US20070289318A1 - Refrigerant cycle device and heat-exchanger integrated unit with temperature sensor for the same - Google Patents
Refrigerant cycle device and heat-exchanger integrated unit with temperature sensor for the same Download PDFInfo
- Publication number
- US20070289318A1 US20070289318A1 US11/810,523 US81052307A US2007289318A1 US 20070289318 A1 US20070289318 A1 US 20070289318A1 US 81052307 A US81052307 A US 81052307A US 2007289318 A1 US2007289318 A1 US 2007289318A1
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- evaporator
- heat exchanger
- ejector
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 519
- 230000002265 prevention Effects 0.000 claims abstract description 19
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 15
- 238000001704 evaporation Methods 0.000 claims description 29
- 238000013459 approach Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 description 23
- 239000007788 liquid Substances 0.000 description 20
- 238000005192 partition Methods 0.000 description 19
- 238000001816 cooling Methods 0.000 description 18
- 238000005219 brazing Methods 0.000 description 16
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 16
- 239000012808 vapor phase Substances 0.000 description 15
- 238000004891 communication Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000005057 refrigeration Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000007906 compression Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000006837 decompression Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/006—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0011—Ejectors with the cooled primary flow at reduced or low pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/18—Optimization, e.g. high integration of refrigeration components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21173—Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
- F25D29/005—Mounting of control devices
Definitions
- the present invention relates to a refrigerant cycle device that includes an ejector serving as refrigerant decompression means and refrigerant circulation means, and a plurality of evaporators.
- the evaporator is suitable to an air conditioner for a vehicle, or a refrigeration unit for a vehicle for freezing and refrigerating goods mounted on the vehicle.
- the present invention relates to a heat-exchanger integrated unit with a temperature sensor for a refrigerant cycle device having an ejector.
- JP-A-2001-74388 (corresponding to U.S. Pat. No. 6,449,979) discloses a refrigerant cycle device that includes a first evaporator connected to a downstream side of an ejector, and a second evaporator connected to a refrigerant suction port of the ejector.
- a refrigerant cycle device that includes a first evaporator connected to a downstream side of an ejector, and a second evaporator connected to a refrigerant suction port of the ejector.
- an evaporation temperature of refrigerant in the second evaporator is lower than that in the first evaporator.
- the first and second evaporators are adapted to cool a common space to be cooled, and the first evaporator is disposed on the upstream side in the flow direction of air, while the second evaporator is disposed on the downstream side in the flow direction of air.
- the refrigerant cycle device is constructed by combining the first evaporator on the refrigerant downstream side of the ejector and the second evaporator on the refrigerant suction side of the ejector, thereby cooling the common space to be cooled.
- JP-A-2005-308384 (corresponding to US 2005/0268644 A1) discloses an evaporator for allowing refrigerant to flow snaking through tubes and tank portions which are arranged in the evaporator in even rows in the flow direction of external fluid.
- a contact type fin temperature sensor is inserted into an appropriate portion of a fin of the evaporator to detect the surface temperature of the fin.
- a non-contact type air temperature sensor is used to detect the temperature of air on the post-evaporator side. In this case, a compressor is intermittently operated so as to prevent the formation of the frost on the evaporator.
- the temperature sensor cannot be attached to any position of the evaporator.
- the higher the temperature of a detection point of the temperature sensor the more the timing of stopping the compressor is delayed, resulting in an excess amount of supply of the refrigerant, which leads to frosting of the evaporator.
- the air temperature sensor senses high air temperature with the formation of the frost, and continues rotating the compressor, which may lead to breakage of the cycle or failure of the compressor.
- the fin temperature sensor can control such a condition, the cycle cannot be activated until the frosted part is melted, resulting in decrease in cooling operating efficiency.
- an appropriate attachment position is required to be determined by various tests for every type evaporator such that the temperature sensor is attached to a position where the fin temperature or blown-air temperature of the evaporator becomes lowest.
- a refrigerant cycle device includes a compressor for sucking and compressing refrigerant, a radiator located to cool high-pressure refrigerant discharged from the compressor, a refrigerant adjusting unit located to adjust a refrigerant amount flowing from the radiator to a downstream side such that a super-heating degree of refrigerant to be sucked to the compressor approaches to a predetermined degree, an ejector that includes a nozzle portion for decompressing refrigerant flowing from the refrigerant adjusting unit and a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant stream jetted from the nozzle portion, a refrigerant branch passage that is branched from an upstream side of the nozzle portion in a refrigerant flow such that refrigerant flows into the refrigerant suction port through the refrigerant branch passage, a first heat exchanger disposed to evaporate refrigerant flowing out of the e
- the refrigerant adjusting unit is located to adjust a refrigerant amount flowing from the radiator to a downstream side such that a super-heating degree of refrigerant to be sucked to the compressor approaches to a predetermined degree, operation efficiency of the refrigerant cycle device can be effectively improved.
- the second heat exchanger includes a plurality of tubes in which refrigerant flows, and upper and lower tanks located at upper and lower sides of the plurality of tubes to distribute refrigerant into or collect the refrigerant from the plurality of tubes.
- the temperature sensor is located at a predetermined position of the second heat exchanger, at which refrigerant flows upwardly from the lower tank.
- the controller can reduces a discharge capacity of refrigerant discharged from the compressor during the frost prevention control, or can stop operation of the compressor during the frost prevention control.
- the temperature sensor can be located to detect a temperature of air immediately after passing through the second heat exchanger, or can be located to detect a temperature of one of fins and tubes of the second heat exchanger.
- the predetermined position may be set close to the lower tank.
- a heat-exchanger integrated unit for a refrigerant cycle device includes a heat exchanger for evaporating refrigerant, an ejector that includes a nozzle portion for decompressing refrigerant and a refrigerant suction port from which refrigerant from the heat exchanger is drawn by a high-speed refrigerant flow jetted from the nozzle portion, and a temperature sensor for detecting a temperature so as to detect a frost in the heat exchanger. Furthermore, the temperature sensor is located in the heat exchanger at a predetermined position at which refrigerant flows upwardly from below. Therefore, when the heat exchanger is used as an evaporator, frost generated on the heat exchanger can be suitably reduced by using the temperature detected by the temperature sensor.
- a heat-exchanger integrated unit for a refrigerant cycle device includes a first heat exchanger located to perform heat exchange between refrigerant and a heat-exchanging medium, a second heat exchanger located downstream from the first heat exchanger in a flow direction of the heat-exchanging medium to perform heat exchange between refrigerant and the heat-exchanging medium flowing from the first heat exchanger, and a temperature sensor located to detect a temperature of the second heat exchanger so as to detect a frost in the second heat exchanger.
- the first heat exchanger is located to evaporate refrigerant flowing out of an ejector of the refrigerant cycle device
- the second heat exchanger has at least a suction-side heat exchanging portion that is located to evaporate refrigerant to be drawn into a refrigerant suction port of the ejector, from which refrigerant is drawn into the ejector by a high-speed refrigerant stream jetted from the nozzle portion.
- the temperature sensor is located to detect the temperature of the second heat exchanger having a refrigerant temperature lower than that of the first heat exchanger, front can be easily detected using the temperature sensor, thereby effectively reducing and preventing front generated on the second heat exchanger.
- FIG. 1 is a schematic diagram of an ejector-type refrigerant cycle device of one embodiment to which the present invention is applied;
- FIG. 2 is a perspective view showing a schematic construction of a heat-exchanger integrated unit for the ejector-type refrigerant cycle device of FIG. 1 ;
- FIG. 3 is a longitudinal sectional view of an upper tank portion of the integrated unit of FIG. 2 ;
- FIG. 4 is a lateral sectional view of a part of the upper tank portion of the integrated unit of FIG. 2 ;
- FIG. 5A is a perspective view of a fin temperature sensor
- FIG. 5B is a partial sectional view showing the structure of a sensor portion of the fin temperature sensor of FIG. 5A ;
- FIG. 6 is a perspective view of an air temperature sensor
- FIG. 7 is a diagram of temperature distribution at a second evaporator when being viewed from the downstream side of an air flow
- FIG. 8 is a graph representing a relationship of a refrigeration operating efficiency with respect to a flow ratio of refrigerant passing through the second evaporator
- FIG. 9 is a schematic diagram of an ejector-type refrigerant cycle device of a modified example of FIG. 1 of the present invention.
- FIG. 10 is a perspective view showing a heat-exchanger integrated unit according to a first modified example of the embodiment of the present invention.
- FIG. 11 is a perspective view showing a heat-exchanger integrated unit according to a second modified example of the embodiment of the present invention.
- FIG. 12 is a perspective view showing a heat-exchanger integrated unit according to a third modified example of the embodiment of the present invention.
- FIG. 13 is a perspective view showing a heat-exchanger integrated unit according to a fourth modified example of the embodiment of the present invention.
- the heat-exchanger integrated unit is connected to other components of the refrigerant cycle device, e.g., a radiator and a compressor, via piping.
- the heat-exchanger integrated unit of this example is used in applications for cooling air to serve as indoor equipment.
- the heat-exchanger integrated unit of another example can also be used as outdoor equipment.
- a compressor 11 for sucking and compressing refrigerant is rotatably driven by an engine for vehicle running (not shown) via an electromagnetic clutch 11 a, a belt, and the like.
- the compressor 11 may be used either of a variable displacement compressor for being capable of adjusting a refrigerant discharge capacity depending on a change in compression capacity, or a fixed displacement compressor for adjusting a refrigerant discharge capacity by changing an operating efficiency of the compressor by intermittent connection of an electromagnetic clutch 11 a.
- the electromagnetic clutch 11 a shown in FIG. 1 is controlled by an output from a controller (ECU, control means) 50 to be intermittently connected.
- the compressor 11 is an electric compressor, the compressor 11 can adjust its refrigerant discharge capacity by adjustment of the number of revolutions of an electric motor.
- a radiator 12 (refrigerant cooler) is disposed on a refrigerant discharge side of the compressor 11 .
- the radiator 12 exchanges heat between high-pressure refrigerant discharged from the compressor 11 and the outside air (i.e., air outside a vehicle compartment) blown by a cooling fan not shown to cool the high-pressure refrigerant.
- refrigerant whose high pressure does not exceed the critical pressure such as a Freon-based or HC-based refrigerant, is used to form a vapor-compression subcritical cycle.
- the radiator 12 serves as a condenser for cooling and condensing the refrigerant.
- a liquid receiver 12 a is provided at an outlet side of the radiator 12 .
- the liquid receiver 12 a has a vertically oriented tank-like shape to be well known, and serves as a liquid/vapor separator for separating the refrigerant into liquid and vapor phases to store the excess liquid refrigerant in the refrigerant cycle.
- the liquid refrigerant is guided to flow out of the lower part of the tank-shaped inside at the outlet of the liquid receiver 12 a.
- the liquid receiver 12 a is integrally formed with the radiator 12 in this example.
- the radiator 12 may have the known structure including a heat exchanging portion for condensation disposed on the upstream side of refrigerant flow, the liquid receiver 12 a for receiving refrigerant introduced from the heat exchanging portion for condensation to separate the refrigerant into liquid and vapor phases, and a heat exchanging portion for supercooling of the saturated liquid refrigerant from the liquid receiver 12 a.
- a thermal expansion valve 13 is disposed at an outlet side of the liquid receiver 12 a.
- the thermal expansion valve 13 serves as adjustment means for adjusting an amount of the liquid refrigerant from the liquid receiver 12 a, and has a temperature sensing portion 13 a disposed in a passage on the suction side of the compressor 11 .
- the thermal expansion valve 13 detects a degree of superheat SH of the refrigerant on the suction side of the compressor 11 based on the temperature and pressure of the suction side refrigerant of the compressor 11 (i.e., refrigerant on the outlet side of the evaporator 15 ), and adjusts a degree of opening of its valve (refrigerant flow amount) such that the degree of superheat SH of the compressor suction-side refrigerant is a predetermined value, as is known in general.
- An ejector 14 is disposed at an outlet side of the thermal expansion valve 13 .
- the ejector 14 serves as decompression means for decompressing the refrigerant, and also as refrigerant circulation means (kinetic vacuum pump) for circulating the refrigerant by a suction action (entrainment action) of a refrigerant flow ejecting at high velocity.
- refrigerant circulation means kinetic vacuum pump
- the ejector 14 includes a nozzle portion 14 a that decreases the sectional area of passage of refrigerant having passed through the expansion valve 13 (intermediate-pressure refrigerant) so as to reduce the pressure of the refrigerant and to expand the refrigerant.
- the ejector 14 also includes a refrigerant suction port 14 b that is arranged in the same space as a refrigerant ejection port of the nozzle portion 14 a so as to suck the vapor-phase refrigerant from a second evaporator (a second heat exchanger, a second heat exchanging portion) 18 to be described later.
- a mixing portion 14 c is provided on a downstream side of the nozzle portion 14 a and the refrigerant suction port 14 b to mix the high-velocity refrigerant flow from the nozzle portion 14 a with the suction refrigerant drawn into the refrigerant suction port 14 b from the second evaporator 18 .
- a diffuser portion 14 d serving as a booster (pressure-increasing portion) is arranged on the downstream side of the refrigerant flow of the mixing portion 14 c.
- the diffuser portion 14 d is formed in such a shape to gradually increase the passage area of the refrigerant, and has an effect of reducing the velocity of the refrigerant flow to increase the refrigerant pressure, that is, an effect of converting the velocity energy of the refrigerant to the pressure energy thereof.
- a first evaporator 15 is connected to a refrigerant outlet side of the diffuser portion 14 d of the ejector 14 , and a refrigerant outlet of the first evaporator 15 is connected to the refrigerant suction side of the compressor 11 .
- a refrigerant branch passage 16 is branched from the inlet side of the ejector 14 (i.e., an intermediate part between the outlet side of the thermal expansion valve 13 and the inlet side of the nozzle 14 a of the ejector 14 ).
- the refrigerant branch passage 16 has the downstream side thereof connected to the refrigerant suction port 14 b of the ejector 14 .
- a point “zz” in FIG. 1 indicates a branch point of the refrigerant branch passage 16 .
- a throttle unit 17 is disposed in the refrigerant branch passage 16 , and the second evaporator 18 is disposed on a downstream side of the refrigerant flow away from the throttle unit 17 .
- the throttle unit 17 is decompression means serving to exhibit an adjustment effect of the refrigerant flow ratio into the second evaporator 18 .
- the throttle unit 17 is constructed of, for example, a capillary tube, or an orifice.
- the first and second evaporators 15 and 18 are assembled to a heat-exchanger integrated unit 20 with the following structure.
- the two evaporators 15 and 18 are accommodated in an air conditioning case not shown, and a common electric blower 19 blows air (i.e., air to be cooled) through an air passage formed in the air conditioning case in the direction of arrow.
- the blown air of the electric blower 19 is cooled by the two evaporators 15 and 18 .
- air is a medium for heat exchange.
- the electric blower 19 is an electric fan driven by a motor 19 a.
- the motor 19 a is rotatably driven by a control voltage output from the controller 50 .
- the cold air cooled by the two evaporators 15 , 18 may be blown into the common space to be cooled (not shown). Accordingly, the common space can be cooled by the two evaporators 15 , 18 .
- a space in the compartment of the vehicle is the space to be cooled.
- a freezer and refrigerator space of the freezer car is a space to be cooled.
- the first evaporator 15 which is connected to a main flow path on the downstream side of the ejector 14 , is disposed on the upstream side of the air flow
- the second evaporator 18 which is connected to the refrigerant suction port 14 b of the ejector 14 , is disposed on the downstream side of the air flow.
- a temperature sensor 40 which will be described later, is disposed in the second evaporator 18 on a downwind side to serve as a detection member for detecting frost (frosting) occurring on the two evaporators 15 , 18 .
- a temperature signal detected by the temperature sensor 40 is input to the controller 50 , whereby the control of frost prevention (i.e., frost prevention control) is performed by the controller 50 according to the temperature signal as described later.
- FIG. 2 is a perspective view showing an outline of the entire structure of this integrated unit 20 ( 20 A).
- FIG. 3 is a longitudinal (lengthwise) sectional view of the upper tank portions 15 b, 18 b of the first and second evaporators 15 , 18 .
- FIG. 4 is a lateral sectional view of the upper tank portion 18 b of the second evaporator 18 .
- the two evaporators 15 , 18 are completely integrated as one heat exchanger structure.
- the first evaporator 15 constitutes an upstream side area of the air flow in the one heat exchanger structure
- the second evaporator 18 constitutes a downstream side area of the air flow in the one heat exchanger structure.
- the up, down, left, and right arrows in FIG. 2 respectively indicate the following. That is, the side of the second evaporator 18 on which the ejector 14 is disposed corresponds to the up direction, the side of the second evaporator 18 on which the ejector 14 is not disposed corresponds to the down direction, the upstream side of the nozzle portion 14 a of the ejector 14 corresponds to the left direction, and the downstream side of the diffuser portion 14 d of the ejector 14 corresponds to the right direction, when being viewed from the downstream side of the flow direction of the blown air.
- the up, down, left, and right directions in the following description are the same as those in FIG. 2 .
- the first evaporator 15 and the second evaporator 18 have the same basic structure, each including heat-exchange core portion 15 a, 18 a, and tank portions 15 b, 15 c, 18 b, 18 c positioned on both up and down sides of the heat-exchange core portion 15 a, 18 a, respectively.
- the heat-exchange core portion 15 a, 18 a include a plurality of tubes 21 extending vertically. Between the plurality of tubes 21 , a passage is formed through which a heat-exchanged medium, for example, air, passes in this embodiment. Fins 22 are disposed between these tubes 21 , and brazed to the tubes 21 .
- Each of the heat-exchange core portions 15 a, 18 a is constructed of a laminated structure including the tubes 21 and the fins 22 . These tubes 21 and fins 22 are alternately laminated in the lateral direction of the heat-exchange core portions 15 a, 18 a. In another embodiment, a structure without fins 22 may be employed. Although FIG. 2 shows only a part of the laminated structure including the tubes 21 and the fins 22 , the laminated structure including the tubes 21 and the fins 22 may be formed over the entire areas of the heat-exchange core portions 15 a, 18 a. The blown air of the electric blower 19 passes through voids of the laminated structure.
- the tube 21 forms therein a refrigerant passage, and is constructed of a flat tube having a flat section extending along the air flow direction.
- the fin 22 is a corrugated fin formed by bending a thin plate in a wave-like shape, and is connected to the flat outer surface of the tube 21 to expand an air side heat-transmission area.
- the tubes 21 of the heat-exchange core portion 15 a and the tubes 21 of the heat-exchange core portion 18 a respectively construct the refrigerant passages that are independent from each other.
- the tank portions 15 b, 15 c on both up and down sides of the first evaporator 15 , and the tank portions 18 b, 18 c on both up and down sides of the second evaporator 18 construct the refrigerant passage spaces that are independent from each other.
- Both the up and down ends of the tube 21 of the heat-exchange core portion 15 a are inserted into the tank portions 15 b and 15 c on both up and down sides of the first evaporator 15 .
- the tank portions 15 b and 15 c have tube engagement holes not shown. Both the up and down ends of the tube 21 are made in communication with the inner spaces of the tank portions 15 b, 15 c.
- both up and down ends of the tube 21 of the heat-exchange core portion 18 a are inserted into the tank portions 18 b and 18 c on both up and down sides of the second evaporator 18 .
- the tank portions 18 b and 18 c have tube engagement holes not shown. Both the up and down ends of the tube 21 are made in communication with the inner spaces of the tank portions 18 b, 18 c.
- the tank portions 15 b, 15 c, 18 b, 18 c on both the up and down sides serve to distribute the refrigerant to the respective tubes 21 of the heat-exchange core portions 15 a, 18 a, and to collect the refrigerant stream from the tubes 21 .
- the two upper tank portions 15 b and 18 b as well as the two lower tank portions 15 c and 18 c are adjacent to each other, and thus can be formed integrally.
- the two upper tank portions 15 b and 18 b, and the two lower tank portions 15 c and 18 c may be constructed independently in the integrated unit 20 A( 20 ).
- Aluminum which is a metal having excellent thermal conductivity and brazing property is suitable as specific materials of components of the evaporator, including the tube 21 , the fin 22 , and the tank portions 15 b, 15 c, 18 b, 18 c. Each component is formed using the aluminum material, and all components of the first and second evaporators 15 and 18 are assembled and then connected integrally by brazing.
- the throttle unit 17 is constructed of first and second connection blocks 23 and 24 of the refrigerant passages shown in FIG. 3 and the capillary tube, and is integrally assembled to the first and second evaporators 15 and 18 by brazing.
- the ejector 14 has fine passages formed in the nozzle portion 14 a with high accuracy, if the ejector 14 is brazed, the nozzle portion 14 a may be thermally deformed due to the high temperature in brazing (brazing temperature of aluminum: about 600 degrees). This cannot keep the shape and dimension of the passage in the nozzle portion 14 a according to a predetermined design.
- the ejector 14 is assembled to the integrally brazed member.
- the throttle unit 17 and the first and second connection blocks 23 , 24 are formed of aluminum material, like the evaporator components.
- the first connection block 23 is brazed and fixed to one end side in the longitudinal direction of each of the upper tank portions 15 b, 18 b of the first and second evaporators 15 , 18 .
- the first connection block 23 forms a refrigerant inlet 25 and a refrigerant outlet 26 of the integrated unit 20 shown in FIG. 1 .
- the refrigerant inlet 25 is branched into a main passage 25 a serving as a first passage directed to the inlet side of the nozzle 14 a of the ejector 14 , and the branch passage 16 serving as a second passage directed to the inlet side of the throttle unit 17 at a point (e.g., midpoint) of the first connection block 23 in the thickness direction of the first connection block 23 .
- the branch passage 16 of the first connection block 23 corresponds to an inlet part of the branch passage 16 shown in FIG. 1 . Therefore, the branch point z of FIG. 1 is located inside the first connection block 23 .
- the refrigerant outlet 26 is constructed by one simple passage hole (a circular hole and the like) penetrating through the first connection block 23 in the thickness direction.
- the branch passage 16 of the first connection block 23 is tightly connected to one end of the throttle unit 17 (left end shown in FIGS. 2 and 3 ) by brazing.
- the second connection block 24 is disposed substantially at a center area in the longitudinal direction of the inner space of the upper tank portion 18 b of the second evaporator 18 , and brazed to the inner wall surface of the upper tank portion 18 b.
- This second connection block 24 is located to partition the inner space of the upper tank portion 18 b into two spaces in the tank longitudinal direction, that is, a left space 27 and a right space 28 .
- the other end (right end) of the throttle unit 17 penetrates a support hole 24 a of the second connection block 24 to be opened in the right space 28 of the upper tank portion 18 b, as shown in FIG. 3 .
- the nozzle portion 14 a is made of stainless, brass, or the like, and parts other than the nozzle portion 14 a (including a housing portion forming the refrigerant suction port 14 b, the mixing portion 14 c, the diffuser portion 14 d, and the like) is made of metal material, such as copper or aluminum, but may be made of resin (non-metallic material).
- the ejector 14 is inserted into the upper tank portion 18 b through the refrigerant inlet 25 and a hole of the main passage 25 a of the first connection block 23 .
- the inserted tip end in the longitudinal direction of the ejector 14 corresponds to an outlet portion of the diffuser portion 14 d shown in FIG. 1 .
- the tip end of the ejector is inserted into a circular recess 24 b of the second connection block 24 , and gas-tightly fixed in the circular recess 24 b using an O-ring 29 a.
- the tip end of the ejector is in communication with a communication hole 24 c of the second connection block 24 .
- a partition plate 30 is disposed substantially at a center area in the longitudinal direction of the inner space of the upper tank portion 15 b of the first evaporator 15 .
- the inner space of the upper tank portion 15 b is partitioned by the partition plate 30 into two spaces in the longitudinal direction, that is, a left space 31 and a right space 32 .
- the communication hole 24 c of the second connection block 24 is in communication with the right space 32 of the upper tank portion 15 b of the first evaporator 15 via a through hole 33 a of an intermediate wall surface 33 of both the upper tank portions 15 b, 18 b.
- the left end of the ejector 14 in the longitudinal direction corresponds to an inlet portion of the nozzle portion 14 a shown in FIG. 1 , and is fitted into and fixed to the inner wall surface of the main passage 25 a of the first connection block 23 using the O-ring 29 b to be sealed therebetween. Fixing of the ejector 14 in the longitudinal direction may be performed using, for example, screw fixing means not shown.
- the O-ring 29 a is held in a groove (not shown) of the second connection block 24
- the O-ring 29 b is held in a groove (not shown) of the first connection block 23 .
- the refrigerant outlet 26 is formed to be in communication with the left space 31 of the upper tank portion 15 b, and the main passage 25 a is formed to be in communication with the left space 27 of the upper tank portion 18 b.
- the first connection black 23 is brazed to the side walls of the upper tank portions 15 b, 18 b such that the branch passage 16 is made in communication with one end of the throttle unit 17 .
- the refrigerant suction port 14 b of the ejector 14 is set in communication with the left space 27 of the upper tank portion 18 b of the second evaporator 18 .
- the second connection block 24 partitions the inside of the upper tank portion 18 b of the second evaporator 18 into left and right spaces 27 and 28 .
- the left space 27 serves as a collecting tank for collecting the refrigerant from the plurality of tubes 21
- the right space 28 serves as a distribution tank for distributing the refrigerant into the tubes 21 .
- the ejector 14 has an elongated cylindrical shape extending in an axial direction of the nozzle portion 14 a, and the longitudinal direction of the elongated cylindrical shape is made to correspond to the longitudinal direction of the upper tank portion 18 b, so that the ejector 14 is elongated in parallel with the upper tank portion 18 b.
- the ejector 14 and the evaporator 18 can be disposed in a compact manner, and further the entire unit can be made compact.
- the ejector 14 is disposed in the left space 27 serving as the collecting tank of the evaporator 18 , and has the refrigerant suction port 14 b set to be directly opened in the left space 27 serving as the collecting tank. This structure further can decrease the number of refrigerant pipes.
- This example has an advantage in that the collection of the refrigerant from the plurality of tubes 21 and the supply of the refrigerant to the ejector 14 (suction of the refrigerant) can be performed only using one tank.
- the first evaporator 15 is disposed adjacent to the second evaporator 18 , and the ejector 14 is set such that the downstream side end of the ejector 14 is adjacent to the distribution tank of the first evaporator 15 (i.e., the right space 32 of the upper tank portion 15 b ).
- the outflow refrigerant from the ejector 14 can be supplied to the first evaporator 15 side through a short simple refrigerant passage (including holes 24 c and 33 a ).
- the refrigerant flow path of the entire integrated unit 20 with the above-mentioned structure will be described below with reference to FIGS. 2 and 3 .
- the refrigerant inlet 25 of the first connection block 23 is branched into the main passage 25 a and the branch passage 16 within the first connection block 23 .
- the refrigerant from the main passage 25 a is decompressed through the ejector 14 (the nozzle portion 14 a, the mixing portion 14 c, and the diffuser portion 14 d, in this order), and the low-pressure refrigerant decompressed flows into the right space 32 of the upper tank portion 15 b of the first evaporator 15 as indicated by the arrow “aa” through the connection hole 24 c of the second connection block 24 and the through hole 33 a of the intermediate wall surface 33 .
- the refrigerant from the right space 32 flows through the plurality of tubes 21 on the right side of the heat-exchange core portion 15 a as indicated by the arrow “bb” to flow into the right side part of the lower tank portion 15 c. Since no partition plate is provided in the lower tank portion 15 c, the refrigerant from the right side part of the lower tank portion 15 c moves to the left side thereof as indicated by the arrow “cc”.
- the refrigerant from the left side part of the lower tank portion 15 c rises through the plurality of tubes 21 on the left side of the heat-exchange core portion 15 a as indicated by the arrow “dd” to flow into the left space 31 of the upper tank portion 15 b, and then to the refrigerant outlet 26 of the first connection block 23 as indicated by the arrow “ee”.
- the refrigerant from the branch passage 16 of the first connection block 23 is first decompressed through the throttle unit 17 , and the decompressed low-pressure refrigerant flows into the right space 28 of the upper tank portion 18 b of the second evaporator 18 as indicated by the arrow “ff”.
- the refrigerant from the right space 28 flows through the plurality of tubes 21 on the right side of the heat-exchange core portion 18 a as indicated by the arrow “gg” to flow into the right portion of the lower tank portion 18 c. Since no partition plate is provided in the lower tank portion 18 c, the refrigerant from the right side part of the lower tank portion 18 c moves to the left side thereof as indicated by the arrow “hh”.
- the refrigerant from the left side part of the lower tank portion 18 c rises through the plurality of tubes 21 on the left side of the heat-exchange core portion 18 a as indicated by the arrow “ii” to flow into the left space 27 of the upper tank portion 18 b.
- the refrigerant suction port 14 b of the ejector 14 is opened in the left space 27 , and thus the refrigerant in the left space 27 is drawn from the refrigerant suction port 14 b into the ejector 14 .
- the integrated unit 20 has the refrigerant flow path structure as described above, only one refrigerant inlet 25 may be provided at the first connection block 23 in the entire integrated unit 20 , and only one refrigerant outlet 26 may be provided at the first connection block 23 .
- the integrated unit 20 of the embodiment includes the temperature sensor 40 integrally provided in the heat-exchange core portion 18 a of the second evaporator 18 on the downwind side, for detecting the frost on the first and second evaporators 15 , 18 .
- the temperature sensor 40 may be a contact type fin temperature sensor 40 A for detecting the temperature of fins (evaporator), or a non-contact type air temperature sensor 40 B for detecting the blown-air temperature on the post-evaporator flow side.
- the sensor 40 ( 40 A, 40 B) can be located at a suitable position in the integrated unit 20 .
- FIG. 5A is a perspective view of the fin temperature sensor 40 A
- FIG. 5B is a diagram showing the structure of a sensor portion 42
- FIG. 6 is a perspective view of the air temperature sensor 40 B.
- the structure of the fin temperature sensor 40 A will be described below.
- the fin temperature sensor 40 A includes a sensor portion 42 disposed on one end of a lead wire 43 and inserted into a fin portion of the evaporator, and a resin clamp 41 having an anchor portion 41 a inserted into and fixed to the fin portion together with the sensor portion 42 , while holding the root side of the sensor portion 42 .
- the sensor portion 42 includes a temperature sensing semiconductor 42 a whose resistance value changes depending on the temperature of the tip end of the lead wire 43 and which is connected to the tip end of the lead wire 43 .
- the sensor portion 42 also includes an epoxy resin 42 b or the like fixed to the periphery of the temperature sensing semiconductor 42 a, and a conductive filler filling a gap in the sensor portion 42 .
- These elements constituting the sensor portion 42 are inserted into an aluminum case 42 c (made of A1000 aluminum).
- the lead wire 43 is derived so as to output the resistance value of the sensor portion 42 to a controller as an electric signal.
- a connector 44 is connected to the other end of the lead wire 43 for connection with the electric circuit.
- the air temperature sensor 40 B is constructed of a sensor portion 42 , lead wire 43 , and a connector 44 .
- the sensor portion 42 includes a temperature sensing semiconductor 42 a connected to the tip end of the lead wire 43 and the epoxy resin 42 b or the like fixed to the periphery of the semiconductor 42 a.
- the air temperature sensor 40 B has a support part near the sensor portion 42 supported by the resin clamp 41 .
- Either sensor 40 ( 40 A, 40 B) is integrally fixed to the heat exchange core portion of the integrated unit 20 by inserting the anchor portion 41 a of the clamp 41 into the fin portion at the appropriate part of the integrated unit 20 .
- the sensor portion 42 protrudes in the same direction as the anchor portion 41 a for the attachment. That is, the sensor portion 42 is held by the resin clamp 41 approximately in parallel with the protruding direction of the anchor portion 41 a. In contrast, in the air temperature sensor 40 B of FIG. 6 , the sensor portion 42 protrudes in an extending line of the lead wire 43 to be approximately perpendicular to the protruding direction of the anchor portion 41 a for the attachment.
- FIG. 7 is a diagram showing temperature distribution of the second evaporator 18 when being viewed from the downstream side of the air flow (inlet air temperature: 10 degrees, relative humidity: 80% RH).
- FIG. 7 shows that unevenness of the temperature distribution occurs at a part in which the refrigerant stream flows from the lower tank portion 18 c.
- the refrigerant is suspended (stopped) in the lower tank portion 18 c (on the left side of the embodiment), which has the lowest temperature (e.g., temperature T equal to or lower than 2.5° C.) in the second evaporator 18 on the lower temperature side, as shown in FIG. 7 .
- the part MC is a part in which the refrigerant flows from the lower side of the heat exchange core portion of the evaporator 18 to the upper side thereof.
- the temperature sensor 40 can be provided in a position where the frost is observed at the most early stage.
- the temperature sensor 40 can be positioned nearest to the ejector 14 in the plurality of MC parts.
- the compressor 11 When the compressor 11 is driven by the engine for vehicle running, the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 11 flows into the radiator 12 .
- the high-temperature refrigerant is cooled and condensed by the outside air in the radiator 12 .
- the high-pressure refrigerant flowing from the radiator 12 flows into the liquid receiver 12 a, in which the refrigerant is separated into liquid and vapor phases.
- the liquid refrigerant is fed from the liquid receiver 12 a to pass through the expansion valve 13 .
- the expansion valve 13 has a valve opening degree (refrigerant flow amount) adjusted such that a degree of superheat SH of the refrigerant at the outlet of the first evaporator 15 (refrigerant drawn into the compressor) is a predetermined value to decompress the high-pressure refrigerant.
- the refrigerant having passed through the expansion valve 13 (intermediate pressure refrigerant) flows into the refrigerant inlet 25 provided in the first connection block 23 of the integrated unit 20 .
- the refrigerant stream from the refrigerant inlet 25 is divided into a refrigerant flow directed from the main passage 25 a of the first connection block 23 to the ejector 14 , and a refrigerant flow directed from the refrigerant branch passage 16 of the first connection block 23 to the throttle unit 17 .
- the refrigerant entering the nozzle portion 14 a of the ejector 14 is decompressed and expanded by the nozzle portion 14 a.
- the pressure energy of the refrigerant is converted to the velocity energy thereof at the nozzle portion 14 a.
- the refrigerant from an ejection port of the nozzle portion 14 a is ejected at high velocity.
- the decrease in refrigerant pressure around the ejection port sucks the refrigerant (vapor-phase refrigerant) having passed through the second evaporator 18 of the branch refrigerant passage 16 from the refrigerant suction port 14 b.
- the refrigerant ejected from the nozzle portion 14 a and the refrigerant drawn into the refrigerant suction port 14 b are mixed by the mixing portion 14 c positioned on the downstream side of the nozzle portion 14 a to flow into the diffuser portion 14 d.
- the velocity (expansion) energy of the refrigerant is converted to the pressure energy thereof by enlarging the passage area in the diffuser portion 14 d, resulting in an increased pressure of the refrigerant.
- the refrigerant flowing out of the diffuser portion 14 d of the ejector 14 flows through refrigerant flow paths of the first evaporator 15 as indicated by the arrows “aa” to “ee” of FIG. 2 .
- the low-temperature and low-pressure refrigerant absorbs heat from the blown air to be evaporated in the heat-exchange core portion 15 a of the first evaporator 15 .
- the evaporated vapor-phase refrigerant from the refrigerant outlet 26 is drawn into the compressor 11 , and compressed again.
- the refrigerant flow entering the refrigerant branch passage 16 is decompressed by the throttle unit 17 to be low-pressure refrigerant, which flows through the refrigerant flow paths of the second evaporator 18 as indicated by the arrows “ff” to “ii” of FIG. 2 .
- the low-temperature and low-pressure refrigerant absorbs heat from the blown air having passed through the first evaporator 15 so as to be evaporated.
- the vapor-phase refrigerant after evaporation is drawn from the refrigerant suction port 14 b into the ejector 14 .
- the refrigerant on the downstream side of the diffuser portion 14 d of the ejector 14 can be supplied to the first evaporator 15
- the refrigerant on the refrigerant branch passage 16 side can be supplied to the second evaporator 18 through the throttle unit 17 a, so that both the first and second evaporators 15 and 18 can exhibit the cooling effect at the same time.
- the cold air cooled by both the first and second evaporators 15 and 18 is blown off into a space to be cooled, thereby refrigerating (cooling) the space.
- the refrigerant evaporation pressure of the first evaporator 15 is a pressure of the refrigerant whose pressure is increased by the diffuser portion 14 d.
- the refrigerant outlet side of the second evaporator 18 is connected to the refrigerant suction port 14 b of the ejector 14 , the lowest pressure directly after the decompression by the nozzle portion 14 a can be applied to the second evaporator 18 .
- the refrigerant evaporation pressure (refrigeration evaporation temperature) of the second evaporator 18 can be made lower than that of the first evaporator 15 .
- the first evaporator 15 whose refrigerant evaporation temperature is higher is disposed on the upstream side with respect to the flow direction of the blown air, while the second evaporator 18 whose refrigerant evaporation temperature is lower is disposed on the downstream side in air flow.
- both a difference between the refrigerant evaporation temperature of the first evaporator 15 and the temperature of air flowing into the first evaporator 15 , and also a difference between the refrigerant evaporation temperature of the second evaporator 18 and the temperature of air flowing into the second evaporator 18 can be ensured.
- both the first and second evaporators 15 and 18 can effectively exhibit cooling capacities. Therefore, the cooling capacity for the common space to be cooled can be improved effectively by the combination of the first and second evaporators 15 and 18 .
- the suction pressure of the compressor 11 can be increased by a pressure increasing effect of the diffuser portion 14 d thereby decreasing a driving power of the compressor 11 .
- the refrigerant flow amount of the second evaporator 18 can be adjusted independently by the throttle unit 17 without depending on the function of the ejector 14 , so that the refrigerant flow amount flowing into the first evaporator 15 can be adjusted by a throttle function of the ejector 14 . This can facilitate adjustment of the refrigerant flow amounts flowing into the first and second evaporators 15 and 18 according to respective thermal loads.
- the refrigerant having passed through the expansion valve 13 is branched at the upstream part of the nozzle portion 14 a of the ejector 14 , and the branched refrigerant is drawn into the refrigerant suction port 14 b through the refrigerant branch passage 16 .
- the refrigerant branch passage 16 is in parallel connection with the nozzle portion 14 a of the ejector 14 .
- the refrigerant can be supplied to the refrigerant branch passage 16 using not only the refrigerant suction capacity of the ejector 14 , but also the refrigerant suction and discharge capacities of the compressor 11 .
- This can reduce the degree of decrease in refrigerant flow amount on the second evaporator 18 side even when the refrigerant flow amount flowing into the nozzle portion 14 a of the ejector 14 decreases.
- the cooling capacity of the second evaporator 18 can be ensured easily.
- ON-OFF control of a compressor 11 may be performed as this control method.
- the ON-OFF control involves turning off the compressor 11 when a refrigerant evaporation temperature becomes below the freezing point.
- This control is the most common method for frost prevention.
- a fin temperature or a blown-air temperature of the integrated unit 20 is detected by the above-mentioned temperature sensor 40 ( 40 A, 40 B).
- electric current supplied to the electromagnetic clutch 11 a is turned off by the clutch 11 a when the detected fin temperature or blown-air temperature is lowered to 3° C., for example.
- the clutch 11 a is turned on again when the detected fin temperature or blown-air temperature is increased to 4° C., for example.
- the compressor capacity control for controlling a discharge capacity of the compressor can be performed so as to reduce the frost.
- the expansion valve 13 is provided for adjusting the flow amount of refrigerant on the downstream side of the radiator 12 such that a degree of superheat SH is a predetermined value (predetermined range).
- the superheat degree SH is represented by a difference between the superheat temperature and the saturation temperature of the refrigerant at the outlet of the first evaporator 15 .
- This adjusts the refrigerant flow amount into the second evaporator 18 on the low-temperature side to an appropriate value.
- frost on the second evaporator 18 can be detected and determined by the temperature sensor 40 so as to perform the frost prevention control. This can reduce the frost in the second evaporator 18 and/or prevent the frost from being formed on the first and second evaporators 15 and 18 due to the excessive supply of the refrigerant, thereby improving the operating ratio of the refrigerant cycle.
- FIG. 8 is a graph showing a relationship of a refrigeration operating efficiency with respect to a flow amount of refrigerant passing through the second evaporator 18 .
- the refrigeration operating efficiency is represented by a relationship of a stopped time period of the refrigerant cycle due to the detection of the temperature sensor 40 , with respect to a cycle operating time on the same air condition.
- the refrigerant flow ratio is a ratio of the refrigerant amount flowing into the second evaporator 18 to the total refrigerant amount in the refrigerant cycle. Note that the operating efficiency of the conventional cycle is set to 100 in FIG. 8 .
- the decrease in total refrigerant flow amount in the evaporator 18 improves resistance to frost, but inevitably leads to a decrease in cooling performance.
- the cooling operation property can be improved effectively over the entire range of flow amounts of the refrigerant passing through the second evaporator 18 .
- the smaller the cooling load that is, the lower the air temperature and humidity), or/and the smaller the thermal capacity of air to be heat exchanged, the smaller the necessary refrigerant amount. This causes excessive refrigerant on the side of the second evaporator 18 , so that the great cooling effect can be obtained in a cooling load range of 5 to 50° C. of air temperature and in a range of 20 to about 100% of relative humidity.
- the temperature sensor 40 is disposed at the part MC where the refrigerant flows upwardly from the lower tank portion 18 c of the second evaporator 18 .
- the lowest temperature area is the part MC in which the refrigerant flows upwardly from the lower tank portion 18 c in the second evaporator 18 . Accordingly, determination of an attachment position of the temperature sensor 40 can be easily performed during the control of frost prevention.
- the part MC is a lower area of the core portion of the second evaporator 18 , close to the lower tank portion 18 c.
- the first evaporator 15 and the second evaporator 18 are adapted to cool the air, which serves as a common heat-exchange medium.
- the first evaporator 15 and the second evaporator 18 are disposed so as to exchange heat between the refrigerant of the second evaporator 18 and the air after being heat-exchanged with the refrigerant of the first evaporator 15 . Because the temperature of the second evaporator 18 generally becomes lower, the air flowing from the first evaporator 15 can be effectively cooled.
- the ejector-type refrigerant cycle device includes the ejector 14 for sucking the refrigerant from the refrigerant suction port 14 b by the high-velocity refrigerant stream ejecting from the nozzle portion 14 a, which is adapted to decompress and expand the refrigerant.
- the refrigerant cycle device also includes the second evaporator 18 (heat exchanging portion) for evaporating the refrigerant to be drawn into the refrigerant suction port 14 b.
- the refrigerant cycle device further includes the temperature sensor 40 disposed at the part MC of the second evaporator 18 , in which the refrigerant flows from the lower side to the upper side to detect the frost of the second evaporator 18 .
- the integrated construction of the ejector 14 , the second evaporator 18 and the temperature sensor 40 can be handled as an integrated unit, thereby improving the handling properties in delivery and assembly.
- the reason why the temperature sensor 40 is provided at the part of the second evaporator 18 , at which the refrigerant rises up and flows from the lower side to the upper side is the following.
- the lowest temperature area of the second evaporator 18 is found to be the part MC where the refrigerant flow rises up and flows from the lower tank portion 18 c, as described above.
- the temperature sensor 40 can be attached to an optimal position of the second evaporator 18 , for control of the frost prevention.
- the ejector-type refrigerant cycle device includes the first evaporator 15 disposed on the upstream side of the air flow, the second evaporator 18 disposed on the downstream side of the air flow with respect to the first evaporator 15 , and the temperature sensor 40 for determining the frost.
- the first evaporator 15 allows the outflow refrigerant from the ejector 14 to evaporate
- the second evaporator 18 allows the refrigerant on the suction port side to be drawn into the refrigerant suction port 14 b of the ejector 14 to evaporate.
- the temperature sensor 40 is disposed in the second evaporator 18 .
- the first and second evaporators 15 and 18 , and the temperature sensor 40 can be integrally formed to be handled as an integrated unit, thereby improving the handling properties in delivery and assembly.
- the reason why the temperature sensor 40 is disposed in the second evaporator 18 is that the temperature of the second evaporator 18 is lower than the temperature of the first evaporator 15 .
- the temperature sensor 40 is disposed at the part MC in which the refrigerant flow rises up and the refrigerant flows from the lower tank portion 18 c of the second evaporator 18 . This is because the lowest temperature area is positioned at the part MC of the second evaporator 18 on the lower side in which the refrigerant flows upwardly from the lower tank portion 18 c. Accordingly, the temperature sensor 40 can be attached to an optimal position, such that the control of frost prevent for the second evaporator 18 can be suitably performed.
- the ejector 14 disposed on the upstream side of the refrigerant flow of the first evaporator 15 , and the throttle unit 17 disposed on the upstream side of the refrigerant flow of the second evaporator 18 are integrally mounted on the first evaporator 15 and the second evaporator 18 .
- any one of the ejector 14 and the throttle unit 17 may be integrally mounted on the first and second heat exchangers 15 and 18 , which are relatively large, so as to construct the integrated unit 20 .
- a mounting operation for mounting the ejector-type refrigerant cycle device on an attachment object such as a vehicle can be performed very efficiently.
- the integrated unit 20 because the integrated unit 20 is used, the length of each connection passage can be reduced in the integrated unit 20 of the refrigerant cycle device, thereby reducing the cost and space for mounting.
- integrated may include an integrated structure in which a part of a casing of the ejector 14 or the throttle unit 17 is shared with members, including the tank portions 15 b, 15 c, 18 b, 18 c of the first and second evaporators 15 and 18 .
- it may include integration of a relationship of connection, for example, strong connection using welding or the like, or weak connection using a clamp or a screw.
- the refrigerant flow path constructed by such integration can be embodied in various embodiments to be described in the following modified examples, and cannot be limited to this embodiment and the modified examples as described later.
- the ejector 14 , the first and second evaporators 15 and 18 , and the temperature sensor 40 are integrally constructed as one integrated unit 20 .
- the throttle unit 17 is not integrally constructed in the integrated unit 20 .
- the throttle unit 17 may be integrally constructed in the integrated unit 20 , like the above-described embodiment.
- FIG. 10 shows an integrated unit 20 B ( 20 ) of the first modification.
- a separator 15 e is disposed in the upper tank portion 15 b of the first evaporator 15 to partition the inner space of the upper tank portion 15 b into a left inner space C′ and a right inner space D′ such that the left space C′ occupies about one third of the inside of the upper tank portion 15 b and the right space D′ occupies about two thirds thereof.
- a separator 15 f is disposed in the lower tank portion 15 c of the first evaporator 15 to partition the inner space of the lower tank portion 15 c into a left inner space E′ and a right inner space F′ such that the left space E′ occupies about two thirds of the inside of the lower tank portion 15 c and the right space F′ occupies about one third thereof.
- Separators 18 e and 18 f are disposed in the upper tank portion 18 b of the second evaporator 18 to partition the inside of the upper tank portion 18 b into about three inner spaces G′, H′, and I′.
- a separator 18 g is disposed in the lower tank portion 18 c of the second evaporator 18 to partition the inner space of the lower tank portion 18 c into a left inner space J′ and a right inner space K′ such that the left space J′ occupies about two thirds of the inside of the lower tank portion 18 c and the right space K′ occupies about one third thereof.
- the second evaporator 10 is separated into a suction-side refrigerant evaporation portion 18 a and an outflow refrigerant evaporation portion 18 a ′ by the separators 18 e and 18 f.
- the inner space G′ of the upper tank portion 18 b of the second evaporator 18 is connected to the downstream side of the refrigerant branch passage 16 .
- the inner space F′ of the lower tank portion 15 c of the first evaporator 15 and the inner space K′ of the lower tank portion 18 c of the second evaporator 18 allow the refrigerant to pass therethrough via a connection hole (not shown) therebetween.
- the ejector 14 is disposed inside the upper tank portion 18 b of the second evaporator 18 such that the longitudinal direction of the ejector 14 is parallel to that of the upper tank portion 18 b.
- the nozzle portion 14 a of the ejector 14 is connected to the downstream side of the main passage 25 a as mentioned above.
- the refrigerant suction port 14 b is disposed in the inner space H′ of the upper tank portion 18 b disposed in the second evaporator 18 .
- the outlet of the diffuser portion 14 d is attached to be positioned in the inner space I′ of the upper tank portion 18 b.
- the refrigerant suction port 14 b is directly opened in the inner space H′ of the upper tank portion 18 b, and the outflow refrigerant flowing from the diffuser portion 14 d flows directly into the inner space I′ of the upper tank portion 18 b.
- the ejector 14 , the first evaporator 15 , the second evaporator 18 , and the respective tank portions 15 b to 18 c are completely integrated as one integrate unit 20 B, such that the first evaporator 15 is disposed on the upstream side of the air flow and the second evaporator 18 is disposed on the downstream side of the air flow.
- the ejector 14 is inserted to penetrate through holes (not shown) provided in the separators 18 e, 18 f from the end in the longitudinal direction of the upper tank portion 18 b of the second evaporator 18 and is attached and fixed by fixing means, such as screwing, after a brazing step of integrally brazing the first evaporator 15 and the second evaporator 18 .
- the ejector 14 and the separators 18 e, 18 f are air-tightly fixed via O-rings (not shown) so as to prevent the refrigerant from leaking from attachment portions between the ejector 14 and the separators 18 e, 18 f (through holes). Therefore, the inner spaces G′ and H′ of the upper tank portion 18 b, and the inner spaces H′ and I′ of the upper tank portion 18 b are not in communication with each other via the above-mentioned attachment portions (through holes).
- the refrigerant flow path of the entire integrated unit 20 B with the above-mentioned structure will be described below.
- the refrigerant on the downstream side of the main passage 25 a flows directly into the nozzle portion 14 a of the ejector 14 in the direction of arrow “aa”.
- the refrigerant passes through the ejector 14 (the nozzle portion 14 a, the mixing portion 14 c, and the diffuser portion 14 d, in this order) to be decompressed.
- the low-pressure refrigerant decompressed by the ejector 14 is collected in the inner space I′ of the upper tank portion 18 b of the second evaporator 18 .
- the refrigerant in the inner space I′ of the upper tank portion 18 b is distributed into the plurality of tubes 21 on the right side of the second evaporator 18 in FIG. 10 to flow downwardly as indicated by the arrow “bb”, and then to be collected in the inner space K′ of the lower tank portion 18 c of the second evaporator 18 .
- the inner space K′ is in communication with the inner space F′ of the lower tank portion 15 c of the first evaporator 15 , thus allowing the refrigerant to flow into the inner space F′.
- the refrigerant in the inner space F′ is distributed into the plurality of tubes 21 on the right side of the first evaporator 15 to flow upwardly as indicated by the arrow “cc”, and then to flow into the inner space D′ of the upper tank portion 15 b of the first evaporator 15 .
- the refrigerant flowing into the inner space D′ moves leftward in the inner space D′.
- the refrigerant moving leftward in the inner space D′ is distributed into the plurality of tubes 21 at the center area of the first evaporator 15 to flow downwardly as indicated by the arrow “dd”, and then to flow into the inner space E′ of the lower tank portion 15 c.
- the refrigerant flowing into the inner space E′ moves leftward in the inner space E′.
- the refrigerant moving leftward in the inner space E′ is distributed into the plurality of tubes 21 on the left side of the first evaporator 15 to flow upwardly as indicated by the arrow “ee”, and then to be collected in the inner space C′ of the upper tank portion 15 b.
- the refrigerant collected in the inner space C′ of the upper tank portion 15 b flows from the upper tank portion 15 b as indicated by the arrow “ff” to the suction side of the compressor 11 .
- the outflow refrigerant having passed though the outflow refrigerant evaporation portion 18 a ′ of the second evaporator 18 changes a flow direction twice (more than one time) in the first evaporator 15 while passing through the first evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area that is positioned on the left upper part of the first evaporator 15 in FIG. 10 .
- the refrigerant in the inner space G′ of the upper tank portion 18 b is distributed into the plurality of tubes 21 on the left side of the second evaporator 18 to flow downwardly in the direction of arrow “gg”, and then to flow into the inner space J′ of the lower tank portion 18 c of the second evaporator 18 .
- the refrigerant flowing into the inner space J′ moves rightward in the inner space J′ of the lower tank portion 18 c.
- the refrigerant moving rightward in the inner space J′ is distributed into the plurality of tubes 21 at the center area of the second evaporator 18 to flow upwardly as indicated by the arrow “hh”, and then to be collected in the inner space H′ of the upper tank portion 18 b.
- the refrigerant collected in the inner space H′ of the upper tank portion 18 b is drawn into the ejector 14 from the refrigerant suction port 14 b of the ejector 14 .
- the refrigerant passing through the suction-side refrigerant evaporation portion 18 a of the second evaporator 18 changes a flow direction once in the second evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of the first evaporator 15 .
- the refrigerant flowing into the suction-side refrigerant evaporation portion 18 a exchanges heat only at the area indicated by the arrows gg to hh of FIG. 10 , among the second evaporator 18 .
- the ratio of use of the second evaporator 18 on the downstream air side, which occupies the suction-side refrigerant evaporation portion 18 a, is about two thirds (about 70%) of the second evaporator 18 by arrangement and positioning of the separators 18 f and 18 g.
- the arrangement ratio between the suction-side refrigerant evaporation portion 18 a and the outflow refrigerant evaporation portion 18 a ′ in the second evaporator 18 on downwind side can be adjusted easily by arrangement and positioning of the separators 18 f and 18 g.
- the temperature sensor 40 is disposed at the part MC (on the lower side of the flow part indicated by the arrow “hh” in this modified example) in which the refrigerant flows upwardly from the lower tank portion 18 c of the second evaporator 18 , at a position close to the lower tank portion 18 c, like the above-mentioned embodiment. Furthermore, similarly to the above-described embodiment, the frost prevention control of the second evaporator 18 is performed by the controller 50 based on the signal detected by the temperature sensor 40 ( 40 A, 40 B).
- FIG. 11 is a perspective view showing an outline of the entire structure of the integrated unit 20 C, in which the basic structures of the first evaporator 15 and the second evaporator 18 are similar to those of the first modified example.
- the integrated unit 20 C of FIG. 11 differs from the integrated unit 20 B of the first modified example in arrangement and positioning of the separators disposed in the tank portions 15 b to 18 c, as well as in arrangement and positioning of the ejector 14 , and thus in the refrigerant flow path.
- a separator 15 e ′ is disposed in the upper tank portion 15 b of the first evaporator 15 to partition the inner space of the upper tank portion 15 b into a left inner space L′ and a right inner space M′ such that the left space L′ occupies about one half of the inside of the upper tank portion 15 b and the right space M′ occupies about one half thereof.
- No separator is disposed in the lower tank portion 15 c of the first evaporator 15 , in which one inner space N′ is formed.
- a separator 18 e ′ is disposed in the upper tank portion 18 b of the second evaporator 18 to partition the inner space of the upper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of the upper tank portion 18 b and the right space P′ occupies about one half thereof.
- No separator is disposed in the lower tank portion 18 c of the second evaporator 18 to construct one inner space Q′.
- the inner space O′ of the upper tank portion 18 b of the second evaporator 18 is connected to the downstream side of the refrigerant branch passage 16 .
- the ejector 14 is disposed inside the upper tank portion 18 b of the second evaporator 18 , the nozzle portion 14 a of the ejector 14 is connected to the downstream side of the main passage 25 a, and the refrigerant suction port 14 b is attached to be positioned in the inner space P′ of the upper tank portion 18 b. Therefore, the refrigerant suction port 14 b is directly opened in the inner space P′ of the upper tank portion 18 b.
- the outflow refrigerant flowing from the diffuser portion 14 d of the ejector 14 is allowed to flow into the inner space M′ of the upper tank portion 15 b of the first evaporator 15 via piping (not shown) disposed outside the upper tank portion 18 b. It is apparent that a passage for guiding the outflow refrigerant into the inner space M′ may be constructed in the upper tank portion 18 b. Also in the integrated unit 20 C, the ejector 14 is assembled to the inside of the upper tank portion 18 b of the second evaporator 18 , like the first modified example, after integrally connecting the first and second evaporators 15 , 18 and the tank portions 15 b, 18 c by brazing.
- the refrigerant flow path of the entire integrated unit 20 C with the above-mentioned structure will be described below.
- the refrigerant on the downstream side of the main passage 25 a flows directly into the nozzle portion 14 a of the ejector 14 as indicated by the arrow “aa” in FIG. 11 .
- the refrigerant passes through the ejector 14 to be decompressed.
- the low-pressure refrigerant decompressed by the ejector 14 flows into the inner space M′ of the upper tank portion 15 b of the first evaporator 15 via external piping of the upper tank portion 18 b.
- the refrigerant flowing into the inner space M′ is distributed into the plurality of tubes 21 on the right side of the first evaporator 15 to flow downwardly as indicated by the arrow “ii”, and then to flow into the inner space N′ of the lower tank portion 15 c of the first evaporator 15 .
- the refrigerant flowing into the inner space N′ moves leftward in the inner space N′ of the lower tank portion 15 c.
- the refrigerant moving leftward in the inner space N′ is distributed into the plurality of tubes 21 on the left side of the first evaporator 15 to flow upwardly as indicated by the arrow “jj”, and then to be collected in the inner space L′ of the upper tank portion 15 b.
- the refrigerant collected in the inner space L′ of the upper tank portion 15 b flows from the upper tank portion 15 b to the suction side of the compressor 11 as indicated by the arrow “ff”.
- the outflow refrigerant flowing out of the diffuser portion 14 d to pass through the first evaporator 15 changes a flow direction once in the first evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of the first evaporator 15 .
- the refrigerant flowing into the inner space O′ is distributed into the plurality of tubes 21 on the left side of the second evaporator 18 to flow downwardly as indicated by the arrow “kk”, and then to flow into the inner space Q′ of the lower tank portion 18 c of the second evaporator 18 .
- the refrigerant flowing into the inner space Q′ moves rightward in the inner space Q′ in FIG. 11 .
- the refrigerant moving rightward in the inner space Q′ of the lower tank portion 18 c of the second evaporator 18 is distributed into the plurality of tubes 21 on the right side of the second evaporator 18 to flow upwardly as indicated by the arrow “ll”, and then to be collected in the inner space P′ of the upper tank portion 18 b.
- the refrigerant collected in the inner space P′ is drawn from the refrigerant suction port 14 c of the ejector 14 into the ejector 14 .
- the suction-port side refrigerant passing through the second evaporator 18 changes a flow direction once in the second evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the right upper part of the second evaporator 18 .
- the second evaporator 18 constructs only the suction-side refrigerant evaporating portion 18 a, and not the outflow refrigerant evaporating portion 18 a ′ of first modified example of FIG. 10 .
- Other components have the same structures as those in the first modified example.
- the temperature sensor 40 (not shown) is disposed at the part MC in which the refrigerant flow flows upwardly from the lower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part as indicated by the arrow ll in this modified example), like the above-mentioned embodiments and modified examples.
- the part MC is located at a position close to the lower tank portion 18 c.
- the frost prevention control of the second evaporator 18 is performed by the controller 50 based on the signal detected by the temperature sensor 40 ( 40 A, 40 B).
- FIG. 12 is a perspective view showing an outline of the entire structure of the integrated unit 20 D. Also in the integrated unit 20 D, the ejector 14 , the first and second evaporators 15 and 18 , and the temperature sensor 40 are integrally constructed, like the integrated unit 20 B, 20 C.
- the basic structures of the first and second evaporators 15 and 18 of the integrated unit 20 D are the same as those of the first or second modified example.
- the integrated unit 20 D differs from the integrated unit 20 B, 20 C in arrangement and positioning of the separators disposed in the tank portions 15 b to 18 c and in arrangement and positioning of the ejector 14 .
- the third modified example differs from the first or second modified example in refrigerant flow path.
- no separator is disposed in the upper tank portion 15 b of the first evaporator 15 , so that one inner space R′ is formed in the upper tank portion 15 b.
- a separator 15 f is disposed in the lower tank portion 15 c of the first evaporator 15 to partition the inner space of the lower tank portion 15 c into a left inner space S′ and a right inner space T′ such that the left space S′ occupies about one half of the inside of the lower tank portion 15 c and the right space T′ occupies about one half thereof.
- a separator 18 e ′ is disposed in the upper tank portion 18 b of the second evaporator 18 to partition the inner space of the upper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of the upper tank portion 18 b and the right space P′ occupies about one half thereof.
- a separator 18 f ′ is disposed in the lower tank portion 18 c of the second evaporator 18 to partition the inner space of the lower tank portion 18 c into a left inner space U′ and a right inner space V′ such that the left space U′ occupies about one half of the inside of the lower tank portion 18 c and the right space V′ occupies about one half thereof.
- the inner space U′ of the lower tank portion 18 c of the second evaporator 18 is connected to the downstream side of the refrigerant branch passage 16 .
- the refrigerant can be circulated through the inner space T′ of the lower tank portion 15 c of the first evaporator 15 and the inner space V′ of the lower tank portion 18 c on the lower side of the second evaporator 18 via a communication hole (not shown) therebetween.
- the ejector 14 is disposed in the upper tank portion 18 b of the second evaporator 18 .
- the nozzle portion 14 a of the ejector 14 is connected to the downstream side of the main passage 25 a.
- the refrigerant suction port 14 b is positioned in the inner space O′ of the upper tank portion 18 b.
- the outlet of the diffuser portion 14 d is attached to be disposed in the inner space P′ of the upper tank portion 18 b.
- the refrigerant suction port 14 b is directly opened in the inner space O′ of the upper tank portion 18 b
- the outlet of the diffuser portion 14 d is directly opened in the inner space P′ of the upper tank portion 18 b.
- the ejector 14 is assembled to the inside of the upper tank portion 18 b of the second evaporator 18 after integrally connecting the first and second evaporators 15 and 18 and the tank portions 15 b and 18 c by brazing, like the above-mentioned embodiment.
- the refrigerant flow path of the entire integrated unit 20 D with the above-mentioned structure will be described below.
- the refrigerant on the downstream side of the main passage 25 a flows directly into the nozzle portion 14 a of the ejector 14 as indicated by the arrow “aa” in FIG. 12 .
- the refrigerant passes through the ejector 14 to be decompressed.
- the low-pressure refrigerant decompressed by the ejector 14 flows into the inner space P′ of the upper tank portion 15 b of the first evaporator 15 .
- the refrigerant flowing into the inner space P′ of the upper tank portion 18 b is distributed into the plurality of tubes 21 on the right side of the second evaporator 18 to flow downwardly as indicated by the arrow “mm”, and then to be collected in the inner space V′ of the lower tank portion 18 c of the second evaporator 18 . Since the inner space V′ of the lower tank portion 18 c communicates with the inner space T′ of the lower tank portion 15 c of the first evaporator 15 , the refrigerant flows into the inner space T′ of the lower tank portion 15 c from the inner space V′ of the lower tank portion 18 c.
- the refrigerant flowing into the inner space T′ is distributed into the plurality of tubes 21 on the right side of the first evaporator 15 to flow upwardly as indicated by the arrow “nn”, and then to flow into the inner space R′ of the upper tank portion 15 b.
- the refrigerant flowing into the inner space R′ moves leftward in the inner space R′ of the upper tank portion 15 b.
- the refrigerant moving leftward in the inner space R′ is distributed into the plurality of tubes 21 on the left side of the first evaporator 15 to flow downwardly as indicated by the arrow “oo”, and then to flow into the inner space S′ of the lower tank portion 15 c of the first evaporator 15 .
- the refrigerant flowing into the inner space S′ flows from the lower tank portion 15 c to the suction side of the compressor 11 as indicated by the arrow “pp”.
- the outflow refrigerant flowing from the diffuser portion 14 d to pass through the first evaporator 15 changes a flow direction once in the first evaporator 15 and in the second evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left lower part of the first evaporator 15 .
- the refrigerant flowing into the inner space U′ is distributed into the plurality of tubes 21 on the left side of the second evaporator 18 to flow upwardly as indicated by the arrow “qq”, and then to be collected into the inner space O′ of the upper tank portion 18 b.
- the refrigerant collected in the inner space O′ of the upper tank portion 18 b is drawn from the refrigerant suction port 14 c of the ejector 14 to the inside of the ejector 14 .
- the refrigerant is brought into the vapor phase having the appropriate superheat degree at the superheat area on the upper left portion of the second evaporator 18 .
- the suction-port side refrigerant to be drawn into the refrigerant suction port 14 c of the ejector 14 exchanges heat in the second evaporator 18 only at the area indicated by the arrow “qq” of FIG. 12 .
- the ratio of the suction-side refrigerant evaporation portion 18 a is about one half (about 50%) of the second evaporator 18
- the ratio of the outflow refrigerant evaporation portion 18 a ′ is about one half (about 50%) of the second evaporator 18 , by arrangement and positioning of the separators 18 e ′ and 18 f.
- the throttle unit 17 of this modified example is controlled such that a flow ratio Ge/G of a flow amount Ge of the suction-port side refrigerant to a flow amount G of the refrigerant discharged from the compressor 11 is about 0.5.
- Other components are the same as those of the first modified example.
- the temperature sensor 40 (not shown) is positioned at the part MC in which the refrigerant flows upwardly from the lower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part indicated by the arrow “qq” in this modified example), at a position close to the lower tank portion 18 c, like the above-mentioned embodiment and modified examples.
- FIG. 13 is a perspective view showing an outline of the entire structure of the integrated unit 20 E. Also in the integrated unit 20 E, the ejector 14 , the first and second evaporators 15 and 18 , and the temperature sensor 40 are integrally constructed, like the integrated unit 20 B.
- the basic structures of the first and second evaporators 15 and 18 of the integrated unit 20 E are the same as those of the integrated unit 20 B of the first modified example.
- the integrated unit 20 E differs from the integrated unit 20 B in arrangement and positioning of the separators disposed in the tank portions 15 b to 18 c and in arrangement and positioning of the ejector 14 .
- this modified example differs from the first modified example in refrigerant flow path.
- a separator 15 e ′′ is disposed in the upper tank portion 15 b of the first evaporator 15 to partition the inner space of the upper tank portion 15 b into a left inner space W′ and a right inner space X′ such that the left space W′ occupies about two thirds of the inside of the upper tank portion 15 b and the right space X′ occupies about one third thereof.
- a separator 15 f ′′ is disposed in the lower tank portion 15 c of the first evaporator 15 to partition the inner space of the lower tank portion 15 c into a left inner space Y′ and a right inner space Z′ such that the left space Y′ occupies about one third of the inside of the lower tank portion 15 c and the right space Z′ occupies about two thirds thereof.
- a separator 18 e ′ is disposed in the upper tank portion 18 b of the second evaporator 18 to partition the inner space of the upper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of the upper tank portion 18 b and the right space P′ occupies about one half thereof.
- No separator is disposed in the lower tank portion 18 c of the second evaporator 18 , in which one inner space Q′ is formed. Note that in this modified example, the inner space P′ of the upper tank portion 18 b of the second evaporator 18 is connected to the downstream side of the refrigerant branch passage 16 .
- the ejector 14 is disposed inside the upper tank portion 18 b of the second evaporator 18 , like the first modified example.
- the nozzle portion 14 a of the ejector 14 is connected to the downstream side of the main passage 25 a, and the refrigerant suction port 14 b is disposed in the inner space O′ of the upper tank portion 18 b.
- the outlet of the diffuser portion 14 d is attached to be positioned in an upper space part of the inner space P′ of the upper tank portion 18 b.
- the refrigerant suction port 14 b is directly opened in the inner space O′ of the upper tank portion 18 b, and further the outlet of the diffuser portion 14 d is directly opened in the inner space P′ of the upper tank portion 18 b.
- the refrigerant on the downstream side of the refrigerant branch passage 16 and the refrigerant flowing from the diffuser portion 14 d flow into the inner space P′.
- the inner space P′ is divided into two independent spaces, that is, a space into which the refrigerant on the downstream side of the refrigerant branch passage 16 flows and a space into which the refrigerant flowing from the diffuser portion 14 d flows.
- a partition plate not shown is provided for vertically dividing the inner space P′ into the two spaces.
- the refrigerant flowing from the diffuser portion 14 d flows into the upper space, and the refrigerant on the downstream side of the refrigerant branch passage 16 flows into the lower space.
- the refrigerant can flow through this upper space and the inner space X′ of the upper tank portion 15 b of the first evaporator 15 via a communication hole not shown.
- a passage or the like may be provided inside the upper tank portion 18 b to allow the refrigerant flowing from the diffuser portion 14 d to flow directly into the inner space X′ and not into the inner space P′ without dividing the inner space P′ into the two independent spaces.
- the ejector 14 is assembled to the inside of the upper tank portion 18 b of the second evaporator 18 after integrally connecting the first and second evaporators 15 , 18 and the tank portions 15 b to 18 c by brazing, like the first modified example.
- the refrigerant flow path of the entire integrated unit 20 E with the above-mentioned structure will be described below.
- the refrigerant on the downstream side of the main passage 25 a flows directly into the nozzle portion 14 a of the ejector 14 as indicated by the arrow “aa”.
- the refrigerant passes through the ejector 14 to be decompressed.
- the low-pressure refrigerant decompressed flows into the inner space X′ of the upper tank portion 15 b of the first evaporator 15 via the upper space of the inner space P′ of the upper tank portion 18 b of the second evaporator 18 .
- the refrigerant flowing into the inner space X′ is distributed into the plurality of tubes 21 on the right side of the first evaporator 15 to flow downwardly as indicated by the arrow “rr”, and then to flow into the inner space Z′ of the lower tank portion 15 c of the first evaporator 15 .
- the refrigerant flowing into the inner space Z′ moves leftward in the inner space Z′.
- the refrigerant moving leftward in the inner space Z′ is distributed into the plurality of tubes 21 at the center area of the first evaporator 15 to flow upwardly as indicated by the arrow “ss”, and then to flow into the inner space W′ of the upper tank portion 15 b of the first evaporator 15 .
- the refrigerant flowing into the inner space W′ of the upper tank portion 15 b moves leftward inside the inner space W′.
- the refrigerant moving leftward inside the inner space W′ is distributed into the plurality of tubes 21 on the left side of the first evaporator 15 to flow downwardly as indicated by the arrow tt, and then to be collected in the inner space Y′ of the lower tank portion 15 c of the first evaporator 15 .
- the refrigerant collected in the inner space Y′ flows from the lower tank portion 15 c to the suction side of the compressor 11 as indicated by the arrow “pp”.
- the outflow refrigerant flowing out of the diffuser portion 14 d to pass thorough the first evaporator 15 changes a flow direction twice (more than one time) in the first evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left lower part of the first evaporator 15 .
- the low-pressure refrigerant on the downstream side of the refrigerant branch passage 16 depressed by the throttle unit 17 flows into a lower space part of the inner space P′ of the upper tank portion 18 b of the second evaporator 18 .
- the refrigerant flowing into the lower space part of the inner space P′ is distributed into the plurality of tubes 21 on the right side of the second evaporator 18 to flow downwardly as indicated by the arrow “uu”, and then to flow into the inner space Q′ of the lower tank portion 18 c.
- the refrigerant flowing into the inner space Q′ moves leftward inside the inner space Q′.
- the refrigerant moving leftward in the inner space Q′ is distributed into the plurality of tubes 21 on the left side of the second evaporator 18 to flow upwardly as indicated by the arrow “vv” and then to be collected into the inner space O′.
- the refrigerant collected in the inner space O′ is drawn into the ejector 14 from the refrigerant suction port 14 c of the ejector 14 .
- the refrigerant is brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of the second evaporator 18 .
- the refrigerant passes through the integrated unit 20 E as mentioned above, and thus the second evaporator 18 constructs only the suction-side refrigerant evaporation portion 18 a and not the outflow refrigerant evaporating portion 18 a ′.
- Other components have the same structures as those in the first modified example.
- the temperature sensor 40 not shown is disposed at the part MC where the refrigerant flows upwardly from the lower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part as indicated by the arrow “vv” in this modified example), at a position close to the lower tank portion 18 c, like the above-mentioned embodiment and modified examples.
- exemplary fixing means of the ejector 14 is the screwing, but any other fixing means that may not be thermally deformed can be used instead of the screwing.
- fixing means such as caulking or adhesion, may be used to fix the ejector 14 .
- the present invention may be applied to a vapor-compression supercritical cycle using refrigerant whose high pressure does not exceed the critical pressure, such as a Freon-based or HC-based refrigerant
- the critical pressure such as carbon dioxide (CO 2 ).
- the compressor discharge refrigerant only radiates heat in the supercritical state using the radiator 12 in the supercritical cycle, the refrigerant is not condensed, and thus the liquid receiver 12 a disposed on the high-pressure side cannot exhibit a vapor-liquid separation effect of the refrigerant and a storage effect of the excessive liquid refrigerant.
- the supercritical cycle may employ an accumulator (not shown) constructing a low-pressure side vapor-liquid separator disposed on the refrigerant outlet side of the first evaporator 15 .
- the throttle unit 17 may be constructed of a fixed throttle, such as a capillary tube or an orifice.
- the throttle unit 17 may be constructed of an electric control valve whose valve opening degree (opening degree of throttle passage) is adjustable by an electric actuator.
- the throttle unit 17 may be constructed of a combination of a fixed throttle, such as a capillary tube or a fixed throttle hole, and an electromagnetic valve.
- the ejector 14 is a fixed ejector with a fixed nozzle portion 14 a whose passage area is constant.
- the ejector 14 may be a variable ejector having a variable nozzle portion whose passage area is adjustable.
- the variable nozzle portion may be constructed of a mechanism which is adapted to adjust a nozzle passage area by controlling the position of a needle inserted into a passage of the variable nozzle portion by an electric actuator.
- a vehicle compartment space or a freezer and refrigerator space of a freezer car serves as a space to be cooled by the first and second evaporator 15 and 18 .
- the present invention is not limited to such a vehicle space, and can be used for various refrigerant cycle devices, including stationary one.
- the thermal expansion valve 13 and the temperature sensing portion 13 a are independently provided from the integrated unit 20 of the ejector-type refrigerant cycle device, as shown in FIG. 1 .
- the thermal expansion valve 13 and the temperature sensing portion 13 a may be integrally assembled to the integrated unit 20 of the ejector-type refrigerant cycle device.
- the thermal expansion valve 13 and the temperature sensing portion 13 a can be accommodated in the first connection block 23 of the integrated unit 20 .
- the refrigerant inlet 25 is located between the liquid receiver 12 a and the thermal expansion valve 13
- the refrigerant outlet 26 is located between a passage part with the temperature sensing portion 13 a set therein and the compressor 11 .
- the temperature sensor 40 can be located to detect any one of its fin temperature and its tube temperature so as to detect the frost of the second evaporator 18 , and can be located to detect an air temperature immediately after passing through the second evaporator 18 so as to detect the frost of the second evaporator 18 . Even in this case, the controller 50 can perform the frost prevention control in accordance with the temperature detected by the temperature sensor 40 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A refrigerant cycle device includes an ejector having a nozzle portion for decompressing refrigerant and a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant stream jetted from the nozzle portion, and a refrigerant branch passage branched from an upstream side of the nozzle portion in a refrigerant flow such that refrigerant flows into the refrigerant suction port through the refrigerant branch passage. Furthermore, a first heat exchanger is disposed to evaporate refrigerant flowing out of the ejector, a second heat exchanger is disposed in the refrigerant branch passage to evaporate refrigerant, and a temperature sensor is located to detect a temperature so as to detect a frost in the second heat exchanger. In addition, a controller performs a frost prevention control for reducing the frost in the second heat exchanger, in accordance with the temperature detected by the temperature sensor.
Description
- This application is based on Japanese Patent Application No. 2006-165106 filed on Jun. 14, 2006, the contents of which are incorporated herein by reference in its entirety.
- The present invention relates to a refrigerant cycle device that includes an ejector serving as refrigerant decompression means and refrigerant circulation means, and a plurality of evaporators. For example, the evaporator is suitable to an air conditioner for a vehicle, or a refrigeration unit for a vehicle for freezing and refrigerating goods mounted on the vehicle. More particularly, the present invention relates to a heat-exchanger integrated unit with a temperature sensor for a refrigerant cycle device having an ejector.
- JP-A-2001-74388 (corresponding to U.S. Pat. No. 6,449,979) discloses a refrigerant cycle device that includes a first evaporator connected to a downstream side of an ejector, and a second evaporator connected to a refrigerant suction port of the ejector. In the refrigerant cycle device, an evaporation temperature of refrigerant in the second evaporator is lower than that in the first evaporator.
- The first and second evaporators are adapted to cool a common space to be cooled, and the first evaporator is disposed on the upstream side in the flow direction of air, while the second evaporator is disposed on the downstream side in the flow direction of air. Thus, the refrigerant cycle device is constructed by combining the first evaporator on the refrigerant downstream side of the ejector and the second evaporator on the refrigerant suction side of the ejector, thereby cooling the common space to be cooled.
- JP-A-2005-308384 (corresponding to US 2005/0268644 A1) discloses an evaporator for allowing refrigerant to flow snaking through tubes and tank portions which are arranged in the evaporator in even rows in the flow direction of external fluid.
- Furthermore, in a conventional vapor-compression refrigerant cycle device, when a load to be cooled is small and the temperature of an evaporator is decreased, frost (frosting) occurs on the evaporator. As a result, a cooling function is not performed effectively. For this reason, a contact type fin temperature sensor is inserted into an appropriate portion of a fin of the evaporator to detect the surface temperature of the fin. Alternatively, a non-contact type air temperature sensor is used to detect the temperature of air on the post-evaporator side. In this case, a compressor is intermittently operated so as to prevent the formation of the frost on the evaporator.
- However, the distribution of refrigerant and air velocity always becomes nonuniform in the evaporator. In the conventional method, the temperature sensor cannot be attached to any position of the evaporator. At this time, the higher the temperature of a detection point of the temperature sensor, the more the timing of stopping the compressor is delayed, resulting in an excess amount of supply of the refrigerant, which leads to frosting of the evaporator. Accordingly, air cannot flow downwind smoothly due to the frost, and thus the cooling cannot be performed sufficiently. In this case, the air temperature sensor senses high air temperature with the formation of the frost, and continues rotating the compressor, which may lead to breakage of the cycle or failure of the compressor. Although the fin temperature sensor can control such a condition, the cycle cannot be activated until the frosted part is melted, resulting in decrease in cooling operating efficiency.
- For this reason, an appropriate attachment position is required to be determined by various tests for every type evaporator such that the temperature sensor is attached to a position where the fin temperature or blown-air temperature of the evaporator becomes lowest.
- In view of the foregoing problems, it is an object of the present invention to provide a refrigerant cycle device in which a frost prevention control can be effectively performed.
- It is another object of the present invention to provide a heat-exchanger integrated unit for a refrigerant cycle device, in which a temperature sensor used for a frost prevention control can be easily attached at a suitable position of a heat exchanger.
- According to a first example of the present invention, a refrigerant cycle device includes a compressor for sucking and compressing refrigerant, a radiator located to cool high-pressure refrigerant discharged from the compressor, a refrigerant adjusting unit located to adjust a refrigerant amount flowing from the radiator to a downstream side such that a super-heating degree of refrigerant to be sucked to the compressor approaches to a predetermined degree, an ejector that includes a nozzle portion for decompressing refrigerant flowing from the refrigerant adjusting unit and a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant stream jetted from the nozzle portion, a refrigerant branch passage that is branched from an upstream side of the nozzle portion in a refrigerant flow such that refrigerant flows into the refrigerant suction port through the refrigerant branch passage, a first heat exchanger disposed to evaporate refrigerant flowing out of the ejector, a second heat exchanger disposed in the refrigerant branch passage to evaporate refrigerant to be drawn into the refrigerant suction port, a temperature sensor located to detect a temperature so as to detect a frost in the second heat exchanger, and a controller which performs a frost prevention control to reduce the frost in the second heat exchanger in accordance with the temperature detected by the temperature sensor. Accordingly, it is possible to reduce and prevent frost generated on the second heat exchanger when being used as an evaporator. Furthermore, because the refrigerant adjusting unit is located to adjust a refrigerant amount flowing from the radiator to a downstream side such that a super-heating degree of refrigerant to be sucked to the compressor approaches to a predetermined degree, operation efficiency of the refrigerant cycle device can be effectively improved.
- For example, the second heat exchanger includes a plurality of tubes in which refrigerant flows, and upper and lower tanks located at upper and lower sides of the plurality of tubes to distribute refrigerant into or collect the refrigerant from the plurality of tubes. In this case, the temperature sensor is located at a predetermined position of the second heat exchanger, at which refrigerant flows upwardly from the lower tank.
- The controller can reduces a discharge capacity of refrigerant discharged from the compressor during the frost prevention control, or can stop operation of the compressor during the frost prevention control. Furthermore, the temperature sensor can be located to detect a temperature of air immediately after passing through the second heat exchanger, or can be located to detect a temperature of one of fins and tubes of the second heat exchanger. Furthermore, the predetermined position may be set close to the lower tank.
- According to another example of the present invention, a heat-exchanger integrated unit for a refrigerant cycle device includes a heat exchanger for evaporating refrigerant, an ejector that includes a nozzle portion for decompressing refrigerant and a refrigerant suction port from which refrigerant from the heat exchanger is drawn by a high-speed refrigerant flow jetted from the nozzle portion, and a temperature sensor for detecting a temperature so as to detect a frost in the heat exchanger. Furthermore, the temperature sensor is located in the heat exchanger at a predetermined position at which refrigerant flows upwardly from below. Therefore, when the heat exchanger is used as an evaporator, frost generated on the heat exchanger can be suitably reduced by using the temperature detected by the temperature sensor.
- According to another example of the present invention, a heat-exchanger integrated unit for a refrigerant cycle device includes a first heat exchanger located to perform heat exchange between refrigerant and a heat-exchanging medium, a second heat exchanger located downstream from the first heat exchanger in a flow direction of the heat-exchanging medium to perform heat exchange between refrigerant and the heat-exchanging medium flowing from the first heat exchanger, and a temperature sensor located to detect a temperature of the second heat exchanger so as to detect a frost in the second heat exchanger. Furthermore, the first heat exchanger is located to evaporate refrigerant flowing out of an ejector of the refrigerant cycle device, and the second heat exchanger has at least a suction-side heat exchanging portion that is located to evaporate refrigerant to be drawn into a refrigerant suction port of the ejector, from which refrigerant is drawn into the ejector by a high-speed refrigerant stream jetted from the nozzle portion. Because the temperature sensor is located to detect the temperature of the second heat exchanger having a refrigerant temperature lower than that of the first heat exchanger, front can be easily detected using the temperature sensor, thereby effectively reducing and preventing front generated on the second heat exchanger.
- Additional objects and advantages of the present invention will be more readily apparent from the following detailed description of preferred embodiments when taken together with the accompanying drawings. In which:
-
FIG. 1 is a schematic diagram of an ejector-type refrigerant cycle device of one embodiment to which the present invention is applied; -
FIG. 2 is a perspective view showing a schematic construction of a heat-exchanger integrated unit for the ejector-type refrigerant cycle device ofFIG. 1 ; -
FIG. 3 is a longitudinal sectional view of an upper tank portion of the integrated unit ofFIG. 2 ; -
FIG. 4 is a lateral sectional view of a part of the upper tank portion of the integrated unit ofFIG. 2 ; -
FIG. 5A is a perspective view of a fin temperature sensor, andFIG. 5B is a partial sectional view showing the structure of a sensor portion of the fin temperature sensor ofFIG. 5A ; -
FIG. 6 is a perspective view of an air temperature sensor; -
FIG. 7 is a diagram of temperature distribution at a second evaporator when being viewed from the downstream side of an air flow; -
FIG. 8 is a graph representing a relationship of a refrigeration operating efficiency with respect to a flow ratio of refrigerant passing through the second evaporator; -
FIG. 9 is a schematic diagram of an ejector-type refrigerant cycle device of a modified example ofFIG. 1 of the present invention; -
FIG. 10 is a perspective view showing a heat-exchanger integrated unit according to a first modified example of the embodiment of the present invention; -
FIG. 11 is a perspective view showing a heat-exchanger integrated unit according to a second modified example of the embodiment of the present invention; -
FIG. 12 is a perspective view showing a heat-exchanger integrated unit according to a third modified example of the embodiment of the present invention; and -
FIG. 13 is a perspective view showing a heat-exchanger integrated unit according to a fourth modified example of the embodiment of the present invention. - Reference will now be made to preferred embodiments of an ejector-type refrigerant cycle device and a heat-exchanger integrated unit for the ejector-type refrigerant cycle device according to the present invention.
- In order to constitute the refrigerant cycle device including an ejector, the heat-exchanger integrated unit is connected to other components of the refrigerant cycle device, e.g., a radiator and a compressor, via piping. The heat-exchanger integrated unit of this example is used in applications for cooling air to serve as indoor equipment. The heat-exchanger integrated unit of another example can also be used as outdoor equipment.
- In an ejector-type
refrigerant cycle device 10 of the embodiment, acompressor 11 for sucking and compressing refrigerant is rotatably driven by an engine for vehicle running (not shown) via an electromagnetic clutch 11 a, a belt, and the like. - As the
compressor 11, may be used either of a variable displacement compressor for being capable of adjusting a refrigerant discharge capacity depending on a change in compression capacity, or a fixed displacement compressor for adjusting a refrigerant discharge capacity by changing an operating efficiency of the compressor by intermittent connection of an electromagnetic clutch 11 a. The electromagnetic clutch 11 a shown inFIG. 1 is controlled by an output from a controller (ECU, control means) 50 to be intermittently connected. When thecompressor 11 is an electric compressor, thecompressor 11 can adjust its refrigerant discharge capacity by adjustment of the number of revolutions of an electric motor. - A radiator 12 (refrigerant cooler) is disposed on a refrigerant discharge side of the
compressor 11. Theradiator 12 exchanges heat between high-pressure refrigerant discharged from thecompressor 11 and the outside air (i.e., air outside a vehicle compartment) blown by a cooling fan not shown to cool the high-pressure refrigerant. In this embodiment, refrigerant whose high pressure does not exceed the critical pressure, such as a Freon-based or HC-based refrigerant, is used to form a vapor-compression subcritical cycle. In this case, theradiator 12 serves as a condenser for cooling and condensing the refrigerant. - A
liquid receiver 12 a is provided at an outlet side of theradiator 12. Theliquid receiver 12 a has a vertically oriented tank-like shape to be well known, and serves as a liquid/vapor separator for separating the refrigerant into liquid and vapor phases to store the excess liquid refrigerant in the refrigerant cycle. The liquid refrigerant is guided to flow out of the lower part of the tank-shaped inside at the outlet of theliquid receiver 12 a. Theliquid receiver 12 a is integrally formed with theradiator 12 in this example. - The
radiator 12 may have the known structure including a heat exchanging portion for condensation disposed on the upstream side of refrigerant flow, theliquid receiver 12 a for receiving refrigerant introduced from the heat exchanging portion for condensation to separate the refrigerant into liquid and vapor phases, and a heat exchanging portion for supercooling of the saturated liquid refrigerant from theliquid receiver 12 a. Athermal expansion valve 13 is disposed at an outlet side of theliquid receiver 12 a. Thethermal expansion valve 13 serves as adjustment means for adjusting an amount of the liquid refrigerant from theliquid receiver 12 a, and has atemperature sensing portion 13 a disposed in a passage on the suction side of thecompressor 11. - The
thermal expansion valve 13 detects a degree of superheat SH of the refrigerant on the suction side of thecompressor 11 based on the temperature and pressure of the suction side refrigerant of the compressor 11 (i.e., refrigerant on the outlet side of the evaporator 15), and adjusts a degree of opening of its valve (refrigerant flow amount) such that the degree of superheat SH of the compressor suction-side refrigerant is a predetermined value, as is known in general. - An
ejector 14 is disposed at an outlet side of thethermal expansion valve 13. Theejector 14 serves as decompression means for decompressing the refrigerant, and also as refrigerant circulation means (kinetic vacuum pump) for circulating the refrigerant by a suction action (entrainment action) of a refrigerant flow ejecting at high velocity. - The
ejector 14 includes anozzle portion 14 a that decreases the sectional area of passage of refrigerant having passed through the expansion valve 13 (intermediate-pressure refrigerant) so as to reduce the pressure of the refrigerant and to expand the refrigerant. Theejector 14 also includes arefrigerant suction port 14 b that is arranged in the same space as a refrigerant ejection port of thenozzle portion 14 a so as to suck the vapor-phase refrigerant from a second evaporator (a second heat exchanger, a second heat exchanging portion) 18 to be described later. - A mixing
portion 14 c is provided on a downstream side of thenozzle portion 14 a and therefrigerant suction port 14 b to mix the high-velocity refrigerant flow from thenozzle portion 14 a with the suction refrigerant drawn into therefrigerant suction port 14 b from thesecond evaporator 18. Adiffuser portion 14 d serving as a booster (pressure-increasing portion) is arranged on the downstream side of the refrigerant flow of the mixingportion 14 c. Thediffuser portion 14 d is formed in such a shape to gradually increase the passage area of the refrigerant, and has an effect of reducing the velocity of the refrigerant flow to increase the refrigerant pressure, that is, an effect of converting the velocity energy of the refrigerant to the pressure energy thereof. - A
first evaporator 15 is connected to a refrigerant outlet side of thediffuser portion 14 d of theejector 14, and a refrigerant outlet of thefirst evaporator 15 is connected to the refrigerant suction side of thecompressor 11. In contrast, arefrigerant branch passage 16 is branched from the inlet side of the ejector 14 (i.e., an intermediate part between the outlet side of thethermal expansion valve 13 and the inlet side of thenozzle 14 a of the ejector 14). Therefrigerant branch passage 16 has the downstream side thereof connected to therefrigerant suction port 14 b of theejector 14. A point “zz” inFIG. 1 indicates a branch point of therefrigerant branch passage 16. - A
throttle unit 17 is disposed in therefrigerant branch passage 16, and thesecond evaporator 18 is disposed on a downstream side of the refrigerant flow away from thethrottle unit 17. Thethrottle unit 17 is decompression means serving to exhibit an adjustment effect of the refrigerant flow ratio into thesecond evaporator 18. Specifically, thethrottle unit 17 is constructed of, for example, a capillary tube, or an orifice. - In this embodiment, the first and
second evaporators unit 20 with the following structure. For example, the twoevaporators electric blower 19 blows air (i.e., air to be cooled) through an air passage formed in the air conditioning case in the direction of arrow. The blown air of theelectric blower 19 is cooled by the twoevaporators electric blower 19 is an electric fan driven by amotor 19 a. Themotor 19 a is rotatably driven by a control voltage output from thecontroller 50. - The cold air cooled by the two
evaporators evaporators refrigerant cycle device 10 of this embodiment is used for a refrigerant cycle device for vehicle air conditioning, a space in the compartment of the vehicle is the space to be cooled. When the ejector-typerefrigerant cycle device 10 of this embodiment is used for a refrigerant cycle device for a freezer car, a freezer and refrigerator space of the freezer car is a space to be cooled. - The
first evaporator 15, which is connected to a main flow path on the downstream side of theejector 14, is disposed on the upstream side of the air flow, and thesecond evaporator 18, which is connected to therefrigerant suction port 14 b of theejector 14, is disposed on the downstream side of the air flow. Atemperature sensor 40, which will be described later, is disposed in thesecond evaporator 18 on a downwind side to serve as a detection member for detecting frost (frosting) occurring on the twoevaporators temperature sensor 40 is input to thecontroller 50, whereby the control of frost prevention (i.e., frost prevention control) is performed by thecontroller 50 according to the temperature signal as described later. - In this embodiment, the
ejector 14, the first andsecond evaporators throttle unit 17, and thetemperature sensor 40 are assembled as one integrated unit 20 (heat-exchanger integrated unit). Now, concrete examples of thisintegrated unit 20 will be described with reference toFIGS. 2 to 6 .FIG. 2 is a perspective view showing an outline of the entire structure of this integrated unit 20 (20A).FIG. 3 is a longitudinal (lengthwise) sectional view of theupper tank portions second evaporators FIG. 4 is a lateral sectional view of theupper tank portion 18 b of thesecond evaporator 18. - Now, an example of the integrated structure including the two
evaporators FIG. 2 . In the example shown inFIG. 2 , the twoevaporators first evaporator 15 constitutes an upstream side area of the air flow in the one heat exchanger structure, and thesecond evaporator 18 constitutes a downstream side area of the air flow in the one heat exchanger structure. - The up, down, left, and right arrows in
FIG. 2 respectively indicate the following. That is, the side of thesecond evaporator 18 on which theejector 14 is disposed corresponds to the up direction, the side of thesecond evaporator 18 on which theejector 14 is not disposed corresponds to the down direction, the upstream side of thenozzle portion 14 a of theejector 14 corresponds to the left direction, and the downstream side of thediffuser portion 14 d of theejector 14 corresponds to the right direction, when being viewed from the downstream side of the flow direction of the blown air. The up, down, left, and right directions in the following description are the same as those inFIG. 2 . - The
first evaporator 15 and thesecond evaporator 18 have the same basic structure, each including heat-exchange core portion tank portions exchange core portion exchange core portion tubes 21 extending vertically. Between the plurality oftubes 21, a passage is formed through which a heat-exchanged medium, for example, air, passes in this embodiment.Fins 22 are disposed between thesetubes 21, and brazed to thetubes 21. - Each of the heat-
exchange core portions tubes 21 and thefins 22. Thesetubes 21 andfins 22 are alternately laminated in the lateral direction of the heat-exchange core portions fins 22 may be employed. AlthoughFIG. 2 shows only a part of the laminated structure including thetubes 21 and thefins 22, the laminated structure including thetubes 21 and thefins 22 may be formed over the entire areas of the heat-exchange core portions electric blower 19 passes through voids of the laminated structure. - The
tube 21 forms therein a refrigerant passage, and is constructed of a flat tube having a flat section extending along the air flow direction. Thefin 22 is a corrugated fin formed by bending a thin plate in a wave-like shape, and is connected to the flat outer surface of thetube 21 to expand an air side heat-transmission area. Thetubes 21 of the heat-exchange core portion 15 a and thetubes 21 of the heat-exchange core portion 18 a respectively construct the refrigerant passages that are independent from each other. Thetank portions first evaporator 15, and thetank portions second evaporator 18 construct the refrigerant passage spaces that are independent from each other. - Both the up and down ends of the
tube 21 of the heat-exchange core portion 15 a are inserted into thetank portions first evaporator 15. Thetank portions tube 21 are made in communication with the inner spaces of thetank portions tube 21 of the heat-exchange core portion 18 a are inserted into thetank portions second evaporator 18. Thetank portions tube 21 are made in communication with the inner spaces of thetank portions - Thus, the
tank portions respective tubes 21 of the heat-exchange core portions tubes 21. The twoupper tank portions lower tank portions - Alternatively, the two
upper tank portions lower tank portions integrated unit 20A(20). Aluminum which is a metal having excellent thermal conductivity and brazing property is suitable as specific materials of components of the evaporator, including thetube 21, thefin 22, and thetank portions second evaporators - In this embodiment, the
throttle unit 17 is constructed of first and second connection blocks 23 and 24 of the refrigerant passages shown inFIG. 3 and the capillary tube, and is integrally assembled to the first andsecond evaporators ejector 14 has fine passages formed in thenozzle portion 14 a with high accuracy, if theejector 14 is brazed, thenozzle portion 14 a may be thermally deformed due to the high temperature in brazing (brazing temperature of aluminum: about 600 degrees). This cannot keep the shape and dimension of the passage in thenozzle portion 14 a according to a predetermined design. - Thus, in this embodiment, after integrally brazing the first and
second evaporators throttle unit 17, theejector 14 is assembled to the integrally brazed member. Thethrottle unit 17 and the first and second connection blocks 23, 24 are formed of aluminum material, like the evaporator components. - The
first connection block 23, as shown inFIG. 3 , is brazed and fixed to one end side in the longitudinal direction of each of theupper tank portions second evaporators first connection block 23 forms arefrigerant inlet 25 and arefrigerant outlet 26 of theintegrated unit 20 shown inFIG. 1 . Therefrigerant inlet 25 is branched into amain passage 25 a serving as a first passage directed to the inlet side of thenozzle 14 a of theejector 14, and thebranch passage 16 serving as a second passage directed to the inlet side of thethrottle unit 17 at a point (e.g., midpoint) of thefirst connection block 23 in the thickness direction of thefirst connection block 23. - The
branch passage 16 of thefirst connection block 23 corresponds to an inlet part of the branch passage16 shown inFIG. 1 . Therefore, the branch point z ofFIG. 1 is located inside thefirst connection block 23. In contrast, therefrigerant outlet 26 is constructed by one simple passage hole (a circular hole and the like) penetrating through thefirst connection block 23 in the thickness direction. Thebranch passage 16 of thefirst connection block 23 is tightly connected to one end of the throttle unit 17 (left end shown inFIGS. 2 and 3 ) by brazing. - The
second connection block 24 is disposed substantially at a center area in the longitudinal direction of the inner space of theupper tank portion 18 b of thesecond evaporator 18, and brazed to the inner wall surface of theupper tank portion 18 b. Thissecond connection block 24 is located to partition the inner space of theupper tank portion 18 b into two spaces in the tank longitudinal direction, that is, aleft space 27 and aright space 28. The other end (right end) of thethrottle unit 17 penetrates asupport hole 24 a of thesecond connection block 24 to be opened in theright space 28 of theupper tank portion 18 b, as shown inFIG. 3 . - An interface between the outer peripheral surface of the
throttle unit 17 and thesupport hole 24 a is sealed by brazing with an interface between both left andright spaces ejector 14, thenozzle portion 14 a is made of stainless, brass, or the like, and parts other than thenozzle portion 14 a (including a housing portion forming therefrigerant suction port 14 b, the mixingportion 14 c, thediffuser portion 14 d, and the like) is made of metal material, such as copper or aluminum, but may be made of resin (non-metallic material). - After the completion of integrated assembly of the first and
second evaporators ejector 14 is inserted into theupper tank portion 18 b through therefrigerant inlet 25 and a hole of themain passage 25 a of thefirst connection block 23. The inserted tip end in the longitudinal direction of theejector 14 corresponds to an outlet portion of thediffuser portion 14 d shown inFIG. 1 . The tip end of the ejector is inserted into acircular recess 24 b of thesecond connection block 24, and gas-tightly fixed in thecircular recess 24 b using an O-ring 29 a. - The tip end of the ejector is in communication with a
communication hole 24 c of thesecond connection block 24. Apartition plate 30 is disposed substantially at a center area in the longitudinal direction of the inner space of theupper tank portion 15 b of thefirst evaporator 15. The inner space of theupper tank portion 15 b is partitioned by thepartition plate 30 into two spaces in the longitudinal direction, that is, aleft space 31 and aright space 32. Thecommunication hole 24 c of thesecond connection block 24 is in communication with theright space 32 of theupper tank portion 15 b of thefirst evaporator 15 via a throughhole 33 a of an intermediate wall surface 33 of both theupper tank portions - The left end of the
ejector 14 in the longitudinal direction (left end ofFIG. 3 ) corresponds to an inlet portion of thenozzle portion 14 a shown inFIG. 1 , and is fitted into and fixed to the inner wall surface of themain passage 25 a of thefirst connection block 23 using the O-ring 29 b to be sealed therebetween. Fixing of theejector 14 in the longitudinal direction may be performed using, for example, screw fixing means not shown. The O-ring 29 a is held in a groove (not shown) of thesecond connection block 24, and the O-ring 29 b is held in a groove (not shown) of thefirst connection block 23. - In the
first connection block 23, therefrigerant outlet 26 is formed to be in communication with theleft space 31 of theupper tank portion 15 b, and themain passage 25 a is formed to be in communication with theleft space 27 of theupper tank portion 18 b. The first connection black 23 is brazed to the side walls of theupper tank portions branch passage 16 is made in communication with one end of thethrottle unit 17. Therefrigerant suction port 14 b of theejector 14 is set in communication with theleft space 27 of theupper tank portion 18 b of thesecond evaporator 18. - In this embodiment, the
second connection block 24 partitions the inside of theupper tank portion 18 b of thesecond evaporator 18 into left andright spaces left space 27 serves as a collecting tank for collecting the refrigerant from the plurality oftubes 21, and theright space 28 serves as a distribution tank for distributing the refrigerant into thetubes 21. Theejector 14 has an elongated cylindrical shape extending in an axial direction of thenozzle portion 14 a, and the longitudinal direction of the elongated cylindrical shape is made to correspond to the longitudinal direction of theupper tank portion 18 b, so that theejector 14 is elongated in parallel with theupper tank portion 18 b. - Thus, the
ejector 14 and theevaporator 18 can be disposed in a compact manner, and further the entire unit can be made compact. Theejector 14 is disposed in theleft space 27 serving as the collecting tank of theevaporator 18, and has therefrigerant suction port 14 b set to be directly opened in theleft space 27 serving as the collecting tank. This structure further can decrease the number of refrigerant pipes. - This example has an advantage in that the collection of the refrigerant from the plurality of
tubes 21 and the supply of the refrigerant to the ejector 14 (suction of the refrigerant) can be performed only using one tank. Thefirst evaporator 15 is disposed adjacent to thesecond evaporator 18, and theejector 14 is set such that the downstream side end of theejector 14 is adjacent to the distribution tank of the first evaporator 15 (i.e., theright space 32 of theupper tank portion 15 b). - Thus, even when the
ejector 14 is disposed to be incorporated into the tank portion on thesecond evaporator 18 side, the outflow refrigerant from theejector 14 can be supplied to thefirst evaporator 15 side through a short simple refrigerant passage (includingholes integrated unit 20 with the above-mentioned structure will be described below with reference toFIGS. 2 and 3 . - The
refrigerant inlet 25 of thefirst connection block 23 is branched into themain passage 25 a and thebranch passage 16 within thefirst connection block 23. First, the refrigerant from themain passage 25 a is decompressed through the ejector 14 (thenozzle portion 14 a, the mixingportion 14 c, and thediffuser portion 14 d, in this order), and the low-pressure refrigerant decompressed flows into theright space 32 of theupper tank portion 15 b of thefirst evaporator 15 as indicated by the arrow “aa” through theconnection hole 24 c of thesecond connection block 24 and the throughhole 33 a of the intermediate wall surface 33. - The refrigerant from the
right space 32 flows through the plurality oftubes 21 on the right side of the heat-exchange core portion 15 a as indicated by the arrow “bb” to flow into the right side part of thelower tank portion 15 c. Since no partition plate is provided in thelower tank portion 15 c, the refrigerant from the right side part of thelower tank portion 15 c moves to the left side thereof as indicated by the arrow “cc”. - The refrigerant from the left side part of the
lower tank portion 15 c rises through the plurality oftubes 21 on the left side of the heat-exchange core portion 15 a as indicated by the arrow “dd” to flow into theleft space 31 of theupper tank portion 15 b, and then to therefrigerant outlet 26 of thefirst connection block 23 as indicated by the arrow “ee”. In contrast, the refrigerant from thebranch passage 16 of thefirst connection block 23 is first decompressed through thethrottle unit 17, and the decompressed low-pressure refrigerant flows into theright space 28 of theupper tank portion 18 b of thesecond evaporator 18 as indicated by the arrow “ff”. - The refrigerant from the
right space 28 flows through the plurality oftubes 21 on the right side of the heat-exchange core portion 18 a as indicated by the arrow “gg” to flow into the right portion of thelower tank portion 18 c. Since no partition plate is provided in thelower tank portion 18 c, the refrigerant from the right side part of thelower tank portion 18 c moves to the left side thereof as indicated by the arrow “hh”. - The refrigerant from the left side part of the
lower tank portion 18 c rises through the plurality oftubes 21 on the left side of the heat-exchange core portion 18 a as indicated by the arrow “ii” to flow into theleft space 27 of theupper tank portion 18 b. Therefrigerant suction port 14 b of theejector 14 is opened in theleft space 27, and thus the refrigerant in theleft space 27 is drawn from therefrigerant suction port 14 b into theejector 14. Since theintegrated unit 20 has the refrigerant flow path structure as described above, only onerefrigerant inlet 25 may be provided at thefirst connection block 23 in the entireintegrated unit 20, and only onerefrigerant outlet 26 may be provided at thefirst connection block 23. - The
integrated unit 20 of the embodiment includes thetemperature sensor 40 integrally provided in the heat-exchange core portion 18 a of thesecond evaporator 18 on the downwind side, for detecting the frost on the first andsecond evaporators temperature sensor 40 may be a contact typefin temperature sensor 40A for detecting the temperature of fins (evaporator), or a non-contact typeair temperature sensor 40B for detecting the blown-air temperature on the post-evaporator flow side. The sensor 40 (40A, 40B) can be located at a suitable position in theintegrated unit 20. -
FIG. 5A is a perspective view of thefin temperature sensor 40A, andFIG. 5B is a diagram showing the structure of asensor portion 42.FIG. 6 is a perspective view of theair temperature sensor 40B. The structure of thefin temperature sensor 40A will be described below. Thefin temperature sensor 40A includes asensor portion 42 disposed on one end of alead wire 43 and inserted into a fin portion of the evaporator, and aresin clamp 41 having ananchor portion 41 a inserted into and fixed to the fin portion together with thesensor portion 42, while holding the root side of thesensor portion 42. - As shown in
FIG. 5B , thesensor portion 42 includes atemperature sensing semiconductor 42 a whose resistance value changes depending on the temperature of the tip end of thelead wire 43 and which is connected to the tip end of thelead wire 43. Thesensor portion 42 also includes anepoxy resin 42 b or the like fixed to the periphery of thetemperature sensing semiconductor 42 a, and a conductive filler filling a gap in thesensor portion 42. These elements constituting thesensor portion 42 are inserted into analuminum case 42 c (made of A1000 aluminum). Thelead wire 43 is derived so as to output the resistance value of thesensor portion 42 to a controller as an electric signal. Aconnector 44 is connected to the other end of thelead wire 43 for connection with the electric circuit. - As shown in
FIG. 6 , theair temperature sensor 40B is constructed of asensor portion 42,lead wire 43, and aconnector 44. Thesensor portion 42 includes atemperature sensing semiconductor 42 a connected to the tip end of thelead wire 43 and theepoxy resin 42 b or the like fixed to the periphery of thesemiconductor 42 a. Theair temperature sensor 40B has a support part near thesensor portion 42 supported by theresin clamp 41. Either sensor 40 (40A, 40B) is integrally fixed to the heat exchange core portion of theintegrated unit 20 by inserting theanchor portion 41 a of theclamp 41 into the fin portion at the appropriate part of theintegrated unit 20. In thefin temperature sensor 40A ofFIG. 5A , thesensor portion 42 protrudes in the same direction as theanchor portion 41 a for the attachment. That is, thesensor portion 42 is held by theresin clamp 41 approximately in parallel with the protruding direction of theanchor portion 41 a. In contrast, in theair temperature sensor 40B ofFIG. 6 , thesensor portion 42 protrudes in an extending line of thelead wire 43 to be approximately perpendicular to the protruding direction of theanchor portion 41 a for the attachment. -
FIG. 7 is a diagram showing temperature distribution of thesecond evaporator 18 when being viewed from the downstream side of the air flow (inlet air temperature: 10 degrees, relative humidity: 80% RH).FIG. 7 shows that unevenness of the temperature distribution occurs at a part in which the refrigerant stream flows from thelower tank portion 18 c. In particular, the refrigerant is suspended (stopped) in thelower tank portion 18 c (on the left side of the embodiment), which has the lowest temperature (e.g., temperature T equal to or lower than 2.5° C.) in thesecond evaporator 18 on the lower temperature side, as shown inFIG. 7 . - This tendency is common to a modified example to be described later in which a refrigerant flow path pattern is changed in the
integrated unit 20. In this embodiment, a part MC in which the refrigerant stream rises up and flows from thelower tank portion 18 c of the second evaporator 18 (seeFIGS. 2 and 7 ) is used as an appropriate attachment position in which the above-mentioned temperature sensor 40 (40A or 40B) is set. - The part MC is a part in which the refrigerant flows from the lower side of the heat exchange core portion of the
evaporator 18 to the upper side thereof. When a plurality of parts MC, in which the refrigerant flows from the lower side to the upper side thereof, are provided in the evaporator serving as a heat exchanging portion disposed on the suction side of theejector 14, thetemperature sensor 40 can be provided in a position where the frost is observed at the most early stage. For example, thetemperature sensor 40 can be positioned nearest to theejector 14 in the plurality of MC parts. - Reference will now be made to an operation of the refrigerant cycle device of the embodiment. When the
compressor 11 is driven by the engine for vehicle running, the high-temperature and high-pressure refrigerant compressed and discharged by thecompressor 11 flows into theradiator 12. The high-temperature refrigerant is cooled and condensed by the outside air in theradiator 12. The high-pressure refrigerant flowing from theradiator 12 flows into theliquid receiver 12 a, in which the refrigerant is separated into liquid and vapor phases. The liquid refrigerant is fed from theliquid receiver 12 a to pass through theexpansion valve 13. - The
expansion valve 13 has a valve opening degree (refrigerant flow amount) adjusted such that a degree of superheat SH of the refrigerant at the outlet of the first evaporator 15 (refrigerant drawn into the compressor) is a predetermined value to decompress the high-pressure refrigerant. The refrigerant having passed through the expansion valve 13 (intermediate pressure refrigerant) flows into therefrigerant inlet 25 provided in thefirst connection block 23 of theintegrated unit 20. - The refrigerant stream from the
refrigerant inlet 25 is divided into a refrigerant flow directed from themain passage 25 a of thefirst connection block 23 to theejector 14, and a refrigerant flow directed from therefrigerant branch passage 16 of thefirst connection block 23 to thethrottle unit 17. The refrigerant entering thenozzle portion 14 a of theejector 14 is decompressed and expanded by thenozzle portion 14 a. Thus, the pressure energy of the refrigerant is converted to the velocity energy thereof at thenozzle portion 14 a. The refrigerant from an ejection port of thenozzle portion 14 a is ejected at high velocity. - The decrease in refrigerant pressure around the ejection port sucks the refrigerant (vapor-phase refrigerant) having passed through the
second evaporator 18 of thebranch refrigerant passage 16 from therefrigerant suction port 14 b. The refrigerant ejected from thenozzle portion 14 a and the refrigerant drawn into therefrigerant suction port 14 b are mixed by the mixingportion 14 c positioned on the downstream side of thenozzle portion 14 a to flow into thediffuser portion 14 d. The velocity (expansion) energy of the refrigerant is converted to the pressure energy thereof by enlarging the passage area in thediffuser portion 14 d, resulting in an increased pressure of the refrigerant. - The refrigerant flowing out of the
diffuser portion 14 d of theejector 14 flows through refrigerant flow paths of thefirst evaporator 15 as indicated by the arrows “aa” to “ee” ofFIG. 2 . During this time, the low-temperature and low-pressure refrigerant absorbs heat from the blown air to be evaporated in the heat-exchange core portion 15 a of thefirst evaporator 15. The evaporated vapor-phase refrigerant from therefrigerant outlet 26 is drawn into thecompressor 11, and compressed again. - In contrast, the refrigerant flow entering the
refrigerant branch passage 16 is decompressed by thethrottle unit 17 to be low-pressure refrigerant, which flows through the refrigerant flow paths of thesecond evaporator 18 as indicated by the arrows “ff” to “ii” ofFIG. 2 . During this time, in the heat-exchange core portion 18 a of thesecond evaporator 18, the low-temperature and low-pressure refrigerant absorbs heat from the blown air having passed through thefirst evaporator 15 so as to be evaporated. The vapor-phase refrigerant after evaporation is drawn from therefrigerant suction port 14 b into theejector 14. - As mentioned above, according to this embodiment, the refrigerant on the downstream side of the
diffuser portion 14 d of theejector 14 can be supplied to thefirst evaporator 15, while the refrigerant on therefrigerant branch passage 16 side can be supplied to thesecond evaporator 18 through the throttle unit 17 a, so that both the first andsecond evaporators second evaporators - At this time, the refrigerant evaporation pressure of the
first evaporator 15 is a pressure of the refrigerant whose pressure is increased by thediffuser portion 14 d. In contrast, because the refrigerant outlet side of thesecond evaporator 18 is connected to therefrigerant suction port 14 b of theejector 14, the lowest pressure directly after the decompression by thenozzle portion 14 a can be applied to thesecond evaporator 18. - Thus, the refrigerant evaporation pressure (refrigeration evaporation temperature) of the
second evaporator 18 can be made lower than that of thefirst evaporator 15. Thefirst evaporator 15 whose refrigerant evaporation temperature is higher is disposed on the upstream side with respect to the flow direction of the blown air, while thesecond evaporator 18 whose refrigerant evaporation temperature is lower is disposed on the downstream side in air flow. In this case, both a difference between the refrigerant evaporation temperature of thefirst evaporator 15 and the temperature of air flowing into thefirst evaporator 15, and also a difference between the refrigerant evaporation temperature of thesecond evaporator 18 and the temperature of air flowing into thesecond evaporator 18 can be ensured. - Thus, both the first and
second evaporators second evaporators compressor 11 can be increased by a pressure increasing effect of thediffuser portion 14 d thereby decreasing a driving power of thecompressor 11. - The refrigerant flow amount of the
second evaporator 18 can be adjusted independently by thethrottle unit 17 without depending on the function of theejector 14, so that the refrigerant flow amount flowing into thefirst evaporator 15 can be adjusted by a throttle function of theejector 14. This can facilitate adjustment of the refrigerant flow amounts flowing into the first andsecond evaporators - Under the condition of a small cycle thermal load, a difference in pressure of the refrigerant cycle is decreased, so that the refrigerant flow amount of the
ejector 14 becomes small. In this embodiment, the refrigerant having passed through theexpansion valve 13 is branched at the upstream part of thenozzle portion 14 a of theejector 14, and the branched refrigerant is drawn into therefrigerant suction port 14 b through therefrigerant branch passage 16. Therefrigerant branch passage 16 is in parallel connection with thenozzle portion 14 a of theejector 14. - Thus, the refrigerant can be supplied to the
refrigerant branch passage 16 using not only the refrigerant suction capacity of theejector 14, but also the refrigerant suction and discharge capacities of thecompressor 11. This can reduce the degree of decrease in refrigerant flow amount on thesecond evaporator 18 side even when the refrigerant flow amount flowing into thenozzle portion 14 a of theejector 14 decreases. Thus, even under the condition of the low thermal load, the cooling capacity of thesecond evaporator 18 can be ensured easily. - Reference will now be made to the control of prevention of frost (frosting) by the above-mentioned structure. When the refrigeration capacity of the refrigerant cycle device exceeds the cooling load, the refrigeration evaporation pressure in the evaporator decreases, so that the evaporator air-side surface temperature is below the freezing point (0° C.). The freezing of condensed water on the evaporator proceeds to interfere with the flow of passing air in the evaporator, further leading to a decrease in evaporation pressure of the refrigerant. To prevent such problems, the refrigeration capacity of the refrigerant cycle device is controlled to prevent the frost on the evaporator.
- In this embodiment, ON-OFF control of a
compressor 11 may be performed as this control method. The ON-OFF control involves turning off thecompressor 11 when a refrigerant evaporation temperature becomes below the freezing point. This control is the most common method for frost prevention. Specifically, a fin temperature or a blown-air temperature of theintegrated unit 20 is detected by the above-mentioned temperature sensor 40 (40A, 40B). Then, electric current supplied to the electromagnetic clutch 11 a is turned off by the clutch 11 a when the detected fin temperature or blown-air temperature is lowered to 3° C., for example. In contrast, the clutch 11 a is turned on again when the detected fin temperature or blown-air temperature is increased to 4° C., for example. In the use of a variable displacement compressor or an electric compressor as the compressor, the compressor capacity control for controlling a discharge capacity of the compressor can be performed so as to reduce the frost. - In the embodiment of the present invention, the
expansion valve 13 is provided for adjusting the flow amount of refrigerant on the downstream side of theradiator 12 such that a degree of superheat SH is a predetermined value (predetermined range). The superheat degree SH is represented by a difference between the superheat temperature and the saturation temperature of the refrigerant at the outlet of thefirst evaporator 15. This adjusts the refrigerant flow amount into thesecond evaporator 18 on the low-temperature side to an appropriate value. As a result, frost on thesecond evaporator 18 can be detected and determined by thetemperature sensor 40 so as to perform the frost prevention control. This can reduce the frost in thesecond evaporator 18 and/or prevent the frost from being formed on the first andsecond evaporators -
FIG. 8 is a graph showing a relationship of a refrigeration operating efficiency with respect to a flow amount of refrigerant passing through thesecond evaporator 18. Here, the refrigeration operating efficiency is represented by a relationship of a stopped time period of the refrigerant cycle due to the detection of thetemperature sensor 40, with respect to a cycle operating time on the same air condition. InFIG. 8 , the refrigerant flow ratio is a ratio of the refrigerant amount flowing into thesecond evaporator 18 to the total refrigerant amount in the refrigerant cycle. Note that the operating efficiency of the conventional cycle is set to 100 inFIG. 8 . - Generally, the decrease in total refrigerant flow amount in the
evaporator 18 improves resistance to frost, but inevitably leads to a decrease in cooling performance. In the embodiment, the cooling operation property can be improved effectively over the entire range of flow amounts of the refrigerant passing through thesecond evaporator 18. The smaller the cooling load (that is, the lower the air temperature and humidity), or/and the smaller the thermal capacity of air to be heat exchanged, the smaller the necessary refrigerant amount. This causes excessive refrigerant on the side of the second evaporator18, so that the great cooling effect can be obtained in a cooling load range of 5 to 50° C. of air temperature and in a range of 20 to about 100% of relative humidity. - In this embodiment, the
temperature sensor 40 is disposed at the part MC where the refrigerant flows upwardly from thelower tank portion 18 c of thesecond evaporator 18. This is based on findings that the lowest temperature area is the part MC in which the refrigerant flows upwardly from thelower tank portion 18 c in thesecond evaporator 18. Accordingly, determination of an attachment position of thetemperature sensor 40 can be easily performed during the control of frost prevention. As shown inFIG. 7 , the part MC is a lower area of the core portion of thesecond evaporator 18, close to thelower tank portion 18 c. - The
first evaporator 15 and thesecond evaporator 18 are adapted to cool the air, which serves as a common heat-exchange medium. Thefirst evaporator 15 and thesecond evaporator 18 are disposed so as to exchange heat between the refrigerant of thesecond evaporator 18 and the air after being heat-exchanged with the refrigerant of thefirst evaporator 15. Because the temperature of thesecond evaporator 18 generally becomes lower, the air flowing from thefirst evaporator 15 can be effectively cooled. - The ejector-type refrigerant cycle device includes the
ejector 14 for sucking the refrigerant from therefrigerant suction port 14 b by the high-velocity refrigerant stream ejecting from thenozzle portion 14 a, which is adapted to decompress and expand the refrigerant. The refrigerant cycle device also includes the second evaporator 18 (heat exchanging portion) for evaporating the refrigerant to be drawn into therefrigerant suction port 14 b. The refrigerant cycle device further includes thetemperature sensor 40 disposed at the part MC of thesecond evaporator 18, in which the refrigerant flows from the lower side to the upper side to detect the frost of thesecond evaporator 18. - Thus, the integrated construction of the
ejector 14, thesecond evaporator 18 and thetemperature sensor 40 can be handled as an integrated unit, thereby improving the handling properties in delivery and assembly. The reason why thetemperature sensor 40 is provided at the part of thesecond evaporator 18, at which the refrigerant rises up and flows from the lower side to the upper side is the following. The lowest temperature area of thesecond evaporator 18 is found to be the part MC where the refrigerant flow rises up and flows from thelower tank portion 18 c, as described above. Thus, in the ejector-type refrigerant cycle device, thetemperature sensor 40 can be attached to an optimal position of thesecond evaporator 18, for control of the frost prevention. - The ejector-type refrigerant cycle device includes the
first evaporator 15 disposed on the upstream side of the air flow, thesecond evaporator 18 disposed on the downstream side of the air flow with respect to thefirst evaporator 15, and thetemperature sensor 40 for determining the frost. Thefirst evaporator 15 allows the outflow refrigerant from theejector 14 to evaporate, and thesecond evaporator 18 allows the refrigerant on the suction port side to be drawn into therefrigerant suction port 14 b of theejector 14 to evaporate. Thetemperature sensor 40 is disposed in thesecond evaporator 18. - Thus, the first and
second evaporators temperature sensor 40 can be integrally formed to be handled as an integrated unit, thereby improving the handling properties in delivery and assembly. The reason why thetemperature sensor 40 is disposed in thesecond evaporator 18 is that the temperature of thesecond evaporator 18 is lower than the temperature of thefirst evaporator 15. - Furthermore, the
temperature sensor 40 is disposed at the part MC in which the refrigerant flow rises up and the refrigerant flows from thelower tank portion 18 c of thesecond evaporator 18. This is because the lowest temperature area is positioned at the part MC of thesecond evaporator 18 on the lower side in which the refrigerant flows upwardly from thelower tank portion 18 c. Accordingly, thetemperature sensor 40 can be attached to an optimal position, such that the control of frost prevent for thesecond evaporator 18 can be suitably performed. - In the above-described embodiment, the
ejector 14 disposed on the upstream side of the refrigerant flow of thefirst evaporator 15, and thethrottle unit 17 disposed on the upstream side of the refrigerant flow of thesecond evaporator 18 are integrally mounted on thefirst evaporator 15 and thesecond evaporator 18. However, any one of theejector 14 and thethrottle unit 17 may be integrally mounted on the first andsecond heat exchangers integrated unit 20. - Thus, a mounting operation for mounting the ejector-type refrigerant cycle device on an attachment object such as a vehicle, can be performed very efficiently. In this way, because the
integrated unit 20 is used, the length of each connection passage can be reduced in theintegrated unit 20 of the refrigerant cycle device, thereby reducing the cost and space for mounting. - The term “integrated” as used herein may include an integrated structure in which a part of a casing of the
ejector 14 or thethrottle unit 17 is shared with members, including thetank portions second evaporators - In the following first to fourth modified examples, as shown in
FIG. 9 , theejector 14, the first andsecond evaporators temperature sensor 40 are integrally constructed as oneintegrated unit 20. - In the example of
FIG. 9 , thethrottle unit 17 is not integrally constructed in theintegrated unit 20. However, thethrottle unit 17 may be integrally constructed in theintegrated unit 20, like the above-described embodiment. -
FIG. 10 shows anintegrated unit 20B (20) of the first modification. - As shown in
FIG. 10 , aseparator 15 e is disposed in theupper tank portion 15 b of thefirst evaporator 15 to partition the inner space of theupper tank portion 15 b into a left inner space C′ and a right inner space D′ such that the left space C′ occupies about one third of the inside of theupper tank portion 15 b and the right space D′ occupies about two thirds thereof. Aseparator 15 f is disposed in thelower tank portion 15 c of thefirst evaporator 15 to partition the inner space of thelower tank portion 15 c into a left inner space E′ and a right inner space F′ such that the left space E′ occupies about two thirds of the inside of thelower tank portion 15 c and the right space F′ occupies about one third thereof. -
Separators upper tank portion 18 b of thesecond evaporator 18 to partition the inside of theupper tank portion 18 b into about three inner spaces G′, H′, and I′. Aseparator 18 g is disposed in thelower tank portion 18 c of thesecond evaporator 18 to partition the inner space of thelower tank portion 18 c into a left inner space J′ and a right inner space K′ such that the left space J′ occupies about two thirds of the inside of thelower tank portion 18 c and the right space K′ occupies about one third thereof. In this example ofFIG. 10 , thesecond evaporator 10 is separated into a suction-siderefrigerant evaporation portion 18 a and an outflowrefrigerant evaporation portion 18 a′ by theseparators - In this example of
FIG. 10 , the inner space G′ of theupper tank portion 18 b of thesecond evaporator 18 is connected to the downstream side of therefrigerant branch passage 16. The inner space F′ of thelower tank portion 15 c of thefirst evaporator 15 and the inner space K′ of thelower tank portion 18 c of thesecond evaporator 18 allow the refrigerant to pass therethrough via a connection hole (not shown) therebetween. - The
ejector 14 is disposed inside theupper tank portion 18 b of thesecond evaporator 18 such that the longitudinal direction of theejector 14 is parallel to that of theupper tank portion 18 b. Thenozzle portion 14 a of theejector 14 is connected to the downstream side of themain passage 25 a as mentioned above. Therefrigerant suction port 14 b is disposed in the inner space H′ of theupper tank portion 18 b disposed in thesecond evaporator 18. The outlet of thediffuser portion 14 d is attached to be positioned in the inner space I′ of theupper tank portion 18 b. - Therefore, the
refrigerant suction port 14 b is directly opened in the inner space H′ of theupper tank portion 18 b, and the outflow refrigerant flowing from thediffuser portion 14 d flows directly into the inner space I′ of theupper tank portion 18 b. As shown inFIG. 10 , theejector 14, thefirst evaporator 15, thesecond evaporator 18, and therespective tank portions 15 b to 18 c are completely integrated as one integrateunit 20B, such that thefirst evaporator 15 is disposed on the upstream side of the air flow and thesecond evaporator 18 is disposed on the downstream side of the air flow. - The
ejector 14 is inserted to penetrate through holes (not shown) provided in theseparators upper tank portion 18 b of thesecond evaporator 18 and is attached and fixed by fixing means, such as screwing, after a brazing step of integrally brazing thefirst evaporator 15 and thesecond evaporator 18. - The
ejector 14 and theseparators ejector 14 and theseparators upper tank portion 18 b, and the inner spaces H′ and I′ of theupper tank portion 18 b are not in communication with each other via the above-mentioned attachment portions (through holes). - The refrigerant flow path of the entire
integrated unit 20B with the above-mentioned structure will be described below. First, the refrigerant on the downstream side of themain passage 25 a flows directly into thenozzle portion 14 a of theejector 14 in the direction of arrow “aa”. Then, the refrigerant passes through the ejector 14 (thenozzle portion 14 a, the mixingportion 14 c, and thediffuser portion 14 d, in this order) to be decompressed. The low-pressure refrigerant decompressed by theejector 14 is collected in the inner space I′ of theupper tank portion 18 b of thesecond evaporator 18. - The refrigerant in the inner space I′ of the
upper tank portion 18 b is distributed into the plurality oftubes 21 on the right side of thesecond evaporator 18 inFIG. 10 to flow downwardly as indicated by the arrow “bb”, and then to be collected in the inner space K′ of thelower tank portion 18 c of thesecond evaporator 18. The inner space K′ is in communication with the inner space F′ of thelower tank portion 15 c of thefirst evaporator 15, thus allowing the refrigerant to flow into the inner space F′. - The refrigerant in the inner space F′ is distributed into the plurality of
tubes 21 on the right side of thefirst evaporator 15 to flow upwardly as indicated by the arrow “cc”, and then to flow into the inner space D′ of theupper tank portion 15 b of thefirst evaporator 15. The refrigerant flowing into the inner space D′ moves leftward in the inner space D′. The refrigerant moving leftward in the inner space D′ is distributed into the plurality oftubes 21 at the center area of thefirst evaporator 15 to flow downwardly as indicated by the arrow “dd”, and then to flow into the inner space E′ of thelower tank portion 15 c. - The refrigerant flowing into the inner space E′ moves leftward in the inner space E′. The refrigerant moving leftward in the inner space E′ is distributed into the plurality of
tubes 21 on the left side of thefirst evaporator 15 to flow upwardly as indicated by the arrow “ee”, and then to be collected in the inner space C′ of theupper tank portion 15 b. The refrigerant collected in the inner space C′ of theupper tank portion 15 b flows from theupper tank portion 15 b as indicated by the arrow “ff” to the suction side of thecompressor 11. Thus, the outflow refrigerant having passed though the outflowrefrigerant evaporation portion 18 a′ of thesecond evaporator 18 changes a flow direction twice (more than one time) in thefirst evaporator 15 while passing through thefirst evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area that is positioned on the left upper part of thefirst evaporator 15 inFIG. 10 . - The low-pressure refrigerant on the downstream side of the
refrigerant branch passage 16 and decompressed by thethrottle unit 17 flows into the inner space G′ of theupper tank portion 18 b of thesecond evaporator 18. The refrigerant in the inner space G′ of theupper tank portion 18 b is distributed into the plurality oftubes 21 on the left side of thesecond evaporator 18 to flow downwardly in the direction of arrow “gg”, and then to flow into the inner space J′ of thelower tank portion 18 c of thesecond evaporator 18. - The refrigerant flowing into the inner space J′ moves rightward in the inner space J′ of the
lower tank portion 18 c. The refrigerant moving rightward in the inner space J′ is distributed into the plurality oftubes 21 at the center area of thesecond evaporator 18 to flow upwardly as indicated by the arrow “hh”, and then to be collected in the inner space H′ of theupper tank portion 18 b. The refrigerant collected in the inner space H′ of theupper tank portion 18 b is drawn into theejector 14 from therefrigerant suction port 14 b of theejector 14. - Thus, the refrigerant passing through the suction-side
refrigerant evaporation portion 18 a of thesecond evaporator 18 changes a flow direction once in thesecond evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of thefirst evaporator 15. The refrigerant flowing into the suction-siderefrigerant evaporation portion 18 a exchanges heat only at the area indicated by the arrows gg to hh ofFIG. 10 , among thesecond evaporator 18. - The ratio of use of the
second evaporator 18 on the downstream air side, which occupies the suction-siderefrigerant evaporation portion 18 a, is about two thirds (about 70%) of thesecond evaporator 18 by arrangement and positioning of theseparators refrigerant evaporation portion 18 a and the outflowrefrigerant evaporation portion 18 a′ in thesecond evaporator 18 on downwind side can be adjusted easily by arrangement and positioning of theseparators temperature sensor 40 is disposed at the part MC (on the lower side of the flow part indicated by the arrow “hh” in this modified example) in which the refrigerant flows upwardly from thelower tank portion 18 c of thesecond evaporator 18, at a position close to thelower tank portion 18 c, like the above-mentioned embodiment. Furthermore, similarly to the above-described embodiment, the frost prevention control of thesecond evaporator 18 is performed by thecontroller 50 based on the signal detected by the temperature sensor 40 (40A, 40B). - In the above-mentioned first modified example, the ejector-type
refrigerant cycle device 10 using theintegrated unit 20B has been explained. However, in the second modified example, anintegrated unit 20C (20) shown inFIG. 11 is used for the ejector-typerefrigerant cycle device 10.FIG. 11 is a perspective view showing an outline of the entire structure of theintegrated unit 20C, in which the basic structures of thefirst evaporator 15 and thesecond evaporator 18 are similar to those of the first modified example. - The
integrated unit 20C ofFIG. 11 differs from theintegrated unit 20B of the first modified example in arrangement and positioning of the separators disposed in thetank portions 15 b to 18 c, as well as in arrangement and positioning of theejector 14, and thus in the refrigerant flow path. Ah shown inFIG. 11 , aseparator 15 e′ is disposed in theupper tank portion 15 b of thefirst evaporator 15 to partition the inner space of theupper tank portion 15 b into a left inner space L′ and a right inner space M′ such that the left space L′ occupies about one half of the inside of theupper tank portion 15 b and the right space M′ occupies about one half thereof. No separator is disposed in thelower tank portion 15 c of thefirst evaporator 15, in which one inner space N′ is formed. - A
separator 18 e′ is disposed in theupper tank portion 18 b of thesecond evaporator 18 to partition the inner space of theupper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of theupper tank portion 18 b and the right space P′ occupies about one half thereof. No separator is disposed in thelower tank portion 18 c of thesecond evaporator 18 to construct one inner space Q′. In this modified example, the inner space O′ of theupper tank portion 18 b of thesecond evaporator 18 is connected to the downstream side of therefrigerant branch passage 16. - In addition, the
ejector 14 is disposed inside theupper tank portion 18 b of thesecond evaporator 18, thenozzle portion 14 a of theejector 14 is connected to the downstream side of themain passage 25 a, and therefrigerant suction port 14 b is attached to be positioned in the inner space P′ of theupper tank portion 18 b. Therefore, therefrigerant suction port 14 b is directly opened in the inner space P′ of theupper tank portion 18 b. - Furthermore, the outflow refrigerant flowing from the
diffuser portion 14 d of theejector 14 is allowed to flow into the inner space M′ of theupper tank portion 15 b of thefirst evaporator 15 via piping (not shown) disposed outside theupper tank portion 18 b. It is apparent that a passage for guiding the outflow refrigerant into the inner space M′ may be constructed in theupper tank portion 18 b. Also in theintegrated unit 20C, theejector 14 is assembled to the inside of theupper tank portion 18 b of thesecond evaporator 18, like the first modified example, after integrally connecting the first andsecond evaporators tank portions - The refrigerant flow path of the entire
integrated unit 20C with the above-mentioned structure will be described below. First, the refrigerant on the downstream side of themain passage 25 a flows directly into thenozzle portion 14 a of theejector 14 as indicated by the arrow “aa” inFIG. 11 . Then, the refrigerant passes through theejector 14 to be decompressed. The low-pressure refrigerant decompressed by theejector 14 flows into the inner space M′ of theupper tank portion 15 b of thefirst evaporator 15 via external piping of theupper tank portion 18 b. - The refrigerant flowing into the inner space M′ is distributed into the plurality of
tubes 21 on the right side of thefirst evaporator 15 to flow downwardly as indicated by the arrow “ii”, and then to flow into the inner space N′ of thelower tank portion 15 c of thefirst evaporator 15. The refrigerant flowing into the inner space N′ moves leftward in the inner space N′ of thelower tank portion 15 c. The refrigerant moving leftward in the inner space N′ is distributed into the plurality oftubes 21 on the left side of thefirst evaporator 15 to flow upwardly as indicated by the arrow “jj”, and then to be collected in the inner space L′ of theupper tank portion 15 b. - The refrigerant collected in the inner space L′ of the
upper tank portion 15 b flows from theupper tank portion 15 b to the suction side of thecompressor 11 as indicated by the arrow “ff”. Thus, the outflow refrigerant flowing out of thediffuser portion 14 d to pass through thefirst evaporator 15 changes a flow direction once in thefirst evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of thefirst evaporator 15. - The low-pressure refrigerant on the downstream side of the
refrigerant branch passage 16 and decompressed by thethrottle unit 17 flows into the inner space O′ of theupper tank portion 18 b of thesecond evaporator 18. The refrigerant flowing into the inner space O′ is distributed into the plurality oftubes 21 on the left side of thesecond evaporator 18 to flow downwardly as indicated by the arrow “kk”, and then to flow into the inner space Q′ of thelower tank portion 18 c of thesecond evaporator 18. The refrigerant flowing into the inner space Q′ moves rightward in the inner space Q′ inFIG. 11 . - The refrigerant moving rightward in the inner space Q′ of the
lower tank portion 18 c of thesecond evaporator 18 is distributed into the plurality oftubes 21 on the right side of thesecond evaporator 18 to flow upwardly as indicated by the arrow “ll”, and then to be collected in the inner space P′ of theupper tank portion 18 b. The refrigerant collected in the inner space P′ is drawn from therefrigerant suction port 14 c of theejector 14 into theejector 14. Thus, the suction-port side refrigerant passing through thesecond evaporator 18 changes a flow direction once in thesecond evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the right upper part of thesecond evaporator 18. - Because the refrigerant passes through the
integrated unit 20C as mentioned above, thesecond evaporator 18 constructs only the suction-siderefrigerant evaporating portion 18 a, and not the outflowrefrigerant evaporating portion 18 a′ of first modified example ofFIG. 10 . Other components have the same structures as those in the first modified example. The temperature sensor 40 (not shown) is disposed at the part MC in which the refrigerant flow flows upwardly from thelower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part as indicated by the arrow ll in this modified example), like the above-mentioned embodiments and modified examples. Furthermore, the part MC is located at a position close to thelower tank portion 18 c. In addition, similarly to the above-described embodiment, the frost prevention control of thesecond evaporator 18 is performed by thecontroller 50 based on the signal detected by the temperature sensor 40 (40A, 40B). - In the above-mentioned examples, the ejector-type
refrigerant cycle device 10 employing theintegrated unit integrated unit 20D (20) shown inFIG. 12 is used for the ejector-typerefrigerant cycle device 10.FIG. 12 is a perspective view showing an outline of the entire structure of theintegrated unit 20D. Also in theintegrated unit 20D, theejector 14, the first andsecond evaporators temperature sensor 40 are integrally constructed, like theintegrated unit - The basic structures of the first and
second evaporators integrated unit 20D are the same as those of the first or second modified example. Theintegrated unit 20D differs from theintegrated unit tank portions 15 b to 18 c and in arrangement and positioning of theejector 14. Thus, the third modified example differs from the first or second modified example in refrigerant flow path. - As shown in
FIG. 12 , no separator is disposed in theupper tank portion 15 b of thefirst evaporator 15, so that one inner space R′ is formed in theupper tank portion 15 b. Aseparator 15 f is disposed in thelower tank portion 15 c of thefirst evaporator 15 to partition the inner space of thelower tank portion 15 c into a left inner space S′ and a right inner space T′ such that the left space S′ occupies about one half of the inside of thelower tank portion 15 c and the right space T′ occupies about one half thereof. - A
separator 18 e′ is disposed in theupper tank portion 18 b of thesecond evaporator 18 to partition the inner space of theupper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of theupper tank portion 18 b and the right space P′ occupies about one half thereof. Aseparator 18 f′ is disposed in thelower tank portion 18 c of thesecond evaporator 18 to partition the inner space of thelower tank portion 18 c into a left inner space U′ and a right inner space V′ such that the left space U′ occupies about one half of the inside of thelower tank portion 18 c and the right space V′ occupies about one half thereof. - In this modified example, the inner space U′ of the
lower tank portion 18 c of thesecond evaporator 18 is connected to the downstream side of therefrigerant branch passage 16. The refrigerant can be circulated through the inner space T′ of thelower tank portion 15 c of thefirst evaporator 15 and the inner space V′ of thelower tank portion 18 c on the lower side of thesecond evaporator 18 via a communication hole (not shown) therebetween. - The
ejector 14 is disposed in theupper tank portion 18 b of thesecond evaporator 18. Thenozzle portion 14 a of theejector 14 is connected to the downstream side of themain passage 25 a. Therefrigerant suction port 14 b is positioned in the inner space O′ of theupper tank portion 18 b. The outlet of thediffuser portion 14 d is attached to be disposed in the inner space P′ of theupper tank portion 18 b. - Thus, the
refrigerant suction port 14 b is directly opened in the inner space O′ of theupper tank portion 18 b, and the outlet of thediffuser portion 14 d is directly opened in the inner space P′ of theupper tank portion 18 b. Also in theintegrated unit 20D, theejector 14 is assembled to the inside of theupper tank portion 18 b of thesecond evaporator 18 after integrally connecting the first andsecond evaporators tank portions - Now, the refrigerant flow path of the entire
integrated unit 20D with the above-mentioned structure will be described below. First, the refrigerant on the downstream side of themain passage 25 a flows directly into thenozzle portion 14 a of theejector 14 as indicated by the arrow “aa” inFIG. 12 . Then, the refrigerant passes through theejector 14 to be decompressed. The low-pressure refrigerant decompressed by theejector 14 flows into the inner space P′ of theupper tank portion 15 b of thefirst evaporator 15. - The refrigerant flowing into the inner space P′ of the
upper tank portion 18 b is distributed into the plurality oftubes 21 on the right side of thesecond evaporator 18 to flow downwardly as indicated by the arrow “mm”, and then to be collected in the inner space V′ of thelower tank portion 18 c of thesecond evaporator 18. Since the inner space V′ of thelower tank portion 18 c communicates with the inner space T′ of thelower tank portion 15 c of thefirst evaporator 15, the refrigerant flows into the inner space T′ of thelower tank portion 15 c from the inner space V′ of thelower tank portion 18 c. - The refrigerant flowing into the inner space T′ is distributed into the plurality of
tubes 21 on the right side of thefirst evaporator 15 to flow upwardly as indicated by the arrow “nn”, and then to flow into the inner space R′ of theupper tank portion 15 b. The refrigerant flowing into the inner space R′ moves leftward in the inner space R′ of theupper tank portion 15 b. The refrigerant moving leftward in the inner space R′ is distributed into the plurality oftubes 21 on the left side of thefirst evaporator 15 to flow downwardly as indicated by the arrow “oo”, and then to flow into the inner space S′ of thelower tank portion 15 c of thefirst evaporator 15. - The refrigerant flowing into the inner space S′ flows from the
lower tank portion 15 c to the suction side of thecompressor 11 as indicated by the arrow “pp”. Thus, the outflow refrigerant flowing from thediffuser portion 14 d to pass through thefirst evaporator 15 changes a flow direction once in thefirst evaporator 15 and in thesecond evaporator 18 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left lower part of thefirst evaporator 15. - The low-pressure refrigerant on the downstream side of the
refrigerant branch passage 16 and decompressed by thethrottle unit 17 flows into the inner space U′ of thelower tank portion 18 c of thesecond evaporator 18. The refrigerant flowing into the inner space U′ is distributed into the plurality oftubes 21 on the left side of thesecond evaporator 18 to flow upwardly as indicated by the arrow “qq”, and then to be collected into the inner space O′ of theupper tank portion 18 b. The refrigerant collected in the inner space O′ of theupper tank portion 18 b is drawn from therefrigerant suction port 14 c of theejector 14 to the inside of theejector 14. - Thus, the refrigerant is brought into the vapor phase having the appropriate superheat degree at the superheat area on the upper left portion of the
second evaporator 18. The suction-port side refrigerant to be drawn into therefrigerant suction port 14 c of theejector 14 exchanges heat in thesecond evaporator 18 only at the area indicated by the arrow “qq” ofFIG. 12 . Thus, in this modified example, the ratio of the suction-siderefrigerant evaporation portion 18 a is about one half (about 50%) of thesecond evaporator 18, and the ratio of the outflowrefrigerant evaporation portion 18 a′ is about one half (about 50%) of thesecond evaporator 18, by arrangement and positioning of theseparators 18 e′ and 18 f. - The
throttle unit 17 of this modified example is controlled such that a flow ratio Ge/G of a flow amount Ge of the suction-port side refrigerant to a flow amount G of the refrigerant discharged from thecompressor 11 is about 0.5. Other components are the same as those of the first modified example. The temperature sensor 40 (not shown) is positioned at the part MC in which the refrigerant flows upwardly from thelower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part indicated by the arrow “qq” in this modified example), at a position close to thelower tank portion 18 c, like the above-mentioned embodiment and modified examples. - In the above-mentioned first modified example, the ejector-type
refrigerant cycle device 10 employing theintegrated unit 20B has been explained. However, in the fourth modified example, anintegrated unit 20E (20) shown inFIG. 13 is used for the ejector-typerefrigerant cycle device 10.FIG. 13 is a perspective view showing an outline of the entire structure of theintegrated unit 20E. Also in theintegrated unit 20E, theejector 14, the first andsecond evaporators temperature sensor 40 are integrally constructed, like theintegrated unit 20B. - The basic structures of the first and
second evaporators integrated unit 20E are the same as those of theintegrated unit 20B of the first modified example. Theintegrated unit 20E differs from theintegrated unit 20B in arrangement and positioning of the separators disposed in thetank portions 15 b to 18 c and in arrangement and positioning of theejector 14. Thus, this modified example differs from the first modified example in refrigerant flow path. - A
separator 15 e″ is disposed in theupper tank portion 15 b of thefirst evaporator 15 to partition the inner space of theupper tank portion 15 b into a left inner space W′ and a right inner space X′ such that the left space W′ occupies about two thirds of the inside of theupper tank portion 15 b and the right space X′ occupies about one third thereof. Aseparator 15 f″ is disposed in thelower tank portion 15 c of thefirst evaporator 15 to partition the inner space of thelower tank portion 15 c into a left inner space Y′ and a right inner space Z′ such that the left space Y′ occupies about one third of the inside of thelower tank portion 15 c and the right space Z′ occupies about two thirds thereof. - A
separator 18 e′ is disposed in theupper tank portion 18 b of thesecond evaporator 18 to partition the inner space of theupper tank portion 18 b into a left inner space O′ and a right inner space P′ such that the left space O′ occupies about one half of the inside of theupper tank portion 18 b and the right space P′ occupies about one half thereof. No separator is disposed in thelower tank portion 18 c of thesecond evaporator 18, in which one inner space Q′ is formed. Note that in this modified example, the inner space P′ of theupper tank portion 18 b of thesecond evaporator 18 is connected to the downstream side of therefrigerant branch passage 16. - The
ejector 14 is disposed inside theupper tank portion 18 b of thesecond evaporator 18, like the first modified example. Thenozzle portion 14 a of theejector 14 is connected to the downstream side of themain passage 25 a, and therefrigerant suction port 14 b is disposed in the inner space O′ of theupper tank portion 18 b. The outlet of thediffuser portion 14 d is attached to be positioned in an upper space part of the inner space P′ of theupper tank portion 18 b. Thus, therefrigerant suction port 14 b is directly opened in the inner space O′ of theupper tank portion 18 b, and further the outlet of thediffuser portion 14 d is directly opened in the inner space P′ of theupper tank portion 18 b. - As mentioned above, the refrigerant on the downstream side of the
refrigerant branch passage 16 and the refrigerant flowing from thediffuser portion 14 d flow into the inner space P′. Thus, in this embodiment, the inner space P′ is divided into two independent spaces, that is, a space into which the refrigerant on the downstream side of therefrigerant branch passage 16 flows and a space into which the refrigerant flowing from thediffuser portion 14 d flows. - Specifically, a partition plate not shown is provided for vertically dividing the inner space P′ into the two spaces. In this case, the refrigerant flowing from the
diffuser portion 14 d flows into the upper space, and the refrigerant on the downstream side of therefrigerant branch passage 16 flows into the lower space. Furthermore, the refrigerant can flow through this upper space and the inner space X′ of theupper tank portion 15 b of thefirst evaporator 15 via a communication hole not shown. - A passage or the like may be provided inside the
upper tank portion 18 b to allow the refrigerant flowing from thediffuser portion 14 d to flow directly into the inner space X′ and not into the inner space P′ without dividing the inner space P′ into the two independent spaces. Also in theintegrated unit 20E, theejector 14 is assembled to the inside of theupper tank portion 18 b of thesecond evaporator 18 after integrally connecting the first andsecond evaporators tank portions 15 b to 18 c by brazing, like the first modified example. - Now, the refrigerant flow path of the entire
integrated unit 20E with the above-mentioned structure will be described below. First, the refrigerant on the downstream side of themain passage 25 a flows directly into thenozzle portion 14 a of theejector 14 as indicated by the arrow “aa”. Then, the refrigerant passes through theejector 14 to be decompressed. The low-pressure refrigerant decompressed flows into the inner space X′ of theupper tank portion 15 b of thefirst evaporator 15 via the upper space of the inner space P′ of theupper tank portion 18 b of thesecond evaporator 18. - The refrigerant flowing into the inner space X′ is distributed into the plurality of
tubes 21 on the right side of thefirst evaporator 15 to flow downwardly as indicated by the arrow “rr”, and then to flow into the inner space Z′ of thelower tank portion 15 c of thefirst evaporator 15. The refrigerant flowing into the inner space Z′ moves leftward in the inner space Z′. The refrigerant moving leftward in the inner space Z′ is distributed into the plurality oftubes 21 at the center area of thefirst evaporator 15 to flow upwardly as indicated by the arrow “ss”, and then to flow into the inner space W′ of theupper tank portion 15 b of thefirst evaporator 15. - The refrigerant flowing into the inner space W′ of the
upper tank portion 15 b moves leftward inside the inner space W′. The refrigerant moving leftward inside the inner space W′ is distributed into the plurality oftubes 21 on the left side of thefirst evaporator 15 to flow downwardly as indicated by the arrow tt, and then to be collected in the inner space Y′ of thelower tank portion 15 c of thefirst evaporator 15. The refrigerant collected in the inner space Y′ flows from thelower tank portion 15 c to the suction side of thecompressor 11 as indicated by the arrow “pp”. - Thus, the outflow refrigerant flowing out of the
diffuser portion 14 d to pass thorough thefirst evaporator 15 changes a flow direction twice (more than one time) in thefirst evaporator 15 to be brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left lower part of thefirst evaporator 15. In contrast, the low-pressure refrigerant on the downstream side of therefrigerant branch passage 16 depressed by thethrottle unit 17 flows into a lower space part of the inner space P′ of theupper tank portion 18 b of thesecond evaporator 18. - The refrigerant flowing into the lower space part of the inner space P′ is distributed into the plurality of
tubes 21 on the right side of thesecond evaporator 18 to flow downwardly as indicated by the arrow “uu”, and then to flow into the inner space Q′ of thelower tank portion 18 c. The refrigerant flowing into the inner space Q′ moves leftward inside the inner space Q′. The refrigerant moving leftward in the inner space Q′ is distributed into the plurality oftubes 21 on the left side of thesecond evaporator 18 to flow upwardly as indicated by the arrow “vv” and then to be collected into the inner space O′. The refrigerant collected in the inner space O′ is drawn into theejector 14 from therefrigerant suction port 14 c of theejector 14. - Thus, the refrigerant is brought into a vapor phase having an appropriate degree of superheat at a superheat area positioned on the left upper part of the
second evaporator 18. The refrigerant passes through theintegrated unit 20E as mentioned above, and thus thesecond evaporator 18 constructs only the suction-siderefrigerant evaporation portion 18 a and not the outflowrefrigerant evaporating portion 18 a′. Other components have the same structures as those in the first modified example. Thetemperature sensor 40 not shown is disposed at the part MC where the refrigerant flows upwardly from thelower tank portion 18 c of the second evaporator 18 (on the lower side of the flow part as indicated by the arrow “vv” in this modified example), at a position close to thelower tank portion 18 c, like the above-mentioned embodiment and modified examples. - Although the present invention has been fully described in connection with the embodiment and the modified examples thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art.
- (1) In the above-mentioned embodiment, other components except for the
ejector 14, that is, the first andsecond evaporators throttle unit 17 are integrally brazed when these components of theintegrated unit 20A are integrally assembled. However, these components can be integrally assembled by various fixing means other than brazing, including screwing, caulking, welding, adhesion and the like. - In the above-described embodiment, exemplary fixing means of the
ejector 14 is the screwing, but any other fixing means that may not be thermally deformed can be used instead of the screwing. Specifically, fixing means, such as caulking or adhesion, may be used to fix theejector 14. - (2) Although the above-mentioned embodiment has described a vapor-compression subcritical cycle using refrigerant whose high pressure does not exceed the critical pressure, such as a Freon-based or HC-based refrigerant, the present invention may be applied to a vapor-compression supercritical cycle using refrigerant whose high pressure exceeds the critical pressure, such as carbon dioxide (CO2). In this case, the compressor discharge refrigerant only radiates heat in the supercritical state using the
radiator 12 in the supercritical cycle, the refrigerant is not condensed, and thus theliquid receiver 12 a disposed on the high-pressure side cannot exhibit a vapor-liquid separation effect of the refrigerant and a storage effect of the excessive liquid refrigerant. The supercritical cycle may employ an accumulator (not shown) constructing a low-pressure side vapor-liquid separator disposed on the refrigerant outlet side of thefirst evaporator 15. - (3) In the above-mentioned embodiment, the
throttle unit 17 may be constructed of a fixed throttle, such as a capillary tube or an orifice. However, thethrottle unit 17 may be constructed of an electric control valve whose valve opening degree (opening degree of throttle passage) is adjustable by an electric actuator. Alternatively, thethrottle unit 17 may be constructed of a combination of a fixed throttle, such as a capillary tube or a fixed throttle hole, and an electromagnetic valve. - (4) In the above-mentioned embodiment, the
ejector 14 is a fixed ejector with a fixednozzle portion 14 a whose passage area is constant. However, theejector 14 may be a variable ejector having a variable nozzle portion whose passage area is adjustable. Specifically, the variable nozzle portion may be constructed of a mechanism which is adapted to adjust a nozzle passage area by controlling the position of a needle inserted into a passage of the variable nozzle portion by an electric actuator. - (5) In the above-mentioned embodiment, a vehicle compartment space or a freezer and refrigerator space of a freezer car serves as a space to be cooled by the first and
second evaporator - (6) In the above-mentioned embodiment, the
thermal expansion valve 13 and thetemperature sensing portion 13 a are independently provided from theintegrated unit 20 of the ejector-type refrigerant cycle device, as shown inFIG. 1 . However, thethermal expansion valve 13 and thetemperature sensing portion 13 a may be integrally assembled to theintegrated unit 20 of the ejector-type refrigerant cycle device. For example, thethermal expansion valve 13 and thetemperature sensing portion 13 a can be accommodated in thefirst connection block 23 of theintegrated unit 20. In this case, therefrigerant inlet 25 is located between theliquid receiver 12 a and thethermal expansion valve 13, and therefrigerant outlet 26 is located between a passage part with thetemperature sensing portion 13 a set therein and thecompressor 11. - (7) Furthermore, the
temperature sensor 40 can be located to detect any one of its fin temperature and its tube temperature so as to detect the frost of thesecond evaporator 18, and can be located to detect an air temperature immediately after passing through thesecond evaporator 18 so as to detect the frost of thesecond evaporator 18. Even in this case, thecontroller 50 can perform the frost prevention control in accordance with the temperature detected by thetemperature sensor 40. - Such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.
Claims (14)
1. A refrigerant cycle device comprising:
a compressor for sucking and compressing refrigerant;
a radiator located to cool high-pressure refrigerant discharged from the compressor;
a refrigerant adjusting unit located to adjust a refrigerant amount flowing from the radiator to a downstream side such that a super-heating degree of refrigerant to be sucked to the compressor approaches to a predetermined degree;
an ejector that includes a nozzle portion for decompressing refrigerant flowing from the refrigerant adjusting unit, and a refrigerant suction port from which refrigerant is drawn by a high-speed refrigerant stream jetted from the nozzle portion;
a refrigerant branch passage that is branched from an upstream side of the nozzle portion in a refrigerant flow such that refrigerant flows into the refrigerant suction port through the refrigerant branch passage;
a first heat exchanger disposed to evaporate refrigerant flowing out of the ejector;
a second heat exchanger disposed in the refrigerant branch passage to evaporate refrigerant to be drawn into the refrigerant suction port;
a′ temperature sensor located to detect a temperature so as to detect a frost in the second heat exchanger; and
a controller which performs a frost prevention control to reduce the frost in the second heat exchanger, in accordance with the temperature detected by the temperature sensor.
2. The refrigerant cycle device according to claim 1 , wherein:
the second heat exchanger includes a plurality of tubes in which refrigerant flows, and upper and lower tanks located at upper and lower sides of the plurality of tubes to distribute refrigerant into or collect the refrigerant from the plurality of tubes; and
the temperature sensor is located at a predetermined position of the second heat exchanger, at which refrigerant flows upwardly from the lower tank.
3. The refrigerant cycle device according to claim 1 , wherein the first heat exchanger and the second heat exchanger are located to perform heat exchange with a common heat-exchanging medium.
4. The refrigerant cycle device according to claim 3 , wherein the second heat exchanger is located downstream of the first heat exchanger in a flow direction of the heat-exchanging medium such that the heat-exchanging medium after passing through the first heat exchanger passes through the second heat exchanger.
5. The refrigerant cycle device according to claim 1 , wherein the controller reduces a discharge capacity of refrigerant discharged from the compressor during the frost prevention control.
6. The refrigerant cycle device according to claim 1 , wherein the controller stops operation of the compressor during the frost prevention control.
7. The refrigerant cycle device according to claim 1 , wherein the temperature sensor is located to detect a temperature of air immediately after passing through the second heat exchanger.
8. The refrigerant cycle device according to claim 2 , wherein:
the second heat exchanger further includes a plurality of fins located between the tubes; and
the temperature sensor is located to detect a temperature of one of the fins and the tubes.
9. The refrigerant cycle device according to claim 1 , wherein the predetermined position is close to the lower tank.
10. A heat-exchanger integrated unit for a refrigerant cycle device, the integrated unit comprising:
a heat exchanger for evaporating refrigerant;
an ejector that includes a nozzle portion for decompressing refrigerant, and a refrigerant suction port from which refrigerant from the heat exchanger is drawn by a high-speed refrigerant flow jetted from the nozzle portion; and
a temperature sensor for detecting a temperature so as to detect a frost in the heat exchanger,
wherein the temperature sensor is located in the heat exchanger at a predetermined position at which refrigerant flows upwardly from below.
11. A heat-exchanger integrated unit for a refrigerant cycle device that includes an ejector having a nozzle portion for decompressing refrigerant, the integrated unit comprising:
a first heat exchanger located to perform heat exchange between refrigerant and a heat-exchanging medium;
a second heat exchanger located downstream from the first heat exchanger in a flow direction of the heat-exchanging medium to perform heat exchange between refrigerant and the heat-exchanging medium flowing from the first heat exchanger; and
a temperature sensor located to detect a temperature of the second heat exchanger so as to detect a frost in the second heat exchanger, wherein:
the first heat exchanger is located to evaporate refrigerant flowing out of the ejector; and
the second heat exchanger has at least a suction-side heat exchanging portion that is located to evaporate refrigerant to be drawn into a refrigerant suction port of the ejector, from which refrigerant is drawn into the ejector by a high-speed refrigerant stream jetted from the nozzle portion.
12. The heat-exchanger integrated unit according to claim 11 , wherein:
the second heat exchanger includes a plurality of tubes in which refrigerant flows, and upper and lower tanks located at upper and lower sides of the plurality of tubes to distribute refrigerant into or collect the refrigerant from the plurality of tubes; and
the temperature sensor is located at a predetermined position of the second heat exchanger, at which refrigerant flows upwardly from the lower tank.
13. The heat-exchanger integrated unit according to claim 12 , wherein the ejector is located in the upper tank of the second heat exchanger.
14. The heat-exchanger integrated unit according to claim 11 , further comprising:
a throttle unit which is located at an upstream side of a heat exchanging portion of the second heat exchanger in a refrigerant flow, to decompress refrigerant while adjusting a refrigerant flow amount supplied to the second heat exchanger,
wherein the throttle unit is integrated with the second heat exchanger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-165106 | 2006-06-14 | ||
JP2006165106A JP2007333292A (en) | 2006-06-14 | 2006-06-14 | Ejector type refrigeration cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070289318A1 true US20070289318A1 (en) | 2007-12-20 |
Family
ID=38859562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/810,523 Abandoned US20070289318A1 (en) | 2006-06-14 | 2007-06-06 | Refrigerant cycle device and heat-exchanger integrated unit with temperature sensor for the same |
Country Status (3)
Country | Link |
---|---|
US (1) | US20070289318A1 (en) |
JP (1) | JP2007333292A (en) |
DE (1) | DE102007027109A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090044557A1 (en) * | 2007-08-15 | 2009-02-19 | Johnson Controls Technology Company | Vapor compression system |
US7694728B2 (en) | 2004-09-28 | 2010-04-13 | T. Rad Co., Ltd. | Heat exchanger |
FR2953920A1 (en) * | 2009-12-16 | 2011-06-17 | Valeo Systemes Thermiques | AIR CONDITIONING SYSTEM COMPRISING A DEVICE FOR CONTROLLING THE FRICTION OF A HEAT EXCHANGER CONSTITUTING A CLIMATE LOOP; |
US20120067077A1 (en) * | 2010-09-16 | 2012-03-22 | Denso Corporation | Torque estimating divice for compressor |
EP2546587A1 (en) * | 2011-07-12 | 2013-01-16 | A.P. Møller - Mærsk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
US20130014521A1 (en) * | 2011-07-12 | 2013-01-17 | A.P. Moller - Maersk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
WO2013007628A1 (en) * | 2011-07-12 | 2013-01-17 | A.P. Møller - Mærsk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
CN104350342A (en) * | 2012-06-14 | 2015-02-11 | 阿尔法拉瓦尔股份有限公司 | System and method for dynamic control of evaporator |
CN104380023A (en) * | 2012-06-14 | 2015-02-25 | 阿尔法拉瓦尔股份有限公司 | A plate heat exchanger with injection means |
US8973394B2 (en) | 2009-01-12 | 2015-03-10 | Denso Corporation | Dual evaporator unit with integrated ejector having refrigerant flow adjustability |
US20150068707A1 (en) * | 2013-09-09 | 2015-03-12 | Nec Corporation | Electronic component cooling apparatus |
US20150241080A1 (en) * | 2014-02-21 | 2015-08-27 | Keihin Thermal Technology Corporation | Air-conditioning apparatus for vehicle |
US20150283978A1 (en) * | 2012-11-09 | 2015-10-08 | Sanden Corporation | Vehicle air conditioner |
US20160131376A1 (en) * | 2014-11-12 | 2016-05-12 | Lg Electronics Inc. | Air conditioner and method of controlling the same |
US20160178253A1 (en) * | 2013-07-31 | 2016-06-23 | Denso Corporation | Air conditioning device for vehicle |
CN110345690A (en) * | 2019-07-30 | 2019-10-18 | 西安交通大学 | The dual jet synergism refrigerating circulatory system and working method for dual temperature refrigerator |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007057307B4 (en) * | 2007-11-28 | 2019-03-28 | Denso Corporation | Ejector refrigeration cycle device and decompression device |
JP2014055765A (en) * | 2009-01-12 | 2014-03-27 | Denso Corp | Evaporator unit |
JP5617791B2 (en) * | 2011-08-03 | 2014-11-05 | 株式会社デンソー | Refrigeration cycle equipment |
JP6323313B2 (en) * | 2014-11-27 | 2018-05-16 | 株式会社デンソー | Evaporator unit |
JP6720933B2 (en) * | 2017-07-19 | 2020-07-08 | 株式会社デンソー | Ejector type refrigeration cycle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449979B1 (en) * | 1999-07-02 | 2002-09-17 | Denso Corporation | Refrigerant evaporator with refrigerant distribution |
US20050178150A1 (en) * | 2004-02-18 | 2005-08-18 | Hiroshi Oshitani | Ejector cycle having multiple evaporators |
US20050268644A1 (en) * | 2004-02-18 | 2005-12-08 | Denso Corporation | Vapor compression cycle having ejector |
US20070039337A1 (en) * | 2005-08-18 | 2007-02-22 | Denso Corporation | Ejector cycle device |
US20070163294A1 (en) * | 2006-01-19 | 2007-07-19 | Denso Corporation | Evaporator unit and ejector type refrigeration cycle |
US20070169510A1 (en) * | 2006-01-20 | 2007-07-26 | Denso Corporation | Unit for refrigerant cycle device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4259478B2 (en) * | 2004-02-18 | 2009-04-30 | 株式会社デンソー | Evaporator structure and ejector cycle |
JP2006021624A (en) * | 2004-07-07 | 2006-01-26 | Denso Corp | Freezer |
JP4984453B2 (en) * | 2004-09-22 | 2012-07-25 | 株式会社デンソー | Ejector refrigeration cycle |
JP4581720B2 (en) * | 2004-09-29 | 2010-11-17 | 株式会社デンソー | Cycle using ejector |
-
2006
- 2006-06-14 JP JP2006165106A patent/JP2007333292A/en active Pending
-
2007
- 2007-06-06 US US11/810,523 patent/US20070289318A1/en not_active Abandoned
- 2007-06-13 DE DE102007027109A patent/DE102007027109A1/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6449979B1 (en) * | 1999-07-02 | 2002-09-17 | Denso Corporation | Refrigerant evaporator with refrigerant distribution |
US20050178150A1 (en) * | 2004-02-18 | 2005-08-18 | Hiroshi Oshitani | Ejector cycle having multiple evaporators |
US20050268644A1 (en) * | 2004-02-18 | 2005-12-08 | Denso Corporation | Vapor compression cycle having ejector |
US20070039337A1 (en) * | 2005-08-18 | 2007-02-22 | Denso Corporation | Ejector cycle device |
US20070163294A1 (en) * | 2006-01-19 | 2007-07-19 | Denso Corporation | Evaporator unit and ejector type refrigeration cycle |
US7647789B2 (en) * | 2006-01-19 | 2010-01-19 | Denso Corporation | Evaporator unit and ejector type refrigeration cycle |
US20070169510A1 (en) * | 2006-01-20 | 2007-07-26 | Denso Corporation | Unit for refrigerant cycle device |
US7654108B2 (en) * | 2006-01-20 | 2010-02-02 | Denso Corporation | Unit for refrigerant cycle device |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7694728B2 (en) | 2004-09-28 | 2010-04-13 | T. Rad Co., Ltd. | Heat exchanger |
US7854255B2 (en) | 2004-09-28 | 2010-12-21 | T. Rad Co., Ltd. | Heat exchanger |
US20090044557A1 (en) * | 2007-08-15 | 2009-02-19 | Johnson Controls Technology Company | Vapor compression system |
US8973394B2 (en) | 2009-01-12 | 2015-03-10 | Denso Corporation | Dual evaporator unit with integrated ejector having refrigerant flow adjustability |
EP2336703A1 (en) * | 2009-12-16 | 2011-06-22 | Valeo Systèmes Thermiques | Air conditioning system comprising a system to control freezing of a heat exchanger of an air conditioning loop |
FR2953920A1 (en) * | 2009-12-16 | 2011-06-17 | Valeo Systemes Thermiques | AIR CONDITIONING SYSTEM COMPRISING A DEVICE FOR CONTROLLING THE FRICTION OF A HEAT EXCHANGER CONSTITUTING A CLIMATE LOOP; |
US20120067077A1 (en) * | 2010-09-16 | 2012-03-22 | Denso Corporation | Torque estimating divice for compressor |
US9505289B2 (en) * | 2010-09-16 | 2016-11-29 | Denso Corporation | Torque estimating device for compressor |
EP2546587A1 (en) * | 2011-07-12 | 2013-01-16 | A.P. Møller - Mærsk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
US20130014521A1 (en) * | 2011-07-12 | 2013-01-17 | A.P. Moller - Maersk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
WO2013007628A1 (en) * | 2011-07-12 | 2013-01-17 | A.P. Møller - Mærsk A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
CN103649655A (en) * | 2011-07-12 | 2014-03-19 | A·P·默勒-马士基公司 | Reducing or avoiding ice formation in an intermittently operated cooling unit |
US9528745B2 (en) * | 2011-07-12 | 2016-12-27 | Maersk Line A/S | Reducing or avoiding ice formation in an intermittently operated cooling unit |
CN104350342A (en) * | 2012-06-14 | 2015-02-11 | 阿尔法拉瓦尔股份有限公司 | System and method for dynamic control of evaporator |
CN104380023A (en) * | 2012-06-14 | 2015-02-25 | 阿尔法拉瓦尔股份有限公司 | A plate heat exchanger with injection means |
US10107572B2 (en) | 2012-06-14 | 2018-10-23 | Alfa Lavalcorporate Ab | Plate heat exchanger |
US9903624B2 (en) | 2012-06-14 | 2018-02-27 | Alfa Laval Corporate Ab | System and method for dynamic control of an evaporator |
US9944256B2 (en) * | 2012-11-09 | 2018-04-17 | Sanden Holdings Corporation | Vehicle air conditioner with a controller for judging frost formation |
US20150283978A1 (en) * | 2012-11-09 | 2015-10-08 | Sanden Corporation | Vehicle air conditioner |
US20160178253A1 (en) * | 2013-07-31 | 2016-06-23 | Denso Corporation | Air conditioning device for vehicle |
US10371420B2 (en) * | 2013-07-31 | 2019-08-06 | Denso Corporation | Air conditioning device for vehicle |
US20150068707A1 (en) * | 2013-09-09 | 2015-03-12 | Nec Corporation | Electronic component cooling apparatus |
US20150241080A1 (en) * | 2014-02-21 | 2015-08-27 | Keihin Thermal Technology Corporation | Air-conditioning apparatus for vehicle |
US20160131376A1 (en) * | 2014-11-12 | 2016-05-12 | Lg Electronics Inc. | Air conditioner and method of controlling the same |
US20180180317A1 (en) * | 2014-11-12 | 2018-06-28 | Lg Electronics Inc. | Air conditioner and method of controlling the same |
US10443872B2 (en) * | 2014-11-12 | 2019-10-15 | Lg Electronics Inc. | Air conditioner and method of controlling the same |
US10465936B2 (en) * | 2014-11-12 | 2019-11-05 | Lg Electronics Inc. | Air conditioner and method of controlling the same |
CN110345690A (en) * | 2019-07-30 | 2019-10-18 | 西安交通大学 | The dual jet synergism refrigerating circulatory system and working method for dual temperature refrigerator |
Also Published As
Publication number | Publication date |
---|---|
DE102007027109A1 (en) | 2008-01-31 |
JP2007333292A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070289318A1 (en) | Refrigerant cycle device and heat-exchanger integrated unit with temperature sensor for the same | |
US7823401B2 (en) | Refrigerant cycle device | |
US7654108B2 (en) | Unit for refrigerant cycle device | |
US7770412B2 (en) | Integrated unit for refrigerant cycle device and manufacturing method of the same | |
US7987685B2 (en) | Refrigerant cycle device with ejector | |
JP5050563B2 (en) | Ejector and ejector type refrigeration cycle unit | |
US8099978B2 (en) | Evaporator unit | |
EP1870648B1 (en) | Ejector type refrigerating cycle unit | |
US8429931B2 (en) | Ejector refrigerant cycle device | |
US20070169512A1 (en) | Heat exchanger and refrigerant cycle device using the same | |
US8661845B2 (en) | Heat exchanger | |
US8201620B2 (en) | Evaporator unit | |
US8365552B2 (en) | Evaporator unit having tank provided with ejector nozzle | |
JP5509942B2 (en) | Ejector unit, heat exchanger unit, and refrigerant short circuit detection method for ejector unit | |
JP4770891B2 (en) | Ejector type refrigeration cycle unit | |
US8201415B2 (en) | Integrated unit for refrigeration cycle device | |
JP4577291B2 (en) | Refrigerant evaporator | |
JP4784418B2 (en) | Ejector refrigeration cycle and evaporator unit | |
JP2009058179A (en) | Ejector type refrigerating cycle unit | |
JP4910567B2 (en) | Ejector refrigeration cycle | |
JP5017925B2 (en) | Ejector, evaporator unit and ejector refrigeration cycle | |
JP2007057177A (en) | Vapor compression type refrigerating cycle device | |
JP2008075904A (en) | Evaporator unit and ejector type refrigerating cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DENSO CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAMURA, TOMOHIKO;REEL/FRAME:019482/0787 Effective date: 20070531 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |