[go: up one dir, main page]

US20060261573A1 - Anti-sway trailer hitch - Google Patents

Anti-sway trailer hitch Download PDF

Info

Publication number
US20060261573A1
US20060261573A1 US10/908,672 US90867205A US2006261573A1 US 20060261573 A1 US20060261573 A1 US 20060261573A1 US 90867205 A US90867205 A US 90867205A US 2006261573 A1 US2006261573 A1 US 2006261573A1
Authority
US
United States
Prior art keywords
connection
hitch
pivotal connection
center beam
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/908,672
Other versions
US7137643B1 (en
Inventor
Paul Hsueh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/908,672 priority Critical patent/US7137643B1/en
Priority to TW095116539A priority patent/TWI282314B/en
Priority to CNB2006100805843A priority patent/CN100404289C/en
Priority to US11/424,237 priority patent/US7422226B2/en
Application granted granted Critical
Publication of US7137643B1 publication Critical patent/US7137643B1/en
Publication of US20060261573A1 publication Critical patent/US20060261573A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/24Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions
    • B60D1/30Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions for sway control, e.g. stabilising or anti-fishtail devices; Sway alarm means
    • B60D1/32Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions for sway control, e.g. stabilising or anti-fishtail devices; Sway alarm means involving damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/24Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions
    • B60D1/30Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions for sway control, e.g. stabilising or anti-fishtail devices; Sway alarm means

Definitions

  • the present invention relates generally to trailer hitches, and more particularly to an improved anti-sway trailer hitch.
  • This operational feature of the combination of a passenger vehicle and a trailer being towed there behind can be very dangerous, especially when the vehicles are moving at highway speed, such that the vehicles are having momentums such that a sudden lateral changing of direction of the towing vehicle can cause a serious swaying problem of the trailer.
  • the towing vehicle rearward end displaces to the side that is opposite to its forward end, it is especially dangerous when vehicles are in a down hill situation such that the weight of the trailer adds to the momentum of the trailer and the trailer has the tendency to push the towing vehicle rearward end off the moving course.
  • the towed vehicle-swaying problem is also pronounced when the towed vehicle has a large side elevation area upon which crosswind gusts and slip stream blasts may act on the towed vehicle for creating a sudden unstable condition.
  • An anti-sway trailer-hitch assembly for connecting a towing vehicle to a towed vehicle having symmetrical anti-sway features.
  • the vast majority of passenger vehicles include a substantial vehicle mass that projects rearward from the back wheels of the vehicle.
  • a conventional trailer hitch installed on the rearward end of the towing vehicle, a slight left and right lateral shifting of the forward end of the towing vehicle results in concomitant right and left lateral shifting of the connecting towed vehicle forward end.
  • the hitch ball lateral left and right shifting displacements cancel out the towing vehicle rearward end lateral right and left shifting displacements respectively, so that the hitch ball remains at the same location and does not shift laterally.
  • the towed vehicle forward end With the towed vehicle forward end connected to the hitch ball, the towed vehicle forward end does not shift laterally when the towing vehicle forward end shifts laterally, and thus the towed vehicle remains stable and does not sway.
  • FIG. 1 is a plan view of the trailer hitch according to the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 2 is a side view of the trailer hitch according to the present invention of connecting the trailer to the towing vehicle.
  • FIG. 3 is an enlarged plan view of the trailer hitch according to the present invention.
  • FIG. 4 is an enlarged side view of the trailer hitch according to the present invention.
  • FIG. 5 is an enlarged plan view of the trailer hitch showing components details according to the present invention.
  • FIG. 6 is an enlarged side view of the trailer hitch showing components details according to the present invention.
  • FIG. 7 is a plan view of the trailer hitch showing the vehicles are making a bigger turn.
  • FIG. 8 is a plan view of the trailer hitch according to another embodiment of the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 9 is a side view of the trailer hitch according to another embodiment of the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 10 is a plan view of the trailer hitch according to the present invention of connecting the trailer to the towing vehicle without individual components indication numbers.
  • a hitch assembly of the present invention is generally designated by reference numeral 10 and articulately connects a towing vehicle 80 and a towed vehicle 90 .
  • the towing vehicle 80 includes a frame 80 a, rear wheels 80 b and rear axle 80 c.
  • the towed vehicle 90 is in the form of a trailer having supporting wheels 90 a at opposite ends of an axle 90 b.
  • Various supporting wheel and axle arrangements may be provided for the trailer 90 , and the forward end of the trailer is provided with a tongue or frame structure 92 that extends forward and includes a trailer hitch coupler 94 at forward end thereof.
  • the hitch assembly 10 includes a hitch frame 20 having a forward end 20 a and a rearward end 20 b, a center beam 30 having a forward end 30 a, a middle portion 30 b and a rearward end 30 c, a center beam-extension 50 having a forward end 50 a, a middle portion 50 b and a rearward end 50 c, a hitch beam 60 having a forward end 60 a, a middle portion 60 b and a rearward end 60 c, and a rear support 70 .
  • Hitch frame 20 forward end 20 a installs onto towing vehicle 80 rearward-end.
  • Center beam 30 forward end 30 a is pivotally connecting to hitch frame 20 rearward-end 20 b through a pivotal connection 31 .
  • Pivotal connection 31 allows center beam 30 to swing an arc horizontally around pivotal connection 31 .
  • Hitch beam 60 forward end 60 a is pivotally connecting to hitch frame 20 rearward-end 20 b through a pivotal connection 61 .
  • Pivotal connection 61 allows hitch beam 60 to swing an arc horizontally around pivotal connection 61 .
  • Center beam 30 rearward end 30 c is pivotally connecting to center beam-extension 50 forward end 50 a by a pivotal connection 51 , which includes a removable pin 52 .
  • Pivotal connection 51 allows center beam-extension 50 swings an arc vertically around pivotal connection 51 .
  • Pivotal connection 53 includes a hitch coupler 54 affixing on center beam-extension 50 rearward end 50 c and a hitch ball 72 affixing on rear support 70 upper end. Hitch coupler 54 engages with hitch ball 72 .
  • the rear support 70 lower-end is affixed firmly to trailer 90 body and frame 92 .
  • the center beam-extension 50 mid portion 50 b is hollow inside such that the rearward end 50 c forward section is able to slide inside mid portion 50 b.
  • This sliding feature together with pivotal connections 51 and 53 compensates for the constantly-changing distances between the two vehicles due to road conditions and vehicle turning. Besides, this sliding feature can further accommodate different trailers being towed because trailer frame 92 varies in lengths for different trailers.
  • Hitch beam 60 rearward end 60 c including a hitch ball 64 is engaged by hitch coupler 94 affixed to the towed vehicle 90 forward end.
  • hitch frame 20 forward end includes a hitch tongue 24
  • hitch frame rearward end includes an upper member 21 having a rearward end 21 b, a middle member 22 , and a lower member 23 .
  • Hitch tongue 24 inserts into a hitch bar receptacle 84 existing on rearward end of towing vehicle 80 .
  • a removable pin 86 inserts through a hole on receptacle 84 and a hole on hitch tongue 24 to keep hitch tongue 24 inside receptacle 84 .
  • a spring pin 86 a inserts through a hole on pin 86 to keep pin 86 in place.
  • An upwardly extending roller 28 has a pivotal connection with the upper member 21 rearward end 21 b by a pivotal connection 27 .
  • Hitch beam 60 middle portion 60 b has a slot 62 , and rearward end has a cavity 63 .
  • Center beam 30 middle portion includes a vertically-positioned center shaft 34 in pivotal connection with center beam 30 by a pivotal connection 35 .
  • Center shaft 34 includes an upper end 34 a and a lower end 34 b that upper end 34 a affixing a slot 37 extending forwardly that roller 28 on upper member 21 interposing inside slot 37 .
  • An arm 44 has a forward end 44 a and a rearward end 44 b that forward end 44 a affixes on center shaft lower end 34 b.
  • a downwardly extending roller 46 is in pivotal connection with arm 44 rearward end 44 b by a pivotal connection 45 .
  • Roller 46 interposes inside slot 62 on hitch beam 60 .
  • a hitch bar 67 having a forward end and a rearward end that forward end fits inside cavity 63 on hitch beam rearward end 60 c.
  • a pin 65 inserts through a hole on cavity 63 and a hole on hitch bar 67 of keeping hitch bar 67 in place, and a spring pin 65 a inserts through a hole on pin 65 to keep pin 65 in place.
  • Hitch bar 67 rearward end affixes to a hitch ball 64 .
  • roller 28 pivotal connection 27 includes an upwardly extending pin 29 affixing on upper member 21 rearward-end 21 b. Roller 28 is able to rotate on pin 29 through a bearing 28 a interposed between the upper surface of member 21 and the lower end of roller 28 . A washer 28 b is inserted onto pin 27 and a spring pin 28 c is inserting through a hole on pin 29 to keep roller 28 in place.
  • Center beam 30 forward end pivotal connection 31 includes a vertical positioned sleeve 32 extending through and affixed firmly to center beam forward end 30 a.
  • Two bearings in the form of flange bushings 32 a and 32 b fit tightly inside sleeve 32 at the top and bottom.
  • Upper bearing 32 a is against upper member 21 and lower bearing 32 b is against middle member 22 .
  • a pin 25 inserts through a hole on upper member 21 , bushing 32 a, bushing 32 b and a hole on middle member 22 .
  • a spring pin 25 a inserts through a hole on upper member 21 and a hole on pin 25 to keep pin 25 in place.
  • Sleeve 32 allows center beam 30 to swing in an arc horizontally around pin 25 .
  • Center shaft 34 pivotal connection 35 includes a vertically-positioning sleeve 36 extending through and affixed firmly to center beam 30 .
  • Two bearings in the form of flange bushings 36 a and 36 b fit tightly into sleeve 36 at the top and bottom.
  • Center shaft 34 is inserting through slot 38 , bushings 36 a, 36 b and arm 44 with upper bushing 36 a against slot 38 lower surface and lower bushing 36 b against arm 44 upper surface.
  • a pin 34 c is inserted through slot 38 and center shaft 34
  • a pin 34 d is inserted through arm 44 and center shaft of securing slot and arm to center shaft.
  • Center shaft 34 is able to rotate vertically inside sleeve 36 .
  • Roller 46 pivotal connection 45 with arm 44 includes a downwardly extending pin 47 affixed on arm 44 rearward end 44 b. Roller 46 is able to rotate on pin 47 through a bearing 46 a in the form of a flange bushing inserted through roller 46 . A washer 47 a is placed onto pin 47 , and a spring pin 47 b is placed through a hole on pin 47 to keep washer 47 a and roller 46 in place. Roller 46 is interposed inside slot 62 on hitch beam 60 .
  • Pivotal connection 51 on center beam rearward end 30 c includes a horizontally-positioned sleeve 38 extending through and affixed firmly to center beam 30 .
  • Pivotal connection 51 on center beam-extension 50 forward end 50 a, includes a left fork 55 and a right fork 56 such that each fork has a hole, and center beam 30 rearward end 30 c fits between the left fork and the right fork.
  • a removable pin 52 is placed through the hole on left fork 55 , bushing 38 b, bushing 38 a and right fork 56 , and a spring pin 52 a is placed through a hole on pin 52 to keep pin 52 in place.
  • Sleeve 38 allows center beam-extension 50 to swing in an arc vertically around pin 52 .
  • Hitch beam 60 forward-end pivotal connection 61 (not shown in FIG. 5 ) includes a vertical positioning sleeve 65 extending through and affixed firmly on hitch beam forward end 60 a.
  • Two bearings in the form of flange bushings 65 a and 65 b are tightly fit into sleeve 65 at the top and bottom.
  • Upper bushing 65 a is against middle member 22 and lower bushing 65 b is against lower member 23 .
  • a pin 26 inserts through the hole on lower member 23 , bushing 65 b, bushing 65 a and middle member 23 .
  • a spring pin 26 a inserts through a hole on lower member 23 and a hole on pin 26 of keeping pin 26 in place.
  • Sleeve 65 allows hitch beam 60 to swing in an arc horizontally around pin 26 .
  • pivotal connections 31 and 61 are not coincidental, but pivotal connections 31 and 61 can be coincidental such that pin 25 and pin 26 can be coincidental and can become one single pin.
  • the towing vehicle is making a slight left turn causing the towing vehicle rearward end and hitch frame upper member 21 attaching roller 28 and roller-engaging slot 37 displacing to the right, which rotates center shaft 34 clockwise and displaces arm 44 , affixing roller 46 , roller-engaging slot 62 , hitch beam 60 and attached hitch ball 64 to the left, and displaces hitch ball-engaging hitch coupler 94 on trailer forward end to the left.
  • the towing vehicle is turning to the left slightly, the towed vehicle forward end is shifting to the left too.
  • center beam 30 and center beam extension 50 are connected together by pivotal connection 51 , which is flexible vertically but is rigid laterally, center beam 30 and center beam extension 50 together are treated as one solid beam in the lateral direction which is the longest member in the hitch assembly. Therefore, the mid-portion of this member where center shaft 34 is affixed has less lateral movement than that of the roller 28 affixed on the hitch assembly when the towing vehicle is turning. The difference in lateral movement between roller 28 and center shaft 34 is thus able to turn the center shaft and create the subsequent movements of other components and at the end to produce lateral movement of hitch ball 64 .
  • the hitch ball 64 lateral movement shifting amount depends on the hitch assembly construction mainly depending on its component lengths being made, such that for a fixed amount of the towing vehicle forward end lateral shifting but with different component lengths, the resultant hitch ball 64 lateral displacement will be different.
  • the hitch ball 64 and engaging trailer hitch coupler remain at the same location as that before the towing vehicle was turning.
  • the towed vehicle forward end moving direction and moving momentum is not changed nor affected by the towing vehicle forward end lateral shifting, and thus the towed vehicle remains steady and does not swing.
  • hitch assembly components made such that when the lateral shifting amount of hitch ball 64 and coupling hitch coupler 94 is more than the towing vehicle rearward end shifting amount but opposite in direction, hitch ball 64 and coupling hitch coupler 94 will shift to the direction as the towing vehicle forward end shifting direction.
  • the towed vehicle forward end is equivalent to a pivot at a point, which is the intersection of the towed vehicle center line extension and the towing vehicle center line, and is forward of the towing vehicle rear axle.
  • the pivot point is forward of the towing vehicle rear axle
  • the towed vehicle moving momentum follows the towing vehicle forward end turning direction, and shifts to the same direction as the towing vehicle turning direction, such that when the vehicles are reducing speed, especially in a down hill situation, the towed vehicle momentum and weight are pushing toward a point forward of the towing vehicle rear axle in the towing vehicle mid-section rather than the towing vehicle rear-end, thus having less chance for pushing the towing vehicle rearward end off the road and creating a “Jack Knife” situation.
  • hitch coupler 94 engaging hitch ball 64 as the main connection and controlling the distance between the two vehicles, and the other connection between the two vehicles being the connection of center beam 30 and center beam-extension 50 between pivotal connection 31 and pivotal connection 53 , the distance between the two vehicles is constantly changing, and the changing distance is compensated by the center beam-extension mid portion 50 b sliding mechanism, while the elevation differences between the two vehicles is compensated by pivotal connections 51 and 53 .
  • pivot joint 35 on center beam 30 keeps center shaft 34 vertical in center beam 30 , so that slot 37 and arm 44 are maintained horizontally parallel to center beam 30 .
  • roller 28 is able to stay in slot 37
  • roller 46 is able to stay inside slot 62 at all times.
  • the hitch assembly is most effective when the towing and towed vehicles are moving in a path closer to a straight line.
  • One example is in the case when vehicles are moving on highways and have a higher speed such that a small degree of turning of the towing vehicle creates a large lateral movement of the towed forward end to make the towed vehicle forward end follow the towing vehicle turning direction.
  • the towing vehicle makes a big turn normally at lower speed, the towed vehicle forward end does not over-shift laterally, thus avoiding the case of forcing the towed vehicle forward end toward a non-ideal path.
  • the center beam-extension 50 includes a center section 50 b, which is hollow inside, such that a center beam-extension rear section 50 c is able to slide inside center section 50 b.
  • Center section 50 b includes a through-hole 56 going through both walls
  • rear section 50 c includes a plurality of holes 55 such that a pin 57 is placed through hole 56 and one of the holes 55 , and a spring pin 58 is placed through a hole in pin 57 to keep pin 57 in place.
  • Rear section 50 c rearward end affixing a hitch coupler 54 connects to a rear support 70 upper end 70 a affixing hitch ball 72 , and rear support 70 lower end 70 b is pivotally connected to the towed vehicle frame 92 by a pair of pivotal connection 73 connecting to a pair of brackets 74 affixed to the towed vehicle frame 92 , such that rear support 70 is able to swing fore and aft around pivotal connection 73 .
  • the swinging fore and aft of the rear support 70 compensates the changing distance between the towing vehicle and the towed vehicle when vehicles are moving, and pluralities of holes 55 on center beam-extension rear section 50 c allows different hole 55 to be used to align with hole 56 on center beam-extension mid-section 50 b for pin 57 to push through, such that center beam-extension lengths can be adjusted to suit for different towed vehicles to be towed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Agricultural Machines (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

An anti-sway trailer hitch connection is provided for use between a towing vehicle and a trailer and includes structure whereby slight left and right lateral movement of the forward end of the towing vehicle will not be translated into right and left lateral movement, respectively, of the forward end of the trailer, and thereby eliminates the tendency of a trailer to sway back and forth while a towing vehicle changes lanes on a highway or is acted on by cross-wind gusts from the passing of a large vehicle.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • Not applicable.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • REFERENCE TO A MICROFICHE APPENDIX
  • Not applicable.
  • TECHNICAL FIELD
  • The present invention relates generally to trailer hitches, and more particularly to an improved anti-sway trailer hitch.
  • BACKGROUND INFORMATION AND DISCUSSION OF RELATED ART
  • Inasmuch as most passenger vehicles and the like include rear overhang portions, which project considerably rearward of the rear wheels of the vehicle, and trailer hitches are constructed in a manner such that the forward tongue portion of a trailer towed behind such vehicles are actually coupled to the vehicles at a point spaced slightly rearward of the rear bumpers of the vehicles, any slight left and right lateral shifting of the forward end of the towing vehicle results in right and left lateral shifting, respectively, of the forward end of the trailer.
  • This operational feature of the combination of a passenger vehicle and a trailer being towed there behind can be very dangerous, especially when the vehicles are moving at highway speed, such that the vehicles are having momentums such that a sudden lateral changing of direction of the towing vehicle can cause a serious swaying problem of the trailer.
  • Because the towing vehicle rearward end displaces to the side that is opposite to its forward end, it is especially dangerous when vehicles are in a down hill situation such that the weight of the trailer adds to the momentum of the trailer and the trailer has the tendency to push the towing vehicle rearward end off the moving course.
  • The towed vehicle-swaying problem is also pronounced when the towed vehicle has a large side elevation area upon which crosswind gusts and slip stream blasts may act on the towed vehicle for creating a sudden unstable condition.
  • Accordingly, a need exists for a hitch connection between a vehicle and a trailer that eliminates the swaying tendencies of the vehicle and trailer combination as a result of slight lateral shifting of the forward end of the towing vehicle.
  • Various solutions to the problem of trailer swaying have been proposed with anti-sway trailer hitches that include at least some of the general structural and operational features of the instant invention are disclosed in U.S. Pat. Nos. 2,201,660, 2,913,256, 3,254,905, 3,785,680, 3,787,077 and 3,825,282.
  • The most closely related improvement in anti-sway trailer hitch assemblies was disclosed in U.S. Pat. No. 6,485,046, by the present inventor. But, the '046 patent hitch assembly has a limitation for limiting the towing vehicle turning angle, such that, at a larger turning angle, the control rod that connects the hitch beam to the control beam will move closer to and interfere with the intermediate bar on the hitch assembly, thus limiting the towing vehicle turning angles.
  • SUMMARY OF THE INVENTION
  • An anti-sway trailer-hitch assembly for connecting a towing vehicle to a towed vehicle having symmetrical anti-sway features.
  • The vast majority of passenger vehicles include a substantial vehicle mass that projects rearward from the back wheels of the vehicle. With a conventional trailer hitch installed on the rearward end of the towing vehicle, a slight left and right lateral shifting of the forward end of the towing vehicle results in concomitant right and left lateral shifting of the connecting towed vehicle forward end.
  • With the present anti-sway trailer hitch invention installed on the rearward end of the towing vehicle, a slight left and right lateral shifting of the forward end of the towing vehicle will result in a concomitant lateral shifting left and right, respectively, of a hitch ball affixed to a hitch beam on the anti-sway trailer hitch.
  • The hitch ball lateral left and right shifting displacements cancel out the towing vehicle rearward end lateral right and left shifting displacements respectively, so that the hitch ball remains at the same location and does not shift laterally.
  • With the towed vehicle forward end connected to the hitch ball, the towed vehicle forward end does not shift laterally when the towing vehicle forward end shifts laterally, and thus the towed vehicle remains stable and does not sway.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of the trailer hitch according to the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 2 is a side view of the trailer hitch according to the present invention of connecting the trailer to the towing vehicle.
  • FIG. 3 is an enlarged plan view of the trailer hitch according to the present invention.
  • FIG. 4 is an enlarged side view of the trailer hitch according to the present invention.
  • FIG. 5 is an enlarged plan view of the trailer hitch showing components details according to the present invention.
  • FIG. 6 is an enlarged side view of the trailer hitch showing components details according to the present invention.
  • FIG. 7 is a plan view of the trailer hitch showing the vehicles are making a bigger turn.
  • FIG. 8 is a plan view of the trailer hitch according to another embodiment of the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 9 is a side view of the trailer hitch according to another embodiment of the present invention of connecting a towed vehicle in the form of a trailer to a towing vehicle.
  • FIG. 10 is a plan view of the trailer hitch according to the present invention of connecting the trailer to the towing vehicle without individual components indication numbers.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As illustrated in FIG. 1 and FIG. 2, A hitch assembly of the present invention is generally designated by reference numeral 10 and articulately connects a towing vehicle 80 and a towed vehicle 90. The towing vehicle 80 includes a frame 80 a, rear wheels 80 b and rear axle 80 c. The towed vehicle 90 is in the form of a trailer having supporting wheels 90 a at opposite ends of an axle 90 b. Various supporting wheel and axle arrangements may be provided for the trailer 90, and the forward end of the trailer is provided with a tongue or frame structure 92 that extends forward and includes a trailer hitch coupler 94 at forward end thereof.
  • The hitch assembly 10 includes a hitch frame 20 having a forward end 20 a and a rearward end 20 b, a center beam 30 having a forward end 30 a, a middle portion 30 b and a rearward end 30 c, a center beam-extension 50 having a forward end 50 a, a middle portion 50 b and a rearward end 50 c, a hitch beam 60 having a forward end 60 a, a middle portion 60 b and a rearward end 60 c, and a rear support 70.
  • Hitch frame 20 forward end 20 a installs onto towing vehicle 80 rearward-end.
  • Center beam 30 forward end 30 a is pivotally connecting to hitch frame 20 rearward-end 20 b through a pivotal connection 31. Pivotal connection 31 allows center beam 30 to swing an arc horizontally around pivotal connection 31.
  • Hitch beam 60 forward end 60 a is pivotally connecting to hitch frame 20 rearward-end 20 b through a pivotal connection 61. Pivotal connection 61 allows hitch beam 60 to swing an arc horizontally around pivotal connection 61.
  • Center beam 30 rearward end 30 c is pivotally connecting to center beam-extension 50 forward end 50 a by a pivotal connection 51, which includes a removable pin 52. Pivotal connection 51 allows center beam-extension 50 swings an arc vertically around pivotal connection 51.
  • Center beam-extension 50 rearward end 50 c is pivotally connecting to rear support 70 upper-end by a pivotal connection 53. Pivotal connection 53 includes a hitch coupler 54 affixing on center beam-extension 50 rearward end 50 c and a hitch ball 72 affixing on rear support 70 upper end. Hitch coupler 54 engages with hitch ball 72.
  • The rear support 70 lower-end is affixed firmly to trailer 90 body and frame 92.
  • The center beam-extension 50 mid portion 50 b is hollow inside such that the rearward end 50 c forward section is able to slide inside mid portion 50 b. This sliding feature together with pivotal connections 51 and 53 compensates for the constantly-changing distances between the two vehicles due to road conditions and vehicle turning. Besides, this sliding feature can further accommodate different trailers being towed because trailer frame 92 varies in lengths for different trailers.
  • Hitch beam 60 rearward end 60 c including a hitch ball 64 is engaged by hitch coupler 94 affixed to the towed vehicle 90 forward end.
  • When connecting the towed vehicle to the towing vehicle by connecting trailer hitch coupler 94 to hitch ball 64, to make the connection easier, it is better first to remove the center beam-extension 50 completely so that it will be out of the way. For this reason, pin 52 can be removed from pivotal connection 51 on center beam-extension 50 forward end, and hitch coupler 54 can be disengaged from hitch ball 72 on rear support 70, so that center beam extension 50 can be removed completely.
  • Referring to FIG. 3 and FIG. 4, hitch frame 20 forward end includes a hitch tongue 24, and hitch frame rearward end includes an upper member 21 having a rearward end 21 b, a middle member 22, and a lower member 23.
  • Hitch tongue 24 inserts into a hitch bar receptacle 84 existing on rearward end of towing vehicle 80. A removable pin 86 inserts through a hole on receptacle 84 and a hole on hitch tongue 24 to keep hitch tongue 24 inside receptacle 84. A spring pin 86 a inserts through a hole on pin 86 to keep pin 86 in place.
  • An upwardly extending roller 28 has a pivotal connection with the upper member 21 rearward end 21 b by a pivotal connection 27.
  • Hitch beam 60 middle portion 60 b has a slot 62, and rearward end has a cavity 63.
  • Center beam 30 middle portion includes a vertically-positioned center shaft 34 in pivotal connection with center beam 30 by a pivotal connection 35. Center shaft 34 includes an upper end 34 a and a lower end 34 b that upper end 34 a affixing a slot 37 extending forwardly that roller 28 on upper member 21 interposing inside slot 37.
  • An arm 44 has a forward end 44 a and a rearward end 44 b that forward end 44 a affixes on center shaft lower end 34 b. A downwardly extending roller 46 is in pivotal connection with arm 44 rearward end 44 b by a pivotal connection 45. Roller 46 interposes inside slot 62 on hitch beam 60.
  • A hitch bar 67 having a forward end and a rearward end that forward end fits inside cavity 63 on hitch beam rearward end 60 c. A pin 65 inserts through a hole on cavity 63 and a hole on hitch bar 67 of keeping hitch bar 67 in place, and a spring pin 65 a inserts through a hole on pin 65 to keep pin 65 in place. Hitch bar 67 rearward end affixes to a hitch ball 64.
  • Trailer hitch coupler 94 on forward end of the trailer 90 engages hitch ball 64 on hitch beam 60.
  • Referring to FIG. 5 and FIG. 6, roller 28 pivotal connection 27 includes an upwardly extending pin 29 affixing on upper member 21 rearward-end 21 b. Roller 28 is able to rotate on pin 29 through a bearing 28 a interposed between the upper surface of member 21 and the lower end of roller 28. A washer 28 b is inserted onto pin 27 and a spring pin 28 c is inserting through a hole on pin 29 to keep roller 28 in place.
  • Center beam 30 forward end pivotal connection 31 includes a vertical positioned sleeve 32 extending through and affixed firmly to center beam forward end 30 a. Two bearings in the form of flange bushings 32 a and 32 b fit tightly inside sleeve 32 at the top and bottom. Upper bearing 32 a is against upper member 21 and lower bearing 32 b is against middle member 22. A pin 25 inserts through a hole on upper member 21, bushing 32 a, bushing 32 b and a hole on middle member 22. A spring pin 25 a inserts through a hole on upper member 21 and a hole on pin 25 to keep pin 25 in place. Sleeve 32 allows center beam 30 to swing in an arc horizontally around pin 25.
  • Center shaft 34 pivotal connection 35 includes a vertically-positioning sleeve 36 extending through and affixed firmly to center beam 30. Two bearings in the form of flange bushings 36 a and 36 b fit tightly into sleeve 36 at the top and bottom. Center shaft 34 is inserting through slot 38, bushings 36 a, 36 b and arm 44 with upper bushing 36 a against slot 38 lower surface and lower bushing 36 b against arm 44 upper surface. A pin 34 c is inserted through slot 38 and center shaft 34, and a pin 34 d is inserted through arm 44 and center shaft of securing slot and arm to center shaft. Center shaft 34 is able to rotate vertically inside sleeve 36.
  • Roller 46 pivotal connection 45 with arm 44 includes a downwardly extending pin 47 affixed on arm 44 rearward end 44 b. Roller 46 is able to rotate on pin 47 through a bearing 46 a in the form of a flange bushing inserted through roller 46. A washer 47 a is placed onto pin 47, and a spring pin 47 b is placed through a hole on pin 47 to keep washer 47 a and roller 46 in place. Roller 46 is interposed inside slot 62 on hitch beam 60.
  • Pivotal connection 51 on center beam rearward end 30 c includes a horizontally-positioned sleeve 38 extending through and affixed firmly to center beam 30. Two bearings in the form of flange bushings 38 a and 38 b fit tightly into sleeve 38 ends.
  • Pivotal connection 51, on center beam-extension 50 forward end 50 a, includes a left fork 55 and a right fork 56 such that each fork has a hole, and center beam 30 rearward end 30 c fits between the left fork and the right fork. A removable pin 52 is placed through the hole on left fork 55, bushing 38 b, bushing 38 a and right fork 56, and a spring pin 52 a is placed through a hole on pin 52 to keep pin 52 in place. Sleeve 38 allows center beam-extension 50 to swing in an arc vertically around pin 52.
  • Hitch beam 60 forward-end pivotal connection 61 (not shown in FIG. 5) includes a vertical positioning sleeve 65 extending through and affixed firmly on hitch beam forward end 60 a. Two bearings in the form of flange bushings 65 a and 65 b are tightly fit into sleeve 65 at the top and bottom. Upper bushing 65 a is against middle member 22 and lower bushing 65 b is against lower member 23. A pin 26 inserts through the hole on lower member 23, bushing 65 b, bushing 65 a and middle member 23. A spring pin 26 a inserts through a hole on lower member 23 and a hole on pin 26 of keeping pin 26 in place. Sleeve 65 allows hitch beam 60 to swing in an arc horizontally around pin 26.
  • As shown, pivotal connections 31 and 61 are not coincidental, but pivotal connections 31 and 61 can be coincidental such that pin 25 and pin 26 can be coincidental and can become one single pin.
  • Refer back to FIG. 1, FIG. 2, FIG. 3 and FIG. 4 for illustrating the functions of the present invention. As shown, the towing vehicle is making a slight left turn causing the towing vehicle rearward end and hitch frame upper member 21 attaching roller 28 and roller-engaging slot 37 displacing to the right, which rotates center shaft 34 clockwise and displaces arm 44, affixing roller 46, roller-engaging slot 62, hitch beam 60 and attached hitch ball 64 to the left, and displaces hitch ball-engaging hitch coupler 94 on trailer forward end to the left. As a result, when the towing vehicle is turning to the left slightly, the towed vehicle forward end is shifting to the left too.
  • In the above description, it is to be noted that because center beam 30 and center beam extension 50 are connected together by pivotal connection 51, which is flexible vertically but is rigid laterally, center beam 30 and center beam extension 50 together are treated as one solid beam in the lateral direction which is the longest member in the hitch assembly. Therefore, the mid-portion of this member where center shaft 34 is affixed has less lateral movement than that of the roller 28 affixed on the hitch assembly when the towing vehicle is turning. The difference in lateral movement between roller 28 and center shaft 34 is thus able to turn the center shaft and create the subsequent movements of other components and at the end to produce lateral movement of hitch ball 64.
  • The hitch ball 64 lateral movement shifting amount depends on the hitch assembly construction mainly depending on its component lengths being made, such that for a fixed amount of the towing vehicle forward end lateral shifting but with different component lengths, the resultant hitch ball 64 lateral displacement will be different.
  • When the towing vehicle makes small turn such as a lane change, in the case when the resultant hitch ball 64 lateral displacement amount is the same as the towing vehicle rearward end lateral displacement amount but opposite in direction, such that the two displacements cancel out each other, the hitch ball 64 and engaging trailer hitch coupler remain at the same location as that before the towing vehicle was turning. As a result, the towed vehicle forward end moving direction and moving momentum is not changed nor affected by the towing vehicle forward end lateral shifting, and thus the towed vehicle remains steady and does not swing.
  • In the case with the hitch assembly components made such that when the lateral shifting amount of hitch ball 64 and coupling hitch coupler 94 is more than the towing vehicle rearward end shifting amount but opposite in direction, hitch ball 64 and coupling hitch coupler 94 will shift to the direction as the towing vehicle forward end shifting direction.
  • In this case, the towed vehicle forward end is equivalent to a pivot at a point, which is the intersection of the towed vehicle center line extension and the towing vehicle center line, and is forward of the towing vehicle rear axle.
  • Because the pivot point is forward of the towing vehicle rear axle, when the towing vehicle turns, the towed vehicle moving momentum follows the towing vehicle forward end turning direction, and shifts to the same direction as the towing vehicle turning direction, such that when the vehicles are reducing speed, especially in a down hill situation, the towed vehicle momentum and weight are pushing toward a point forward of the towing vehicle rear axle in the towing vehicle mid-section rather than the towing vehicle rear-end, thus having less chance for pushing the towing vehicle rearward end off the road and creating a “Jack Knife” situation.
  • During ordinary operations of the vehicles, due to road conditions being uneven and moving vehicle direction changes, with hitch coupler 94 engaging hitch ball 64 as the main connection and controlling the distance between the two vehicles, and the other connection between the two vehicles being the connection of center beam 30 and center beam-extension 50 between pivotal connection 31 and pivotal connection 53, the distance between the two vehicles is constantly changing, and the changing distance is compensated by the center beam-extension mid portion 50 b sliding mechanism, while the elevation differences between the two vehicles is compensated by pivotal connections 51 and 53.
  • Also to be noted is that pivot joint 35 on center beam 30 keeps center shaft 34 vertical in center beam 30, so that slot 37 and arm 44 are maintained horizontally parallel to center beam 30. As upper member 21, middle member 22, lower member 23, center beam 30 and hitch beam 60 are all horizontally parallel, roller 28 is able to stay in slot 37, and roller 46 is able to stay inside slot 62 at all times.
  • As shown in FIG. 7, when the towing vehicle is making a bigger turn, as roller 28 displaces more, the angle forming between upper member 21 and slot 37 reduces and becomes closer to 90 degrees. The effective displacement of roller 28 against slot 37 is reducing, and an increasing roller 28 lateral movement produces a proportionally lesser angular movement of slot 37. Thus, the towed vehicle forward end does not proportionately displace laterally with the towing vehicle-turning angle.
  • As a result, the hitch assembly is most effective when the towing and towed vehicles are moving in a path closer to a straight line. One example is in the case when vehicles are moving on highways and have a higher speed such that a small degree of turning of the towing vehicle creates a large lateral movement of the towed forward end to make the towed vehicle forward end follow the towing vehicle turning direction. On the other hand, when the towing vehicle makes a big turn normally at lower speed, the towed vehicle forward end does not over-shift laterally, thus avoiding the case of forcing the towed vehicle forward end toward a non-ideal path.
  • Referring to FIG. 8 and FIG. 9, according to another embodiment of the present invention, the center beam-extension 50 includes a center section 50 b, which is hollow inside, such that a center beam-extension rear section 50 c is able to slide inside center section 50 b. Center section 50 b includes a through-hole 56 going through both walls, and rear section 50 c includes a plurality of holes 55 such that a pin 57 is placed through hole 56 and one of the holes 55, and a spring pin 58 is placed through a hole in pin 57 to keep pin 57 in place.
  • Rear section 50 c rearward end affixing a hitch coupler 54 connects to a rear support 70 upper end 70 a affixing hitch ball 72, and rear support 70 lower end 70 b is pivotally connected to the towed vehicle frame 92 by a pair of pivotal connection 73 connecting to a pair of brackets 74 affixed to the towed vehicle frame 92, such that rear support 70 is able to swing fore and aft around pivotal connection 73. In this structure, the swinging fore and aft of the rear support 70 compensates the changing distance between the towing vehicle and the towed vehicle when vehicles are moving, and pluralities of holes 55 on center beam-extension rear section 50 c allows different hole 55 to be used to align with hole 56 on center beam-extension mid-section 50 b for pin 57 to push through, such that center beam-extension lengths can be adjusted to suit for different towed vehicles to be towed.

Claims (12)

1. An anti-sway trailer hitch assembly 10 for articulately connecting a towing vehicle 80 to a towed vehicle 90, comprising:
A hitch frame 20 having a forward end for connection to said towing vehicle rearward, a rearward end having a roller 28 in pivotal connection to said hitch frame 20 by a pivotal connection 28 a, a first pivot point, and a second pivot point,
A center beam 30 having a forward end 30 a in pivotal connection to said hitch frame 20 first pivot point by a connection 31, said connection allowing said center beam to swing laterally around said connection, a central portion 30 b, and a rearward end 30 c,
A center shaft 34 in pivotal connection to said center beam mid portion 30 b by a connection 35, said connection allowing said center shaft to rotate vertically in said center beam 30,
A hitch beam 60 having a forward end 60 a in pivotal connection to said hitch frame 20 second pivot point by a connection 61, said connection allowing said hitch beam to swing laterally around said connection, a central portion having a slot 62, and a rearward end 60 c having a connecting point 64 a,
A connection point 94 a on said towed vehicle forward end in pivotal connection to said connecting point 64 a on said hitch beam 60 rearward end by a connection 95,
A slot 37 rigid with said center shaft 34, said roller 28 on said hitch frame 21 interposing in said slot 37, an arm 44 rigid with said center shaft, a roller 46 in pivotal connection to said arm 44 by a pivotal connection 46 a, said roller 46 interposing in said slot 62 on said hitch beam 60,
A center beam-extension 50 having a forward end 50 a in pivotal connection to said center beam 30 rearward end 30 c by a pivotal connection 51, said connection allowing said center beam-extension to swing an arc vertically around said connection, a mid-section 50 b and a rear section 50 c having a front-end and a rear-end, said rear section 50 c in a slide-able connection to said mid-section 50 b forming a variable-length member, said rear section 50 c rear-end having pivotal connection to a rear support 70 by a pivotal connection 71, said rear support 70 affixing firmly to a frame or body of said towed vehicle.
2. The hitch assembly of claim 1, wherein said pivotal connection 95 is a removable connection allowing said towed vehicle frame to be removed from said hitch beam.
3. The hitch assembly of claim 1, wherein said pivotal connection 52 is a removable connection allowing said center beam-extension 50 to be removed from said center beam 30.
4. The hitch assembly of claim 1, wherein said pivotal connection 71 is a removable connection allowing said center beam-extension 50 to be removed from said rear support 70.
5. The hitch assembly of claim 1, wherein said pivotal connection 28 a allows said roller 28 to rotate on a pin 27 affixed to said hitch frame 20.
6. The hitch assembly of claim 1, wherein said pivotal connection 46 a allows said roller 46 to rotate on a pin 47 affixing on said arm 44.
7. An anti-sway trailer hitch assembly 10 for articulately connecting a towing vehicle 80 to a towed vehicle 90, comprising:
A hitch frame 20 having a forward end for connection to said towing vehicle rearward, a rearward end having a roller 28 in pivotal connection to said hitch frame 20 by a pivotal connection 28 a, a first pivot point, and a second pivot point,
A center beam 30 having a forward end 30 a in pivotal connection to said hitch frame 20 first pivot point by a connection 31, said connection allowing said center beam to swing laterally around said connection, a central portion 30 b, and a rearward end 30 c,
A center shaft 34 in pivotal connection to said center beam mid portion 30 b by a connection 35, said connection allowing said center shaft to rotate vertically in said center beam 30,
A hitch beam 60 having a forward end 60 a in pivotal connection to said hitch frame 20 second pivot point by a connection 61, said connection allowing said hitch beam to swing laterally around said connection, a central portion having a slot 62, and a rearward end 60 c having a connecting point 64 a,
A connection point 94 a on said towed vehicle forward end in pivotal connection to said connecting point 64 a on said hitch beam 60 rearward end by a connection 95,
A slot 37 rigid with said center shaft 34, said roller 28 on said hitch frame 21 interposing in said slot 37, an arm 44 rigid with said center shaft, a roller 46 in pivotal connection to said arm 44 by a pivotal connection 46 a, said roller 46 interposing in said slot 62 on said hitch beam 60,
A center beam-extension 50 having a forward end 50 a in pivotal connection to said center beam 30 rearward end 30 c by a pivotal connection 51, said connection allowing said center beam-extension to swing an arc vertically around said connection, a central section 50 b and a rear section 50 c having a front-end and a rear-end, said central section 50 b and rear section 50 c connecting together to form a member of which the length is adjustable, said rear section 50 c rear-end having a pivot connection to a rear support 70 by a pivotal connection 71,
The said rear support 70 in pivotal connection to a frame existing on said towed vehicle by a pivotal connection 73, said connection allowing said rear support 70 to swing in an arc fore and aft in a longitudinal direction around said connection in said towed vehicle.
8. The hitch assembly of claim 7, wherein said pivotal connection 95 is a removable connection allowing said towed vehicle frame to be removed from said hitch beam.
9. The hitch assembly of claim 7, wherein said pivotal connection 52 is a removable connection allowing said center beam-extension 50 to be removed from said center beam 30.
10. The hitch assembly of claim 7, wherein said pivotal connection 71 is a removable connection allowing said center beam-extension 50 to be removed from said rear support 70.
11. The hitch assembly of claim 7, wherein said pivotal connection 28 a allows said roller 28 to rotate on a pin 27 affixed to said hitch frame 20.
12. The hitch assembly of claim 7, wherein said pivotal connection 46 a allows said roller 46 to rotate on a pin 47 affixed to said arm 44.
US10/908,672 2005-05-23 2005-05-23 Anti-sway trailer hitch Expired - Fee Related US7137643B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/908,672 US7137643B1 (en) 2005-05-23 2005-05-23 Anti-sway trailer hitch
TW095116539A TWI282314B (en) 2005-05-23 2006-05-10 Anti sway trailer hitch
CNB2006100805843A CN100404289C (en) 2005-05-23 2006-05-19 Anti-sway trailer hitch
US11/424,237 US7422226B2 (en) 2005-05-23 2006-06-15 Anti-sway trailer hitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/908,672 US7137643B1 (en) 2005-05-23 2005-05-23 Anti-sway trailer hitch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/424,237 Continuation-In-Part US7422226B2 (en) 2005-05-23 2006-06-15 Anti-sway trailer hitch

Publications (2)

Publication Number Publication Date
US7137643B1 US7137643B1 (en) 2006-11-21
US20060261573A1 true US20060261573A1 (en) 2006-11-23

Family

ID=37423157

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/908,672 Expired - Fee Related US7137643B1 (en) 2005-05-23 2005-05-23 Anti-sway trailer hitch
US11/424,237 Expired - Fee Related US7422226B2 (en) 2005-05-23 2006-06-15 Anti-sway trailer hitch

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/424,237 Expired - Fee Related US7422226B2 (en) 2005-05-23 2006-06-15 Anti-sway trailer hitch

Country Status (3)

Country Link
US (2) US7137643B1 (en)
CN (1) CN100404289C (en)
TW (1) TWI282314B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230932A1 (en) * 2004-04-20 2005-10-20 James Richardson Anti-sway bar controller
US9579940B2 (en) 2013-02-22 2017-02-28 Progress Mfg. Inc. Rotating retainer clip for weight distribution hitch spring arm retaining pin
US10675931B2 (en) 2007-12-13 2020-06-09 Progress Mfg. Inc. Trailer bracket for sway control towing system
US11490559B2 (en) * 2017-07-21 2022-11-08 Perma-Green Supreme, Inc. Steering assistance systems, roll control systems, and vehicles having the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005245039B2 (en) * 2004-05-21 2010-09-09 Ottavio Perri Trailer reversal self-correcting assembly
US7137643B1 (en) * 2005-05-23 2006-11-21 Paul Y J Hsueh Anti-sway trailer hitch
US7318698B1 (en) * 2006-05-08 2008-01-15 Roy Gipson Lift/transporter for small vehicle
EP3008985B1 (en) * 2014-10-15 2017-08-09 Kverneland Group Ravenna S.r.l. Towing apparatus for agricultural machines, of the type of balers, round balers and the like
CN109795558A (en) * 2019-03-05 2019-05-24 航天重型工程装备有限公司 A kind of pivotally connected frame and carrier
US11684002B2 (en) * 2020-12-15 2023-06-27 Deere & Company Sway adjustment apparatus
US11701930B2 (en) * 2021-02-12 2023-07-18 Morryde International, Inc. Trailer coupler assemblies and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772098A (en) * 1954-02-17 1956-11-27 Ralph B Seeley Trailer hitch with stabilizer device
US4598926A (en) * 1982-09-30 1986-07-08 Gallatin Norman W Asymmetrical four-bar link trailer hitch
US4614353A (en) * 1985-05-23 1986-09-30 Forems, Inc. Storage assembly for trailer hitch torsion bars
US4949987A (en) * 1982-09-30 1990-08-21 Gallatin Norman W Asymmetrical four-bar trailer hitch
US6485046B1 (en) * 2001-10-15 2002-11-26 Paul Hsueh Anti-sway trailer hitch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787077A (en) * 1973-03-02 1974-01-22 L Sanders Anti-sway bar
CA2146968A1 (en) * 1992-10-13 1994-04-28 Leslie Walter Prestidge Sway stabilisation system
US5335856A (en) * 1992-10-13 1994-08-09 Fmc Corporation Air boom sprayer trailer hitch and suspension
FR2721279B1 (en) * 1994-06-16 1996-08-02 Lohr Ind Connection with angular corrector between two road modules linked together by a self-supporting intermediate module.
CN2690196Y (en) * 2003-12-20 2005-04-06 杭州一鉴机械制造有限公司 Rocking controller
US7137643B1 (en) * 2005-05-23 2006-11-21 Paul Y J Hsueh Anti-sway trailer hitch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2772098A (en) * 1954-02-17 1956-11-27 Ralph B Seeley Trailer hitch with stabilizer device
US4598926A (en) * 1982-09-30 1986-07-08 Gallatin Norman W Asymmetrical four-bar link trailer hitch
US4949987A (en) * 1982-09-30 1990-08-21 Gallatin Norman W Asymmetrical four-bar trailer hitch
US4614353A (en) * 1985-05-23 1986-09-30 Forems, Inc. Storage assembly for trailer hitch torsion bars
US6485046B1 (en) * 2001-10-15 2002-11-26 Paul Hsueh Anti-sway trailer hitch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230932A1 (en) * 2004-04-20 2005-10-20 James Richardson Anti-sway bar controller
US7303205B2 (en) * 2004-04-20 2007-12-04 James Richardson Anti-sway bar controller
US10675931B2 (en) 2007-12-13 2020-06-09 Progress Mfg. Inc. Trailer bracket for sway control towing system
US9579940B2 (en) 2013-02-22 2017-02-28 Progress Mfg. Inc. Rotating retainer clip for weight distribution hitch spring arm retaining pin
US11490559B2 (en) * 2017-07-21 2022-11-08 Perma-Green Supreme, Inc. Steering assistance systems, roll control systems, and vehicles having the same

Also Published As

Publication number Publication date
US20070210558A1 (en) 2007-09-13
TWI282314B (en) 2007-06-11
US7137643B1 (en) 2006-11-21
CN100404289C (en) 2008-07-23
US7422226B2 (en) 2008-09-09
CN1868773A (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US7422226B2 (en) Anti-sway trailer hitch
US6485046B1 (en) Anti-sway trailer hitch
US3955831A (en) Compound trailer hitch with gooseneck support
US3194584A (en) Load transferring trailer hitch
US4106794A (en) Multiple bar linkage towing system
US4720119A (en) Steering system for a four-wheeled trailer
CA2129684C (en) Method of and apparatus for connecting a trailer with a rigid drawbar and at least one centrally positioned axle to a tow vehicle
US4582337A (en) Anti-sway trailer hitch
CN102259568A (en) Suspension apparatus
US7490846B2 (en) Self-adjusting fifth wheel trailer hitch
US10994779B2 (en) Tow behind steerable caddy trailer
US8033561B2 (en) Sway control device for trailers
CN110740883A (en) Coupling device comprising four degrees of freedom
US7891690B2 (en) Trailer hitch
WO1995004667A1 (en) Apparatus connecting central axle trailer to vehicle
US6601665B2 (en) Bogey beam axle support for utility vehicles
US2711908A (en) Trailer hitch
US3695628A (en) Farm wagon steering stabilizer
US2772098A (en) Trailer hitch with stabilizer device
US4598926A (en) Asymmetrical four-bar link trailer hitch
US3993326A (en) Vehicle with self-steering trailer
US2913256A (en) Trailer hitch and steering means combined
US7425011B2 (en) Trailer hitch
JP2001301669A (en) Trailer
US2695181A (en) Steering trailer hitch

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141121