US20070225237A1 - Methods for the prevention and/or the treatment of glutamate cytotoxicity - Google Patents
Methods for the prevention and/or the treatment of glutamate cytotoxicity Download PDFInfo
- Publication number
- US20070225237A1 US20070225237A1 US11/798,285 US79828507A US2007225237A1 US 20070225237 A1 US20070225237 A1 US 20070225237A1 US 79828507 A US79828507 A US 79828507A US 2007225237 A1 US2007225237 A1 US 2007225237A1
- Authority
- US
- United States
- Prior art keywords
- glutamate
- derivative
- group
- patient
- naphthoquinone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 title claims abstract description 78
- 229930195712 glutamate Natural products 0.000 title claims abstract description 77
- 230000003013 cytotoxicity Effects 0.000 title claims abstract description 15
- 231100000135 cytotoxicity Toxicity 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims description 29
- 230000002265 prevention Effects 0.000 title abstract description 5
- 229940079593 drug Drugs 0.000 claims abstract description 17
- 239000003814 drug Substances 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 150000000181 1,2-naphthoquinones Chemical class 0.000 claims description 11
- 230000001154 acute effect Effects 0.000 claims description 10
- 230000000763 evoking effect Effects 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 208000002320 spinal muscular atrophy Diseases 0.000 claims description 8
- 230000001684 chronic effect Effects 0.000 claims description 7
- 229930182480 glucuronide Natural products 0.000 claims description 7
- 150000008134 glucuronides Chemical class 0.000 claims description 7
- KETQAJRQOHHATG-UHFFFAOYSA-N 1,2-naphthoquinone Chemical compound C1=CC=C2C(=O)C(=O)C=CC2=C1 KETQAJRQOHHATG-UHFFFAOYSA-N 0.000 claims description 6
- 229940105324 1,2-naphthoquinone Drugs 0.000 claims description 6
- 206010029350 Neurotoxicity Diseases 0.000 claims description 6
- 206010044221 Toxic encephalopathy Diseases 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 6
- 208000028867 ischemia Diseases 0.000 claims description 6
- 201000006417 multiple sclerosis Diseases 0.000 claims description 6
- 231100000228 neurotoxicity Toxicity 0.000 claims description 6
- 230000007135 neurotoxicity Effects 0.000 claims description 6
- 208000006011 Stroke Diseases 0.000 claims description 5
- 208000035475 disorder Diseases 0.000 claims description 5
- 230000004770 neurodegeneration Effects 0.000 claims description 5
- 206010010904 Convulsion Diseases 0.000 claims description 4
- 208000002193 Pain Diseases 0.000 claims description 4
- 230000036407 pain Effects 0.000 claims description 4
- 208000013016 Hypoglycemia Diseases 0.000 claims description 3
- 206010021143 Hypoxia Diseases 0.000 claims description 3
- 208000018737 Parkinson disease Diseases 0.000 claims description 3
- 208000017442 Retinal disease Diseases 0.000 claims description 3
- 206010038923 Retinopathy Diseases 0.000 claims description 3
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 3
- 230000007954 hypoxia Effects 0.000 claims description 3
- 230000013016 learning Effects 0.000 claims description 3
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 3
- 238000003909 pattern recognition Methods 0.000 claims description 3
- 230000009529 traumatic brain injury Effects 0.000 claims description 3
- 230000036772 blood pressure Effects 0.000 claims description 2
- 230000003054 hormonal effect Effects 0.000 claims description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 2
- 230000028016 temperature homeostasis Effects 0.000 claims description 2
- 208000012902 Nervous system disease Diseases 0.000 abstract description 6
- 208000025966 Neurological disease Diseases 0.000 abstract description 6
- 125000000614 1,2-naphthoquinonyl group Chemical class C1(C(C(=CC2=CC=CC=C12)*)=O)=O 0.000 abstract 3
- TZGBBMBARSFJBG-UKTHLTGXSA-N naftazone Chemical compound C1=CC=C2C(=O)C(=N/NC(=O)N)/C=CC2=C1 TZGBBMBARSFJBG-UKTHLTGXSA-N 0.000 description 18
- 229960001556 naftazone Drugs 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 102000018899 Glutamate Receptors Human genes 0.000 description 13
- 108010027915 Glutamate Receptors Proteins 0.000 description 13
- 0 *N=C1CC=C2C=CC=CC2C1=O Chemical compound *N=C1CC=C2C=CC=CC2C1=O 0.000 description 12
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 12
- 241000700159 Rattus Species 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 8
- 230000006378 damage Effects 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 230000002887 neurotoxic effect Effects 0.000 description 6
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 5
- 208000027418 Wounds and injury Diseases 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000001994 activation Methods 0.000 description 5
- 208000014674 injury Diseases 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 210000003568 synaptosome Anatomy 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000028161 membrane depolarization Effects 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 229960001252 methamphetamine Drugs 0.000 description 4
- 230000001537 neural effect Effects 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 231100000189 neurotoxic Toxicity 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- -1 dextromophan Chemical compound 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NEWKHUASLBMWRE-UHFFFAOYSA-N 2-methyl-6-(phenylethynyl)pyridine Chemical compound CC1=CC=CC(C#CC=2C=CC=CC=2)=N1 NEWKHUASLBMWRE-UHFFFAOYSA-N 0.000 description 2
- PVKSNHVPLWYQGJ-KQYNXXCUSA-N AMP-PNP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)NP(O)(O)=O)[C@@H](O)[C@H]1O PVKSNHVPLWYQGJ-KQYNXXCUSA-N 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000012777 Metabotropic Glutamate 5 Receptor Human genes 0.000 description 2
- 108010065028 Metabotropic Glutamate 5 Receptor Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000005064 dopaminergic neuron Anatomy 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 210000000225 synapse Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 2
- 229960004319 trichloroacetic acid Drugs 0.000 description 2
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- CUVGUPIVTLGRGI-UHFFFAOYSA-N 4-(3-phosphonopropyl)piperazine-2-carboxylic acid Chemical compound OC(=O)C1CN(CCCP(O)(O)=O)CCN1 CUVGUPIVTLGRGI-UHFFFAOYSA-N 0.000 description 1
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 206010008089 Cerebral artery occlusion Diseases 0.000 description 1
- 206010013954 Dysphoria Diseases 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010014531 FMN Reductase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 1
- 229940122459 Glutamate antagonist Drugs 0.000 description 1
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 1
- 108010000445 Glycerate dehydrogenase Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 101000640289 Homo sapiens Synemin Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- HRUNFDRIIRRRGD-UHFFFAOYSA-N NC(=O)NN=C1CC=C2C=CC=CC2C1=O.NC(=O)NN=C1CC=C2C=CC=CC2C1OC1OC(C(=O)O)C(O)C(O)C1O Chemical compound NC(=O)NN=C1CC=C2C=CC=CC2C1=O.NC(=O)NN=C1CC=C2C=CC=CC2C1OC1OC(C(=O)O)C(O)C(O)C1O HRUNFDRIIRRRGD-UHFFFAOYSA-N 0.000 description 1
- 241000607568 Photobacterium Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- JQYMGXZJTCOARG-UHFFFAOYSA-N Reactive blue 2 Chemical compound C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(N)=C(S(O)(=O)=O)C=C1NC(C=C1S(O)(=O)=O)=CC=C1NC(N=1)=NC(Cl)=NC=1NC1=CC=CC(S(O)(=O)=O)=C1 JQYMGXZJTCOARG-UHFFFAOYSA-N 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003194 amino acid receptor blocking agent Substances 0.000 description 1
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical class NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- YKCWQPZFAFZLBI-UHFFFAOYSA-N cibacron blue Chemical compound C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(N)=C(S(O)(=O)=O)C=C1NC(C=C1S(O)(=O)=O)=CC=C1NC(N=1)=NC(Cl)=NC=1NC1=CC=CC=C1S(O)(=O)=O YKCWQPZFAFZLBI-UHFFFAOYSA-N 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 239000003257 excitatory amino acid Substances 0.000 description 1
- 230000002461 excitatory amino acid Effects 0.000 description 1
- 239000000928 excitatory amino acid agonist Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 108010029645 galactitol 2-dehydrogenase Proteins 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000000848 glutamatergic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002385 psychotomimetic effect Effects 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000007940 sugar coated tablet Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000002666 vasoprotective effect Effects 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/12—Ketones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/17—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
- A61K31/175—Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine having the group, >N—C(O)—N=N— or, e.g. carbonohydrazides, carbazones, semicarbazides, semicarbazones; Thioanalogues thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Definitions
- the present invention relates to the use of beta-naphthoquinone derivatives, and salts thereof, for the prevention and/or the treatment of glutamate cytotoxicity. It further relates to the use of beta-naphthoquinone derivatives, and salts thereof, for preventing and/or treating glutamate induced neurological disorders. Additionally, it concerns the use of beta-naphthoquinone derivatives, and salts thereof, for making drugs exerting an inhibitory effect on the release of glutamate.
- Glutamate is the main excitatory neurotransmitter in the nervous system, especially brain and spinal cord, of mammals wherein it is working at a variety of excitatory synapses.
- glutamate plays a central role in a wide range of physiological as well as pathological events (Watkins J. C., Collingridge G. L., The NMDA receptor, IRL Oxford, 1989). It is for example strongly suggested that it plays a central role in functions such as learning, pattern recognition, and memory (Bliss T. V. P. Collingridge G. L., Nature 361, 31-39, 1993).
- glutamate is toxic to neurons in vitro and in vivo and that the function of glutamate receptor, especially glutamate receptors of the N-methyl-D-aspartate (“NMDA”) receptor subtype, is crucial in a number of neuronal damages and injuries (Appel S. H., Trends Neurosci. 16, 3-5, 1993).
- MS multiple sclerosis
- ALS amyotrophic lateral sclerosis
- SMA spinal muscular atrophy
- retinopathy stroke and traumatic brain injury
- glutamate cytotoxicity excessive activations of glutamate receptors, referred to as “glutamate cytotoxicity”, are actually associated with the elevation of extracellular glutamate levels.
- the mechanisms of the elevation of extracellular glutamate include enhanced efflux of glutamate and/or the reduction of glutamate uptake by cells.
- NMDA N-methyl-D-aspartate
- glutamate receptors mostly the N-methyl-D-aspartate (“NMDA”) receptor
- NMDA N-methyl-D-aspartate
- Examples of such molecules are anthranilic acid derivatives (see U.S. Pat. No. 5,789,444), Basilen Blue D-3G (Reactive Blue 2) and Cibacron Blue 3GA and 5-adenylylimidodiphosphate (AMPPNP) (see U.S. Pat. No.
- NMDA specific antagonists such as ketamine, dextromophan, or 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (Kristensen et al., 1992, Pain, 51:249-253; Eide et al., 1995, Pain, 61,221-228), or the 2-methyl-6-(phenylethynyl)pyridine (MPEP) which is an antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5) (Ossowska et al., 2001, Neuropharmacology,41,413-420)
- mGluR5 metabotropic glutamate receptor subtype 5
- beta-naphthoquinone derivative compounds previously used as vasoprotective drugs, have preventing and/or treating effects on glutamate-induced cytotoxicity. More specifically, said compounds have been shown to control, and preferably inhibit, the spontaneous and/or the evoked (i.e. the glutamate release by cells in response to depolarization) release of glutamate.
- the present invention provides a new class of compounds which represents a pharmacological alternative to previously described compounds, such as competitive and non-competitive glutamate antagonists or agonists, gangliosides and growth factors, for the treatment or prevention of acute and chronic glutamate-related diseases or conditions, particularly neurological diseases.
- the present invention provides a new class of compounds which can be used as pharmacological tools for the modulation of glutamate cellular release and cytotoxicity, preferably neurotoxicity, and which allows the possible treatment and/or prevention of many neurological disorders involving epileptic seizures and acute and chronic neurodegenerative diseases, as well as neuronal injury caused by ischemia or glutamate-related diseases or conditions, wherein said disorders are, at least partially, associated with excessive activation of glutamate receptors and/or with excessive extracellular glutamate levels.
- the invention is therefore first directed to a novel use of beta-naphthoquinone derivatives for making drugs with an inhibitory effect on the extracellular glutamate release, wherein said derivatives are selected among the group consisting of:
- R represents —NH—CO—NH 2 , —NH—CO—CH 3 , or —OH group
- said derivatives are selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone, also called naftazone according to its international common name, and its corresponding glucuronidated derivative, i.e. the 1-(1-hydroxy,2-naphthyl)semicarbazide-1- ⁇ -O-gluco-pyranosiduronic acid, respectively of formula (III) and formula (IV):
- the derivatives of the invention are further substituted with, one to four, identical or different, heteroatoms and/or hetero groups.
- the addition salts of the derivatives of the invention comprise conventional salt formed from inorganic or organic acids or bases, such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric, perchloric, fumaric, acetic, sodium, lithium, potassium, magnesium, aluminium, calcium, zinc, ethylenediamine; formic, benzoic, maleic, tartaric, citric, oxalic, aspartic acid, and alkane-sulfonic acids is even mentioned.
- inorganic or organic acids or bases such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric, perchloric, fumaric, acetic, sodium, lithium, potassium, magnesium, aluminium, calcium, zinc, ethylenediamine; formic, benzoic, maleic, tartaric, citric, oxalic, aspartic acid, and alkane-sulfonic acids is even mentioned.
- the present invention further relates to a method for treating and/or preventing glutamate-evoked cytotoxicity in a patient in need thereof comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of :
- the derivatives administered according to the method of the invention are selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone, also called naftazone, and its corresponding glucuronidated derivative, i.e. the 1-(1-hydroxy,2-naphthyl)semicarbazide-1- ⁇ -O-gluco-pyranosiduronic acid (see formula (III) and (IV) respectively).
- these derivatives might be substituted with, one to four, identical or different, heteroatoms and/or hetero groups as defined above.
- glutamate-evoked cytotoxicity within the present invention is intended to designate cell toxicity associated with excessive activations of glutamate receptors. These terms are well known by the one skilled in the art. More specifically, the “glutamate-evoked cytotoxicity” concerns all affected cells expressing glutamate receptors. According to preferred embodiments, these affected cells are nervous cells (i.e. neuro-cells), preferably neurons. These affected nervous cells are, for example, present in brain, spinal cord, retina, at the neuro-muscular junction, etc . . . “Cytotoxicity” means that the cell functions and/or properties are affected, leading to cell malfunctioning, and finally to cell death.
- nervous cells i.e. neuro-cells
- the method of the invention is intended for treating and/or preventing glutamate-evoked neurotoxicity, and even more preferably for treating and/or preventing neurodegeneration (i.e. degeneration of nervous cells).
- the present invention further relates to a method for modulating the release of glutamate in a patient comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of derivatives of Formula I to IV, and addition salts thereof.
- Modulating the release of glutamate means that the levels of released glutamate in non treated patient is different from the one observed after his treatment with the derivatives of the invention.
- treatment of the patient with the derivatives of the invention leads to a negative modulation, preferably to the inhibition, of the glutamate release by the producing cells, and thus to a decreased glutamate level in the treated patient compared to the glutamate level observed before said treatment.
- the present invention further relates to a method for treating and/or preventing disease and/or condition associated with the excessive release of glutamate in a patient comprising administration to said patient of a composition containing a therapeutically effective amount of at least one beta-naphtoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of derivatives of Formula I to IV, and addition salts thereof.
- “Disease and/or condition associated with the excessive release of glutamate” is intended to designate large number of acute and chronic glutamate-related diseases or conditions, particularly neurological diseases. It designates more specifically epileptic seizures and acute and chronic neurodegenerative diseases, as well as neuronal injury caused by ischemia or glutamate-related diseases or conditions, wherein said disorders are, at least partially, associated with excessive activation of glutamate receptors and/or with excessive extracellular glutamate levels.
- Examples are involving chronic or acute degenerative disorders, such as for example Alzheimer's, Huntington's, Parkinson's diseases, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), retinopathy, stroke and traumatic brain injury, involve neuronal cell death caused by over-stimulation of the glutamate receptors.
- neuronal injury caused by ischemia or drug-induced neurotoxicity for example neurotoxic effects of methamphetamine (METH) on striatal dopaminergic neurons, are indications of the methods according to the present invention.
- Other indications are glutamate-related conditions such as for example pain, hormonal balance, blood pressure, thermoregulation, respiration, learning, pattern recognition or memory, or any disorder subsequent to hypoxia or hypoglycaemia.
- the derivatives described herein are administered as a composition containing at least one active compound and a pharmaceutically acceptable carrier.
- any conventional pharmaceutically acceptable carrier can be utilized.
- the carrier material can be an organic or inorganic inert carrier material suitable for the selected route of administration. Suitable carriers include water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene-glycols, petroleum jelly and the like.
- the pharmaceutical composition may contain other pharmaceutically active agents. Additional additives such as flavoring agents, preservatives, stabilizers, emulsifying agents, salts for varying the osmotic pressure, buffers and the like may be added in accordance with accepted practices of pharmaceutical compounding.
- any conventional form such as tablets, capsules, pills, powders, granules, and the like may be used.
- they are in the form of tablets, sugar coated tablets, hard gelatin capsules, capsules, granules, for oral administration, or solutions or suspensions for administration via an injectable channel.
- the methods of the invention may be carried out by administering the composition containing derivative of the invention by any route whereby drugs are conventionally administered.
- routes include systemic and local routes. Examples are intravenous, intramuscular, subcutaneous, intracranial, intraperitoneal, as well as oral routes.
- the method of the invention is carried out via oral or intravenous routes of administration.
- a preferred oral dosage form comprises tablets, capsules of hard or soft gelatin, methylcellulose or of another suitable material easily dissolved in the digestive tract.
- the oral dosages contemplated in accordance with the present invention will vary in accordance with the needs of the individual patient as determined by the prescribing physician.
- the preferred oral dosage form is capsules or tablets containing from 50 to 500 mg of a derivative of the invention.
- compositions for bolus i.v. administration may contain up to 10 mg/ml (10,000 mg/liter) of derivative described herein.
- Compositions for i.v. administration preferably contain from about 50 mg/liter to about 500 mg/liter of at least one derivative described herein.
- derivative of the invention is generally given to adults daily, preferably orally or intravenously, in an amount of from about 5 mg/kg to about 30 mg/kg daily, in single or divided doses, preferably from about 13 mg/kg to about 17 mg/kg daily, with the precise dosage being varied depending upon the needs of the patient.
- the doses will be adapted according to the patient and the pathology to be treated and are for example 1 mg-100 mg/day. In general, this therapy is carried out for a period of about three months.
- the method of the invention may be carried out prophylactically for an indefinite time in those patients who are have a high risk of suffering an acute neurotoxic event, such as a stroke.
- the patient For the treatment of an acute neurotoxic event, the patient should be treated in accordance with the method of the invention as soon as possible after the diagnosis of the acute neurotoxic event, preferably within twelve hours, and most preferably within six hours, of the onset of the neurotoxic event.
- the drug When the drug is administered orally, it is generally administered at regular intervals.
- These drugs are notably administered orally or via an injectable channel.
- FIGS. 1 and 2 are views of the invention.
- FIG. 1 represents the diagram illustrating the chemiluminescence measurement protocol
- FIG. 2 represents the spontaneous release of glutamate and the induced one versus the concentration of naftazone ( FIG. 2A ) or of its glucuronidated derivative ( FIG. 2B ).
- the animals are kept in cages, in a well-ventilated room at 23-24° C., with a light/darkness cycle of 12 hours.
- the rats of this group are fed per os for 15 days with the same carrier as the one used for solubilizing naftazone, i.e. 1% methylcellulose Sigma,
- the CSF of anaesthetized rats with 6% pentobarbital (i.p.) is collected by operating according to the usual procedures.
- the animals are then decapitated.
- the CSF samples are centrifuged at 6,000 g for 10 min at 10° C.
- the supernatant is extracted, the sediment containing the blood deposits is removed.
- the samples are held in 2.5% trichloracetic acid and kept at ⁇ 80° C.
- Ether is used for washing trichloracetic acid off the samples.
- chemiluminescence measurements are conducted according to the procedure described in the diagram given in FIG. 1 .
- the reaction is based on the oxidization of glutamate into 2-oxoglutarate under the action of glutamate dehydrogenase, which produces NaDH2, evaluated by using the chemiluminescent reaction of photobacterium.
- the CSF samples are tested by adding a known volume of sample to the reaction medium which contains 250 ⁇ l of saccharose (120 mM) in Tris buffer (120 mM, pH 7.2), 50 ⁇ l of an enzymatic mixture of NAD, DMN, NADH-FMN oxidoreductase, luciferase and GDH, and 5 ⁇ l of n-decyl aldehyde.
- the light emitted by the luminescent reaction consecutive to the oxidization of L-glutamate and to the production of NADH, is detected by a photomultiplier unit, recorded and calibrated by comparing it with light emitted by a glutamate standard.
- the data are considered as significantly different from the controls, at p ⁇ 0.05.
- the homogenate obtained is diluted in 3 ml of mammal Krebs's solution and is filtered through a Nylon® tissue (mesh 50 ⁇ m).
- the filtrate is collected and left to settle for 30-45 min by gravity.
- Synaptosomes derived from the glutamatergic mossy fibers settle because of their large size with the nuclear fraction. The supernatant is discarded and the sediment is resuspended in 1 ml of a standard solution. The release of glutamate from the synaptosomes is detected according to the technique used for evaluating it in the CSF.
- FIGS. 2A and 2B show the effects of naftazone (at concentrations of 0.5-50 ⁇ M) and of its glucuronidated derivative, respectively, on the spontaneous release of glutamate (curve -o-) and of that induced by depolarization (curve - ⁇ -).
- Each point in A and B represents the ISEM average of 3 measurements carried out in triple.
- the spontaneously released glutamate is continuously measured during an exposure of 1 hour to the tested drug and is compared with controls. Release of glutamate by depolarization is determined after a 1 hour exposure to the tested drug and is compared with controls.
- the drugs are left to incubate for 1 hour with synaptosomal aliquots before the measurement.
- naftazone reduces the spontaneous release of glutamate from synaptosomes.
- the inhibitory effect of naftazone on the spontaneous release of glutamate is already observed at the lowest concentration of drug used (0.5 ⁇ M). This effect is maximal at the concentration of 25 ⁇ M.
- the glucuronidated derivative reduces, in a dose-dependent way, the release induced by a medium with a high K + content (20 mM) containing Ca 2+ (5 mM).
- tablets are made containing:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Psychology (AREA)
- Physical Education & Sports Medicine (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention relates to the use of beta-naphthoquinone derivatives, and salts thereof, for the prevention and /or the treatment of glutamate cytotoxicity. It further relates to the use of beta-naphthoquinone derivatives, and salts thereof, for preventing and/or treating glutamate induced neurological disorders. Additionally, it concerns the use of beta-naphthoquinone derivatives, and salts thereof, for making drugs exerting an inhibitory effect on the release of glutamate.
Description
- The present invention relates to the use of beta-naphthoquinone derivatives, and salts thereof, for the prevention and/or the treatment of glutamate cytotoxicity. It further relates to the use of beta-naphthoquinone derivatives, and salts thereof, for preventing and/or treating glutamate induced neurological disorders. Additionally, it concerns the use of beta-naphthoquinone derivatives, and salts thereof, for making drugs exerting an inhibitory effect on the release of glutamate.
- A large number of studies have established that cellular communication using excitatory amino acids can be transformed into a mechanism of cell destruction.
- Glutamate is the main excitatory neurotransmitter in the nervous system, especially brain and spinal cord, of mammals wherein it is working at a variety of excitatory synapses.
- The ubiquitous distribution of glutamate receptors throughout the nervous system proves that glutamate plays a central role in a wide range of physiological as well as pathological events (Watkins J. C., Collingridge G. L., The NMDA receptor, IRL Oxford, 1989). It is for example strongly suggested that it plays a central role in functions such as learning, pattern recognition, and memory (Bliss T. V. P. Collingridge G. L., Nature 361, 31-39, 1993).
- Normally extracellular levels of glutamate are elevated only in a brief and spatially localized fashion associated with normal synaptic transmission; however, under pathologic circumstances levels may remain dramatically increased.
- Additionally, it has also been known for decades that glutamate is toxic to neurons in vitro and in vivo and that the function of glutamate receptor, especially glutamate receptors of the N-methyl-D-aspartate (“NMDA”) receptor subtype, is crucial in a number of neuronal damages and injuries (Appel S. H., Trends Neurosci. 16, 3-5, 1993). Many neurological disorders involving epileptic seizures and chronic or acute degenerative processes, such as for example Alzheimer's, Huntington's, Parkinson's diseases, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), retinopathy, stroke and traumatic brain injury, involve neuronal cell death caused by over-stimulation of the glutamate receptors. Similarly, it has been shown that neuronal injury caused by ischemia after occlusion of cerebral arteries could, at least partially, be mediated by excessive activation of glutamate receptors as in the ischemic brain, extracellular glutamate is elevated rapidly after the onset of ischemia and declines following reperfusion (Davalos et al., 1997, Stroke, 28, 708-710). Other pathologic circumstances associated with dramatic increase of extracellular glutamate levels are hypoxia or hypoglycaemia. Finally, Stephans and Yamamoto (1994, Synapse, 17, 203-209) have shown that drug-induced neurotoxicity, for example neurotoxic effects of methamphetamine (METH) on striatal dopaminergic neurons, could actually be mediated by over-stimulation of the glutamate receptors.
- These excessive activations of glutamate receptors, referred to as “glutamate cytotoxicity”, are actually associated with the elevation of extracellular glutamate levels. The mechanisms of the elevation of extracellular glutamate include enhanced efflux of glutamate and/or the reduction of glutamate uptake by cells. Thus, it would be desirable to provide a means of protecting affected cells, especially neurons, from glutamate-induced cytotoxicity, and more specifically to provide means of regulating glutamate release and/or uptake by glutamate producing cells.
- To this end, it has already been proposed to target the glutamate receptors, mostly the N-methyl-D-aspartate (“NMDA”) receptor, present on the targeted cells by inhibiting them by the use of agonist or antagonist specific molecules. Examples of such molecules are anthranilic acid derivatives (see U.S. Pat. No. 5,789,444), Basilen Blue D-3G (Reactive Blue 2) and Cibacron Blue 3GA and 5-adenylylimidodiphosphate (AMPPNP) (see U.S. Pat. No. 6,326,370), NMDA specific antagonists such as ketamine, dextromophan, or 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (Kristensen et al., 1992, Pain, 51:249-253; Eide et al., 1995, Pain, 61,221-228), or the 2-methyl-6-(phenylethynyl)pyridine (MPEP) which is an antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5) (Ossowska et al., 2001, Neuropharmacology,41,413-420)
- However, widespread use of these compounds is precluded by their undesirable side effects (e.g. psychotomimetic effects, headache, hallucinations, dysphoria or disturbances of cognitive and motor functions). Thus, the available treatment methods are not satisfactory in terms of safety or efficiency for their wide implementation.
- Therefore, there is still a need in the provision of improved methods and means for protecting affected cells, and more preferably neurons, from glutamate-induced cytotoxicity.
- The investigation by the inventors has now surprisingly shown that certain beta-naphthoquinone derivative compounds, previously used as vasoprotective drugs, have preventing and/or treating effects on glutamate-induced cytotoxicity. More specifically, said compounds have been shown to control, and preferably inhibit, the spontaneous and/or the evoked (i.e. the glutamate release by cells in response to depolarization) release of glutamate.
- Thus the present invention provides a new class of compounds which represents a pharmacological alternative to previously described compounds, such as competitive and non-competitive glutamate antagonists or agonists, gangliosides and growth factors, for the treatment or prevention of acute and chronic glutamate-related diseases or conditions, particularly neurological diseases. In preferred embodiments, the present invention provides a new class of compounds which can be used as pharmacological tools for the modulation of glutamate cellular release and cytotoxicity, preferably neurotoxicity, and which allows the possible treatment and/or prevention of many neurological disorders involving epileptic seizures and acute and chronic neurodegenerative diseases, as well as neuronal injury caused by ischemia or glutamate-related diseases or conditions, wherein said disorders are, at least partially, associated with excessive activation of glutamate receptors and/or with excessive extracellular glutamate levels.
- The invention is therefore first directed to a novel use of beta-naphthoquinone derivatives for making drugs with an inhibitory effect on the extracellular glutamate release, wherein said derivatives are selected among the group consisting of:
-
- wherein R represents —NH—CO—NH2, —NH—CO—CH3, or —OH group,
-
- (iii) addition salts thereof.
- According to preferred embodiments, said derivatives are selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone, also called naftazone according to its international common name, and its corresponding glucuronidated derivative, i.e. the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid, respectively of formula (III) and formula (IV):
- In special embodiment, the derivatives of the invention are further substituted with, one to four, identical or different, heteroatoms and/or hetero groups. Examples of said heteroatoms and/or hetero groups are O, H, alkyl groups CnHn+1 with n=1 to 5, OCH3, N, halogens (for example F or Br), S or any labeling element allowing to visualize said derivatives. These substituting atoms or groups, and their uses, are widely known in the art.
- The addition salts of the derivatives of the invention comprise conventional salt formed from inorganic or organic acids or bases, such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric, perchloric, fumaric, acetic, sodium, lithium, potassium, magnesium, aluminium, calcium, zinc, ethylenediamine; formic, benzoic, maleic, tartaric, citric, oxalic, aspartic acid, and alkane-sulfonic acids is even mentioned.
- The preparation of compounds used according to the invention has been widely described in the literature, for example, in BSM 924 M or Patent FR 2103 504.
- The newly identified inhibitory properties of these compounds, reported in the examples hereafter, make them particularly suitable for treating and/or preventing diseases, conditions and attacks related to deleterious effects of glutamate released in exess, and preferably neurological ones.
- Thus the present invention further relates to a method for treating and/or preventing glutamate-evoked cytotoxicity in a patient in need thereof comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of :
-
-
- (iii) addition salts thereof.
- In preferred embodiments, the derivatives administered according to the method of the invention are selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone, also called naftazone, and its corresponding glucuronidated derivative, i.e. the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid (see formula (III) and (IV) respectively). Similarly, these derivatives might be substituted with, one to four, identical or different, heteroatoms and/or hetero groups as defined above.
- The term “glutamate-evoked cytotoxicity” within the present invention is intended to designate cell toxicity associated with excessive activations of glutamate receptors. These terms are well known by the one skilled in the art. More specifically, the “glutamate-evoked cytotoxicity” concerns all affected cells expressing glutamate receptors. According to preferred embodiments, these affected cells are nervous cells (i.e. neuro-cells), preferably neurons. These affected nervous cells are, for example, present in brain, spinal cord, retina, at the neuro-muscular junction, etc . . . “Cytotoxicity” means that the cell functions and/or properties are affected, leading to cell malfunctioning, and finally to cell death.
- In a particularly preferred embodiment, the method of the invention is intended for treating and/or preventing glutamate-evoked neurotoxicity, and even more preferably for treating and/or preventing neurodegeneration (i.e. degeneration of nervous cells).
- The present invention further relates to a method for modulating the release of glutamate in a patient comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of derivatives of Formula I to IV, and addition salts thereof. These derivatives are detailed above.
- “Modulating the release of glutamate” means that the levels of released glutamate in non treated patient is different from the one observed after his treatment with the derivatives of the invention. According to preferred embodiment, treatment of the patient with the derivatives of the invention leads to a negative modulation, preferably to the inhibition, of the glutamate release by the producing cells, and thus to a decreased glutamate level in the treated patient compared to the glutamate level observed before said treatment.
- The present invention further relates to a method for treating and/or preventing disease and/or condition associated with the excessive release of glutamate in a patient comprising administration to said patient of a composition containing a therapeutically effective amount of at least one beta-naphtoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of derivatives of Formula I to IV, and addition salts thereof. These derivatives are detailed above.
- “Disease and/or condition associated with the excessive release of glutamate” is intended to designate large number of acute and chronic glutamate-related diseases or conditions, particularly neurological diseases. It designates more specifically epileptic seizures and acute and chronic neurodegenerative diseases, as well as neuronal injury caused by ischemia or glutamate-related diseases or conditions, wherein said disorders are, at least partially, associated with excessive activation of glutamate receptors and/or with excessive extracellular glutamate levels. Examples are involving chronic or acute degenerative disorders, such as for example Alzheimer's, Huntington's, Parkinson's diseases, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), retinopathy, stroke and traumatic brain injury, involve neuronal cell death caused by over-stimulation of the glutamate receptors. Similarly, neuronal injury caused by ischemia or drug-induced neurotoxicity, for example neurotoxic effects of methamphetamine (METH) on striatal dopaminergic neurons, are indications of the methods according to the present invention. Other indications are glutamate-related conditions such as for example pain, hormonal balance, blood pressure, thermoregulation, respiration, learning, pattern recognition or memory, or any disorder subsequent to hypoxia or hypoglycaemia.
- For example, the treatment of epilepsy, amyothrophic lateral sclerosis, spinal muscular atrophy (SMA), Huntington's disease, deleterious effect due to excesses of glutamate released as a result of cerebral accidents of traumatic or other vascular origin will be mentioned.
- The derivatives described herein are administered as a composition containing at least one active compound and a pharmaceutically acceptable carrier. In preparing such a composition, any conventional pharmaceutically acceptable carrier can be utilized. The carrier material can be an organic or inorganic inert carrier material suitable for the selected route of administration. Suitable carriers include water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene-glycols, petroleum jelly and the like. Furthermore, the pharmaceutical composition may contain other pharmaceutically active agents. Additional additives such as flavoring agents, preservatives, stabilizers, emulsifying agents, salts for varying the osmotic pressure, buffers and the like may be added in accordance with accepted practices of pharmaceutical compounding. Any conventional form such as tablets, capsules, pills, powders, granules, and the like may be used. Advantageously, they are in the form of tablets, sugar coated tablets, hard gelatin capsules, capsules, granules, for oral administration, or solutions or suspensions for administration via an injectable channel.
- The methods of the invention may be carried out by administering the composition containing derivative of the invention by any route whereby drugs are conventionally administered. Such routes include systemic and local routes. Examples are intravenous, intramuscular, subcutaneous, intracranial, intraperitoneal, as well as oral routes. Preferably, the method of the invention is carried out via oral or intravenous routes of administration.
- In accordance with this invention, the derivatives described herein are useful in pharmaceutically acceptable oral modes. A preferred oral dosage form comprises tablets, capsules of hard or soft gelatin, methylcellulose or of another suitable material easily dissolved in the digestive tract. The oral dosages contemplated in accordance with the present invention will vary in accordance with the needs of the individual patient as determined by the prescribing physician. The preferred oral dosage form is capsules or tablets containing from 50 to 500 mg of a derivative of the invention.
- Typical preparations for intravenous administration would be sterile aqueous solutions including water/buffered solutions. Intraveneous vehicles include fluid, nutrient and electrolyte replenishers. Preservatives and other additives may also be present such as antibiotics and antioxidants. Compositions for bolus i.v. administration may contain up to 10 mg/ml (10,000 mg/liter) of derivative described herein. Compositions for i.v. administration preferably contain from about 50 mg/liter to about 500 mg/liter of at least one derivative described herein.
- In carrying out the method of the invention, derivative of the invention is generally given to adults daily, preferably orally or intravenously, in an amount of from about 5 mg/kg to about 30 mg/kg daily, in single or divided doses, preferably from about 13 mg/kg to about 17 mg/kg daily, with the precise dosage being varied depending upon the needs of the patient. The doses will be adapted according to the patient and the pathology to be treated and are for example 1 mg-100 mg/day. In general, this therapy is carried out for a period of about three months. Alternatively, the method of the invention may be carried out prophylactically for an indefinite time in those patients who are have a high risk of suffering an acute neurotoxic event, such as a stroke. For the treatment of an acute neurotoxic event, the patient should be treated in accordance with the method of the invention as soon as possible after the diagnosis of the acute neurotoxic event, preferably within twelve hours, and most preferably within six hours, of the onset of the neurotoxic event. When the drug is administered orally, it is generally administered at regular intervals.
- These drugs are notably administered orally or via an injectable channel.
- The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the claims, the invention may be practiced otherwise than as specifically described.
- All of the above cited disclosures of patents, publications and database entries are specifically incorporated herein by reference in their entirety to the same extent as if each such individual patent, publication or entry were specifically and individually indicated to be incorporated by reference.
- Examples below, demonstrate that the beta-naphthoquinone derivatives described herein inhibit both the spontaneous and evoked-release of glutamate.
- Other features and advantages of the invention are given in the following examples, wherein reference is made to
FIGS. 1 and 2 , wherein respectively: -
FIG. 1 represents the diagram illustrating the chemiluminescence measurement protocol, and -
FIG. 2 represents the spontaneous release of glutamate and the induced one versus the concentration of naftazone (FIG. 2A ) or of its glucuronidated derivative (FIG. 2B ). - A: Study of the effect of a continuous treatment with naftazone for 15 days on the glutamate levels in the CSF (cerebrospinal fluid) of normal rats Sprague-Dawley rats weighing 200-220 g and Swiss-Webster mice of both sexes, aged 4-8 weeks, are used.
- The animals are kept in cages, in a well-ventilated room at 23-24° C., with a light/darkness cycle of 12 hours.
- In order to investigate the CSF glutamate levels in the controls, or after treatment with naftazone, the male rats are divided into 3 groups:
- Group I (n=8) is used as control. The rats of this group are fed per os for 15 days with the same carrier as the one used for solubilizing naftazone, i.e. 1% methylcellulose Sigma,
- The animals of groups II (n=5) and III (n=5) are fed per os for 15 days with 10 and 100 mg of naftazone per kg, per day, respectively, given as a single bolus.
- The CSF of anaesthetized rats with 6% pentobarbital (i.p.) is collected by operating according to the usual procedures.
- The animals are then decapitated. The CSF samples are centrifuged at 6,000 g for 10 min at 10° C.
- The supernatant is extracted, the sediment containing the blood deposits is removed.
- The samples are held in 2.5% trichloracetic acid and kept at −80° C.
- Ether is used for washing trichloracetic acid off the samples.
- In order to determine the glutamate levels in the CSF, chemiluminescence measurements are conducted according to the procedure described in the diagram given in
FIG. 1 . The reaction is based on the oxidization of glutamate into 2-oxoglutarate under the action of glutamate dehydrogenase, which produces NaDH2, evaluated by using the chemiluminescent reaction of photobacterium. - The CSF samples are tested by adding a known volume of sample to the reaction medium which contains 250 μl of saccharose (120 mM) in Tris buffer (120 mM, pH 7.2), 50 μl of an enzymatic mixture of NAD, DMN, NADH-FMN oxidoreductase, luciferase and GDH, and 5 μl of n-decyl aldehyde.
- The light emitted by the luminescent reaction consecutive to the oxidization of L-glutamate and to the production of NADH, is detected by a photomultiplier unit, recorded and calibrated by comparing it with light emitted by a glutamate standard.
- Statistical analysis of the data is carried out by using Student's t test for unpaired samples. The values are expressed as average ±SEM, n=number of animals or experiments carried out.
- The data are considered as significantly different from the controls, at p<0.05.
- The control rats (Group I) which have received the methylcellulose carrier for 15 days, have a CSF glutamate content from 16-34 nmol ml−1 with an average value of 22.1±6.3 nmol ml−1 (n=8).
- The daily treatment of rats (groups II and III) for 15 days with a naftazone dose of 10 or 100 mg/kg show that the CSF glutamate content in both groups of rats is 8.1±1.8 (n=5) and 10.8±3.3 ml−1 (n=5), respectively.
- These results show that the glutamate content in the CSF of rats treated with both naftazone doses is significantly reduced (p=0.001 and p=0.004, respectively), as compared with the controls.
- Furthermore, no significant difference in CSF glutamate content is observed between both groups of rats treated with naftazone, which shows that the effect of the drug is not dose-dependent.
- B: Study of the effect of naftazone and of its glucuronide derivatives on the release of glutamate from synaptosomes of mouse brains.
- In order to prepare the synaptosomes of mossy fibers, the Swiss-Webster rats are decapitated and the cerebellum is rapidly removed. Small pieces of tissue (1-2 mm3) are washed in 100 ml of a mammal saline standard solution containing (mM): NaCl, 136; KCl, 5.6; MgCl2 1.2; CaCl2 2.2; glucose 5.5; NaHCO3 7.5; NaHPO4/Na2HPO4 buffer 1.2.
- An oxygen current is caused to flow through them for 10 minutes.
- In order to dissociate the pieces, they are sucked in a reciprocal movement with a 1 ml pipette.
- The homogenate obtained is diluted in 3 ml of mammal Krebs's solution and is filtered through a Nylon® tissue (mesh 50 μm).
- The filtrate is collected and left to settle for 30-45 min by gravity.
- Synaptosomes derived from the glutamatergic mossy fibers settle because of their large size with the nuclear fraction. The supernatant is discarded and the sediment is resuspended in 1 ml of a standard solution. The release of glutamate from the synaptosomes is detected according to the technique used for evaluating it in the CSF.
-
FIGS. 2A and 2B show the effects of naftazone (at concentrations of 0.5-50 μM) and of its glucuronidated derivative, respectively, on the spontaneous release of glutamate (curve -o-) and of that induced by depolarization (curve -·-). - Each point in A and B represents the ISEM average of 3 measurements carried out in triple. In A, the spontaneously released glutamate is continuously measured during an exposure of 1 hour to the tested drug and is compared with controls. Release of glutamate by depolarization is determined after a 1 hour exposure to the tested drug and is compared with controls.
- The drugs are left to incubate for 1 hour with synaptosomal aliquots before the measurement.
- The release of glutamate in response to the depolarization induced by a medium with a high K+ content (30 mM) containing Ca2+ (5 mM) is not significantly affected by naftazone at the investigated concentration values.
- However, as
FIG. 2A shows, naftazone reduces the spontaneous release of glutamate from synaptosomes. The inhibitory effect of naftazone on the spontaneous release of glutamate is already observed at the lowest concentration of drug used (0.5 μM). This effect is maximal at the concentration of 25 μM. - Higher concentrations do not seem to further increase the inhibitory effect.
- When the effect of the glucuronidated derivative on the spontaneous release and on that caused by K+ is evaluated, it is seen that the drug does not reduce the spontaneous release of glutamate in the range of the concentrations used.
- However, as
FIG. 2B shows, the glucuronidated derivative reduces, in a dose-dependent way, the release induced by a medium with a high K+ content (20 mM) containing Ca2+ (5 mM). - The maximum reduction (about 60%) is observed at the highest concentration of the tested drug (32 μM).
- By operating according to the conventional techniques, tablets are made containing:
- naftazone: 10 mg
- excipient qsp for 100 mg
- or injectable solutes containing:
- naftazone: 5 mg
- sterile water qsp: 2 ml.
Claims (11)
1. A method for treating and/or preventing glutamate-evoked cytotoxicity in a patient in need thereof comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of
(i) compounds having the formula (I):
wherein R represents —NH—CO—NH2, —NH—CO—CH3, or —OH group, and
(ii) glucuronide derivatives thereof having the formula (II)
wherein R is as indicated in (i), and
(iii) addition salts thereof.
2. The method of claim 1 , wherein said derivative is selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone and the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid.
3. The method of claim 1 , wherein said glutamate-evoked cytotoxicity is a glutamate-evoked neurotoxicity.
4. The method of claim 1 , wherein said glutamate-evoked cytotoxicity is neurodegeneration.
5. A method for modulating the release of glutamate in a patient comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of
(i) compounds having the formula (I)
wherein R represents —NH—CO—NH2, —NH—CO—CH3, or —OH group,
(ii) glucuronide derivatives thereof having the formula (II)
wherein R is as indicated in (i), and
(iv) addition salts thereof.
6. The method of claim 5 , wherein said derivative is selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone and the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid.
7. A method for inhibiting the release of glutamate in a patient comprising administering to said patient a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of
(i) compounds having the formula (I):
wherein R represents —NH—CO—NH2, —NH—CO—CH3, or —OH group,
(ii) glucuronide derivatives thereof having the formula (II):
wherein R is as indicated in (i), and
(v) addition salts thereof.
8. The method of claim 7 , wherein said derivative is selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone and the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid.
9. A method for treating and/or preventing disease and/or condition associated with the excessive release of glutamate in a patient comprising administration to said patient of a composition containing a therapeutically effective amount of at least one beta-naphthoquinone derivative and a pharmaceutically acceptable carrier, wherein said derivative is selected among the group consisting of :
(i) compounds having the formula (I):
wherein R represents —NH—CO—NH2, —NH—CO—CH3, or —OH group,
(ii) glucuronide derivatives thereof having the formula (II):
wherein R is as indicated in (i), and
(iii) addition salts thereof.
10. The method of claim 9 , wherein said derivative is selected among the group consisting of the 1,2-naphthoquinone, 2-semicarbazone and the 1-(1-hydroxy,2-naphthyl)semicarbazide-1-β-O-gluco-pyranosiduronic acid.
11. The method of claim 10 , wherein said disease and/or condition associated with the excessive release of glutamate is selected among the group consisting of epileptic seizures, acute and chronic neurodegenerative diseases, ischemia, Alzheimer's, Huntington's, Parkinson's diseases, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), retinopathy, stroke and traumatic brain injury, drug-induced neurotoxicity, pain, hormonal balance, blood pressure, thermoregulation, respiration, learning, pattern recognition, memory, and disorders subsequent to hypoxia or hypoglycaemia.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/798,285 US20070225237A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9909469A FR2796552A1 (en) | 1999-07-21 | 1999-07-21 | NOVEL USE OF BETA-NAPHTOQUINONE DERIVATIVES AND THEIR SALTS FOR THE MANUFACTURE OF MEDICINES HAVING AN INHIBITOR EFFECT ON THE RELEASE OF GLUTAMATE IN THE BRAIN |
FR99/09469 | 1999-07-21 | ||
PCT/FR2000/002120 WO2001005404A1 (en) | 1999-07-21 | 2000-07-21 | Use of beta-napthoquinone for making medicines having an inhibiting effect on the release of glutamate by the brain |
CA2368850A CA2368850C (en) | 1999-07-21 | 2002-01-22 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
US10/051,243 US7572774B2 (en) | 1999-07-21 | 2002-01-22 | Methods for treating glutamate cytotoxicity with beta-naphthoquinone compounds |
US11/798,285 US20070225237A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/051,243 Division US7572774B2 (en) | 1999-07-21 | 2002-01-22 | Methods for treating glutamate cytotoxicity with beta-naphthoquinone compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070225237A1 true US20070225237A1 (en) | 2007-09-27 |
Family
ID=32178092
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/051,243 Expired - Fee Related US7572774B2 (en) | 1999-07-21 | 2002-01-22 | Methods for treating glutamate cytotoxicity with beta-naphthoquinone compounds |
US11/798,285 Abandoned US20070225237A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
US11/798,283 Abandoned US20070225235A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
US11/798,284 Abandoned US20070225236A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/051,243 Expired - Fee Related US7572774B2 (en) | 1999-07-21 | 2002-01-22 | Methods for treating glutamate cytotoxicity with beta-naphthoquinone compounds |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/798,283 Abandoned US20070225235A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
US11/798,284 Abandoned US20070225236A1 (en) | 1999-07-21 | 2007-05-11 | Methods for the prevention and/or the treatment of glutamate cytotoxicity |
Country Status (10)
Country | Link |
---|---|
US (4) | US7572774B2 (en) |
EP (1) | EP1196176B1 (en) |
AT (1) | ATE268599T1 (en) |
CA (1) | CA2368850C (en) |
DE (1) | DE60008111T2 (en) |
DK (1) | DK1196176T5 (en) |
ES (1) | ES2215716T3 (en) |
FR (1) | FR2796552A1 (en) |
PT (1) | PT1196176E (en) |
WO (1) | WO2001005404A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994027325A1 (en) * | 1993-05-07 | 1994-11-24 | Vlsi Technology, Inc. | Integrated circuit structure and method |
EP1961738A1 (en) * | 2007-02-15 | 2008-08-27 | Faust Pharmaceuticals | New compounds with antiglutamatergic properties and uses thereof |
BR112018012214A2 (en) | 2015-12-16 | 2018-11-27 | Clevexel Pharma | bipulsatile release pharmaceutical composition and its use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158976A (en) * | 1990-10-29 | 1992-10-27 | The Children's Medical Center Corporation | Controlling glutamine/glutamate related neuronal injury |
US5523322A (en) * | 1993-07-02 | 1996-06-04 | Roussel Uclaf | Method for inhibiting blood-platelet aggregration with β-naphthoquinone compounds |
US6384069B1 (en) * | 1997-11-18 | 2002-05-07 | Klinikum Der Albert-Ludwigs-Universitaet | Position-4 substituted 2-pyrrolidinone derivatives to reduce the level of extracellular glutamate |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60130515A (en) * | 1983-12-15 | 1985-07-12 | Shiratori Seiyaku Kk | 2,3-diphosphoglyceric acid increasing agent in blood |
GB9100028D0 (en) * | 1991-01-02 | 1991-02-20 | Ici Plc | Compounds |
BE1011151A3 (en) * | 1997-05-13 | 1999-05-04 | Jose Remacle | Use of a pharmaceutical composition for treating and / or preventing ischemia. |
-
1999
- 1999-07-21 FR FR9909469A patent/FR2796552A1/en active Pending
-
2000
- 2000-07-21 EP EP00958596A patent/EP1196176B1/en not_active Expired - Lifetime
- 2000-07-21 WO PCT/FR2000/002120 patent/WO2001005404A1/en active IP Right Grant
- 2000-07-21 ES ES00958596T patent/ES2215716T3/en not_active Expired - Lifetime
- 2000-07-21 PT PT00958596T patent/PT1196176E/en unknown
- 2000-07-21 DK DK00958596T patent/DK1196176T5/en active
- 2000-07-21 DE DE60008111T patent/DE60008111T2/en not_active Expired - Lifetime
- 2000-07-21 AT AT00958596T patent/ATE268599T1/en not_active IP Right Cessation
-
2002
- 2002-01-22 US US10/051,243 patent/US7572774B2/en not_active Expired - Fee Related
- 2002-01-22 CA CA2368850A patent/CA2368850C/en not_active Expired - Fee Related
-
2007
- 2007-05-11 US US11/798,285 patent/US20070225237A1/en not_active Abandoned
- 2007-05-11 US US11/798,283 patent/US20070225235A1/en not_active Abandoned
- 2007-05-11 US US11/798,284 patent/US20070225236A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5158976A (en) * | 1990-10-29 | 1992-10-27 | The Children's Medical Center Corporation | Controlling glutamine/glutamate related neuronal injury |
US5523322A (en) * | 1993-07-02 | 1996-06-04 | Roussel Uclaf | Method for inhibiting blood-platelet aggregration with β-naphthoquinone compounds |
US6384069B1 (en) * | 1997-11-18 | 2002-05-07 | Klinikum Der Albert-Ludwigs-Universitaet | Position-4 substituted 2-pyrrolidinone derivatives to reduce the level of extracellular glutamate |
Also Published As
Publication number | Publication date |
---|---|
DE60008111T2 (en) | 2004-12-02 |
US7572774B2 (en) | 2009-08-11 |
ATE268599T1 (en) | 2004-06-15 |
ES2215716T3 (en) | 2004-10-16 |
US20020115617A1 (en) | 2002-08-22 |
PT1196176E (en) | 2004-08-31 |
DK1196176T3 (en) | 2004-06-14 |
EP1196176A1 (en) | 2002-04-17 |
US20070225235A1 (en) | 2007-09-27 |
FR2796552A1 (en) | 2001-01-26 |
DK1196176T5 (en) | 2004-07-12 |
WO2001005404A1 (en) | 2001-01-25 |
DE60008111D1 (en) | 2004-03-11 |
US20070225236A1 (en) | 2007-09-27 |
CA2368850A1 (en) | 2003-07-22 |
EP1196176B1 (en) | 2004-06-09 |
CA2368850C (en) | 2010-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7160913B2 (en) | Methods and kit for treating Parkinson's disease | |
EP0660707B1 (en) | Amantadine and related compounds for use in the treatment of peripheral neuropathy | |
US5614560A (en) | Method of preventing NMDA receptor-mediated neuronal damage | |
JP4500543B2 (en) | Use of pramipexole to treat amyotrophic lateral sclerosis | |
US5622981A (en) | Use of metabotropic receptor agonists in progressive neurodegenerative diseases | |
JP2008260782A (en) | A device using a deprenyl compound for the maintenance of nerve cell function, prevention or recovery of its loss | |
JP2000508318A (en) | How to protect nerve cells | |
JP2005516911A6 (en) | Use of pramipexole to treat amyotrophic lateral sclerosis | |
US20060030548A1 (en) | Methods of using ryanodine antagonists in treating neural injury | |
US20070225237A1 (en) | Methods for the prevention and/or the treatment of glutamate cytotoxicity | |
KR20090110909A (en) | Therapeutic Uses of Esricarbazepine | |
DE60312874T2 (en) | COMBINATION THERAPY USING A SEROTONIN RECIPROCAL HEATER | |
CN1703213A (en) | Alpha 2b 0r 2b/2c adrenoceptor agonists for the treatment of neurodegeneration | |
CN100370988C (en) | Method of using (2-imidazolin-2-ylamino) qinoxalines in the treatment of dementia and Parkinsons | |
CN1649599A (en) | Substituted aminoalkylphosphonic acids for the treatment of neuropathic pain, affective and attention disorders, schizophrenia, tinnitus, myopia and other ocular disorders | |
WO2001085152A2 (en) | R-eliprodil for treating glaucoma | |
CA2527145C (en) | Use of iron for treating attention deficit hyperactivity disorder in children | |
EP4093395B1 (en) | Eletriptan hydrobromide for treatment of spinal cord injury and improvement of locomotor function | |
US20110172171A1 (en) | Taurine or taurine-like substances for the prevention of brain oedema | |
JP4989830B2 (en) | Use of a beta-naphthoquinone derivative to produce a drug that exhibits an inhibitory effect on glutamate release by the brain | |
de Oliveira Milanez et al. | Reactive Oxygen Species within the Spinal Cord Impairs Arterial Baroreflex Control of Renal Sympathetic Nerve Activity | |
US20030212107A1 (en) | R-reliprodil for treating glaucoma | |
WO2003099282A1 (en) | White matter neuroprotectant pyrroloquinoline quinone compounds and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |