US20080112839A1 - 655 Mpa Grade Martensitic Stainless Steel Having High Toughness and Method for Manufacturing the Same - Google Patents
655 Mpa Grade Martensitic Stainless Steel Having High Toughness and Method for Manufacturing the Same Download PDFInfo
- Publication number
- US20080112839A1 US20080112839A1 US11/720,351 US72035104A US2008112839A1 US 20080112839 A1 US20080112839 A1 US 20080112839A1 US 72035104 A US72035104 A US 72035104A US 2008112839 A1 US2008112839 A1 US 2008112839A1
- Authority
- US
- United States
- Prior art keywords
- steel
- toughness
- manufacturing
- martensitic stainless
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 21
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 77
- 239000010959 steel Substances 0.000 claims abstract description 77
- 238000010791 quenching Methods 0.000 claims abstract description 17
- 230000000171 quenching effect Effects 0.000 claims abstract description 17
- 238000005496 tempering Methods 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 12
- 238000003303 reheating Methods 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 29
- 230000007797 corrosion Effects 0.000 abstract description 28
- 239000011651 chromium Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 229910000984 420 stainless steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OFLXQNQIXVXKOI-UHFFFAOYSA-N C.N.P.S.[AlH3].[Cr].[Mn].[Mo].[Ni].[SiH4] Chemical compound C.N.P.S.[AlH3].[Cr].[Mn].[Mo].[Ni].[SiH4] OFLXQNQIXVXKOI-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018559 Ni—Nb Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a martensitic stainless steel as OCTG used in oil wells or gas wells, and to a method for manufacturing thereof, specifically the present invention relates to a martensitic stainless steel for inexpensive seamless pipes having 655 MPa yield strength and high toughness, suitable for the uses in high CO 2 environments, and a method for manufacturing thereof.
- OCTG materials are 410 Steel or 420 Steel specified by the American Iron and Steel Institute (AISI). Although these grades of steels are relatively inexpensive and achieve 552 MPa or higher yield strength by heat treatment, they do not have satisfactory corrosion resistance and toughness. Furthermore, since these steels contain carbon by about 0.1% or more by weight, they cannot be treated by water-cooling in the manufacturing process, which degrades the production efficiency.
- AISI American Iron and Steel Institute
- Patent Literature 1 Japanese Patent No. 2665009 discloses a steel containing 0.005 to 0.04% C, 12.0 to 17.0% Cr, and 1.5 to 6.0% Ni, by weight, and a method for manufacturing thereof. Although the steel has 784 to 1078 MPa yield strength (proof stress), which is higher than that of general-use 552 MPa grade and 655 MPa grade steels, and although the steel gives favorable corrosion resistance in a 65% nitric acid corrosion test, the steel is not examined for corrosion resistance under high CO 2 environments.
- Patent Literature 2 Japanese Patent No. 2091532 discloses a steel containing 0.15% or less C, 9 to 16.0% Cr, and 0.2 to 2.5% Ni, by weight, and a method for manufacturing thereof.
- Patent Literature 3 Japanese Patent No. 2995524. discloses a steel containing 0.03% or less C, 11 to 17% Cr, and 3.5 to 7.0% Ni, by weight, and a method for manufacturing thereof. Since, however, the steel needs to add 3.5% or more Ni, the steel is not advantageous in economy.
- Patent Literature 4 JP-A-2004-115890
- JP-A Japanese Patent Laid-Open No.”
- JP-A Japanese Patent Laid-Open No.
- the steel is, however, limited to 552 MPa grade strength because these materials as shown above rapidly degrade properties such as toughness and SSC resistance if the strength exceeds 552 MPa grade.
- Patent Literature 5 JP-A-2004-99964 discloses a low Ni—Nb steel containing 0.02 to 0.05% Cr 10 to 12% Cr, 1.5 to 3.0% Ni, and 0.005 to 0.10% Nb, by weight, and a method for manufacturing thereof.
- the steel is, however, limited to 758 MPa grade of strength.
- Patent Literature 1 Japanese Patent No. 2665009
- Patent Literature 2 Japanese Patent No. 2091532
- Patent Literature 3 Japanese Patent No. 2995524
- the inventors of the present invention improved corrosion resistance and toughness by suppressing the precipitation of carbide through the control of C content to a low level, thereby allowed to apply water-cooling in the manufacturing process.
- C content the inventors of the present invention found that the corrosion resistance is maintained to the level of conventional steels even when the Cr content is reduced to below 13% which is the content in conventional 420 Steel and the like.
- the Ni content is reduced to about 2% to reduce the cost.
- the inventors of the present invention found that the addition of small amount of Mo provides the steel with stable toughness durable for the use in cold: region, for example, at ⁇ 40° C.
- the inventors of the present invention investigated the optimum balance of chemical compositions and heat treatment conditions in terms of strength-toughness-corrosion resistance under high CO 2 environment by varying the heat treatment conditions of quenching and tempering after the hot-rolling of steel having different chemical compositions.
- a martensitic stainless steel for seamless pipes having 655 MPa grade of yield strength suitable for the use under high CO 2 environments was obtained by controlling the chemical compositions and the heat treatment conditions in a specific range according to the present invention.
- the 655 MPa grade martensitic stainless steel having high toughness and the method for manufacturing thereof according to the present invention have been completed on the basis of the above-described findings, and the essence thereof is the following.
- a 655 MPa grade martensitic stainless steel having high toughness is a steel having the chemical compositions of the first aspect thereof, further comprising at least one chemical composition selected from the group consisting of Cu: ⁇ 0. 5%, Nb: ⁇ 0.05%, V: ⁇ 0.1%, B: ⁇ 0.005%, Ca: ⁇ 0.005%, by weight.
- a method for manufacturing 655 MPa grade martensitic stainless steel having high toughness comprising the steps of: hot-rolling the steel having the chemical compositions of the third aspect thereof further comprising at least one chemical composition selected from the group consisting of Cu: ⁇ 0.5%, Nb: ⁇ 0.05%, V: ⁇ 0.1%, B: ⁇ 0.005%, Ca: ⁇ 0.005%, by weight, cooling the hot-rolled steel; reheating the cooled steel at temperatures from 780° C. to 960° C.; quenching the reheated steel; and then tempering the quenched steel at temperatures from 550° C. to 650° C.
- Carbon increases the strength of steel by enhancing solid solution, by hardening the transformed martensite, and by precipitation hardening as carbide. If the C content is in this range, the effect of increasing the strength of steel is attained, and both the toughness and the corrosion resistance are maintained to a favorable level. In particular, decrease in the C content to the level of the present invention suppresses the precipitation of carbide in the steel so that the corrosion resistance under high CO 2 environments becomes high.
- Sulfur is an impurity element similar with P, and induces degradation of toughness and hot-workability. Accordingly, lower S content is more preferable. If the S content is in this range, the degradation of toughness and hot-workability is suppressed.
- Chromium has an effect of improving the corrosion resistance. If the Cr content is in this range, satisfactory corrosion resistance is attained even when C content is low, from 0.005% to 0.05%. If the Cr content exceeds this range, the effect of increasing the corrosion resistance saturates, which is not advantageous in terms of economy.
- the Cr content is in a range from 10.0% or more to less than 12.0%, and more preferably from 11.0% or more to less than 12.0%.
- Molybdenum has effects to limit the precipitation sites and the kinds of precipitates and to improve the toughness.
- the quantity of precipitate of Cr 2 (C, N) and M 7 C 3 is less than the quantity of precipitate of M 23 C 6 , effective increase in toughness is available.
- the Mo content is in this range, the effect of improving toughness is attained. Excess addition of Mo above the range is unfavorable in terms of ⁇ -ferrite formation and of economy.
- the Mo content is from 0.15 to 0.40%.
- Nickel has an effect to improve the corrosion resistance and the toughness. If the Ni content is in this range, the ⁇ -ferrite formation is suppressed, which gives favorable hot-workability. Excess addition of Ni above the range is not advantageous because the effect of improving the toughness saturates.
- the Ni content is in a range from, 2.0 to 3.0%.
- Nitrogen has an effect of strength-increase by the enhancement of solid solution and by the precipitation hardening. Excess addition of N above the range induces binding N with V, Nb, Ti, and the like to form coarse precipitates, which degrades the toughness and hot-workability. Therefore, excess addition of N is not advantageous.
- Aluminum inevitably exists in steel as a deoxidizing element. If the Al content is in this range, the effect of deoxidization is attained, and the formation of AlN which precipitates in grain boundaries to decrease the grain boundary strength is suppressed, thus to degrade the toughness.
- the FT is defined by the following formula:
- the FI is a parameter of formation of ⁇ -ferrite.
- the coefficient is selected in accordance with Schaefler diagram. If the FI value is not more than 8.49%, toughness becomes favorable because the formation of ⁇ -ferrite is suppressed.
- substantially Fe referred to herein means that the steel of the present invention may allow the existence of gas components of O and H, and impurities such as Sn, As, and Sb, both of which are inevitably contained in the steel during melting and refining process in the range not affect the purpose of the present invention.
- the steel may further contain at least one chemical composition selected from the group consisting of Cu, Nb, V, B, and Ca to improve strength, toughness, corrosion resistance, and hot-workability.
- chemical compositions selected from the group consisting of Cu, Nb, V, B, and Ca to improve strength, toughness, corrosion resistance, and hot-workability. The reasons to limit these chemical compositions are described in the following.
- Copper has an effect of increasing the corrosion resistance. If the Cu content is in this range, no problem of degradation of hot-workability and other characteristics occurs.
- Niobium refines austenitic grains by the Nb-carbide precipitation during quenching thus to improve the toughness, and can increase the strength by fine Nb-carbide precipitated during tempering. If the Nb content is in this range, the increase in the strength by the precipitation of Nb-carbide is controlled to an appropriate range.
- Vanadium has an effect of forming nitride with N, thus increasing the strength. If the V content is in this range, the effect of increasing the strength does not saturate, and the degradation of toughness caused by the formation of coarse precipitates is not induced, so the strength increases without degrading the toughness.
- B content is in this ranger no low-melting compound is formed at grain boundaries so that the grain boundaries are strengthened while maintaining the hot-workability.
- Calcium has an effect to control the morphology of manganese sulfide inclusion and to improve the toughness and the corrosion resistance. If the Ca content is in this range, the formation of Ca-based precipitate is suppressed, thereby to improve the toughness and the corrosion resistance.
- Temperature of heating for quenching 780° C. to 960° C.
- the heating temperature for quenching is in this range, a fully austenitic single-phase microstructure is attained during heating so that the succeeding cooling (quenching) gives martensite-single phase microstructure to provide a stable quenched microstructure, as well as suppressing the formation of coarse austenitic grains, thus attaining favorable toughness.
- Tempering Temperature 550° C. to 650° C.
- the steel according to the present invention has high strength and insufficient toughness in as-quenched state, appropriate tempering is required. If the tempering temperature is in this range, desirable strength is attained and the toughness becomes favorable.
- the martensitic stainless steel according to the present invention may be prepared by any melting and refining process such as LD converter or electric furnace, which can control the chemical compositions within the range of the present invention.
- LD converter low-density polyethylene
- the steel is formed into billet or other required shape by casting or rolling thereof, and then is subjected to a process such as piercing using a piercer with extrusion stem or a piercing mill with inclined roll, or rolling to form seamless steel pipes followed by specified heat treatment.
- the martensitic stainless steel according to the present invention is applicable to other usage other than OCTG.
- the steel may be used as transportation steel pipes such as line pipes.
- the ingoted steel is formed into slab shape by casting or rolling, and it is rolled into steel plate using a plate mill or a hot-strip mill, and then is subjected to a specified heat treatment, followed by welding to manufacture the steel pipes.
- the rolled steel plate may be formed into steel pipe by welding thereof, followed by a specified heat treatment such as quenching and tempering.
- the martensitic stainless steel according to the present invention is subjected to reheating and quenching after hot-rolling. If, however, a direct quenching apparatus which can apply direct quenching to the steel after hot-rolling is available, direct quenching may be applied instead of reheating and quenching, followed by specified tempering.
- Table 1 shows the chemical compositions of the working examples (Nos. 1-17) according to the present invention.
- Table 2 shows the results of mechanical properties thereof.
- Table 3 shows the chemical compositions of the comparative examples (Nos. 18-35).
- Table 4 shows the results of mechanical properties.
- All of the steels of working examples according to the present invention and the steels of comparative examples were vacuum melted using a laboratory furnace, and the obtained ingots were hot rolled to 12 mm-thick plates. Each of plates was heat-treated, and was tested to determine strength, toughness, and corrosion resistance. Regarding the strength, round bar samples of ASTM Type F were cut from the center portion in the thickness direction of the plate, and the samples were tested by tensile tester to determine the yield strength. As for the toughness, full-size V-notch Charpy test samples were cut from the center portion in the thickness direction of the plate, and the samples were tested by impact tester at ⁇ 40° C. to evaluate the absorbed energy. For the corrosion resistance, samples were immersed in a 10% NaCl aqueous solution equilibrated with 30 bar carbon dioxide gas at 100° C. for 336 hours, and the corrosion loss was evaluated.
- the acceptable target values were 655 to 758 MPa of yield strength for the strength, 200 J or higher absorbed energy (vE ⁇ 40 ) at ⁇ 40° C. for the toughness, and 0.3 mm/year or less of corrosion rate for the corrosion resistance.
- the present invention improves the properties required for the seamless pipes by specifying the chemical compositions and the manufacturing conditions. As a result, the present invention provides a martensitic stainless steel of 655 MPa grade for seamless steel pipes suitable for use under high CO 2 environments and having high toughness, with low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
A martensitic stainless steel for inexpensive seamless pipe having 655 MPa yield strength, high toughness and excellent corrosion resistance in high CO2 environments, and a method for manufacturing thereof is provided. The steel comprises C:0.005-0.05%, Si:0.1-0.5%, Mn: 0.1-2.0% P: −0.005%, S: −0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: −0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo−Ni−30 (C+N)] being 5.00 to 8.49, and balance of substantially Fe. The method comprises the steps of reheating the cooled steel at temperatures from 780° C. to 960° C., quenching the reheated steel, and then tempering the quenched steel at temperatures from 550° C. to 650° C.
Description
- The present invention relates to a martensitic stainless steel as OCTG used in oil wells or gas wells, and to a method for manufacturing thereof, specifically the present invention relates to a martensitic stainless steel for inexpensive seamless pipes having 655 MPa yield strength and high toughness, suitable for the uses in high CO2 environments, and a method for manufacturing thereof.
- In recent years, there has been progressing the exploitation of oil wells and gas wells under various environments, including very deep wells, high temperature and high pressure gas wells, and wells in cold region. Accordingly, there are also aroused the problems of corrosion under high CO2 environments and, for an oil well generating H2S, of sulfide stress corrosion cracking (SSC) caused by H2S. As a result, there is an increased demand of steel pipes having both the 552 MPa or higher yield strength and the high toughness, necessary for OCTG for deep wells enduring above-described severe corrosion environments.
- Conventional OCTG materials are 410 Steel or 420 Steel specified by the American Iron and Steel Institute (AISI). Although these grades of steels are relatively inexpensive and achieve 552 MPa or higher yield strength by heat treatment, they do not have satisfactory corrosion resistance and toughness. Furthermore, since these steels contain carbon by about 0.1% or more by weight, they cannot be treated by water-cooling in the manufacturing process, which degrades the production efficiency.
- Regarding the martensitic stainless steel having above-described strength, high toughness, and high corrosion resistance, and regarding the method for manufacturing thereof, there are several proposals.
- For instance, Patent Literature 1, (Japanese Patent No. 2665009), discloses a steel containing 0.005 to 0.04% C, 12.0 to 17.0% Cr, and 1.5 to 6.0% Ni, by weight, and a method for manufacturing thereof. Although the steel has 784 to 1078 MPa yield strength (proof stress), which is higher than that of general-use 552 MPa grade and 655 MPa grade steels, and although the steel gives favorable corrosion resistance in a 65% nitric acid corrosion test, the steel is not examined for corrosion resistance under high CO2 environments. Patent Literature 2, (Japanese Patent No. 2091532), discloses a steel containing 0.15% or less C, 9 to 16.0% Cr, and 0.2 to 2.5% Ni, by weight, and a method for manufacturing thereof. Since, however, the manufacturing of the steel needs controlled rolling, the method has a problem in the efficiency of manufacturing process, and has a limitation on the manufacturing facilities. Patent Literature 3, (Japanese Patent No. 2995524), discloses a steel containing 0.03% or less C, 11 to 17% Cr, and 3.5 to 7.0% Ni, by weight, and a method for manufacturing thereof. Since, however, the steel needs to add 3.5% or more Ni, the steel is not advantageous in economy. Patent Literature 4, (JP-A-2004-115890), (the term “JP-A” referred to herein signifies the “Japanese Patent Laid-Open No.”), discloses a low-Ni steel, containing 0.05% or less C, 10 to 12.5% Cr, and 1.5 to 3.0% Ni, by weight, and a method for manufacturing thereof. The steel is, however, limited to 552 MPa grade strength because these materials as shown above rapidly degrade properties such as toughness and SSC resistance if the strength exceeds 552 MPa grade. Patent Literature 5, (JP-A-2004-99964), discloses a low Ni—Nb steel containing 0.02 to 0.05% Cr 10 to 12% Cr, 1.5 to 3.0% Ni, and 0.005 to 0.10% Nb, by weight, and a method for manufacturing thereof. The steel is, however, limited to 758 MPa grade of strength.
- [Patent Literature 1] Japanese Patent No. 2665009
- [Patent Literature 2] Japanese Patent No. 2091532
- [Patent Literature 3] Japanese Patent No. 2995524
- [Patent Literature 4] JP-A-2004-115890
- [Patent Literature 5] JP-A-2004-99964
- As described above, conventional technologies cannot provide OCTG pipes suitable for the use under high CO2 environments, having 655 to 758 MPa yield strength and high toughness, and giving excellent economy. The inventors of the present invention conducted various studies to solve the above-described problems of conventional technologies, and invented a martensitic stainless steel for seamless pipes having 655 MPa grade yield strength, 200 J or higher satisfactory toughness even at low temperature of −40° C., suitable for the uses in high CO2 environments and giving excellent economy, and a method for manufacturing thereof, thus completed the present invention.
- Specifically, the inventors of the present invention improved corrosion resistance and toughness by suppressing the precipitation of carbide through the control of C content to a low level, thereby allowed to apply water-cooling in the manufacturing process. With the limitation of C content, the inventors of the present invention found that the corrosion resistance is maintained to the level of conventional steels even when the Cr content is reduced to below 13% which is the content in conventional 420 Steel and the like. Furthermore, along with the limitation of Cr content, the Ni content is reduced to about 2% to reduce the cost. In addition, the inventors of the present invention found that the addition of small amount of Mo provides the steel with stable toughness durable for the use in cold: region, for example, at −40° C.
- In the course of completing the present invention, the inventors of the present invention investigated the optimum balance of chemical compositions and heat treatment conditions in terms of strength-toughness-corrosion resistance under high CO2 environment by varying the heat treatment conditions of quenching and tempering after the hot-rolling of steel having different chemical compositions. Through the investigation, a martensitic stainless steel for seamless pipes having 655 MPa grade of yield strength suitable for the use under high CO2 environments was obtained by controlling the chemical compositions and the heat treatment conditions in a specific range according to the present invention.
- The 655 MPa grade martensitic stainless steel having high toughness and the method for manufacturing thereof according to the present invention have been completed on the basis of the above-described findings, and the essence thereof is the following.
- A 655 MPa grade martensitic stainless steel having high toughness according to a first aspect of the present invention is a steel having high toughness, comprising C:0.005-0.05%, 51:0.1-0.5%, Mn: 0.1-2.0%, P: −0.05%, S: −0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: −0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo−Ni−30(C+N)] being 5.00 to 8.49, and balance of substantially Fe.
- A 655 MPa grade martensitic stainless steel having high toughness according to a second aspect of the present invention is a steel having the chemical compositions of the first aspect thereof, further comprising at least one chemical composition selected from the group consisting of Cu: −0. 5%, Nb: −0.05%, V: −0.1%, B: −0.005%, Ca: −0.005%, by weight.
- A method for manufacturing a 655 MPa grade martensitic stainless steel having high toughness according to a third aspect of the present invention, comprising the steps of: hot-rolling a steel comprising 0.005-0.05% C, Si:0.1-0.5%, Mn: 0.1-2.0%, P: −0.05%, S: −0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: −0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo−Ni−30(C+N)] being 5.00 to 8.49, and balance of substantially Fe; cooling the hot-rolled steel; reheating the cooled steel at temperatures from 780° C. to 960° C.; quenching the reheated steel; and then tempering the quenched steel at temperatures from 550° C. to 650° C.
- A method for manufacturing 655 MPa grade martensitic stainless steel having high toughness according to a fourth aspect of the present invention, comprising the steps of: hot-rolling the steel having the chemical compositions of the third aspect thereof further comprising at least one chemical composition selected from the group consisting of Cu: −0.5%, Nb: −0.05%, V: −0.1%, B: −0.005%, Ca: −0.005%, by weight, cooling the hot-rolled steel; reheating the cooled steel at temperatures from 780° C. to 960° C.; quenching the reheated steel; and then tempering the quenched steel at temperatures from 550° C. to 650° C.
- The following is the description about the reasons for limiting the chemical compositions and the manufacturing conditions according to the present invention to above-described ranges. The percentage of individual chemical compositions signifies percentage by weight.
- C: 0.005 to 0.05%
- Carbon increases the strength of steel by enhancing solid solution, by hardening the transformed martensite, and by precipitation hardening as carbide. If the C content is in this range, the effect of increasing the strength of steel is attained, and both the toughness and the corrosion resistance are maintained to a favorable level. In particular, decrease in the C content to the level of the present invention suppresses the precipitation of carbide in the steel so that the corrosion resistance under high CO2 environments becomes high.
- Si: 0.1 to 0.5%
- Silicon inevitably exists in steel as a deoxidizing element. If the Si content is in this range, the deoxidizing effect is attained and the toughness is maintained.
- Mn: 0.1 to 2.0%
- Manganese inevitably exists as a deoxidizing element in steel, similar with Si. If the Mn content is in this range, the deoxidizing effect is attained and the toughness is maintained.
- P: 0.05% or Less
- Since phosphorus is an impurity element and induces degradation of toughness, lower P content is more preferable. If the P content is in this range, the degradation of toughness is suppressed.
- S: 0.005% or Less
- Sulfur is an impurity element similar with P, and induces degradation of toughness and hot-workability. Accordingly, lower S content is more preferable. If the S content is in this range, the degradation of toughness and hot-workability is suppressed.
- Cr: 10.0 to 12.5%
- Chromium has an effect of improving the corrosion resistance. If the Cr content is in this range, satisfactory corrosion resistance is attained even when C content is low, from 0.005% to 0.05%. If the Cr content exceeds this range, the effect of increasing the corrosion resistance saturates, which is not advantageous in terms of economy. Preferably the Cr content is in a range from 10.0% or more to less than 12.0%, and more preferably from 11.0% or more to less than 12.0%.
- Mo: 0.1 to 0.5%
- Molybdenum has effects to limit the precipitation sites and the kinds of precipitates and to improve the toughness. In particular, if the quantity of precipitate of Cr2(C, N) and M7C3 is less than the quantity of precipitate of M23C6, effective increase in toughness is available. If the Mo content is in this range, the effect of improving toughness is attained. Excess addition of Mo above the range is unfavorable in terms of δ-ferrite formation and of economy. Preferably the Mo content is from 0.15 to 0.40%.
- Ni: 1.5 to 3.0%
- Nickel has an effect to improve the corrosion resistance and the toughness. If the Ni content is in this range, the δ-ferrite formation is suppressed, which gives favorable hot-workability. Excess addition of Ni above the range is not advantageous because the effect of improving the toughness saturates. Preferably the Ni content is in a range from, 2.0 to 3.0%.
- N: 0.02% or Less
- Nitrogen has an effect of strength-increase by the enhancement of solid solution and by the precipitation hardening. Excess addition of N above the range induces binding N with V, Nb, Ti, and the like to form coarse precipitates, which degrades the toughness and hot-workability. Therefore, excess addition of N is not advantageous.
- Al: 0.01 to 0.1%
- Aluminum inevitably exists in steel as a deoxidizing element. If the Al content is in this range, the effect of deoxidization is attained, and the formation of AlN which precipitates in grain boundaries to decrease the grain boundary strength is suppressed, thus to degrade the toughness.
- FI value: 5.00 to 8.49%
- The FT is defined by the following formula:
-
FI=Cr+Mo−Ni−30(C+N) - The FI is a parameter of formation of δ-ferrite. The coefficient is selected in accordance with Schaefler diagram. If the FI value is not more than 8.49%, toughness becomes favorable because the formation of δ-ferrite is suppressed.
- Balance of the components is substantially Fe. The phrase “substantially Fe” referred to herein means that the steel of the present invention may allow the existence of gas components of O and H, and impurities such as Sn, As, and Sb, both of which are inevitably contained in the steel during melting and refining process in the range not affect the purpose of the present invention.
- According to the present invention, the steel may further contain at least one chemical composition selected from the group consisting of Cu, Nb, V, B, and Ca to improve strength, toughness, corrosion resistance, and hot-workability. The reasons to limit these chemical compositions are described in the following.
- Cu: 0.5% or Less
- Copper has an effect of increasing the corrosion resistance. If the Cu content is in this range, no problem of degradation of hot-workability and other characteristics occurs.
- Nb: 0.05% or Less
- Niobium refines austenitic grains by the Nb-carbide precipitation during quenching thus to improve the toughness, and can increase the strength by fine Nb-carbide precipitated during tempering. If the Nb content is in this range, the increase in the strength by the precipitation of Nb-carbide is controlled to an appropriate range.
- V: 0.1% or Less
- Vanadium has an effect of forming nitride with N, thus increasing the strength. If the V content is in this range, the effect of increasing the strength does not saturate, and the degradation of toughness caused by the formation of coarse precipitates is not induced, so the strength increases without degrading the toughness.
- B: 0.005% or Less
- Boron has an effect of grain boundary strengthening. If the B content is in this ranger no low-melting compound is formed at grain boundaries so that the grain boundaries are strengthened while maintaining the hot-workability.
- Ca: 0.005% or Less
- Calcium has an effect to control the morphology of manganese sulfide inclusion and to improve the toughness and the corrosion resistance. If the Ca content is in this range, the formation of Ca-based precipitate is suppressed, thereby to improve the toughness and the corrosion resistance.
- The manufacturing conditions are described below.
- Temperature of heating for quenching: 780° C. to 960° C.
- If the heating temperature for quenching is in this range, a fully austenitic single-phase microstructure is attained during heating so that the succeeding cooling (quenching) gives martensite-single phase microstructure to provide a stable quenched microstructure, as well as suppressing the formation of coarse austenitic grains, thus attaining favorable toughness.
- Tempering Temperature: 550° C. to 650° C.
- Since the steel according to the present invention has high strength and insufficient toughness in as-quenched state, appropriate tempering is required. If the tempering temperature is in this range, desirable strength is attained and the toughness becomes favorable.
- The martensitic stainless steel according to the present invention may be prepared by any melting and refining process such as LD converter or electric furnace, which can control the chemical compositions within the range of the present invention. When the steel is used as OCTG, the steel is formed into billet or other required shape by casting or rolling thereof, and then is subjected to a process such as piercing using a piercer with extrusion stem or a piercing mill with inclined roll, or rolling to form seamless steel pipes followed by specified heat treatment.
- The martensitic stainless steel according to the present invention is applicable to other usage other than OCTG. For example, the steel may be used as transportation steel pipes such as line pipes. In that case, the ingoted steel is formed into slab shape by casting or rolling, and it is rolled into steel plate using a plate mill or a hot-strip mill, and then is subjected to a specified heat treatment, followed by welding to manufacture the steel pipes. Alternatively, the rolled steel plate may be formed into steel pipe by welding thereof, followed by a specified heat treatment such as quenching and tempering.
- The martensitic stainless steel according to the present invention is subjected to reheating and quenching after hot-rolling. If, however, a direct quenching apparatus which can apply direct quenching to the steel after hot-rolling is available, direct quenching may be applied instead of reheating and quenching, followed by specified tempering.
- Table 1 shows the chemical compositions of the working examples (Nos. 1-17) according to the present invention. Table 2 shows the results of mechanical properties thereof. Table 3 shows the chemical compositions of the comparative examples (Nos. 18-35). Table 4 shows the results of mechanical properties.
-
TABLE 1 Quenching Tempering Chemical Compositions (wt %) Temp. Temp. No. C Si Mn P S Cr Mo Ni N Al Others FI, % (° C.) (° C.) Steels of 1 0.033 0.19 0.20 0.011 0.003 11.8 0.19 2.65 0.014 0.051 — 7.93 850 650 the present 2 0.033 0.19 0.20 0.011 0.003 11.8 0.19 2.65 0.014 0.051 — 7.93 800 650 invention 3 0.033 0.19 0.20 0.011 0.003 11.8 0.19 2.65 0.014 0.051 — 7.93 800 625 4 0.033 0.20 0.21 0.010 0.003 11.8 0.37 2.63 0.015 0.049 — 8.10 850 650 5 0.033 0.20 0.21 0.010 0.003 11.8 0.37 2.63 0.015 0.049 — 8.10 800 650 6 0.033 0.20 0.21 0.010 0.003 11.8 0.37 2.63 0.015 0.049 — 8.10 800 625 7 0.029 0.20 0.21 0.006 0.002 11.6 0.18 2.20 0.015 0.040 — 8.26 850 625 8 0.029 0.20 0.21 0.006 0.002 11.6 0.18 2.20 0.015 0.040 — 8.26 800 625 9 0.029 0.20 0.21 0.006 0.002 11.6 0.18 2.20 0.015 0.040 — 8.26 800 600 10 0.032 0.20 0.21 0.010 0.002 11.8 0.38 2.32 0.015 0.048 — 8.45 850 650 11 0.032 0.20 0.21 0.010 0.002 11.8 0.38 2.32 0.015 0.048 — 8.45 800 625 12 0.032 0.20 0.21 0.010 0.002 11.8 0.38 2.32 0.015 0.048 — 8.45 800 600 13 0.032 0.20 0.21 0.008 0.002 11.6 0.21 2.38 0.015 0.055 0.3Cu 8.02 800 625 14 0.032 0.20 0.21 0.008 0.002 11.6 0.21 2.38 0.015 0.055 0.02Nb 8.02 800 625 15 0.033 0.20 0.21 0.006 0.002 11.6 0.23 2.35 0.015 0.052 0.07V 8.04 800 650 16 0.033 0.20 0.21 0.006 0.002 11.6 0.23 2.35 0.015 0.052 0.003B 8.04 800 625 17 0.033 0.20 0.21 0.006 0.002 11.6 0.23 2.35 0.015 0.052 0.003Ca 8.04 800 625 -
TABLE 2 Yield strength vE-40 Corrosion rate Total No. (MPa) (J) (mm/y) Evaluation Steels of 1 668 226 0.05 ∘ the present 2 680 274 0.05 ∘ invention 3 713 253 0.03 ∘ 4 676 265 0.03 ∘ 5 668 281 0.04 ∘ 6 717 267 0.03 ∘ 7 676 213 0.06 ∘ 8 669 277 0.07 ∘ 9 690 269 0.06 ∘ 10 679 276 0.06 ∘ 11 694 302 0.04 ∘ 12 724 292 0.05 ∘ 14 690 243 0.05 ∘ 15 703 255 0.05 ∘ 16 712 247 0.05 ∘ 17 699 271 0.03 ∘ 18 710 249 0.04 ∘ - All of the steels of working examples according to the present invention and the steels of comparative examples were vacuum melted using a laboratory furnace, and the obtained ingots were hot rolled to 12 mm-thick plates. Each of plates was heat-treated, and was tested to determine strength, toughness, and corrosion resistance. Regarding the strength, round bar samples of ASTM Type F were cut from the center portion in the thickness direction of the plate, and the samples were tested by tensile tester to determine the yield strength. As for the toughness, full-size V-notch Charpy test samples were cut from the center portion in the thickness direction of the plate, and the samples were tested by impact tester at −40° C. to evaluate the absorbed energy. For the corrosion resistance, samples were immersed in a 10% NaCl aqueous solution equilibrated with 30 bar carbon dioxide gas at 100° C. for 336 hours, and the corrosion loss was evaluated.
- The acceptable target values were 655 to 758 MPa of yield strength for the strength, 200 J or higher absorbed energy (vE−40) at −40° C. for the toughness, and 0.3 mm/year or less of corrosion rate for the corrosion resistance.
- In Tables 1-4, the Steels Nos. 1-17, which were within the range of the present invention in terms of both the chemical compositions and the manufacturing conditions, were proved to have satisfactory strength, toughness, and corrosion resistance. On the other hand, the Steels Nos. 18-35, which were outside the range of the present invention in terms of chemical compositions or manufacturing conditions, failed to achieve the target properties of either the strength or the toughness, or both of them. In particular, the Steels Nos. 26-29 which contained Mo outside the range of the Mo content according to the present invention could not achieve sufficient absorbed energy at −40° C. or sufficient strength even if they were subjected to heat treatment within the range of the present invention.
- The present invention improves the properties required for the seamless pipes by specifying the chemical compositions and the manufacturing conditions. As a result, the present invention provides a martensitic stainless steel of 655 MPa grade for seamless steel pipes suitable for use under high CO2 environments and having high toughness, with low cost.
Claims (4)
1. A 655 MPa grade martensitic stainless steel having high toughness, comprising C:0.005-0.05%, Si:0.1-0.5%, Mn: 0.1-2.0%, P: −0.05%, S: −0.005%, Cr: 10.0-12.5%, Mo: 0.1-0.5%, Ni: 1.5-3.0%, N: −0.02%, Al: 0.01-0.1% by weight, while FI value defined by the formula [FI=Cr+Mo−Ni−30(C+N)] being 5.00 to 8.49, and balance of substantially Fe.
2. The 655 MPa grade martensitic stainless steel having high toughness according to claim 1 , further comprising at least one chemical composition selected from the group consisting of Cu: −0.5%, Nb: −0.05%, V: −0.1%, B: −0.005%, Ca: −0.005%, by weight.
3. A method for manufacturing a 655 MPa grade martensitic stainless steel having high toughness, comprising the steps of: hot-rolling a steel, comprising C:0.005-0.05%, Si:0.1-0.5%, Mn: 0.1-2.0%, P: −0.05%., S: 0.005%, Cr: 10.0-12.5%, Mo: 0.1-0. 5%, Ni: 1.5-3.0%, Ni: −0.02%, Al: 0.01-0.1%, by weight, while FI value defined by the formula [FI=Cr+Mo−Ni−30(C+N) ] being 5.00 to 8.49, and balance of substantially Fe, cooling the hot-rolled steel; reheating the cooled steel at temperatures from 780° C. to 960° C.; quenching the reheated steel; and then tempering the quenched steel at temperatures from 550° C. to 650° C.
4. The method for manufacturing the 655 MPa grade stainless steel having high toughness according to claim 3 , comprising the steps of: hot-rolling the steel further comprising at least one chemical composition selected from the group consisting of Cu: −0.5%, Nb: −0.05%, V: −0.1%, B: −0.005%, Ca: −0.005%, flyweight; cooling the hot-rolled steel; reheating the cooled steel at temperatures from 780° C. to 960° C.; quenching the reheated steel; and then tempering the quenched steel at temperatures from 550° C. to 650° C.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2004/018710 WO2006064553A1 (en) | 2004-12-15 | 2004-12-15 | 655 MPa CLASS MARTENSITIC STAINLESS STEEL EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCTION THEREOF |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/018710 A-371-Of-International WO2006064553A1 (en) | 2004-12-15 | 2004-12-15 | 655 MPa CLASS MARTENSITIC STAINLESS STEEL EXCELLENT IN TOUGHNESS AND METHOD FOR PRODUCTION THEREOF |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/649,399 Continuation US8747575B2 (en) | 2004-12-15 | 2009-12-30 | 655 MPa grade martensitic stainless steel having high toughness and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080112839A1 true US20080112839A1 (en) | 2008-05-15 |
Family
ID=36587618
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/720,351 Abandoned US20080112839A1 (en) | 2004-12-15 | 2004-12-15 | 655 Mpa Grade Martensitic Stainless Steel Having High Toughness and Method for Manufacturing the Same |
US12/649,399 Active 2026-05-28 US8747575B2 (en) | 2004-12-15 | 2009-12-30 | 655 MPa grade martensitic stainless steel having high toughness and method for manufacturing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/649,399 Active 2026-05-28 US8747575B2 (en) | 2004-12-15 | 2009-12-30 | 655 MPa grade martensitic stainless steel having high toughness and method for manufacturing the same |
Country Status (4)
Country | Link |
---|---|
US (2) | US20080112839A1 (en) |
JP (1) | JP4975448B2 (en) |
NO (1) | NO20072779L (en) |
WO (1) | WO2006064553A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114836689A (en) * | 2022-04-25 | 2022-08-02 | 宁国东方碾磨材料股份有限公司 | High-chromium wear-resistant steel ball and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102839331B (en) * | 2011-06-24 | 2014-10-01 | 宝山钢铁股份有限公司 | High-toughness corrosion-resistant steel and manufacturing method thereof |
CN107552567A (en) * | 2017-09-08 | 2018-01-09 | 苏州钢特威钢管有限公司 | The preparation method of 1Cr17 ferrite stainless steel pipes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440234B1 (en) * | 1998-12-08 | 2002-08-27 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel products |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000024783A (en) * | 1998-07-13 | 2000-01-25 | Nippon Steel Corp | Long corrosion resistant steel pipe and manufacturing method |
JP2000328202A (en) * | 1999-05-19 | 2000-11-28 | Sumitomo Metal Ind Ltd | Low carbon martensitic stainless steel sheet excellent in formability, corrosion resistance and toughness, its production method and welded steel pipe |
JP3890821B2 (en) * | 1999-08-24 | 2007-03-07 | 住友金属工業株式会社 | High strength and high toughness stainless steel with excellent stress corrosion cracking resistance |
JP3503560B2 (en) * | 2000-02-14 | 2004-03-08 | 住友金属工業株式会社 | Low yield ratio martensitic stainless steel with excellent corrosion resistance and method for producing the same |
JP3666388B2 (en) * | 2000-12-19 | 2005-06-29 | 住友金属工業株式会社 | Martensitic stainless steel seamless pipe |
JP3642030B2 (en) * | 2001-02-09 | 2005-04-27 | 住友金属工業株式会社 | High strength martensitic stainless steel and method for producing the same |
JP3812360B2 (en) * | 2001-04-09 | 2006-08-23 | 住友金属工業株式会社 | Martensitic stainless steel with excellent strength stability |
JP3938738B2 (en) * | 2002-09-27 | 2007-06-27 | エヌケーケーシームレス鋼管株式会社 | High chromium steel having high toughness and method for producing the same |
-
2004
- 2004-12-15 JP JP2006548607A patent/JP4975448B2/en not_active Expired - Lifetime
- 2004-12-15 WO PCT/JP2004/018710 patent/WO2006064553A1/en active Application Filing
- 2004-12-15 US US11/720,351 patent/US20080112839A1/en not_active Abandoned
-
2007
- 2007-05-31 NO NO20072779A patent/NO20072779L/en not_active Application Discontinuation
-
2009
- 2009-12-30 US US12/649,399 patent/US8747575B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440234B1 (en) * | 1998-12-08 | 2002-08-27 | Sumitomo Metal Industries, Ltd. | Martensitic stainless steel products |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114836689A (en) * | 2022-04-25 | 2022-08-02 | 宁国东方碾磨材料股份有限公司 | High-chromium wear-resistant steel ball and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20100096048A1 (en) | 2010-04-22 |
WO2006064553A1 (en) | 2006-06-22 |
NO20072779L (en) | 2007-07-06 |
JP4975448B2 (en) | 2012-07-11 |
US8747575B2 (en) | 2014-06-10 |
JPWO2006064553A1 (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2371982B1 (en) | Seamless steel pipe and method for manufacturing same | |
JP4538094B2 (en) | High strength thick steel plate and manufacturing method thereof | |
US10240221B2 (en) | Stainless steel seamless pipe for oil well use and method for manufacturing the same | |
JP5124988B2 (en) | High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same | |
JP4542624B2 (en) | High strength thick steel plate and manufacturing method thereof | |
US7862666B2 (en) | Highly anticorrosive high strength stainless steel pipe for linepipe and method for manufacturing same | |
US20040238079A1 (en) | Stainless-steel pipe for oil well and process for producing the same | |
TWI742812B (en) | Wear-resistant steel plate and manufacturing method thereof | |
KR100920536B1 (en) | High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof | |
US20160168672A1 (en) | High-strength steel material for oil well and oil well pipes | |
US20150315684A1 (en) | High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same | |
WO2013190834A1 (en) | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same | |
US20130160904A1 (en) | High strength hot rolled steel sheet having excellent toughness and method for manufacturing the same | |
WO2011061812A1 (en) | High-toughness abrasion-resistant steel and manufacturing method therefor | |
US20180002791A1 (en) | Martensitic Stainless Steel with High Strength, High Toughness and High Corrosion Resistance | |
KR101539520B1 (en) | Duplex stainless steel sheet | |
CN120119174A (en) | High-hardness wear-resistant steel excellent in low-temperature impact toughness and method for producing same | |
JP2010168646A (en) | Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same | |
CA3094517C (en) | A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof | |
US20240124949A1 (en) | High-strength stainless steel seamless pipe for oil country tubular goods and method for manufacturing same | |
US8747575B2 (en) | 655 MPa grade martensitic stainless steel having high toughness and method for manufacturing the same | |
JP7498416B1 (en) | Cr-Ni alloy tube | |
JP7319518B2 (en) | Wear-resistant thick steel plate | |
US20250003042A1 (en) | High-strength seamless stainless steel pipe for oil wells | |
JP3938738B2 (en) | High chromium steel having high toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NKKTUBES, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASHIZUME, SHUJI;MINAMI, YUSUKE;ONO, TATSUO;REEL/FRAME:019349/0446 Effective date: 20070417 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |