US20070148630A1 - Removal of Adenine During a Pathogen Reduction Process in Whole Blood or Red Blood Cells by Dilution - Google Patents
Removal of Adenine During a Pathogen Reduction Process in Whole Blood or Red Blood Cells by Dilution Download PDFInfo
- Publication number
- US20070148630A1 US20070148630A1 US11/624,487 US62448707A US2007148630A1 US 20070148630 A1 US20070148630 A1 US 20070148630A1 US 62448707 A US62448707 A US 62448707A US 2007148630 A1 US2007148630 A1 US 2007148630A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- adenine
- photosensitizer
- blood
- pathogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229960000643 adenine Drugs 0.000 title claims abstract description 87
- 229930024421 Adenine Natural products 0.000 title claims abstract description 83
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 244000052769 pathogen Species 0.000 title claims abstract description 71
- 230000001717 pathogenic effect Effects 0.000 title claims abstract description 65
- 239000008280 blood Substances 0.000 title claims abstract description 27
- 210000003743 erythrocyte Anatomy 0.000 title claims description 21
- 238000011946 reduction process Methods 0.000 title description 4
- 210000000601 blood cell Anatomy 0.000 title description 2
- 238000010790 dilution Methods 0.000 title description 2
- 239000012895 dilution Substances 0.000 title description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims abstract description 45
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 claims abstract description 41
- 235000019192 riboflavin Nutrition 0.000 claims abstract description 40
- 239000002151 riboflavin Substances 0.000 claims abstract description 40
- 239000012503 blood component Substances 0.000 claims abstract description 29
- 210000004369 blood Anatomy 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 239000012530 fluid Substances 0.000 claims description 60
- 239000003504 photosensitizing agent Substances 0.000 claims description 57
- 230000009467 reduction Effects 0.000 claims description 18
- 239000000306 component Substances 0.000 claims description 16
- 238000005406 washing Methods 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000006303 photolysis reaction Methods 0.000 claims description 3
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims 1
- 230000003000 nontoxic effect Effects 0.000 claims 1
- 229960002477 riboflavin Drugs 0.000 abstract description 32
- 239000000243 solution Substances 0.000 description 49
- 210000002381 plasma Anatomy 0.000 description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 238000003860 storage Methods 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- ZJTJUVIJVLLGSP-UHFFFAOYSA-N lumichrome Chemical compound N1C(=O)NC(=O)C2=C1N=C1C=C(C)C(C)=CC1=N2 ZJTJUVIJVLLGSP-UHFFFAOYSA-N 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 9
- 239000010836 blood and blood product Substances 0.000 description 8
- 229940125691 blood product Drugs 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000005283 ground state Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- HAUGRYOERYOXHX-UHFFFAOYSA-N Alloxazine Chemical compound C1=CC=C2N=C(C(=O)NC(=O)N3)C3=NC2=C1 HAUGRYOERYOXHX-UHFFFAOYSA-N 0.000 description 5
- 108010017384 Blood Proteins Proteins 0.000 description 5
- 102000004506 Blood Proteins Human genes 0.000 description 5
- 206010018910 Haemolysis Diseases 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000008588 hemolysis Effects 0.000 description 5
- 230000002779 inactivation Effects 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003146 anticoagulant agent Substances 0.000 description 4
- 229940127219 anticoagulant drug Drugs 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000007865 diluting Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000005534 hematocrit Methods 0.000 description 4
- KPDQZGKJTJRBGU-UHFFFAOYSA-N lumiflavin Chemical compound CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O KPDQZGKJTJRBGU-UHFFFAOYSA-N 0.000 description 4
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010061951 Methemoglobin Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000002617 apheresis Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- MVWNYMTYKBWPHR-UHFFFAOYSA-N 4-methoxy-2,8-dimethyl-1-benzoxonine-6,10,11-triol Chemical compound C1=C(O)C=C(OC)C=C(C)OC2=C(O)C(O)=CC(C)=C21 MVWNYMTYKBWPHR-UHFFFAOYSA-N 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 2
- VWWQXMAJTJZDQX-UHFFFAOYSA-N Flavine adenine dinucleotide Natural products C1=NC2=C(N)N=CN=C2N1C(C(O)C1O)OC1COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- -1 Sodium phosphate Adenine Chemical compound 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 2
- 229940050410 gluconate Drugs 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000001782 photodegradation Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000003761 preservation solution Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- RIRRNZUBFFOHHQ-UHFFFAOYSA-M sodium;phosphoric acid;acetate Chemical compound [Na+].CC([O-])=O.OP(O)(O)=O RIRRNZUBFFOHHQ-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940042585 tocopherol acetate Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- RDOVSPPEPGMKEB-UHFFFAOYSA-L trisodium;sulfate Chemical compound [Na+].[Na+].[Na+].[O-]S([O-])(=O)=O RDOVSPPEPGMKEB-UHFFFAOYSA-L 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- FSCGLKWYHHSLST-UHFFFAOYSA-N 2-(3-sulfanylpropanoylamino)acetic acid Chemical compound OC(=O)CNC(=O)CCS FSCGLKWYHHSLST-UHFFFAOYSA-N 0.000 description 1
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical compound N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 1
- KKAJSJJFBSOMGS-UHFFFAOYSA-N 3,6-diamino-10-methylacridinium chloride Chemical compound [Cl-].C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 KKAJSJJFBSOMGS-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102000004411 Antithrombin III Human genes 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 231100001074 DNA strand break Toxicity 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 108010094028 Prothrombin Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 102000005686 Serum Globulins Human genes 0.000 description 1
- 108010045362 Serum Globulins Proteins 0.000 description 1
- 108010058907 Tiopronin Proteins 0.000 description 1
- GLEVLJDDWXEYCO-UHFFFAOYSA-N Trolox Chemical compound O1C(C)(C(O)=O)CCC2=C1C(C)=C(C)C(O)=C2C GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 229930003471 Vitamin B2 Natural products 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QEUYATCJHJUQML-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride;hydrochloride Chemical compound Cl.[Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 QEUYATCJHJUQML-UHFFFAOYSA-N 0.000 description 1
- 229940002707 acriflavine hydrochloride Drugs 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002338 cryopreservative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- FVVLHONNBARESJ-NTOWJWGLSA-H magnesium;potassium;trisodium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;acetate;tetrachloride;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Mg+2].[Cl-].[Cl-].[Cl-].[Cl-].[K+].CC([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O FVVLHONNBARESJ-NTOWJWGLSA-H 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 239000000906 photoactive agent Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 108010058237 plasma protein fraction Proteins 0.000 description 1
- 229940081857 plasma protein fraction Drugs 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 229950003776 protoporphyrin Drugs 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000012414 sterilization procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940066767 systemic antihistamines phenothiazine derivative Drugs 0.000 description 1
- 229960004402 tiopronin Drugs 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000019164 vitamin B2 Nutrition 0.000 description 1
- 239000011716 vitamin B2 Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/084—Visible light
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/12—Chemical aspects of preservation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/12—Chemical aspects of preservation
- A01N1/122—Preservation or perfusion media
- A01N1/124—Disinfecting agents, e.g. antimicrobials
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/16—Physical preservation processes
- A01N1/168—Physical preservation processes using electromagnetic fields or radiation; using acoustic waves or corpuscular radiation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/18—Erythrocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/10—Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
- A61K41/17—Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultraviolet [UV] or infrared [IR] light, X-rays or gamma rays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0082—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0082—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using chemical substances
- A61L2/0088—Liquid substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/22—Blood or products thereof
Definitions
- photosensitizers compounds which absorb light of a defined wavelength and transfer the absorbed energy to an energy acceptor
- Various photosensitizers have been proposed for use as blood additives for pathogen inactivation of blood or blood components.
- a review of commonly used photosensitizers, and some of the issues of importance in choosing photosensitizers for decontamination of blood products is provided in Goodrich, R. P., et al. (1997), “The Design and Development of Selective, Photoactivated Drugs for Sterilization of Blood Products,” Drugs of the Future 22:159-171.
- photosensitizers that have been proposed for use for blood component photoirradiation have undesirable properties.
- European Patent Application 196,515 published Oct. 8, 1986 suggests the use of non-endogenous photosensitizers such as porphyrins, psoralens, acridine, toluidines, flavine (acriflavine hydrochloride), phenothiazine derivatives, and dyes such as neutral red and methylene blue, as blood additives.
- Another molecule, chlorpromazine has been used as a photosensitizer; however its usefulness is limited by the fact that it should be removed from any fluid administered to a patient after the decontamination procedure because it has a sedative effect.
- Protoporphyrin which occurs naturally within the body, can be metabolized to form a photosensitizer; however, its usefulness is limited in that it degrades the desired biological activities of proteins.
- endogenous photosensitizers Most preferred with respect to the reduction of pathogens in blood or blood products are endogenous photosensitizers.
- endogenous means naturally found in a human or mammalian body, either as a result of synthesis by the body or because of ingestion as an essential foodstuff (e.g. vitamins) or formation of metabolites and/or byproducts in vivo.
- endogenous photosensitizers are alloxazines such as 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin), 7,8,10-trimethylisoalloxazine (lumiflavin), 7,8-dimethylalloxazine (lumichrome), isoalloxazine-adenine dinucleotide (flavine adenine dinucleotide [FAD]), alloxazine mononucleotide (also known as flavine mononucleotide [FMN] and riboflavine-5-phosphate), vitamin Ks, vitamin L, their metabolites and precursors, and napththoquinones, naphthalenes, naphthols and their derivatives having planar molecular conformations.
- alloxazine includes isoalloxazines.
- Endogenously-based derivative photosensitizers useful in this invention include synthetically derived analogs and homologs of endogenous photosensitizers which may have or lack lower (1-5) alkyl or halogen substituents of the photosensitizers from which they are derived, and which preserve the function and substantial non-toxicity thereof.
- U.S. Pat. No. 6,268,120 to Platz et al. discloses alloxazine derivatives which may also be used to inactivate microorganisms contained in blood or blood components. This patent is also incorporated by reference into the present invention to the amount not inconsistent.
- riboflavin 7,8-dimethyl-10-ribityl isoalloxazine
- Adenine is found in blood plasma as well as being an additive component of some synthetic blood collection/storage solutions.
- Adenine is found naturally occurring in small concentrations in plasma and in some synthetic blood collection/storage solutions.
- One method of this invention involves preventing the formation of a complex between adenine and riboflavin by reducing the amount of adenine in a solution containing blood or blood components to be pathogen reduced by reducing the level of plasma.
- Another aspect of this invention involves the collection of blood or blood components to be pathogen reduced into pathogen reduction/storage solutions which are adenine free.
- Another aspect of this invention involves washing the previously collected blood components with saline or like solution, before the pathogen reduction process.
- Another method which may be used for reducing the concentration of selected components of plasma such as adenine in a fluid to be pathogen reduced may be by selective filtration.
- the fluid containing the blood component to be pathogen reduced is combined with a photosensitizer such as riboflavin and exposed to photoradiation of the appropriate wavelength to activate the photosensitizer.
- a photosensitizer such as riboflavin
- the amount of photoradiation used is sufficient to activate the photosensitizer as described herein, but less than that which would cause non-specific damage to the biological components or substantially interfere with biological activity of other proteins present in the fluid.
- Non-specific damage is damage that damages all components.
- FIG. 1 is a Jablonski diagram showing chemical reactions of 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin and other related compounds) catalyzed by photoradiation, oxygen and other components.
- FIG. 2 is a top plan view of a bag set containing a filter for removal of adenine for use in a pathogen reduction procedure.
- FIG. 3 shows an embodiment of this invention using a bag to contain the fluid being treated with the photosensitizer and a shaker table to agitate the fluid while exposing to photoradiation from a light source.
- FIG. 4 is a graph comparing the % hemolysis of pathogen reduced red blood cells stored over time in pathogen reduction/storage solutions with and without adenine.
- the pathogen reduction method of this invention using endogenous photosensitizers and endogenously-based derivative photosensitizers is exemplified herein using 7,8-dimethyl-10-ribityl isoalloxazine as the photosensitizer.
- 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin or vitamin B2) absorbs light from about 200 to 500 nm.
- the ring system core of 7,8-dimethyl-10-ribityl isoalloxazine is resistant to photodegradation but the ribityl side chain of riboflavin undergoes photodegradation.
- Photosensitizers of this invention include compounds which preferentially adsorb to nucleic acids, thus focusing their photodynamic effect upon the nucleic acids of microorganisms and viruses with little or no effect upon accompanying cells or proteins.
- Pathogen kill using riboflavin and related compounds also occurs upon photoinactivation via singlet oxygen damage, thereby disrupting the ability of the pathogen to function and reproduce or both.
- FIG. 1 is a Jablonski diagram showing the photochemical reactions of 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin and other related compounds) which occur upon catalysis by photoradiation, oxygen and other components.
- the photosensitizer in its ground state is referred to as S 0 .
- S 0 The photosensitizer in its ground state
- riboflavin is converted to an electrically excited state which in condensed phase immediately ( ⁇ 10 ⁇ 11 s) relaxes to the lowest vibrational level of the lowest excited state (S 0 ).
- S 1 states in solution are usually in the range of 1-10 ns and are controlled by internal conversion (IC) and fluorescence (F) decay back to S 0 by intersystem crossing (ISC) to a paramagnetic triplet state (T 1 ) and by inter and intramolecular chemical reactions.
- internal conversion is the radiationless transition between energy states of the same spin state.
- Intersystem crossing (ISC) is a radiationless transition between different spin states.
- the left arrow (first vertical, upward-pointing arrow) in the diagram of FIG. 1 indicates that upon absorption of light energy the riboflavin molecule can go from its ground state (S 0 ) to its excited sate (S 1 ) and become involved in chemical reactions including losing its ribityl moiety to become lumichrome (7,8-dimethylalloxazine). Lumichrome is not photoactive under visible light.
- the excited molecule may release its absorbed energy and fluoresce to return to the ground state.
- the wavy arrows indicate that energy is released.
- the excited riboflavin molecule may also relax to its triplet state (T 1 ) through intersystem crossing (ISC) by changing the spin of an electron (spin conversion).
- ISC intersystem crossing
- the wavy line labeled ISC indicates intersystem crossing.
- the molecule in its triplet state can phosphoresce (second wavy, downward pointing arrow) and return to its ground state.
- the molecule in its triplet state can react with other molecules in close proximity and return to its ground state.
- oxygen is present, the molecule in its triplet state can react with oxygen and return to its ground state producing 1 O 2 (singlet oxygen). Singlet oxygen can cause DNA strand breaks, further contributing to pathogen kill.
- nucleoside adenine One component found in blood plasma and in some commonly used blood storage solutions which, if present, has been suggested to have an effect on the oxidative process of riboflavin, is the nucleoside adenine.
- Uchara et al. has shown that upon photoactivation, a specific complex is formed between riboflavin and adenine which increases the photodynamic efficiency of riboflavin.
- the authors showed an accelerative effect of the riboflavin-adenine complex on the photodynamic inactivation of yeast alcohol dehydrogenase.
- riboflavin-adenine complex may appear to be a desirable side effect in that the presence of the complex would help to decrease the time necessary to pathogen reduce any pathogens contained in and/or around blood or blood components, in fact, the presence of the complex speeds up the oxidative chemistry of riboflavin.
- the increase in production of reactive oxygen species produced during the oxidation of riboflavin increases the possibility of cell membrane damage. Cells which are damaged during a pathogen reduction procedure are unable to be reinfused into a patient.
- the adenine content of fluid to be pathogen reduced is reduced by reducing the plasma content.
- One method suitable for the plasma reduction step is to dilute the fluid containing plasma with an adenine-free diluting solution. This will reduce the level of adenine in the fluid to be pathogen reduced, thus reducing the amount of adenine available to form a complex with riboflavin.
- the diluting solution used to reduce the level of adenine to an amount which will not form a complex with riboflavin may be one of many different solutions, including saline; a physiologic buffer, which may comprise a variety of different substances; a solution containing glucose, phosphate or both, which may or may not act as a buffer; a solution containing nutrients; a cryopreservative: an anticoagulant; a cell storage solution known to the art or developed to provide cells with suitable additives to enable them to be stored or infused; or other suitable solution.
- the diluting solution should not substantially interfere with the inactivation of microorganisms or substantially destroy the biological activity of the fluid.
- substantially interfere is meant interference which is sufficient to prevent pathogen reduction from occurring at a desired level.
- the diluting solution may also contain a substrate which selectively binds to adenine, effectively removing it from the fluid by rendering it unable to bind to riboflavin.
- adenine may still be present in the fluid to be pathogen reduced, the adenine which is present is not available to bind to riboflavin because it is bound to the adenine-binding substrate.
- One such adenine-binding substrate which might be used in this invention may be an antibody directed against adenine. The antibody could be added directly to the adenine-containing solution to be pathogen reduced, or could be coupled to a substrate such as polymeric beads.
- Another substrate which may be used to remove adenine from the fluid may be an ion exchange resin. Such a resin would preferentially bind to adenine based upon the ionic charge of adenine, thus effectively removing adenine from the fluid.
- Another method which may be used for reducing the concentration of selected components of plasma such as adenine in a fluid to be pathogen reduced may be by selective filtration. Such methods of filtering out unwanted substances such as adenine from fluids are known in the art.
- a filter which may be used to selectively remove adenine is a hollow fiber filter. The pore sizes of this filter would be small enough to allow adenine to pass through the pores and be removed from the fluid, leaving the blood component to be pathogen reduced behind.
- Another method of selectively filtering out adenine which may be useful with the present invention is to use a filter having an absorption ligand on its surface which selectively binds to adenine, thus effectively removing adenine from the fluid to be pathogen reduced. This method would allows the plasma (minus adenine) to be retained as part of the fluid to be pathogen reduced.
- FIG. 2 depicts one example of a bag set for use in a pathogen reduction procedure containing a filter which may be used to remove adenine from the fluid to be pathogen reduced.
- Fluid containing blood and plasma, or a collected blood component which has been previously collected in a collection storage solution containing adenine is contained in bag 10 .
- the fluid to be pathogen reduced flows out of bag 10 via exit port 2 through tubing 7 and into filter 5 .
- Filter 5 may contain filter media having a substrate thereon which selectively binds to adenine, thus removing it from the fluid.
- the now substantially adenine-free fluid flows through tubing 9 and into bag 12 via port 4 .
- Bag 12 may be prepackaged to contain riboflavin, or riboflavin may be added after the now adenine-free fluid to be pathogen reduced is flowed into bag 12 .
- the adenine removal filter may also be contained within one of the bags 10 or 12 .
- the adenine contained in the fluid would bind directly to the filter contained within the bag, and transfer of the now adenine-free fluid into another bag would not be needed.
- the adenine reducing step may also be carried out using mechanical means such as centrifugation, to separate the fluid containing adenine from the blood component to be pathogen reduced.
- This centrifugation step may be done using an apheresis machine such as the COBE SpectraTM or TRIMA® apheresis systems available from Gambro BCT Inc. (Lakewood, Colo., USA) as well as apheresis systems of other manufacturers.
- the separated blood components may then be resuspended in a suitable solution which does not contain adenine.
- the reduction step may also comprise washing the separated blood component to be pathogen reduced one or more times, as is known in the art.
- One machine suitable for washing the blood or separated blood components is the COBE 2991 (also available from Gambro BCT Inc.) Washing is generally the addition to the blood component to be pathogen reduced a solution which does not contain adenine to dilute the percentage of plasma (or of collection/storage solution) aid consequently the amount of adenine.
- the wash solution is removed and a pathogen reduction solution may be added to resuspend the washed components.
- the process may be carried out one or more times depending on the initial level of adenine contained in the fluid.
- the fluid to be pathogen inactivated may also be initially collected into a solution which does not contain adenine. If this is the case, no step of removing adenine is needed.
- the fluid to be pathogen reduced is placed into bags which are photopermeable or at least sufficiently photopermeable to allow sufficient radiation to reach their contents to activate the photosensitizer.
- Photosensitizer is added to each bag to substantially inactivate any pathogens which may be contained therein, and the bag is preferably agitated while irradiating, for a period of time to ensure exposure of substantially all the fluid to radiation.
- FIG. 3 depicts an embodiment of this invention in which fluid to be decontaminated and which is substantially adenine-free is placed in a bag 284 equipped with an inlet port 282 , through which photosensitizer 290 may be added from flask 286 via pour spout 288 .
- Shaker table 280 is activated to agitate the bag 284 to mix the fluid to be decontaminated and the photosensitizer together while photoradiation source 260 is activated to irradiate the fluid and photosensitizer in bag 284 .
- the bag can be prepackaged to contain photosensitizer and the fluid to be pathogen reduced is thereafter added to the bag.
- the pathogen reduction process can be done in a flow-through system.
- a photosensitizer is added to the fluid containing a blood component which is to be pathogen reduced.
- the photosensitizer and blood component is flowed past a photoradiation source, and the flow of the material generally provides sufficient turbulance to distribute the photosensitizer throughout the fluid.
- a mixing step may optionally be added.
- Blood to be pathogen reduced may be separated into components by any mean is known in the art.
- the method of this example requires the removal of substantially all adenine which may be contained in a solution used to resuspend and/or collect platelets to be pathogen reduced. Removal of adenine may be done using any of the methods set forth above. If an adenine-free solution is used to resuspend or collect the platelets to be pathogen reduced, no adenine removal step is needed. After removal of any adenine which may be present, the photosensitizer is mixed with the fluid containing platelets. Mixing may be done by simply adding the photosensitizer or a solution containing the photosensitizer to the platelets to be pathogen reduced.
- the material to be decontaminated to which a photosensitizer has been added is flowed past a photoradiation source, and the flow of the material generally provides sufficient turbulence to distribute the photosensitizer throughout the fluid to be pathogen reduced.
- a nixing step may optionally be added.
- the fluid and photosensitizer are placed in a photopermeable container and irradiated in batch mode (see FIG. 2 ), preferably while agitating the container to fully distribute the photosensitizer and expose all the fluid to the radiation.
- the amount of photosensitizer to be mixed with the fluid to be pathogen reduced will be an amount sufficient to adequately inactivate the reproductive ability of a pathogen.
- the photosensitizer is used in a concentration of at least about 1 ⁇ M up to the solubility of the photosensitizer in the fluid.
- a concentration range between about 1 ⁇ M and about 160 ⁇ M is preferred, preferably about 50 ⁇ M.
- the wavelength used will depend on the photosensitizer selected, and the type of blood component to be pathogen reduced.
- a light source is used which provides light in the range of about 200 nm to about 320 nm, and more preferably about 308 nm may be used.
- red blood cells light in the range of about 200 nm to about 600 nm is used, preferably about 447 nm.
- Table 1a and 1b are examples of commonly used platelet storage solutions which may be used with this invention. These solutions may be used to resuspend platelets to be pathogen reduced before the addition of the photosensitizer, or may be used to resuspend platelets after a pathogen reduction procedure. Other solutions not specifically listed that do not contain adenine may also be used. It should be noted that platelets may also be resuspended in buffer and/or saline as long as no adenine is present. TABLE 1a PAS II PSM1-pH PlasmaLyte A Molecular Conc. g/300 Conc. g300 Conc.
- Example 2 is directed toward the removal of adenine in a fluid containing red blood cells to be pathogen reduced. If a riboflavin-adenine complex forms in a solution containing red blood cells, the increased oxidation reactions caused by the presence of the complex may damage the red blood cell membranes, causing hemolysis and increased methemoglobin formation. Methemoglobin formation is undesirable because methemoglobin does not allow the red blood cells to efficiently bind and deliver oxygen.
- FIG. 4 shows the % hemolysis of red blood cells over time in solutions with and without adenine.
- Red blood cells were suspended in AS3 during a pathogen reduction procedure using riboflavin and visible light.
- AS3 is an AABB approved red blood cell preservative.
- AS3 contains sodium chloride, dextrose, adenine, sodium phosphate, sodium citrate and citric acid.
- red blood cells suspended in 5% AS3 show the highest percentage of red blood cell hemolysis.
- Red blood cells subjected to a pathogen reduction procedure in a solution containing no adenine (0% AS3) show less than 2% hemolysis of red blood cells.
- Red blood cells to be pathogen reduced should be collected in an anticoagulant-preservation solution which does not contain adenine.
- Other anticoagulant-preservation solutions not specifically listed in Table 2a and 2b below that do not contain adenine may also be used.
- Table 2a and 2b none of the anticoagulant-preservative solutions listed below contain additional adenine.
- the cells may be washed before undergoing a pathogen reduction procedure to remove any adenine contained in the solution used to collect and store the previously collected cells.
- the washing procedure may be used to remove plasma (which contains endogenous adenine), or to remove adenine from blood products which were previously collected and stored in synthetic storage solutions or anticoagulants containing exogenous adenine.
- Red cells can be washed by manual centrifugation or with an automated cell washer such as the COBE 2991 (available from Gambro BCT, Lakewood, Colo., USA).
- COBE 2991 available from Gambro BCT, Lakewood, Colo., USA.
- the 2991 washes the red cells with 700 mL of 0.9% sodium chloride and 300 mL of 500 ⁇ M riboflavin in 0.9% sodium chloride.
- the product of the wash step is a suspension of concentrated red blood cells at a 60 to 70% hematocrit.
- the washed red cells are mixed with a solution containing 550 ⁇ M riboflavin in a 0.9% sodium chloride to obtain a suspension with a hematocrit of 50% and a volume of 276 mL.
- the solution may also be any of the anticoagulant-preservative solutions set forth in the tables above.
- the washed red cells are transferred from the cell-washing bag to a bag suitable for illumination and subsequent dilution to a 50% hematocrit.
- the pathogen reduced red blood cells may then be stored or directly reinfused into a patient.
- Removal of adenine may also be done using any of the other methods set forth above.
- quenchers or oxygen scavengers
- oxygen scavengers may be used to enhance the pathogen reduction process by further reducing the extent of non-specific cell-damaging chemistry.
- quenchers which may be used in this invention include electron rich amino acids such as histidine, methionine, tyrosine and tryptophan.
- Nucleotides such as cysteine, guanosine and adenoside monophosphate.
- Sulfhidryl quenchers such as N-acetyl-L-cysteine and glutathione.
- Antioxdants such as trolox, Vitamin E and alpha-tocopherol acetate.
- quenchers such as propyl gallate, ascorbate, mercaptopropionylglycine, dithiothreotol, nicotinamide, BHT, BHA, lysine, serine, glucose, mannitol, glycerol, and mixtures thereof may also be used. Quenchers may be added to the fluid to be pathogen reduced either before or after the removal of adenine.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Virology (AREA)
- Pest Control & Pesticides (AREA)
- Immunology (AREA)
- Developmental Biology & Embryology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Organic Chemistry (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- External Artificial Organs (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
- This application is a divisional of U.S. Non-provisional application Ser. No. 10/423,200 filed Apr. 24, 2003, which claims priority from U.S. Provisional 60/375,849 filed Apr. 24, 2002.
- Contamination of blood supplies with infectious microorganisms such as HIV, hepatitis and other viruses and bacteria presents a serious health hazard for those who must receive transfusions of whole blood or administration of various blood components such as platelets, red cells, blood plasma, Factor VIII, plasminogen, fibronectin, anti-thrombin III, cryoprecipitate, human plasma protein fraction, albumin, immune serum globulin, prothrombin, plasma growth hormones, and other components isolated from blood. Blood screening procedures which are currently available may miss contaminants. Thus, there is a need for sterilization procedures that effectively neutralize all infectious viruses and other microorganisms but do not damage cellular blood components, do not degrade desired biological activities of proteins, and preferably do not need to be removed prior to administration of the blood product to the patient.
- The use of photosensitizers, compounds which absorb light of a defined wavelength and transfer the absorbed energy to an energy acceptor, has been proposed as a solution to the contamination of blood and blood components. Various photosensitizers have been proposed for use as blood additives for pathogen inactivation of blood or blood components. A review of commonly used photosensitizers, and some of the issues of importance in choosing photosensitizers for decontamination of blood products is provided in Goodrich, R. P., et al. (1997), “The Design and Development of Selective, Photoactivated Drugs for Sterilization of Blood Products,” Drugs of the Future 22:159-171.
- Some photosensitizers that have been proposed for use for blood component photoirradiation have undesirable properties. For example, European Patent Application 196,515 published Oct. 8, 1986, suggests the use of non-endogenous photosensitizers such as porphyrins, psoralens, acridine, toluidines, flavine (acriflavine hydrochloride), phenothiazine derivatives, and dyes such as neutral red and methylene blue, as blood additives. Another molecule, chlorpromazine, has been used as a photosensitizer; however its usefulness is limited by the fact that it should be removed from any fluid administered to a patient after the decontamination procedure because it has a sedative effect. Protoporphyrin, which occurs naturally within the body, can be metabolized to form a photosensitizer; however, its usefulness is limited in that it degrades the desired biological activities of proteins.
- Most preferred with respect to the reduction of pathogens in blood or blood products are endogenous photosensitizers. The term “endogenous” means naturally found in a human or mammalian body, either as a result of synthesis by the body or because of ingestion as an essential foodstuff (e.g. vitamins) or formation of metabolites and/or byproducts in vivo. Examples of such endogenous photosensitizers are alloxazines such as 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin), 7,8,10-trimethylisoalloxazine (lumiflavin), 7,8-dimethylalloxazine (lumichrome), isoalloxazine-adenine dinucleotide (flavine adenine dinucleotide [FAD]), alloxazine mononucleotide (also known as flavine mononucleotide [FMN] and riboflavine-5-phosphate), vitamin Ks, vitamin L, their metabolites and precursors, and napththoquinones, naphthalenes, naphthols and their derivatives having planar molecular conformations. The term “alloxazine” includes isoalloxazines.
- The use of the endogenous alloxazine photosensitizers such as those mentioned above to reduce pathogens which may be contained in blood or blood products are disclosed in U.S. Pat. Nos. 6,258,577 and 6,277,337 issued to Goodrich et. al and are herein incorporated by reference in their entirety to the amount not inconsistent.
- Endogenously-based derivative photosensitizers useful in this invention include synthetically derived analogs and homologs of endogenous photosensitizers which may have or lack lower (1-5) alkyl or halogen substituents of the photosensitizers from which they are derived, and which preserve the function and substantial non-toxicity thereof. U.S. Pat. No. 6,268,120 to Platz et al. discloses alloxazine derivatives which may also be used to inactivate microorganisms contained in blood or blood components. This patent is also incorporated by reference into the present invention to the amount not inconsistent.
- When certain endogenous photosynthesizers are used certain components which are naturally occurring in blood plasma or in some synthetic blood storage/collection solutions may interact with the photosensitizer during the photoinactivation process and form complexes. The presence of these complexes may increase the rate of side reactions which occur during the photolysis of the photosensitizer. One such complex which may form if 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin) is used as the photosensitizer, is a complex between riboflavin and adenine. Adenine is found in blood plasma as well as being an additive component of some synthetic blood collection/storage solutions.
- It is toward this end of preventing damage to blood and blood components to be pathogen reduced by preventing the formation of a photosensitizer-plasma constituent complex (such as adenine) that the present invention is directed.
- Several U.S. Patents discuss the removal of plasma and plasma proteins in a pathogen inactivation process using photosensitizers. U.S. Pat. No. 5,360,734 issued Nov. 1, 1994 and U.S. Pat. No. 5,597,722 issued Jan. 28, 1997 both to Chapman et al. discuss treating a blood component containing red blood cells and plasma proteins by removing a portion of the plasma proteins before adding the photoactive agent benzoporphyrin. The treated blood component is prevented from contacting plasma proteins for a period of time (three to eighteen hours) after treatment to prevent binding of the treated cells to IgG proteins in the plasma. These patents do not disclose or suggest the removal of plasma to prevent the formation of specific plasma constituent-photosensitizer complexes which changes the efficiency of the photosensitizer.
- Adenine is found naturally occurring in small concentrations in plasma and in some synthetic blood collection/storage solutions. One method of this invention involves preventing the formation of a complex between adenine and riboflavin by reducing the amount of adenine in a solution containing blood or blood components to be pathogen reduced by reducing the level of plasma.
- Another aspect of this invention involves the collection of blood or blood components to be pathogen reduced into pathogen reduction/storage solutions which are adenine free.
- If it is desired to pathogen reduce previously collected blood or blood components which were initially collected and stored in a collection/storage solution containing adenine, another aspect of this invention involves washing the previously collected blood components with saline or like solution, before the pathogen reduction process.
- Another method which may be used for reducing the concentration of selected components of plasma such as adenine in a fluid to be pathogen reduced may be by selective filtration.
- After removal of adenine by any means known in the art, the fluid containing the blood component to be pathogen reduced is combined with a photosensitizer such as riboflavin and exposed to photoradiation of the appropriate wavelength to activate the photosensitizer. The amount of photoradiation used is sufficient to activate the photosensitizer as described herein, but less than that which would cause non-specific damage to the biological components or substantially interfere with biological activity of other proteins present in the fluid. Non-specific damage is damage that damages all components.
-
FIG. 1 is a Jablonski diagram showing chemical reactions of 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin and other related compounds) catalyzed by photoradiation, oxygen and other components. -
FIG. 2 is a top plan view of a bag set containing a filter for removal of adenine for use in a pathogen reduction procedure. -
FIG. 3 shows an embodiment of this invention using a bag to contain the fluid being treated with the photosensitizer and a shaker table to agitate the fluid while exposing to photoradiation from a light source. -
FIG. 4 is a graph comparing the % hemolysis of pathogen reduced red blood cells stored over time in pathogen reduction/storage solutions with and without adenine. - The pathogen reduction method of this invention using endogenous photosensitizers and endogenously-based derivative photosensitizers is exemplified herein using 7,8-dimethyl-10-ribityl isoalloxazine as the photosensitizer.
-
- Photosensitizers of this invention include compounds which preferentially adsorb to nucleic acids, thus focusing their photodynamic effect upon the nucleic acids of microorganisms and viruses with little or no effect upon accompanying cells or proteins. Pathogen kill using riboflavin and related compounds also occurs upon photoinactivation via singlet oxygen damage, thereby disrupting the ability of the pathogen to function and reproduce or both.
-
FIG. 1 is a Jablonski diagram showing the photochemical reactions of 7,8-dimethyl-10-ribityl isoalloxazine (riboflavin and other related compounds) which occur upon catalysis by photoradiation, oxygen and other components. The photosensitizer in its ground state is referred to as S0. Upon absorption of light, riboflavin is converted to an electrically excited state which in condensed phase immediately (<<10−11s) relaxes to the lowest vibrational level of the lowest excited state (S0). The lifetimes of S1 states in solution are usually in the range of 1-10 ns and are controlled by internal conversion (IC) and fluorescence (F) decay back to S0 by intersystem crossing (ISC) to a paramagnetic triplet state (T1) and by inter and intramolecular chemical reactions. As is known in the art, internal conversion is the radiationless transition between energy states of the same spin state. Intersystem crossing (ISC) is a radiationless transition between different spin states. When the riboflavin relaxes from the singlet state to the ground state, it is called fluorescence. When the molecule relaxes from the triplet state (S1) to the ground (unexcited) state (S0) this is called phosphorescence. - The left arrow (first vertical, upward-pointing arrow) in the diagram of
FIG. 1 indicates that upon absorption of light energy the riboflavin molecule can go from its ground state (S0) to its excited sate (S1) and become involved in chemical reactions including losing its ribityl moiety to become lumichrome (7,8-dimethylalloxazine). Lumichrome is not photoactive under visible light. - Alternatively, as shown by the second vertical, downward pointing arrow the excited molecule may release its absorbed energy and fluoresce to return to the ground state. The wavy arrows indicate that energy is released.
- The excited riboflavin molecule may also relax to its triplet state (T1) through intersystem crossing (ISC) by changing the spin of an electron (spin conversion). The wavy line labeled ISC indicates intersystem crossing. If no oxygen is present, the molecule in its triplet state can phosphoresce (second wavy, downward pointing arrow) and return to its ground state. Or, as indicated by the right arrow, the molecule in its triplet state can react with other molecules in close proximity and return to its ground state. IF oxygen is present, the molecule in its triplet state can react with oxygen and return to its ground state producing 1O2 (singlet oxygen). Singlet oxygen can cause DNA strand breaks, further contributing to pathogen kill.
- One disadvantage of using the described photochemical methods for pathogen reduction of blood products is that the singlet oxygen species generated in the process of photolysis of riboflavin may cause damage to blood products and compromise their suitability for transfusions. If certain plasma proteins or other components of plasma are present during the photolytic process, the presence of such components may magnify this oxidative process.
- One component found in blood plasma and in some commonly used blood storage solutions which, if present, has been suggested to have an effect on the oxidative process of riboflavin, is the nucleoside adenine. Uchara et al. has shown that upon photoactivation, a specific complex is formed between riboflavin and adenine which increases the photodynamic efficiency of riboflavin. The authors showed an accelerative effect of the riboflavin-adenine complex on the photodynamic inactivation of yeast alcohol dehydrogenase. (Kinachino Uehara, Tadashi Mizoguchi, Morio Yonezawa, Saburo Hosomi and Ryogi Hayashi, Effect of Adenine on the Riboflavin-sensitized
Photoreaction 1. Effect of Adenine on the Photodynamic Inactivation of Yeast Alcohol Dehydrogenase in the Presence of Ribflavin, J. Vitaminology 17, 148-154 (1971.)) - While the formation of a riboflavin-adenine complex may appear to be a desirable side effect in that the presence of the complex would help to decrease the time necessary to pathogen reduce any pathogens contained in and/or around blood or blood components, in fact, the presence of the complex speeds up the oxidative chemistry of riboflavin. The increase in production of reactive oxygen species produced during the oxidation of riboflavin, increases the possibility of cell membrane damage. Cells which are damaged during a pathogen reduction procedure are unable to be reinfused into a patient.
- Because adenine is naturally occurring in plasma, in one embodiment of the present invention, the adenine content of fluid to be pathogen reduced is reduced by reducing the plasma content. One method suitable for the plasma reduction step is to dilute the fluid containing plasma with an adenine-free diluting solution. This will reduce the level of adenine in the fluid to be pathogen reduced, thus reducing the amount of adenine available to form a complex with riboflavin. The diluting solution used to reduce the level of adenine to an amount which will not form a complex with riboflavin may be one of many different solutions, including saline; a physiologic buffer, which may comprise a variety of different substances; a solution containing glucose, phosphate or both, which may or may not act as a buffer; a solution containing nutrients; a cryopreservative: an anticoagulant; a cell storage solution known to the art or developed to provide cells with suitable additives to enable them to be stored or infused; or other suitable solution.
- The diluting solution should not substantially interfere with the inactivation of microorganisms or substantially destroy the biological activity of the fluid. By “substantially interfere” is meant interference which is sufficient to prevent pathogen reduction from occurring at a desired level.
- The diluting solution may also contain a substrate which selectively binds to adenine, effectively removing it from the fluid by rendering it unable to bind to riboflavin. Although in this method adenine may still be present in the fluid to be pathogen reduced, the adenine which is present is not available to bind to riboflavin because it is bound to the adenine-binding substrate. One such adenine-binding substrate which might be used in this invention may be an antibody directed against adenine. The antibody could be added directly to the adenine-containing solution to be pathogen reduced, or could be coupled to a substrate such as polymeric beads. Another substrate which may be used to remove adenine from the fluid may be an ion exchange resin. Such a resin would preferentially bind to adenine based upon the ionic charge of adenine, thus effectively removing adenine from the fluid.
- Another method which may be used for reducing the concentration of selected components of plasma such as adenine in a fluid to be pathogen reduced may be by selective filtration. Such methods of filtering out unwanted substances such as adenine from fluids are known in the art. One example of a filter which may be used to selectively remove adenine is a hollow fiber filter. The pore sizes of this filter would be small enough to allow adenine to pass through the pores and be removed from the fluid, leaving the blood component to be pathogen reduced behind.
- Another method of selectively filtering out adenine which may be useful with the present invention is to use a filter having an absorption ligand on its surface which selectively binds to adenine, thus effectively removing adenine from the fluid to be pathogen reduced. This method would allows the plasma (minus adenine) to be retained as part of the fluid to be pathogen reduced.
-
FIG. 2 depicts one example of a bag set for use in a pathogen reduction procedure containing a filter which may be used to remove adenine from the fluid to be pathogen reduced. Fluid containing blood and plasma, or a collected blood component which has been previously collected in a collection storage solution containing adenine is contained inbag 10. To substantially remove all adenine which may be contained therein, the fluid to be pathogen reduced flows out ofbag 10 viaexit port 2 throughtubing 7 and intofilter 5.Filter 5 may contain filter media having a substrate thereon which selectively binds to adenine, thus removing it from the fluid. After flowing through the filter, the now substantially adenine-free fluid flows through tubing 9 and intobag 12 viaport 4.Bag 12 may be prepackaged to contain riboflavin, or riboflavin may be added after the now adenine-free fluid to be pathogen reduced is flowed intobag 12. - In another embodiment, the adenine removal filter may also be contained within one of the
bags - The adenine reducing step may also be carried out using mechanical means such as centrifugation, to separate the fluid containing adenine from the blood component to be pathogen reduced. This centrifugation step may be done using an apheresis machine such as the COBE Spectra™ or TRIMA® apheresis systems available from Gambro BCT Inc. (Lakewood, Colo., USA) as well as apheresis systems of other manufacturers. The separated blood components may then be resuspended in a suitable solution which does not contain adenine. The reduction step may also comprise washing the separated blood component to be pathogen reduced one or more times, as is known in the art. One machine suitable for washing the blood or separated blood components is the COBE 2991 (also available from Gambro BCT Inc.) Washing is generally the addition to the blood component to be pathogen reduced a solution which does not contain adenine to dilute the percentage of plasma (or of collection/storage solution) aid consequently the amount of adenine. The wash solution is removed and a pathogen reduction solution may be added to resuspend the washed components. The process may be carried out one or more times depending on the initial level of adenine contained in the fluid.
- The fluid to be pathogen inactivated may also be initially collected into a solution which does not contain adenine. If this is the case, no step of removing adenine is needed.
- In a batch-wise process, after substantially removing any adenine initially present in the plasma or in the collection/storage solution, the fluid to be pathogen reduced is placed into bags which are photopermeable or at least sufficiently photopermeable to allow sufficient radiation to reach their contents to activate the photosensitizer. Photosensitizer is added to each bag to substantially inactivate any pathogens which may be contained therein, and the bag is preferably agitated while irradiating, for a period of time to ensure exposure of substantially all the fluid to radiation.
-
FIG. 3 depicts an embodiment of this invention in which fluid to be decontaminated and which is substantially adenine-free is placed in abag 284 equipped with aninlet port 282, through which photosensitizer 290 may be added fromflask 286 via pourspout 288. Shaker table 280 is activated to agitate thebag 284 to mix the fluid to be decontaminated and the photosensitizer together whilephotoradiation source 260 is activated to irradiate the fluid and photosensitizer inbag 284. Alternatively, the bag can be prepackaged to contain photosensitizer and the fluid to be pathogen reduced is thereafter added to the bag. - It is also contemplated that the pathogen reduction process can be done in a flow-through system. In a flow-through process, after substantially removing any adenine initially present in the plasma or in the collection/storage solution, a photosensitizer is added to the fluid containing a blood component which is to be pathogen reduced. The photosensitizer and blood component is flowed past a photoradiation source, and the flow of the material generally provides sufficient turbulance to distribute the photosensitizer throughout the fluid. A mixing step may optionally be added.
- Blood to be pathogen reduced may be separated into components by any mean is known in the art.
- The method of this example requires the removal of substantially all adenine which may be contained in a solution used to resuspend and/or collect platelets to be pathogen reduced. Removal of adenine may be done using any of the methods set forth above. If an adenine-free solution is used to resuspend or collect the platelets to be pathogen reduced, no adenine removal step is needed. After removal of any adenine which may be present, the photosensitizer is mixed with the fluid containing platelets. Mixing may be done by simply adding the photosensitizer or a solution containing the photosensitizer to the platelets to be pathogen reduced. In one embodiment, the material to be decontaminated to which a photosensitizer has been added is flowed past a photoradiation source, and the flow of the material generally provides sufficient turbulence to distribute the photosensitizer throughout the fluid to be pathogen reduced. A nixing step may optionally be added. In another embodiment, the fluid and photosensitizer are placed in a photopermeable container and irradiated in batch mode (see
FIG. 2 ), preferably while agitating the container to fully distribute the photosensitizer and expose all the fluid to the radiation. - The amount of photosensitizer to be mixed with the fluid to be pathogen reduced will be an amount sufficient to adequately inactivate the reproductive ability of a pathogen. Preferably the photosensitizer is used in a concentration of at least about 1 μM up to the solubility of the photosensitizer in the fluid. For 7,8-dimethyl-10-ribityl isoalloxazine a concentration range between about 1 μM and about 160 μM is preferred, preferably about 50 μM.
- The wavelength used will depend on the photosensitizer selected, and the type of blood component to be pathogen reduced. For platelets and plasma, a light source is used which provides light in the range of about 200 nm to about 320 nm, and more preferably about 308 nm may be used. For red blood cells, light in the range of about 200 nm to about 600 nm is used, preferably about 447 nm.
- The following storage solutions shown in Table 1a and 1b are examples of commonly used platelet storage solutions which may be used with this invention. These solutions may be used to resuspend platelets to be pathogen reduced before the addition of the photosensitizer, or may be used to resuspend platelets after a pathogen reduction procedure. Other solutions not specifically listed that do not contain adenine may also be used. It should be noted that platelets may also be resuspended in buffer and/or saline as long as no adenine is present.
TABLE 1a PAS II PSM1-pH PlasmaLyte A Molecular Conc. g/300 Conc. g300 Conc. g/300 Weight (mMol/L) mLs (mMol/L) mLs (mMol/L) mLs Sodium Chloride 58.44 115.5 2.02 98 1.72 90 1.58 Potassium 74.55 0.00 5 0.11 5 0.11 Chloride Calcium Chloride 111 0.00 0.00 0.00 Magnesium 95.21 0.00 0.00 3 0.09 Chloride Magnesium 120.4 0.00 0.00 0.00 Sulfate Tri-Sodium 294.1 10 0.88 23 2.03 23 2.03 Citrate Citric Acid 192.1 0.00 0.00 0.00 Sodium 84.01 0.00 0.00 0.00 Bicarbonate Sodium 142 0.00 25 1.07 0.00 Phosphate Sodium Acetate 82.03 30 0.74 0.00 27 0.66 Sodium 218.1 0.00 0.00 23 1.50 Gluconate Glucose 180.2 0.00 0.00 0.00 Maltose 360.3 0.00 0.00 0.00 Adenine 135.1 0.00 0.00 0.00
Note:
Assumes that all salts are anhydrous
-
TABLE 1b SetoSol PAS III PAS Molecular Conc. g/300 Conc. g/300 Conc. g/300 Weight (mMol/L) mLs (mMol/L) mLs (mMol/L) mLs Sodium Chloride 58.44 90 1.58 77 1.35 110 1.93 Potassium 74.55 5 0.11 0.00 5.1 0.11 Chloride Calcium Chloride 111 0.00 0.00 1.7 0.06 Magnesium 95.21 3 0.09 0.00 0.00 Chloride Magnesium 120.4 0.00 0.00 0.8 0.03 Sulfate Tri-Sodium 294.1 17 1.50 12.3 1.09 15.2 1.34 Citrate Citric Acid 192.1 0.00 0.00 2.7 0.16 Sodium 84.01 0.00 0.00 35 0.88 Bicarbonate Sodium 142 25 1.07 28 1.19 2.1 0.09 Phosphate Sodium Acetate 82.03 23 0.57 42 1.03 0.00 Sodium 218.1 0.00 0.00 0.00 Gluconate Glucose 180.2 23.5 1.27 0.00 38.5 2.08 Maltose 360.3 28.8 3.11 0.00 0.00 Adenine 135.1 0.00 0.00 0.00
Note:
Assumes that all salts are anhydrous
- Example 2 is directed toward the removal of adenine in a fluid containing red blood cells to be pathogen reduced. If a riboflavin-adenine complex forms in a solution containing red blood cells, the increased oxidation reactions caused by the presence of the complex may damage the red blood cell membranes, causing hemolysis and increased methemoglobin formation. Methemoglobin formation is undesirable because methemoglobin does not allow the red blood cells to efficiently bind and deliver oxygen.
- This phenomenon is shown in
FIG. 4 , which shows the % hemolysis of red blood cells over time in solutions with and without adenine. Red blood cells were suspended in AS3 during a pathogen reduction procedure using riboflavin and visible light. AS3 is an AABB approved red blood cell preservative. AS3 contains sodium chloride, dextrose, adenine, sodium phosphate, sodium citrate and citric acid. As can be seen inFIG. 4 , red blood cells suspended in 5% AS3 show the highest percentage of red blood cell hemolysis. Red blood cells subjected to a pathogen reduction procedure in a solution containing no adenine (0% AS3) show less than 2% hemolysis of red blood cells. - Red blood cells to be pathogen reduced should be collected in an anticoagulant-preservation solution which does not contain adenine. Other anticoagulant-preservation solutions not specifically listed in Table 2a and 2b below that do not contain adenine may also be used. As can be seen from Table 2a and 2b, none of the anticoagulant-preservative solutions listed below contain additional adenine.
TABLE 2a ANTICOAGULANT PRESERVATIVE SOLUTIONS CPD CP2D Molecular Conc. Conc. Weight (mMol/L) mg/63 ml mg/100 ml (mMol/L) mg/63 ml mg/100 ml Sodium Citrate 294.1 89.59 1660.00 2634.92 89.59 1660.00 2634.92 Citric Acid 192.1 15.53 188.00 298.41 15.53 188.00 298.41 Dextrose 180.2 141.82 1610.00 2555.56 283.64 3220.00 5111.11 Monobasic 120 18.52 140.00 222.22 18.52 140.00 222.22 Sodium phosphate Adenine 135.1 0.00 0.00 0.00 0.00 0.00 0.00 -
TABLE 2b ANTICOAGULANT PRESERVATIVE SOLUTIONS ACD-A ACD-B Molecular Conc. Conc. Weight (mMol/L) mg/100 ml (mMol/L) mg/100 ml Dextrose 180.2 135.96 2450.00 81.58 1470.00 Adenine 135.1 0.00 0.00 0.00 0.00 Monobasic 120 0.00 0.00 0.00 0.00 sodium phosphate Mannitol 182.2 0.00 0.00 0.00 0.00 Sodium 58.45 0.00 0.00 0.00 0.00 Chloride Sodium 294.1 74.80 2200.00 44.88 1320.00 Citrate Citric Acid 192.1 41.64 800.00 24.99 480.00 - Alternatively, if previously collected red blood cells are to be pathogen reduced, the cells may be washed before undergoing a pathogen reduction procedure to remove any adenine contained in the solution used to collect and store the previously collected cells. The washing procedure may be used to remove plasma (which contains endogenous adenine), or to remove adenine from blood products which were previously collected and stored in synthetic storage solutions or anticoagulants containing exogenous adenine.
- One red blood cell wash process which may be used with the present invention is described below. However, any process for washing cells known in the art may be used. Red cells can be washed by manual centrifugation or with an automated cell washer such as the COBE 2991 (available from Gambro BCT, Lakewood, Colo., USA). The 2991 washes the red cells with 700 mL of 0.9% sodium chloride and 300 mL of 500 μM riboflavin in 0.9% sodium chloride.
- The product of the wash step is a suspension of concentrated red blood cells at a 60 to 70% hematocrit. The washed red cells are mixed with a solution containing 550 μM riboflavin in a 0.9% sodium chloride to obtain a suspension with a hematocrit of 50% and a volume of 276 mL. The solution may also be any of the anticoagulant-preservative solutions set forth in the tables above.
- The washed red cells are transferred from the cell-washing bag to a bag suitable for illumination and subsequent dilution to a 50% hematocrit. The washed red cells and riboflavin arc typically illuminated with visible light at a wavelength of 447 nm and 120 J/cm2. After illumination, the extracellular fluid is expressed off and a storage solution which may or may not contain adenine is added in an amount necessary to increase the hematocrit of the red cells to 55%. The pathogen reduced red blood cells may then be stored or directly reinfused into a patient.
- Removal of adenine may also be done using any of the other methods set forth above.
- The addition of “quenchers” or oxygen scavengers, may be used to enhance the pathogen reduction process by further reducing the extent of non-specific cell-damaging chemistry. Examples of quenchers which may be used in this invention include electron rich amino acids such as histidine, methionine, tyrosine and tryptophan. Nucleotides such as cysteine, guanosine and adenoside monophosphate. Sulfhidryl quenchers such as N-acetyl-L-cysteine and glutathione. Antioxdants such as trolox, Vitamin E and alpha-tocopherol acetate. Other quenchers such as propyl gallate, ascorbate, mercaptopropionylglycine, dithiothreotol, nicotinamide, BHT, BHA, lysine, serine, glucose, mannitol, glycerol, and mixtures thereof may also be used. Quenchers may be added to the fluid to be pathogen reduced either before or after the removal of adenine.
- It will be appreciated that the instant specification and claims are set forth by way of illustration and not of limitation, and that various modifications and changes may be made without departing from the spirit and scope of the present invention.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/624,487 US20070148630A1 (en) | 2002-04-24 | 2007-01-18 | Removal of Adenine During a Pathogen Reduction Process in Whole Blood or Red Blood Cells by Dilution |
US12/640,878 US8679736B2 (en) | 2002-04-24 | 2009-12-17 | Removal of adenine during a pathogen reduction process in whole blood or red blood cells by dilution |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37584902P | 2002-04-24 | 2002-04-24 | |
US10/423,200 US7183045B2 (en) | 2002-04-24 | 2003-04-24 | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
US11/624,487 US20070148630A1 (en) | 2002-04-24 | 2007-01-18 | Removal of Adenine During a Pathogen Reduction Process in Whole Blood or Red Blood Cells by Dilution |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/423,200 Division US7183045B2 (en) | 2002-04-24 | 2003-04-24 | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/640,878 Continuation US8679736B2 (en) | 2002-04-24 | 2009-12-17 | Removal of adenine during a pathogen reduction process in whole blood or red blood cells by dilution |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070148630A1 true US20070148630A1 (en) | 2007-06-28 |
Family
ID=29270709
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/423,200 Expired - Lifetime US7183045B2 (en) | 2002-04-24 | 2003-04-24 | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
US11/624,487 Abandoned US20070148630A1 (en) | 2002-04-24 | 2007-01-18 | Removal of Adenine During a Pathogen Reduction Process in Whole Blood or Red Blood Cells by Dilution |
US12/640,878 Active 2026-05-30 US8679736B2 (en) | 2002-04-24 | 2009-12-17 | Removal of adenine during a pathogen reduction process in whole blood or red blood cells by dilution |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/423,200 Expired - Lifetime US7183045B2 (en) | 2002-04-24 | 2003-04-24 | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/640,878 Active 2026-05-30 US8679736B2 (en) | 2002-04-24 | 2009-12-17 | Removal of adenine during a pathogen reduction process in whole blood or red blood cells by dilution |
Country Status (6)
Country | Link |
---|---|
US (3) | US7183045B2 (en) |
EP (1) | EP1496947A1 (en) |
JP (1) | JP2005523337A (en) |
AU (1) | AU2003225174A1 (en) |
CA (1) | CA2482021C (en) |
WO (1) | WO2003090793A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7183045B2 (en) * | 2002-04-24 | 2007-02-27 | Gambro Inc. | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
WO2008095148A2 (en) * | 2007-01-31 | 2008-08-07 | Sunstorm Research Corporation | Methods and compositions for generation of reactive oxygen species |
WO2009072121A1 (en) * | 2007-12-03 | 2009-06-11 | Eran Ben-Shmuel | Treating mixable materials by radiation |
US9199016B2 (en) | 2009-10-12 | 2015-12-01 | New Health Sciences, Inc. | System for extended storage of red blood cells and methods of use |
US12089589B2 (en) | 2009-10-12 | 2024-09-17 | Hemanext Inc. | Irradiation of red blood cells and anaerobic storage |
US11284616B2 (en) | 2010-05-05 | 2022-03-29 | Hemanext Inc. | Irradiation of red blood cells and anaerobic storage |
PT2608816T (en) | 2010-08-25 | 2023-10-12 | Dartmouth College | Method for enhancing red blood cell quality and survival during storage |
PT3539381T (en) | 2010-11-05 | 2023-09-26 | Hemanext Inc | RED CELL IRADIATION AND ANAEROBIC STORAGE |
CA2844449A1 (en) | 2011-08-10 | 2013-02-14 | New Health Sciences, Inc. | Integrated leukocyte, oxygen and/or co2 depletion, and plasma separation filter device |
PT2961269T (en) | 2013-02-28 | 2021-12-16 | Hemanext Inc | Gas depletion and gas addition devices for blood treatment |
AU2016228993B2 (en) | 2015-03-10 | 2022-02-10 | Hemanext Inc. | Oxygen reduction disposable kits, devices and methods of use thereof |
KR20240067253A (en) | 2015-04-23 | 2024-05-16 | 헤마넥스트 인코포레이티드 | Anaerobic blood storage containers |
IL289099B2 (en) | 2015-05-18 | 2024-04-01 | Hemanext Inc | Methods for the storage of whole blood, and compositions thereof |
EP4049677A1 (en) * | 2016-05-27 | 2022-08-31 | Hemanext Inc. | Anaerobic blood storage and pathogen inactivation method |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3629071A (en) * | 1970-02-10 | 1971-12-21 | Upjohn Co | Storage-stable hemostatic transfusion suspensions of blood platelets, glucose, magnesium chloride and certain prostaglandins |
US3874384A (en) * | 1971-11-01 | 1975-04-01 | American Hospital Supply Corp | Improved blood storage unit and method of storing blood |
US4061537A (en) * | 1975-07-18 | 1977-12-06 | Behringwerke Aktiengesellschaft | Polyionic isotonic salt solution |
US4112070A (en) * | 1977-06-08 | 1978-09-05 | Research Corporation | Blood preservation system |
US4267269A (en) * | 1980-02-05 | 1981-05-12 | Baxter Travenol Laboratories, Inc. | Red cell storage solution |
US4321919A (en) * | 1979-12-11 | 1982-03-30 | Leukocyte Research, Inc. | Method and system for externally treating human blood |
US4390619A (en) * | 1981-09-28 | 1983-06-28 | James Clifford Haight | Leukocyte or platelet storage using ion-exchange resins |
US4432750A (en) * | 1981-12-02 | 1984-02-21 | Baxter Travenol Laboratories, Inc. | Additive sterol solution and method for preserving normal red cell morphology in whole blood during storage |
US4572899A (en) * | 1982-07-07 | 1986-02-25 | Biotest-Serum-Institut Gmbh | Aqueous solution for suspending and storing cells, especially erthrocytes |
US4585735A (en) * | 1984-07-19 | 1986-04-29 | American National Red Cross | Prolonged storage of red blood cells |
US4609372A (en) * | 1983-10-13 | 1986-09-02 | Miles Laboratories, Inc. | Heat sterilizable storage solution for red blood cells |
US4626431A (en) * | 1983-10-25 | 1986-12-02 | Burroughs Wellcome Co. | Storage of red blood cells |
US4675185A (en) * | 1985-12-06 | 1987-06-23 | Baxter Travenol Laboratories, Inc. | Solution for stabilizing red blood cells during storage |
US4695460A (en) * | 1986-03-19 | 1987-09-22 | American Red Cross | Synthetic, plasma-free, transfusible platelet storage medium |
US4704352A (en) * | 1985-06-25 | 1987-11-03 | Baxter Travenol Laboratories, Inc. | L-ascorbate-2-phosphate salts in blood cell storage |
US4769318A (en) * | 1986-06-03 | 1988-09-06 | Ube Industries, Ltd. | Additive solution for blood preservation and activation |
USRE32874E (en) * | 1982-11-01 | 1989-02-21 | Gail A. Rock | Plasma-free medium for platelet storage |
US4828976A (en) * | 1983-12-29 | 1989-05-09 | Thomas Jefferson University | Glucose free media for storing blood platelets |
US4925665A (en) * | 1989-06-22 | 1990-05-15 | Thomas Jefferson University | Glucose free primary anticoagulant for blood containing citrate ions |
US4961928A (en) * | 1986-03-19 | 1990-10-09 | American Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
US4992363A (en) * | 1983-11-09 | 1991-02-12 | Thomas Jefferson University | Method for preparing glucose free media for storing blood platelets |
US4999375A (en) * | 1989-04-11 | 1991-03-12 | Hoffmann-La Roche Inc. | Psoralen reagent compositions for extracorporeal treatment of blood |
US5234808A (en) * | 1991-10-30 | 1993-08-10 | Thomas Jefferson University | Acetate addition to platelets stored in plasma |
US5250303A (en) * | 1989-10-06 | 1993-10-05 | The American National Red Cross | Procedure for storing red cells with prolonged maintenance of cellular concentrations of ATP and 2,3 DPG |
US5344752A (en) * | 1991-10-30 | 1994-09-06 | Thomas Jefferson University | Plasma-based platelet concentrate preparations |
US5376524A (en) * | 1991-04-01 | 1994-12-27 | Thomas Jefferson University | Platelet storage medium containing acetate and phosphate |
US5378601A (en) * | 1992-07-24 | 1995-01-03 | Montefiore Medical Center | Method of preserving platelets with apyrase and an antioxidant |
US5459030A (en) * | 1992-03-02 | 1995-10-17 | Steritech, Inc. | Synthetic media compositions for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen |
US5474891A (en) * | 1991-10-30 | 1995-12-12 | Thomas Jefferson University | Plasma-based platelet concentrate preparations with additive |
US5487971A (en) * | 1986-03-19 | 1996-01-30 | American National Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
US5569579A (en) * | 1991-04-01 | 1996-10-29 | Thomas Jefferson University | Synthetic-based platelet storage media |
US5622867A (en) * | 1994-10-19 | 1997-04-22 | Lifecell Corporation | Prolonged preservation of blood platelets |
US5709991A (en) * | 1992-03-02 | 1998-01-20 | Cerus Corporation | Proralen inactivation of microorganisms and psoralen removal |
US5712085A (en) * | 1993-06-28 | 1998-01-27 | Cerus Corporation | 5'-(4-amino-2-oxa)butye-4,4', 8-trinethylpsoralen in synthetic medium |
US5753428A (en) * | 1995-07-19 | 1998-05-19 | Kawasumi Laboratories, Inc. | Synthetic composition for storage of platelets comprising glycerol |
US5769839A (en) * | 1994-11-14 | 1998-06-23 | Pall Corporation | Long-term blood components storage system and method |
US5827640A (en) * | 1996-06-14 | 1998-10-27 | Biostore New Zealand Limited | Methods for the preservation of cells and tissues using trimethylamine oxide or betaine with raffinose or trehalose |
US5906915A (en) * | 1990-11-07 | 1999-05-25 | Baxter International Inc. | Method for storing red cells using reduced citrate anticoagulant and a solution containing sodium, citrate, phosphate, adenine and mannitol |
US5908742A (en) * | 1992-03-02 | 1999-06-01 | Cerus Corporation | Synthetic media for blood components |
US5955256A (en) * | 1990-04-16 | 1999-09-21 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
US5955257A (en) * | 1997-10-21 | 1999-09-21 | Regents Of The University Of Minnesota | Infusible grade short-term cell storage medium for mononuclear cells |
US5962213A (en) * | 1996-06-14 | 1999-10-05 | Biostore New Zealand Limited | Compositions and methods for the preservation of living tissues |
US5965349A (en) * | 1992-03-02 | 1999-10-12 | Cerus Corporation | Methods of photodecontamination using synthetic media |
US6063624A (en) * | 1997-06-09 | 2000-05-16 | Baxter International Inc. | Platelet suspensions and methods for resuspending platelets |
US6114107A (en) * | 1996-06-14 | 2000-09-05 | Biostore New Zealand Limited | Composition comprising raffinose, TMAO, sodium citrate and methods for the preservation of living tissues |
US6258577B1 (en) * | 1998-07-21 | 2001-07-10 | Gambro, Inc. | Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers |
US6268120B1 (en) * | 1999-10-19 | 2001-07-31 | Gambro, Inc. | Isoalloxazine derivatives to neutralize biological contaminants |
US6277337B1 (en) * | 1998-07-21 | 2001-08-21 | Gambro, Inc. | Method and apparatus for inactivation of biological contaminants using photosensitizers |
US6548241B1 (en) * | 2000-11-28 | 2003-04-15 | Gambro, Inc. | Storage solution containing photosensitizer for inactivation of biological contaminants |
US6936413B1 (en) * | 2001-12-05 | 2005-08-30 | Baxter International Inc. | Methods and systems for preparing blood products |
US7183045B2 (en) * | 2002-04-24 | 2007-02-27 | Gambro Inc. | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1244774A (en) | 1983-11-09 | 1988-11-15 | Thomas Jefferson University | Medium for storing blood platelets |
JPS61275228A (en) | 1985-03-14 | 1986-12-05 | バクスタ−、トラベノ−ル、ラボラトリ−ズ、インコ−ポレイテツド | Photodynamic inactivity of virus in therapeutical protein composition |
JPH05503944A (en) | 1990-11-07 | 1993-06-24 | バクスター、インターナショナル、インコーポレイテッド | platelet storage medium |
EP0544895B1 (en) * | 1991-06-21 | 1997-08-27 | Baxter International Inc. | Method for inactivating pathogens in a body fluid |
JPH07507460A (en) | 1993-01-15 | 1995-08-24 | バクスター インターナショナル インコーポレーテッド | Cell separation stabilization medium |
US5597722A (en) * | 1993-01-28 | 1997-01-28 | Baxter International Inc. | Method for inactivating pathogens in compositions containing cells and plasma using photoactive compounds and plasma protein reduction |
JP4340927B2 (en) | 1997-03-17 | 2009-10-07 | フェンウォール、 インコーポレイテッド | Red blood cell composition and method for collecting and storing red blood cells |
WO2000011946A2 (en) | 1998-08-31 | 2000-03-09 | Walter Reed Army Institute Of Research | Prolonged storage of red blood cells |
US7094378B1 (en) * | 2000-06-15 | 2006-08-22 | Gambro, Inc. | Method and apparatus for inactivation of biological contaminants using photosensitizers |
EP1244353B1 (en) | 1999-12-21 | 2004-11-17 | Viacell, LLC | Compositions for the storage of platelets |
US20010046662A1 (en) * | 2000-04-12 | 2001-11-29 | The American National Red Cross | Method of inactivating pathogens in a red blood cell-containing composition |
TW590780B (en) | 2000-06-02 | 2004-06-11 | Gambro Inc | Additive solutions containing riboflavin |
-
2003
- 2003-04-24 US US10/423,200 patent/US7183045B2/en not_active Expired - Lifetime
- 2003-04-24 AU AU2003225174A patent/AU2003225174A1/en not_active Abandoned
- 2003-04-24 JP JP2003587420A patent/JP2005523337A/en active Pending
- 2003-04-24 WO PCT/US2003/012969 patent/WO2003090793A1/en active Application Filing
- 2003-04-24 CA CA002482021A patent/CA2482021C/en not_active Expired - Fee Related
- 2003-04-24 EP EP03721886A patent/EP1496947A1/en not_active Withdrawn
-
2007
- 2007-01-18 US US11/624,487 patent/US20070148630A1/en not_active Abandoned
-
2009
- 2009-12-17 US US12/640,878 patent/US8679736B2/en active Active
Patent Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3629071A (en) * | 1970-02-10 | 1971-12-21 | Upjohn Co | Storage-stable hemostatic transfusion suspensions of blood platelets, glucose, magnesium chloride and certain prostaglandins |
US3874384A (en) * | 1971-11-01 | 1975-04-01 | American Hospital Supply Corp | Improved blood storage unit and method of storing blood |
US4061537A (en) * | 1975-07-18 | 1977-12-06 | Behringwerke Aktiengesellschaft | Polyionic isotonic salt solution |
US4112070A (en) * | 1977-06-08 | 1978-09-05 | Research Corporation | Blood preservation system |
US4321919A (en) * | 1979-12-11 | 1982-03-30 | Leukocyte Research, Inc. | Method and system for externally treating human blood |
US4267269A (en) * | 1980-02-05 | 1981-05-12 | Baxter Travenol Laboratories, Inc. | Red cell storage solution |
US4390619A (en) * | 1981-09-28 | 1983-06-28 | James Clifford Haight | Leukocyte or platelet storage using ion-exchange resins |
US4432750A (en) * | 1981-12-02 | 1984-02-21 | Baxter Travenol Laboratories, Inc. | Additive sterol solution and method for preserving normal red cell morphology in whole blood during storage |
US4572899A (en) * | 1982-07-07 | 1986-02-25 | Biotest-Serum-Institut Gmbh | Aqueous solution for suspending and storing cells, especially erthrocytes |
USRE32874E (en) * | 1982-11-01 | 1989-02-21 | Gail A. Rock | Plasma-free medium for platelet storage |
US4609372A (en) * | 1983-10-13 | 1986-09-02 | Miles Laboratories, Inc. | Heat sterilizable storage solution for red blood cells |
US4626431A (en) * | 1983-10-25 | 1986-12-02 | Burroughs Wellcome Co. | Storage of red blood cells |
US4992363A (en) * | 1983-11-09 | 1991-02-12 | Thomas Jefferson University | Method for preparing glucose free media for storing blood platelets |
US4828976A (en) * | 1983-12-29 | 1989-05-09 | Thomas Jefferson University | Glucose free media for storing blood platelets |
US4585735A (en) * | 1984-07-19 | 1986-04-29 | American National Red Cross | Prolonged storage of red blood cells |
US4704352A (en) * | 1985-06-25 | 1987-11-03 | Baxter Travenol Laboratories, Inc. | L-ascorbate-2-phosphate salts in blood cell storage |
US4675185A (en) * | 1985-12-06 | 1987-06-23 | Baxter Travenol Laboratories, Inc. | Solution for stabilizing red blood cells during storage |
US5487971A (en) * | 1986-03-19 | 1996-01-30 | American National Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
US4695460A (en) * | 1986-03-19 | 1987-09-22 | American Red Cross | Synthetic, plasma-free, transfusible platelet storage medium |
US4961928A (en) * | 1986-03-19 | 1990-10-09 | American Red Cross | Synthetic, plasma-free, transfusible storage medium for red blood cells and platelets |
US4769318A (en) * | 1986-06-03 | 1988-09-06 | Ube Industries, Ltd. | Additive solution for blood preservation and activation |
US4999375A (en) * | 1989-04-11 | 1991-03-12 | Hoffmann-La Roche Inc. | Psoralen reagent compositions for extracorporeal treatment of blood |
US4925665A (en) * | 1989-06-22 | 1990-05-15 | Thomas Jefferson University | Glucose free primary anticoagulant for blood containing citrate ions |
US5250303A (en) * | 1989-10-06 | 1993-10-05 | The American National Red Cross | Procedure for storing red cells with prolonged maintenance of cellular concentrations of ATP and 2,3 DPG |
US5955256A (en) * | 1990-04-16 | 1999-09-21 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
US5906915A (en) * | 1990-11-07 | 1999-05-25 | Baxter International Inc. | Method for storing red cells using reduced citrate anticoagulant and a solution containing sodium, citrate, phosphate, adenine and mannitol |
US5376524A (en) * | 1991-04-01 | 1994-12-27 | Thomas Jefferson University | Platelet storage medium containing acetate and phosphate |
US5569579A (en) * | 1991-04-01 | 1996-10-29 | Thomas Jefferson University | Synthetic-based platelet storage media |
US5466573A (en) * | 1991-04-01 | 1995-11-14 | Thomas Jefferson University | Platelet storage method in a medium containing acetate and phosphate |
US5474891A (en) * | 1991-10-30 | 1995-12-12 | Thomas Jefferson University | Plasma-based platelet concentrate preparations with additive |
US5344752A (en) * | 1991-10-30 | 1994-09-06 | Thomas Jefferson University | Plasma-based platelet concentrate preparations |
US5234808A (en) * | 1991-10-30 | 1993-08-10 | Thomas Jefferson University | Acetate addition to platelets stored in plasma |
US5908742A (en) * | 1992-03-02 | 1999-06-01 | Cerus Corporation | Synthetic media for blood components |
US5709991A (en) * | 1992-03-02 | 1998-01-20 | Cerus Corporation | Proralen inactivation of microorganisms and psoralen removal |
US6566046B2 (en) * | 1992-03-02 | 2003-05-20 | Baxter International Inc. | Synthetic media for blood components |
US6251580B1 (en) * | 1992-03-02 | 2001-06-26 | Lily Lin | Synthetic media for blood components |
US5459030A (en) * | 1992-03-02 | 1995-10-17 | Steritech, Inc. | Synthetic media compositions for inactivating bacteria and viruses in blood preparations with 8-methoxypsoralen |
US5965349A (en) * | 1992-03-02 | 1999-10-12 | Cerus Corporation | Methods of photodecontamination using synthetic media |
US5378601A (en) * | 1992-07-24 | 1995-01-03 | Montefiore Medical Center | Method of preserving platelets with apyrase and an antioxidant |
US5712085A (en) * | 1993-06-28 | 1998-01-27 | Cerus Corporation | 5'-(4-amino-2-oxa)butye-4,4', 8-trinethylpsoralen in synthetic medium |
US6017691A (en) * | 1993-06-28 | 2000-01-25 | Cerus Corporation | 4'-primary aminopsoralen and platelet compositions |
US5622867A (en) * | 1994-10-19 | 1997-04-22 | Lifecell Corporation | Prolonged preservation of blood platelets |
US5769839A (en) * | 1994-11-14 | 1998-06-23 | Pall Corporation | Long-term blood components storage system and method |
US5753428A (en) * | 1995-07-19 | 1998-05-19 | Kawasumi Laboratories, Inc. | Synthetic composition for storage of platelets comprising glycerol |
US5962213A (en) * | 1996-06-14 | 1999-10-05 | Biostore New Zealand Limited | Compositions and methods for the preservation of living tissues |
US6114107A (en) * | 1996-06-14 | 2000-09-05 | Biostore New Zealand Limited | Composition comprising raffinose, TMAO, sodium citrate and methods for the preservation of living tissues |
US5827640A (en) * | 1996-06-14 | 1998-10-27 | Biostore New Zealand Limited | Methods for the preservation of cells and tissues using trimethylamine oxide or betaine with raffinose or trehalose |
US6063624A (en) * | 1997-06-09 | 2000-05-16 | Baxter International Inc. | Platelet suspensions and methods for resuspending platelets |
US6326197B1 (en) * | 1997-06-09 | 2001-12-04 | Baxter International Inc. | Platelet suspensions and methods for resuspending platelets |
US5955257A (en) * | 1997-10-21 | 1999-09-21 | Regents Of The University Of Minnesota | Infusible grade short-term cell storage medium for mononuclear cells |
US6277557B1 (en) * | 1997-10-21 | 2001-08-21 | Regents Of The University Of Minnesota | Infusible grade short-term cell storage medium |
US6258577B1 (en) * | 1998-07-21 | 2001-07-10 | Gambro, Inc. | Method and apparatus for inactivation of biological contaminants using endogenous alloxazine or isoalloxazine photosensitizers |
US6277337B1 (en) * | 1998-07-21 | 2001-08-21 | Gambro, Inc. | Method and apparatus for inactivation of biological contaminants using photosensitizers |
US6268120B1 (en) * | 1999-10-19 | 2001-07-31 | Gambro, Inc. | Isoalloxazine derivatives to neutralize biological contaminants |
US6548241B1 (en) * | 2000-11-28 | 2003-04-15 | Gambro, Inc. | Storage solution containing photosensitizer for inactivation of biological contaminants |
US6936413B1 (en) * | 2001-12-05 | 2005-08-30 | Baxter International Inc. | Methods and systems for preparing blood products |
US7183045B2 (en) * | 2002-04-24 | 2007-02-27 | Gambro Inc. | Removal of adenine during a pathogen reduction process in whole blood or red blood cell by dilution |
Also Published As
Publication number | Publication date |
---|---|
JP2005523337A (en) | 2005-08-04 |
CA2482021C (en) | 2007-06-19 |
US20030201160A1 (en) | 2003-10-30 |
AU2003225174A1 (en) | 2003-11-10 |
CA2482021A1 (en) | 2003-11-06 |
US20100089840A1 (en) | 2010-04-15 |
EP1496947A1 (en) | 2005-01-19 |
US8679736B2 (en) | 2014-03-25 |
WO2003090793A1 (en) | 2003-11-06 |
US7183045B2 (en) | 2007-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8679736B2 (en) | Removal of adenine during a pathogen reduction process in whole blood or red blood cells by dilution | |
CA2397862C (en) | Storage solution containing photosensitizer for inactivation of biological contaminants | |
EP1289991B1 (en) | Method for inactivation of microorganisms using photosensitizers | |
US6277337B1 (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers | |
US6843961B2 (en) | Reduction of contaminants in blood and blood products using photosensitizers and peak wavelengths of light | |
EP1047458A2 (en) | Method for inactivation of microorganisms using photosensitizers | |
EP0544895A1 (en) | PROCESS FOR INACTIVATION OF PATHOGENIC GERM IN A BIOLOGICAL LIQUID. | |
WO2001094349A1 (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers | |
CA2474242C (en) | Reduction of contaminants in blood and blood products using photosensitizers and peak wavelengths of light | |
US20030215784A1 (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers | |
EP1404379A2 (en) | Viral inactivation process using antioxidant | |
US20030073650A1 (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers | |
AU770614B2 (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers | |
CA2585179C (en) | Method and apparatus for inactivation of biological contaminants using photosensitizers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GAMBRO, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOODRICH, RAYMOND P.;DOANE, SUZANN K.;REEL/FRAME:018772/0739 Effective date: 20030424 |
|
AS | Assignment |
Owner name: NAVIGANT BIOTECHNOLOGIES, LLC, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GAMBRO, INC.;REEL/FRAME:018799/0498 Effective date: 20070124 |
|
AS | Assignment |
Owner name: CARIDIANBCT BIOTECHNOLOGIES, LLC., COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:NAVIGANT BIOTECHNOLOGIES, LLC;REEL/FRAME:021301/0079 Effective date: 20080714 |
|
AS | Assignment |
Owner name: CITICORP TRUSTEE COMPANY LIMITED, UNITED KINGDOM Free format text: IP SECURITY AGREEMENT SUPPLEMENT;ASSIGNOR:CARIDIANBCT BIOTECHNOLOGIES, LLC;REEL/FRAME:022714/0560 Effective date: 20090131 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CARIDIANBCT BIOTECHNOLOGIES, LLC, COLORADO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP TRUSTEE COMPANY LIMITED, AS SECUIRTY AGENT;REEL/FRAME:026737/0537 Effective date: 20110727 |