US20060157275A1 - Method and system for building modular structures from which oil and gas wells are drilled - Google Patents
Method and system for building modular structures from which oil and gas wells are drilled Download PDFInfo
- Publication number
- US20060157275A1 US20060157275A1 US11/366,188 US36618806A US2006157275A1 US 20060157275 A1 US20060157275 A1 US 20060157275A1 US 36618806 A US36618806 A US 36618806A US 2006157275 A1 US2006157275 A1 US 2006157275A1
- Authority
- US
- United States
- Prior art keywords
- drilling
- platform
- modules
- leg
- wells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims 18
- 238000005553 drilling Methods 0.000 claims 42
- 230000003028 elevating effect Effects 0.000 claims 3
- 239000012530 fluid Substances 0.000 claims 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- 239000004568 cement Substances 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 239000002699 waste material Substances 0.000 claims 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B15/00—Supports for the drilling machine, e.g. derricks or masts
- E21B15/02—Supports for the drilling machine, e.g. derricks or masts specially adapted for underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0091—Offshore structures for wind turbines
Definitions
- the present invention relates generally to the field of oil and gas drilling and production.
- the invention comprises a method and system for building modular platform structures from which oil and gas wells are drilled and maintained in remote or environmentally sensitive locations while minimizing ground disturbance beneath the structures.
- Drilling locations are accessed by a variety of means, for example, by roadway, waterway or other suitable access routes. In particularly remote locations, access to a drilling site is sometimes achieved via airlift, either by helicopter, fixed wing aircraft, or both.
- oil and gas exploration and development sites are constrained by special circumstances that make transportation of drilling equipment to the drilling site difficult or impossible.
- oil and gas may be found in terrain with near-surface water accumulations, such as swamps, tidal flats, jungles, stranded lakes, tundra, muskegs, and permafrost regions.
- near-surface water accumulations such as swamps, tidal flats, jungles, stranded lakes, tundra, muskegs, and permafrost regions.
- swamps, muskegs, and tidal flats the ground is generally too soft to support trucks and other heavy equipment.
- tundra and permafrost regions heavy equipment can be supported only during the winter months.
- certain oil and gas drilling sites are disposed in environmentally sensitive regions, such that surface access by conventional transport vehicles can damage the terrain or affect wildlife breeding areas and/or migration paths.
- Such environmental problems are particularly acute in, for example, arctic tundra and permafrost regions. In such areas, road construction is either prohibited or limited to temporary seasonal access.
- Ice roads are built by spraying water on a frozen surface at very cold temperatures. Ice roads are typically constructed about 35 feet wide and 6 inches thick. At strategic locations, the ice roads are made wider to allow for staging and turn around capabilities.
- Land drilling in arctic regions is currently performed on square-shaped ice pads, the dimensions of which are about 500 feet on a side; typically, the ice pads comprise 6-inch thick sheets of ice.
- the rig itself is built on a thicker ice pad, for example, a 6 to 12-inch thick pad.
- a reserve pit is typically constructed with about a two-foot thickness of ice, plus an ice berm, which provides at least two feet of freeboard space above the pit's contents.
- These reserve pits which are also referred to as ice-bermed drilling waste storage cells, typically have a volume capacity of about 45,000 cubic feet, suitable for accumulating and storing about 15,000 cubic feet of cuttings and effluent.
- an arctic drilling location typically includes an airstrip, which is essentially a broad, extended ice road formed as described above.
- Ice roads can run from tens of miles to hundreds of miles in length, depending upon the proximity or remoteness of the existing infrastructure.
- the fresh water needed for the ice to construct the roads and pads is usually obtained from lakes and ponds that are typically numerous in such regions.
- the construction of an ice road typically requires around 1,000,000 gallons of water per linear mile. Over the course of a winter season, another 200,000 gallons or so per mile are required to maintain the ice road. Therefore, for a ten-mile ice road, a total of 2,000,000 gallons of water would have to be picked up from nearby lakes and sprayed on the selected route to maintain the structural integrity of the ice road.
- An airstrip requires about 2,000,000 gallons of water per mile to construct, and a single drill pad requires about 1,700,000 gallons. For drilling operations on a typical 30-day well, an additional 20,000 gallons per day are required, for a total of about 600,000 gallons for the well. A 75-man camp requires another 5,000 gallons per day, or 150,000 gallons per month, to support. Sometimes, there are two to four wells drilled from each pad, frequently with a geological side-track in each well, and thus even more water is required to maintain the site.
- arctic land drilling operations are conducted only during the winter months.
- roadwork commences in the beginning of January, simultaneous with location building and rig mobilization. Due to the lack of ice roads, initial mobilizations are done with special purpose vehicles such as RolligonsTM, suitable for use even in remote regions of the arctic tundra.
- Drilling operations typically commence around the beginning of February, and last until the middle of April, at which time all equipment and waste-pit contents must be removed before the ice pads and roads melt.
- the tundra is closed to all traffic from May 15 to July 1 due to nesting birds. If the breakup is late, then drilling prospects can be fully tested before demobilizing the rig. Otherwise, the entire infrastructure has to be removed, and then rebuilt the following season.
- the present invention provides a method and system for building interconnectible platform modules from which oil and gas wells are drilled and maintained, either on land or in relatively shallow water, for example, in water having a minimum depth of about 8 feet or less.
- the invention admits to practice in many different drilling and production environments, for example, dry land, swamps, marshes, tundra, permafrost regions, shallow lakes, near-offshore sites, etc.
- the interconnectible platform modules and associated drilling facility are disposed above the surface of the ground.
- modular platforms suitable for accommodating other equipment and structures besides a drilling facility are provided.
- the modular platform structures are transportable to a drilling site by a wide variety of transport means, for example, by truck, railcar, boat, hovercraft, helicopter, etc.
- the modular platform structures are multifunctional, and can be interconnected in a variety of ways to form different portions of a drilling site, for example, a drilling platform, a storage platform for auxiliary drilling equipment, a waste retention platform disposed beneath a drilling platform suitable for accumulating and storing cuttings and production effluent, etc.
- a modular platform structure comprises a plurality of expandable, multifunctional platform modules, which are interconnected to one another on-site to form a unitary platform structure.
- legs for affixing the interconnected platform modules have already been embedded in the ground or otherwise installed at the drilling site prior to delivery of the platform modules.
- modular sections of the platform structure are assembled in a remote location and then transported to the drilling site, where the assembled sections are connected to one another and secured in place by legs that have been embedded in the ground prior to delivery.
- the legs are driven or otherwise installed after the modules have been delivered to the drilling site by, for example, a crane or other suitable device.
- the modular sections are connected such that portions of the platform structure are affixed at different elevation levels, so that certain portions of the structure are isolated for drilling and other operations, while other portions are disposed for support functions such as material storage, housing, waste collection, etc.
- two or more vertical tiers of platform modules i.e., one installed above or nearly above the other
- the interconnected platform modules are assembled on-site, and then elevated above the ground surface on one or more legs coupled to at least one of the platform modules.
- a plurality of platform modules are connected beneath a main drilling platform, and support the drilling and auxiliary operations disposed above, as well as other structures, for example, storage facilities, living quarters, etc.
- the modular platform structures are of a size and shape capable of being transported to a drilling site by a variety of means, for example, truck, railcar, helicopter, hovercraft, etc.
- the modules are also configured to float, so they can be towed over water to the drilling location by a water-borne vessel such as a skiff or hovercraft, etc.
- some of the platform modules comprise structural, weight-bearing members for supporting derricks and heavy equipment, such as draw-works, engines, pumps, cranes, etc.
- some of the platform modules comprise special purpose modules, for example, pipe storage modules; material storage modules for storing materials, for example, cement, drilling fluid, fuel, water, etc.; and equipment modules for housing equipment, for example, generators, fluid handling equipment, etc.
- Other example embodiments comprise modules formed with legs affixed in desired locations, whereas in other example embodiments the platform modules have spaces cut out from the corners (or elsewhere) where legs can be fastened (or passed through) and then connected to one or more receiving members disposed on the platform modules.
- the legs are attached to the platform modules using the same types of connectors as are employed to connect the modules to one another, although in other examples the legs are affixed using a different connection means, for example, a high-load heavy-duty fastener, depending on the weight load to which the module will ultimately be subjected.
- the legs themselves are load bearing, and the load imposed by equipment or a structure installed above is distributed across both the legs and connected platform modules; in still other embodiments, the load bearing legs bear the entire load of equipment or a structure installed above.
- leg members are adapted to be driven or otherwise inserted into the ground to support the elevated drilling platform.
- leg members terminate at a foot structure, for example, a flat, metal brace formed either structurally integral with or bracketed to an outer portion of the leg, used to support the platform structure.
- a foot structure is used in conjunction with other bracing techniques, for example, by passing a leg through the body of a foot structure and driving the lower end of the leg into a shallow hole in which the terminus point is distended.
- the legs comprise sections that are connected together to form legs of a desired length.
- the legs are all approximately the same length after the platform structure is assembled, while in still other embodiments the legs are of different lengths to accommodate various elevation differences between and amongst various portions of the platform and/or inconsistent terrain elevations below the structure.
- the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc.
- the legs comprise a bladder that is inflated with air or other fluids to provide increased support for the legs.
- the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support.
- the legs are removable from the ground when drilling is complete, so as to minimize ground disturbance around the drilling site.
- the legs disassemble at a joint or fastening, etc., disposed near ground level, or in a still more preferred embodiment, beneath ground level, so that the only portion of a leg that remains when the site is evacuated is embedded in the ground and can later be covered over with cement, dirt, etc., as desired.
- a plurality of platform modules are transported to a first drilling location using a known transportation means.
- the platform modules are easily transportable by, for example, helicopter, railcar, or hovercraft, etc., or by a special purpose vehicle adapted to minimize harm to the environment while in passage when necessary.
- the platform modules are suitable for mutual interconnection, and are assembled either on-site or in sections at a remote location prior to transport.
- functionally related portions of the structure are connected prior to transport, so that sections that will later be adjoining, e.g., housing units, equipment storage platforms, waste collection units, etc., are already connected prior to transport.
- a modular structure is assembled on-site and affixed to legs driven into the ground prior to delivery of the modules to the drilling site; this portion of the structure is then elevated over the drilling location.
- drilling equipment is installed on the elevated modular structure, either prior to or following elevation over the drilling site. After the drilling equipment is installed, one or more wells are drilled.
- the modules are transported to the drilling site, and a first platform structure is built and elevated during the winter season, while the ground can still support the weight of transport vehicles and the drilling equipment. After the platform structure has been elevated, drilling continues throughout the year.
- a second platform module is transported to a second drilling location.
- the second platform module is affixed to one or more legs, and elevated to form either a complete second drilling platform or the nucleus for a second drilling platform.
- all or some of the drilling equipment is transported from the first platform structure to the second platform structure, and then installed on the second drilling platform.
- the drilling equipment is transferred from a nearby storage area, for example, the first drilling platform or a nearby transport vessel, etc.
- the drilling equipment is used to drill wells from the second platform as part of a multi-season, multi-location drilling program, or as a relief well for wells drilled from the first platform.
- the platform sections are vertically modular, such that a first elevated platform section is affixed to the same legs as a second platform section disposed above (or nearly so).
- drilling equipment stored on a lower platform module for example, drill bits, drill string, etc.
- drilling equipment stored on a lower platform module is passed from the lower platform to an upper platform for use with drilling, while cuttings and effluent generated by operations on the upper platform section are allowed to fall through a grating, or drain, etc., so as to be accumulated and stored either on or within the lower platform modules, thereby reducing the amount of waste generated during the drilling and production process that would otherwise fall to the ground.
- the entire platform structure (or, in certain instances, portions of the platform structure), has a secondary waste retention device, for example, a tarpaulin or canvas sheet, etc., disposed beneath it to catch and store cuttings or effluent, etc., that fall from above.
- the secondary waste retention device can itself serve as a redundant platform space, suitable for storing equipment that is not currently in use, or for capturing equipment or other items that fall from the platform and would otherwise land in the water below the drilling site.
- the secondary waste retention device has a perimeter boundary width greater than the width of the drilling platform, so that waste and effluent ejected from the site horizontally are also captured.
- the transportable, modular platform sections disclosed herein can be connected into many shapes and sizes, and can be employed to form either an essentially unitary drilling structure or a number of smaller structures erected nearby and serviced in a hop-scotch fashion (or a combination of the two approaches), to create a movable series of land-based, semi-permanent structures that will improve the overall efficiency of drilling platforms disposed in remote or inaccessible locations, minimize the environmental impact of associated drilling and production operations, and which will later be removed without significantly disturbing the ground surface beneath the operation site(s).
- the multifunctional nature of the interconnectible modules encourages efficient equipment disposition between and amongst neighboring drilling sites, and reduces the impact of associated drilling operations on the environment.
- FIG. 1 is a perspective view of a drilling platform according to the present invention.
- FIG. 2 is a perspective view of a plurality of platform modules and legs awaiting assembly according to the present invention.
- FIG. 3 is a perspective view of the platform modules and legs of FIG. 2 assembled according to the present invention.
- FIGS. 4A-4C are perspective views of examples of special purpose platform modules according to the present invention.
- FIGS. 5A and 5B are perspective views of alternative leg attachment arrangements according to the present invention.
- FIGS. 6A and 6B illustrate elevation of assembled platform modules according to the present invention.
- FIGS. 7A-7E illustrate features of platform legs according to the present invention.
- FIG. 8 illustrates renewable energy production facilities installed on a platform according to the present invention.
- FIGS. 9A-9D illustrate a multiple well drilling program according to the present invention.
- FIGS. 10A-10C illustrate a further multiple well drilling program according to the present invention.
- a drilling platform 11 comprising a plurality of interconnected platform modules 13 elevated above the ground on a plurality of legs 15 .
- platform 11 is adapted to support various types of equipment and facilities used in oil and gas drilling or production operations, for example, a derrick 17 , a crane 19 , a helicopter pad 21 , a drilling fluid handling enclosure 23 , bulk storage tanks 25 , and oilfield tubular goods 27 .
- the equipment and facilities illustrated in FIG. 1 are non-limiting, and those of ordinary skill in the art will appreciate that many other types of facilities and equipment may be included on platform 11 without departing from the scope or spirit of the present invention.
- drilling platform 11 is constructed by transporting a plurality of interconnectible platform modules 13 and a plurality of legs 15 to a drilling site, and then assembling the various modules 13 and legs 15 into an essentially unitary structure.
- Platform modules 13 are of a size and weight as to be transportable to the drilling site by a wide variety of transport means, for example, by helicopter, truck, railcar, hovercraft, etc.
- interconnectible platform modules 13 are constructed as box-like structures made of steel or other materials, for example, composite metals, etc., and are about 40 feet in length and from 10 to 20 feet in width.
- platform modules may be formed without a load bearing bottom member, or even lacking a bottom entirely, without departing from the scope of the present invention.
- some of the platform modules comprise structural, weight-bearing members for supporting derricks and heavy equipment, such as draw-works, motors, engines, pumps, cranes, etc.
- some of the platform modules comprise special purpose modules, for example, pipe storage modules; material storage modules for storing, for example, cement, drilling fluid, fuel, water, etc.; and equipment modules for storing equipment, for example, generators, fluid handling equipment, etc.
- legs 15 comprise tubular members with joints at their ends connected together to form legs of appropriate lengths.
- the legs may be of other cross-sections or configurations, for example, driven piles, etc.
- the legs are adapted to be driven or otherwise inserted into the ground to support an elevated drilling platform or other weight-bearing structures.
- the load of a weight-bearing structure is distributed by affixing the structure to one or more of the legs as well as the modular platform structures.
- various structures are entirely affixed to the legs instead of the platform structures as a matter of convenience, for example, a communications center affixed at about eye level on a leg that extends vertically between two or more levels of the platform.
- the legs comprise sections that are connected together to form legs of a desired length.
- the legs are all approximately the same length after the platform structure is assembled, while in still other embodiments the legs are of different lengths to accommodate various elevation differences between and amongst various portions of the platform and/or inconsistent terrain elevations below the structure.
- the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc.
- the legs comprise a bladder that may be inflated with air or other fluids to provide increased support for the legs. In other examples of the invention, the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support.
- Still further example embodiments comprise platform modules formed with legs already affixed in desired locations when the platform modules are delivered to the drilling site, whereas in other example embodiments modules have spaces cut out from the corners (or elsewhere) where legs are fastened (or passed through) and then connected to one or more receiving members disposed on the modules.
- the legs are attached to the modules using the same types of connectors as are employed to connect the modules to one another, although in other examples the legs are affixed using a different connection means, depending on the weight load to which the module will ultimately be subjected.
- said plurality of legs 15 are removable from the ground when drilling operations have been completed.
- the legs are detachable at a joint or fastening disposed near ground level, and are detached at said joint or fastener after drilling is complete, leaving only an lowermost portion of said plurality of legs 15 embedded in the ground, so as to minimize ground disturbance around the drilling site.
- the portions of legs 15 left embedded in the ground after detachment are covered over by cement or dirt, etc., when the site is ultimately evacuated.
- the entire platform structure (or, in certain instances, portions of the platform structure), has a secondary waste retention device (not shown), for example, a tarpaulin or canvas sheet, etc., disposed beneath it to catch and store cuttings or effluent, etc., that fall from above.
- the secondary waste retention device can itself serve as a redundant platform space, suitable, for example, for storing equipment that is not currently in use, or for capturing equipment or other items that fall from the platform and would otherwise land on the ground or in the water below the drilling site.
- the secondary waste retention device has a perimeter boundary width greater than the width of the drilling platform, so that waste and effluent ejected from the site in a horizontal direction may also captured.
- the platform modules 13 are interconnected and at least partially raised on legs 15 .
- a complete drilling platform is assembled, formed from modules 13 while the structure is still on the ground, and then lifted as a unit on a plurality of legs 15 .
- one or more of modules 13 are interconnected, and then elevated to form a nucleus about which other modules are elevated and connected together.
- fluid storage module 13 a includes at its corners holes 27 for the insertion of legs.
- fluid storage module 13 a is essentially a box-like hollow tank that includes a port or pipe 29 , which is useful for the flow of fluids or waste into and out of the interior of fluid storage module 13 a .
- fluid storage modules 13 a are used, for example, in place of a conventional reserve pit to drain and/or store effluent produced by a rig during production, or to flush and store cuttings and other waste products from the drilling platform.
- fluid storage modules 13 a are hauled away with the contents, e.g., cuttings, effluent, etc., contained inside, thereby eliminating the handling of waste fluids and reducing the risk of spillage into the surrounding environment.
- load-bearing module 13 b is a box-like structure having leg holes 31 disposed in its corners, though in other embodiments load-bearing module 13 b is constructed without providing receiving members for legs and is instead adapted only for interconnection with other modules.
- load-bearing module 13 b includes internal structural reinforcement plating 33 to provide greater strength and lend greater structural integrity to module 13 b .
- Internal structural reinforcement plating 33 is illustrated solely for purposes of example, and other reinforcement structures, for example, trusses, I-beams, honey-combs, etc., are utilized as required.
- module 13 b is constructed into different shapes to form various types of structures, for example, floors for housing units, support members for derricks and other heavy pieces of drilling equipment, etc.
- a variety of different materials for example, Aluminum, Titanium, steel, composite metals, etc., are used to make the platform modules 13 .
- a box-like equipment module 13 c is provided, wherein various types of equipment adapted for use in drilling or auxiliary operations are disposed.
- the equipment includes centrifuges 37 , powered by motors 39 connected by various manifolds 41 , for controlling solids and fluid flow.
- equipment modules 13 c comprise other types of equipment, e.g., pumps, hydrocyclones, drilling string, etc. From the foregoing, it should be apparent to one of ordinary skill in the art that the various types of equipment modules 13 c are assembled to provide both a structural platform and a means for storing basic equipment and services for use during drilling operations.
- a module 13 d comprises one or more tubular leg holes 43 disposed in the corners of said module.
- a leg (not shown) is simply adapted to slide through leg hole 43 .
- the leg is fixed in place with respect to leg-hole 43 by any suitable means, such as slips, pins, flanges, or the like.
- an example embodiment of module 13 e is shown comprising a right angle cutout 45 formed at one or more corners of the module.
- cutout 45 is adapted to receive either a blank insert 47 or a leg-engaging insert 49 .
- blank insert 47 may be fastened into notch 45 in the event that no leg needs to be positioned at a corner of module 13 .
- leg-engaging insert 49 includes a bore 51 having a shape adapted to slidingly engage a leg (not shown).
- one of either blank insert 47 or leg-engaging insert 49 is fastened into notch 45 with bolts or other suitable fastening means.
- modules 13 f - 13 j are depicted in structural communication with a plurality of legs 15 .
- a sufficient number of legs 15 is selected in order to provide adequate support for both the interconnected modules 13 f - 13 j and the equipment to be supported thereby (not shown).
- modules 13 f - 13 j in FIG. 6 are of the type illustrated in FIG. 5B . Accordingly, blank inserts 47 or leg-engaging inserts 49 are affixed at corners of the modules 13 , as appropriate.
- legs of appropriate lengths are inserted through the leg inserts and then drilled, driven or otherwise inserted to an appropriate depth in the ground.
- the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc.
- the legs comprise a bladder that is inflated with air or other fluids to provide increased support for the legs.
- the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support.
- the legs are removable from the ground when drilling is complete, so as to minimize ground disturbance around the drilling site.
- the legs disassemble at a joint or fastening, etc., disposed near ground level, or in a still more preferred embodiment, beneath ground level, so that the only portion of a leg that remains when the site is evacuated is embedded in the ground and can later be covered over with cement, dirt, etc., as desired.
- the interconnected modules 13 f - 13 j are raised, to a position as shown in FIG. 6B .
- lifting mechanisms 55 are employed to assist in lifting the interconnected platform modules.
- Appropriate lifting mechanisms may comprise, for example, hydraulic or mechanical lifting mechanisms to assist in lifting the platform modules.
- the interconnected modules are lifted with, for example, cranes, helicopters, or other suitable lifting devices, as would be apparent to one of ordinary skill in the art.
- legs 15 are illustrated as being tubular in FIGS. 6A and 6B , other cross-sections and leg structures are also employed according to further embodiments of the present invention.
- leg 15 n is a tubular member having a main flow area 61 and an annular flow area 63 .
- Leg 15 n is thus configured to accommodate a circulating flow of fluids, for example, refrigerants or water, etc.
- leg 15 n includes a retrievable section 65 disposed at its lower end to allow the pumping of cement or the circulation of other fluids down the main flow area 61 .
- cement 67 or another deposit of material, for example, a combination of water and stone, is pumped into the ground below retrievable 65 .
- Cement 67 provides a footing for leg 15 n.
- leg 15 n may include a separable connection 71 , for example, a fastener, which allows the lower end of leg 15 n to separate and be left in the ground when the platform is ultimately removed from the site. In certain environmentally sensitive environments, the lower end of the leg left embedded in the ground is covered over by, for example, cement or dirt, etc.
- a leg 15 m includes at its lower end an inflatable bladder 73 .
- the inflatable bladder 73 is inflated with a fluid, for example, air, cement, or another suitable fluid, to compact the earth around the lower end of leg 15 m and provide an additional footing for leg 15 m.
- FIGS. 7C and 7D top view
- a leg member 15 is supported by a foot structure 74
- a foot structure 74 for example, a flat, metal brace bracketed to an outer portion of leg 15 , used to support the platform structure.
- foot structure 74 can be used in conjunction with other bracing techniques, for example, the embodiments shown in FIGS. 7A and 7B , or with a shallow hole in which the terminus point of leg 15 is distended.
- renewable energy sources for example, solar panel array 75 , wind mill power generators 77 , etc.
- renewable power sources 75 and 77 provide energy for a variety of drilling-related equipment, for example, pumps, compressors, centrifuges, etc.
- renewable power sources 75 and 77 also provide energy for hydrate production. When so employed, renewable energy sources minimize fuel requirements for the drilling platform while also minimizing air pollution and conserving production fluids.
- platforms 11 a - 11 c are transported to and erected at various, suitably spaced, locations.
- platforms 11 a - 11 c are transported and installed during the winter using aircraft, for example, helicopters; or surface vehicles on ice roads, for example, trucks or RolligonsTM; or a combination thereof.
- platform 11 b is positioned 100 miles from platform 11 a
- platform 11 c is positioned 300 miles from platform 11 b .
- the distances recited herein are solely for purposes of illustration, and other spacings and numbers of platforms can also be provided as desired.
- platform 11 a has installed thereon a complete set of drilling equipment, for example, a derrick 17 , a crane 19 , and the other equipment described with respect to FIG. 1 .
- platforms 11 b and 11 c do not have a complete set of drilling equipment installed thereon, instead, comprising only structural platform features and other sets of fixed equipment, for example, pumps, manifolds, generators, etc.
- platforms 11 b and 11 c await installation of additional drilling equipment.
- one or more wells are drilled from platform 1 , while platforms 11 b and 11 c remain idle.
- the necessary drilling equipment is transported from platform 11 a to platform 11 b .
- the drilling equipment is transferred using aircraft such as helicopters. Since the transport is by air, the transfer may occur during a warm season. Also, since platform 11 b is elevated above the ground surface on legs that are supported below the fall thaw zone, operations on platform 11 b can be conducted during the warm season.
- the transport by air is for purposes of illustration, and those of ordinary skill in the pertinent arts will appreciate that in differing terrains and seasons, equipment transport may be by a variety of transport means, for example, truck, railcar, hovercraft, RolligonTM vehicle, barge, surface effect vehicle, etc.
- platform 11 b after the drilling equipment has been transported to and installed upon platform 11 b , the remaining structural assembly of platform 11 a is left idle. In other embodiments, after drilling equipment is completely installed on platform 11 b , drilling of one or more wells commences, as shown, for example, in the embodiment of FIG. 9C .
- drilling equipment is transferred from platform 11 b to platform 11 c as illustrated, for example, in FIG. 9D .
- the drilling equipment is preferably transported from platform 11 b to platform 11 c by aircraft, though differing terrain and operating environments will call for other transport means as described above.
- transportation of drilling equipment may occur during any season of the year.
- installation and operation of drilling equipment is also performed during any season of the year and not only during the coldest parts of the year.
- the time spent drilling may be doubled or even tripled according to the method of the present invention without substantial additional environmental impact.
- the method and system of the present invention enable wells to be drilled and completed in the normal course of operations without the possibility of having to transport equipment to and from a drilling site multiple times.
- a primary platform 11 a is transported to and erected at a first location, and a secondary platform 11 b is transported to and erected at a second location geographically spaced apart from the first location.
- platform 11 a is a complete drilling platform, while platform 11 b comprises only a single module erected on legs.
- platform 11 b provides a nucleus about which a second complete platform is erected when the need arises.
- the system illustrated in FIGS. 10A-10C is well adapted, for example, to the drilling of a relief well for another well drilled from platform 11 a.
- platform modules are transported to the location of platform 11 b by aircraft, for example, by helicopter.
- workers use previously installed modules as a base for installing new modules.
- a crane is positioned on the installed modules and skidded about to drill or drive legs and position new modules.
- drilling equipment is transported thereto by helicopter or another suitable transport means.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Earth Drilling (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Foundations (AREA)
- Bridges Or Land Bridges (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
A method and system for building modular platform structures from which oil and gas wells are drilled and maintained is disclosed, wherein a plurality of easily transportable, multifunctional platform modules are interconnected on-site to form a unitary platform structure. The interconnected platform modules are elevated above a ground surface on one or more legs coupled to at least one of the platform modules. The elevated, interconnected platform modules support both drilling and production operations in land-based, arctic, inaccessible, near-offshore and environmentally sensitive locations.
Description
- The instant application is a continuation of Ser. No. 10/434,436, filed May 8, 2003, now abandoned, which is a continuation-in-part of U.S. application Ser. No. 10/142,741, filed May 8, 2002, now issued as U.S. Pat. No. 6,745,852 B2, to which application priority is hereby claimed.
- The present invention relates generally to the field of oil and gas drilling and production. In a specific, non-limiting, embodiment, the invention comprises a method and system for building modular platform structures from which oil and gas wells are drilled and maintained in remote or environmentally sensitive locations while minimizing ground disturbance beneath the structures.
- The drilling and maintenance of land oil and gas wells requires a designated area on which to dispose a drilling rig and associated support equipment. Drilling locations are accessed by a variety of means, for example, by roadway, waterway or other suitable access routes. In particularly remote locations, access to a drilling site is sometimes achieved via airlift, either by helicopter, fixed wing aircraft, or both.
- Some potential oil and gas exploration and development sites are constrained by special circumstances that make transportation of drilling equipment to the drilling site difficult or impossible. For example, oil and gas may be found in terrain with near-surface water accumulations, such as swamps, tidal flats, jungles, stranded lakes, tundra, muskegs, and permafrost regions. In the case of swamps, muskegs, and tidal flats, the ground is generally too soft to support trucks and other heavy equipment. In the case of tundra and permafrost regions, heavy equipment can be supported only during the winter months.
- Moreover, certain oil and gas drilling sites are disposed in environmentally sensitive regions, such that surface access by conventional transport vehicles can damage the terrain or affect wildlife breeding areas and/or migration paths. Such environmental problems are particularly acute in, for example, arctic tundra and permafrost regions. In such areas, road construction is either prohibited or limited to temporary seasonal access.
- For example, substantial oil and gas reserves exist in the far northern reaches of Canada and Alaska. However, drilling in such regions presents substantial engineering and environmental challenges. The current art of drilling onshore in arctic tundra is enabled by the use of special purpose vehicles, such as Rolligons™, that can travel across ice roads built on frozen tundra.
- Ice roads are built by spraying water on a frozen surface at very cold temperatures. Ice roads are typically constructed about 35 feet wide and 6 inches thick. At strategic locations, the ice roads are made wider to allow for staging and turn around capabilities.
- Land drilling in arctic regions is currently performed on square-shaped ice pads, the dimensions of which are about 500 feet on a side; typically, the ice pads comprise 6-inch thick sheets of ice. The rig itself is built on a thicker ice pad, for example, a 6 to 12-inch thick pad. A reserve pit is typically constructed with about a two-foot thickness of ice, plus an ice berm, which provides at least two feet of freeboard space above the pit's contents. These reserve pits, which are also referred to as ice-bermed drilling waste storage cells, typically have a volume capacity of about 45,000 cubic feet, suitable for accumulating and storing about 15,000 cubic feet of cuttings and effluent. In addition to the ice roads and the drilling pad, an arctic drilling location typically includes an airstrip, which is essentially a broad, extended ice road formed as described above.
- Ice roads can run from tens of miles to hundreds of miles in length, depending upon the proximity or remoteness of the existing infrastructure. The fresh water needed for the ice to construct the roads and pads is usually obtained from lakes and ponds that are typically numerous in such regions. The construction of an ice road typically requires around 1,000,000 gallons of water per linear mile. Over the course of a winter season, another 200,000 gallons or so per mile are required to maintain the ice road. Therefore, for a ten-mile ice road, a total of 2,000,000 gallons of water would have to be picked up from nearby lakes and sprayed on the selected route to maintain the structural integrity of the ice road.
- An airstrip requires about 2,000,000 gallons of water per mile to construct, and a single drill pad requires about 1,700,000 gallons. For drilling operations on a typical 30-day well, an additional 20,000 gallons per day are required, for a total of about 600,000 gallons for the well. A 75-man camp requires another 5,000 gallons per day, or 150,000 gallons per month, to support. Sometimes, there are two to four wells drilled from each pad, frequently with a geological side-track in each well, and thus even more water is required to maintain the site.
- Thus, for a winter drilling operation involving, for example, 7 wells, 75 miles of road, 7 drilling pads, an airstrip, a 75-man camp, and the drilling of 5 new wells plus re-entry of two wells left incomplete, the fresh water requirements are on the order of tens of millions of gallons.
- Currently, arctic land drilling operations are conducted only during the winter months. Typically, roadwork commences in the beginning of January, simultaneous with location building and rig mobilization. Due to the lack of ice roads, initial mobilizations are done with special purpose vehicles such as Rolligons™, suitable for use even in remote regions of the arctic tundra. Drilling operations typically commence around the beginning of February, and last until the middle of April, at which time all equipment and waste-pit contents must be removed before the ice pads and roads melt. However, in the Alaskan North Slope, the tundra is closed to all traffic from May 15 to July 1 due to nesting birds. If the breakup is late, then drilling prospects can be fully tested before demobilizing the rig. Otherwise, the entire infrastructure has to be removed, and then rebuilt the following season.
- From the foregoing, it is seen that there are several drawbacks associated with current arctic drilling technology. Huge volumes of water are pumped out of ponds and lakes and then allowed to thaw out and become surface run-off again. Also, the ice roads can become contaminated with lube oil and grease, antifreeze, and rubber products. In addition to the environmental impact, the economic costs associated with drilling in arctic regions are very high. Operations may be conducted only during the coldest parts of the year, which is typically less than 4 or 5 months. Thus, actual drilling and testing may be conducted in a window of only two to four months or less. Therefore, development can occur during less than half the year. At the beginning of each drilling season, the roads and pads must all be rebuilt, and equipment must again be transported to and removed from the site, all at substantial financial and environmental cost.
- According to one example embodiment, the present invention provides a method and system for building interconnectible platform modules from which oil and gas wells are drilled and maintained, either on land or in relatively shallow water, for example, in water having a minimum depth of about 8 feet or less. Thus, the invention admits to practice in many different drilling and production environments, for example, dry land, swamps, marshes, tundra, permafrost regions, shallow lakes, near-offshore sites, etc.
- In one example embodiment, the interconnectible platform modules and associated drilling facility are disposed above the surface of the ground. In other embodiments, modular platforms suitable for accommodating other equipment and structures besides a drilling facility are provided. In various other embodiments, the modular platform structures are transportable to a drilling site by a wide variety of transport means, for example, by truck, railcar, boat, hovercraft, helicopter, etc. In still other embodiments, the modular platform structures are multifunctional, and can be interconnected in a variety of ways to form different portions of a drilling site, for example, a drilling platform, a storage platform for auxiliary drilling equipment, a waste retention platform disposed beneath a drilling platform suitable for accumulating and storing cuttings and production effluent, etc.
- According to one example of the invention, a modular platform structure comprises a plurality of expandable, multifunctional platform modules, which are interconnected to one another on-site to form a unitary platform structure. In some embodiments, legs for affixing the interconnected platform modules have already been embedded in the ground or otherwise installed at the drilling site prior to delivery of the platform modules. In other embodiments, modular sections of the platform structure are assembled in a remote location and then transported to the drilling site, where the assembled sections are connected to one another and secured in place by legs that have been embedded in the ground prior to delivery. In still other embodiments, the legs are driven or otherwise installed after the modules have been delivered to the drilling site by, for example, a crane or other suitable device.
- In other example embodiments, the modular sections are connected such that portions of the platform structure are affixed at different elevation levels, so that certain portions of the structure are isolated for drilling and other operations, while other portions are disposed for support functions such as material storage, housing, waste collection, etc. For example, in some embodiments of the invention, two or more vertical tiers of platform modules (i.e., one installed above or nearly above the other) are affixed to common leg members to create platform work spaces dedicated to various functions associated with oil and gas drilling and production.
- In various other example embodiments, the interconnected platform modules are assembled on-site, and then elevated above the ground surface on one or more legs coupled to at least one of the platform modules. In still other embodiments, a plurality of platform modules are connected beneath a main drilling platform, and support the drilling and auxiliary operations disposed above, as well as other structures, for example, storage facilities, living quarters, etc.
- Regardless of whether platform assembly occurs on-site or in sections from a remote location, the modular platform structures are of a size and shape capable of being transported to a drilling site by a variety of means, for example, truck, railcar, helicopter, hovercraft, etc. According to a further example embodiment, the modules are also configured to float, so they can be towed over water to the drilling location by a water-borne vessel such as a skiff or hovercraft, etc.
- According to one example embodiment, some of the platform modules comprise structural, weight-bearing members for supporting derricks and heavy equipment, such as draw-works, engines, pumps, cranes, etc. In further embodiments, some of the platform modules comprise special purpose modules, for example, pipe storage modules; material storage modules for storing materials, for example, cement, drilling fluid, fuel, water, etc.; and equipment modules for housing equipment, for example, generators, fluid handling equipment, etc. Other example embodiments comprise modules formed with legs affixed in desired locations, whereas in other example embodiments the platform modules have spaces cut out from the corners (or elsewhere) where legs can be fastened (or passed through) and then connected to one or more receiving members disposed on the platform modules. In some example embodiments, the legs are attached to the platform modules using the same types of connectors as are employed to connect the modules to one another, although in other examples the legs are affixed using a different connection means, for example, a high-load heavy-duty fastener, depending on the weight load to which the module will ultimately be subjected. In other embodiments, the legs themselves are load bearing, and the load imposed by equipment or a structure installed above is distributed across both the legs and connected platform modules; in still other embodiments, the load bearing legs bear the entire load of equipment or a structure installed above.
- In one specific embodiment of the invention, the legs are adapted to be driven or otherwise inserted into the ground to support the elevated drilling platform. In further embodiments, leg members terminate at a foot structure, for example, a flat, metal brace formed either structurally integral with or bracketed to an outer portion of the leg, used to support the platform structure. In other embodiments, a foot structure is used in conjunction with other bracing techniques, for example, by passing a leg through the body of a foot structure and driving the lower end of the leg into a shallow hole in which the terminus point is distended.
- In still further embodiments, the legs comprise sections that are connected together to form legs of a desired length. In another example embodiment, the legs are all approximately the same length after the platform structure is assembled, while in still other embodiments the legs are of different lengths to accommodate various elevation differences between and amongst various portions of the platform and/or inconsistent terrain elevations below the structure.
- In further embodiments, the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc. In still further embodiments, the legs comprise a bladder that is inflated with air or other fluids to provide increased support for the legs. In other examples of the invention, the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support.
- In a presently preferred embodiment of the invention, the legs are removable from the ground when drilling is complete, so as to minimize ground disturbance around the drilling site. In other embodiments, the legs disassemble at a joint or fastening, etc., disposed near ground level, or in a still more preferred embodiment, beneath ground level, so that the only portion of a leg that remains when the site is evacuated is embedded in the ground and can later be covered over with cement, dirt, etc., as desired.
- According to an example method of the invention, a plurality of platform modules are transported to a first drilling location using a known transportation means. The platform modules are easily transportable by, for example, helicopter, railcar, or hovercraft, etc., or by a special purpose vehicle adapted to minimize harm to the environment while in passage when necessary. The platform modules are suitable for mutual interconnection, and are assembled either on-site or in sections at a remote location prior to transport. In one embodiment of the invention, functionally related portions of the structure are connected prior to transport, so that sections that will later be adjoining, e.g., housing units, equipment storage platforms, waste collection units, etc., are already connected prior to transport.
- According to one example method, a modular structure is assembled on-site and affixed to legs driven into the ground prior to delivery of the modules to the drilling site; this portion of the structure is then elevated over the drilling location. According to various other methods, drilling equipment is installed on the elevated modular structure, either prior to or following elevation over the drilling site. After the drilling equipment is installed, one or more wells are drilled.
- According to a method of the invention particularly useful in hostile climates, for example, in arctic regions, the modules are transported to the drilling site, and a first platform structure is built and elevated during the winter season, while the ground can still support the weight of transport vehicles and the drilling equipment. After the platform structure has been elevated, drilling continues throughout the year.
- According to a still further method of the invention, a second platform module is transported to a second drilling location. The second platform module is affixed to one or more legs, and elevated to form either a complete second drilling platform or the nucleus for a second drilling platform. When it is desired to drill from the second drilling platform, all or some of the drilling equipment is transported from the first platform structure to the second platform structure, and then installed on the second drilling platform. In a further example embodiment, the drilling equipment is transferred from a nearby storage area, for example, the first drilling platform or a nearby transport vessel, etc. According to a still further example embodiment, the drilling equipment is used to drill wells from the second platform as part of a multi-season, multi-location drilling program, or as a relief well for wells drilled from the first platform.
- In other example embodiments, the platform sections are vertically modular, such that a first elevated platform section is affixed to the same legs as a second platform section disposed above (or nearly so). According to further embodiments of the invention, drilling equipment stored on a lower platform module, for example, drill bits, drill string, etc., is passed from the lower platform to an upper platform for use with drilling, while cuttings and effluent generated by operations on the upper platform section are allowed to fall through a grating, or drain, etc., so as to be accumulated and stored either on or within the lower platform modules, thereby reducing the amount of waste generated during the drilling and production process that would otherwise fall to the ground. In other embodiments, the entire platform structure (or, in certain instances, portions of the platform structure), has a secondary waste retention device, for example, a tarpaulin or canvas sheet, etc., disposed beneath it to catch and store cuttings or effluent, etc., that fall from above. In other embodiments, the secondary waste retention device can itself serve as a redundant platform space, suitable for storing equipment that is not currently in use, or for capturing equipment or other items that fall from the platform and would otherwise land in the water below the drilling site. In still further embodiments, the secondary waste retention device has a perimeter boundary width greater than the width of the drilling platform, so that waste and effluent ejected from the site horizontally are also captured.
- As will be appreciated by one of ordinary skill in the appropriate arts, the transportable, modular platform sections disclosed herein can be connected into many shapes and sizes, and can be employed to form either an essentially unitary drilling structure or a number of smaller structures erected nearby and serviced in a hop-scotch fashion (or a combination of the two approaches), to create a movable series of land-based, semi-permanent structures that will improve the overall efficiency of drilling platforms disposed in remote or inaccessible locations, minimize the environmental impact of associated drilling and production operations, and which will later be removed without significantly disturbing the ground surface beneath the operation site(s). The multifunctional nature of the interconnectible modules encourages efficient equipment disposition between and amongst neighboring drilling sites, and reduces the impact of associated drilling operations on the environment.
-
FIG. 1 is a perspective view of a drilling platform according to the present invention. -
FIG. 2 is a perspective view of a plurality of platform modules and legs awaiting assembly according to the present invention. -
FIG. 3 is a perspective view of the platform modules and legs ofFIG. 2 assembled according to the present invention. -
FIGS. 4A-4C are perspective views of examples of special purpose platform modules according to the present invention. -
FIGS. 5A and 5B are perspective views of alternative leg attachment arrangements according to the present invention. -
FIGS. 6A and 6B illustrate elevation of assembled platform modules according to the present invention. -
FIGS. 7A-7E illustrate features of platform legs according to the present invention. -
FIG. 8 illustrates renewable energy production facilities installed on a platform according to the present invention. -
FIGS. 9A-9D illustrate a multiple well drilling program according to the present invention. -
FIGS. 10A-10C illustrate a further multiple well drilling program according to the present invention. - Referring now to the example embodiment shown in
FIG. 1 , adrilling platform 11 is illustrated comprising a plurality ofinterconnected platform modules 13 elevated above the ground on a plurality oflegs 15. According to a further embodiment of the invention,platform 11 is adapted to support various types of equipment and facilities used in oil and gas drilling or production operations, for example, aderrick 17, acrane 19, ahelicopter pad 21, a drillingfluid handling enclosure 23,bulk storage tanks 25, andoilfield tubular goods 27. The equipment and facilities illustrated inFIG. 1 are non-limiting, and those of ordinary skill in the art will appreciate that many other types of facilities and equipment may be included onplatform 11 without departing from the scope or spirit of the present invention. - According to a further example embodiment,
drilling platform 11 is constructed by transporting a plurality ofinterconnectible platform modules 13 and a plurality oflegs 15 to a drilling site, and then assembling thevarious modules 13 andlegs 15 into an essentially unitary structure.Platform modules 13 are of a size and weight as to be transportable to the drilling site by a wide variety of transport means, for example, by helicopter, truck, railcar, hovercraft, etc. In the example embodiment illustrated inFIG. 1 ,interconnectible platform modules 13 are constructed as box-like structures made of steel or other materials, for example, composite metals, etc., and are about 40 feet in length and from 10 to 20 feet in width. However, the shapes and sizes of the modules described herein are solely for the purpose of example and illustration, and those of ordinary skill in the art will recognize that the modules may be of other shapes, sizes and configurations, without limiting the scope of the invention. For example, platform modules may be formed without a load bearing bottom member, or even lacking a bottom entirely, without departing from the scope of the present invention. - According to one embodiment of the invention, some of the platform modules comprise structural, weight-bearing members for supporting derricks and heavy equipment, such as draw-works, motors, engines, pumps, cranes, etc. In further embodiments, some of the platform modules comprise special purpose modules, for example, pipe storage modules; material storage modules for storing, for example, cement, drilling fluid, fuel, water, etc.; and equipment modules for storing equipment, for example, generators, fluid handling equipment, etc.
- According to one embodiment of the invention,
legs 15 comprise tubular members with joints at their ends connected together to form legs of appropriate lengths. However, the legs may be of other cross-sections or configurations, for example, driven piles, etc. In one specific example embodiment, the legs are adapted to be driven or otherwise inserted into the ground to support an elevated drilling platform or other weight-bearing structures. In other example embodiments, the load of a weight-bearing structure is distributed by affixing the structure to one or more of the legs as well as the modular platform structures. In still other embodiments, various structures are entirely affixed to the legs instead of the platform structures as a matter of convenience, for example, a communications center affixed at about eye level on a leg that extends vertically between two or more levels of the platform. - In further embodiments, the legs comprise sections that are connected together to form legs of a desired length. In another example embodiment, the legs are all approximately the same length after the platform structure is assembled, while in still other embodiments the legs are of different lengths to accommodate various elevation differences between and amongst various portions of the platform and/or inconsistent terrain elevations below the structure. In further embodiments, the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc. In still further example embodiments, the legs comprise a bladder that may be inflated with air or other fluids to provide increased support for the legs. In other examples of the invention, the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support.
- Still further example embodiments comprise platform modules formed with legs already affixed in desired locations when the platform modules are delivered to the drilling site, whereas in other example embodiments modules have spaces cut out from the corners (or elsewhere) where legs are fastened (or passed through) and then connected to one or more receiving members disposed on the modules. In some example embodiments, the legs are attached to the modules using the same types of connectors as are employed to connect the modules to one another, although in other examples the legs are affixed using a different connection means, depending on the weight load to which the module will ultimately be subjected.
- According to a presently preferred embodiment of the invention, said plurality of
legs 15 are removable from the ground when drilling operations have been completed. In a further example embodiment, the legs are detachable at a joint or fastening disposed near ground level, and are detached at said joint or fastener after drilling is complete, leaving only an lowermost portion of said plurality oflegs 15 embedded in the ground, so as to minimize ground disturbance around the drilling site. According to a further aspect of the invention, the portions oflegs 15 left embedded in the ground after detachment are covered over by cement or dirt, etc., when the site is ultimately evacuated. - In still further embodiments, the entire platform structure (or, in certain instances, portions of the platform structure), has a secondary waste retention device (not shown), for example, a tarpaulin or canvas sheet, etc., disposed beneath it to catch and store cuttings or effluent, etc., that fall from above. In other embodiments, the secondary waste retention device can itself serve as a redundant platform space, suitable, for example, for storing equipment that is not currently in use, or for capturing equipment or other items that fall from the platform and would otherwise land on the ground or in the water below the drilling site. In still further embodiments, the secondary waste retention device has a perimeter boundary width greater than the width of the drilling platform, so that waste and effluent ejected from the site in a horizontal direction may also captured.
- Referring now to the example shown in
FIG. 3 , theplatform modules 13 are interconnected and at least partially raised onlegs 15. According to one embodiment of the invention, a complete drilling platform is assembled, formed frommodules 13 while the structure is still on the ground, and then lifted as a unit on a plurality oflegs 15. In another example embodiment, one or more ofmodules 13 are interconnected, and then elevated to form a nucleus about which other modules are elevated and connected together. - Referring now to the embodiments of the invention illustrated in
FIGS. 4A-4C , various platform modules according to the present invention are provided to partially demonstrate the platform modules' multifunctional nature. For example, inFIG. 4A , there is illustrated afluid storage module 13 a. In one embodiment of the invention,fluid storage module 13 a includes at its corners holes 27 for the insertion of legs. In other example embodiments,fluid storage module 13 a is essentially a box-like hollow tank that includes a port orpipe 29, which is useful for the flow of fluids or waste into and out of the interior offluid storage module 13 a. In various other embodiments,fluid storage modules 13 a are used, for example, in place of a conventional reserve pit to drain and/or store effluent produced by a rig during production, or to flush and store cuttings and other waste products from the drilling platform. In one embodiment of the invention especially useful in environmentally sensitive drilling regions,fluid storage modules 13 a are hauled away with the contents, e.g., cuttings, effluent, etc., contained inside, thereby eliminating the handling of waste fluids and reducing the risk of spillage into the surrounding environment. - Referring now to the example embodiment of
FIG. 4B , a structural, load-bearingmodule 13 b is depicted. In some example embodiments, load-bearingmodule 13 b is a box-like structure having leg holes 31 disposed in its corners, though in other embodiments load-bearingmodule 13 b is constructed without providing receiving members for legs and is instead adapted only for interconnection with other modules. According to one example embodiment, load-bearingmodule 13 b includes internal structural reinforcement plating 33 to provide greater strength and lend greater structural integrity tomodule 13 b. Internal structural reinforcement plating 33 is illustrated solely for purposes of example, and other reinforcement structures, for example, trusses, I-beams, honey-combs, etc., are utilized as required. In still further example embodiments,module 13 b is constructed into different shapes to form various types of structures, for example, floors for housing units, support members for derricks and other heavy pieces of drilling equipment, etc. In still further embodiments, a variety of different materials, for example, Aluminum, Titanium, steel, composite metals, etc., are used to make theplatform modules 13. - Referring now to the example embodiment illustrated in
FIG. 4C , a box-like equipment module 13 c is provided, wherein various types of equipment adapted for use in drilling or auxiliary operations are disposed. According to one example embodiment, the equipment includescentrifuges 37, powered bymotors 39 connected byvarious manifolds 41, for controlling solids and fluid flow. In further example embodiments,equipment modules 13 c comprise other types of equipment, e.g., pumps, hydrocyclones, drilling string, etc. From the foregoing, it should be apparent to one of ordinary skill in the art that the various types ofequipment modules 13 c are assembled to provide both a structural platform and a means for storing basic equipment and services for use during drilling operations. - Referring now to
FIGS. 5A and 5B , there are shown various example embodiments for the connection of a leg to a platform module. InFIG. 5A , amodule 13 d comprises one or more tubular leg holes 43 disposed in the corners of said module. A leg (not shown) is simply adapted to slide throughleg hole 43. In various example embodiments, the leg is fixed in place with respect to leg-hole 43 by any suitable means, such as slips, pins, flanges, or the like. In the example ofFIG. 5B , an example embodiment ofmodule 13 e is shown comprising aright angle cutout 45 formed at one or more corners of the module. In some embodiments,cutout 45 is adapted to receive either ablank insert 47 or a leg-engaginginsert 49. In other embodiments,blank insert 47 may be fastened intonotch 45 in the event that no leg needs to be positioned at a corner ofmodule 13. In further embodiments, leg-engaginginsert 49 includes abore 51 having a shape adapted to slidingly engage a leg (not shown). In still further embodiments, one of eitherblank insert 47 or leg-engaginginsert 49, as appropriate, is fastened intonotch 45 with bolts or other suitable fastening means. - Referring now to the examples illustrated in
FIGS. 6A and 6B , a series ofinterconnected modules 13 f-13 j are depicted in structural communication with a plurality oflegs 15. According to one embodiment of the invention, a sufficient number oflegs 15 is selected in order to provide adequate support for both theinterconnected modules 13 f-13 j and the equipment to be supported thereby (not shown). According to one example embodiment,modules 13 f-13 j inFIG. 6 are of the type illustrated inFIG. 5B . Accordingly,blank inserts 47 or leg-engaginginserts 49 are affixed at corners of themodules 13, as appropriate. In further example embodiments, legs of appropriate lengths are inserted through the leg inserts and then drilled, driven or otherwise inserted to an appropriate depth in the ground. In still further embodiments, the legs include passageways for the flow of fluids such as air, refrigerants, cement, etc. In still further embodiments, the legs comprise a bladder that is inflated with air or other fluids to provide increased support for the legs. In other examples of the invention, the bladder extends out of the bottom of the leg into the ground as it is being inflated to provide increased support. - In a presently preferred embodiment of the invention, the legs are removable from the ground when drilling is complete, so as to minimize ground disturbance around the drilling site. In other embodiments, the legs disassemble at a joint or fastening, etc., disposed near ground level, or in a still more preferred embodiment, beneath ground level, so that the only portion of a leg that remains when the site is evacuated is embedded in the ground and can later be covered over with cement, dirt, etc., as desired.
- According to one example embodiment, after the
legs 15 have been secured, theinterconnected modules 13 f-13 j are raised, to a position as shown inFIG. 6B . In the embodiment shown inFIG. 6A , liftingmechanisms 55 are employed to assist in lifting the interconnected platform modules. Appropriate lifting mechanisms may comprise, for example, hydraulic or mechanical lifting mechanisms to assist in lifting the platform modules. In other example embodiments, the interconnected modules are lifted with, for example, cranes, helicopters, or other suitable lifting devices, as would be apparent to one of ordinary skill in the art. Althoughlegs 15 are illustrated as being tubular inFIGS. 6A and 6B , other cross-sections and leg structures are also employed according to further embodiments of the present invention. - Referring now to the examples of
FIGS. 7A-7E , various details of legs according to the present invention are illustrated. As seen in the example ofFIG. 7A , a portion of amodule 13 n is shown elevated with respect to aleg 15. In the illustrated embodiment,leg 15 n is a tubular member having amain flow area 61 and anannular flow area 63.Leg 15 n is thus configured to accommodate a circulating flow of fluids, for example, refrigerants or water, etc. According to certain embodiments,leg 15 n includes aretrievable section 65 disposed at its lower end to allow the pumping of cement or the circulation of other fluids down themain flow area 61. In the embodiment illustrated inFIG. 7A ,cement 67, or another deposit of material, for example, a combination of water and stone, is pumped into the ground belowretrievable 65.Cement 67 provides a footing forleg 15 n. - As indicated by
pipe section 69, additional lengths of pipe are, in some embodiments, inserted to lengthenleg 15 n in order to provide sufficient support formodule 13. According to further example embodiments,leg 15 n may include aseparable connection 71, for example, a fastener, which allows the lower end ofleg 15 n to separate and be left in the ground when the platform is ultimately removed from the site. In certain environmentally sensitive environments, the lower end of the leg left embedded in the ground is covered over by, for example, cement or dirt, etc. - In the example of
FIG. 7B , a configuration is shown in which aleg 15 m includes at its lower end aninflatable bladder 73. According to some embodiments of the invention, theinflatable bladder 73 is inflated with a fluid, for example, air, cement, or another suitable fluid, to compact the earth around the lower end ofleg 15 m and provide an additional footing forleg 15 m. - In the examples of
FIGS. 7C and 7D (top view), an embodiment is shown in which aleg member 15 is supported by afoot structure 74, for example, a flat, metal brace bracketed to an outer portion ofleg 15, used to support the platform structure. As seen in the embodiment ofFIG. 7E ,foot structure 74 can be used in conjunction with other bracing techniques, for example, the embodiments shown inFIGS. 7A and 7B , or with a shallow hole in which the terminus point ofleg 15 is distended. - Referring now to the example embodiment of
FIG. 8 , renewable energy sources, for example,solar panel array 75, windmill power generators 77, etc., are supported by the platform. In further embodiments,renewable power sources renewable power sources - Referring now to the embodiments of
FIGS. 9A-9B , there is illustrated a multi-year, multi-seasonal drilling program according to the present invention. In the embodiment ofFIG. 9A , threeplatforms 11 a-11 c are transported to and erected at various, suitably spaced, locations. In embodiments comprising an arctic drilling program,platforms 11 a-11 c are transported and installed during the winter using aircraft, for example, helicopters; or surface vehicles on ice roads, for example, trucks or Rolligons™; or a combination thereof. In a specific, non-limiting, example embodiment,platform 11 b is positioned 100 miles fromplatform 11 a, andplatform 11 c is positioned 300 miles fromplatform 11 b. The distances recited herein are solely for purposes of illustration, and other spacings and numbers of platforms can also be provided as desired. - As shown in the example of
FIG. 9A ,platform 11 a has installed thereon a complete set of drilling equipment, for example, aderrick 17, acrane 19, and the other equipment described with respect toFIG. 1 . In the example embodiments shown inFIGS. 9A-9B ,platforms platforms platforms - Referring now to the example embodiment of
FIG. 9B , after the well or wells drilled fromplatform 11 a are complete, the necessary drilling equipment is transported fromplatform 11 a toplatform 11 b. In the illustrated embodiment, the drilling equipment is transferred using aircraft such as helicopters. Since the transport is by air, the transfer may occur during a warm season. Also, sinceplatform 11 b is elevated above the ground surface on legs that are supported below the fall thaw zone, operations onplatform 11 b can be conducted during the warm season. The transport by air is for purposes of illustration, and those of ordinary skill in the pertinent arts will appreciate that in differing terrains and seasons, equipment transport may be by a variety of transport means, for example, truck, railcar, hovercraft, Rolligon™ vehicle, barge, surface effect vehicle, etc. - According to a further embodiment of the invention, after the drilling equipment has been transported to and installed upon
platform 11 b, the remaining structural assembly ofplatform 11 a is left idle. In other embodiments, after drilling equipment is completely installed onplatform 11 b, drilling of one or more wells commences, as shown, for example, in the embodiment ofFIG. 9C . - In a still further embodiment, after drilling from
platform 11 b has been completed, drilling equipment is transferred fromplatform 11 b toplatform 11 c as illustrated, for example, inFIG. 9D . Again, in the depicted embodiment, the drilling equipment is preferably transported fromplatform 11 b toplatform 11 c by aircraft, though differing terrain and operating environments will call for other transport means as described above. In each of the example embodiments, transportation of drilling equipment may occur during any season of the year. Thus, according to the invention illustrated inFIGS. 9A-9B , installation and operation of drilling equipment is also performed during any season of the year and not only during the coldest parts of the year. Thus, the time spent drilling may be doubled or even tripled according to the method of the present invention without substantial additional environmental impact. Also, the method and system of the present invention enable wells to be drilled and completed in the normal course of operations without the possibility of having to transport equipment to and from a drilling site multiple times. - Referring now to the example embodiment depicted in
FIG. 10A , aprimary platform 11 a is transported to and erected at a first location, and asecondary platform 11 b is transported to and erected at a second location geographically spaced apart from the first location. In the example ofFIG. 10A ,platform 11 a is a complete drilling platform, whileplatform 11 b comprises only a single module erected on legs. According to some embodiments,platform 11 b provides a nucleus about which a second complete platform is erected when the need arises. The system illustrated inFIGS. 10A-10C is well adapted, for example, to the drilling of a relief well for another well drilled fromplatform 11 a. - Referring to the example embodiment of
FIG. 10B , when it is necessary or desired to drill a well from the location ofplatform 11 b, platform modules are transported to the location ofplatform 11 b by aircraft, for example, by helicopter. According to a further embodiment, workers use previously installed modules as a base for installing new modules. According to a still further embodiment, a crane is positioned on the installed modules and skidded about to drill or drive legs and position new modules. As shown in the example embodiment ofFIG. 10C , after thesecond platform 11 b is completed, drilling equipment is transported thereto by helicopter or another suitable transport means. - The foregoing specification is provided for illustrative purposes only, and is not intended to describe all possible aspects of the present invention. Moreover, while the invention has been shown and described in detail with respect to several exemplary embodiments, those of ordinary skill in the pertinent arts will appreciate that minor changes to the description, and various other modifications, omissions and additions may also be made without departing from either the spirit or scope thereof.
Claims (21)
1-20. (canceled)
21. A method of drilling wells, wherein said wells are drilled at drilling sites have a water depth of less than about eight feet, said method comprising:
constructing a plurality of modular drilling platforms at a plurality of drilling sites;
installing a set of drilling equipment on a first of said modular drilling platforms; and
drilling a well from said first modular drilling platform.
22. The method of drilling wells of claim 21 , wherein said method further comprises:
transporting said set of drilling equipment from said first modular drilling platform to a second of said modular drilling platforms;
installing said set of drilling equipment on said second modular drilling platform; and
drilling a well from said second modular drilling platform.
23. The method of drilling wells of claim 22 , wherein said method further comprises:
transporting said set of drilling equipment from said second modular drilling platform to a third of said modular drilling platforms;
installing said set of drilling equipment on said third modular drilling platform; and
drilling a well from said third modular drilling platform.
24. The method of drilling wells of claim 21 , wherein said constructing a plurality of modular drilling platforms further comprises:
transporting at least one platform module to at least one of said plurality of drilling sites; and
elevating said at least one platform module over said at least one of said plurality of drilling sites.
25. The method of drilling wells of claim 24 , wherein said transporting at least one platform module further comprises transporting a plurality of mutually interconnectible platform modules.
26. The method of drilling wells of claim 24 , wherein said transporting at least one platform module further comprises transporting a plurality of multifunctional platform modules.
27. The method of drilling wells of claim 26 , wherein said transporting a plurality of multifunctional platform modules further comprises transporting at least one waste retention platform module.
28. The method of drilling wells of claim 24 , wherein said elevating said at least one platform module further comprises:
transporting at least one leg to said at least one of said drilling sites; and
raising said at least one platform module on said at least one leg.
29. The method of drilling wells of claim 28 , wherein said elevating said at least one platform module further comprises inserting said at least one leg into a surface region disposed beneath said drilling site.
30. The method of drilling wells of claim 29 , wherein said inserting said at least one leg into said surface region further comprises driving said at least one leg into said surface region.
31. The method of drilling wells of claim 29 , wherein said inserting said at least one leg into said surface region further comprises driving said at least one leg into said surface region.
32. The method of drilling wells of claim 29 , said method further comprising injecting a fluid into said at least one leg.
33. The method of drilling wells of claim 32 , wherein said fluid further comprises cement.
34. A system for drilling wells, wherein said wells are drilled at drilling sites have a water depth of less than about eight feet, said system comprising:
a plurality of interconnected platform modules;
at least one leg coupled to at least one of said plurality of interconnected platform modules to support said plurality of interconnected platform modules above a surface region; and
drilling equipment supported by said plurality of interconnected platform modules.
35. The system of claim 34 , wherein each of said platform modules is transportable by aircraft.
36. The system of claim 34 , wherein each of said platform modules is transportable by boat.
37. The system of claim 34 , wherein each of said platform modules is transportable by at least one of a truck, a railcar, a hovercraft, and a helicopter.
38. The system of claim 34 , wherein at least one of said plurality of interconnected platform modules further comprises:
a body portion; and
a leg attachment member coupled to said body portion.
39. The system of claim 38 , wherein said leg attachment member is structurally integral with said body portion.
40. The system of claim 38 , wherein said leg attachment member is separable from said body portion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/366,188 US20060157275A1 (en) | 2002-05-08 | 2006-03-02 | Method and system for building modular structures from which oil and gas wells are drilled |
US12/705,499 US20100143044A1 (en) | 2002-05-08 | 2010-02-12 | Method and System for Building Modular Structures from Which Oil and Gas Wells are Drilled |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/142,741 US6745852B2 (en) | 2002-05-08 | 2002-05-08 | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
US10/434,436 US20040060739A1 (en) | 2002-05-08 | 2003-05-08 | Method and system for building modular structures from which oil and gas wells are drilled |
US11/366,188 US20060157275A1 (en) | 2002-05-08 | 2006-03-02 | Method and system for building modular structures from which oil and gas wells are drilled |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/434,436 Continuation US20040060739A1 (en) | 2002-05-08 | 2003-05-08 | Method and system for building modular structures from which oil and gas wells are drilled |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/705,499 Continuation US20100143044A1 (en) | 2002-05-08 | 2010-02-12 | Method and System for Building Modular Structures from Which Oil and Gas Wells are Drilled |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060157275A1 true US20060157275A1 (en) | 2006-07-20 |
Family
ID=29399977
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/142,741 Expired - Lifetime US6745852B2 (en) | 2002-05-08 | 2002-05-08 | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
US10/434,436 Abandoned US20040060739A1 (en) | 2002-05-08 | 2003-05-08 | Method and system for building modular structures from which oil and gas wells are drilled |
US11/366,188 Abandoned US20060157275A1 (en) | 2002-05-08 | 2006-03-02 | Method and system for building modular structures from which oil and gas wells are drilled |
US12/705,499 Abandoned US20100143044A1 (en) | 2002-05-08 | 2010-02-12 | Method and System for Building Modular Structures from Which Oil and Gas Wells are Drilled |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/142,741 Expired - Lifetime US6745852B2 (en) | 2002-05-08 | 2002-05-08 | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
US10/434,436 Abandoned US20040060739A1 (en) | 2002-05-08 | 2003-05-08 | Method and system for building modular structures from which oil and gas wells are drilled |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/705,499 Abandoned US20100143044A1 (en) | 2002-05-08 | 2010-02-12 | Method and System for Building Modular Structures from Which Oil and Gas Wells are Drilled |
Country Status (10)
Country | Link |
---|---|
US (4) | US6745852B2 (en) |
EP (1) | EP1472431B1 (en) |
AT (1) | ATE376116T1 (en) |
AU (2) | AU2002346420A1 (en) |
CA (1) | CA2479543C (en) |
DE (1) | DE60316910D1 (en) |
DK (1) | DK1472431T3 (en) |
EA (1) | EA006352B1 (en) |
ES (1) | ES2297163T3 (en) |
WO (2) | WO2003095786A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080135233A1 (en) * | 2006-12-08 | 2008-06-12 | Horton Technologies, Llc | Methods for Development of an Offshore Oil and Gas Field |
FR2913241A1 (en) * | 2007-03-01 | 2008-09-05 | Technip France Sa | Large size self-elevating platform for e.g. offshore gas treatment, has secondary legs with driving mechanism to move legs between raised and support positions, move hull between floating and utilization positions, and distribute loads |
WO2010040048A1 (en) * | 2008-10-02 | 2010-04-08 | Berry Allen L | Module supply chain |
US20100316449A1 (en) * | 2009-06-11 | 2010-12-16 | Technip France | Modular topsides system and method having dual installation capabilities for offshore structures |
WO2015117245A1 (en) * | 2014-02-07 | 2015-08-13 | Kemex Ltd. | Detachable pipe rack module with detachable connectors for use in a processing facility |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6715964B2 (en) | 2000-07-28 | 2004-04-06 | Peratrovich, Nottingham & Drage, Inc. | Earth retaining system such as a sheet pile wall with integral soil anchors |
US7163355B2 (en) * | 2001-04-16 | 2007-01-16 | James E. Ingle | Mobile wind-driven electric generating systems and methods |
US6745852B2 (en) * | 2002-05-08 | 2004-06-08 | Anadarko Petroleum Corporation | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
PT2362022T (en) * | 2003-04-08 | 2018-03-28 | Anadarko Petroleum Corp | Method of removing a platform support post |
US6848515B2 (en) * | 2003-04-24 | 2005-02-01 | Helmerich & Payne, Inc. | Modular drilling rig substructure |
US8376659B2 (en) | 2004-07-26 | 2013-02-19 | Benton F. Baugh | Arctic platform method |
US7513934B2 (en) * | 2005-06-06 | 2009-04-07 | Brooks Range Petroleum Corporation | Micro processing system for multi-phase flow |
US8523491B2 (en) | 2006-03-30 | 2013-09-03 | Exxonmobil Upstream Research Company | Mobile, year-round arctic drilling system |
US7921758B2 (en) | 2007-02-09 | 2011-04-12 | Schlumberger Technology Corporation | Impact panels |
CA2633961A1 (en) * | 2007-05-28 | 2008-11-28 | Steve Marshman | Low ground pressure and amphibious coring system |
WO2010017830A1 (en) * | 2008-08-15 | 2010-02-18 | Herrenknecht Vertical Gmbh | Drilling rig for deep well drilling |
US8181697B2 (en) * | 2008-08-15 | 2012-05-22 | National Oilwell Varco L.P. | Multi-function multi-hole drilling rig |
DE102008038456A1 (en) * | 2008-08-20 | 2010-02-25 | Max Streicher Gmbh & Co. Kg Aa | drilling rig |
US20110259271A1 (en) * | 2008-11-03 | 2011-10-27 | Rotary Platforms Nz Limited | Rotary platforms |
US8444348B2 (en) * | 2009-06-30 | 2013-05-21 | Pnd Engineers, Inc. | Modular offshore platforms and associated methods of use and manufacture |
CA2714679C (en) | 2009-09-11 | 2017-11-07 | Pnd Engineers, Inc. | Cellular sheet pile retaining systems with unconnected tail walls, and associated methods of use |
KR200466433Y1 (en) * | 2010-11-04 | 2013-04-15 | 대우조선해양 주식회사 | Enclosed derrick structure of arctic ship |
CN102996073A (en) * | 2011-09-14 | 2013-03-27 | 中国海洋石油总公司 | Small module assembled offshore platform drilling machine |
NO20121390A1 (en) * | 2011-11-29 | 2013-05-30 | Aker Solutions Mmo As | Device by unit for removing a fixed structure at sea and method of using the same |
US8950980B2 (en) | 2012-05-15 | 2015-02-10 | Robert L. Jones | Support platform for an oil field pumping unit using helical piles |
US10072465B1 (en) * | 2013-03-15 | 2018-09-11 | Integris Rentals, L.L.C. | Containment work platform |
US9234349B1 (en) | 2013-08-30 | 2016-01-12 | Convergent Market Research, Inc. | Concrete panel system and method for forming reinforced concrete building components |
NZ624344A (en) * | 2014-04-30 | 2014-05-30 | Ellsworth Stenswick Larry | A seismic isolation system |
CN104018481B (en) * | 2014-05-21 | 2016-03-23 | 中国海洋石油总公司 | A kind of bucket foundation list leg post production platform |
US9533697B2 (en) | 2015-02-08 | 2017-01-03 | Hyperloop Technologies, Inc. | Deployable decelerator |
US9566987B2 (en) | 2015-02-08 | 2017-02-14 | Hyperloop Technologies, Inc. | Low-pressure environment structures |
US9764648B2 (en) | 2015-02-08 | 2017-09-19 | Hyperloop Technologies, Inc. | Power supply system and method for a movable vehicle within a structure |
CA2975711A1 (en) | 2015-02-08 | 2016-08-11 | Hyperloop Technologies, Inc | Transportation system |
US9641117B2 (en) | 2015-02-08 | 2017-05-02 | Hyperloop Technologies, Inc. | Dynamic linear stator segment control |
CN107428258A (en) | 2015-02-08 | 2017-12-01 | 超级高铁技术公司 | Continuous winding for electric motor |
RU2643904C1 (en) | 2015-02-08 | 2018-02-06 | Гиперлуп Текнолоджис, Инк., | Shut off valves and air gates for transport system |
WO2017075512A1 (en) | 2015-10-29 | 2017-05-04 | Hyperloop Technologies, Inc. | Variable frequency drive system |
NL2018499B1 (en) * | 2017-03-10 | 2018-09-21 | Gustomsc Resources Bv | Method for monitoring movement of a cantilever structure of an offshore platform, monitoring system, offshore platform |
US10435861B2 (en) * | 2017-06-30 | 2019-10-08 | TorcSill Foundations, LLC | Pad site construction and method |
US10649427B2 (en) | 2017-08-14 | 2020-05-12 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10699822B2 (en) | 2017-08-14 | 2020-06-30 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10760348B2 (en) | 2017-08-14 | 2020-09-01 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10697275B2 (en) | 2017-08-14 | 2020-06-30 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10745975B2 (en) | 2017-08-14 | 2020-08-18 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10724341B2 (en) | 2017-08-14 | 2020-07-28 | Schlumberger Technology Corporation | Electrical power transmission for well construction apparatus |
US10655292B2 (en) | 2017-09-06 | 2020-05-19 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
US10472953B2 (en) | 2017-09-06 | 2019-11-12 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
US10662709B2 (en) | 2017-09-06 | 2020-05-26 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
WO2019050891A2 (en) * | 2017-09-06 | 2019-03-14 | Schlumberger Technology Corporation | Local electrical room module for well construction apparatus |
US20190078281A1 (en) * | 2017-09-12 | 2019-03-14 | Exmar Offshore Company | Platform for offshore installation |
US10458088B2 (en) * | 2017-09-14 | 2019-10-29 | Jordan Alan | Soil adaptive smart caisson |
MX2020004172A (en) | 2017-10-25 | 2020-10-14 | Caron Tech International Inc | Electrically-powered drilling rig and method for operating thereof. |
CN107653860B (en) * | 2017-10-26 | 2019-10-08 | 中国港湾工程有限责任公司 | Shallow sea domain test survey platform |
CN110065593A (en) * | 2018-01-22 | 2019-07-30 | 吴植融 | A kind of method of construction and straight barrel type platform on straight barrel type platform cylinder deck and top facility |
NL2021625B1 (en) * | 2018-09-13 | 2020-05-06 | Gustomsc Resources Bv | Controlling movement of a cantilever structure of an offshore platform |
CN110386551B (en) * | 2019-07-18 | 2020-11-27 | 上海外高桥造船有限公司 | Hoisting method of helicopter platform |
RU2737319C1 (en) * | 2020-07-14 | 2020-11-27 | Владимир Стефанович Литвиненко | Method of constructing an ice-resistant drilling platform on the shallow shelf of the arctic seas |
CN112030774A (en) * | 2020-09-21 | 2020-12-04 | 重庆建工第一市政工程有限责任公司 | Method for constructing U-shaped sandstone riverbed steel trestle leading hole on shoal |
CN114626178B (en) * | 2020-12-11 | 2024-12-31 | 中国石油天然气股份有限公司 | Method, device, equipment and storage medium for determining production potential of coalbed methane well |
CN113309059A (en) * | 2021-05-10 | 2021-08-27 | 中国海洋石油集团有限公司 | Platform for offshore marginal oil field development |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3343372A (en) * | 1964-05-15 | 1967-09-26 | Werf Gusto V H A F Smulders Fa | Drilling platform |
US3874180A (en) * | 1971-01-18 | 1975-04-01 | Maurice N Sumner | Modular offshore structure system |
US3878662A (en) * | 1973-07-09 | 1975-04-22 | Louis C Cernosek | Method of constructing a remotely located drilling structure |
US3908784A (en) * | 1971-04-01 | 1975-09-30 | Global Marine Inc | Air cushion drilling vehicle |
US3999396A (en) * | 1974-01-22 | 1976-12-28 | James G. Brown & Associates, Inc. | Marine platform assembly |
US4056943A (en) * | 1976-01-30 | 1977-11-08 | Tarrant D Jarratt | Hull construction |
US4065934A (en) * | 1975-12-10 | 1978-01-03 | James G. Brown & Associates, Inc. | Rig transport method |
US4144940A (en) * | 1977-02-07 | 1979-03-20 | Ortemund Leon D | Method and apparatus for installing an offshore pile driving rig |
US4161376A (en) * | 1976-05-20 | 1979-07-17 | Pool Company | Offshore fixed platform and method of erecting the same |
US4290716A (en) * | 1979-04-06 | 1981-09-22 | Compagnie Generale Pour Les Developpements Operationnels Des Richesses Sous Marines "C. G. Doris" | Platform resting on the bottom of a body of water, and method of manufacturing the same |
US4511288A (en) * | 1981-11-30 | 1985-04-16 | Global Marine Inc. | Modular island drilling system |
US4666340A (en) * | 1986-03-28 | 1987-05-19 | Shell Offshore Inc. | Offshore platform with removable modules |
US4784526A (en) * | 1987-06-04 | 1988-11-15 | Exxon Production Research Company | Arctic offshore structure and installation method therefor |
US4819730A (en) * | 1987-07-24 | 1989-04-11 | Schlumberger Technology Corporation | Development drilling system |
US4821816A (en) * | 1986-04-25 | 1989-04-18 | W-N Apache Corporation | Method of assembling a modular drilling machine |
US4825791A (en) * | 1983-08-10 | 1989-05-02 | Mcdermott International, Inc. | Ocean transport of pre-fabricated offshore structures |
US4899832A (en) * | 1985-08-19 | 1990-02-13 | Bierscheid Jr Robert C | Modular well drilling apparatus and methods |
US5052860A (en) * | 1989-10-31 | 1991-10-01 | Transworld Drilling Company | System for moving drilling module to fixed platform |
US5975807A (en) * | 1995-03-15 | 1999-11-02 | Khachaturian; Jon E. | Method and apparatus for the offshore installation of multi-ton packages such as deck packages and jackets |
US6161358A (en) * | 1998-07-28 | 2000-12-19 | Mochizuki; David A. | Modular mobile drilling system and method of use |
US6443659B1 (en) * | 1998-11-23 | 2002-09-03 | Philip J. Patout | Movable self-elevating artificial work island with modular hull |
US6745852B2 (en) * | 2002-05-08 | 2004-06-08 | Anadarko Petroleum Corporation | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3564862A (en) | 1969-09-12 | 1971-02-23 | Hadi T Hashemi | Method and apparatus for supporing a pipeline in permafrost environment |
US3626836A (en) | 1969-12-04 | 1971-12-14 | Schneidler Ind Inc | Drilling operation shelter |
US3602323A (en) | 1969-12-22 | 1971-08-31 | Atlantic Richfield Co | Permafrost drilling method |
US3664437A (en) | 1970-01-23 | 1972-05-23 | Exxon Production Research Co | Drilling on water and ice with a movable vessel |
US3675430A (en) | 1970-02-05 | 1972-07-11 | Atlantic Richfield Co | Arctic construction and drilling |
US3783627A (en) | 1970-02-19 | 1974-01-08 | Global Marine Inc | Air cushion vehicle |
US3650119A (en) | 1970-04-02 | 1972-03-21 | Joseph T Sparling | Method and system for transporting oil by pipe line |
US3670813A (en) | 1970-07-30 | 1972-06-20 | Pan American Petroleum Corp | Pontoon structures in man-made lake for arctic operations |
US3749162A (en) | 1971-04-01 | 1973-07-31 | Global Marine Inc | Arctic oil and gas development |
US3791443A (en) | 1971-12-13 | 1974-02-12 | Atlantic Richfield Co | Foundation for construction on frozen substrata |
US3986783A (en) | 1972-08-24 | 1976-10-19 | Atlantic Richfield Company | Ice road building method and machine |
USRE28101E (en) | 1972-12-29 | 1974-08-06 | Air cushion vehicle | |
US3968999A (en) | 1973-10-11 | 1976-07-13 | The Keller Corporation | Method of making available fuels from arctic environments |
US3986781A (en) | 1973-11-13 | 1976-10-19 | Atlantic Richfield Company | Structure for protecting and insulating frozen substrates and method for producing such structures |
US3946571A (en) | 1975-02-06 | 1976-03-30 | Dresser Industries, Inc. | Service module for hostile environment |
US4056934A (en) * | 1975-09-27 | 1977-11-08 | Toyota Jidosha Kogyo Kabushiki Kaisha | After-burning preventive and flame-out apparatus |
US4440520A (en) | 1980-08-08 | 1984-04-03 | Atlantic Richfield Company | Ice aggregate road and method and apparatus for constructing same |
US4544304A (en) | 1980-08-08 | 1985-10-01 | Atlantic Richfield Company | Ice aggregate road and method and apparatus for constructing same |
NO149320C (en) | 1980-09-02 | 1984-03-28 | Selmer As Ing F | OUTDOOR PLATFORM CONSTRUCTION, PRELIMINARY FOR ARCTIC WATERS |
US4470725A (en) | 1982-03-01 | 1984-09-11 | Ingenior Thor Furuholmen A/S | Offshore platform structure intended to be installed in arctic waters, subjected to drifting icebergs |
US4456072A (en) | 1982-05-03 | 1984-06-26 | Bishop Gilbert H | Ice island structure and drilling method |
US4522258A (en) | 1982-05-14 | 1985-06-11 | Dewald Jack James | Unitized well testing apparatus for use in hostile environments |
US4598276A (en) * | 1983-11-16 | 1986-07-01 | Minnesota Mining And Manufacturing Company | Distributed capacitance LC resonant circuit |
JPH0656015B2 (en) * | 1984-01-30 | 1994-07-27 | 旭化成工業株式会社 | Pile inside digging method |
US4571117A (en) | 1985-02-05 | 1986-02-18 | Johnson Paul | Method and apparatus for forming an ice road over snow-covered terrain |
US5005125A (en) * | 1986-02-28 | 1991-04-02 | Sensormatic Electronics Corporation | Surveillance, pricing and inventory system |
GB8707307D0 (en) | 1987-03-26 | 1987-04-29 | British Petroleum Co Plc | Sea bed process complex |
US5300922A (en) * | 1990-05-29 | 1994-04-05 | Sensormatic Electronics Corporation | Swept frequency electronic article surveillance system having enhanced facility for tag signal detection |
US5072656A (en) | 1991-02-12 | 1991-12-17 | Nabors Industries, Inc. | Method and apparatus for controlling the transfer of tubular members into a shelter |
US5122023A (en) | 1991-02-13 | 1992-06-16 | Nabors Industries, Inc. | Fully articulating ramp extension for pipe handling apparatus |
US5125857A (en) | 1991-02-13 | 1992-06-30 | Nabors Industries, Inc. | Harness method for use in cold weather oil field operations and apparatus |
US5248005A (en) | 1991-02-13 | 1993-09-28 | Nabors Industries, Inc. | Self-propelled drilling module |
US5109934A (en) | 1991-02-13 | 1992-05-05 | Nabors Industries, Inc. | Mobile drilling rig for closely spaced well centers |
US5260690A (en) * | 1992-07-02 | 1993-11-09 | Minnesota Mining And Manufacturing Company | Article removal control system |
US5285194A (en) * | 1992-11-16 | 1994-02-08 | Sensormatic Electronics Corporation | Electronic article surveillance system with transition zone tag monitoring |
US5844485A (en) * | 1995-02-03 | 1998-12-01 | Sensormatic Electronics Corporation | Article of merchandise with EAS and associated indicia |
US6158662A (en) * | 1995-03-20 | 2000-12-12 | Symbol Technologies, Inc. | Triggered optical reader |
US5812065A (en) * | 1995-08-14 | 1998-09-22 | International Business Machines Corporation | Modulation of the resonant frequency of a circuit using an energy field |
JPH1163199A (en) * | 1997-08-28 | 1999-03-05 | Honda Motor Co Ltd | Control device for vehicular hydraulic actuation transmission |
US6048135A (en) | 1997-10-10 | 2000-04-11 | Ensco International Incorporated | Modular offshore drilling unit and method for construction of same |
US6028518A (en) * | 1998-06-04 | 2000-02-22 | Checkpoint Systems, Inc. | System for verifying attachment of an EAS marker to an article after tagging |
US6232870B1 (en) * | 1998-08-14 | 2001-05-15 | 3M Innovative Properties Company | Applications for radio frequency identification systems |
US6424262B2 (en) * | 1998-08-14 | 2002-07-23 | 3M Innovative Properties Company | Applications for radio frequency identification systems |
AU4528199A (en) | 1998-08-17 | 2000-03-06 | Sasol Mining (Proprietary) Limited | Method and apparatus for exploration drilling |
US6045297A (en) | 1998-09-24 | 2000-04-04 | Voorhees; Ronald J. | Method and apparatus for drilling rig construction and mobilization |
US6523319B2 (en) | 1998-10-02 | 2003-02-25 | B.F. Intent, Inc. | Mobile rig |
US6169483B1 (en) * | 1999-05-04 | 2001-01-02 | Sensormatic Electronics Corporation | Self-checkout/self-check-in RFID and electronics article surveillance system |
US6271756B1 (en) * | 1999-12-27 | 2001-08-07 | Checkpoint Systems, Inc. | Security tag detection and localization system |
NO310736B1 (en) | 2000-01-03 | 2001-08-20 | Aker Mh As | Module-based lightweight drilling rig |
US6400273B1 (en) * | 2000-05-05 | 2002-06-04 | Sensormatic Electronics Corporation | EAS system with wide exit coverage and reduced over-range |
US6298928B1 (en) | 2000-07-26 | 2001-10-09 | Michael D. Penchansky | Drill rig and construction and configuration thereof |
US6552661B1 (en) * | 2000-08-25 | 2003-04-22 | Rf Code, Inc. | Zone based radio frequency identification |
US6700489B1 (en) * | 2000-11-27 | 2004-03-02 | Sensormatic Electronics Corporation | Handheld cordless deactivator for electronic article surveillance tags |
US6554075B2 (en) | 2000-12-15 | 2003-04-29 | Halliburton Energy Services, Inc. | CT drilling rig |
US20020112888A1 (en) | 2000-12-18 | 2002-08-22 | Christian Leuchtenberg | Drilling system and method |
US6533045B1 (en) | 2001-05-02 | 2003-03-18 | Jack M. Cooper | Portable drilling rig |
-
2002
- 2002-05-08 US US10/142,741 patent/US6745852B2/en not_active Expired - Lifetime
- 2002-11-14 AU AU2002346420A patent/AU2002346420A1/en not_active Abandoned
- 2002-11-14 WO PCT/US2002/036825 patent/WO2003095786A2/en not_active Application Discontinuation
-
2003
- 2003-05-08 DK DK03726708T patent/DK1472431T3/en active
- 2003-05-08 AT AT03726708T patent/ATE376116T1/en not_active IP Right Cessation
- 2003-05-08 AU AU2003228931A patent/AU2003228931A1/en not_active Abandoned
- 2003-05-08 EA EA200401184A patent/EA006352B1/en unknown
- 2003-05-08 DE DE60316910T patent/DE60316910D1/en not_active Expired - Lifetime
- 2003-05-08 WO PCT/US2003/014457 patent/WO2003095787A2/en active IP Right Grant
- 2003-05-08 CA CA002479543A patent/CA2479543C/en not_active Expired - Lifetime
- 2003-05-08 US US10/434,436 patent/US20040060739A1/en not_active Abandoned
- 2003-05-08 ES ES03726708T patent/ES2297163T3/en not_active Expired - Lifetime
- 2003-05-08 EP EP03726708A patent/EP1472431B1/en not_active Expired - Lifetime
-
2006
- 2006-03-02 US US11/366,188 patent/US20060157275A1/en not_active Abandoned
-
2010
- 2010-02-12 US US12/705,499 patent/US20100143044A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3343372A (en) * | 1964-05-15 | 1967-09-26 | Werf Gusto V H A F Smulders Fa | Drilling platform |
US3874180A (en) * | 1971-01-18 | 1975-04-01 | Maurice N Sumner | Modular offshore structure system |
US3908784A (en) * | 1971-04-01 | 1975-09-30 | Global Marine Inc | Air cushion drilling vehicle |
US3878662A (en) * | 1973-07-09 | 1975-04-22 | Louis C Cernosek | Method of constructing a remotely located drilling structure |
US3999396A (en) * | 1974-01-22 | 1976-12-28 | James G. Brown & Associates, Inc. | Marine platform assembly |
US4065934A (en) * | 1975-12-10 | 1978-01-03 | James G. Brown & Associates, Inc. | Rig transport method |
US4056943A (en) * | 1976-01-30 | 1977-11-08 | Tarrant D Jarratt | Hull construction |
US4161376A (en) * | 1976-05-20 | 1979-07-17 | Pool Company | Offshore fixed platform and method of erecting the same |
US4144940A (en) * | 1977-02-07 | 1979-03-20 | Ortemund Leon D | Method and apparatus for installing an offshore pile driving rig |
US4290716A (en) * | 1979-04-06 | 1981-09-22 | Compagnie Generale Pour Les Developpements Operationnels Des Richesses Sous Marines "C. G. Doris" | Platform resting on the bottom of a body of water, and method of manufacturing the same |
US4511288A (en) * | 1981-11-30 | 1985-04-16 | Global Marine Inc. | Modular island drilling system |
US4825791A (en) * | 1983-08-10 | 1989-05-02 | Mcdermott International, Inc. | Ocean transport of pre-fabricated offshore structures |
US4899832A (en) * | 1985-08-19 | 1990-02-13 | Bierscheid Jr Robert C | Modular well drilling apparatus and methods |
US4666340A (en) * | 1986-03-28 | 1987-05-19 | Shell Offshore Inc. | Offshore platform with removable modules |
US4821816A (en) * | 1986-04-25 | 1989-04-18 | W-N Apache Corporation | Method of assembling a modular drilling machine |
US4784526A (en) * | 1987-06-04 | 1988-11-15 | Exxon Production Research Company | Arctic offshore structure and installation method therefor |
US4819730A (en) * | 1987-07-24 | 1989-04-11 | Schlumberger Technology Corporation | Development drilling system |
US5052860A (en) * | 1989-10-31 | 1991-10-01 | Transworld Drilling Company | System for moving drilling module to fixed platform |
US5975807A (en) * | 1995-03-15 | 1999-11-02 | Khachaturian; Jon E. | Method and apparatus for the offshore installation of multi-ton packages such as deck packages and jackets |
US6161358A (en) * | 1998-07-28 | 2000-12-19 | Mochizuki; David A. | Modular mobile drilling system and method of use |
US6443659B1 (en) * | 1998-11-23 | 2002-09-03 | Philip J. Patout | Movable self-elevating artificial work island with modular hull |
US6499914B1 (en) * | 1998-11-23 | 2002-12-31 | Philip J. Patout | Movable self-elevating artificial work island with modular hull |
US6745852B2 (en) * | 2002-05-08 | 2004-06-08 | Anadarko Petroleum Corporation | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080135233A1 (en) * | 2006-12-08 | 2008-06-12 | Horton Technologies, Llc | Methods for Development of an Offshore Oil and Gas Field |
WO2008073815A1 (en) * | 2006-12-08 | 2008-06-19 | Agr Deepwater Development Systems, Inc. | Methods for development of an offshore oil and gas field |
US8122965B2 (en) * | 2006-12-08 | 2012-02-28 | Horton Wison Deepwater, Inc. | Methods for development of an offshore oil and gas field |
WO2008125765A1 (en) * | 2007-03-01 | 2008-10-23 | Technip France | Very large self-jacking platform for processing gas or oil at sea and method of assembling and installing such a platform |
FR2913241A1 (en) * | 2007-03-01 | 2008-09-05 | Technip France Sa | Large size self-elevating platform for e.g. offshore gas treatment, has secondary legs with driving mechanism to move legs between raised and support positions, move hull between floating and utilization positions, and distribute loads |
AU2008237827B2 (en) * | 2007-03-01 | 2013-05-02 | Technip France | Very large self-jacking platform for processing gas or oil at sea and method of assembling and installing such a platform |
AU2008237827A8 (en) * | 2007-03-01 | 2013-09-12 | Technip France | Very large self-jacking platform for processing gas or oil at sea and method of assembling and installing such a platform |
AU2008237827B8 (en) * | 2007-03-01 | 2013-09-12 | Technip France | Very large self-jacking platform for processing gas or oil at sea and method of assembling and installing such a platform |
WO2010040048A1 (en) * | 2008-10-02 | 2010-04-08 | Berry Allen L | Module supply chain |
US20100107551A1 (en) * | 2008-10-02 | 2010-05-06 | Berry Allen L | Module supply chain |
US8428870B2 (en) | 2008-10-02 | 2013-04-23 | Allen L. Berry | Module supply chain |
US20100316449A1 (en) * | 2009-06-11 | 2010-12-16 | Technip France | Modular topsides system and method having dual installation capabilities for offshore structures |
WO2010144337A3 (en) * | 2009-06-11 | 2011-02-10 | Technip France | Modular topsides system and method having dual installation capabilities for offshore structures |
US8070389B2 (en) | 2009-06-11 | 2011-12-06 | Technip France | Modular topsides system and method having dual installation capabilities for offshore structures |
WO2015117245A1 (en) * | 2014-02-07 | 2015-08-13 | Kemex Ltd. | Detachable pipe rack module with detachable connectors for use in a processing facility |
Also Published As
Publication number | Publication date |
---|---|
AU2003228931A1 (en) | 2003-11-11 |
DE60316910D1 (en) | 2007-11-29 |
CA2479543A1 (en) | 2003-11-20 |
EP1472431A4 (en) | 2005-12-07 |
US6745852B2 (en) | 2004-06-08 |
ES2297163T3 (en) | 2008-05-01 |
WO2003095787A3 (en) | 2004-07-22 |
CA2479543C (en) | 2008-04-01 |
AU2002346420A8 (en) | 2003-11-11 |
EA200401184A1 (en) | 2005-06-30 |
US20030209363A1 (en) | 2003-11-13 |
WO2003095787A2 (en) | 2003-11-20 |
AU2003228931A8 (en) | 2003-11-11 |
EP1472431A2 (en) | 2004-11-03 |
WO2003095786A3 (en) | 2004-07-08 |
US20100143044A1 (en) | 2010-06-10 |
EP1472431B1 (en) | 2007-10-17 |
DK1472431T3 (en) | 2008-03-03 |
US20040060739A1 (en) | 2004-04-01 |
ATE376116T1 (en) | 2007-11-15 |
WO2003095786A2 (en) | 2003-11-20 |
AU2002346420A1 (en) | 2003-11-11 |
EA006352B1 (en) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1472431B1 (en) | Method and system for building modular structures from which oil and gas wells are drilled | |
US7410327B2 (en) | Arctic platform | |
US6045297A (en) | Method and apparatus for drilling rig construction and mobilization | |
US8376659B2 (en) | Arctic platform method | |
RU2353727C1 (en) | Method for construction of group pile foundation for boring and operation of wells in oil and gas deposits | |
Kadaster et al. | Onshore mobile platform: A modular platform for drilling and production operations in remote and environmentally sensitive areas | |
Patil et al. | Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas | |
Self et al. | HARRIET—ONE YEAR FROM APPROVAL TO PRODUCTION | |
Angell et al. | Case History: Ice Island Drilling Application and Well Considerations in Alaskan Beaufort Sea | |
Gardner | Rowan Arctic Rig 41—History and Operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ANADARKO PETROLEUM CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KADASTER, ALI G.;MILLHEIM, KEITH K.;REEL/FRAME:024822/0377 Effective date: 20030822 |