US20060207932A1 - Filter element with coating for surface filtration - Google Patents
Filter element with coating for surface filtration Download PDFInfo
- Publication number
- US20060207932A1 US20060207932A1 US11/182,078 US18207805A US2006207932A1 US 20060207932 A1 US20060207932 A1 US 20060207932A1 US 18207805 A US18207805 A US 18207805A US 2006207932 A1 US2006207932 A1 US 2006207932A1
- Authority
- US
- United States
- Prior art keywords
- filter element
- particles
- coating
- element according
- main component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 36
- 239000011248 coating agent Substances 0.000 title claims abstract description 35
- 238000001914 filtration Methods 0.000 title claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000000835 fiber Substances 0.000 claims abstract description 16
- 239000000853 adhesive Substances 0.000 claims abstract description 13
- 230000001070 adhesive effect Effects 0.000 claims abstract description 13
- 239000011230 binding agent Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- 230000000116 mitigating effect Effects 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 46
- 239000005068 cooling lubricant Substances 0.000 claims description 12
- 229910052681 coesite Inorganic materials 0.000 claims description 9
- 229910052906 cristobalite Inorganic materials 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 229910052682 stishovite Inorganic materials 0.000 claims description 9
- 229910052905 tridymite Inorganic materials 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical class O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 239000003595 mist Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000012634 fragment Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- -1 Polyethylene Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
- B01D39/2072—Other inorganic materials, e.g. ceramics the material being particulate or granular
- B01D39/2079—Other inorganic materials, e.g. ceramics the material being particulate or granular otherwise bonded, e.g. by resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
- B01D39/163—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1638—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate
- B01D39/1653—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin
- B01D39/1661—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being particulate of synthetic origin sintered or bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0471—Surface coating material
- B01D2239/0485—Surface coating material on particles
Definitions
- the invention relates to an inherently stable, flow-porous filter element having a porous coating for surface filtration on its afflux surface.
- Such filter elements are known with a number of coatings of different construction.
- the coating of the filter element comprises:
- the binding of the coating to the remainder of the filter element need not be effected exclusively by the adhesive, but the adhesive has a considerable share in effecting this binding.
- the adhesive may participate in addition also in binding the particles and/or fibers of the main component to each other.
- Preferred particles for the main component are kieselguhr particles, zeolite particles, polyvinyl pyrrolidone particles and mixtures thereof; among these, kieselguhr particles are particularly preferred.
- Preferred fibers for the main component are ceramic fibers. The preferred substances mentioned do not have to form 100% of the main component; it is sufficient when the main component contains one or more of the substances referred to as preferred ones to a considerable share. On the other hand, it is preferred that the main component consists in essence of only one of the preferred substances mentioned or mixtures thereof. As an alternative, however, it is preferred as well to use a mixture of ceramic fibers and one type of particles referred to as preferred or several types of particles referred to as preferred.
- the binder component may comprise or consist of water glass. However, it is preferred that the binder component is not water glass.
- the binder component preferably is sol-based.
- the binder component preferably comprises crosslinked SiO 2 or crosslinked SiO 2 derivative or crosslinked TiO 2 or crosslinked TiO 2 derivative or crosslinked ZrO 2 or crosslinked ZrO 2 derivative or a mixture of several of the afore-mentioned substances, Crosslinked SiO 2 is very much preferred.
- the binder component consists in essence of one of the substances referred to as preferred or of a mixture of several of these substances.
- SiO 2 derivative is understood to be a substance which, apart from the silicon atoms and the oxygen atoms, still contains some organic material. The same holds analogously for TiO 2 and ZrO 2 .
- the adhesive is an organic dispersion adhesive.
- Aqueous dispersions are particularly preferred.
- the anti-adhesion component is polytetrafluoroethylene—in the following briefly referred to as PTFE—and/or silicone.
- PTFE polytetrafluoroethylene
- silicone silicone
- very much preferred is PTFE.
- the anti-adhesion component in essence consists of PTFE only.
- a particularly expedient embodiment of the invention provides for the application of the coating pursuant to the sol-gel process.
- a further expedient embodiment of the invention consists in that the coating (in essence) contains kieselguhr (only) as main component and (in essence) PTFE (only) as anti-adhesion component in a weight ratio of 1:1 to 1;2.
- the main body of the filter element i.e. the basic structure of the filter element located underneath the coating, preferably is composed of sintered plastics particles. Polyethylene particles are particularly favorable.
- cooling lubricant are oily liquids or emulsions of lubricating substances in particular in water that are used in mechanical or abrasive or cutting or other material-removing (e.g. spark erosion) working (machining) of workpieces.
- the cooling lubricant as a rule is pumped in circulating manner and contains, when leaving the place of workpiece machining, abraded, cut or removed particles of the machined workpiece.
- the filtration is performed by means of the filter element according to the invention which is simply immersed into a bath of the cooling lubricant.
- the filtered out foreign particles adhere to the coating on the outer surface of the filter element the filtered cooling lubricant is sucked off from inside of the filter element.
- the pump circulation is briefly interrupted at suitable intervals in time and replaced by a brief liquid stream of cleaned cooling lubricant in the opposite direction, so that the filtered out foreign particles accumulated on the outside of the coating drop down into the cooling lubricant bath and may be removed from there e.g. by means of a sludge discharge means.
- filter elements which in essence completely filter out foreign particles of a size of more than 5 ⁇ m, more preferably more than 3 ⁇ m, from a liquid.
- cooling lubricant the effect achieved is that the machining accuracy of the workpiece is very high as there is extremely clean cooling lubricant flowing to the machining site.
- filter elements according to the invention for gas filtration which filter out foreign particles of a size of more than 3 ⁇ m, more preferably of a size of more than 1 ⁇ m, in essence completely.
- the variant of the filter element according to the invention in which fibers are present as main component of the coating can be used in particularly expedient manner for gas filtration.
- the filter element according to the invention can be used in particularly advantageous manner in situations in which resistance to increased temperatures and/or resistance to chemical attack is important.
- the filter element may be designed to resist a temperature of permanent use of up to 180° C., or it may be designed to resist a temperature of permanent use of up to 150° C., or it may be designed to resist a temperature of permanent use of up to 120° C.
- Chemical attack occurs e.g. in case of the afore-mentioned cooling lubricant.
- Another application involving chemical attack is the filtering of combustion exhaust gas.
- the filtering of combustion exhaust gas filtering for product separation from a gas stream (e.g. spray drier, drier in foodstuff industry) and materials recycling from a gas stream (e.g. catalyst in fluidized bed reactors).
- FIG. 1 shows a sectional view of a fragment of a filter element
- FIG. 2 shows a sectional view of a fragment of a filter element according to a another embodiment
- the main component consists of polyethylene particles 4 that are sintered together at their contact locations 6 .
- the pores 8 between the particles 4 have an average size of e.g. 10 to 60 ⁇ m.
- the coating 10 of the filter element in essence consists of kieselguhr particles 12 that are bonded to each other via crosslinked SiO 2 14 and, at their contact locations with polyethylene particles 4 , are bonded to the main body by means of an organic dispersion adhesive 16 , and of PTFE particles 18 .
- the kieselguhr particles 12 are so small that the pores between them in the average have a size of less than 3 ⁇ m.
- the main body is produced first and thereafter the coating is applied to the afflux surface of the same either with the consistence of a rather thin liquid or with the consistence of a rather thick liquid to a pasty consistence, e.g. by spraying, rolling on, brush application, etc.
- the coating mass to be applied in essence consists of kieselguhr particles, an SiO 2 sol, PTFE particles, organic dispersion adhesive, water and a small amount of tenside, wetting aid or foam prevention means. All of these components are available on the market without any problem.
- the coating mass is emulsion-stable. Upon application of the coating mass, there is a sol-gel reaction, using as a rule a slightly increased temperature, and after evaporation of all water, the coating is formed in the solid aggregate state. During the sol-gel reaction and evaporation of the water, crosslinking of the SiO 2 phase and thus binding of the kieselguhr particles to each other takes place.
- the weight ratio of kieselguhr to PTFE is in the range from 1:1 to 1:2 for obtaining particularly good results.
- the filter element 2 shown in a fragment in FIG. 2 differs from the filter element according to FIG. 1 by a different coating 10 .
- the finished coating 10 in essence consists of ceramic fibers 22 , crosslinked SiO 2 24 , organic dispersion adhesive 26 and PTFE particles 28 . Kieselguhr particles 12 in a smaller amount than in FIG. 1 are present as well.
- the statements (additional components, consistence etc.) made in connection with the embodiment according to FIG. 1 are applicable again.
- the pores between the ceramic fibers 22 have substantially the same size as the pores between the kieselguhr particles 12 in the embodiment according to FIG. 1 .
- the ceramic fibers 22 typically have a diameter of a few ⁇ m and a length of 10 to 30 ⁇ m; chemically, they consist typically in essence of SiO 2 /Al 2 O 3 .
- Kieselguhr is a common designation for a material consisting typically to 70 to 90% of amorphous silicic acid and to 3 to 12% of water.
- the drawing figures In case of silicone as anti-adhesion component, the drawing figures would have a substantially unchanged appearance. In case of water glass as inorganic binder component, the drawing figures would have a substantially unchanged appearance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Filtering Materials (AREA)
- Paints Or Removers (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
An inherently stable, flow-porous filter element (2) having a porous coating (10) for surface filtration on its afflux surface, said coating (10) comprising:
- (a) a main component of particles (12) and/or fibers (22);
- (b) an inorganic binder component (14; 24) binding the particles (12) and/or the fibers (22) of the main component to each other;
- (c) an adhesive (16; 26) binding the porous coating (10) to the remainder of the filter element;
- (d) and an anti-adhesion component (18; 28) mitigating the adhesion of filtered out material to the porous coating and facilitating cleaning of the filter element.
Description
- The invention relates to an inherently stable, flow-porous filter element having a porous coating for surface filtration on its afflux surface.
- Such filter elements are known with a number of coatings of different construction.
- It is the object of the invention to make available a filter element with a surface filtration coating that is useful also for increased temperatures and/or increased resistance to chemical attack.
- To meet this object, the coating of the filter element comprises:
- (a) a main component of particles and/or fibers;
- (b) an inorganic binder component binding the particles and/or fibers of the main component to each other;
- (c) an adhesive binding the porous coating to the remainder of the filter element;
- (d) and an anti-adhesion component mitigating the adhesion of filtered out material to the porous coating and facilitating cleaning of the filter element.
- The binding of the coating to the remainder of the filter element need not be effected exclusively by the adhesive, but the adhesive has a considerable share in effecting this binding. On the other hand, the adhesive may participate in addition also in binding the particles and/or fibers of the main component to each other.
- Preferred particles for the main component are kieselguhr particles, zeolite particles, polyvinyl pyrrolidone particles and mixtures thereof; among these, kieselguhr particles are particularly preferred. Preferred fibers for the main component are ceramic fibers. The preferred substances mentioned do not have to form 100% of the main component; it is sufficient when the main component contains one or more of the substances referred to as preferred ones to a considerable share. On the other hand, it is preferred that the main component consists in essence of only one of the preferred substances mentioned or mixtures thereof. As an alternative, however, it is preferred as well to use a mixture of ceramic fibers and one type of particles referred to as preferred or several types of particles referred to as preferred.
- The binder component may comprise or consist of water glass. However, it is preferred that the binder component is not water glass. The binder component preferably is sol-based. The binder component preferably comprises crosslinked SiO2 or crosslinked SiO2 derivative or crosslinked TiO2 or crosslinked TiO2 derivative or crosslinked ZrO2 or crosslinked ZrO2 derivative or a mixture of several of the afore-mentioned substances, Crosslinked SiO2 is very much preferred. Also as regards the binder component, it is not necessary for the same to consist to 100% of one of the substances referred to as preferred or of a mixture of several of these substances. However, it is preferred that the binder component consists in essence of one of the substances referred to as preferred or of a mixture of several of these substances. SiO2 derivative is understood to be a substance which, apart from the silicon atoms and the oxygen atoms, still contains some organic material. The same holds analogously for TiO2 and ZrO2.
- Preferably, the adhesive is an organic dispersion adhesive. Aqueous dispersions are particularly preferred.
- Preferably, the anti-adhesion component is polytetrafluoroethylene—in the following briefly referred to as PTFE—and/or silicone. Very much preferred is PTFE. Moreover, the case very much preferred is that the anti-adhesion component in essence consists of PTFE only. A particularly expedient embodiment of the invention provides for the application of the coating pursuant to the sol-gel process.
- A further expedient embodiment of the invention consists in that the coating (in essence) contains kieselguhr (only) as main component and (in essence) PTFE (only) as anti-adhesion component in a weight ratio of 1:1 to 1;2.
- The main body of the filter element, i.e. the basic structure of the filter element located underneath the coating, preferably is composed of sintered plastics particles. Polyethylene particles are particularly favorable.
- The modification of the filter element according to the invention in which particles are present as main component of the coating, can be used in particularly favorable manner for liquid filtration or for separating oil mists from a gas stream. The filtration of cooling lubricant is envisaged in particular in this regard; cooling lubricants are oily liquids or emulsions of lubricating substances in particular in water that are used in mechanical or abrasive or cutting or other material-removing (e.g. spark erosion) working (machining) of workpieces. The cooling lubricant as a rule is pumped in circulating manner and contains, when leaving the place of workpiece machining, abraded, cut or removed particles of the machined workpiece. These particles need to be filtered out before the cooling lubricant again reaches the workpiece in the circulation. Preferably, the filtration is performed by means of the filter element according to the invention which is simply immersed into a bath of the cooling lubricant. The filtered out foreign particles adhere to the coating on the outer surface of the filter element the filtered cooling lubricant is sucked off from inside of the filter element. For periodic cleaning of the filter element, the pump circulation is briefly interrupted at suitable intervals in time and replaced by a brief liquid stream of cleaned cooling lubricant in the opposite direction, so that the filtered out foreign particles accumulated on the outside of the coating drop down into the cooling lubricant bath and may be removed from there e.g. by means of a sludge discharge means.
- On the basis of the teaching of the invention it is possible to produce filter elements which in essence completely filter out foreign particles of a size of more than 5 μm, more preferably more than 3 μm, from a liquid. In case of cooling lubricant, the effect achieved is that the machining accuracy of the workpiece is very high as there is extremely clean cooling lubricant flowing to the machining site. It is possible to produce filter elements according to the invention for gas filtration which filter out foreign particles of a size of more than 3 μm, more preferably of a size of more than 1 μm, in essence completely.
- The variant of the filter element according to the invention in which fibers are present as main component of the coating (to a by far predominant extent or in essence as sole component) can be used in particularly expedient manner for gas filtration.
- All in all, the filter element according to the invention can be used in particularly advantageous manner in situations in which resistance to increased temperatures and/or resistance to chemical attack is important. The filter element may be designed to resist a temperature of permanent use of up to 180° C., or it may be designed to resist a temperature of permanent use of up to 150° C., or it may be designed to resist a temperature of permanent use of up to 120° C. Chemical attack occurs e.g. in case of the afore-mentioned cooling lubricant. Another application involving chemical attack is the filtering of combustion exhaust gas. As examples for applications involving temperature resistance, there can be named the filtering of combustion exhaust gas, filtering for product separation from a gas stream (e.g. spray drier, drier in foodstuff industry) and materials recycling from a gas stream (e.g. catalyst in fluidized bed reactors).
- The invention and preferred developments of the invention will be explained in more detail in the following by way of embodiments.
-
FIG. 1 shows a sectional view of a fragment of a filter element; -
FIG. 2 shows a sectional view of a fragment of a filter element according to a another embodiment, - In the
filter element 2 shown as a fragment inFIG. 1 , the main component consists of polyethylene particles 4 that are sintered together at theircontact locations 6. Thepores 8 between the particles 4 have an average size of e.g. 10 to 60 μm. - The
coating 10 of the filter element in essence consists ofkieselguhr particles 12 that are bonded to each other viacrosslinked SiO 2 14 and, at their contact locations with polyethylene particles 4, are bonded to the main body by means of an organic dispersion adhesive 16, and ofPTFE particles 18. Thekieselguhr particles 12 are so small that the pores between them in the average have a size of less than 3 μm. In producing thefilter element 2 ofFIG. 1 , the main body is produced first and thereafter the coating is applied to the afflux surface of the same either with the consistence of a rather thin liquid or with the consistence of a rather thick liquid to a pasty consistence, e.g. by spraying, rolling on, brush application, etc. The coating mass to be applied in essence consists of kieselguhr particles, an SiO2 sol, PTFE particles, organic dispersion adhesive, water and a small amount of tenside, wetting aid or foam prevention means. All of these components are available on the market without any problem. The coating mass is emulsion-stable. Upon application of the coating mass, there is a sol-gel reaction, using as a rule a slightly increased temperature, and after evaporation of all water, the coating is formed in the solid aggregate state. During the sol-gel reaction and evaporation of the water, crosslinking of the SiO2 phase and thus binding of the kieselguhr particles to each other takes place. - The weight ratio of kieselguhr to PTFE is in the range from 1:1 to 1:2 for obtaining particularly good results.
- The
filter element 2 shown in a fragment inFIG. 2 differs from the filter element according toFIG. 1 by adifferent coating 10. In this case, the finishedcoating 10 in essence consists ofceramic fibers 22, crosslinkedSiO 2 24, organic dispersion adhesive 26 andPTFE particles 28.Kieselguhr particles 12 in a smaller amount than inFIG. 1 are present as well. As regards the coating mass in the state to be applied, the statements (additional components, consistence etc.) made in connection with the embodiment according toFIG. 1 are applicable again. - The pores between the
ceramic fibers 22 have substantially the same size as the pores between thekieselguhr particles 12 in the embodiment according toFIG. 1 . Theceramic fibers 22 typically have a diameter of a few μm and a length of 10 to 30 μm; chemically, they consist typically in essence of SiO2/Al2O3. - Kieselguhr is a common designation for a material consisting typically to 70 to 90% of amorphous silicic acid and to 3 to 12% of water.
- In case of silicone as anti-adhesion component, the drawing figures would have a substantially unchanged appearance. In case of water glass as inorganic binder component, the drawing figures would have a substantially unchanged appearance.
Claims (16)
1. An inherently stable, flow-porous filter element (2) having a porous coating (10) for surface filtration on its afflux surface, said coating (10) comprising:
(a) a main component of particles (12) and/or fibers (22);
(b) an inorganic binder component (14; 24) binding the particles (12) and/or the fibers (22) of the main component to each other;
(c) an adhesive (16; 26) binding the porous coating (10) to the remainder of the filter element; and
(d) an anti-adhesion component (18; 28) mitigating the adhesion of filtered out material to the porous coating and facilitating cleaning of the filter element.
2. A filter element according to claim 1 , characterized in that the main component comprises one material of the group consisting of kieselguhr particles (12), zeolite particles, polyvinyl pyrrolidone particles and mixtures thereof.
3. A filter element according to claim 2 , characterized in that the main component comprises kieselguhr particles (12).
4. A filter element according to claim 1 , characterized in that the main component comprises ceramic fibers (22).
5. A filter element according to claim 1 , characterized in that the binder component comprises one material of the group consisting of crosslinked SiO2 (14; 24), crosslinked SiO2 derivative, crosslinked TiO2 derivative, crosslinked ZrO2, crosslinked ZrO2 derivative and mixtures thereof.
6. A filter element according to claim 5 , characterized in that the binder component comprises crosslinked SiO2 (14; 24).
7. A filter element according to claim 1 , characterized in that the adhesive is an organic dispersion adhesive (16; 26).
8. A filter element according to claim 1 , characterized in that the anti-adhesion component is polytetrafluorothylene (PTFE) (18; 28) and/or silicone.
9. A filter element according to claim 1 , characterized in that the coating (10) is applied in accordance with the sol-gel process.
10. A filter element according to claim 1 , characterized in that the coating (10) contains kieselguhr (12) as main component and PTFE (18; 28) as anti-adhesion component in a weight ratio of 1:1 to 1:2.
11. A filter element according to claim 1 , characterized in that the main body of the filter element (2) is composed of sintered plastics particles (4).
12. The use of the filter element according to claim 1 , comprising particles (12) as main component of the coating (10), for liquid filtration or for oil mist separation.
13. The use according to claim 12 for filtration of cooling lubricant.
14. The use according to claim 12 , wherein foreign particles of a size of more than 5 μm are filtered out in essence completely.
15. The use of the filter element according to claim 1 , comprising fibers (22) as main component of the coating (10), for gas filtration.
16. The use according to claim 15 , wherein foreign particles of a size of more than 2 μm are filtered out in essence completely.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/405,731 US8052878B2 (en) | 2005-03-18 | 2009-03-17 | Filter element with coating for surface filtration |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005012659A DE102005012659A1 (en) | 2005-03-18 | 2005-03-18 | Filter element with coating for surface filtration |
DE102005012659.6 | 2005-03-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/405,731 Division US8052878B2 (en) | 2005-03-18 | 2009-03-17 | Filter element with coating for surface filtration |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060207932A1 true US20060207932A1 (en) | 2006-09-21 |
Family
ID=36933887
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/182,078 Abandoned US20060207932A1 (en) | 2005-03-18 | 2005-07-15 | Filter element with coating for surface filtration |
US12/405,731 Expired - Lifetime US8052878B2 (en) | 2005-03-18 | 2009-03-17 | Filter element with coating for surface filtration |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/405,731 Expired - Lifetime US8052878B2 (en) | 2005-03-18 | 2009-03-17 | Filter element with coating for surface filtration |
Country Status (12)
Country | Link |
---|---|
US (2) | US20060207932A1 (en) |
EP (1) | EP1863585B1 (en) |
JP (1) | JP4790006B2 (en) |
KR (1) | KR20080012829A (en) |
CN (1) | CN100584428C (en) |
CA (1) | CA2601058C (en) |
DE (1) | DE102005012659A1 (en) |
IL (1) | IL185942A (en) |
PL (1) | PL1863585T3 (en) |
RU (1) | RU2393909C2 (en) |
TW (1) | TWI367777B (en) |
WO (1) | WO2006097313A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7309372B2 (en) * | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US7985344B2 (en) | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
GB2493187A (en) * | 2011-07-27 | 2013-01-30 | Imerys Minerals Ltd | Diatomaceous earth product |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US8721756B2 (en) | 2008-06-13 | 2014-05-13 | Donaldson Company, Inc. | Filter construction for use with air in-take for gas turbine and methods |
US20150182898A1 (en) * | 2013-12-31 | 2015-07-02 | Bha Altair, Llc | Ridgid porous plastic filters incorporating polymeric particles and polymeric fibers |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
CN112569804A (en) * | 2019-09-30 | 2021-03-30 | 成都易态科技有限公司 | Composite porous film |
US12172111B2 (en) | 2004-11-05 | 2024-12-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010125410A (en) * | 2008-11-28 | 2010-06-10 | Mitsubishi Paper Mills Ltd | Coated filter medium for liquid filtration |
KR100929039B1 (en) * | 2009-02-05 | 2009-11-26 | (주) 세람 | Method of forming coating layer on ceramic filter with fine pores |
CN104014195B (en) * | 2014-05-06 | 2015-12-30 | 三达膜科技(厦门)有限公司 | A kind of preparation method of coating composite ceramic filter core |
TWI672346B (en) * | 2017-11-30 | 2019-09-21 | 財團法人紡織產業綜合研究所 | Filter media |
US20220001354A1 (en) * | 2018-11-16 | 2022-01-06 | Nittetsu Mining Co., Ltd. | Coating solution |
JP2020082072A (en) * | 2018-11-16 | 2020-06-04 | 日鉄鉱業株式会社 | Coating liquid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073178A (en) * | 1989-04-07 | 1991-12-17 | Asahi Glass Company, Ltd. | Ceramic filter for a dust-containing gas and method for its production |
US5547481A (en) * | 1992-04-06 | 1996-08-20 | Herding Gmbh Entstaubungsanlagen | Filter element having an inherently stable, permeably porous plastic body |
US6309546B1 (en) * | 1997-01-10 | 2001-10-30 | Ellipsis Corporation | Micro and ultrafilters with controlled pore sizes and pore size distribution and methods for making |
US6675654B2 (en) * | 2001-05-09 | 2004-01-13 | Endress + Hauser Gmbh + Co. Kg | Pressure sensing device with moisture filter |
US20060088708A1 (en) * | 2001-10-29 | 2006-04-27 | Koji Nakanishi | Heat-resistant filter element and method for production thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5776353A (en) * | 1996-02-16 | 1998-07-07 | Advanced Minerals Corporation | Advanced composite filtration media |
DD116557A1 (en) * | 1974-04-23 | 1975-12-05 | ||
GB2215326A (en) * | 1988-03-08 | 1989-09-20 | Keletmagyarorszagi Vizuegyi | Multilayer porous structure, particularly for the separation of liquid and solid phases |
DE4418033A1 (en) * | 1994-05-24 | 1995-11-30 | Herding Entstaubung | Filter element with fiber coating and process for its production |
SE9600970D0 (en) * | 1996-03-14 | 1996-03-14 | Johan Sterte | Process for making very thin films of molecular sieves |
US6039546A (en) * | 1996-09-27 | 2000-03-21 | Qed Environmental Systems, Inc. | Float operated pneumatic pump to separate hydrocarbon from water |
AU9173198A (en) | 1997-10-08 | 1999-04-27 | Madison Filter 981 Limited | Improved industrial fabrics |
RU2135261C1 (en) * | 1997-12-05 | 1999-08-27 | Инженерная компания института катализа-XXI | Filtering material |
US6274041B1 (en) * | 1998-12-18 | 2001-08-14 | Kimberly-Clark Worldwide, Inc. | Integrated filter combining physical adsorption and electrokinetic adsorption |
JP2001120927A (en) * | 1999-10-26 | 2001-05-08 | Ambic Co Ltd | Filter material |
JP4918204B2 (en) * | 1999-11-23 | 2012-04-18 | ポール・コーポレーション | Porous media for dissipating charge |
JP2002035518A (en) * | 2000-07-27 | 2002-02-05 | Nittetsu Mining Co Ltd | Heat resistant filter element and method of manufacturing the same |
DE10122511A1 (en) * | 2001-05-09 | 2002-11-14 | Endress & Hauser Gmbh & Co Kg | Relative pressure sensor with moisture filter |
JP2003001028A (en) * | 2001-06-22 | 2003-01-07 | Bridgestone Corp | Filter |
US20030098276A1 (en) * | 2001-07-10 | 2003-05-29 | Carlson Robert A. | Filter for removing bacteria and particulates from fluid stream |
US7258784B2 (en) | 2003-06-10 | 2007-08-21 | Envirodyne Technologies, Inc. | Solid liquid filtration apparatus and method |
DE10357197A1 (en) * | 2003-12-08 | 2005-07-07 | Herding Gmbh Filtertechnik | Filter element with heat resistance and / or chemical resistance |
KR20070085812A (en) * | 2004-11-05 | 2007-08-27 | 도날드슨 캄파니 인코포레이티드 | Filter media and structure |
-
2005
- 2005-03-18 DE DE102005012659A patent/DE102005012659A1/en not_active Ceased
- 2005-07-15 US US11/182,078 patent/US20060207932A1/en not_active Abandoned
-
2006
- 2006-03-16 WO PCT/EP2006/002433 patent/WO2006097313A2/en active Application Filing
- 2006-03-16 KR KR1020077021328A patent/KR20080012829A/en not_active Ceased
- 2006-03-16 PL PL06723477T patent/PL1863585T3/en unknown
- 2006-03-16 JP JP2008501230A patent/JP4790006B2/en active Active
- 2006-03-16 CN CN200680008675A patent/CN100584428C/en active Active
- 2006-03-16 RU RU2007138589/15A patent/RU2393909C2/en not_active IP Right Cessation
- 2006-03-16 CA CA2601058A patent/CA2601058C/en active Active
- 2006-03-16 EP EP06723477A patent/EP1863585B1/en active Active
- 2006-03-20 TW TW095109440A patent/TWI367777B/en not_active IP Right Cessation
-
2007
- 2007-09-16 IL IL185942A patent/IL185942A/en active IP Right Grant
-
2009
- 2009-03-17 US US12/405,731 patent/US8052878B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073178A (en) * | 1989-04-07 | 1991-12-17 | Asahi Glass Company, Ltd. | Ceramic filter for a dust-containing gas and method for its production |
US5547481A (en) * | 1992-04-06 | 1996-08-20 | Herding Gmbh Entstaubungsanlagen | Filter element having an inherently stable, permeably porous plastic body |
US6309546B1 (en) * | 1997-01-10 | 2001-10-30 | Ellipsis Corporation | Micro and ultrafilters with controlled pore sizes and pore size distribution and methods for making |
US6675654B2 (en) * | 2001-05-09 | 2004-01-13 | Endress + Hauser Gmbh + Co. Kg | Pressure sensing device with moisture filter |
US20060088708A1 (en) * | 2001-10-29 | 2006-04-27 | Koji Nakanishi | Heat-resistant filter element and method for production thereof |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12172111B2 (en) | 2004-11-05 | 2024-12-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8512435B2 (en) | 2004-11-05 | 2013-08-20 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7985344B2 (en) | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US8021457B2 (en) | 2004-11-05 | 2011-09-20 | Donaldson Company, Inc. | Filter media and structure |
US9795906B2 (en) | 2004-11-05 | 2017-10-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US11504663B2 (en) | 2004-11-05 | 2022-11-22 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8268033B2 (en) | 2004-11-05 | 2012-09-18 | Donaldson Company, Inc. | Filter medium and structure |
US7309372B2 (en) * | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US10610813B2 (en) | 2004-11-05 | 2020-04-07 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7314497B2 (en) * | 2004-11-05 | 2008-01-01 | Donaldson Company, Inc. | Filter medium and structure |
USRE47737E1 (en) * | 2004-11-05 | 2019-11-26 | Donaldson Company, Inc. | Filter medium and structure |
US8277529B2 (en) | 2004-11-05 | 2012-10-02 | Donaldson Company, Inc. | Filter medium and breather filter structure |
USRE49097E1 (en) * | 2004-11-05 | 2022-06-07 | Donaldson Company, Inc. | Filter medium and structure |
USRE50226E1 (en) * | 2004-11-05 | 2024-12-03 | Donaldson Company, Inc. | Filter medium and structure |
US8641796B2 (en) | 2004-11-05 | 2014-02-04 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8460424B2 (en) | 2005-02-04 | 2013-06-11 | Donaldson Company, Inc. | Aerosol separator; and method |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
US8721756B2 (en) | 2008-06-13 | 2014-05-13 | Donaldson Company, Inc. | Filter construction for use with air in-take for gas turbine and methods |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US10316468B2 (en) | 2009-01-28 | 2019-06-11 | Donaldson Company, Inc. | Fibrous media |
US9885154B2 (en) | 2009-01-28 | 2018-02-06 | Donaldson Company, Inc. | Fibrous media |
US9353481B2 (en) | 2009-01-28 | 2016-05-31 | Donldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8524041B2 (en) | 2009-01-28 | 2013-09-03 | Donaldson Company, Inc. | Method for forming a fibrous media |
GB2493187B (en) * | 2011-07-27 | 2018-02-21 | Imerys Minerals Ltd | Diatomaceous earth product |
US9433918B2 (en) | 2011-07-27 | 2016-09-06 | Imerys Minerals Limited | Method of making diatomaceous earth granulate |
GB2493187A (en) * | 2011-07-27 | 2013-01-30 | Imerys Minerals Ltd | Diatomaceous earth product |
US20150182898A1 (en) * | 2013-12-31 | 2015-07-02 | Bha Altair, Llc | Ridgid porous plastic filters incorporating polymeric particles and polymeric fibers |
CN112569804A (en) * | 2019-09-30 | 2021-03-30 | 成都易态科技有限公司 | Composite porous film |
Also Published As
Publication number | Publication date |
---|---|
CA2601058A1 (en) | 2006-09-21 |
JP4790006B2 (en) | 2011-10-12 |
HK1117452A1 (en) | 2009-01-16 |
TW200637637A (en) | 2006-11-01 |
US20090200247A1 (en) | 2009-08-13 |
WO2006097313A3 (en) | 2007-01-04 |
JP2008535649A (en) | 2008-09-04 |
RU2393909C2 (en) | 2010-07-10 |
WO2006097313A2 (en) | 2006-09-21 |
CN101146588A (en) | 2008-03-19 |
KR20080012829A (en) | 2008-02-12 |
PL1863585T3 (en) | 2013-04-30 |
IL185942A0 (en) | 2008-08-07 |
CN100584428C (en) | 2010-01-27 |
CA2601058C (en) | 2012-09-11 |
EP1863585A2 (en) | 2007-12-12 |
IL185942A (en) | 2013-03-24 |
EP1863585B1 (en) | 2012-11-07 |
DE102005012659A1 (en) | 2006-09-21 |
US8052878B2 (en) | 2011-11-08 |
RU2007138589A (en) | 2009-04-27 |
TWI367777B (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8052878B2 (en) | Filter element with coating for surface filtration | |
Wei et al. | Efficient removal of aerosol oil-mists using superoleophobic filters | |
EP3148667B1 (en) | Use of a mesh comprising a surface of hydrated aluminum oxides for oil-water separation | |
WO1999051319A1 (en) | Improvements in coalescing filters | |
CA2290593A1 (en) | Non-porous gas permeable membrane | |
JP2008536017A (en) | Combined filter element including self-supporting bonded fiber structure | |
WO2015180873A1 (en) | Coated mesh and its use for oil-water separation | |
EP4157488A1 (en) | Filter media comprising adsorptive particles | |
JP6255598B2 (en) | Ceramic filter and manufacturing method thereof | |
US20110290715A1 (en) | Fluid filter and filter system | |
CN109157868A (en) | Method using discarded cigaratte filter preparation water-oil separationg film and the application in water-oil separating | |
HK1117452B (en) | Filter element with coating for surface filtration | |
JP2002273129A (en) | Ceramic film filter | |
CN108349813A (en) | Inorganic membrane filtration product and its method | |
JP2023021136A (en) | ceramic filter | |
JP7517115B2 (en) | Cooking oil deterioration prevention filter and its manufacturing method | |
JP2016023613A (en) | Oil deterioration suppressing device for internal combustion engine | |
JP4519376B2 (en) | Method for producing porous filter | |
JP3619355B2 (en) | Antibacterial ceramic filter | |
JP2003181819A (en) | Honeycomb structure and method for manufacturing honeycomb structure | |
Elmurod et al. | OBTAINING OIL FILTERS FROM LOCAL FIBER RAW AND ITS ADVANTAGES | |
RU2274622C1 (en) | Ceramic filter element manufacturing process | |
PL204526B1 (en) | Method for the separation of liquid organic matters from water emulsions | |
UA56441A (en) | Material for separation and purification of immiscible liquids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HERDING GMBH FILTERTECHNIK, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAJEK, STEFAN;HERDING, URS;PALZ, KURT;AND OTHERS;REEL/FRAME:016647/0913 Effective date: 20050928 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |