC=C(N)C=N1 LJYSUEZSIXOJFK-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 125000004928 piperidonyl group Chemical group 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- IWRRRCZSVINKHU-UHFFFAOYSA-N pyrazol-3-ylidenemethanone Chemical class O=C=C1C=CN=N1 IWRRRCZSVINKHU-UHFFFAOYSA-N 0.000 description 1
- VTGOHKSTWXHQJK-UHFFFAOYSA-N pyrimidin-2-ol Chemical compound OC1=NC=CC=N1 VTGOHKSTWXHQJK-UHFFFAOYSA-N 0.000 description 1
- 150000004728 pyruvic acid derivatives Chemical class 0.000 description 1
- 238000006476 reductive cyclization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- KXCAEQNNTZANTK-UHFFFAOYSA-N stannane Chemical compound [SnH4] KXCAEQNNTZANTK-UHFFFAOYSA-N 0.000 description 1
- 229910000080 stannane Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 230000006103 sulfonylation Effects 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- CKXZPVPIDOJLLM-UHFFFAOYSA-N tert-butyl n-piperidin-4-ylcarbamate Chemical compound CC(C)(C)OC(=O)NC1CCNCC1 CKXZPVPIDOJLLM-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 125000005424 tosyloxy group Chemical group S(=O)(=O)(C1=CC=C(C)C=C1)O* 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- the present invention relates to compounds of formula I,
- the compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended.
- the invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
- Normal haemeostasis is the result of a complex balance between the processes of clot initiation, formation and clot dissolution.
- Many significant disease states are related to abnormal haemeostasis. For example, local thrombus formation due to rupture of atheroslerotic plaque is a major cause of acute myocardial infarction and unstable angina. Treatment of an occlusive coronary thrombus by either thrombolytic therapy or percutaneous angioplasty may be accompanied by acute thrombolytic reclosure of the affected vessel.
- factor Xa-specific blood clotting inhibitors that are effective but do not cause unwanted side effects have been described, for example, in WO-A-95/29189.
- the present invention satisfies the above needs by providing novel compounds of the formula I, which exhibit better factor Xa and/or factor VIIa inhibitory activity and are favorable agents with high bioavailability.
- the present invention relates to a compound of formula I,
- a 4- to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R 3 , or substituted 1 or 2 times by ⁇ O, provided that said cyclic group is not a phenyl residue,
- Q is a direct bond, —(C 0 -C 2 )-alkylene-C(O)—NR 10 —, —NR 10 —C(O)—NR 10 —, —NR 10 —C(O)—, —SO 2 —, —(C 1 -C 6 )-alkylene, —(CH 2 ) m —NR 10 —C(O)—NR 10 —(CH 2 ) n —, —(CH 2 ) m —NR 10 —C(O)—(CH 2 ) n —, —(CH 2 ) m —S—(CH 2 ) n —, —(CH 2 ) m —C(O)—(CH 2 ) n —, —(CH 2 ) m —SO 2 —NR 10 —(CH 2 ) n —, —(CH 2 ) m —NR 10 —SO 2 —(CH 2 ) n
- R14 is halogen, —OH, ⁇ O, —(C 1 -C 8 )-alkyl, —(C 1 -C 4 )-alkoxy, —NO 2 , —C(O)—OH, —CN, —NH 2 , —C(O)—O—(C 1 -C 4 )-alkyl, —(C 0 -C 8 )-alkyl-SO 2 —(C 1 -C 4 )-alkyl, —(C 0 -C 8 )-alkyl-SO 2 —(C 1 -C 4 )-alkyl, —(C 0 -C 8 )-alkyl-SO 2 —(C 1 -C 3 )-perfluoroalkyl, —(C 0 -C 8 )-alkyl-SO 2 —N(R 18 )—R 21 , —C(O)—NH—(C 1 -C 8 )
- alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits.
- alkyl as used herein expressly includes saturated groups as well as unsaturated groups which latter groups contain one or more, for example one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results.
- alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue.
- alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are methyl, methylene, ethyl, ethylene, propyl, propylene, butyl, butylene, pentyl, pentylene, hexyl, heptyl or octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tBu,
- —(C 0 -C 6 )-alkyl or “—(C 0 -C 8 )-alkylene” is a hydrocarbon residue containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms.
- —C 0 -alkyl or “—C 0 -alkylene” is a covalent bond.
- Examples of —(C 3 -C 8 )-cycloalkyl cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5, 6, 7 or 8 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, which can also be substituted and/or unsaturated.
- Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom.
- a monocyclic or bicyclic 6- to 14-membered aryl or “—(C 6 -C 14 )-aryl” are understood as meaning aromatic hydrocarbon radicals containing from 6 to 14 carbon atoms in the ring.
- —(C 6 -C 14 )-aryl radicals are phenyl, naphthyl, for example 1-naphthyl and 2-naphthyl, biphenylyl, for example 2-biphenylyl, 3-biphenylyl and 4-biphenylyl, anthryl or fluorenyl.
- Biphenylyl radicals, naphthyl radicals and, in particular, phenyl radicals are preferred aryl radicals.
- mono- or bicyclic 4- to 15-membered heterocyclyl or “—(C 4 -C 15 )-heterocyclyl” refer to heterocycles in which one or more of the 4 to 15 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur.
- Examples are acridinyl, 8-aza-bicyclo[3.2.1]oct-3-yl, azaindole (1H-pyrrolopyridinyl), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxazolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl,
- heterocyclyls such as benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyr
- heterocycles refer to structures of heterocycles which can be derived from compounds such as azepine, azetidine, aziridine, azirine, 1,4 diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane,
- R 1 —N—R 2 —V can form a 4- to 7-membered cyclic group” or “R 11 and R 12 together with the nitrogen atom to which they are bonded can form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen” refer to structures of heterocycles which can be derived from compounds such as azepane, azepine, azetidine, dioxazole, dioxazine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [
- R 15 and R 16 together with the carbon atom to which they are bonded can form a 3- to 6 membered carbocyclic ring” refer to structures, which can be derived from compounds such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
- the “substructure D” is a 4- to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refer to structures, which can be derived from compounds such as azepane, azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1,2-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-d
- substrate D is a 5 to 6 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refer to structures, which can be derived from compounds such as cyclopentyl, cyclohexyl, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, piperazine, piperidine, phenyl, pyran, pyra
- R 1 and R 3 together with the atoms to which they are bonded can form a 6- to 8-membered cyclic group, containing up to 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refers to structures of heterocycles which can be derived from compounds such as
- the 4-15 membered mono- or polycyclic group could only be derived from the respective unsaturated ring system.
- the names here only serve to describe the ring system with respect to ring size and the number of the heteroatoms and their relative positions.
- the 4-15 membered mono- or polycyclic group can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable.
- —(C 1 -C 3 )-perfluoroalkyl is a partial or totally fluorinated alkyl-residue, which can be derived from residues such as —CF 3 , —CHF 2 , —CH 2 F, —CHF—CF 3 , —CHF—CHF 2 , —CHF—CH 2 F, —CH 2 —CF 3 , —CH 2 —CHF 2 , —CH 2 —CH 2 F, —CF 2 —CF 3 , —CF 2 —CHF 2 , —CF 2 —CH 2 F, —CH 2 —CHF—CF 3 , —CH 2 —CHF—CHF 2 , —CH 2 —CHF—CH 2 F, —CH 2 —CH 2 —CF 3 , —CH 2 —CHF—CHF 2 , —CH 2 —CHF—CH 2 F, —CH 2 —CH 2 —CF 3 ,
- —(C 1 -C 3 )-perfluoroalkylene is a partial or totally fluorinated alkylene-residue, which can be derived from residues such as —CF 2 —, —CHF—, —CHF—CHF 2 —, —CHF—CHF—, —CH 2 —CF 2 —, —CH 2 —CHF—, —CF 2 —CF 2 —, —CF 2 —CHF—, —CH 2 —CHF—CF 2 —, —CH 2 —CHF—CHF—, —CH 2 —CH 2 —CF 2 —, —CH 2 —CH 2 —CHF, —CH 2 —CF 2 —CF 2 —, —CH 2 —CF 2 —CHF —, —CHF—CHF—CF 2 —, —CHF—CHF—CF 2 —, —CHF—CHF—CHF—, —CHF—CHF
- oxo-residue or “ ⁇ O” refers to residues such as carbonyl (—C(O)—) or nitroso (—N ⁇ O).
- Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.
- Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration.
- the compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates.
- the present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers.
- the invention comprises mixtures of two or of more than two stereoisomers of the formula I, and it comprises all ratios of the stereoisomers in the mixtures.
- the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios.
- the invention also comprises all tautomeric forms of the compounds of the formula I.
- Diastereomers including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of the formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.
- Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular pharmaceutically utilizable salts.
- Such salts of compounds of the formula I containing acidic groups, for example a carboxyl group COOH are for example alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts, and also salts with physiologically tolerable quaternary ammonium ions such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyl)amine.
- Basic groups contained in the compounds of the formula I form acid addition salts, for example with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid.
- inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid
- organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methane
- Patient includes both human and other mammals.
- Pharmaceutically effective amount means an amount of the compound according to the invention effective in producing the desired therapeutic effect.
- One particular embodiment of the present invention relates to compound of the formula I, wherein
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- Another particular embodiment of the present invention relates to the compounds of the formula I, wherein
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- Another particular embodiment of the present invention relates to the compound of the formula I, which is
- Salts of compounds of the formula I can be obtained by customary methods known to those skilled in the art, for example by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange.
- the present invention also includes all salts of the compounds of the formula I which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of the formula I or as starting materials for the preparation of physiologically tolerable salts.
- the present invention furthermore includes all solvates of compounds of the formula I, for example hydrates or adducts with alcohols.
- the invention also includes derivatives and modifications of the compounds of the formula I, for example prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of the formula I.
- the invention relates in particular to prodrugs and protected forms of the compounds of the formula I, which can be converted into compounds of the formula I under physiological conditions.
- Suitable prodrugs for the compounds of the formula I i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H.
- Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of the formula I.
- acyl prodrugs and carbamate prodrugs one or more, for example one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a —(C 1 -C 6 )-alkyloxycarbonyl group.
- Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups R p1 —CO— and R p2 O—CO—, in which R p1 is hydrogen, (C 1 -C 18 )-alkyl, (C 3 -C 8 )-cycloalkyl, (C 3 -C 8 )-cycloalkyl-(C 1 -C 4 )-allyl-, (C 6 -C 14 )-aryl, Het-, (C 6 -C 14 )-aryl-(C 1 -C 4 )-alkyl- or Het-(C 1 -C 4 )-alkyl- and in which R p2 has the meanings indicated for R p1 with the exception of hydrogen.
- Especially preferred compounds of the formula I are those wherein two or more residues are defined as indicated before for preferred compounds of the formula I, or residues can have one or some of the specific denotations of the residues given in their general definitions or in the definitions of preferred compounds before. All possible combinations of definitions given for preferred definitions and of specific denotations of residues explicitly are a subject of the present invention.
- the compounds of the formula I can be prepared by utilising procedures and techniques, which per se are well known and appreciated by one of ordinary skill in the art. Starting materials or building blocks for use in the general synthetic procedures that can be applied in the preparation of the compounds of formula I are readily available to one of ordinary skill in the art. In many cases they are commercially available or have been described in the literature. Otherwise they can be prepared from readily available precursor compounds analogously to procedures described in the literature, or by procedures or analogously to procedures described in this application.
- compounds of the formula I can be prepared, for example in the course of a convergent synthesis, by linking two or more fragments which can be derived retrosynthetically from the formula I. More specifically, suitably substituted starting azaindole derivatives are employed as building blocks in the preparation of the compounds of formula I.
- suitably substituted starting azaindole derivatives are employed as building blocks in the preparation of the compounds of formula I.
- various synthetic aspects of the azaindole chemistry are considerably different to the indole chemistry many procedures describing the synthesis and functionalisation of indoles can be modified and adopted by those skilled in the art. Therefore literature describing transformations and the synthesis of indoles are highly instructive and applicable to the azaindole chemistry.
- such azaindole derivatives can be prepared according to the well-known standard procedures for the formation of the azaindole ring system such as, for example, the Fischer indole synthesis, the Bischler indole synthesis, or the Reissert indole synthesis.
- these azaindole syntheses allow the introduction of a variety of substituents into the various positions of the azaindole system, which can then be chemically modified in order to finally arrive at the molecule of the formula I having the desired substituent pattern.
- the Fischer indole synthesis comprises the acid cyclization of heteroarylhydrazones, for example of the general formula 2,
- R 31 and R 32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the azaindole molecule of the (CH 2 ) p —CO moiety occurring in the groups R 2 and/or R 3 in the compounds of the formula I.
- R 31 and R 32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the azaindole molecule of the (CH 2 ) p —CO moiety occurring in the groups R 2 and/or R 3 in the compounds of the formula I.
- the Reissert indole synthesis comprises the reductive cyclization of o-nitrophenylpyruvic acids or esters thereof, for example of the general formula 3,
- the groups R 30 can have a wide variety of denotations and can be present in all positions of the aromatic ring.
- the Reissert indole synthesis leads to derivatives of azaindole-2-carboxylic acids.
- the pyruvic acid derivatives of the formula 3 can be obtained by condensation of oxalic acid esters with substituted o-nitromethylazabenzenes.
- a further route to specifically substituted azaindole derivatives proceeds via 2,3-dihydroazaindoles (azaindolines) which can be easily obtained by reduction of azaindoles, for example by hydrogenation, or by cyclization of suitable azaphenylethylamine derivatives.
- Azaindolines can undergo a variety of electrophilic aromatic substitution reaction allowing the introduction of various substituents into the aromatic nucleus which cannot directly be introduced by such reactions into the aromatic nucleus of the azaindole molecule.
- the azaindolines can then be dehydrogenated to the corresponding azaindoles, for example with reagents like chloranil, or palladium together with a hydrogen acceptor. Again, details on these syntheses can be found in the above-mentioned book edited by Houlihan.
- 2-H-azaindoles can be converted into the corresponding carboxylic acids or carboxylic esters by lithiation of the 2-position of the azaindoles of the general formula 13 and subsequent reaction with carbon dioxide or alkylchloroformate according to I. Hasan, E. Marinelli, L. Lin, F. Fowler, A. Levy, J. Org. Chem. 46 (1981) 157; T. Kline J. Heterocycl. Chem. 22 (1985) 505; J.-R. Dormoy, A. Heymes, Tetrahedron 49, (1993) 2885; E. Des380, S. Coudret, C. Meheust, J.-Y. Merour, Tetrahedron 53 (1997) 3637 as indicated below:
- R 45 denotes hydrogen or a protecting group like for example benzenesulfonyl or tert-butoxycarbonyl.
- the functional groups introduced into the ring system during the azaindole synthesis can be chemically modified.
- azaindoles carrying a hydrogen atom in the 2-position or the 3-position can also be obtained by saponification and subsequent decarboxylation of azaindoles carrying an ester group in the respective position.
- Carboxylic acid groups and acetic acid groups in the 2-position and the 3-position can be converted into their homologues by usual reactions for chain elongation of carboxylic acids.
- Halogen atoms can be introduced into the 2-position or the 3-position, for example by reacting the respective azaindolinone with a halogenating agent such as phosphorus pentachloride analogously to the method described by J. C. Powers, J. Org. Chem. 31 (1966) 2627.
- a halogenating agent such as phosphorus pentachloride
- the starting azaindolinones for such a synthesis can be obtained from 2-aminoheteroaryl acetic acids.
- Starting azaindole derivatives for the preparation of compounds of the formula I carrying a halogen substituent in the 3-position can also be obtained according to procedures described in the literature like the following.
- N-fluoro-2,4,6-trimethylpyridinium triflate is the reagent of choice (T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita J. Am. Chem. Soc. 112 (1990) 8563).
- nitro groups can be reduced to amino group with various reducing agents, such as sulfides, dithionites, complex hydrides or by catalytic hydrogenation.
- a reduction of a nitro group may also be carried out at a later stage of the synthesis of a compound of the formula I, and a reduction of a nitro group to an amino group may also occur simultaneously with a reaction performed on another functional group, for example when reacting a group like a cyano group with hydrogen sulfide or when hydrogenating a group.
- amino groups can then be modified according to standard procedures for alkylation, for example by reaction with (substituted) alkyl halogenides or by reductive amination of carbonyl compounds, according to standard procedures for acylation, for example by reaction with activated carboxylic acid derivatives such as acid chlorides, anhydrides, activated esters or others or by reaction with carboxylic acids in the presence of an activating agent, or according to standard procedures for sulfonylation, for example by reaction with sulfonyl chlorides.
- Carboxylic acids, carboxylic acid chlorides or carboxylic acid esters can be introduced by procedures described by F. Santangelo, C. Casagrande, G.
- Halogens or hydroxy groups—via the triflate or nonaflate—or primary amines—via its diazonium salt—or after interconversion to the corresponding stannane, or boronic acid—present in the azaindole structure can be converted into a variety of other functional groups like for example —CN, —CF 3 , ethers, acids, esters, amides, amines, alkyl- or aryl groups mediated by means of transition metals, namely palladium or nickel catalysts or copper salts and reagents for example referred to below (F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C.
- Ester groups present in the azaindole nucleus can be hydrolyzed to the corresponding carboxylic acids, which after activation can then be reacted with amines or alcohols under standard conditions. Furthermore these ester or acid groups can be reduced to the corresponding alcohols by many standard procedures.
- Ether groups present at the azaindole nucleus for example benzyloxy groups or other easily cleavable ether groups, can be cleaved to give hydroxy groups which then can be reacted with a variety of agents, for example etherification agents or activating agents allowing replacement of the hydroxy group by other groups. Sulfur-containing groups can be reacted analogously.
- the structural elements present in the residues in the 1-position of the azaindole ring in the compounds of the formula I and in the COR 8′ group present in the 2-position and/or in the 3-position of the azaindole ring can be introduced into the starting azaindole derivative obtainable as outlined above by consecutive reaction steps using synthesis methodologies like those outlined below using procedures which per se are well known to one skilled in the art.
- the compound of the formula 30 thus obtained can already contain the desired final groups, i.e.
- the groups R 8′ and R 54 can be the groups —N(R 1 )R 2 —V-G-M and R 0 -Q- as defined in the formula I, or optionally in the compound of the formula 30 thus obtained subsequently the residue or the residues R 8′ and the residue R 54 are converted into the residues —N(R 1 )R 2 —V-G-M and R 0 -Q-, respectively, to give the desired compound of the formula I.
- residues R 8′ and the residues R 1′ and R 2′ —V-G-M contained therein can have the denotations of R 1 and R 2 —V-G-M, respectively, given above or in addition in the residues R 1′ and R 2′ —V-G-M functional groups can also be present in the form of groups that can subsequently be transformed into the final groups R 1 and R 2 —V-G-M, i.e. functional groups can be present in the form of precursor groups or of derivatives, for example in protected form.
- the cyano groups can in a later step be transformed into carboxylic acid derivatives or by reduction into aminomethyl groups, or the nitro groups which may be transformed by reduction like catalytic hydrogenation into amino groups.
- Protective groups can also have the meaning of a solid phase, and cleavage from the solid phase stands for the removal of the protective group. The use of such techniques is known to those skilled in the art (Burgess K (Ed.) Solid Phase Organic Synthesis, New York: Wiley, 2000).
- a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage of the synthesis.
- the residue R 54 in the compounds of the formulae 29 and 30 can denote the group -Q-R 0 as defined above which finally is to be present in the desired target molecule of the formula I, or it can denote a group which can subsequently be transformed into the group -Q-R 0 , for example a precursor group or a derivative of the group -Q-R 0 in which functional groups are present in protected form, or R 54 can denote a hydrogen atom or a protective group for the nitrogen atom of the azaindole ring.
- residues R 3a and R 30 in the formulae 29 and 30 have the corresponding definitions of R 3 in formula I as defined above, however, for the synthesis of the compounds of the formula I these residues, too, can in principle be present at the stage of the condensation of a compound of the formula 29 with a compound of the formula HR 8′ giving a compound of the formula 30 in the form of precursor groups or in protected form.
- the residues R 53 in the compounds of the formula 29 which can be identical or different, can be, for example, hydroxy or (C 1 -C 4 )-alkoxy, i.e., the groups COR 53 present in the compounds of the formula 29 can be, for example, the free carboxylic acids or esters thereof like alkyl esters as can be the groups COR 8′ in the compounds of the formula I.
- the groups COR 53 can also be any other activated derivative of a carboxylic acid which allows amide formation, ester formation or thioester formation with a compound of the formula HR 8′ .
- the group COR 53 can be, for example, an acid chloride, an activated ester like a substituted phenyl ester, an azolide like an imidazolide, an azide or a mixed anhydride, for example a mixed anhydride with a carbonic acid ester or with a sulfonic acid, which derivatives can all be prepared from the carboxylic acid by standard procedures and can be reacted with an amine, an alcohol or a mercaptan of the formula HR 8′ under standard conditions.
- a carboxylic acid group COOH representing COR 53 in a compound of the formula 29 can be obtained, for example, from an ester group introduced into the azaindole system during an azaindole synthesis by standard hydrolysis procedures.
- Compounds of the formula I in which a group COR 8 is an ester group can also be prepared from compounds of the formula 29 in which COR 53 is a carboxylic acid group by common esterification reactions like, for example, reacting the acid with an alcohol under acid catalysis, or alkylation of a salt of the carboxylic acid with an electrophile like an alkyl halogenide, or by transesterification from another ester.
- Compounds of the formula I in which a group COR 8 is an amide group can be prepared from amines and compounds of the formula 29 in which COR 53 is a carboxylic acid group or an ester thereof by common amination reactions.
- the compounds of the formula 29 in which COR 53 is a carboxylic acid group can be condensed under standard conditions with compounds of the formula HR 8′ which are amines by means of common coupling reagents used in peptide synthesis.
- Such coupling reagents are, for example, carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide, carbonyldiazoles like carbonyldiimidazole (CDI) and similar reagents, propylphosphonic anhydride, O-((cyano-(ethoxycarbonyl)-methylene)amino)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TOTU), diethylphosphoryl cyanide (DEPC) or bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride (BOP-Cl) and many others.
- DEC diethylphosphoryl cyanide
- BOP-Cl bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride
- residue -Q-R 0 present in an azaindole of the formula I or the residue R 54 present in an azaindole of the formula 29, or a residue in which functional groups within the residue -Q-R 0 or R 54 are present in protected form or in the form of a precursor group have not already been introduced during a preceding step, for example during a synthesis of the azaindole nucleus, these residues can, for example, be introduced into the 1-position of the azaindole system by conventional literature procedures well known to one skilled in the art for N-alkylation, reductive amination, N-arylation, N-acylation or N-sulfonylation of ring nitrogen atoms of heterocycles.
- N-Alkylation of a ring nitrogen atom can, for example, be performed under standard conditions, preferably in the presence of a base, using an alkylating compound of the formula LG-Q-R 0 or of the formula R 54 —LG, wherein the atom in the group Q or in the group R 54 bonded to the group LG in this case is an aliphatic carbon atom of an alkyl moiety and LG is a leaving group, for example halogen like chlorine, bromine or iodine, or a sulfonyloxy group like tosyloxy, mesyloxy or trifluormethylsulfonyloxy.
- the compounds of the present invention are serine protease inhibitors, which inhibit the activity of the blood coagulation enzyme factors Xa and/or factor VIIa. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired.
- the activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art.
- a preferred embodiment of the invention comprises compounds which have a Ki ⁇ 1 mM for factor Xa inhibition as determined in the assay described below, with or without concomitant factor VIIa inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor).
- the compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex.
- the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor VIIa or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor VIIa or a decrease in their activity is desired by the physician.
- the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician.
- a specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor.
- the present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses.
- the invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis.
- the present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
- a customary pharmaceutically acceptable carrier i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
- the invention also relates to the treatment of disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA), transient ischemic attacks, stroke, intermittent claudication or bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, certain viral infections or cancer.
- disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thro
- the compounds of the present invention can also be used to reduce an inflammatory response.
- specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular clotting disorder.
- thromboses like deep vein and proximal vein thrombosis, which can occur following surgery.
- the compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations, which permit enteral or parenteral administration.
- the pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures.
- Administration can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.
- compositions according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
- pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
- pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
- Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc.
- Suitable carriers for the production of solutions for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc.
- Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid.
- the pharmaceutical preparations normally contain about 0.5% to 90% by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs.
- the amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mg to about 1000 mg, preferably from about 1 mg to about 500 mg.
- the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I, and/or their physiologically tolerable salts and/or their prodrugs.
- a pharmaceutical preparation contains two or more compounds of the formula I
- the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation.
- a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency.
- the flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds.
- the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.
- the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out.
- An appropriate dosage can be established using clinical approaches well known in the medical art.
- the daily dose for achieving the desired results in an adult weighing about 75 kg is from 0.01 mg/kg to 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight).
- the daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.
- a compound of the formula I can also advantageously be used as an anticoagulant outside an individual.
- an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample.
- a compound of the formula I or its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations.
- a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor VIIa or to isolate factor Xa and/or factor VIIa in a substantially purified form.
- a compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor VIIa is then detected using a routine method useful for detecting the particular label.
- a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor VIIa activity in vivo, in vitro or ex vivo.
- the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.
- an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tBu group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt or hydrochloric acid salt.
- the reaction was allowed to warm to RT overnight. 0.3 mL of 2N aqueous sodium hydroxide was added and the reaction was stirred at RT for 24 h.
- the product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a solid.
- WO 0107436 A2 were added and the mixture was stirred for 2 h at RT. Then 50 mL of water were added and the precipitate was collected by filtration to yield 630 mg pure product. The filtrate was concentrated under reduced pressure and the residue purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization further 371 mg of product were obtained as a solid.
- the resulting residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
- the ability of the compounds of the formula I to inhibit factor Xa or factor VIIa or other enzymes like thrombin, plasmin, or trypsin can be assessed by determining the concentration of the compound of the formula I that inhibits enzyme activity by 50%, i.e. the IC50 value, which was related to the inhibition constant Ki.
- Purified enzymes were used in chromogenic assays.
- the concentration of inhibitor that causes a 50% decrease in the rate of substrate hydrolysis was determined by linear regression after plotting the relative rates of hydrolysis (compared to the uninhibited control) versus the log of the concentration of the compound of formula I.
- the IC50 value was corrected for competition with substrate using the formula
- Ki IC50/ ⁇ 1+(substrate concentration/ Km ) ⁇
- Km is the Michaelis-Menten constant (Chen and Prusoff, Biochem. Pharmacol. 22 (1973), 3099-3108; I. H. Segal, Enzyme Kinetics, 1975, John Wiley & Sons, New York, 100-125; which were incorporated herein by reference).
- TBS-PEG buffer 50 mM Tris-HCl, pH 7.8, 200 mM NaCl, 0.05% (w/v) PEG-8000, 0.02% (w/v) NaN3) was used.
- the IC50 was determined by combining in appropriate wells of a Costar half-area microtiter plate 25 ⁇ l human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Ind.) in TBS-PEG; 40 ⁇ l 10% (v/v) DMSO in TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10% (v/v) DMSO in TBS-PEG; and substrate S-2765 (N( ⁇ )-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio) in TBS-PEG.
- substrate S-2765 N( ⁇ )-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio
- the assay was performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay was initiated by adding substrate to obtain a final volume of 100 ⁇ l. The initial velocity of chromogenic substrate hydrolysis was measured by the change in absorbance at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi) at 25° C. during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concentration was 0.5 nM and substrate concentration was 140 ⁇ M.
- the inhibitory activity towards factor VIIa/tissue factor activity was determined using a chromogenic assay essentially as described previously (J. A. Ostrem et al., Biochemistry 37 (1998) 1053-1059 which was incorporated herein by reference). Kinetic assays were conducted at 25° C. in half-area microtiter plates (Costar Corp., Cambridge, Mass.) using a kinetic plate reader (Molecular Devices Spectramax 250).
- a typical assay consisted of 25 ⁇ l human factor VIIa and TF (5 nM and 10 nM, respective final concentration) combined with 40 ⁇ l of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl2, 0.05% PEG 8000, pH 8.15). Following a 15 minutes preincubation period, the assay was initiated by the addition of 35 ⁇ l of the chromogenic substrate S-2288 (D-Ile-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 ⁇ M final concentration). The results (inhibition constants Ki (FXa) for inhibition of factor Xa) are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Indazole-derivatives as factor Xa inhibitors The present invention relates to compounds of the formula I
wherein R0, R1, R2, R3, Q, V, G and M are as defined herein. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended. The invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
Description
- This application is a Continuation of U.S. patent application Ser. No. 10/849,089, filed May 19, 2004, which claims the benefit of U.S. Provisional Application No. 60/507,141, filed Sep. 30, 2003.
- The present invention relates to compounds of formula I,
- wherein R0, R1, R2, R3, Q, V, G and M have the meanings indicated below. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended. The invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
- Normal haemeostasis is the result of a complex balance between the processes of clot initiation, formation and clot dissolution. The complex interactions between blood cells, specific plasma proteins and the vascular surface, maintain the fluidity of blood unless injury and blood loss occurs (EP-A-987274). Many significant disease states are related to abnormal haemeostasis. For example, local thrombus formation due to rupture of atheroslerotic plaque is a major cause of acute myocardial infarction and unstable angina. Treatment of an occlusive coronary thrombus by either thrombolytic therapy or percutaneous angioplasty may be accompanied by acute thrombolytic reclosure of the affected vessel.
- There continues to be a need for safe and effective therapeutic anticoagulants to limit or prevent thrombus formation. It is most desirable to develop agents that inhibit coagulation without directly inhibiting thrombin but by inhibiting other steps in the coagulation cascade like factor Xa and/or factor VIIa activity. It is now believed that inhibitors of factor Xa carry a lower bleeding risk than thrombin inhibitors (A. E. P. Adang & J. B. M. Rewinkel, Drugs of the Future 2000, 25, 369-383).
- Low molecular weight, factor Xa-specific blood clotting inhibitors that are effective but do not cause unwanted side effects have been described, for example, in WO-A-95/29189.
- However, besides being an effective factor Xa-specific blood clotting inhibitor, it is desirable that such inhibitors also have further advantageous properties, for instance stability in plasma and liver and selectivity versus other serine proteases whose inhibition is not intended, such as thrombin. There is an ongoing need for further low molecular weight factor Xa specific blood clotting inhibitors, which are effective and have the above advantages as well.
- Specific inhibition of the factor VIIa/tissue factor catalytic complex using monoclonal antibodies (WO-A-92/06711) or a protein such as chloromethyl ketone inactivated factor VIIa (WO-A-96/12800, WO-A-97/47651) is an extremely effective means of controlling thrombus formation caused by acute arterial injury or the thrombotic complications related to bacterial septicemia. There is also experimental evidence suggesting that inhibition of factor VIIa/tissue factor activity inhibits restenosis following balloon angioplasty. Bleeding studies have been conducted in baboons and indicate that inhibition of the factor VIIa/tissue factor complex has the widest safety window with respect to therapeutic effectiveness and bleeding risk of any anticoagulant approach tested including thrombin, platelet and factor Xa inhibition. Certain inhibitors of factor VIIa have already been described. EP-A-987274, for example discloses compounds containing a tripeptide unit, which inhibit factor VIIa. However, the property profile of these compounds is still not ideal, and there is an ongoing need for further low molecular weight factor VIIa inhibitory blood clotting inhibitors
- The present invention satisfies the above needs by providing novel compounds of the formula I, which exhibit better factor Xa and/or factor VIIa inhibitory activity and are favorable agents with high bioavailability.
- The present invention relates to a compound of formula I,
- wherein
- R0 is
- 1) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8,
- 2) a monocyclic or bicyclic 4- to 15-membered heterocyclyl out of the group benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
- 3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and which is additionally substituted by a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- R8 is
- 1) halogen,
- 2) —NO2,
- 3) —CN,
- 4) —C(O)—NH2,
- 5) —OH,
- 6) —NH2,
- 7) —O—CF3
- 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or —O—(C1-C8)-alkyl,
- 9) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue,
- 10) —O—(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue,
- 11) —SO2—CH3 or
- 12) —SO2—CF3,
- provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue, if R is a monocyclic or bicyclic 6- to 14-membered aryl,
the substructure - in formulae I is
- a 4- to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R3, or substituted 1 or 2 times by ═O, provided that said cyclic group is not a phenyl residue,
- Q is a direct bond, —(C0-C2)-alkylene-C(O)—NR10—, —NR10—C(O)—NR10—, —NR10—C(O)—, —SO2—,
—(C1-C6)-alkylene, —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—S—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—O—C(O)—NR10—(CH2)n—, —(C2-C3)-alkylene-O—(C0-C3)-alkylene-, —(C2-C3)-alkylene-S(O)—, —(C2-C3)-alkylene-S(O)2—, —(CH2)m—NR10—C(O)—O—(CH2)n—, —(C2-C3)-alkylene-S(O)2—NH—(R10)—,
—(C2-C3)-alkylene-N(R10)— or —(C0-C3)-alkylene-C(O)—O—(CH2)m—, -
- wherein R10 is as defined below, and wherein n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6, wherein the alkylene residues which are formed by —(CH2)m— or —(CH2)n— are unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH; or
- —(C3-C6)-cycloalkylene, wherein cycloalkylene is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH;
- R1 is a hydrogen atom, —(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted one to three times by R13; —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-alkylene-C(O)—O—R15, a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, wherein R8 is as defined above; a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen; —(C1-C3)-perfluoroalkylene, —(C1-C3)-alkylene-S(O)—(C1-C4)-alkyl, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl, —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, —(C1-C3)-alkylene-O—(C1-C4)-alkyl, —(C0-C3)-alkylene-(C3-C8)-cycloalkyl, or —(C0-C3)-alkylene-het, wherein het is a 3- to 7-membered cyclic residue, containing up to 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R4′ and R5′ are independent of one another are identical or different and are hydrogen atom or —(C1-C4)-alkyl,
- R2 is a direct bond or —(C1-C4)-alkylene, or
- R1 and R3 together with the atoms to which they are bonded can form a 6- to 8-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- R1—N—R2—V can form a 4- to 7-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R14 is halogen, —OH, ═O, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C3)-perfluoroalkyl, —(C0-C8)-alkyl-SO2—N(R18)—R21, —C(O)—NH—(C1-C8)-alkyl, —C(O)—N—[(C1-C8)-alkyl]2, —NR18—C(O)—NH—(C1-C8)-alkyl,
-
- —C(O)—NH2, —S—R18, or —NR18—C(O)—NH—[(C1-C8)-alkyl]2,
- wherein R18 and R21 are independently from each other hydrogen atom, —(C1-C3)-perfluoroalkyl or —(C1-C6)-alkyl,
- V is 1) a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 2) a 6- to 14-membered aryl, wherein aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- G is a direct bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—, —(CH2)m—O—(CH2)n-1-(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—,
- —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—, —(CH2)m—O—C(O)—NR10—(CH2)n— or —(CH2)m—NR10—C(O)—O—(CH2)n—,
- n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6,
- M is
- 1) a hydrogen atom,
- 2) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 3) —C(O)—N(R11)-R12,
- 4) —(CH2)m—NR10,
- 5) a 6- to 14-membered aryl, wherein aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 6) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 7) —(C3-C8)-cycloalkyl, wherein said cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 8) a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, wherein R14 is defined above,
- R3 is
- 1) hydrogen atom,
- 2) halogen,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C4)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3, or
- d) —CHF2,
-
- 7) —NO2,
- 8) —CN,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R11,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —NR10—SO2—R10,
- 16) —S—R10,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
- 18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
- 19) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
- 20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
- 21) —(C0-C4)-alkylene-(C6-C14)-aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R13,
- 22) —(C0-C4)-alkylene-(C4-C15)-heterocyclyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13
- 23) —(C0-C4)-allylene-(C3-C8)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 24) —(C0-C4)-alkylene-het, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 25) —(C0-C4)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—O—(C0-C4)-alkyl,
- 26) —SOW—N(R11)—R13, wherein w is 1 or 2,
- 27) —(C0-C4)-alkylene-C(O)—N(R11)—R13
- 28) —(C0-C4)-allylene-N(R11)—R13, or
- 29) a residue from the following list
-
- wherein Me is methyl, or if two —OR19 residues are attached to adjacent atoms they can form together with the atoms which they are attached to a 5- or 6-membered ring, which is unsubstituted or substituted one, two, three or four times by R13,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom,
- 2) —(C1-C6)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 3) —(C0-C6)-alkyl-(C3-C8)-cycloalkyl,
- 4) —SOt—R10, wherein t is 1 or 2,
- 5) —(C0-C6)-alkyl-(C6-C14)-aryl, wherein alkyl and aryl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13,
- 6) —(C1-C3)-perfluoroalkyl,
- 7) —O—R17, or
- 8) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or
- R11 and R12 together with the nitrogen atom to which they are bonded can form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen; wherein said heterocyclic ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- R13 is halogen, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20,
- —(C3-C8)-cycloalkyl, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)u—R10,
- wherein u is 1 or 2, —S—R10, —SOr—R10, wherein r is 1 or 2, —S(O)v—N(R10)—R20,
- wherein v is 1 or 2, —C(O)—R10, —(C1-C8)-alkyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3,
- —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—O—R17, —(C1-C3)-perfluoroalkyl, —O—R15,
- —NH—C(O)—NH—R10, —NH—C(O)—O—R10, or a residue from the following list
-
- wherein Me is methyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C6)-alkyl, —(C0-C4)-alkyl-OH,
- —(C0-C4)-alkyl-O—(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C6)-alkyl, or together with the carbon atom to which they are bonded they can form a 3- to 6 membered carbocyclic ring which is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10,
in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts. - As used above, and throughout the description of the invention, the following terms, unless otherwise indicated, shall be understood to have the following meanings.
- As used herein, the term alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits. Further, the term alkyl as used herein expressly includes saturated groups as well as unsaturated groups which latter groups contain one or more, for example one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results. All these statements also apply if an alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue. Examples of “—(C1-C8)-alkyl” or “—(C1-C8)-alkylene” are alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are methyl, methylene, ethyl, ethylene, propyl, propylene, butyl, butylene, pentyl, pentylene, hexyl, heptyl or octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tBu, tert-pentyl, sec-butyl, tert-butyl or tert-pentyl. The term “—(C0-C6)-alkyl” or “—(C0-C8)-alkylene” is a hydrocarbon residue containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms. The term “—C0-alkyl” or “—C0-alkylene” is a covalent bond.
- Unsaturated alkyl residues are, for example, alkenyl residues such as vinyl, 1-propenyl, 2-propenyl (=allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl or 1,3-pentadienyl, or alkynyl residues such as ethynyl, 1-propynyl, 2-propynyl (=propargyl) or 2-butynyl. Alkyl residues can also be unsaturated when they are substituted.
- Examples of —(C3-C8)-cycloalkyl cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5, 6, 7 or 8 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, which can also be substituted and/or unsaturated. Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom.
- The terms “a monocyclic or bicyclic 6- to 14-membered aryl” or “—(C6-C14)-aryl” are understood as meaning aromatic hydrocarbon radicals containing from 6 to 14 carbon atoms in the ring. Examples of —(C6-C14)-aryl radicals are phenyl, naphthyl, for example 1-naphthyl and 2-naphthyl, biphenylyl, for example 2-biphenylyl, 3-biphenylyl and 4-biphenylyl, anthryl or fluorenyl. Biphenylyl radicals, naphthyl radicals and, in particular, phenyl radicals are preferred aryl radicals.
- The terms “mono- or bicyclic 4- to 15-membered heterocyclyl” or “—(C4-C15)-heterocyclyl” refer to heterocycles in which one or more of the 4 to 15 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur. Examples are acridinyl, 8-aza-bicyclo[3.2.1]oct-3-yl, azaindole (1H-pyrrolopyridinyl), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxazolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, oxetanyl, oxocanyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 1×6-thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl.
- Preferred are heterocyclyls, such as benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazolinyl, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl and 3-thienyl.
- Also preferred are:
- The terms “het” or “a 3- to 7-membered cyclic residue, containing up to 1, 2, 3 or 4 heteroatoms” refer to structures of heterocycles which can be derived from compounds such as azepine, azetidine, aziridine, azirine, 1,4 diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxetan, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole.
- The term “R1—N—R2—V can form a 4- to 7-membered cyclic group” or “R11 and R12 together with the nitrogen atom to which they are bonded can form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom can contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen” refer to structures of heterocycles which can be derived from compounds such as azepane, azepine, azetidine, dioxazole, dioxazine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole.
- The term “R15 and R16 together with the carbon atom to which they are bonded can form a 3- to 6 membered carbocyclic ring” refer to structures, which can be derived from compounds such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
- The term “substructure
- in formula I or the “substructure D” is a 4- to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refer to structures, which can be derived from compounds such as azepane, azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1,2-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxaazepane, 1,2-oxa-thiepane, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocane, [1,3]oxazocan-2-one, oxetan, oxocane, oxocan-2-one, piperazine, piperidine, phenyl, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocane-2-one, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole. The term “substructure D” is a 5 to 6 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refer to structures, which can be derived from compounds such as cyclopentyl, cyclohexyl, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, piperazine, piperidine, phenyl, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyrazine, pyrazinone, pyridazine, pyridazone, pyridine, pyridone, pyrimidine, pyrimidone, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thiomorpholine, thiopyran, tetrazine, tetrazole, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole.
- The term “R1 and R3 together with the atoms to which they are bonded can form a 6- to 8-membered cyclic group, containing up to 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen” refers to structures of heterocycles which can be derived from compounds such as
- azocane, azocane-2-one, cycloheptyl cyclohexyl, cyclooctane, cyclooctene, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazine, [1,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, [1,4]oxazocane, [1,3]oxazocan-2-one, oxocane, oxocan-2-one, phenyl, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine, 5,6,7,8-tetrahydro-1H-azocin-2-one or thiomorpholine.
- The fact that many of the before-listed names of heterocycles are the chemical names of unsaturated or aromatic ring systems does not imply that the, the 4-15 membered mono- or polycyclic group could only be derived from the respective unsaturated ring system. The names here only serve to describe the ring system with respect to ring size and the number of the heteroatoms and their relative positions. As explained above, the 4-15 membered mono- or polycyclic group can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable. As examples of completely or partially hydrogenated analogues of the before-listed heterocycles from which this group may be derived the following may be mentioned: pyrroline, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, dihydropyridine, tetrahydropyridine, piperidine, 1,3-dioxolane, 2-imidazoline, imidazolidine, 4,5-dihydro-1,3-oxazol, 1,3-oxazolidine, 4,5-dihydro-1,3-thiazole, 1,3-thiazolidine, perhydro-1,4-dioxane, piperazine, perhydro-1,4-oxazine (=morpholine), perhydro-1,4-thiazine (=thiomorpholine), perhydroazepine, indoline, isoindoline, 1,2,3,4-tetrahydroquinoline or 1,2,3,4-tetrahydroisoquinoline.
- The term “—(C1-C3)-perfluoroalkyl” is a partial or totally fluorinated alkyl-residue, which can be derived from residues such as —CF3, —CHF2, —CH2F, —CHF—CF3, —CHF—CHF2, —CHF—CH2F, —CH2—CF3, —CH2—CHF2, —CH2—CH2F, —CF2—CF3, —CF2—CHF2, —CF2—CH2F, —CH2—CHF—CF3, —CH2—CHF—CHF2, —CH2—CHF—CH2F, —CH2—CH2—CF3, —CH2—CH2—CHF2, —CH2—CH2—CH2F, —CH2—CF2—CF3, —CH2—CF2—CHF2, —CH2—CF2—CH2F, —CHF—CHF—CF3, —CHF—CHF—CHF2, —CHF—CHF—CH2F, —CHF—CH2—CF3, —CHF—CH2—CHF2, —CHF—CH2—CH2F, —CHF—CF2—CF3, —CHF—CF2—CHF2, —CHF—CF2—CH2F, —CF2—CHF—CF3, —CF2—CHF—CHF2, —CF2—CHF—CH2F, —CF2—CH2—CF3, —CF2—CH2—CHF2, —CF2—CH2—CH2F, —CF2—CF2—CF3, —CF2—CF2—CHF2 or —CF2—CF2—CH2F.
- The term “—(C1-C3)-perfluoroalkylene” is a partial or totally fluorinated alkylene-residue, which can be derived from residues such as —CF2—, —CHF—, —CHF—CHF2—, —CHF—CHF—, —CH2—CF2—, —CH2—CHF—, —CF2—CF2—, —CF2—CHF—, —CH2—CHF—CF2—, —CH2—CHF—CHF—, —CH2—CH2—CF2—, —CH2—CH2—CHF, —CH2—CF2—CF2—, —CH2—CF2—CHF —, —CHF—CHF—CF2—, —CHF—CHF—CHF—, —CHF—CH2—CF2—, —CHF—CH2—CHF—, —CHF—CF2—CF2—, —CHF—CF2—CHF—, —CF2—CHF—CF2—, —CF2—CHF—CHF—, —CF2—CH2—CF2—, —CF2—CH2—CHF—, —CF2—CF2—CF2—, or —CF2—CF2—CHF—.
- The term “oxo-residue” or “═O” refers to residues such as carbonyl (—C(O)—) or nitroso (—N═O).
- Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.
- Optically active carbon atoms present in the compounds of the formula I can independently of each other have R configuration or S configuration. The compounds of the formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example in the form of racemates. The present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers. The invention comprises mixtures of two or of more than two stereoisomers of the formula I, and it comprises all ratios of the stereoisomers in the mixtures. In case the compounds of the formula I can be present as E isomers or Z isomers (or cis isomers or trans isomers) the invention relates both to pure E isomers and pure Z isomers and to E/Z mixtures in all ratios. The invention also comprises all tautomeric forms of the compounds of the formula I.
- Diastereomers, including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example by chromatography on chiral phases or by resolution, for example by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of the formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.
- Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular pharmaceutically utilizable salts. Such salts of compounds of the formula I containing acidic groups, for example a carboxyl group COOH, are for example alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts, and also salts with physiologically tolerable quaternary ammonium ions such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyl)amine. Basic groups contained in the compounds of the formula I, for example amino groups or guanidino groups, form acid addition salts, for example with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid. Compounds of the formula I, which simultaneously contain a basic group and an acidic group, for example a guanidino group and a carboxyl group, can also be present as zwitterions (betaines) which are likewise included in the present invention.
- Patient includes both human and other mammals.
- Pharmaceutically effective amount means an amount of the compound according to the invention effective in producing the desired therapeutic effect.
- One particular embodiment of the present invention relates to compound of the formula I, wherein
- R0 is
- 1) a monocyclic or bicyclic 6- to 14-membered aryl out of the group phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8,
- 2) a heterocyclyl out of the group benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
- 3) a heterocyclyl, wherein heterocyclyl is selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl,
- wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and which is additionally substituted by a heterocyclyl selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl,
- wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- R8 is
- 1) halogen,
- 2) —NO2,
- 3) —CN,
- 4) —C(O)—NH2,
- 5) —OH,
- 6) —NH2,
- 7) —O—CF3
- 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is as defined above and wherein aryl is mono-, di- or trisubstituted independently of one another by halogen or —O—(C1-C8)-alkyl,
- 9) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue, or
- 10) —O—(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue,
- 11) —SO2—CH3 or
- 12) —SO2—CF3,
- provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue, if R0 is a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is as defined above,
- substructure D is a residue selected out of the group azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocane, [1,3]oxazocan-2-one, oxetan, oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocane-2-one, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R3, or is substituted 1 or 2 times by ═O,
- Q is a direct bond, —(C0-C2)-allylene-C(O)—NR10—, —NR10—C(O)—NR10—, —NR10—C(O)—, —SO2—, —(C1-C6)-alkylene, —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—,
- —(CH2)m—S—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—O—C(O)—NR10—(CH2)n—, —(C2-C3)-alkylene-O—(C0-C3)-alkylene-, —(C2-C3)-alkylene-S(O)—, —(C2-C3)-alkylene-S(O)2—, —(CH2)m—NR10—C(O)—O—(CH2)n—, —(C2-C3)-allylene-S(O)2—NH—(R10)—, —(C2-C3)-alkylene-N(R10)- or —(C0-C3)-allylene-C(O)—O—,
wherein R10 is as defined below, and wherein n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6, wherein the alkylene residues which are formed by —(CH2)m— or —(CH2)n— are unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH; or —(C3-C6)-cycloalkylene, wherein cycloalkylene is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH;
- —(CH2)m—S—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—O—C(O)—NR10—(CH2)n—, —(C2-C3)-alkylene-O—(C0-C3)-alkylene-, —(C2-C3)-alkylene-S(O)—, —(C2-C3)-alkylene-S(O)2—, —(CH2)m—NR10—C(O)—O—(CH2)n—, —(C2-C3)-allylene-S(O)2—NH—(R10)—, —(C2-C3)-alkylene-N(R10)- or —(C0-C3)-allylene-C(O)—O—,
- R1 is a hydrogen atom, —(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted one to three times by R13; —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-alkylene-C(O)—O—R15, an aryl out of the group phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8, wherein R8 is as defined above;
- a monocyclic or bicyclic 4- to 15-membered heterocyclyl, which is as defined above; —(C1-C3)-perfluoroalkylene, —(C1-C3)-allylene-S(O)—(C1-C4)-allyl, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl, —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, —(C1-C3)-alkylene-O—(C1-C4)-alkyl, —(C0-C3)-alkylene-(C3-C8)-cycloalkyl, or —(C0-C3)-alkylene-het, wherein het is a residue selected out of the group azepine, azetidine, aziridine, azirine, 1,4-diazapane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R4′ and R5′ are independent of one another are identical or different and are hydrogen atom or —(C1-C4)-allyl,
- R2 is a direct bond or —(C1-C4)-alkylene,
- R1 and R3 together with the atoms to which they are bonded can form a 6- to 8-membered cyclic residue selected out of the group azocane, azocane-2-one, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazine, [1,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, [oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine or 5,6,7,8-tetrahydro-1H-azocin-2-one, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- R1—N—R2—V can form a 4- to 7-membered cyclic group selected out of the group azepine, azetidine, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R14 is fluorine, chlorine, bromine, iodine, —OH, ═O, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C3)-perfluoroalkyl, —(C0-C8)-alkyl-SO2—N(R18)—R21, —C(O)—NH—(C1-C8)-alkyl, —C(O)—N—[(C1-C8)-alkyl]2, —NR18—C(O)—NH—(C1-C8)-alkyl,
- —C(O)—NH2, —S—R18, or —NR18—C(O)—NH—[(C1-C8)-alkyl]2,
- wherein R18 and R21 are independently from each other hydrogen atom, —(C1-C3)-perfluoroalkyl or —C1-C6)-alkyl,
- V is
- 1) a monocyclic or bicyclic 6- to 14-membered aryl out of the group phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R14,
- 2) a heterocyclyl out of the group acridinyl, 8-aza-bicyclo[3.2.1]oct-3-yl, azaindole (1H-pyrrolopyridine), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 1,4-diazepane, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 1×6-thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl,
- wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- G is a direct bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—, —(CH2)m—O—(CH2)n—, —(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—,
- —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—, —(CH2)m—O—C(O)—NR10—(CH2)n— or —(CH2)m—NR10—C(O)—O—(CH2)n—,
- n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6,
- M is
- 1) a hydrogen atom,
- 2) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 3) —C(O)—N(R11)-R12,
- 4) —(CH2)m—NR10,
- 5) —(C6-C14)-aryl, wherein aryl is as defined above and wherein aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 6) —(C4-C15)-heterocyclyl, wherein heterocyclyl is as defined above and is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 7) —(C3-C8)-cycloalkyl, wherein said cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R3 is
- 1) hydrogen atom,
- 2) halogen,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C4)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3, or
- d) —CHF2,
- 7) —NO2,
- 8) —CN,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R11,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —NR10—SO2—R10,
- 16) —S—R10,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
- 18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
- 19) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
- 20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
- 21) —(C0-C4)-alkylene-(C6-C14)-aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R13,
- 22) —(C0-C4)-alkylene-(C4-C15)-heterocyclyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13
- 23) —(C0-C4)-alkylene-(C3-C8)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 24) —(C0-C4)-alkylene-het, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 25) —(C0-C3)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—O—(C0-C3)-allyl,
- 26) —SOw—N(R11)—R13, wherein w is 1 or 2,
- 27) —(C0-C4)-allylene-C(O)—N(R11)—R13,
- 28) —(C0-C4)-allylene-N(R11)—R13, or
- 29) a residue from the following list
-
- wherein Me is methyl, or
- if two —OR19 residues are attached to adjacent atoms they can form together with the atoms which they are attached to a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, which is substituted one, two, three or four times by R13,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom,
- 2) —(C1-C6)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 3) —(C0-C6)-alkyl-(C3-C8)-cycloalkyl,
- 4) —SOt—R10, wherein t is 1 or 2,
- 5) —(C0-C6)-alkyl-(C6-C14)-aryl, wherein alkyl and aryl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13,
- 6) —(C1-C3)-perfluoroalkyl,
- 7) —O—R17, or
- 8) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein allyl and heterocyclyl are as defined above and are independently from one another unsubstituted or mono-, di- or trisubstituted by R13, or
- R11 and R12 together with the nitrogen atom to which they are bonded form a heterocyclic ring out of the group azepine, azetidine, dioxazole, dioxazine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said heterocyclic ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- R13 is halogen, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20,
- —(C3-C8)-cycloalkyl, —(C0-C3)-allylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)u—R10,
- wherein u is 1 or 2, —S—R10, —SOr—R10, wherein r is 1 or 2, —S(O)v—N(R10)—R20,
- wherein v is 1 or 2, —C(O)—R10, —(C1-C8)-allyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3,
- —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—O—R17, —(C1-C3)-perfluoroalkyl, —O—R15,
- —NH—C(O)—NH—R10, —NH—C(O)—O—R10, or a residue from the following list
-
- wherein Me is methyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C6)-allyl, —(C0-C4)-alkyl-OH, —(C0-C4)-alkyl-O—(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C6)-alkyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C3-C8)-cycloalkyl,
- —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10,
- in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- R0 is
- 1) a monocyclic or bicyclic 6- to 14-membered aryl out of the group phenyl, naphthyl, biphenyl, anthryl or fluorenyl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8,
- 2) a heterocyclyl out of the group benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
- 3) a heterocyclyl out of the group azabenzimidazolyl, benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazolinyl, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl or 3-thienyl,
- which is additionally substituted by a heterocyclyl selected out of the group acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, wherein heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- R8 is
- 1) fluorine, chlorine or bromine,
- 2) —NO2,
- 3) —CN,
- 4) —C(O)—NH2,
- 5) —OH,
- 6) —NH2,
- 7) —OCF3
- 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is as defined above and is mono-, di- or trisubstituted independently of one another by halogen or —O—(C1-C8)-alkyl,
- 9) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue, or
- 10) —O—(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or a methoxy residue,
- 11) —SO2CH3 or
- 12) —SO2CF3,
- provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue, if
- R0 is a aryl or a heterocyclyl, which are as defined above,
- substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide pyridyl, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O,
- Q is a direct bond, —(C0-C2)-alkylene-C(O)—NR10—, —NR10—C(O)—NR10—, —NR10—C(O)—, —SO2—, or —(C1-C6)-alkylene,
- R1 is a hydrogen atom, —(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted one to three times by R13; —(C1-C3)-allylene-C(O)—NH—R0, —(C1-C3)-allylene-C(O)—O—R15,
- —(C1-C3)-perfluoroalkylene, —(C1-C3)-alkylene-S(O)—(C1-C4)-alkyl, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl, —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, —(C1-C3)-allylene-O—(C1-C4)-alkyl, —(C0-C3)-alkylene-(C3-C8)-cycloalkyl, or (C0-C3)-alkylene-het, wherein het is a residue selected out of the group azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R4′ and R5′ are independent of one another are identical or different and are hydrogen atom or —(C1-C4)-alkyl,
- R2 is a direct bond or —(C1-C4)-alkylene, or
- R1—N—R2—V form a 4- to 7-membered cyclic group selected out of the group azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R14 is fluorine, chlorine, bromine, iodine, —OH, ═O, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-allyl, —(C0-C8)-alkyl-SO2—(C1-C4)-allyl, —(C0-C8)-alkyl-SO2—(C1-C3)-perfluoroalkyl, —(C0-C8)-alkyl-SO2—N(R18)—R21, —C(O)—NH—(C1-C8)-alkyl, —C(O)—N—[(C1-C8)-alkyl]2, —NR18—C(O)—NH—(C1-C8)-alkyl, —C(O)—NH2, —S—R18 or —NR18—C(O)—NH—[(C1-C8)-alkyl]2,
- wherein R18 and R21 are independently from each other hydrogen atom, —(C1-C3)-perfluoroalkyl or —(C1-C6)-alkyl,
- V is
- 1) a het residue out of the group azaindole (1H-pyrrolopyridine), azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, which is as defined above and wherein het is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 2) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- G is a direct bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, (CH2)m—, —(CH2)m—O—(CH2)n—, —(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—,
- —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—, —(CH2)m—O—C(O)—NR10—(CH2)n— or —(CH2)m—NR10—C(O)—O—(CH2)n—,
- n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6,
- M is
- 1) a hydrogen atom,
- 2) —(C1-C8)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 3) —C(O)—N(R11) —R12,
- 4) —(CH2)m—NR10,
- 5) phenyl or naphthyl, wherein phenyl or naphthyl are unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 6) heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from azepane, azepine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, isothiazole, isoxazole, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4]-oxazepane, piperazine, piperazinone, piperidine, piperidinone, pyrazine, pyridazine, pyridazinone, pyridine, pyridone, pyrimidine, pyrrolidine, pyrrolidinone, tetrahydropyran, 1,4,5,6-tetrahydro-pyridazinyl, tetrazine, tetrazole, thiadiazole, thiazole, thiophene, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 7) —(C3-C8)-cycloalkyl, wherein said cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R3 is
- 1) hydrogen atom,
- 2) halogen,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C4)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3, or
- d) CHF2,
- 7) —CN,
- 8) —(C0-C4)-alkylene-(C4-C15)-heterocyclyl, wherein heterocyclyl is as defined above and is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R11,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-allylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —NR10—SO2—R10,
- 16) —(C0-C4)-alkylene-het, wherein het is as defined above and is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
- 18) —C(O)—O—C(R15,R16) —O—C(O)—R17,
- 19) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
- 20) —C(O)—O—C(R15,R16) —O—C(O)—O—R17,
- 21) —(C0-C4)-alkylene-(C6-C14)-aryl, wherein aryl is as defined above and is mono-, di- or trisubstituted independently of one another by R13,
- 22) —(C0-C4)-alkylene-(C3-C8)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 23) —(C0-C3)-alkylene-O—CH2—CF2—CH2—O—(C0-C3)-alkyl,
- 24) —(C0-C3)-alkylene-O—CH2—CF2—CF2—CH2—O—(C0-C3)-alkyl,
- 25) —(C0-C3)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—OH,
- 26) —SOw—N(R11)—R13, wherein w is 1 or 2,
- 27) —(C0-C4)-allylene-C(O)—N(R11)—R13,
- 28) —(C0-C4)-alkylene-N(R11)—R13, or
- 29) a residue from the following list
-
- wherein Me is methyl,
- if two —OR19 residues are attached to adjacent atoms they can form together with the atoms which they are attached to a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, which is substituted one, two, three or four times by R13,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom,
- 2) —(C1-C6)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 3) —(C0-C6)-alkyl-(C6-C14)-aryl, wherein aryl is as defined above and wherein alkyl and aryl are independently from one another unsubstituted or mono-, di- or trisubstituted by R13,
- 4) —O—R17, or
- 5) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein alkyl and heterocyclyl is as defined above and independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or
- R11 and R12 together with the nitrogen atom to which they are bonded can form a ring selected out of the group azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, which is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- R13 is fluorine, chlorine, bromine, iodine, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)2—R10, —S—R10, —SO2—R10, —S(O)2—N(R10)—R20, —C(O)—R10, —(C1-C8)-alkyl,
- —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3, —(C1-C3)-perfluoroalkyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16) —O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16) —O—C(O)—O—R17, —O—R15, —NH—C(O)—NH—R10, —NH—C(O)—O—R10 or a residue from the following list
-
- wherein Me is methyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C6)-alkyl, —(C0-C4)-alkyl-OH,
- —(C0-C4)-alkyl-O—(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C6)-allyl, or together form a ring out of the group cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10,
in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts. - Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- R0 is
- 1) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- 2) a heterocyclyl out of the group benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl or 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
- 3) a heterocyclyl out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and in addition is substituted by a residue selected out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R8
- R8 is
- 1) F, Cl, Br or J,
- 2) —C(O)—NH2,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —OH or a methoxy residue, or
- 4) —O—(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or a methoxy residue,
- provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue, if R0 is a aryl or a heterocyclyl, which are as defined above,
substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O,
- Q is a direct bond, —C(O)—; —SO2—, —(C1-C6)-alkylene, or —(C0-C2)-alkylene-C(O)—NR10—,
- R1 is hydrogen atom, —(C1-C2)-alkyl, —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-perfluoroalkylene, —(C1-C3)-alkylene-C(O)—O—R15, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl or —(C1-C3)-alkylene-S(O)2—N(R4″)—R5′, wherein R4′ and R5′ are independent of one another are identical or different and are hydrogen atom or —(C1-C4)-alkyl,
- R2 is a direct bond or —(C1-C2)-alkylene,
- R1—N—R2—V can form a 4- to 7-membered cyclic group out of the group azetidine, azetidinone, piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, 1,4-oxazepane, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R14 is fluorine, chlorine, —OH, ═O, —(C1-C8)-alkyl, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —C(O)—NH—(C1-C8)-alkyl, —C(O)—N—[(C1-C8)-alkyl]2, —(O)—NH2 or —N(R18)—R21, wherein R18 and R21 are independently from each other hydrogen atom, —(C1-C3)-perfluoroalkyl or —(C1-C4)-alkyl,
- V is
- 1) a cyclic residue out of the group containing compounds which are derived from azaindole (1H-pyrrolopyridine), aziridine, azirine, azetidine, azetidinone, 1,4-diazepane, pyrrole, pyrrolidine, pyridonyl, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, 1,4-oxazepane, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,3-dioxolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiodiazole, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine or thiomorpholine,
- wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 2) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 1) a cyclic residue out of the group containing compounds which are derived from azaindole (1H-pyrrolopyridine), aziridine, azirine, azetidine, azetidinone, 1,4-diazepane, pyrrole, pyrrolidine, pyridonyl, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, 1,4-oxazepane, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,3-dioxolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiodiazole, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine or thiomorpholine,
- G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—,
- m is the integers zero, 1, 2, 3 or 4,
- M is
- 1) a hydrogen atom,
- 2) heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from azepane, azepine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, isothiazole, isoxazole, isoxazolidine, 2-isoxazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4]-oxazepane, piperazine, piperazinone, piperidine, piperidinone, pyrazine, pyridazine, pyridazinone, pyridine, pyridone, pyrimidine, pyrrolidine, pyrrolidinone, tetrahydropyran, 1,4,5,6-tetrahydro-pyridazinyl, tetrazine, tetrazole, thiadiazole, thiazole, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 3) —(C1-C6)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 4) (C3-C6)-cycloalkyl or
- 5) —C(O)—N(R11)—R12,
- m is the integers zero, 1, 2, 3 or 4,
- R3 is
- 1) hydrogen atom,
- 2) halogen,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C4)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3, or
- d) CHF2,
- 7) —CN,
- 8) —NR10—SO2—R10,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R1,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
- 16) —C(O)—O—C(R15,R16) —O—C(O)—R17,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
- 18) —C(O)—O—C(R15,R16) —O—C(O)—O—R17,
- 19) —(C0-C3)-alkylene-O—CH2—CF2—CH2—O—(C0-C3)-alkyl,
- 20) —(C0-C3)-alkylene-O—CH2—CF2—CF2—CH2—O—(C0-C3)-alkyl,
- 21) —(C0-C3)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—OH,
- 22) —SOw—N(R11)—R13, wherein w is 1 or 2,
- 23) —(C0-C4)-alkylene-C(O)—N(R11)—R13,
- 24) —(C0-C4)-alkylene-N(R11)—R13, or
- 25) a residue from the following list
-
- wherein Me is methyl,
- if two —OR19 residues are attached to adjacent atoms they can form together with the atoms which they are attached to a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, which is substituted one, two, three or four times by R13,
- R11 and R12 together with the nitrogen atom to which they are bonded can form a ring selected out of the group azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]-oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, wherein said ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- R13 is fluorine, chlorine, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)2—R10, —S—R10, —SO2—R10, —S(O)2—N(R10)—R20, —C(O)—R10, —(C1-C8)-alkyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3, —(C1-C3)-perfluoroalkyl, —NH—C(O)—NH—R10, —(C0-C4)-allyl-C(O)—O—C(R15,R16) —O—C(O)—R17,
- —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16) —O—C(O)—O—R17, —O—R15,
- —NH—C(O)—O—R10, or a residue from the following list
-
- wherein Me is methyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C6)-allyl, —(C0-C4)-allyl-OH,
- —(C0-C4)-alkyl-O—(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C6)-alkyl, or together form a ring out of the group cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-allyl, —(C3-C8)-cycloalkyl,
- —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH,
- —O—(C1-C4)-allyl or R10,
in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
- Another particular embodiment of the present invention relates to the compounds of the formula I, wherein
- R0 is
- 1) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- 2) a heterocyclyl selected out of the group indolyl, isoindolyl, benzofuranyl, benzothiophenyl, 1,3-benzodioxolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, chromanyl, isochromanyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyridyl, purinyl and pteridinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
- 3) a heterocyclyl out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and in addition is substituted by a residue selected out of the group pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, wherein said residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R8
- R8 is
- 1) is F, Cl, Br, J,
- 2) —C(O)—NH2,
- 3) —(C1-C4)-alkyl, wherein allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —OH or a methoxy residue, or
- 4) —O—(C1-C4)-allyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or a methoxy residue,
- provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue, if
- R0 is a aryl or a heterocyclyl, which are as defined above,
substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, pyrazinyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O,
- Q is a direct bond, —C(O)—; —SO2—, —(C1-C6)-alkylene, or
- —(C0-C2)-alkylene-C(O)—NR10—,
- R1 is hydrogen atom or —(C1-C2)-alkyl,
- R2 is a direct bond or —(C1-C2)-alkylene, or
- R1—N—R2—V can form a 4- to 7-membered cyclic group out of the group piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- R14 is fluorine, chlorine, ═O, —(C1-C4)-alkyl or —NH2,
- V is
- 1) a cyclic residue out of the group containing compounds, which are derived from azaindolyl (1H-pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diazirine, 1,3-dioxolane, dioxazole, furan, imidazole, isoquinoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, 2-isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, 1,2-oxathiolan, piperidine, pyran, pyrazine, pyrazole, pyridazine, piperazine, pyridine, pyridone, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, quinazoline, quinoline, tetrazine, tetrazole, thiadiazine, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thietan, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole,
- wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 2) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 1) a cyclic residue out of the group containing compounds, which are derived from azaindolyl (1H-pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diazirine, 1,3-dioxolane, dioxazole, furan, imidazole, isoquinoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, 2-isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, 1,2-oxathiolan, piperidine, pyran, pyrazine, pyrazole, pyridazine, piperazine, pyridine, pyridone, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, quinazoline, quinoline, tetrazine, tetrazole, thiadiazine, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thietan, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole,
- G is
- a direct bond, —(CH2)m—, or —(CH1)m—NR10—,
- m is the integers zero, 1, 2, 3 or 4,
- M is
- 1) a hydrogen atom,
- 2) heterocyclyl, wherein heterocyclyl is a residue out of the group which can be derived from 1,4-diazepane, ketomorpholine, thiophene, pyridazone, piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, pyridonyl, imidazole, pyridazine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, tetrahydropyran, 1,4,5,6-tetrahydro-pyridazinyl, thiadiazole or thiomorpholine, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 3) —(C1-C6)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
- 4) (C3-C6)-cycloalkyl,
- R3 is
- 1) hydrogen atom,
- 2) halogen,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C4)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3 or
- d) —CHF2,
- 7) —CN,
- 8) —NR10—SO2—R10,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R11,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-allyl,
- 16) —C(O)—O—C(R15,R16)-O—C(O)—R17,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
- 18) —C(O)—O—C(R15,R16)-O—C(O)—O—R17, or
- 19) a residue from the following list
-
- wherein Me is methyl,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom,
- 2) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 3) —(C0-C6)-alkyl-(C3-C6)-cycloalkyl,
- 4) —O—R17, or
- 5) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13 and wherein heterocyclyl is selected out of the group azetidine, cyclopropyl, cyclobutyl, 4,5-dihydro-oxazole, imidazolidine, morpholine, (1,4)-oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine, or
- R11 and R12 together with the nitrogen atom to which they are bonded form a heterocyclic ring, which is selected out of the group azetidine, cyclopropyl, cyclobutyl, 4,5-dihydro-oxazole, imidazolidine, morpholine, (1,4)-oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine,
- R13 is fluorine, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C3-C6)-cycloalkyl, —(C0-C3)-allylene-O—R10, —Si—(CH3)3, —S—R10, —SO2—R10, —(C1-C3)-perfluoroalkyl, or a residue from the following list
- wherein Me is methyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C4)-alkyl, or together form a ring out of the group cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C0-C6)-alkyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH,
- —O—(C1-C4)-alkyl or R10,
in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
- —O—(C1-C4)-alkyl or R10,
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- R0 is
- 1) phenyl, wherein phenyl is unsubstituted or mono- or disubstituted independently of one another by R8,
- 2) pyridyl or benzothiophenyl, wherein pyridyl and benzothiophenyl are unsubstituted or mono- or disubstituted independently of one another by R8, or
- 3) a heterocyclyl out of the group thienyl, thiadiazolyl, isoxazolyl and thiazolyl, wherein said heterocyclyl is substituted by a residue selected out of the group thienyl, 2-thienyl and 3-thienyl, wherein said residue is unsubstituted or mono- or disubstituted independently of one another by R8,
- R8 is F, Cl, Br, —OCH3 or —C(O)—NH2,
substructure D is a residue selected out of the group pyridyl, pyridyl-N-oxide, pyrrolyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl or pyrazinyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O, - Q is a direct bond, —C(O)—; —SO2—, —CH2—C(O)—NH—, methylene or ethylene,
- R1 is hydrogen atom,
- R2 is a direct bond or methylene,
- R1—N—R2—V can form a 4- to 7-membered cyclic group out of the group azetidine, pyrrolidine, piperidine and piperazine,
- R14 is fluorine, chlorine, ═O, methyl, ethyl or —NH2,
- V is
- 1) a residue out of the group containing compounds which is derived from azaindolyl (1H-pyrrolopyridyl), azetidine, 1,4-diazepane, isoxazole, isoquinoline, piperazine, piperidine, pyrazine, pyridazine, pyrimidine, pyrrolidine, quinazoline, quinoline or tetrahydropyrane, wherein said cyclic residue is unsubstituted or mono- or disubstituted independently of one another by R14, or
- 2) phenyl, wherein phenyl is unsubstituted or mono- or disubstituted independently of one another by R14,
- G is
- a direct bond, —(CH2)m—, or —(CH2)m—NR10—,
- m is the integers zero, 1 or 2,
- M is a hydrogen atom, (C2-C4)-alkyl, azepanyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, imidazolyl, ketomorpholinyl, morpholinyl, [1,4]Oxazepanyl, piperidinyl, piperidonyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolidinyl, 1,4,5,6-tetrahydro-pyridazinyl, or tetrahydropyranyl, wherein the residues are unsubstituted or mono- or disubstituted independently of one another by R14
- R3 is
- 1) hydrogen atom,
- 2) fluorine, chlorine,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C1-C3)-perfluoroalkyl,
- 5) phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 6) —(C0-C2)-allylene-O—R19, wherein R19 is
- a) hydrogen atom,
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) —CF3, or
- d) —CHF2,
- 7) —CN,
- 8) —NR10—SO2—R10,
- 9) —SOs—R11, wherein s is 1 or 2,
- 10) —SOt—N(R11)—R12, wherein t is 1 or 2,
- 11) —(C0-C4)-alkylene-C(O)—R11,
- 12) —(C0-C4)-alkylene-C(O)—O—R11,
- 13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- 14) —(C0-C4)-alkylene-N(R11)—R12,
- 15) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
- 16) —C(O)—O—C(R15,R16)-O—C(O)—R17,
- 17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl, or
- 18) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom,
- 2) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 3) —(C0-C6)-alkyl-(C3-C6)-cycloalkyl,
- 4) —O—R17, or
- 5) —(C0-C6)-alkyl-heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13 and wherein heterocyclyl is selected out of the group azetidine, imidazolidine, morpholine, (1,4)-oxazepane or pyrrolidine or
- R11 and R12 together with the nitrogen atom to which they are bonded can form a ring, which is selected out of the group azetidine, imidazolidine, morpholine, (1,4)-oxazepane piperazine, piperidine, pyrrolidine or thiomorpholine,
- R13 is fluorine, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C3-C6)-cycloalkyl, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —S—R10, —SO2—R10, or —(C1-C3)-perfluoroalkyl,
- R10 and R20 are independently of one another hydrogen, —(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl,
- R15 and R16 are independently of one another hydrogen, —(C1-C4)-allyl, or together form a ring out of the group cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
- R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, —(C0-C6)-allyl-(C3-C8)-cycloalkyl, wherein said cycloalkyl ring is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10,
- in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
- Another particular embodiment of the present invention relates to the compound of the formula I, wherein
- R0 is
- 1) pyridyl or benzothiophenyl, wherein pyridyl and benzothiophenyl are unsubstituted or mono- or disubstituted independently of one another by R8, or
- 2) a heterocyclyl out of the group thienyl, thiadiazolyl, isoxazolyl and thiazolyl, wherein said heterocyclyl is substituted by a residue selected out of the group thienyl, 2-thienyl and 3-thienyl, wherein said residue is unsubstituted or mono- or disubstituted independently of one another by R8,
- R8 is F, Cl, Br, —OCH3 or —C(O)—NH2,
- substructure D is pyridyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O,
- Q is —CH2—C(O)—NH— or methylene,
- R1 is hydrogen atom,
- R2 is a direct bond,
- R14 is fluorine, chlorine, ═O, methyl, ethyl or —NH2,
- V is piperidine, wherein piperidine is unsubstituted or mono- or disubstituted independently of one another by R14, or
- G is a direct bond,
- M is a hydrogen atom, (C2-C4)-alkyl, isopropyl, or pyridyl, wherein the residue is unsubstituted or mono- or disubstituted independently of one another by R14
- R3 is
- 1) hydrogen atom,
- 2) fluorine, chlorine,
- 3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) —(C0-C2)-alkylene-O—R19, wherein R19 is
- a) hydrogen atom or
- b) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 5) —(C0-C4)-alkylene-C(O)—O—R11 or
- 6) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
- R11 and R12 are independently of one another identical or different and are
- 1) hydrogen atom or
- 2) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, or
- R11 and R12 together with the nitrogen atom to which they are bonded can form a ring, which is selected out of the group azetidine, imidazolidine, morpholine, (1,4)-oxazepane piperazine, piperidine, pyrrolidine or thiomorpholine,
- R13 is fluorine, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, or —(C0-C3)-alkylene-O—R10,
- R10 and R20 are independently of one another hydrogen, —(C1-C4)-allyl or —(C1-C3)-perfluoroalkyl,
- in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
- Another particular embodiment of the present invention relates to the compound of the formula I, which is
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid methyl ester,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2,5-dicarboxylic acid 5-amide 2-[(1-isopropyl-piperidin-4-yl)-amide],
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-oxo-4,5-dihydro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-hydroxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-(2-hydroxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide, or
- 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-hydroxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide.
- Salts of compounds of the formula I can be obtained by customary methods known to those skilled in the art, for example by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange. The present invention also includes all salts of the compounds of the formula I which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of the formula I or as starting materials for the preparation of physiologically tolerable salts.
- The present invention furthermore includes all solvates of compounds of the formula I, for example hydrates or adducts with alcohols.
- The invention also includes derivatives and modifications of the compounds of the formula I, for example prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of the formula I. The invention relates in particular to prodrugs and protected forms of the compounds of the formula I, which can be converted into compounds of the formula I under physiological conditions. Suitable prodrugs for the compounds of the formula I, i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H. Bundgaard (ed.), Elsevier, 1985; Fleisher et al., Advanced Drug Delivery Reviews 19 (1996) 115-130; or H. Bundgaard, Drugs of the Future 16 (1991) 443 which are all incorporated herein by reference. Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of the formula I. In the acyl prodrugs and carbamate prodrugs one or more, for example one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a —(C1-C6)-alkyloxycarbonyl group. Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups Rp1—CO— and Rp2O—CO—, in which Rp1 is hydrogen, (C1-C18)-alkyl, (C3-C8)-cycloalkyl, (C3-C8)-cycloalkyl-(C1-C4)-allyl-, (C6-C14)-aryl, Het-, (C6-C14)-aryl-(C1-C4)-alkyl- or Het-(C1-C4)-alkyl- and in which Rp2 has the meanings indicated for Rp1 with the exception of hydrogen.
- Especially preferred compounds of the formula I are those wherein two or more residues are defined as indicated before for preferred compounds of the formula I, or residues can have one or some of the specific denotations of the residues given in their general definitions or in the definitions of preferred compounds before. All possible combinations of definitions given for preferred definitions and of specific denotations of residues explicitly are a subject of the present invention.
- Also with respect to all preferred compounds of the formula I all their stereoisomeric forms and mixtures thereof in any ratio and their physiologically acceptable salts explicitly are a subject of the present invention, as well as are their prodrugs. Similarly, also in all preferred compounds of the formula I, all residues that are present more than one time in the molecule are independent of each other and can be identical or different.
- The compounds of the formula I can be prepared by utilising procedures and techniques, which per se are well known and appreciated by one of ordinary skill in the art. Starting materials or building blocks for use in the general synthetic procedures that can be applied in the preparation of the compounds of formula I are readily available to one of ordinary skill in the art. In many cases they are commercially available or have been described in the literature. Otherwise they can be prepared from readily available precursor compounds analogously to procedures described in the literature, or by procedures or analogously to procedures described in this application.
- In general, compounds of the formula I can be prepared, for example in the course of a convergent synthesis, by linking two or more fragments which can be derived retrosynthetically from the formula I. More specifically, suitably substituted starting azaindole derivatives are employed as building blocks in the preparation of the compounds of formula I. Although various synthetic aspects of the azaindole chemistry are considerably different to the indole chemistry many procedures describing the synthesis and functionalisation of indoles can be modified and adopted by those skilled in the art. Therefore literature describing transformations and the synthesis of indoles are highly instructive and applicable to the azaindole chemistry. If not commercially available, such azaindole derivatives can be prepared according to the well-known standard procedures for the formation of the azaindole ring system such as, for example, the Fischer indole synthesis, the Bischler indole synthesis, or the Reissert indole synthesis. By choosing suitable precursor molecules, these azaindole syntheses allow the introduction of a variety of substituents into the various positions of the azaindole system, which can then be chemically modified in order to finally arrive at the molecule of the formula I having the desired substituent pattern. As one of the comprehensive reviews in which numerous details and literature references on the chemistry of indoles and on synthetic procedures for their preparation can be found, W. J. Houlihan (ed.), “Indoles, Part One”, volume 25, 1972, out of the series “The Chemistry of Heterocyclic Compounds”, A. Weissberger and E. C. Taylor (ed.), John Wiley & Sons; R. E. Willette, Advances in Heterocyclic Chemistry 9 (1968) 27; J.-Y. Merour Curr. Org. Chem. 5 (2001) 471; H. Dopp et al. in Houben-Weyl, “Methoden der Organischen Chemie” (Methods of Organic Chemistry), Georg Thieme Verlag, Stuttgart, Germany 1994, Vol E6a,b part 2a Hetarene I, is referred to.
- If starting azaindole derivatives are to be synthesized this can be done, for example, according to the well-known azaindole syntheses mentioned above. In the following they are explained briefly, however, they are standard procedures comprehensively discussed in the literature, and are well known to one skilled in the art.
- The Fischer indole synthesis comprises the acid cyclization of heteroarylhydrazones, for example of the general formula 2,
- which can be obtained by various methods and in which R30, R31 and R32 can have a wide variety of denotations. Besides hydrogen and alkyl, R31 and R32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the azaindole molecule of the (CH2)p—CO moiety occurring in the groups R2 and/or R3 in the compounds of the formula I. As examples of the many literature references describing the synthesis of azaindole derivatives according to the Fischer synthesis, besides the above-mentioned book edited by Houlihan, the following articles are mentioned: F. G. Salituro et al., J. Med. Chem. 33 (1990) 2944; N. M. Gray et al., J. Med. Chem. 34 (1991) 1283; J. Sh. Chikvaidze et al., Khimn. Geterotsikl. Soedin. (1991) 1508; S. P. Hiremath et al., Indian J. Chem. 19 (1980) 770; J. Bornstein, J. Amer. Chem. Soc. 79 (1957) 1745; S. Wagaw, B. Yang and S. Buchwald, J. Am. Chem. Soc. 121 (1999) 10251 or by Y. Murakami, Y. Yokoyama, T. Miura, H. Hirasawa Y. Kamimura and M. Izaki, Heterocycles 22 (1984) 1211; D. L. Hughes, Org. Prep. Proc. 25 (1993) 607.
- The Reissert indole synthesis comprises the reductive cyclization of o-nitrophenylpyruvic acids or esters thereof, for example of the general formula 3,
- in which the groups R30 can have a wide variety of denotations and can be present in all positions of the aromatic ring. The Reissert indole synthesis leads to derivatives of azaindole-2-carboxylic acids. The pyruvic acid derivatives of the formula 3 can be obtained by condensation of oxalic acid esters with substituted o-nitromethylazabenzenes. As literature references, besides the above-mentioned book edited by Houlihan and the literature articles mentioned therein, for example the articles by H. G. Lindwall and G. J. Mantell, J. Org. Chem. 18 (1953) 345 or by H. Burton and J. L. Stoves, J. Chem. Soc. (1937) 1726 or by W. Noland, F. Baude, Org. Synth Coll. Vol. V, J. Wiley, New York, (1973) 567 are mentioned. Another method to gain regioselective access to the azaindole structure involves palladium catalysis, for example o-haloanilines (X=Cl, Br, I) or o-trifluoromethanesulfonyloxyanilines (X=OTf) of the general formula 4 can be cyclized to azaindoles utilizing several alkynes by adopting procedures described by J. Ezquerra, C. Pedregal. C. Lamas, J. Barluenga, M. Pérez, M. Garcia-Martin, J. Gonzalez, J. Org. Chem. 61 (1996) 5805; or F. Ujjainwalla, D. Warner, Tetrahedron Lett. 39 (1998) 5355 and furthermore A. Rodriguez, C. Koradin, W. Dohle, P. Knochel, Angew. Chem. 112 (2000) 2607; or R. Larock, E. Yum, M. Refyik, J. Org. Chem. 63 (1998) 7653; R. Larock, E. Yum, J. Am. Chem. Soc. 113 (1991) 6689; K. Roesch; R. Larock, J. Org. Chem. 66 (2001) 412
- Alternatively the azaindole structure can be built up by employment of a variety of ketones under palladium catalysis by adopting and modifying a procedure described by C. Chen, D. Liebermann, R. Larsen, T. Verhoeven and P. Reider J. Org. Chem. 62 (1997) 2676 as indicated below were X=Cl, Br, I or OTf:
- According to the Bischler indole synthesis ∀-aza-anilinoketones, for example of the general formula 10,
- can be cyclized to azaindole derivatives.
- A further route to specifically substituted azaindole derivatives proceeds via 2,3-dihydroazaindoles (azaindolines) which can be easily obtained by reduction of azaindoles, for example by hydrogenation, or by cyclization of suitable azaphenylethylamine derivatives. Azaindolines can undergo a variety of electrophilic aromatic substitution reaction allowing the introduction of various substituents into the aromatic nucleus which cannot directly be introduced by such reactions into the aromatic nucleus of the azaindole molecule. The azaindolines can then be dehydrogenated to the corresponding azaindoles, for example with reagents like chloranil, or palladium together with a hydrogen acceptor. Again, details on these syntheses can be found in the above-mentioned book edited by Houlihan.
- Moreover 2-H-azaindoles can be converted into the corresponding carboxylic acids or carboxylic esters by lithiation of the 2-position of the azaindoles of the general formula 13 and subsequent reaction with carbon dioxide or alkylchloroformate according to I. Hasan, E. Marinelli, L. Lin, F. Fowler, A. Levy, J. Org. Chem. 46 (1981) 157; T. Kline J. Heterocycl. Chem. 22 (1985) 505; J.-R. Dormoy, A. Heymes, Tetrahedron 49, (1993) 2885; E. Desarbre, S. Coudret, C. Meheust, J.-Y. Merour, Tetrahedron 53 (1997) 3637 as indicated below:
- R45 denotes hydrogen or a protecting group like for example benzenesulfonyl or tert-butoxycarbonyl.
- In the following further procedures of particular interest for the embodiment of this invention are listed and referenced briefly, however, they are standard procedures comprehensively discussed in the literature, and are well known to one skilled in the art.
- 1) T. Sakamoto et al., Chem. Pharm. Bull. 34 (1986) 2362.
- 2) a) I. Mahadevan et al., J. Heterocycl. Chem. 29 (1992) 359
- b) J.-R. Dormoy et al., Tetrahedron 49 (1993) 2885
- 3) a) L. Estel et al., J. Org. Chem. 53 (1988) 2740
- b) D. Hands et al., Synthesis (1996) 877
- c) T. Kumiko et al., Bioorg. Med. Chem. Lett. 20 (2000) 2347
- 4) a) S. Clemo et al., J. Chem. Soc. (1945) 603
- b) R. Okuda, J. Org. Chem. 24 (1959) 1008
- c) J. Turner, J. Org. Chem. 48 (1983) 3401
- b) C. Martin et al., Tetrahedron Lett. 30 (1989) 935
- c) S. Ball et al., J. Organomet. Chem. 550 (1998) 457
- Depending on the substituents in the starting materials, in certain azaindole syntheses mixtures of positional isomers may be obtained which, however, can be separated by modern separation techniques like, for example, preparative HPLC.
- Further, in order to obtain the desired substituents in the nucleus of the azaindole ring system in the formula I, the functional groups introduced into the ring system during the azaindole synthesis can be chemically modified. For example, azaindoles carrying a hydrogen atom in the 2-position or the 3-position can also be obtained by saponification and subsequent decarboxylation of azaindoles carrying an ester group in the respective position. Carboxylic acid groups and acetic acid groups in the 2-position and the 3-position can be converted into their homologues by usual reactions for chain elongation of carboxylic acids. Halogen atoms can be introduced into the 2-position or the 3-position, for example by reacting the respective azaindolinone with a halogenating agent such as phosphorus pentachloride analogously to the method described by J. C. Powers, J. Org. Chem. 31 (1966) 2627. The starting azaindolinones for such a synthesis can be obtained from 2-aminoheteroaryl acetic acids. Starting azaindole derivatives for the preparation of compounds of the formula I carrying a halogen substituent in the 3-position can also be obtained according to procedures described in the literature like the following. For the fluorination of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position N-fluoro-2,4,6-trimethylpyridinium triflate is the reagent of choice (T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita J. Am. Chem. Soc. 112 (1990) 8563). Chlorination of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position by reaction with sulfuryl chloride in benzene yields 3-chloro-1H-azaindole-2-carboxylic acid ethyl ester (Chem. Abstr. 1962, 3441i-3442b); the same result can obtained by means of NCS (D. Comins, M. Killpack, Tetrahedron Lett. 33 (1989) 4337; M. Brennan, K. Erickson, F. Szmlac, M. Tansey, J. Thornton, Heterocycles 24 (1986) 2879). Bromination of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position can be achieved by reaction with NBS (M. Tani, H. Ikegami, M. Tashiro, T. Hiura, H. Tsukioka, Heterocycles 34 (1992) 2349). Analogously to the procedures described above NIS can be used efficiently for the iodination in the of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position. Furthermore the iodination of 1H-azaindole-2-carboxylic acid ethyl ester derivatives in the 3-position the use of iodine is efficient (T. Sakamoto, T. Nagano, Y. Kondo, H. Yamanaka Chem. Pharm. Bull. 36 (1988) 2248).
- Especially the groups present in the azaindole ring system can be modified by a variety of reactions and thus the desired residues R3a and R30 can be obtained. For example, nitro groups can be reduced to amino group with various reducing agents, such as sulfides, dithionites, complex hydrides or by catalytic hydrogenation. A reduction of a nitro group may also be carried out at a later stage of the synthesis of a compound of the formula I, and a reduction of a nitro group to an amino group may also occur simultaneously with a reaction performed on another functional group, for example when reacting a group like a cyano group with hydrogen sulfide or when hydrogenating a group. In order to introduce or derive the residues R3a and R30, amino groups can then be modified according to standard procedures for alkylation, for example by reaction with (substituted) alkyl halogenides or by reductive amination of carbonyl compounds, according to standard procedures for acylation, for example by reaction with activated carboxylic acid derivatives such as acid chlorides, anhydrides, activated esters or others or by reaction with carboxylic acids in the presence of an activating agent, or according to standard procedures for sulfonylation, for example by reaction with sulfonyl chlorides. Carboxylic acids, carboxylic acid chlorides or carboxylic acid esters can be introduced by procedures described by F. Santangelo, C. Casagrande, G. Norcini, F. Gerli, Synth. Commun. 23 (1993) 2717; P. Beswick, C. Greenwood, T. Mowlem, G. Nechvatal, D. Widdowson, Tetrahedron 44 (1988) 7325; V. Collot, M. Schmitt, P. Marwah, J. Bourguignon, Heterocylces 51 (1999) 2823. Halogens or hydroxy groups—via the triflate or nonaflate—or primary amines—via its diazonium salt—or after interconversion to the corresponding stannane, or boronic acid—present in the azaindole structure can be converted into a variety of other functional groups like for example —CN, —CF3, ethers, acids, esters, amides, amines, alkyl- or aryl groups mediated by means of transition metals, namely palladium or nickel catalysts or copper salts and reagents for example referred to below (F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998) 2154; B. Yang, S. Buchwald, J. Organomet. Chem. 576 (1999) 125; T. Sakamoto, K. Ohsawa, J. Chem. Soc. Perkin Trans I, (1999), 2323; D. Nichols, S. Frescas, D. Marona-Lewicka, X. Huang, B. Roth, G. Gudelsky, J. Nash, J. Med. Chem., 37 (1994), 4347; P. Lam, C. Clark, S. Saubem, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett., 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; V. Farina, V. Krishnamurthy, W. Scott, The Stille Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, G. Job, S. Buchwald, 4 (2002) 973)
- Ester groups present in the azaindole nucleus can be hydrolyzed to the corresponding carboxylic acids, which after activation can then be reacted with amines or alcohols under standard conditions. Furthermore these ester or acid groups can be reduced to the corresponding alcohols by many standard procedures. Ether groups present at the azaindole nucleus, for example benzyloxy groups or other easily cleavable ether groups, can be cleaved to give hydroxy groups which then can be reacted with a variety of agents, for example etherification agents or activating agents allowing replacement of the hydroxy group by other groups. Sulfur-containing groups can be reacted analogously.
- During the course of the synthesis in order to modify the groups R54 or R8′ attached to the azaindole ring system by application of parallel synthesis methodology, beside a variety of reactions, the palladium or copper salt catalysis can be extremely useful. Such reactions are described for example in F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998), 2154; B. Yang, S. Buchwald, J. Organomet. Chem. 576 (1999) 125; P. Lam, C. Clark, S. Saubem, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett. 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; J. Wolfe, H. Tomori, J. Sadight, J. Yin, S. Buchwald, J. Org. Chem. 65 (2000) 1158; V. Farina, V. Krishnamurthy, W. Scott, The Stille Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, G. Job, S. Buchwald, 4 (2002) 973).
- The previously-mentioned reactions for the conversion of functional groups are furthermore, in general, extensively described in textbooks of organic chemistry like M. Smith, J. March, March's Advanced Organic Chemistry, Wiley-VCH, 2001 and in treatises like Houben-Weyl, “Methoden der Organischen Chemie” (Methods of Organic Chemistry), Georg Thieme Verlag, Stuttgart, Germany, or “Organic Reactions”, John Wiley & Sons, New York, or R. C. Larock, “Comprehensive Organic Transformations”, Wiley-VCH, 2nd ed (1999), B. Trost, I. Fleming (eds.) Comprehensive Organic Synthesis, Pergamon, 1991; A. Katritzky, C. Rees, E. Scriven Comprehensive Heterocyclic Chemistry II, Elsevier Science, 1996) in which details on the reactions and primary source literature can be found. Due to the fact that in the present case the functional groups are attached to an azaindole system it may in certain cases become necessary to specifically adapt reaction conditions or to choose specific reagents from a variety of reagents that can in principle be employed in a conversion reaction, or otherwise to take specific measures for achieving a desired conversion, for example to use protecting group techniques. However, finding out suitable reaction variants and reaction conditions in such cases does not cause any problems for one skilled in the art.
- The structural elements present in the residues in the 1-position of the azaindole ring in the compounds of the formula I and in the COR8′ group present in the 2-position and/or in the 3-position of the azaindole ring can be introduced into the starting azaindole derivative obtainable as outlined above by consecutive reaction steps using synthesis methodologies like those outlined below using procedures which per se are well known to one skilled in the art.
- The residues R8′ that can be introduced in formula 29, for example, by condensing a corresponding carboxylic acid of the formula 29 with a compound of the formula HR8′, i.e. with an amine of the formula HN(R1′)R2′—V-G-M to give a compound of the formula 30. The compound of the formula 30 thus obtained can already contain the desired final groups, i.e. the groups R8′ and R54 can be the groups —N(R1)R2—V-G-M and R0-Q- as defined in the formula I, or optionally in the compound of the formula 30 thus obtained subsequently the residue or the residues R8′ and the residue R54 are converted into the residues —N(R1)R2—V-G-M and R0-Q-, respectively, to give the desired compound of the formula I.
- Thus, the residues R8′ and the residues R1′ and R2′—V-G-M contained therein can have the denotations of R1 and R2—V-G-M, respectively, given above or in addition in the residues R1′ and R2′—V-G-M functional groups can also be present in the form of groups that can subsequently be transformed into the final groups R1 and R2—V-G-M, i.e. functional groups can be present in the form of precursor groups or of derivatives, for example in protected form. In the course of the preparation of the compounds of the formula I it can generally be advantageous or necessary to introduce functional groups which reduce or prevent undesired reactions or side reactions in the respective synthesis step, in the form of precursor groups which are later converted into the desired functional groups, or to temporarily block functional groups by a protective group strategy suited to the synthesis problem. Such strategies are well known to those skilled in the art (see, for example, Greene and Wuts, Protective Groups in Organic Synthesis, Wiley, 1991, or P. Kocienski, Protecting Groups, Thieme 1994). As examples of precursor groups cyano groups and nitro groups may be mentioned. The cyano groups can in a later step be transformed into carboxylic acid derivatives or by reduction into aminomethyl groups, or the nitro groups which may be transformed by reduction like catalytic hydrogenation into amino groups. Protective groups can also have the meaning of a solid phase, and cleavage from the solid phase stands for the removal of the protective group. The use of such techniques is known to those skilled in the art (Burgess K (Ed.) Solid Phase Organic Synthesis, New York: Wiley, 2000). For example, a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage of the synthesis.
- The residue R54 in the compounds of the formulae 29 and 30 can denote the group -Q-R0 as defined above which finally is to be present in the desired target molecule of the formula I, or it can denote a group which can subsequently be transformed into the group -Q-R0, for example a precursor group or a derivative of the group -Q-R0 in which functional groups are present in protected form, or R54 can denote a hydrogen atom or a protective group for the nitrogen atom of the azaindole ring. Similarly, the residues R3a and R30 in the formulae 29 and 30 have the corresponding definitions of R3 in formula I as defined above, however, for the synthesis of the compounds of the formula I these residues, too, can in principle be present at the stage of the condensation of a compound of the formula 29 with a compound of the formula HR8′ giving a compound of the formula 30 in the form of precursor groups or in protected form.
- The residues R53 in the compounds of the formula 29 which can be identical or different, can be, for example, hydroxy or (C1-C4)-alkoxy, i.e., the groups COR53 present in the compounds of the formula 29 can be, for example, the free carboxylic acids or esters thereof like alkyl esters as can be the groups COR8′ in the compounds of the formula I. The groups COR53 can also be any other activated derivative of a carboxylic acid which allows amide formation, ester formation or thioester formation with a compound of the formula HR8′. The group COR53 can be, for example, an acid chloride, an activated ester like a substituted phenyl ester, an azolide like an imidazolide, an azide or a mixed anhydride, for example a mixed anhydride with a carbonic acid ester or with a sulfonic acid, which derivatives can all be prepared from the carboxylic acid by standard procedures and can be reacted with an amine, an alcohol or a mercaptan of the formula HR8′ under standard conditions. A carboxylic acid group COOH representing COR53 in a compound of the formula 29 can be obtained, for example, from an ester group introduced into the azaindole system during an azaindole synthesis by standard hydrolysis procedures.
- Compounds of the formula I in which a group COR8 is an ester group can also be prepared from compounds of the formula 29 in which COR53 is a carboxylic acid group by common esterification reactions like, for example, reacting the acid with an alcohol under acid catalysis, or alkylation of a salt of the carboxylic acid with an electrophile like an alkyl halogenide, or by transesterification from another ester. Compounds of the formula I in which a group COR8 is an amide group can be prepared from amines and compounds of the formula 29 in which COR53 is a carboxylic acid group or an ester thereof by common amination reactions. Especially for the preparation of amides the compounds of the formula 29 in which COR53 is a carboxylic acid group can be condensed under standard conditions with compounds of the formula HR8′ which are amines by means of common coupling reagents used in peptide synthesis. Such coupling reagents are, for example, carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide, carbonyldiazoles like carbonyldiimidazole (CDI) and similar reagents, propylphosphonic anhydride, O-((cyano-(ethoxycarbonyl)-methylene)amino)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TOTU), diethylphosphoryl cyanide (DEPC) or bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride (BOP-Cl) and many others.
- If the residue -Q-R0 present in an azaindole of the formula I or the residue R54 present in an azaindole of the formula 29, or a residue in which functional groups within the residue -Q-R0 or R54 are present in protected form or in the form of a precursor group, have not already been introduced during a preceding step, for example during a synthesis of the azaindole nucleus, these residues can, for example, be introduced into the 1-position of the azaindole system by conventional literature procedures well known to one skilled in the art for N-alkylation, reductive amination, N-arylation, N-acylation or N-sulfonylation of ring nitrogen atoms of heterocycles. The starting azaindole derivative that is to be employed in such a reaction carries a hydrogen atom in the 1-position. N-Alkylation of a ring nitrogen atom can, for example, be performed under standard conditions, preferably in the presence of a base, using an alkylating compound of the formula LG-Q-R0 or of the formula R54—LG, wherein the atom in the group Q or in the group R54 bonded to the group LG in this case is an aliphatic carbon atom of an alkyl moiety and LG is a leaving group, for example halogen like chlorine, bromine or iodine, or a sulfonyloxy group like tosyloxy, mesyloxy or trifluormethylsulfonyloxy. LG may, for example, also be a hydroxy group which, in order to achieve the alkylation reaction, is activated by a conventional activating agent. For the preparation of compounds in which A is a direct linkage and an aromatic group is directly bonded to the 1-position of the azaindole system, conventional arylation procedures can be used. For example aryl fluorides like alkyl fluorobonzoates or 4-fluorophenyl methyl sulfones can be employed as arylating agents. Such processes are described, for example, By S. Stabler, Jahangir, Synth. Commun. 24 (1994) 123; I. Khanna, R. Weier, Y. Yu, X. Xu. F. Koszyk, J. Med. Chem. 40 (1997) 1634. Alternatively a wide variety of substituted aryl iodides, aryl bromides or aryl triflates can serve as arylating agents at the 1-position of the azaindole system in a copper salt or palladium mediated reaction according to R. Sarges, H. Howard, K. Koe, A. Weissmann, J. Med. Chem., 32 (1989) 437; P. Unangst, D. Connor, R. Stabler, R. Weikert, J. Heterocycl. Chem., 24 (1987) 811; G. Tokmakov, I. Grandberg, Tetrahedron 51 (1995) 2091; D. Old, M. Harris, S. Buchwald, Org. Lett. 2 (2000) 1403, G. Mann, J. Hartwig, M. Driver, C. Femandez-Rivas, J. Am. Chem. Soc. 120 (1998) 827; J. Hartwig, M. Kawatsura, S. Hauk, K. Shaughnessy, L. J. Org. Chem. 64 (1999) 5575. Moreover such arylations can also be accomplished by reaction of a wide range of substituted aryl boronic acids as demonstrated for example by W. Mederski, M. Lefort, M. Germann, D. Kux, Tetrahedron 55 (1999) 12757.
- In the course of the synthesis the employment of microwave assistance for speeding-up, facilitating or enabling reactions may be beneficial or even required in many cases. Some reactions are for example described by J. L. Krstenanslcy, I. Cotteril, Curr. Opin. Drug. Disc. & Development, 4 (2000), 454; P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57 (2001), 9225; M. Larhed, A. Hallberg, Drug Discovery Today, 8 (2001) 406; S. Caddick, Tetrahedron, 51 (1995) 10403.
- Preferred methods include, but are not limited to those described in the examples. The compounds of the present invention are serine protease inhibitors, which inhibit the activity of the blood coagulation enzyme factors Xa and/or factor VIIa. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired. The activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art. With respect to factor Xa inhibition, a preferred embodiment of the invention comprises compounds which have a Ki <1 mM for factor Xa inhibition as determined in the assay described below, with or without concomitant factor VIIa inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor). The compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex.
- As inhibitors of factor Xa and/or factor VIIa the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor VIIa or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor VIIa or a decrease in their activity is desired by the physician. As inhibition of factor Xa and/or factor VIIa influences blood coagulation and fibrinolysis, the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician. A specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor.
- The present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses. The invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis. The present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
- The invention also relates to the treatment of disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA), transient ischemic attacks, stroke, intermittent claudication or bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, certain viral infections or cancer.
- The compounds of the present invention can also be used to reduce an inflammatory response. Examples of specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular clotting disorder. Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis, which can occur following surgery.
- The compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations, which permit enteral or parenteral administration.
- The pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.
- The pharmaceutical preparations according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs. For the production of pills, tablets, coated tablets and hard gelatin capsules it is possible to use, for example, lactose, cornstarch or derivatives thereof, talc, stearic acid or its salts, etc. Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc. Suitable carriers for the production of solutions, for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid. The pharmaceutical preparations normally contain about 0.5% to 90% by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. The amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mg to about 1000 mg, preferably from about 1 mg to about 500 mg.
- In addition to the active ingredients of the formula I and/or their physiologically acceptable salts and/or prodrugs and to carrier substances, the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I, and/or their physiologically tolerable salts and/or their prodrugs. In case a pharmaceutical preparation contains two or more compounds of the formula I, the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency. The flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds. Furthermore, in addition to at least one compound of the formula I and/or a physiologically tolerable salt and/or its prodrug, the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.
- When using the compounds of the formula I the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out. An appropriate dosage can be established using clinical approaches well known in the medical art. In general, the daily dose for achieving the desired results in an adult weighing about 75 kg is from 0.01 mg/kg to 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight). The daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.
- A compound of the formula I can also advantageously be used as an anticoagulant outside an individual. For example, an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample. Further, a compound of the formula I or its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations. For example, a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor VIIa or to isolate factor Xa and/or factor VIIa in a substantially purified form. A compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor VIIa is then detected using a routine method useful for detecting the particular label. Thus, a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor VIIa activity in vivo, in vitro or ex vivo.
- Furthermore, the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.
- The general synthetic sequences for preparing the compounds useful in the present invention our outlined in the examples given below. Both an explanation of, and the actual procedure for, the various aspects of the present invention are described where appropriate. The following examples are intended to be merely illustrative of the present invention, and not limiting thereof in either scope or spirit. Those with skill in the art will readily understand that known variations of the conditions and processes described in the examples can be used to synthesize the compounds of the present invention.
- It is understood that changes that do not substantially affect the activity of the various embodiments of this invention are included within the invention disclosed herein. Thus, the following examples are intended to illustrate but not limit the present invention.
- When in the final step of the synthesis of a compound an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tBu group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt or hydrochloric acid salt.
- Abbreviations used:
-
tert-Butyl tBu 2,2′-bis(diphenylphoshino-1,1′-binaphthyl Binap Bis-(oxo-3-oxazolidinyl)-phosphoryl chloride BOP-Cl dibenzylidenacetone dba Dichloromethane DCM Dicyclohexyl-carbodiimide DCC Diethylphosphoryl cyanide DEPC 4-Dimethyaminopyridine DMAP N,N-Dimethylformamide DMF Dimethylsulfoxide DMSO 1,1′-Bis(diphenylphosphino)ferrocene DPPF O-(7-Azabenzotriazol-1-yl)-N,N,N′,N′- HATU tetramethyluronium-hexafluorophosphate N-Bromosuccinimide NBS N-Chlorosuccinimide NCS N-Iodosuccinimide NIS N-Ethylmorpholine NEM Methanol MeOH Room temperature 20° C. to 25° C. RT Saturated sat. Tetrahydrofuran THF Trifluoroacetic acid TFA O-((Ethoxycarbonyl)cyanomethyleneamino)- TOTU N,N,N′,N′-tetramethyluronium tetrafluoroborate - 0.495 g (1.64 mmol) of 1-benzenesulfonyl-1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid was dissolved in 5 mL of methanol and 3 mL of 2N aqueous sodium hydroxide. The reaction was stirred at 40° C. for 8 h. The solvent was removed under reduced pressure. Residual volatiles were removed by twice codistilling with toluene. The residue was suspended in methanolic hydrochloric acid and stirred for 16 h at RT. The solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate and washed with saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The organic phase was dried with sodium sulfate, filtered and the solvent was removed under reduced pressure.
- Yield 0.201 g. MS (CI+): m/e=177 (M+H+).
- 0.195 g (1.1 mmol) of 1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid methyl ester was dissolved in 4 mL of DMF and 48.7 mg (1.2 mmol) of sodium hydride (60% in mineral oil) was added. The reaction was stirred at RT for 20 min, cooled to −78° C. then 324 mg (1.2 mmol) of 3-bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appl. (2001) 460 pp. WO 0107436 A2] was added. The reaction was allowed to warm to RT overnight. 0.3 mL of 2N aqueous sodium hydroxide was added and the reaction was stirred at RT for 24 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a solid.
- Yield 280 mg. MS (TOF MS ES+): m/e=359 (M+).
- To a solution of 5.0 g Piperidin-4-yl-carbamic acid tert-butyl ester in 15 mL methanol, 7.34 mL acetone, 3.14 g Na(CN)BH3 and 0.3 mL acetic acid were added. After stirring for 16 h at RT the solvent was removed under reduced pressure and the residue was partitioned between 30 mL of water and 30 mL of ethyl acetate. The organic layer was washed with saturated Na2CO3 solution, water and then dried over Na2SO4. Following filtration, the solvent was removed under reduced pressure to yields a white solid. Yield: 4.8 g MS (ES+): m/e=243.
- To 4.8 g (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in 15 mL methanol, 20 mL methanolic hydrochloric acid (8M) were added and the mixture was stirred for 16 h. Removal of the solvent under reduced pressure yielded a white solid, which was coevaporated twice with 20 mL toluene. The product was obtained as its hydrochloride.
- Yield: 5.42 g MS (ES+): m/e=143.
- 0.135 g (0.4 mmol) of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2-carboxylic acid, 0.432 g (3.8 mmol) of NEM and 135 mg (0.4 mmol) of TOTU were dissolved in 3 mL of DMF and stirred at RT for 20 min. 89 mg (0.4 mmol) of 1-Isopropyl-piperidin-4-ylamine dihydrochloride salt was added to the reaction solution and stirred at RT for 4 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a solid.
- Yield: 156 mg MS (TOF MS ES+): m/e=484 (M+).
- To a solution of 10 g 6-Amino-nicotinic acid in 100 mL MeOH, 0.8 mL concentrated H2SO4 were added and the mixture was heated to 60° C. for 12 h. Then the reaction mixture was concentrated under reduced pressure. After addition of 50 mL ice water the mixture was brought to pH 8 by addition of K2CO3. The aqueous phase was extracted with ethyl acetate (3×100 ml) and the combined organic layers were dried over MgSO4. Removal of the solvent yielded 5.5 g of the desired product which was subjected to the following reaction without further purification.
- Yield: 5.5 g.
- To 5 g 6-Amino-nicotinic acid methyl ester and 16.2 g Bis(pyridine)iodonium(I) tetrafluoroborate in 250 mL DCM, 7.6 mL Trifluoromethanesulfonic acid were added dropwise at 0° C. The mixture was stirred for 24 h at RT. Then additional 3.2 g Bis(pyridine)iodonium(I) tetrafluoroborate and 1.5 mL Trifluoromethanesulfonic acid were added. After stirring for 2 h at RT the reaction mixture was concentrated under reduced pressure and then taken-up with concentrated aqueous Na2SO3 solution and brought to pH 8 with concentrated aqueous ammonia. The mixture was extracted with ethyl acetate (2×150 ml). The combined organic layers were washed with brine and then dried over MgSO4. After filtration the solvent was removed under reduced pressure and the residue was codestilled with 100 mL toluene. Yield: 9.6 g.
- A solution of 5.6 g 6-Amino-5-iodo-nicotinic acid methyl ester, 5.3 g 2-Oxo-propionic acid, 11.1 g NEt3, 4.2 g Triphenylphosphine and 1.1 g Pd(OAc)2 in 100 mL DMF was heated under argon to 100° C. After 10 h the reaction mixture was concentrated under reduced pressure and the residue was stirred with 250 mL water for 1 h. The precipitated product was collected by filtration and washed with water. The crude product was subjected to the next reaction step without further purification. Yield: 10 g.
- To a solution of 9.5 g 1H-Pyrrolo[2,3-b]pyridine-2,5-dicarboxylic acid 5-methyl ester in 120 mL DMF and 23.9 mL NEt3, 9.2 g 1-Isopropyl-piperidin-4-ylamine hydrochloride and 11 g BOP-Cl were added at RT and the mixture was stirred for 3 h. After addition of 20 mL of water the reaction mixture was extracted with ethyl acetate (3×150 ml). The combined organic layers were washed with brine (1×50 ml) and then dried over MgSO4. After filtration the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with EtOAc/MeOH 9:7->EtOAc/MeOH/NH3(aq.) 6:4:0.04. The fractions containing the product were evaporated and codestilled with toluene.
- Yield: 7.2 g.
- To a solution of 1.2 g 2-(1-Isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid methyl ester in 20 mL DMF, 91 mg sodium hydride (95%) were added at 0° C. Then the reaction mixture was warmed to RT and stirred for 30 min. After cooling again to 0° C., 967 mg 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] were added and the mixture was stirred for 2 h at RT. Then 50 mL of water were added and the precipitate was collected by filtration to yield 630 mg pure product. The filtrate was concentrated under reduced pressure and the residue purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization further 371 mg of product were obtained as a solid.
- Yield: 1.0 g MS (ES+): m/e=542, chloro pattern.
- To a solution of 630 mg of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid methyl ester in 60 mL MeOH, 8.7 mL of a 1M aqueous NaOH solution were added. The reaction mixture was heated to 60° C. for 3 h. After cooling to RT 8.8 mL of a 1M aqueous HCl were added and the solvents were removed under reduced pressure. The residue was stirred with water/MeCN 2:1 and the precipitated product was collected by filtration.
- Yield: 276 mg MS (ES+): m/e=528, chloro pattern.
- To a solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid in 1 mL DMF, 62 mg TOTU, 0.2 mL DIPEA and 10 mg NH4Cl were added at RT and stirred for 16 h. Then the solvent was removed under reduced pressure and the crude material purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 16 mg MS (ES+): m/e=527, chloro pattern.
- 1.22 mL 2-oxo-propionic acid, 0.26 g palladium acetate and 3.20 mL triethylamine were added to a solution of 1.00 g 2-bromo-pyridin-3-yl amine and 1.21 g triphenyl-phosphine in 10 mL N,N-dimethylformamide. The reaction mixture was stirred for 4 hours at 100° C. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel with dichloromethane/methanol as eluent. Yield: 260 mg MS (ES+): m/e=163.
- 1H-NMR (400 MHz, DMSO/TMS): δ=13.30 (s, 1H); 12.00 (s, 1H); 8.45 (d, 1H); 7.82 (d, 1H); 7.25 (dd, 1H); 7.14 (s, 1H).
- A solution of 130 mg 1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid in 5 mL of a 8 N solution of hydrochloric acid in methanol was stirred at 60° C. for 6 hours. Removal of the solvent under reduced pressure yielded a white solid, which was coevaporated twice with 5 mL toluene. The product was obtained as its hydrochloride. Yield: 150 mg MS (ES+): m/e=177.
- 1H-NMR (400 MHz, DMSO/TMS): δ=13.60 (s, 1H); 8.86 (d, 1H); 8.59 (d, 1H); 7.82 (dd, 1H); 7.41 (s, 1H); 3.99 (s, 3H).
- To a solution of 150 mg 1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid methyl ester in 2 mL N,N-dimethylformamide 20.4 mg sodium hydride (95%) were added at 0° C. After stirring at 0° C. for 10 minutes 261 mg 3-bromoethyl-5-(5-chloro-thiophen-2-yl)-isoxazole were added. The reaction mixture was allowed to warm up to room temperature and stirred for 2 hours. After removing of the solvent under reduced pressure the residue was purified by chromatography on silica gel eluting with a dichloromethane/methanol gradient.
- Yield: 80 mg MS (ES+): m/e=374, chloro pattern.
- 1H-NMR (400 MHz, DMSO/TMS): δ=8.54 (d, 1H); 8.13 (d, 1H); 7.58 (d, 1H); 7.43 (s, 1H); 7.39 (dd, 1H); 7.26 (d, 1H); 7.73 (s, 1H); 5.98 (s, 2H); 3.90 (s, 3H).
- A solution of 75 mg 1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid methyl ester and 9.6 mg lithium hydroxide in a mixture of 3 mL tetrahydrofuran and 1 mL water was stirred for 2 hours at room temperature. After acidifying with 6 N hydrochloric acid to pH 2 the solvent of the mixture was removed under reduced pressure. The resulting residue was purified by chromatography on silica gel eluting with a ethyl acetate/methanol gradient with 0.1% water.
- Yield: 50 mg MS (ES+): m/e=360, chloro pattern.
- 1H-NMR (400 MHz, DMSO/TMS): δ=8.45 (d, 1H); 7.84 (d, 1H); 7.53 (d, 1H); 7.22 (d, 1H); 7.15 (dd, 1H); 6.94 (s, 1H); 6.60 (s, 1H); 6.14 (s, 2H).
- To a suspension of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid, 36 mg 1-isopropyl-piperidin-4-ylamine hydrochloride and 35 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride in 1 mL dichloromethane, 77 μl triethylamine were added at room temperature and the mixture was stirred for 16 hours. After removing of the solvent under reduced pressure, the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white residue which was partitioned between 5 mL aqueous 0.1 N sodium hydroxide solution and 5 mL ethyl acetate. The organic layer was washed with additional water and then dried over sodium sulphate. After filtration and removal of the solvent under reduced pressure, a white solid was obtained.
- Yield: 10 mg MS (ES+): m/e=484, chloro pattern.
- 1H-NMR (500 MHz, DMSO/TMS): δ=8.53 (d, 1H); 8.46 (d, 1H); 8.03 (d, 1H); 7.57 (d, 1H); 7.32 (s, 1H); 7.28 (dd, 1H); 7.26 (d, 1H); 6.65 (s, 1H); 5.93 (s, 2H); 3.75 (m, 1H); 2.80 (m, 2H); 2.70 (m, 1H); 2.17 (m, 2H); 1.80 (m, 2H); 1.53 (m, 2H); 0.96 (d. 6H)
- To a solution of 5.00 g 5-amino-pyridine-2-carboxylic acid methyl ester in 75 mL of a 48% aqueous solution of hydrobromic acid, 3.39 mL of a 32% aqueous solution of hydrogen peroxide were added. The mixture was stirred at room temperature for 2 hours, then additional 0.80 mL hydrogen peroxide solution were added. After stirring for 1 hour the reaction mixture was cooled down and brought to pH 8 by addition of concentrated aqueous ammonia. The mixture was extracted with 300 mL ethyl acetate. The aqueous layer was washed with additional ethyl acetate and then the combined organic phases were dried over sodium sulfate. After filtration the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel eluting with a n-heptane/ethyl acetate gradient. Yield: 2.83 g MS (ES+): m/e=231.
- 1H-NMR (400 MHz, DMSO/TMS): δ=7.80 (d, 1H); 7.10 (d, 1H); 6.37 (s, 2H); 3.80 (s, 3H)
- The following compound was prepared in analogy to example 5 by using 5-amino-6-bromo-pyridine-2-carboxylic acid methyl ester instead of 2-bromo-pyridin-3-ylamine.
- MS (ES+): m/e=221.
- 1H-NMR (400 MHz, DMSO/TMS): δ=11.80 (s, 1H); 7.89 (d, 1H); 7.84 (d, 1H); 6.93 (s, 1H); 3.88 (s, 3H).
- To a solution of 140 mg 1H-pyrrolo[3,2-b]pyridine-2,5-dicarboxylic acid 5-methyl ester in 1.4 mL N,N-dimethylformamide and 0.35 mL triethylamine, 164 mg 1-isopropyl-piperidin-4-ylamine hydrochloride and 161 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride were added at room temperature and the mixture was stirred for 1 hour. After removing of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 112 mg MS (ES+): m/e=345.
- 1H-NMR (400 MHz, DMSO/TMS): δ=12.20 (s, 1H); 9.10 (s, 1H); 8.79 (d, 1H); 7.93 (m, 2H); 7.42 (s, 1H); 4.14 (m, 1H); 3.90 (s, 3H); 3.47 (m, 3H); 3.15 (m, 2H); 2.15 (m, 2H); 1.88 (m, 2H); 1.28 (d. 6H).
- To a solution of 60 mg 2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester in 2 mL N,N-dimethylformamide, 4 mg sodium hydride (95%) were added at 0° C. After stirring at 0° C. for 10 minutes 53 mg 3-bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole were added and the mixture was stirred for 2 hours at room temperature. After removing the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 50 mg MS (ES+): m/e=542, chloro pattern.
- 1H-NMR (400 MHz, DMSO/TMS): δ=8.93 (m, 2H); 8.25 (d, 1H); 8.04 (d, 1H); 7.55 (d, 1H); 7.42 (s, 1H); 7.28 (d, 1H); 6.69 (s, 1H); 5.97 (s, 2H); 4.07 (m, 1H); 3.91 (s, 3H); 3.45 (m, 2H); 3.10 (m, 2H); 2.10 (m, 3H); 1.83 (m, 2H); 1.25 (d. 6H).
- To a solution of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester in 2 mL THF and 1 mL water 3.6 mg lithium hydroxide were added and the mixture was stirred at room temperature for 2 hours. Then the reaction mixture was acidified with 6 N hydrochloric acid to pH 3 and the solvent was removed under reduced pressure. The resulting residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
- Yield: 25 mg MS (ES+): m/e=528, chloro pattern.
- 1H-NMR (500 MHz, DMSO/TMS): δ=13.00 (s, 1H); 8.90 (m, 2H); 8.23 (d, 1H); 8.03 (d, 1H); 7.56 (d, 1H); 7.42 (s, 1H); 7.28 (d, 1H); 6.69 (s, 1H); 5.98 (s, 2H); 4.07 (m, 1H); 3.45 (m, 2H); 3.10 (m, 2H); 2.10 (m, 3H); 1.83 (m, 2H); 1.25 (d. 6H).
- To a solution of 80 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid methyl ester in 1 mL dichloromethane a solution of 52.8 mg 3-chloroperoxybenzoic acid (70%, wet with water) in 1 mL dichloromethane were added at 0° C. After stirring at 0° C. for 1 hour the reaction mixture was allowed to warm up to room temperature and stirred for 16 hours. The solution was washed with an aqueous 0.1 N solution of sodium hydroxide. The organic layer was washed with additional water and then dried over anhydrous sodium sulfate. After concentration under reduced pressure the residue was directly subjected to the subsequent reaction without further purification.
- Yield: 100 mg MS (ES+): m/e=390, chloro pattern
- A solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-oxy-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid methyl ester in 5 mL acetic anhydride was heated for 4 hours at 100° C. After cooling to room temperature the solvent of the mixture was removed under reduced pressure. After coevaporating twice with 5 mL toluene the residue was dissolved in 5 mL methanol and 17.6 mg potassium carbonate were added. The suspension was stirred for 16 hours at room temperature. After concentration under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The product was obtained as its trifluoroacetate salt.
- Yield: 20 mg MS (ES+): m/e=390, chloro pattern.
- 1H-NMR (400 MHz, DMSO/TMS): δ=11.65 (s, 1H), 7.90 (d, 1H); 7.60 (d, 1H); 7.28 (d, 1H); 6.71 (s, 1H); 6.67 (s, 1H); 6.35 (d, 1H); 5.87 (s, 2H); 3.81 (s, 3H).
- A solution of 20 mg) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-oxo-4,5-dihydro-1H-pyrrolo[3,2-b]pyridine-2-carboxylic acid methyl ester and 1.9 mg lithium hydroxide in a mixture of 2 ml tetrahydrofuran and 1 mL water was stirred for 2 hours at room temperature. The solvent was removed under reduced pressure and the residue was coevaporated twice with toluene. The residue was directly subjected to the subsequent reaction without further purification.
- Yield: 20 mg MS (ES+): m/e=376, chloro pattern.
- To a suspension of 19.9 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-oxo-4,5-dihydro-1H-5-pyrrolo[3,2-b]pyridine-2-carboxylic acid and 13.5 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride in 1 mL dichloromethane 7.4 μl triethylamine were added at room temperature and the mixture was stirred for 2 hours. The reaction mixture was treated with 5 mL of a aqueous 0.1 N sodium hydroxide solution and washed with acetyl acetate. The organic layer was dried over anhydrous sodium sulfate. After filtration and removal of the solvent under reduced pressure the residue was dissolved in a mixture of 2 mL acetonitrile and 1 mL water. Lyophilization of the solution yielded a white solid.
- Yield: 8 mg MS (ES+): m/e=500, chloro pattern.
- 1H-NMR (500 MHz, DMSO/TMS): δ=11.70 (s, 1H); 8.36 (d, 1H); 7.83 (d, 1H); 7.59 (d, 1H); 7.28 (d, 1H); 6.76 (s, 1H); 6.63 (s, 1H); 6.22 (d, 1H); 5.85 (s, 2H); 3.68 (s, 1H); 2.78 (m, 2H); 2.68 (m, 1H); 2.14 (m, 2H); 1.75 (m, 2H); 1.51 (m, 2H); 0.98 (d, 6H).
- To a solution of 450 mg 1H-pyrrolo[3,2-b]pyridine-2,5-dicarboxylic acid 5-methyl ester in 9 mL dichloromethane and 1.13 mL triethylamine, 614 mg 3,4,5,6-tetrahydro-2H-[1,4′]bipyridyl-4-ylamine dihydrochloride and 520 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride were added at room temperature and the mixture was stirred for 2 hours. After treatment of the reaction mixture with 5 mL saturated aqueous solution of potassium carbonate the precipitate was collected by filtration and coevaporated twice with toluene. The residue was directly subjected to the subsequent reaction without further purification.
- Yield: 300 mg MS (ES+): m/e=380.
- 1H-NMR (400 MHz, DMSO/TMS): δ=8.30 (m, 1H); 8.15 (d, 2H); 7.68 (m, 2H); 7.04 (s, 1H); 6.85 (d, 2H); 4.10 (m, 1H); 3.95 (m, 2H); 3.84 (s, 3H); 3.00 (m, 2H); 1.91 (m, 2H); 1.53 (m, 2H).
- To a solution of 150 mg 2-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridyl-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester 2 mL N,N-dimethylformamide, 9.5 mg sodium hydride (96%) were added at 0° C. After stirring at 0° C. for 10 minutes 121 mg 3-bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole were added and the mixture was stirred for 50 hours at room temperature. 2 mL water were added to the reaction mixture and the resulting precipitate was collected by filtration. The residue was dissolved in 2 mL N,N-dimethylformamide and purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
- Yield: 27 mg MS (ES+): m/e=577, chloro pattern.
- To a solution of 35 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester in 0.5 mL tetrahydrofuran and 0.25 mL water 2.4 mg lithium hydroxide were added and the mixture was stirred at room temperature for 16 hours. After removing of the solvent under reduced pressure the resulting residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 14.3 mg MS (ES+): m/e=563, chloro pattern.
- 1H-NMR (500 MHz, DMSO/TMS): δ=13.25 (s, 1H); 13.00 (s, 1H); 8.73 (d, 1H); 8.24 (m, 3H); 8.03 (d, 1H); 7.57 (d, 1H); 7.39 (s, 1H); 7.26 (m, 3H); 6.69 (s, 1H); 5.98 (s, 2H); 4.25 (m, 3H); 2.00 (m, 2H); 1.59 (m, 2H).
- To 20 mL of 2-Methoxy-ethanol 243 mg of NaH (6.09 mmol, 60% suspension in oil) were added and the mixture was stirred for 15 min. in an argon atmosphere. 1 g (5.8 mmol) 2-Chloro-4-methyl-5-nitro-pyridine were added and the reaction mixture was stirred for 3 h at room temperature. After addition of 40 mL water and methyl-tert.butyl ether, the phases were separated and the organic phase was washed with saturated NaHCO3 solution and water and was dried over Na2SO4. After filtration, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel using heptane/ethyl acetate=8/2. 2-(2-Methoxy-ethoxy)-4-methyl-5-nitro-pyridine was isolated as colourless oil. Yield: 0.73 g.
- To 265 mg (6.78 mmol) potassium in 20 mL absolute diethylether, 2.5 mL ethanol were slowly added. The mixture is cooled to 0° C. and a solution of 720 mg (3.39 mmol) 2-(2-Methoxy-ethoxy)-4-methyl-5-nitro-pyridine in 2.5 mL of absolute diethylether and 0.5 mL ethanol were added. 3.966 g (27.14 mmol) oxalic acid diethylester in 15 mL toluene were added dropwise over 45 min. The reaction mixture was stirred at room temperature for 4 h. The precipitate was filtered, washed with diethyl ether/n-heptane 1/1 and dried in vacuo. 1.4 g of 3-[2-(2-Methoxy-ethoxy)-5-nitro-pyridin-4-yl]-2-oxo-propionic acid ethylester potassium salt were isolated as a red solid and used in the next step without further purification.
- 0.8 mL of acidic acid was added to a solution of dried 3-[2-(2-Methoxy-ethoxy)-5-nitro-pyridin-4-yl]-2-oxo-propionic acid ethylester potassium salt in 20 mL methanol and the solution was hydrogenated using 199 mg of Pd(OH)2 (20% on charcoal). After 3 h the mixture was concentrated and the residue distributed between saturated NaHCO3 solution and ethyl acetate. The phases were separated and the organic phase was dried over MgSO4. After filtration, the solvent was removed in vacuo the desired product as a pale yellow solid. Yield: 660 mg.
- 105 mg (4.16 mmol) NaH (96%) were added to a solution of 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid ethyl ester in 50 mL absolute DMF and the mixture was stirred for 30 min. at room temperature. 1.05 g (3.78 mmol) 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole were added and the mixture and stirring was continued for 3 h. After addition of 21 mg (0.832 mmol) NaH (96%) and 210 mg (0.756 mmol) 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole and standing overnight the mixture was concentrated in vacuo. The residue was dissolved in CH2Cl2 and the solution washed with saturated NaHCO3 solution. The solvent was removed in vacuo and the residue purified by flash chromatography over silica gel using n-heptane/ethyl acetate=3/2 as solvent. The fractions containing the product were concentrated.
- Yield 1.3 g.
- To a solution of 1.3 g (2.814 mmol) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid ethyl ester in 30 mL THF and 15 mL MeOH 11.26 mL 1M LiOH solution were added and the mixture was stirred at 50° C. for 3 h. The organic solvents were removed in vacuo, 50 mL of water were added and the pH was adjusted to pH 2 with 1N HCl solution. The desired product precipitated and was filtered, washed with water and dried over P2O5. Yield 1.11 g.
- To a solution of 1.11 g (2.55 mmol) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid and 0.55 g (2.55 mmol) 1-isopropyl-piperidin-4-ylamine dihydrochloride in 20 mL absolute DMF 837 mg (2.55 mmol) TOTU and 1.34 mL (7.67 mmol) DIPEA were added and the mixture was stirred at room temperature for 4 h. The solvent was removed in vacuo, the residue dissolved in CH2Cl2 and the CH2Cl2 phase washed with a saturated NaHCO3 solution. The organic phase was concentrated and the residue purified by chromatography over silica gel using CH2Cl2/MeOH/HOAc/H2O=90/10/1/1 as eluent. The fractions containing the product were combined and concentrated. The product was isolated as its hydrochloride salt by lyophilization using 2.5 equivalents of 1N HCl in H2O/AcCN.
- Yield 1.2 g MS (LC-MS-ES+): m/e=558, chloro pattern.
- To a solution of 600 mg (1.01 mmol) of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide hydrochloride (example 10 (vi)) in 50 mL CH2Cl2 2 mL (2.02 mmol) of a 1M solution of BBr3 in CH2Cl2 were added. The mixture was stirred at room temperature for 6 h. After standing over night the solvent was removed in vacuo and the residue was purified by preparative HPLC (eluent: CH3CN/H2O/0.1% CF3COOH). The fractions containing the product were combined and concentrated in vacuo. The residue was dissolved in CH2Cl2 an washed with 0.1N NaOH solution. The solvent was removed in vacuo and the residue lyophilized with 2.5 equivalents of 1N HCl yielding 464 mg (79%) of the hydrochloride salt of the desired product.
- MS (LC-MS-ES+): m/e=544, chloro pattern.
- To a solution of 1 g (3.784 mmol) 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid ethyl ester (example 10 (iii)) in 50 mL THF and 25 mL MeOH 15.14 mL of a 1M LiOH solution were added. The mixture was stirred for 2 h at room temperature. The organic solvents were removed in vacuo, the solution acidified and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using H2Cl2/MeOH/HOAc/H2O=90/10/1/1 as eluent. The product fractions were combined, concentrated in vacuo and lyophilized.
- Yield: 820 mg.
- To a solution of 820 mg (3.47 mmol) of 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid and 745 mg (3.47 mmol) 1-isopropyl-piperidin-4-ylamine dihydrochloride in 30 mL absolute DMF 1.13 g (3.47 mmol) TOTU and 1.81 mL (10.41 mmol) DIPEA were added and the mixture was stirred for 4 h at room temperature. The solvent was removed in vacuo, the residue dissolved in CH2Cl2 and the CH2Cl2 phase washed with a saturated NaHCO3 solution. The organic phase was concentrated and the residue purified by chromatography over silica gel using CH2Cl2/MeOH/HOAc/H2O=90/10/1/1 as eluent. The fractions containing the product were combined and concentrated. The residue was dissolved in CH2Cl2 and the CH2Cl2 phase was washed with a saturated NaHCO3 solution. The phases were separated and the organic phase dried over Na2SO4. After filtration the solvent was removed in vacuo. Yield: 461 mg.
- To a solution of 5 g 5-Chloro-pyridin-2-ylamine and 1.5 mL pyridine in 30 mL toluene, 8 g bromo-acetyl bromide dissolved in 10 mL toluene was added dropwise under ice cooling. After 2 h the precipitate was isolated by filtration and recrystallized from toluene to yield a white solid.
- Yield: 12 g.
- To a solution of 461 mg (1.27 mmol)) 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide in 20 mL absolute DMF 46 mg (1.91 mmol) NaH (96%) were added in an argon atmosphere. The mixture was stirred for 15 min. at room temperature. 479 mg (1.91 mmol) 2-Bromo-N-(5-chloro-pyridin-2-yl)-acetamide were added and the mixture stirred for 3 h at room temperature. The solvent was removed in vacuo, the residue dissolved in CH2Cl2 and the CH2Cl2 phase washed with H2O and dried over Na2SO4. After filtration, the organic phase was concentrated and the residue purified by chromatography over silica gel using CH2Cl2/MeOH/HOAc/H2O=90/10/1/1 as eluent followed by preparative HPLC (eluent: CH3CN/H2O/0.1% CF3COOH). The fractions containing the product were combined and concentrated in vacuo. The residue was lyophilized with 2 equivalents 1N HCl in a H2O/CH3CN mixture yielding the hydrochloride salt of the desired product.
- Yield: 545 mg MS (LC-MS-ES+): m/e=529, chloro pattern.
- The compound was prepared as described in example 11. From 446 mg (0.789 mmol) of 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide hydrochloride 286 mg of the desired product were obtained. MS (LC-MS-ES+): m/e=515, chloro pattern.
- To a solution of 660 mg (2.497 mmol) 5-(2-Methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid ethyl ester in 15 mL absolute DMF 24 mg (2.497 mmol) NaH (96%) were added in an argon atmosphere. The mixture was stirred for 30 min. at room temperature. 623 mg (2.497 mmol) 2-Bromomethyl-6-chloro-benzo[b]thiophene [prepared by adopting a procedure described by Ewing, William R. et al. in; PCT Int. Appl. (1999), 300 pp. WO 9937304 A1; and Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] were added and the mixture stirred for 1 h at room temperature. The solvent was removed in vacuo and the residue purified by preparative HPLC (eluent: CH3CN/H2O/0.1% CF3COOH). The fractions containing the product were combined, concentrated in vacuo and lyophilized.
- Yield: 900 mg.
- 8 mL of a 1M LiOH solution in water were added to solution of 890 mg (2 mmol) 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid ethyl ester in 30 mL THF and 15 mL MeOH and the mixture was stirred for 1 h at 50° C. 16 mL of 1N HCl were added, the organic solvent removed in vacuo and the residue extracted with ethyl acetate. The organic phase was dried over MgSO4. After filtration the solvent was evaporated yielding the desired product. Yield: 810 mg.
- To a solution of 800 mg (1.92 mmol) 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid and 413 mg (1.92 mmol) 1-isopropyl-piperidin-4-ylamine dihydrochloride in 20 mL absolute DMF 628 mg (1.92 mmol) TOTU and 1.0 mL (5.757 mmol) DIPEA were added and the mixture was stirred at room temperature for 1 h. The solvent was removed in vacuo and the residue purified by preparative HPLC (eluent: CH3CN/H2O/0.1% CF3COOH) and chromatography over silica gel using CH2Cl2/MeOH/HOAc/H2O=85/15/1.5/1.5 as eluent. The fractions containing the product were combined and concentrated. Yield 870 mg (69%), corresponding trifluoro acetate. 60 mg of the trifluoro acetate were lyophilized using 2.5 equivalents of 1N HCl in H2O and isolated as its hydrochloride salt.
- MS (LC-MS-ES+): m/e=541, chloro pattern.
- To a solution of 810 mg (1.236 mmol) of 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide hydrochloride in 80 mL CH2Cl2 2.472 mL of a 1M solution of BBr3 in CH2Cl2 were added. The mixture was stirred at room temperature for 30 min. The solvent was removed in vacuo and lyophilized. The residue was purified by preparative HPLC (eluent: CH3CN/H2O/0.1% CF3COOH). The fractions containing the product were combined, concentrated in vacuo and lyophilized with 2.5 equivalents of 1N HCl yielding the hydrochloride salt of the desired product.
- Yield: 594 mg MS (LC-MS-ES+): m/e=527, chloro pattern.
- The ability of the compounds of the formula I to inhibit factor Xa or factor VIIa or other enzymes like thrombin, plasmin, or trypsin can be assessed by determining the concentration of the compound of the formula I that inhibits enzyme activity by 50%, i.e. the IC50 value, which was related to the inhibition constant Ki. Purified enzymes were used in chromogenic assays. The concentration of inhibitor that causes a 50% decrease in the rate of substrate hydrolysis was determined by linear regression after plotting the relative rates of hydrolysis (compared to the uninhibited control) versus the log of the concentration of the compound of formula I. For calculating the inhibition constant Ki, the IC50 value was corrected for competition with substrate using the formula
-
Ki=IC50/{1+(substrate concentration/Km)} - wherein Km is the Michaelis-Menten constant (Chen and Prusoff, Biochem. Pharmacol. 22 (1973), 3099-3108; I. H. Segal, Enzyme Kinetics, 1975, John Wiley & Sons, New York, 100-125; which were incorporated herein by reference).
- In the assay for determining the inhibition of factor Xa activity TBS-PEG buffer (50 mM Tris-HCl, pH 7.8, 200 mM NaCl, 0.05% (w/v) PEG-8000, 0.02% (w/v) NaN3) was used. The IC50 was determined by combining in appropriate wells of a Costar half-area microtiter plate 25 μl human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Ind.) in TBS-PEG; 40 μl 10% (v/v) DMSO in TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10% (v/v) DMSO in TBS-PEG; and substrate S-2765 (N(α)-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio) in TBS-PEG.
- The assay was performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay was initiated by adding substrate to obtain a final volume of 100 μl. The initial velocity of chromogenic substrate hydrolysis was measured by the change in absorbance at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi) at 25° C. during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concentration was 0.5 nM and substrate concentration was 140 μM.
- The inhibitory activity towards factor VIIa/tissue factor activity was determined using a chromogenic assay essentially as described previously (J. A. Ostrem et al., Biochemistry 37 (1998) 1053-1059 which was incorporated herein by reference). Kinetic assays were conducted at 25° C. in half-area microtiter plates (Costar Corp., Cambridge, Mass.) using a kinetic plate reader (Molecular Devices Spectramax 250). A typical assay consisted of 25 μl human factor VIIa and TF (5 nM and 10 nM, respective final concentration) combined with 40 μl of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl2, 0.05% PEG 8000, pH 8.15). Following a 15 minutes preincubation period, the assay was initiated by the addition of 35 μl of the chromogenic substrate S-2288 (D-Ile-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 μM final concentration). The results (inhibition constants Ki (FXa) for inhibition of factor Xa) are shown in Table 1.
-
TABLE 1 Example Ki(FXa) [μM] 1 0.006 2 0.055 3 0.067 4 0.070 5 0.004 6 0.010 7 0.023 9 0.085 11 0.047 13 0.044
Claims (12)
1. A compound of the formula I,
wherein
R0 is
1) a monocyclic or bicyclic 6- to 14-membered aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R8,
2) a monocyclic or bicyclic 4- to 15-membered heterocyclyl selected from the group consisting of benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzoxazolyl, benzothiazolyl, benzothiophenyl, cinnolinyl, chromanyl, indazolyl, indolyl, isochromanyl, isoindolyl, isoquinolinyl, phenylpyridyl, phthalazinyl, pteridinyl, purinyl, pyridyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyrimidinyl, quinazolinyl, quinolyl, quinoxalinyl and 1,4,5,6-tetrahydro-pyridazinyl, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and is additionally substituted by a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, wherein the heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;
R8 is
1) halogen,
2) —NO2,
3) —CN,
4) —C(O)—NH2,
5) —OH,
6) —NH2,
7) —O—CF3
8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein the aryl is mono-, di- or trisubstituted independently of one another by halogen or —O—(C1-C8)-alkyl,
9) —(C1-C8)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or methoxy,
10) —O—(C1-C8)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH2, —OH or methoxy,
11) —SO2—CH3 or
12) —SO2—CF3,
provided that when R0 is a monocyclic or bicyclic 6- to 14-membered aryl, then R8 is least one of the substituent of the aryl is halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl;
the substructure
in formula I is a 4- to 8 membered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R3, or substituted 1 or 2 times by ═O, provided that said cyclic group is not a phenyl residue;
Q is a direct bond, —(C0-C2)-alkylene-C(O)—NR10—, —NR10—C(O)—NR10—, —NR10—C(O)—, —SO2—, —(C1-C6)-allylene, —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—S—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR0—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—O—C(O)—NR10—(CH2)n—, —(C2-C3)-alkylene-O—(C0-C3)-alkylene-, —(C2-C3)-alkylene-S(O)—, —(C2-C3)-alkylene-S(O)2—, —(CH2)m—NR10—C(O)—O—(CH2)n—, —(C2-C3)-alkylene-S(O)2—NH—(R10)—, —(C2-C3)-alkylene-N(R10)- or —(C0-C3)-alkylene-C(O)—O—(CH2)m—,
wherein —(CH2)m— or —(CH2)n— are alkylene that is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH, or —(C3-C6)-cycloalkylene, that is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —NH2 or —OH;
R1 is
hydrogen, —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or substituted one to three times by R13, —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-alkylene-C(O)—O—R15, a monocyclic or bicyclic 6- to 14-membered aryl, wherein the aryl is mono-, di- or trisubstituted independently of one another by R8; a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen,
—(C1-C3)-perfluoroalkylene, —(C1-C3)-allylene-S(O)—(C1-C4)-alkyl, —(C1-C3)-alkylene-S(O)2—(C1-C3)-allyl, —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, —(C1-C3)-alkylene-O—(C1-C4)-allyl, —(C0-C3)-allylene-(C3-C8)-cycloalkyl, or —(C0-C3)-alkylene-het, wherein the het is a 3- to 7-membered cyclic residue, containing up to 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, and is unsubstituted or
mono-, di- or trisubstituted independently of one another by R14,
R4′ and R5′ are independent of one another are identical or different and are hydrogen atom or —(C1-C4)-alkyl,
R2 is a direct bond or —(C1-C4)-alkylene, or
R1 and R3 together with the atoms to which they are bonded form a 6- to 8-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
R1—N—R2—V form a 4- to 7-membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, and wherein said cyclic group is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R14 is halogen, —OH, ═O, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C4)-alkyl, —(C0-C8)-alkyl-SO2—(C1-C3)-perfluoroalkyl, —(C0-C8)-alkyl-SO2—N(R18)—R21, —C(O)—NH—(C1-C8)-allyl, —C(O)—N—[(C1-C8)-alkyl]2, —NR18—C(O)—NH—(C1-C8)-alkyl, —C(O)—NH2, —S—R18, or —NR18—C(O)—NH—[(C1-C8)-alkyl]2,
wherein R18 and R21 are independently from each other hydrogen, —(C1-C3)-perfluoroalkyl or —(C1-C6)-alkyl;
V is
1) a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein the cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
2) a 6- to 14-membered aryl, wherein the aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
3) a monocyclic or bicyclic 4- to 15-membered heterocyclyl, wherein the heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
G is
a direct bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n—, —(CH2)m—, —(CH2)m—O—(CH2)n—, —(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—, —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10, —(CH2)m—O—C(O)—NR10—(CH2)n— or —(CH2)m—NR10—C(O)—O—(CH2)n—;
n and m are independently of one another identical or different and are the integers zero, 1, 2, 3, 4, 5 or 6;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) halogen,
3) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
4) —(C1-C3)-perfluoroalkyl,
5) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C4)-alkylene-O—R19,
7) —NO2,
8) —CN,
9) —SOs—R11, wherein s is 1 or 2,
10) —SOt—N(R11)—R12, wherein t is 1 or 2,
11) —(C0-C4)-alkylene-C(O)—R11,
12) —(C0-C4)-allylene-C(O)—O—R11,
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
14) —(C0-C4)-alkylene-N(R11)—R12,
15) —NR10—SO2—R10,
16) —S—R10,
17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
19) —(C0-C2)allylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-allyl,
20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
21) —(C0-C4)-alkylene-(C6-C14)-aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R13,
22) —(C0-C4)-alkylene-(C4-C15)-heterocyclyl, wherein the heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13
23) —(C0-C4)-alkylene-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
24) —(C0-C4)-alkylene-het, wherein the het is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
25) —(C0-C4)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—O—(C0-C4)-allyl,
26) —SOw—N(R11)—R13, wherein w is 1 or 2,
27) —(C0-C4)-alkylene-C(O)—N(R11)—R13
28) —(C0-C4)-allylene-N(R11)—R13, or
29) a residue selected from the group consisting of
wherein Me is methyl;
R19 is
a) hydrogen,
b) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
c) —CF3, or
d) —CHF2,
or two —OR19 residues and adjacent atoms through which they are attached may form together a 5- or 6-membered ring, that is unsubstituted or substituted one, two, three or four times by R13;
R11 and R12 are independently of one another identical or different and are
1) hydrogen,
2) —(C1-C6)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
3) —(C0-C6)-alkyl-(C3-C8)-cycloalkyl,
4) —SOt—R10, wherein t is 1 or 2,
5) —(C0-C6)-alkyl-(C6-C14)-aryl, wherein the alkyl and aryl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13,
6) —(C1-C3)-perfluoroalkyl,
7) —O—R17, or
8) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein the alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or
R11 and R12 together with the nitrogen atom to which they are bonded form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom contain one or two identical or different ring heteroatoms chosen from oxygen, sulfur and nitrogen; wherein said heterocyclic ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;
R13 is halogen, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C3-C8)-cycloalkyl, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)u—R10, wherein u is 1 or 2, —S—R10, —SOr—R10, wherein r is 1 or 2, —S(O)v—N(R10)—R20, wherein v is 1 or 2, —C(O)—R10, —(C1-C8)-allyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—O—R17, —(C1-C3)-perfluoroalkyl, —O—R15, —NH—C(O)—NH—R10, —NH—C(O)—O—R10 or a residue selected from the group consisting of
wherein Me is methyl;
R10 and R20 are independently of one another hydrogen, —(C1-C6)-alkyl, —(C0-C4)-allyl-OH, —(C0-C4)-alkyl-O—(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl;
R15 and R16 are independently of one another hydrogen, —(C1-C6)-allyl, or together with the carbon atom to which they are bonded form a 3- to 6 membered carbocyclic ring which is unsubstituted or substituted one to three times by R10′ and
R17 is —(C1-C6)-allyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-allyl, —(C3-C8)-cycloalkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
2. The compound according to claim 1 , wherein
R0 as
1) is phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R8, or
3) is acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl or xanthenyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and is additionally substituted by acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5-triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl or xanthenyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;
the substructure D is azetidine, azetine, azocane, azocane-2-one, cyclobutyl, cyclooctane, cyclooctene, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolan, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, [1,4]oxazocane, [1,3]oxazocan-2-one, oxetan, oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, 5,6,7,8-tetrahydro-1H-azocin-2-one, tetrahydrofuran, tetrahydropyran, tetrahydropyridine, tetrazine, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thietan, thiocane, thiocane-1,1-dioxide, thiocane-1-oxide, thiocane-2-one, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R3, or is substituted 1 or 2 times by ═O;
R1 as a monocyclic or bicyclic 6- to 14-membered aryl is phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R8, or
—(C0-C3)-alkylene-het, then het is azepine, azetidine, aziridine, azirine, 1,4-diazapane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
R1 and R3 with the atoms to which they are bonded form azocane, azocane-2-one, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, [1,4]diazocane, [1,2]diazocan-3-one, [1,3]diazocan-2-one, dioxazine, [1,4]dioxocane, dioxole, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, [oxocane, oxocan-2-one, piperazine, piperidine, pyran, pyrazine, pyridazine, pyrimidine or 5,6,7,8-tetrahydro-1H-azocin-2-one, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
R1—N—R2—V form azepine, azetidine, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
V is
2) phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R14, or
3) acridinyl, 8-aza-bicyclo[3.2.1]oct-3-yl, azaindole (1H-pyrrolopyridine), azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 1,4-diazepane, 4,5-dihydrooxa-zolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 1λ6-thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, each of which is mono-, di- or trisubstituted independently of one another by R14;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 as 25) is —(C0-C3)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—O—(C0-C3)-allyl;
two —OR19 residues and adjacent atoms through which they are attached may form together a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, each of which is substituted one, two, three or four times by R13;
R11 and R12 together with the nitrogen atom to which they are bonded may form azepine, azetidine, dioxazole, dioxazine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;
R15 and R16 are independently of one another hydrogen, or —(C1-C6)-alkyl, or together with the carbon atom to which they are bonded form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10; and
R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-allyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C0-C6)-alkyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
3. The compound according to claim 1 , wherein
R0 as
1) is phenyl, naphthyl, biphenyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R8, or
3) is azabenzimidazolyl, benzimidazolyl, 1,3-benzodioxolyl, benzofuranyl, benzothiazolyl, benzothiophenyl, benzoxazolyl, chromanyl, cinnolinyl, 2-furyl, 3-furyl; imidazolyl, indolyl, indazolyl, isochromanyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, phthalazinyl, pteridinyl, purinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidinyl, pyrrolyl; 2-pyrrolyl, 3-pyrrolyl, quinolinyl, quinazolinyl, quinoxalinyl, tetrazolyl, thiazolyl, 2-thienyl or 3-thienyl, each of which is additionally substituted by acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4,5-dihydrooxazolinyl, dioxazolyl, dioxazinyl, 1,3-dioxolanyl, 1,3-dioxolenyl, 6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2-isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2-oxa-thiepanyl, 1,2-oxathiolanyl, 1,4-oxazepanyl, 1,2-oxazinyl, 1,3-oxazinyl, 1,4-oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6-tetrahydro-pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, 1,2-thiazinyl, 1,3-thiazinyl, 1,4-thiazinyl, 1,3-thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3-triazinyl, 1,2,3-triazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl and xanthenyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;
R8 as 1) is fluorine, chlorine or bromine,
provided R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-allyl residue;
substructure D is pyridyl, pyridyl-N-oxide pyridyl, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O;
Q is a direct bond, —(C0-C2)-alkylene-C(O)—NR10—, —NR10—C(O)—NR10—, —NR10—C(O)—, —SO2— or —(C1-C6)-alkylene;
R1 is hydrogen, —(C1-C4)-allyl, wherein the alkyl is unsubstituted or substituted one to three times by R13, —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-alkylene-C(O)—O—R15, —(C1-C3)-perfluoroalkylene, —(C1-C3)-alkylene-S(O)—(C1-C4)-alkyl, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl, —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, —(C1-C3)-alkylene-O—(C1-C4)-alkyl, —(C0-C3)-alkylene-(C3-C8)-cycloalkyl, or —(C0-C3)-alkylene-het, wherein the het is azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
R1—N—R2—V form azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,4-oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-di- or trisubstituted independently of one another by R14;
V is
2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
3) azaindole (1H-pyrrolopyridine), azepine, azetidine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxole, 1,3-dioxolene, 1,3-dioxolane, furan, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, 1,2-oxa-thiepane, 1,2-oxathiolane, 1,4-oxazepane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyran, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiadiazine, thiadiazole, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thiazole, thiazolidine, thiazoline, thienyl, thietan, thiomorpholine, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) halogen,
3) —(C1-C4)-allyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
4) —(C1-C3)-perfluoroalkyl,
5) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C4)-alkylene-O—R19,
8) —CN,
9) —SOs—R11, wherein s is 1 or 2,
10) —SOt—N(R11)—R12, wherein t is 1 or 2,
11) —(C0-C4)-alkylene-C(O)—R11,
12) —(C0-C4)-allylene-C(O)—O—R11,
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
14) —(C0-C4)-allylene-N(R11)—R12,
15) —NR10—SO2—R10,
17) —(C0-C2)-alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
19) —(C0-C2)-alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl,
20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
21) —(C0-C4)-alkylene-(C6-C14)-aryl, wherein aryl is as defined above and is mono-, di- or trisubstituted independently of one another by R13,
22) —(C0-C4)-alkylene-(C4-C15)-heterocyclyl, wherein the heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
23) —(C0-C4)-alkylene-(C3-C8)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
24) —(C0-C4)-allylene-het, wherein the het is as defined above and is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
25) —(C0-C3)-allylene-O—CH2—CF2—CH2—O—(C0-C3)-alkyl, —(C0-C3)-alkylene-O—CH2—CF2—CF2—CH2—O—(C0-C3)-allyl, or —(C0-C3)-alkylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—OH,
26) —SOw—N(R11)—R13, wherein w is 1 or 2,
27) —(C0-C4)-allylene-C(O)—N(R11)—R13,
28) —(C0-C4)-allylene-N(R11)—R13, or
29) a residue selected from the group consisting of
wherein Me is methyl, and two —OR19 residues and adjacent atoms through which they are attached form together with the atoms which they are attached to a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, which is substituted one, two, three or four times by R13;
R11 and R12 are independently of one another identical or different and are
1) hydrogen,
2) —(C1-C6)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
3) —(C0-C6)-alkyl-(C6-C14)-aryl, wherein the alkyl and aryl are independently from one another unsubstituted or mono-, di- or trisubstituted by R13,
4) —O—R17, or
5) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13, or
R11 and R12 together with the nitrogen atom to which they are bonded form azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;
R13 is fluorine, chlorine, bromine, iodine, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C0-C3)-allylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)2—R10, —S—R10, —SO2—R10, —S(O)2—N(R10)—R20, —C(O)—R10, —(C1-C8)-allyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3, —(C1-C3)-perfluoroalkyl, —(C0-C4)-allyl-C(O)—O—C(R15,R16)-O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—O—R17, —O—R15, —NH—C(O)—NH—R10, —NH—C(O)—O—R10, or a residue selected from the group consisting of
wherein Me is methyl;
R15 and R16 are independently of one another hydrogen, —(C1-C6)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10; and
R17 is —(C1-C6)-allyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C1-C6)-alkyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
4. The compound according claim 1 , wherein
R0 as
1) is phenyl, wherein phenyl is mono-, di- or trisubstituted independently of one another by R8, or
3) is pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl is pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
and in addition is substituted by pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl or pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;
R8 is
1) F, Cl, Br or I,
4) —C(O)—NH2,
9) —(C1-C4)-alkyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —OH or methoxy, or
10) —O—(C1-C4)-allyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or methoxy, provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl;
substructure D is pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O;
Q is a direct bond, —C(O)—, —SO2— or —(C1-C6)-alkylene, —(C0-C2)-alkylene-C(O)—NR10—;
R1 is hydrogen, —(C1-C2)-alkyl, —(C1-C3)-alkylene-C(O)—NH—R0, —(C1-C3)-perfluoroalkylene, —(C1-C3)-alkylene-C(O)—O—R15, —(C1-C3)-alkylene-S(O)2—(C1-C3)-alkyl or —(C1-C3)-alkylene-S(O)2—N(R4′)—R5′, wherein R4′ and R5′ independently of one another are hydrogen atom or —(C1-C4)-alkyl,
R2 is a direct bond or —(C1-C2)-alkylene, or
R1—N—R2—V form azetidine, azetidinone, piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, 1,4-oxazepane, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R14 is fluorine, chlorine, —OH, ═O, —(C1-C8)-alkyl, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —C(O)—NH—(C1-C8)-allyl, —C(O)—N—[(C1-C8)-alkyl]2, —C(O)—NH2 or —N(R18)—R21, wherein R18 and R21 are independently from each other hydrogen, —(C1-C3)-perfluoroalkyl or —(C1-C4)-alkyl;
V is
2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
3) azaindole (1H-pyrrolopyridine), aziridine, azirine, azetidine, azetidinone, 1,4-diazepane, pyrrole, pyrrolidine, pyridonyl, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, 1,4-oxazepane, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,3-dioxolane, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiodiazole, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine or thiomorpholine, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—;
m is zero, 1, 2, 3 or 4;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) halogen,
3) —(C1-C4)-allyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
4) —(C1-C3)-perfluoroalkyl,
5) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C4)-alkylene-O—R19,
8) —CN,
8) —NR10—SO2—R10,
9) —SOs—R11, wherein s is 1 or 2,
10) —SOt—N(R11)—R12, wherein t is 1 or 2,
11) —(C0-C4)-alkylene-C(O)—R11,
12) —(C0-C4)-alkylene-C(O)—O—R11,
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
14) —(C0-C4)-alkylene-N(R11)—R12,
17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
19) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-allyl,
20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17,
25) —(C0-C3)-alkylene-O—CH2—CF2—CH2—O—(C0-C3)-alkyl, —(C0-C3)-alkylene-O—CH2—CF2—CF2—CH2—O—(C0-C3)-allyl, or —(C0-C3)-allylene-O—CH2—(C1-C3)-perfluoroalkylene-CH2—OH,
26) —SOw—N(R11)—R13, wherein w is 1 or 2,
27) —(C0-C4)-alkylene-C(O)—N(R11)—R13,
28) —(C0-C4)-alkylene-N(R11)—R13, or
29) a residue selected from the group consisting of
wherein Me is methyl;
two —OR19 residues and adjacent atoms through which they are attached may form together a 1,3-dioxole ring or a 2,3-dihydro-[1,4]dioxine ring, each of which is substituted one, two, three or four times by R13;
R11 and R12 together with the nitrogen atom to which they are bonded form azepine, azetidine, 1,4-diazepane, dioxazole, dioxazine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, imidazole, imidazoline, imidazolidine, isothiazole, isothiazolidine, isothiazoline, isoxazole, isoxazoline, isoxazolidine, 2-isoxazoline, ketopiperazine, morpholine, [1,4]-oxazepane, oxazole, piperazine, piperidine, pyrazine, pyrazole, pyrazoline, pyrazolidine, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, pyrroline, tetrahydropyridine, tetrazine, tetrazole, thiazole, thiadiazole, thiazolidine, thiazoline, thiomorpholine, thiophene, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;
R13 is fluorine, chlorine, —NO2, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —N(R10)—S(O)2—R10, —S—R10, —SO2—R10, —S(O)2—N(R10)—R20, —C(O)—R10, —(C1-C8)-allyl, —(C1-C8)-alkoxy, phenyl, phenyloxy-, —O—CF3, —(C1-C3)-perfluoroalkyl, —NH—C(O)—NH—R10, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—R17, —(C1-C4)-alkoxy-phenyl, —(C0-C4)-alkyl-C(O)—O—C(R15,R16)-O—C(O)—O—R17, —O—R15, —NH—C(O)—O—R10, or a residue selected from the group consisting of
wherein Me is methyl;
R15 and R16 are independently of one another hydrogen, —(C1-C6)-allyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10; and
R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C0-C6)-alkyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
5. The compound according to claim 1 , wherein
R0 is 1) phenyl, wherein the phenyl is mono-, di- or trisubstituted independently of one another by R8,
2) indolyl, isoindolyl, benzofuranyl, benzothiophenyl, 1,3-benzodioxolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, chromanyl, isochromanyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, pyridyl, purinyl or pteridinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
3) pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl or pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and in addition is substituted by pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;
R8 is
1) F, Cl, Br, or I,
4) —C(O)—NH2,
9) —(C1-C4)-allyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, —OH or methoxy, or
10) —O—(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or methoxy, provided that R8 is at least one halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl residue;
substructure D is pyridyl, pyridyl-N-oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O;
Q is a direct bond, —C(O)—, —SO2—, —(C1-C6)-alkylene or —(C0-C2)-alkylene-C(O)—NR10—;
R1 is hydrogen or —(C1-C2)-alkyl,
R2 is a direct bond or —(C1-C2)-alkylene, or
R1—N—R2—V form piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R14 is fluorine, chlorine, ═O, —(C1-C4)-alkyl or —NH2;
V is
2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
3) azaindolyl (1H-pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4-diazepane, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, diazirine, 1,3-dioxolane, dioxazole, furan, imidazole, isoquinoline, isothiazole, isothiazolidine, isothiazoline, isoxazole, 2-isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxazole, 1,2-oxathiolan, piperidine, pyran, pyrazine, pyrazole, pyridazine, piperazine, pyridine, pyridone, pyrimidine, pyrrole, pyrrolidine, pyrrolidinone, quinazoline, quinoline, tetrazine, tetrazole, thiadiazine, 1,2-thiazine, 1,3-thiazine, 1,4-thiazine, 1,3-thiazole, thietan, thiomorpholine, thiophene, thiopyran, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole or 1,2,4-triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—;
m is zero, 1, 2, 3 or 4;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) halogen,
3) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
4) —(C1-C3)-perfluoroalkyl,
5) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C4)-alkylene-O—R19,
8) —CN,
9) —SOs—R11, wherein s is 1 or 2,
10) —SOt—N(R11)—R12, wherein t is 1 or 2,
11) —(C0-C4)-alkylene-C(O)—R11,
12) —(C0-C4)-alkylene-C(O)—O—R11,
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
14) —(C0-C4)-alkylene-N(R11)—R12,
15) —NR10—SO2—R10,
17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-allyl,
18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
19) —(C0-C2)allylene-C(O)—O—(C2-C4)-allylene-O—C(O)—O—(C1-C6)-alkyl,
20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17, or
29) a residue selected from the group consisting of
wherein Me is methyl;
R19 is
a) hydrogen,
b) —(C1-C4)-alkyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
c) —CF3, or
d) —CHF2;
R11 and R12 are independently of one another identical or different and are
1) hydrogen,
2) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
3) —(C0-C6)-alkyl-(C3-C6)-cycloalkyl,
7) —O—R17, or
8) —(C0-C6)-alkyl-(C4-C15)-heterocyclyl, wherein the alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13 and wherein the heterocyclyl is azetidine, cyclopropyl, cyclobutyl, 4,5-dihydro-oxazole, imidazolidine, morpholine, (1,4)-oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine, or
R11 and R12 together with the nitrogen atom to which they are bonded form azetidine, cyclopropyl, cyclobutyl, 4,5-dihydro-oxazole, imidazolidine, morpholine, (1,4)-oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine;
R13 is fluorine, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C3-C6)-cycloalkyl, —(C0-C3)-alkylene-O—R10, —Si—(CH3)3, —S—R10, —SO2—R10, —(C1-C3)-perfluoroalkyl, or a residue selected from the group consisting of
wherein Me is methyl;
R10 and R20 are independently of one another hydrogen, —(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl;
R15 and R16 are independently of one another hydrogen, —(C1-C4)-allyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10, and
R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-alkyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C0-C6)-alkyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
6. The compound according to claim 1 , wherein
R0 is
1) phenyl, wherein the phenyl is mono- or disubstituted independently of one another by R8,
2) pyridyl or benzothiophenyl, wherein the pyridyl and benzothiophenyl are unsubstituted or mono- or disubstituted independently of one another by R8, or
3) thienyl, thiadiazolyl, isoxazolyl or thiazolyl, each of which is substituted by thienyl, 2-thienyl or 3-thienyl, wherein the thienyl, 2-thienyl or 3-thienyl is unsubstituted or mono- or disubstituted independently of one another by R8;
R8 is F, Cl, Br, —OCH3 or —C(O)—NH2;
substructure D is pyridyl, pyridyl-N-oxide, pyrrolyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O;
Q is a direct bond, —C(O)—, —SO2—, —CH2—C(O)—NH—, methylene or ethylene;
R1 is hydrogen,
R2 is a direct bond or methylene, or
R1—N—R2—V form azetidine, pyrrolidine, piperidine and piperazine;
R14 is fluorine, chlorine, ═O, methyl, ethyl or —NH2;
V is
2) phenyl, wherein the phenyl is unsubstituted or mono- or disubstituted independently of one another by R14 or
3) azaindolyl (1H-pyrrolopyridyl), azetidine, 1,4-diazepane, isoxazole, isoquinoline, piperazine, piperidine, pyrazine, pyridazine, pyrimidine, pyrrolidine, quinazoline, quinoline or tetrahydropyrane, each of which is unsubstituted or mono- or disubstituted independently of one another by R14;
G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—;
m is zero, 1 or 2;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) F or Cl,
3) —(C1-C4)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
4) —(C1-C3)-perfluoroalkyl,
5) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C2)-alkylene-O—R19,
8) —CN,
9) —SOsR11, wherein s is 1 or 2,
10) —SOt—N(R11)—R12, wherein t is 1 or 2,
11) —(C0-C4)-alkylene-C(O)—R11,
12) —(C0-C4)-allylene-C(O)—O—R11,
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12,
14) —(C0-C4)-alkylene-N(R11)—R12,
15) —NR10—SO2—R10,
17) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—(C1-C4)-alkyl,
18) —C(O)—O—C(R15,R16)-O—C(O)—R17,
19) —(C0-C2)alkylene-C(O)—O—(C2-C4)-alkylene-O—C(O)—O—(C1-C6)-alkyl or
20) —C(O)—O—C(R15,R16)-O—C(O)—O—R17;
R19 is
a) hydrogen,
b) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, or
c) —CF3, or
d) —CHF2;
R11 and R12 are independently of one another identical or different and are
1) hydrogen,
2) —(C1-C4)-alkyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
3) —(C0-C6)-alkyl-(C3-C6)-cycloalkyl,
7) —O—R17, or
8) —(C0-C6)-alkyl-heterocyclyl, wherein the alkyl and heterocyclyl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13 and wherein the heterocyclyl is azetidine, imidazolidine, morpholine, (1,4)-oxazepane or pyrrolidine, or
R11 and R12 together with the nitrogen atom to which they are bonded form azetidine, imidazolidine, morpholine, (1,4)-oxazepane piperazine, piperidine, pyrrolidine or thiomorpholine;
R13 is fluorine, —CN, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, —(C3-C6)-cycloalkyl, —(C0-C3)-alkylene-O—R11, —Si—(CH3)3, —S—R10, —SO2—R10, or —(C1-C3)-perfluoroalkyl;
R10 and R20 are independently of one another hydrogen, —(C1-C4)-alkyl or —(C1-C3)-perfluoroalkyl;
R15 and R16 are independently of one another hydrogen, —(C1-C4)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R10; and
R17 is —(C1-C6)-alkyl, —(C1-C6)-alkyl-OH, —(C1-C6)-alkyl-O—(C1-C6)-alkyl, —(C1-C6)-allyl-O—(C1-C8)-alkyl-(C3-C8)-cycloalkyl, or —(C0-C6)-allyl-(C3-C8)-cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by —OH, —O—(C1-C4)-alkyl or R10;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
7. The compound according to claim 1 , wherein
R0 is
2) pyridyl or benzothiophenyl, wherein the pyridyl and benzothiophenyl are unsubstituted or mono- or disubstituted independently of one another by R8, or
3) thienyl, thiadiazolyl, isoxazolyl and thiazolyl, each of which is substituted by thienyl, 2-thienyl and 3-thienyl, wherein the thienyl, 2-thienyl or 3-thienyl is unsubstituted or mono- or disubstituted independently of one another by R8;
R8 is F, Cl, Br, —OCH3 or —C(O)—NH2;
substructure D is pyridyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by ═O;
Q is —CH2—C(O)—NH— or methylene;
R1 is hydrogen atom;
R2 is a direct bond;
R14 is fluorine, chlorine, ═O, methyl, ethyl or —NH2;
V is piperidine, wherein the piperidine is unsubstituted or mono- or disubstituted independently of one another by R14;
G is a direct bond;
M is a 3- to 7-membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
R3 is
1) hydrogen,
2) fluorine, or chlorine,
3) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
6) —(C0-C2)-allylene-O—R19,
12) —(C0-C4)-allylene-C(O)—O—R11 or
13) —(C0-C4)-alkylene-C(O)—N(R11)—R12;
R19 is
a) hydrogen or
b) —(C1-C4)-alkyl, wherein the allyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13;
R11 and R12 are independently of one another identical or different and are
1) hydrogen or
2) —(C1-C4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13, or
R11 and R12 together with the nitrogen atom to which they are bonded form azetidine, imidazolidine, morpholine, (1,4)-oxazepane piperazine, piperidine, pyrrolidine or thiomorpholine;
R13 is fluorine, ═O, —OH, —CF3, —C(O)—O—R10, —C(O)—N(R10)—R20, —N(R10)—R20, or —(C0-C3)-allylene-O—R10; and
R10 and R20 are independently of one another hydrogen, —(C1-C4)-allyl or —(C1-C3)-perfluoroalkyl;
or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
8. A process for the preparation of a compound according to claim 1 , which comprises condensing a compound of formula 29 with a compound of the formula HR8′ to give a compound of formula 30 and converting the compound of the formula 30 into a compound of the formula I,
wherein the residue R8′ has the donation of —N(R1)—R2—V-G-M as indicated claim 1 , but where in R8′ functional groups can also be present in the form of groups that are subsequently transformed into the final functional groups present in —N(R1)—R2—V-G-M, and where the residue R54 denotes the group -Q-Ro or can denote a group which is subsequently transformed into the group -Q-Ro, and where the group —C(O)—R53 can be a carboxylic acid group or derivatives thereof, and where the groups R3a in the formulae 29 and 30 have the corresponding definitions of R3 in formula I as defined in claim 1 or functional groups in them can also be present in protected form or in the form of precursor groups.
9. A pharmaceutical composition, comprising at least one compound according to claim 1 or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof, and a pharmaceutically acceptable carrier.
10. A method for influencing blood coagulation in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1 , or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
11. A method for inhibiting influencing blood fibrinolysis in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1 , or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
12. A method for treating abnormal thrombus formation, acute myocardial infarction, cardiovascular disorders, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA), transient ischemic attacks, stroke, intermittent claudication, bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, viral infections or cancer, or reducing an inflammatory response, fibrinolysis, or treatment of coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular clotting disorder, deep vein or proximal vein thrombosis, which can occur following surgery, in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1 , or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/934,177 US20080280946A1 (en) | 2003-05-19 | 2007-11-02 | Azaindole-Derivatives As Factor Xa Inhibitors |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03011304.7 | 2003-05-19 | ||
EP03011304A EP1479680A1 (en) | 2003-05-19 | 2003-05-19 | Azaindole derivatives as Factor Xa inhibitors |
US50714103P | 2003-09-30 | 2003-09-30 | |
US10/849,089 US7317027B2 (en) | 2003-05-19 | 2004-05-19 | Azaindole-derivatives as factor Xa inhibitors |
US11/934,177 US20080280946A1 (en) | 2003-05-19 | 2007-11-02 | Azaindole-Derivatives As Factor Xa Inhibitors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/849,089 Continuation US7317027B2 (en) | 2003-05-19 | 2004-05-19 | Azaindole-derivatives as factor Xa inhibitors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080280946A1 true US20080280946A1 (en) | 2008-11-13 |
Family
ID=33568181
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/849,089 Active 2025-05-25 US7317027B2 (en) | 2003-05-19 | 2004-05-19 | Azaindole-derivatives as factor Xa inhibitors |
US11/934,177 Abandoned US20080280946A1 (en) | 2003-05-19 | 2007-11-02 | Azaindole-Derivatives As Factor Xa Inhibitors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/849,089 Active 2025-05-25 US7317027B2 (en) | 2003-05-19 | 2004-05-19 | Azaindole-derivatives as factor Xa inhibitors |
Country Status (1)
Country | Link |
---|---|
US (2) | US7317027B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010068292A1 (en) * | 2008-12-12 | 2010-06-17 | Ariad Pharmaceuticals, Inc. | Azaindole derivatives as kinase inhibitors |
US9012462B2 (en) | 2008-05-21 | 2015-04-21 | Ariad Pharmaceuticals, Inc. | Phosphorous derivatives as kinase inhibitors |
US9273077B2 (en) | 2008-05-21 | 2016-03-01 | Ariad Pharmaceuticals, Inc. | Phosphorus derivatives as kinase inhibitors |
US9611283B1 (en) | 2013-04-10 | 2017-04-04 | Ariad Pharmaceuticals, Inc. | Methods for inhibiting cell proliferation in ALK-driven cancers |
US9834571B2 (en) | 2012-05-05 | 2017-12-05 | Ariad Pharmaceuticals, Inc. | Compounds for inhibiting cell proliferation in EGFR-driven cancers |
US9834518B2 (en) | 2011-05-04 | 2017-12-05 | Ariad Pharmaceuticals, Inc. | Compounds for inhibiting cell proliferation in EGFR-driven cancers |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7358268B2 (en) * | 2002-12-04 | 2008-04-15 | Sanofi-Aventis Deutschland Gmbh | Imidazole derivatives as factor Xa inhibitors |
US7429581B2 (en) * | 2002-12-23 | 2008-09-30 | Sanofi-Aventis Deutschland Gmbh | Pyrazole-derivatives as factor Xa inhibitors |
EP1479675A1 (en) * | 2003-05-19 | 2004-11-24 | Aventis Pharma Deutschland GmbH | Indazole-derivatives as factor Xa inhibitors |
EP1568698A1 (en) * | 2004-02-27 | 2005-08-31 | Aventis Pharma Deutschland GmbH | Pyrrole-derivatives as factor Xa inhibitors |
EP1571154A1 (en) * | 2004-03-03 | 2005-09-07 | Aventis Pharma Deutschland GmbH | Beta-aminoacid-derivatives as factor Xa inhibitors |
AU2009204487C1 (en) | 2008-01-04 | 2014-10-16 | Intellikine, Llc | Certain chemical entities, compositions and methods |
US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
TW201035088A (en) | 2009-02-27 | 2010-10-01 | Supergen Inc | Cyclopentathiophene/cyclohexathiophene DNA methyltransferase inhibitors |
CA2824197C (en) | 2011-01-10 | 2020-02-25 | Michael Martin | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
US8828998B2 (en) | 2012-06-25 | 2014-09-09 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
RU2702908C2 (en) | 2012-11-01 | 2019-10-14 | Инфинити Фармасьютикалз, Инк. | Treating malignant tumours using modulators of pi3-kinase isoforms |
US20150320755A1 (en) | 2014-04-16 | 2015-11-12 | Infinity Pharmaceuticals, Inc. | Combination therapies |
AU2017281797A1 (en) | 2016-06-24 | 2019-01-24 | Infinity Pharmaceuticals, Inc. | Combination therapies |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5506134A (en) | 1990-10-22 | 1996-04-09 | Corvas International, Inc. | Hypridoma and monoclonal antibody which inhibits blood coagulation tissue factor/factor VIIa complex |
US5788965A (en) | 1991-02-28 | 1998-08-04 | Novo Nordisk A/S | Modified factor VII |
US5833982A (en) | 1991-02-28 | 1998-11-10 | Zymogenetics, Inc. | Modified factor VII |
US5439913A (en) * | 1992-05-12 | 1995-08-08 | Schering Aktiengesellschaft | Contraception method using competitive progesterone antagonists and novel compounds useful therein |
RU2152954C1 (en) | 1994-04-26 | 2000-07-20 | Селектид Корпорейшн | Inhibitors of xa factor |
US6140351A (en) * | 1997-12-19 | 2000-10-31 | Berlex Laboratories, Inc. | Ortho-anthranilamide derivatives as anti-coagulants |
ES2241194T3 (en) * | 1997-12-24 | 2005-10-16 | Aventis Pharma Deutschland Gmbh | INDOL DERIVATIVES IN QUALITY OF FACTOR XA INHIBITORS. |
EP0987274A1 (en) | 1998-09-15 | 2000-03-22 | Hoechst Marion Roussel Deutschland GmbH | Factor VIIa Inhibitors |
EE200200045A (en) | 1999-07-28 | 2003-06-16 | Aventis Pharmaceuticals Products Inc. | Substituted oxoazaheterocyclyl compounds, pharmaceutical composition and intermediates |
WO2001019788A2 (en) | 1999-09-17 | 2001-03-22 | Cor Therapeutics, Inc. | BENZAMIDES AND RELATED INHIBITORS OF FACTOR Xa |
US6436965B1 (en) | 2000-03-02 | 2002-08-20 | Merck Frosst Canada & Co. | PDE IV inhibiting amides, compositions and methods of treatment |
AU2001273040A1 (en) | 2000-06-27 | 2002-01-08 | Du Pont Pharmaceuticals Company | Factor xa inhibitors |
EP1217000A1 (en) * | 2000-12-23 | 2002-06-26 | Aventis Pharma Deutschland GmbH | Inhibitors of factor Xa and factor VIIa |
MXPA03008109A (en) | 2001-03-07 | 2003-12-12 | Pfizer Prod Inc | Modulators of chemokine receptor activity. |
EP1314733A1 (en) * | 2001-11-22 | 2003-05-28 | Aventis Pharma Deutschland GmbH | Indole-2-carboxamides as factor Xa inhibitors |
US7358268B2 (en) * | 2002-12-04 | 2008-04-15 | Sanofi-Aventis Deutschland Gmbh | Imidazole derivatives as factor Xa inhibitors |
US7429581B2 (en) * | 2002-12-23 | 2008-09-30 | Sanofi-Aventis Deutschland Gmbh | Pyrazole-derivatives as factor Xa inhibitors |
JP2004203791A (en) | 2002-12-25 | 2004-07-22 | Dai Ichi Seiyaku Co Ltd | Aromatic compound |
JP2004210716A (en) | 2002-12-27 | 2004-07-29 | Dai Ichi Seiyaku Co Ltd | Diamide derivative |
US7135469B2 (en) * | 2003-03-18 | 2006-11-14 | Bristol Myers Squibb, Co. | Linear chain substituted monocyclic and bicyclic derivatives as factor Xa inhibitors |
EP1479675A1 (en) * | 2003-05-19 | 2004-11-24 | Aventis Pharma Deutschland GmbH | Indazole-derivatives as factor Xa inhibitors |
EP1479677A1 (en) * | 2003-05-19 | 2004-11-24 | Aventis Pharma Deutschland GmbH | New indole derivatives as factor xa inhibitors |
US7741341B2 (en) * | 2003-05-19 | 2010-06-22 | Sanofi-Aventis Deutschland Gmbh | Benzimidazole-derivatives as factor Xa inhibitors |
US7223780B2 (en) * | 2003-05-19 | 2007-05-29 | Sanofi-Aventis Deutschland Gmbh | Triazole-derivatives as blood clotting enzyme factor Xa inhibitors |
-
2004
- 2004-05-19 US US10/849,089 patent/US7317027B2/en active Active
-
2007
- 2007-11-02 US US11/934,177 patent/US20080280946A1/en not_active Abandoned
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9012462B2 (en) | 2008-05-21 | 2015-04-21 | Ariad Pharmaceuticals, Inc. | Phosphorous derivatives as kinase inhibitors |
US9273077B2 (en) | 2008-05-21 | 2016-03-01 | Ariad Pharmaceuticals, Inc. | Phosphorus derivatives as kinase inhibitors |
WO2010068292A1 (en) * | 2008-12-12 | 2010-06-17 | Ariad Pharmaceuticals, Inc. | Azaindole derivatives as kinase inhibitors |
JP2012511575A (en) * | 2008-12-12 | 2012-05-24 | アリアド・ファーマシューティカルズ・インコーポレイテッド | Azaindole derivatives as kinase inhibitors |
US8912330B2 (en) | 2008-12-12 | 2014-12-16 | Ariad Pharmaceuticals, Inc. | Azaindole derivatives as kinase inhibitors |
US9834518B2 (en) | 2011-05-04 | 2017-12-05 | Ariad Pharmaceuticals, Inc. | Compounds for inhibiting cell proliferation in EGFR-driven cancers |
US9834571B2 (en) | 2012-05-05 | 2017-12-05 | Ariad Pharmaceuticals, Inc. | Compounds for inhibiting cell proliferation in EGFR-driven cancers |
US9611283B1 (en) | 2013-04-10 | 2017-04-04 | Ariad Pharmaceuticals, Inc. | Methods for inhibiting cell proliferation in ALK-driven cancers |
Also Published As
Publication number | Publication date |
---|---|
US7317027B2 (en) | 2008-01-08 |
US20050009828A1 (en) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080280946A1 (en) | Azaindole-Derivatives As Factor Xa Inhibitors | |
US7196103B2 (en) | Indole derivatives as factor Xa inhibitors | |
US7465806B2 (en) | Pyrrole-derivatives as factor Xa inhibitors | |
US7910606B2 (en) | Pyrazole-derivatives as factor Xa inhibitors | |
US7365088B2 (en) | Indazole-derivatives as factor Xa inhibitors | |
US7223780B2 (en) | Triazole-derivatives as blood clotting enzyme factor Xa inhibitors | |
US7741341B2 (en) | Benzimidazole-derivatives as factor Xa inhibitors | |
AU2004238498B2 (en) | Triazole-derivatives as factor Xa inhibitors | |
US7358268B2 (en) | Imidazole derivatives as factor Xa inhibitors | |
EP1636216B1 (en) | BENZIMIDAZOLE-DERIVATIVES AS FACTOR Xa INHIBITORS | |
AU2004238500B2 (en) | Azaindole-derivatives as factor Xa inhibitors | |
EP1479678A1 (en) | Pyrazole-derivatives as factor xa inhibitors | |
EP1479674A1 (en) | Imidiazole-derivatives as factor xa inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |