US20070202494A1 - Development of diagnostic kit for the detection of Chrysanthemum virus B - Google Patents
Development of diagnostic kit for the detection of Chrysanthemum virus B Download PDFInfo
- Publication number
- US20070202494A1 US20070202494A1 US11/598,624 US59862406A US2007202494A1 US 20070202494 A1 US20070202494 A1 US 20070202494A1 US 59862406 A US59862406 A US 59862406A US 2007202494 A1 US2007202494 A1 US 2007202494A1
- Authority
- US
- United States
- Prior art keywords
- cvb
- coat protein
- buffer
- detection
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000710171 Chrysanthemum virus B Species 0.000 title claims abstract description 83
- 238000001514 detection method Methods 0.000 title claims abstract description 36
- 238000009007 Diagnostic Kit Methods 0.000 title claims abstract description 17
- 238000011161 development Methods 0.000 title description 6
- 241000196324 Embryophyta Species 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000000872 buffer Substances 0.000 claims abstract description 29
- 101710132601 Capsid protein Proteins 0.000 claims abstract description 24
- 101710094648 Coat protein Proteins 0.000 claims abstract description 24
- 101710125418 Major capsid protein Proteins 0.000 claims abstract description 24
- 101710141454 Nucleoprotein Proteins 0.000 claims abstract description 24
- 101710083689 Probable capsid protein Proteins 0.000 claims abstract description 24
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 claims abstract description 22
- 101000714465 Chrysanthemum virus B Capsid protein Proteins 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011536 extraction buffer Substances 0.000 claims abstract description 9
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims abstract description 8
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims abstract description 8
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 239000000427 antigen Substances 0.000 claims description 15
- 102000036639 antigens Human genes 0.000 claims description 15
- 108091007433 antigens Proteins 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 241000283973 Oryctolagus cuniculus Species 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 10
- 238000002965 ELISA Methods 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 230000003053 immunization Effects 0.000 claims description 8
- 238000002649 immunization Methods 0.000 claims description 8
- 210000002966 serum Anatomy 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 7
- 239000002671 adjuvant Substances 0.000 claims description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 claims description 5
- 238000002835 absorbance Methods 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 4
- 239000012895 dilution Substances 0.000 claims description 4
- 229940127121 immunoconjugate Drugs 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 claims description 3
- 230000002879 macerating effect Effects 0.000 claims description 3
- 241001522976 Prunus necrotic ringspot virus Species 0.000 claims description 2
- 238000007865 diluting Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000003442 weekly effect Effects 0.000 claims description 2
- 241000220317 Rosa Species 0.000 claims 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 20
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 17
- 241000700605 Viruses Species 0.000 description 15
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 14
- 241000723353 Chrysanthemum Species 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 235000009604 Chrysanthemum X morifolium Nutrition 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000000405 serological effect Effects 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000006167 equilibration buffer Substances 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000012536 storage buffer Substances 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- 241000710175 Carlavirus Species 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000012149 elution buffer Substances 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 230000000521 hyperimmunizing effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 235000021251 pulses Nutrition 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- PGOOBECODWQEAB-UHFFFAOYSA-N (E)-clothianidin Chemical compound [O-][N+](=O)\N=C(/NC)NCC1=CN=C(Cl)S1 PGOOBECODWQEAB-UHFFFAOYSA-N 0.000 description 1
- 241000710073 Bean yellow mosaic virus Species 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 241000701502 Carnation etched ring virus Species 0.000 description 1
- 240000004792 Corchorus capsularis Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 241001673102 Jaya Species 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 241001653634 Russula vesca Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000012539 chromatography resin Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009363 floriculture Methods 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 208000018655 severe necrosis Diseases 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
Definitions
- the present invention relates to a primers useful for detection of Chrysanthemum virus B in plants.
- this invention relates to a method for detection of Chrysanthemum virus B in plants by using a primers useful for detection of Chrysanthemum virus B in plants.
- the present invention also relates to a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants.
- Chrysanthemum is one of the important cut flower worldwide. It ranks 3 rd in world among the cut flowers. Chrysanthemum is commonly propagated vegetatively and this practice allows the viruses, once established in the plants to be perpetuated from generation to generation. Quality of germplasm and minimizing the infection of the viruses to different cultivars, proper diagnosis and control for viral diseases are not only desirable but also essential for improving crop productivity.
- Chrysanthemum virus B a carlavirus has a narrow host range and distributed worldwide wherever Chrysanthemums are grown. It infects Chrysanthemum and about 10 other species in 5 dicotyledonous families (Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., and Watson, L. (Edts) Viruses of Plants, CAB International, UK. Page No. 398-400). CVB is widespread throughout the country. During a survey of chrysanthemum cvs.
- CVB was first reported from Netherlands as a member of carlavirus group (Noordam, D. 1952 Virusziekten bij chrysant in Nedeland. With a summary: virus disease of Chrysanthemum morifolium in Netherlands. Tijdschrift over Plantenziekten. 58, 121-190). CVB infection results in loss of flower quality, mild leaf mottling, vein clearing or a combination of these is found (Hollings, M. and Stone, O. M. (1972) Chrysanthemum virus B CMI/AAB Descriptions of Plant viruses No. 110). Symptoms ranging from mosaic, malformation and slight to severe necrosis have also been reported (Hakkart, F. A. and Matt, D. Z. (1974) Variation of Chrysanthemum virus B. J. Plant Path. 80, 97-103).
- Enzyme linked immunosorbant assay and other modified form of ELISA have been extensively used for the detection of CVB from Chrysanthemum morifolium (Verma, N., Sharma, A., Ram, R., Hallan, V., Zaidi, A. A. and Garg, I. D. (2003) Detection, identification and incidence of Chrysanthemum B carlavirus in chrysanthemum in India. Crop Prot. 22, 425-429). It is highly effective in detecting the CVB from leaves. Using the DAS-ELISA, status of the viral disease was analyzed for 36 cultivars of Chrysanthemum morifolium.
- the main object of the present is to provide primers useful for detection of Chrysanthemum virus B in plants.
- Another object of the present invention is to provide a method for detection of Chrysanthemum virus B in plants by using designed primers useful for detection of Prunus necrotic ringspot virus in plants.
- Still another object of the present invention is to provide a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants.
- the present invention relates to a method for detection of Chrysanthemum virus B in plants using desined primers of Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer: TTTATAATGTCTTATTATTCGCAT
- CVB Specific sequence of CVB was detected in total RNA extract of infected plants by initially transcribing the viral RNA into cDNA and then amplifying by polymerase chain reaction. Like ELISA and ISEM, PCR also readily detects CVB in leaves.
- DAS-ELISA, ISEM and RT-PCR are the suitable techniques to detect CVB infecting Chrysanthemum.
- RT-PCR and nucleic acid hybridization are sensitive tools to detect the virus but they require sophisticated instruments which are costly also.
- Till now ELISA have been used extensively used for diagnosis of virus infecting chrysanthemum and other plants, as these are quick, easy to perform, can be used even in field conditions and are cost effective. These can be exploited in the form of diagnostic kits.
- diagnostic kit coat protein gene of CVB submitted to EMBL data (Vide Accession No. AJ580956) was amplified using the especially designed primers having restriction enzyme sites compatible for directional and inframe cloning in pGex-2TK vector. Amplified product was cloned into pGex 2TK vector by transforming into BL21 competent cells.
- Cloned coat protein gene was induced in transformed E. coli cells grown in YT medium. Expression conditions were standardized against IPTG concentration, time of incubation, growth conditions and method of cell disruption. Culture was induced using 0.25 mM isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) final concentration at 0.5 OD 600 for 3 hrs at 25° C., along with disruption of cell using both lysozyme (10 mg/ml) and sonication (pulse on for 9.0 sec. and pulse off for 4 sec.) to give the maximum expressed recombinant coat protein yield in soluble form.
- IPTG isopropyl- ⁇ -D-thiogalactopyranoside
- Expressed coat protein was purified to homogeneity by affinity chromatography on glutathione-agarose. Immobilization of glutathione on an agarose matrix makes a highly efficient affinity chromatography resin. Bound GST fusion proteins were readily displaced from the column by elution with buffer containing free glutathione.
- Purified protein preparations obtained after affinity chromatography were used as antigen for immunization of rabbit (Meenu Katoch, A. A. Zaidi and Raja Ram. 2002. Development of diagnostic kit for the detection of Bean yellow mosaic virus. Patent file no 76/NF/2002). Healthy white New Zealander male albino rabbits approximately six months old were used to raise the hyperimmune sera against CVB. Antigen (about 100 ⁇ g per injection) was mixed with Freund's incomplete adjuvant (1:1) and was injected intramuscularly into thigh muscles of rabbits. Four injections were given at the interval of one week. After one week of immunization schedule, the animals were bled from the marginal ear vein.
- the blood was collected in a glass tube and allowed to clot at room temperature for one hour. Subsequently, the glass tube was kept at 4° C. overnight. The serum was centrifuged at 2000 rpm for ten minutes at 4° C. The supernatant was collected and stored at 4° C. after adding sodium azide to a concentration of 0.2% (w/v).
- Primers useful for detection of Chrysanthemum virus B (CVB) in plants comprising the following sequence: Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer TTTATAATGTCTTATTATTCGCAT
- the present invention also provides a method for detection of Chrysanthemum virus B (CVB) in plants, wherein the said method comprising the steps of:
- the complete coat protein of CVB is amplified using designed primers having a Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer TTTATAATGTCTTATTATTCGCAT
- the optimal expression of CVB coat protein is checked with 0.25-1 mM IPTG concentration at about temperature 25 degree C. for 3.5-4h.
- obtained coat protein of CVB is sequenced by known sequencing methods.
- the purification of CVB coat protein is carried out by the known method.
- the immunization in rabbits are carried out three times with purified coat protein of CVB and Freund's complete adjuvant in the ratio of 1:1 at weekly intervals.
- the route for immunization may be intramuscularly, subcutaneously or intravenously.
- the rabbits are bled after 14 to 15 days to obtain polyclonal antibodies against CVB coat protein.
- the polyclonal antibodies against CVB coat protein are purified from the serum by known methods.
- the microtiter plates are coated with polyclonal antibodies diluting in a coating buffer in a ratio ranges from 1:500-1:1000 followed by 4-5 times washing with PBS-T.
- test samples are prepared in microtiter plates by macerating infected leaf tissue from plant with extraction buffer followed by dilution from 1 ⁇ -1/150 ⁇ of the original antigen.
- the microtiter plate is incubated overnight at about 37° C. followed by washing to allow coating of antigen in the wells.
- the antibody conjugate in ECI buffer is added in the ratio ranges between 1:500 to 1:1000 for a period of about 2 hrs at about 37° C. followed by washing with PBS-T
- the reaction is terminated by adding about 50 ⁇ l of about 3M NaOH after 15-20 min to obtain yellow color product.
- the color product is antigen and antibody conjugate.
- the absorbance of colored product is measured at 405 nm for detection of Chrysanthemum virus B (CVB).
- CVB Chrysanthemum virus B
- Furher, the present invention also provides a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B (CVB) comprising:
- Coating buffer (0.05M per liter): 1.59 gm sodium carbonate and 2.93 gm sodium bicarbonate, pH 9.6
- PBST buffer 20 mM sodium phosphate pH 7.4; 150 mM NaCl and 0.05% (v/v) Tween 20.
- Extraction buffer 1.3 g sodium sulphite (anhydrous), 20 g Polyvinylpyrrolidone (PVP) MW24-40,000, 0.2 g sodium azide, 2.0 g powdered egg albumin grade II and 20.0 g Tween-20 were dissolved in 1000 mlon 1 ⁇ PBST and pH was adjusted 7.4.
- PVP Polyvinylpyrrolidone
- ECI buffer 2.0 g BSA, 20.0 g PVP 24-40,000 and 0.2 g sodium azide were dissolved in 1000 ml 1 ⁇ PBST and pH adjusted to 7.4.
- PNP buffer 0.1 g magnesium chloride, 0.2 g sodium azide and 97 ml diethanolamine were dissolved in 800 ml distilled water and volume was made to 1000 ml and pH adjusted to 9.8.
- Purified recombinant coat protein was used an antigen for immunization of rabbit. Healthy white New Zealander male albino rabbits approximately six months old were used to raise the hyperimmune sera against CVB. Antigen (about 100 ⁇ g per injection) was mixed with Freund's adjuvant in the ratio of 1:1 and injected by two routes intramuscularly and sub-cutaneously into the thigh muscles of rabbits. First two injections were given along with Freund's complete adjuvant at the interval of one week. Similarly third and fourth injections were given along with Freund's incomplete adjuvant (1:1) at the interval of one week. After two-week immunization schedule, the animals were bled from the marginal ear vein.
- the blood was collected in a glass tube and allowed to clot at room temperature for an hour. Subsequently, glass tube containing clotted blood was kept at 4° C. overnight.
- the serum was collected using pasture pipette and centrifuged at 5000 rpm for ten min at 2-6° C. The supernatant was collected and stored at 4° C. after adding sodium azide to a concentration of 0.2% (w/v). To collect more serum, booster injections were given 5, 12, 16 and 22 weeks after the initial injection.
- antiserum for CERV was procured from BioRad, USA.
- kit is prepared by assembling following ingredients along with an instruction manual.
- the methodology to prepare the following ingredients has already been mention in previous examples.
- the kit comprising the following:
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention provides a method for detection of Chrysanthemum virus B in plants using desined primers of Sequence ID 1:Upstream primer TGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer:TTTATAATGTCTTATTATTCGCAT It also relates to a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants comprising: polyclonal antibodies against Chrysanthemum virus B coat protein in plants; conjugate labeled with alkaline phosphatase; coating buffer; extraction buffer; ECI buffer; PNP buffer.
Description
- The present invention relates to a primers useful for detection of Chrysanthemum virus B in plants.
- More particularly this invention relates to a method for detection of Chrysanthemum virus B in plants by using a primers useful for detection of Chrysanthemum virus B in plants.
- The present invention also relates to a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants.
- Chrysanthemum is one of the important cut flower worldwide. It ranks 3rd in world among the cut flowers. Chrysanthemum is commonly propagated vegetatively and this practice allows the viruses, once established in the plants to be perpetuated from generation to generation. Quality of germplasm and minimizing the infection of the viruses to different cultivars, proper diagnosis and control for viral diseases are not only desirable but also essential for improving crop productivity.
- Chrysanthemum virus B (CVB), a carlavirus has a narrow host range and distributed worldwide wherever Chrysanthemums are grown. It infects Chrysanthemum and about 10 other species in 5 dicotyledonous families (Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., and Watson, L. (Edts) Viruses of Plants, CAB International, UK. Page No. 398-400). CVB is widespread throughout the country. During a survey of chrysanthemum cvs. all tested commercial stocks were found to show disease incidence ranging between 40% to 95% (Verma, N., Sharma, A., Ram, R., Hallan, V., Zaidi, A. A. and Garg, I.D. (2003) Detection, identification and incidence of Chrysanthemum B carlavirus in chrysanthemums in India. Crop Prot. 22, 425-429). At the Institute of Himalayan Bioresource Technology, Palampur chrysanthemum cultivars were collected from twenty eight geographical areas. Twenty eight isolates were cloned, sequenced and sequences were submitted to Genbank. Different primer pairs were designed (EMBL Nucleotide Sequence Accession Numbers: AJ566196, AJ566195, AJ609493, AJ609494, AJ609495, AJ609496, AJ609497, AJ609498, AJ609499, AJ609500) and used successfully for identification and characterization of an Indian isolates of CVB. This also shows wide spread occurrence of CVB in chrysanthemum being cultivated in different parts of country.
- CVB was first reported from Netherlands as a member of carlavirus group (Noordam, D. 1952 Virusziekten bij chrysant in Nedeland. With a summary: virus disease of Chrysanthemum morifolium in Netherlands. Tijdschrift over Plantenziekten. 58, 121-190). CVB infection results in loss of flower quality, mild leaf mottling, vein clearing or a combination of these is found (Hollings, M. and Stone, O. M. (1972) Chrysanthemum virus B CMI/AAB Descriptions of Plant viruses No. 110). Symptoms ranging from mosaic, malformation and slight to severe necrosis have also been reported (Hakkart, F. A. and Matt, D. Z. (1974) Variation of Chrysanthemum virus B. J. Plant Path. 80, 97-103).
- Traditional methods of diagnosis of plant viruses require bioassay through an indicator plant, symptom observation, host range determination, and particle morphology and vector relations. These processes are time consuming and require a lot of labour. However, progress in molecular biology, biochemistry and immunology has led to the development of new accurate, rapid and less labour-intensive methods of virus detection. There are various diagnostic techniques available in the field of viral diagnostics like precipitation tests, agglutination tests, fluorescent antibody test, enzyme linked immunosorbant assay, dot immunosorbant assay, tissue blotting assay, western blotting, nucleic acid hybridization with radio labeled and non radio-labeled probes and polymerase chain reaction based detection.
- Immunological techniques have been successfully used for the detection of CVB from Chrysanthemum morifolium (Raizada, R. K., Srivastava, K. M., Chandra, G. and Singh, B. P. (1989) Comparative evaluation of sero-diagnostic methods for detection of Chrysanthemum virus B in chrysanthemum. Indian J. Exp. Biol. 27, 1094-1096).Serological methods were used effectively for diagnosis of Chrysanthemum virus B (Zaidi, A. A., Ram, R., Zaidi, S. N. H. and Mukherjee, D. (1990) Diagnosis of viruses in some ornamental plants with special reference to serological methods: New Developments. Indian Rev. Life Sci. 13, 157-174).
- Enzyme linked immunosorbant assay (ELISA) and other modified form of ELISA have been extensively used for the detection of CVB from Chrysanthemum morifolium (Verma, N., Sharma, A., Ram, R., Hallan, V., Zaidi, A. A. and Garg, I. D. (2003) Detection, identification and incidence of Chrysanthemum B carlavirus in chrysanthemum in India. Crop Prot. 22, 425-429). It is highly effective in detecting the CVB from leaves. Using the DAS-ELISA, status of the viral disease was analyzed for 36 cultivars of Chrysanthemum morifolium. Some cultivars also exhibit mild leaf mottling, vein clearing or a combination of these (Hollings, M. and Stone, O. M. (1972) Chrysanthemum virus B CMI/AAB Descriptions of Plant viruses No. 110). Therefore, it is important to have reliable and quick diagnostics to diagnose the latent infection and for establishing the serological relationship between the isolates of the Chrysanthemum virus B. Similar to ELISA, Immunosorbant Electron Microscopy (ISEM) also revealed easy detection of CVB from leaves (Verma, N., Sharma, A., Ram, R., Hallan, V., Zaidi, A. A. and Garg, I. D. (2003) Detection, identification and incidence of Chrysanthemum B carlavirus in chrysanthemum in India. Crop Prot. 22, 425-429). Similar to ELISA, ISEM could detect the CVB from chrysanthemum leaves.
- During last decade, RT-PCR has been used with varying degree of modification for detection of viral genome in infected plants (Yamamoto, H., Kiguchi, T. and Ohya, T. (2001) 52nd Annual Report of the Society of Plant Protection of North Japan. 85-86). Partial sequence of the Chrysanthemum virus B has been worked out and it was 3.4 kb (Levay, K. E. and Zavriev, S. K. (1991) Nucleotide sequence and gene organisation of the 3′-terminal region of Chrysanthemum virus B genomic RNA. J. Gen. Virol. 72(10), 2333-7). At IHBT, Palampur approximately 5 Kb of the CVB genome has been sequenced (EMBL Nucleotide Sequence Accession Numbers: AJ617281, AJ617282, AJ617287, AJ585240, AJ704627, AJ580956, AJ633542, AJ633540, and AJ633629). On the basis of sequencing of various geographical isolates, three biological isolates have been identified including the earlier reported Russian isolate, which resembles one of the three isolates.
- The main object of the present is to provide primers useful for detection of Chrysanthemum virus B in plants.
- Another object of the present invention is to provide a method for detection of Chrysanthemum virus B in plants by using designed primers useful for detection of Prunus necrotic ringspot virus in plants.
- Still another object of the present invention is to provide a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants.
- The present invention relates to a method for detection of Chrysanthemum virus B in plants using desined primers of
Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer: TTTATAATGTCTTATTATTCGCAT - It also relates to a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B in plants comprising:
-
- a) polyclonal antibodies against Chrysanthemum virus B coat protein in plants;
- b) conjugate labeled with alkaline phosphatase;
- c) coating buffer;
- d) extraction buffer;
- e) ECI buffer;
- f) PNP buffer;
- g) Instruction manual.
- Specific sequence of CVB was detected in total RNA extract of infected plants by initially transcribing the viral RNA into cDNA and then amplifying by polymerase chain reaction. Like ELISA and ISEM, PCR also readily detects CVB in leaves.
- Thus DAS-ELISA, ISEM and RT-PCR are the suitable techniques to detect CVB infecting Chrysanthemum. RT-PCR and nucleic acid hybridization are sensitive tools to detect the virus but they require sophisticated instruments which are costly also. Till now ELISA have been used extensively used for diagnosis of virus infecting chrysanthemum and other plants, as these are quick, easy to perform, can be used even in field conditions and are cost effective. These can be exploited in the form of diagnostic kits.
- For the development of diagnostic kit coat protein gene of CVB submitted to EMBL data (Vide Accession No. AJ580956) was amplified using the especially designed primers having restriction enzyme sites compatible for directional and inframe cloning in pGex-2TK vector. Amplified product was cloned into pGex 2TK vector by transforming into BL21 competent cells.
- Cloned coat protein gene was induced in transformed E. coli cells grown in YT medium. Expression conditions were standardized against IPTG concentration, time of incubation, growth conditions and method of cell disruption. Culture was induced using 0.25 mM isopropyl-β-D-thiogalactopyranoside (IPTG) final concentration at 0.5 OD600 for 3 hrs at 25° C., along with disruption of cell using both lysozyme (10 mg/ml) and sonication (pulse on for 9.0 sec. and pulse off for 4 sec.) to give the maximum expressed recombinant coat protein yield in soluble form.
- Expressed coat protein was purified to homogeneity by affinity chromatography on glutathione-agarose. Immobilization of glutathione on an agarose matrix makes a highly efficient affinity chromatography resin. Bound GST fusion proteins were readily displaced from the column by elution with buffer containing free glutathione.
- Purified protein preparations obtained after affinity chromatography were used as antigen for immunization of rabbit (Meenu Katoch, A. A. Zaidi and Raja Ram. 2002. Development of diagnostic kit for the detection of Bean yellow mosaic virus. Patent file no 76/NF/2002). Healthy white New Zealander male albino rabbits approximately six months old were used to raise the hyperimmune sera against CVB. Antigen (about 100 μg per injection) was mixed with Freund's incomplete adjuvant (1:1) and was injected intramuscularly into thigh muscles of rabbits. Four injections were given at the interval of one week. After one week of immunization schedule, the animals were bled from the marginal ear vein. The blood was collected in a glass tube and allowed to clot at room temperature for one hour. Subsequently, the glass tube was kept at 4° C. overnight. The serum was centrifuged at 2000 rpm for ten minutes at 4° C. The supernatant was collected and stored at 4° C. after adding sodium azide to a concentration of 0.2% (w/v).
- Accordingly the present invention Primers useful for detection of Chrysanthemum virus B (CVB) in plants, comprising the following sequence:
Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer TTTATAATGTCTTATTATTCGCAT - Further, the present invention also provides a method for detection of Chrysanthemum virus B (CVB) in plants, wherein the said method comprising the steps of:
- a) providing a purified coat protein of CVB by using designed primers of
Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer TTTATAATGTCTTATTATTCGCAT -
- b) preparing polyclonal antibodies against CVB coat protein obtained from step (a);
- c) performing direct antibody sandwich enzyme linked immunosorbent assay (DAS ELISA) for detection of CVB
- In an embodiment of the present invention, the complete coat protein of CVB is amplified using designed primers having a
Sequence ID 1: Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT Sequence ID 2: Downstream primer TTTATAATGTCTTATTATTCGCAT - In another embodiment of the present invention, the complete coat protein of CVB comprising sequence ID having No. CAI51623MPPKPAPGDNEGNASGSTPTPSPPHPARTAEEARLRLAEMEREREQEQSLE EMNSNTPDDDARNISRLTQLAALLRREQTNVHVTNMALEIGRPALQPPPNMRGDPT NMYSQVSTDFLWKIKPQRISNNMATSEDMVKIQVALEGLGVPTESVKEVIIRLVLNC ANTSSSVYQDPKGVIEWDGGAIIADDVVGVINEHSTLRKVCRLYAAVAWNYMHLQ QTPPSDWSAMGFHPNVKYAAFDFFDYVENGAAIGPSGGIVPKPTRAEYVAYNTYKM LALNKANNNDTFGNFDSAITGGRQGPAIHNNLNNANNKTL is cloned in pGEX-2TK followed by transformation using E-coli strain BL 21.
- Further in an embodiment of the present invention, the optimal expression of CVB coat protein is checked with 0.25-1 mM IPTG concentration at about temperature 25 degree C. for 3.5-4h.
- Still in an embodiment of the present invention, obtained coat protein of CVB is sequenced by known sequencing methods.
- Still in an embodiment of the present invention, the purification of CVB coat protein is carried out by the known method.
- Still an embodiment of the invention, the immunization in rabbits are carried out three times with purified coat protein of CVB and Freund's complete adjuvant in the ratio of 1:1 at weekly intervals.
- Still in an another embodiment of the present invention, the route for immunization may be intramuscularly, subcutaneously or intravenously.
- Yet in an another embodiment of the present invention, the rabbits are bled after 14 to 15 days to obtain polyclonal antibodies against CVB coat protein.
- Yet in an another embodiment of the present invention, the polyclonal antibodies against CVB coat protein are purified from the serum by known methods.
- Yet another embodiment of the present invention, the microtiter plates are coated with polyclonal antibodies diluting in a coating buffer in a ratio ranges from 1:500-1:1000 followed by 4-5 times washing with PBS-T.
- Yet another embodiment of the present invention, the test samples are prepared in microtiter plates by macerating infected leaf tissue from plant with extraction buffer followed by dilution from 1×-1/150× of the original antigen.
- Yet in another embodiment of the present invention, the microtiter plate is incubated overnight at about 37° C. followed by washing to allow coating of antigen in the wells.
- Yet in an another embodiment of the present invention, the antibody conjugate in ECI buffer is added in the ratio ranges between 1:500 to 1:1000 for a period of about 2 hrs at about 37° C. followed by washing with PBS-T
- Yet in an another embodiment of the present invention, about 100 μl of about 1 mg/ml p-nitrophenyl phosphate solution in PNP buffer is added in the mix.
- Yet in an another embodiment of the present invention, the reaction is terminated by adding about 50 μl of about 3M NaOH after 15-20 min to obtain yellow color product.
- Yet in an another embodiment of the present invention, the color product is antigen and antibody conjugate.
- Yet in an embodiment of the present invention, the absorbance of colored product is measured at 405 nm for detection of Chrysanthemum virus B (CVB).
- Furher, the present invention also provides a diagnostic kit useful for detection of coat protein of Chrysanthemum virus B (CVB) comprising:
-
- a) polyclonal antibodies against Chrysanthemum virus B (CVB) coat protein in plants;
- b) conjugate labeled with alkaline phosphatase;
- c) coating buffer;
- d) extraction buffer;
- e) ECI buffer;
- f) PNP buffer;
- g) Instruction manual.
- The following examples are given by way of illustration of the present invention and should not be construed to limit the scope of present invention.
- Detection of Chrysanthemum virus B from Chrysanthemums:
- To check the activity of kit, different varieties of chrysanthemum were checked using DAS-ELISA. Samples were extracted in a similar fashion as described below in DAS-ELISA. At the same time they were also checked by a reference kit BIORAD (USA). The raised antibodies were tested against the newly discovered isolates including the isolates similar to Russian isolate reported earlier and found to detect effectively all the isolates. Reference kit showed weak reaction with other isolates while the antibody developed here showed a strong reaction with all isolates tested. The results are summarized in Table 1.
- DAS-ELISA
-
- 1. Plates (Nunc Immuno TM plate, Denmark) were coated with 100 μl of polyclonal antibodies (diluted 1:10,000) in coating buffer and then incubated overnight at 4° C. in a humid box.
- 2. The plates were washed five times with PBS-T.
- 3. Antigen was prepared by macerating leaf tissue 1 g/2 ml in extraction buffer. Several dilutions were made corresponding to 1×-1/150× dilution of the original antigen and 100 μl of the diluted antigen was pipetted into wells of microtiter as per loading diagram and incubated at 37° C. for two hours in a humid box to allow coating of antigen in wells.
- 4. Washing steps were repeated and conjugate (diluted 1:500) in ECI buffer was added into the wells (100 μl/well). Plates were incubated for 2 hrs at 37° C. in a humid box.
- 5. After washing the plate with PBST, the wells were loaded with 100 μl solution of 1 mg/ml p-nitrophenyl phosphate made in PNP buffer (10% diethanolamine solution adjusted to pH9.8 with HCL).
- 6. After appropriate colour development (15-20 min), the reaction was terminated by adding 50 μl of 3M NaOH to each well.
- 7. Positive and negative controls were also made on the same plate. Absorbance at 405 nm was measured for complete ELISA plate with a flow ELISA micro plate reader. The reaction was considered positive if absorbance was observed to be greater than 0.1, which was three times of the negative control.
- It reacted well with the positive sample, whereas negative in the negative control sample. The titration was found 1:10,000.
- Coating buffer: (0.05M per liter): 1.59 gm sodium carbonate and 2.93 gm sodium bicarbonate, pH 9.6
- PBST buffer: 20 mM sodium phosphate pH 7.4; 150 mM NaCl and 0.05% (v/v) Tween 20. Extraction buffer: 1.3 g sodium sulphite (anhydrous), 20 g Polyvinylpyrrolidone (PVP) MW24-40,000, 0.2 g sodium azide, 2.0 g powdered egg albumin grade II and 20.0 g Tween-20 were dissolved in 1000 mlon 1×PBST and pH was adjusted 7.4.
- ECI buffer: 2.0 g BSA, 20.0 g PVP 24-40,000 and 0.2 g sodium azide were dissolved in 1000 ml 1×PBST and pH adjusted to 7.4.
- PNP buffer: 0.1 g magnesium chloride, 0.2 g sodium azide and 97 ml diethanolamine were dissolved in 800 ml distilled water and volume was made to 1000 ml and pH adjusted to 9.8.
ELISA using Test ELISA using S. No Variety Kit Reference Kit 1. Pink Gin +++ + 2. Funshine ++ + 3. Inga + + 4. Regol Time +++ + 5. Royal Mundial + + 6. Bronze Mundial + + 7. Otome Zakura + + 8. Tiching Queen − − 9. Mundial ++ + 10. Shymal ++ + 11. Chandrama + + 12. White Stafour +++ + 13. Fish Tail + + 14. Pancho ++ + 15. Akita ++ + 16. White Prolific +++ + 17. Pink Casket +++ + 18. Dignity + + 19. Jyoti − − 20. Penny Lane + + 21. Jubilee ++ + 22. Vasantika ++ + 23. Nanako + + 24. Kundan + + 25. Himani +++ + 26. Birbal Sahni + + 27. Jaya + + 28. Flirt ++ + 29. Lilith − − 30. Sharad Shobha +++ + 31. Megani + + 32. Jayanti ++ + 33. Niharika ++ + 34. Snow Ball + + 35. Meghdoot − − 36. White Shoesmith ++ +
(−) = Negative reaction, (+++) = Strong reaction, (++) = Mild reaction, (+) = Weak reaction
- Raising of Antisera
- Purified recombinant coat protein was used an antigen for immunization of rabbit. Healthy white New Zealander male albino rabbits approximately six months old were used to raise the hyperimmune sera against CVB. Antigen (about 100 μg per injection) was mixed with Freund's adjuvant in the ratio of 1:1 and injected by two routes intramuscularly and sub-cutaneously into the thigh muscles of rabbits. First two injections were given along with Freund's complete adjuvant at the interval of one week. Similarly third and fourth injections were given along with Freund's incomplete adjuvant (1:1) at the interval of one week. After two-week immunization schedule, the animals were bled from the marginal ear vein. The blood was collected in a glass tube and allowed to clot at room temperature for an hour. Subsequently, glass tube containing clotted blood was kept at 4° C. overnight. The serum was collected using pasture pipette and centrifuged at 5000 rpm for ten min at 2-6° C. The supernatant was collected and stored at 4° C. after adding sodium azide to a concentration of 0.2% (w/v). To collect more serum, booster injections were given 5, 12, 16 and 22 weeks after the initial injection. For reference and serological testing, antiserum for CERV was procured from BioRad, USA.
- Purification of Antibody (Separation of IgG from Whole Serum):
- A) By Ammonium Sulphate Precipitation:
-
- 1. Distilled water (9 ml) was added to 1 ml of crude antiserum.
- 2. Slowly drop wise 10 ml of neutralized saturated ammonium sulphate (Sigma) was added and continuously kept under stirring.
- 3. After stirring, it was kept at room temperature for about 1 hour. The resulting solution should appear viscous and cloudy because of precipitation of antibodies i.e. IgG.
- 4. Solution was centrifuged at 9000 g for 15 min and precipitate was washed with 2 ml of half-strength PBS. Washing step was repeated three times to remove the traces of ammonium sulphate.
- 5. Finally precipitate was dissolved in 1 ml of half strength PBS.
- 6. O.D. was measured at a wavelength of 280 nm.
- 7. The antibodies were diluted in a way that final concentration became 1 mg/ml (O.D. reading 1.4=1 mg/ml).
- 8. 1 ml aliquots along with 0.02% w/v sodium azide were stored at −20° C. for further use.
- PBS (100 ml): Na2HPO4.12H2O=5.8 gm; NaH2PO4.2H2O=1.0 gm; NaCl=8.76 gm.
- B) By Affinity Chromatography:
-
- 1. Protein A—sepharose (Sigma) was swelled and packed in a column.
- 2. Column was washed with equilibration buffer.
- 3. Serum was diluted and passed through the column with a regulated flow.
- 4. Unbound proteins were washed with PBS until no more protein leaves the column (it was monitored by spectrophotometer).
- 5. Bound protein (IgG) was eluted with the elution buffer.
- 6. pH was neutralized with Tris HCI.
- 7. Column was regenerated by washing alternatively with equilibration buffer and storage buffer. Then the column was stored in storage buffer at 4° C.
- 8. Elute was dialyzed thrice against PBS and stored at −20° C. until used further.
- PBS (100 ml): Na2HPO4.12H2O=5.8 gm; NaH2PO4.2H2O=1.0 gm; NaCl=8.76 gm.
- Equilibration buffer (5×): Tris—0.05 M; NaCl—0.15 M, pH 8.6.
- Storage buffer: Na2HPO4—0.05 M; Thomersol—0.05%, pH 6.0
- Elution buffer: CH3COONa—0.05 M; NaCl—0.15 M, pH 4.5
- Preparation of Antibody Enzyme Conjugate (Using Alkaline Phosphatase):
-
- 1. 1 mg of alkaline phosphatase (Sigma) was dissolved in 2 ml of purified antibodies.
- 2. Fresh gluteraldehyde (25% stock, Merck) was added to the solution in such a way to make the final concentration 0.05% and mixed well.
- 3. It was incubated at room temperature for 4 hrs. A faint brown colour was developed.
- 4. After 4 hrs, it was centrifuged at 9000 g for 20 min.
- 5. The precipitate was washed twice with half strength PBS and finally dissolved in 2 ml of half strength PBS.
- 6. Bovine serum albumin (BSA) to 5 mg/mL and sodium azide to 0.02% w/v were dissolved in it to enhance its self life. It was stored at 4° C. till further use.
- Evaluation of Alkaline Phosphatase Conjugate:
- Activity of conjugate was checked by DAS-ELISA as described in the examples given in complete specifications of patent using known positive and negative samples and titrated too.
- Preparation of Kit for Detection of Coat Protein of Chrysanthemum virus B (CVB)
- Said kit is prepared by assembling following ingredients along with an instruction manual. The methodology to prepare the following ingredients has already been mention in previous examples. The kit comprising the following:
-
- a) polyclonal antibodies against Chrysanthemum virus B (CVB) coat protein in plants as claimed in claim 2;
- b) conjugate labeled with alkaline phosphatase;
- c) coating buffer;
- d) extraction buffer;
- e) ECI buffer;
- f) PNP buffer.
- g) Instruction manual.
- Advantages:
- The main advantages of the present invention are:
-
- 1. Chrysanthemum is among the top ten cut flower crop in domestic as well as in the international Floriculture Trade. Since it is severely gets affected by CVB that reduces its flower quality and yield and in order to develop the disease free propagating material and selection of healthy plants by using indigenous diagnostic kit are absolutely essential as it helps in the plant virus management.
- 2. The kit being polyclonal in nature can detect all CVB strains.
- 3. The kit can detect the CVB in different Chrysanthemum cultivars giving more strong reaction compared to the reference kit (Table 1).
- 4. All the components of the kit can be stored at 4° C. without any appreciable loss in activity while few components of the reference kit need to be stored at −20° C.
- 5. Purification of the expressed protein enhances the purity and continuous supply of antigen.
- 6. This being an indigenous diagnostic kit, is cost effective too.
- 7. The diagnostic kit developed can be used for screening the virus free tissue culture raised plants.
- 8. The diagnostic kit developed can be used in understanding the disease epidemiology and disease forecasting of CVB.
- 9. The diagnostic kit developed can be used for virus monitoring in vector and weeds.
- 10. CVB diagnostic kit has an application in plant quarantine thus helping in export and import of Chrysanthemums.
- 11. CVB diagnostic kit has an application in raising virus free Chrysanthemum nursery.
Claims (19)
1. Primers useful for detection of Chrysanthemum virus B (CVB) in plants, comprising the following sequence:
2. A method for detection of Chrysanthemum virus B (CVB) in plants, wherein the said method comprising the steps of:
Sequence ID 1:
Upstream primer ATGCCTCCCAAACCGGCACCAGGTGAT
Sequence ID 2:
Downstream primer TTTATAATGTCTTATTATTCGCAT
a) providing a purified coat protein of CVB by using designed primers of
b) preparing polyclonal antibodies against CVB coat protein obtained from step (a);
c) performing direct antibody sandwich enzyme linked immunosorbent assay (DAS ELISA) for detection of CVB.
3. A method as claimed in claim 2(a), wherein the complete coat protein of CVB is amplified from rose using designed primers having a
4. A method as claimed in claim 2(a), wherein the complete coat protein of CVB comprising sequence ID having No. CAI51623: MPPKPAPGDNEGNASGSTPTPSPPHPARTAEEARLRLAEMEREREQEQSLEE MNSNTPDDDARNISRLTQLAALLRREQTNVHVTNMALEIGRPALQPPPNMR GDPTNMYSQVSTDFLWKIKPQRISNNMATSEDMVKIQVALEGLGVPTESVKE VIIRLVLNCANTSSSVYQDPKGVIEWDGGAIIADDVVGVINEHSTLRKVCRLYA AVAWNYMHLQQTPPSDWSAMGFHPNVKYAAFDFFDYVENGAAIGPSGGIV PKPTRAEYVAYNTYKMLALNKANNNDTFGNFDSAITGGRQGPAIHNNLNN ANNKTL is cloned in pGEX-2TK followed by transformation using E-coli strain BL 21.
5. A method as claimed in claim 2(a), wherein the optimal expression of CVB coat protein is checked with 0.25-1 mM IPTG concentration at about temperature 25 degree C. for 3.54 h.
6. A method as claimed in claim 2(a), wherein the purification of CVB coat protein is carried out by the known method.
7. A method as claimed in claim 2(b), wherein the immunization in rabbits are carried out four times with purified coat protein of PNRSV obtained from step 1(a) and Freund's complete adjuvant in the ratio of 1:1 at weekly intervals.
8. A method as claimed in claim 2(b), wherein the route for immunization may be intramuscularly, subcutaneously or intravenously.
9. A method as claimed in claim 2(b), wherein the rabbits are bled after 14 to 15 days to obtain polyclonal antibodies against CVB coat protein.
10. A method as claimed in claim 2(b), wherein the polyclonal antibodies against CVB coat protein are purified from the serum by known methods.
11. A method as claimed in claim 2(c), wherein the microtiter plates are coated with polyclonal antibodies diluting in a coating buffer in a ratio ranges from 1:500-1:1000 followed by 4-5 times washing with PBS-T.
12. A method as claimed in claim 2(c), wherein the test samples are prepared in microtiter plates by macerating infected leaf tissue from plant with extraction buffer followed by dilution from 1×-1/150× of the original antigen.
13. A method as claimed in claim 2(c), wherein the microtiter plate is incubated overnight at about 37° C. followed by washing to allow coating of antigen in the wells.
14. A method as claimed in claim 2(c), wherein antibody conjugate obtained from step 2(b) in ECI buffer is added in the ratio ranges between 1:500 to 1:1000 for a period of about 2 hrs at about 37° C. followed by washing with PBS-T.
15. A method as claimed in claim 2(c), wherein about 100 μl of about 1 mg/ml p-nitrophenyl phosphate solution in PNP buffer is added in the mix as claimed in claim 14 .
16. A method as claimed in claim 2(c), wherein the reaction is terminated by adding about 50 μl of about 3M NaOH after 15-20 min to obtain yellow color product.
17. A method as claimed in claim 1(c), wherein the color product is antigen and antibody conjugate.
18. A method as claimed in claim 2(c), wherein absorbance of colored product is measured at 405 nm for detection of Chrysanthemum virus B (CVB).
19. A diagnostic kit useful for detection of coat protein of Chrysanthemum virus B (CVB) comprising:
a) polyclonal antibodies against Chrysanthemum virus B (CVB) coat protein in plants as claimed in claim 2;
b) conjugate labeled with alkaline phosphatase;
c) coating buffer;
d) extraction buffer;
e) ECI buffer;
f) PNP buffer;
g) Instruction manual.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/598,624 US20070202494A1 (en) | 2005-07-26 | 2006-11-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
US12/191,862 US7803526B2 (en) | 2005-07-25 | 2008-08-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN1982/DEL/2005 | 2005-07-26 | ||
IN1982DE2005 | 2005-07-26 | ||
US36971706A | 2006-03-08 | 2006-03-08 | |
US11/598,624 US20070202494A1 (en) | 2005-07-26 | 2006-11-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US36971706A Continuation | 2005-07-25 | 2006-03-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/191,862 Division US7803526B2 (en) | 2005-07-25 | 2008-08-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070202494A1 true US20070202494A1 (en) | 2007-08-30 |
Family
ID=36931535
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/598,624 Abandoned US20070202494A1 (en) | 2005-07-25 | 2006-11-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
US12/191,862 Expired - Fee Related US7803526B2 (en) | 2005-07-25 | 2008-08-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/191,862 Expired - Fee Related US7803526B2 (en) | 2005-07-25 | 2008-08-14 | Development of diagnostic kit for the detection of Chrysanthemum virus B |
Country Status (4)
Country | Link |
---|---|
US (2) | US20070202494A1 (en) |
BR (1) | BRPI0520448A2 (en) |
RU (1) | RU2380424C2 (en) |
WO (1) | WO2007013088A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113637799A (en) * | 2021-08-12 | 2021-11-12 | 北京农业生物技术研究中心 | RPA detection method of chrysanthemum virus B |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116239657B (en) * | 2023-02-23 | 2024-12-24 | 浙江大学 | Preparation of polyclonal antibody based on chrysanthemum B virus coat protein specific fragment |
-
2005
- 2005-11-29 RU RU2008106863/13A patent/RU2380424C2/en not_active IP Right Cessation
- 2005-11-29 BR BRPI0520448-8A patent/BRPI0520448A2/en not_active Application Discontinuation
- 2005-11-29 WO PCT/IN2005/000389 patent/WO2007013088A1/en active Application Filing
-
2006
- 2006-11-14 US US11/598,624 patent/US20070202494A1/en not_active Abandoned
-
2008
- 2008-08-14 US US12/191,862 patent/US7803526B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113637799A (en) * | 2021-08-12 | 2021-11-12 | 北京农业生物技术研究中心 | RPA detection method of chrysanthemum virus B |
Also Published As
Publication number | Publication date |
---|---|
RU2008106863A (en) | 2009-09-10 |
US7803526B2 (en) | 2010-09-28 |
WO2007013088A1 (en) | 2007-02-01 |
US20090142747A1 (en) | 2009-06-04 |
RU2380424C2 (en) | 2010-01-27 |
BRPI0520448A2 (en) | 2009-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Johnson et al. | Detection of North American West Nile virus in animal tissue by a reverse transcription-nested polymerase chain reaction assay | |
Lima et al. | Serology applied to plant virology | |
Hema et al. | Development of recombinant coat protein antibody based IC-RT-PCR for detection and discrimination of sugarcane streak mosaic virus isolates from Southern India | |
Alkowni et al. | Biological, molecular, and serological studies of a novel strain of grapevine leafroll-associated virus 2 | |
Tatineni et al. | Immunodetection of Triticum mosaic virus by DAS-and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods | |
US20070026390A1 (en) | Development of diagnostic kit against the recombinant coat protein of prunus necrotic ringspot virus | |
US7803526B2 (en) | Development of diagnostic kit for the detection of Chrysanthemum virus B | |
Huttinga | Sensitivity of indexing procedures for viruses and viroids | |
Almasi et al. | Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus | |
Mrkvová et al. | Ka nuková | |
CN103789442B (en) | A kind of FRET-PCR in real time and nest-type PRC detect and the rickettsial primer of somatotype, probe and test kit | |
WO2007012945A1 (en) | Diagnostic kit for detection of carnation mottle virus | |
EP2328912B1 (en) | Method for producing purified bovine leukemia virus surface antigen gp51 | |
KR101139802B1 (en) | Primers for detecting orchid infecting virusinfect and screening method of virus using same | |
Flamarique et al. | Advances in the etiology of sweet potato (Ipomoea batatas (L.) Lam) yellow curling disease in Argentina | |
JP5269572B2 (en) | Antigenic peptide of iridovirus and use thereof | |
US20190195873A1 (en) | Identification of secreted proteins as detection markers for citrus disease | |
Jordan et al. | Development of polyclonal and monoclonal antibodies to rose rosette virus nucleoprotein | |
Durrin et al. | Immunodetection of two curtoviruses infecting sugar beet | |
KR102089268B1 (en) | A method for detecting hantaan virus using hantaan virus truncated nucleocapsid protein | |
KR100454727B1 (en) | Diagnostic kit of hemorrhagic fever with renal syndrome using Baculovirus expressed nucleocapsid protein derived from Hantann virus 91011 | |
KR102141369B1 (en) | Composition for detecting Severe Fever with Thrombocytopenia Syndrome viral RNA and method of diagnosing Severe Fever with Thrombocytopenia Syndrome using the same | |
RU2834909C1 (en) | Method for detecting rna of mammarenavirus guanaritoense virus by recombinase polymerase amplification | |
TWI301853B (en) | ||
Muske et al. | Molecular and serological detection of papaya ringspot virus infecting papaya (Carica papaya) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SINGH, LAKHMIR;HALLAN, VIPIN;ZAIDI, AIJAZ ASHGAR;REEL/FRAME:019290/0307 Effective date: 20070320 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |