US20060057630A1 - MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia - Google Patents
MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia Download PDFInfo
- Publication number
- US20060057630A1 US20060057630A1 US11/256,381 US25638105A US2006057630A1 US 20060057630 A1 US20060057630 A1 US 20060057630A1 US 25638105 A US25638105 A US 25638105A US 2006057630 A1 US2006057630 A1 US 2006057630A1
- Authority
- US
- United States
- Prior art keywords
- gene expression
- gene
- mll
- leukemia
- informative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 309
- 208000032839 leukemia Diseases 0.000 title claims abstract description 102
- 230000005945 translocation Effects 0.000 title description 33
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 284
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims abstract description 152
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims abstract description 107
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 105
- 150000001875 compounds Chemical class 0.000 claims description 171
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 162
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 149
- 210000004027 cell Anatomy 0.000 claims description 80
- 238000011282 treatment Methods 0.000 claims description 42
- 230000002596 correlated effect Effects 0.000 claims description 25
- 210000002798 bone marrow cell Anatomy 0.000 claims description 21
- 210000000601 blood cell Anatomy 0.000 claims description 19
- 230000007423 decrease Effects 0.000 claims description 19
- 230000001965 increasing effect Effects 0.000 claims description 18
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 claims description 15
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 12
- 230000004075 alteration Effects 0.000 claims description 10
- 208000003747 lymphoid leukemia Diseases 0.000 claims description 9
- 101150029107 MEIS1 gene Proteins 0.000 claims description 8
- 108700041619 Myeloid Ecotropic Viral Integration Site 1 Proteins 0.000 claims description 8
- 102000047831 Myeloid Ecotropic Viral Integration Site 1 Human genes 0.000 claims description 8
- 101100178928 Mus musculus Hoxa9 gene Proteins 0.000 claims description 7
- 206010000830 Acute leukaemia Diseases 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 abstract description 12
- 238000002560 therapeutic procedure Methods 0.000 abstract description 9
- 238000012216 screening Methods 0.000 abstract description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 168
- 102000004196 processed proteins & peptides Human genes 0.000 description 165
- 229920001184 polypeptide Polymers 0.000 description 162
- 239000000523 sample Substances 0.000 description 73
- 230000000694 effects Effects 0.000 description 44
- 239000000203 mixture Substances 0.000 description 44
- 102000039446 nucleic acids Human genes 0.000 description 38
- 108020004707 nucleic acids Proteins 0.000 description 38
- 150000007523 nucleic acids Chemical class 0.000 description 38
- 239000000427 antigen Substances 0.000 description 32
- 239000003795 chemical substances by application Substances 0.000 description 32
- 108091007433 antigens Proteins 0.000 description 30
- 102000036639 antigens Human genes 0.000 description 30
- 230000004071 biological effect Effects 0.000 description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 29
- 108020004999 messenger RNA Proteins 0.000 description 29
- 241000282414 Homo sapiens Species 0.000 description 26
- 230000027455 binding Effects 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 239000003814 drug Substances 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 230000001225 therapeutic effect Effects 0.000 description 23
- 201000010099 disease Diseases 0.000 description 22
- 108091034117 Oligonucleotide Proteins 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- 239000002299 complementary DNA Substances 0.000 description 19
- 239000000758 substrate Substances 0.000 description 19
- 239000012634 fragment Substances 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 239000013598 vector Substances 0.000 description 16
- 230000000692 anti-sense effect Effects 0.000 description 15
- 229940124597 therapeutic agent Drugs 0.000 description 15
- 102000053642 Catalytic RNA Human genes 0.000 description 14
- 108090000994 Catalytic RNA Proteins 0.000 description 14
- 238000003491 array Methods 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 108091092562 ribozyme Proteins 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 238000013518 transcription Methods 0.000 description 13
- 230000035897 transcription Effects 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 12
- 238000013459 approach Methods 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- 238000009396 hybridization Methods 0.000 description 12
- 238000000513 principal component analysis Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 108060003951 Immunoglobulin Proteins 0.000 description 11
- 210000003719 b-lymphocyte Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- -1 but not limited to Chemical class 0.000 description 11
- 210000000349 chromosome Anatomy 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 102000018358 immunoglobulin Human genes 0.000 description 11
- 230000003993 interaction Effects 0.000 description 11
- 102100032912 CD44 antigen Human genes 0.000 description 10
- 108700005087 Homeobox Genes Proteins 0.000 description 10
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 238000002493 microarray Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 102100021090 Homeobox protein Hox-A9 Human genes 0.000 description 9
- 239000000074 antisense oligonucleotide Substances 0.000 description 9
- 238000012230 antisense oligonucleotides Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 108010027263 homeobox protein HOXA9 Proteins 0.000 description 9
- 210000004698 lymphocyte Anatomy 0.000 description 9
- 238000013519 translation Methods 0.000 description 9
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 8
- 108700008625 Reporter Genes Proteins 0.000 description 8
- 102100038081 Signal transducer CD24 Human genes 0.000 description 8
- 239000000284 extract Substances 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 7
- 102100039564 Leukosialin Human genes 0.000 description 7
- 102000003729 Neprilysin Human genes 0.000 description 7
- 108090000028 Neprilysin Proteins 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 230000003394 haemopoietic effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000006166 lysate Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000008707 rearrangement Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000005557 antagonist Substances 0.000 description 6
- 210000001185 bone marrow Anatomy 0.000 description 6
- 239000003184 complementary RNA Substances 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 208000034951 Genetic Translocation Diseases 0.000 description 5
- 101000975401 Homo sapiens Inositol 1,4,5-trisphosphate receptor type 3 Proteins 0.000 description 5
- 102100024035 Inositol 1,4,5-trisphosphate receptor type 3 Human genes 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 239000002671 adjuvant Substances 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000002559 cytogenic effect Effects 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 239000013610 patient sample Substances 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 238000007423 screening assay Methods 0.000 description 5
- 238000001086 yeast two-hybrid system Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 4
- 102000004149 Annexin A2 Human genes 0.000 description 4
- 108090000668 Annexin A2 Proteins 0.000 description 4
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 4
- 101001042446 Homo sapiens Galectin-2 Proteins 0.000 description 4
- 101001111742 Homo sapiens Rhombotin-2 Proteins 0.000 description 4
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 102100023876 Rhombotin-2 Human genes 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 230000003302 anti-idiotype Effects 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 239000013592 cell lysate Substances 0.000 description 4
- 208000018805 childhood acute lymphoblastic leukemia Diseases 0.000 description 4
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000002790 cross-validation Methods 0.000 description 4
- 231100000599 cytotoxic agent Toxicity 0.000 description 4
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 4
- 229940000406 drug candidate Drugs 0.000 description 4
- 238000009509 drug development Methods 0.000 description 4
- 229960002949 fluorouracil Drugs 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 210000004408 hybridoma Anatomy 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000011285 therapeutic regimen Methods 0.000 description 4
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 108091007504 ADAM10 Proteins 0.000 description 3
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 3
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 3
- 108010060267 Cyclin A1 Proteins 0.000 description 3
- 102100025176 Cyclin-A1 Human genes 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- 108010060248 DNA Ligase ATP Proteins 0.000 description 3
- 102100033195 DNA ligase 4 Human genes 0.000 description 3
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- 238000009007 Diagnostic Kit Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102100039673 Disintegrin and metalloproteinase domain-containing protein 10 Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102100035427 Forkhead box protein O1 Human genes 0.000 description 3
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 3
- 101000877727 Homo sapiens Forkhead box protein O1 Proteins 0.000 description 3
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102100025744 Mothers against decapentaplegic homolog 1 Human genes 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 3
- 108010067787 Proteoglycans Proteins 0.000 description 3
- 102000016611 Proteoglycans Human genes 0.000 description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 3
- 101700032040 SMAD1 Proteins 0.000 description 3
- 102100023489 Transcription factor 4 Human genes 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 230000009260 cross reactivity Effects 0.000 description 3
- 229960000975 daunorubicin Drugs 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 229960004679 doxorubicin Drugs 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000007914 intraventricular administration Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229960004961 mechlorethamine Drugs 0.000 description 3
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 3
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 3
- 229960004857 mitomycin Drugs 0.000 description 3
- 210000005087 mononuclear cell Anatomy 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 229960003171 plicamycin Drugs 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 238000010837 poor prognosis Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000011269 treatment regimen Methods 0.000 description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 102000004145 Annexin A1 Human genes 0.000 description 2
- 108090000663 Annexin A1 Proteins 0.000 description 2
- 101000719121 Arabidopsis thaliana Protein MEI2-like 1 Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 101710112752 Cytotoxin Proteins 0.000 description 2
- 229940122858 Elastase inhibitor Drugs 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- FWKQNCXZGNBPFD-UHFFFAOYSA-N Guaiazulene Chemical compound CC(C)C1=CC=C(C)C2=CC=C(C)C2=C1 FWKQNCXZGNBPFD-UHFFFAOYSA-N 0.000 description 2
- 101150033506 HOX gene Proteins 0.000 description 2
- 102100025116 Homeobox protein Hox-A4 Human genes 0.000 description 2
- 102100025110 Homeobox protein Hox-A5 Human genes 0.000 description 2
- 102100022650 Homeobox protein Hox-A7 Human genes 0.000 description 2
- 108010048671 Homeodomain Proteins Proteins 0.000 description 2
- 102000009331 Homeodomain Proteins Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101001077578 Homo sapiens Homeobox protein Hox-A4 Proteins 0.000 description 2
- 101001077568 Homo sapiens Homeobox protein Hox-A5 Proteins 0.000 description 2
- 101001045116 Homo sapiens Homeobox protein Hox-A7 Proteins 0.000 description 2
- 101000952181 Homo sapiens MLX-interacting protein Proteins 0.000 description 2
- 101001017592 Homo sapiens Mediator of RNA polymerase II transcription subunit 13-like Proteins 0.000 description 2
- 101000583839 Homo sapiens Muscleblind-like protein 1 Proteins 0.000 description 2
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 description 2
- 101000857677 Homo sapiens Runt-related transcription factor 1 Proteins 0.000 description 2
- 101000639143 Homo sapiens Vesicle-associated membrane protein 5 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 102100037406 MLX-interacting protein Human genes 0.000 description 2
- 102100034164 Mediator of RNA polymerase II transcription subunit 13-like Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- 229930192392 Mitomycin Natural products 0.000 description 2
- 101100295563 Mus musculus Pou2af1 gene Proteins 0.000 description 2
- 102100030965 Muscleblind-like protein 1 Human genes 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 102000003505 Myosin Human genes 0.000 description 2
- 102100035044 Myosin light chain kinase, smooth muscle Human genes 0.000 description 2
- 101710198035 Myosin light chain kinase, smooth muscle Proteins 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 2
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 2
- 102100040120 Prominin-1 Human genes 0.000 description 2
- 102100025373 Runt-related transcription factor 1 Human genes 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000251131 Sphyrna Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 108010048992 Transcription Factor 4 Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- VGQOVCHZGQWAOI-UHFFFAOYSA-N UNPD55612 Natural products N1C(O)C2CC(C=CC(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-UHFFFAOYSA-N 0.000 description 2
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 2
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 102100031484 Vesicle-associated membrane protein 5 Human genes 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- VGQOVCHZGQWAOI-HYUHUPJXSA-N anthramycin Chemical compound N1[C@@H](O)[C@@H]2CC(\C=C\C(N)=O)=CN2C(=O)C2=CC=C(C)C(O)=C12 VGQOVCHZGQWAOI-HYUHUPJXSA-N 0.000 description 2
- 229940121363 anti-inflammatory agent Drugs 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- CNBGNNVCVSKAQZ-UHFFFAOYSA-N benzydamine Chemical compound C12=CC=CC=C2C(OCCCN(C)C)=NN1CC1=CC=CC=C1 CNBGNNVCVSKAQZ-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 229960002092 busulfan Drugs 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 210000004671 cell-free system Anatomy 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000287 crude extract Substances 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 229960000684 cytarabine Drugs 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 239000002619 cytotoxin Substances 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 101150007302 dntt gene Proteins 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 239000003602 elastase inhibitor Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229960004194 lidocaine Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229960002247 lomustine Drugs 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 2
- 229960004919 procaine Drugs 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 229960003087 tioguanine Drugs 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 2
- 229960004528 vincristine Drugs 0.000 description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 2
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 2
- 229960002110 vincristine sulfate Drugs 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- CADQNXRGRFJSQY-UOWFLXDJSA-N (2r,3r,4r)-2-fluoro-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@@H](O)[C@@](O)(F)C=O CADQNXRGRFJSQY-UOWFLXDJSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- IDINUJSAMVOPCM-UHFFFAOYSA-N 15-Deoxyspergualin Natural products NCCCNCCCCNC(=O)C(O)NC(=O)CCCCCCN=C(N)N IDINUJSAMVOPCM-UHFFFAOYSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- XUDSQIDNHJMBBW-FOWTUZBSSA-N 2-[4-[(e)-n-hydroxy-c-methylcarbonimidoyl]phenoxy]-1-piperidin-1-ylethanone Chemical compound C1=CC(C(=N/O)/C)=CC=C1OCC(=O)N1CCCCC1 XUDSQIDNHJMBBW-FOWTUZBSSA-N 0.000 description 1
- FSPQCTGGIANIJZ-UHFFFAOYSA-N 2-[[(3,4-dimethoxyphenyl)-oxomethyl]amino]-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)NC1=C(C(N)=O)C(CCCC2)=C2S1 FSPQCTGGIANIJZ-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- WOVTUUKKGNHVFZ-UHFFFAOYSA-N 4-(fluoren-9-ylidenemethyl)benzenecarboximidamide Chemical compound C1=CC(C(=N)N)=CC=C1C=C1C2=CC=CC=C2C2=CC=CC=C21 WOVTUUKKGNHVFZ-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- 102100022464 5'-nucleotidase Human genes 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- DVEQCIBLXRSYPH-UHFFFAOYSA-N 5-butyl-1-cyclohexylbarbituric acid Chemical compound O=C1C(CCCC)C(=O)NC(=O)N1C1CCCCC1 DVEQCIBLXRSYPH-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 102100033824 A-kinase anchor protein 12 Human genes 0.000 description 1
- 102100031901 A-kinase anchor protein 2 Human genes 0.000 description 1
- 108010053423 ADP-ribosylation factor related proteins Proteins 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 102100031934 Adhesion G-protein coupled receptor G1 Human genes 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 1
- 102100032197 Alpha-crystallin A chain Human genes 0.000 description 1
- 102100022749 Aminopeptidase N Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 102100040434 Ankyrin repeat and BTB/POZ domain-containing protein 2 Human genes 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 102000003984 Aryl Hydrocarbon Receptors Human genes 0.000 description 1
- 108090000448 Aryl Hydrocarbon Receptors Proteins 0.000 description 1
- 102000015790 Asparaginase Human genes 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 108010006835 Atrial Natriuretic Factor Receptors Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 102100027203 B-cell antigen receptor complex-associated protein beta chain Human genes 0.000 description 1
- 101710166261 B-cell antigen receptor complex-associated protein beta chain Proteins 0.000 description 1
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108020004256 Beta-lactamase Proteins 0.000 description 1
- 102100037674 Bis(5'-adenosyl)-triphosphatase Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102100028252 Brain acid soluble protein 1 Human genes 0.000 description 1
- 102100026437 Branched-chain-amino-acid aminotransferase, cytosolic Human genes 0.000 description 1
- 102000003930 C-Type Lectins Human genes 0.000 description 1
- 108090000342 C-Type Lectins Proteins 0.000 description 1
- 102100027207 CD27 antigen Human genes 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 210000003967 CLP Anatomy 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102000004612 Calcium-Transporting ATPases Human genes 0.000 description 1
- 108010017954 Calcium-Transporting ATPases Proteins 0.000 description 1
- 241000189662 Calla Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102100038712 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 102100028757 Chondroitin sulfate proteoglycan 4 Human genes 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 102100031162 Collagen alpha-1(XVIII) chain Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 102000003706 Complement factor D Human genes 0.000 description 1
- 108090000059 Complement factor D Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108050001175 Connexin Proteins 0.000 description 1
- 102000010970 Connexin Human genes 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000002495 Cyclin H Human genes 0.000 description 1
- 108010068237 Cyclin H Proteins 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 101710177611 DNA polymerase II large subunit Proteins 0.000 description 1
- 101710184669 DNA polymerase II small subunit Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 101710162371 Dihydroxy-acid dehydratase 1 Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102100039104 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit DAD1 Human genes 0.000 description 1
- 101710178850 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit DAD1 Proteins 0.000 description 1
- 102100032082 Dr1-associated corepressor Human genes 0.000 description 1
- 108700023507 Drosophila trx Proteins 0.000 description 1
- 102100023401 Dual specificity mitogen-activated protein kinase kinase 6 Human genes 0.000 description 1
- 102100028554 Dual specificity tyrosine-phosphorylation-regulated kinase 1A Human genes 0.000 description 1
- 101150052771 Dyrk3 gene Proteins 0.000 description 1
- 102100031918 E3 ubiquitin-protein ligase NEDD4 Human genes 0.000 description 1
- 102100021807 ER degradation-enhancing alpha-mannosidase-like protein 1 Human genes 0.000 description 1
- 101150106008 ERG11 gene Proteins 0.000 description 1
- 102100023226 Early growth response protein 1 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- MBYXEBXZARTUSS-QLWBXOBMSA-N Emetamine Natural products O(C)c1c(OC)cc2c(c(C[C@@H]3[C@H](CC)CN4[C@H](c5c(cc(OC)c(OC)c5)CC4)C3)ncc2)c1 MBYXEBXZARTUSS-QLWBXOBMSA-N 0.000 description 1
- URJQOOISAKEBKW-UHFFFAOYSA-N Emorfazone Chemical compound C1=NN(C)C(=O)C(OCC)=C1N1CCOCC1 URJQOOISAKEBKW-UHFFFAOYSA-N 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102100032460 Ensconsin Human genes 0.000 description 1
- 101710082033 Ensconsin Proteins 0.000 description 1
- 102000057955 Eosinophil Cationic Human genes 0.000 description 1
- 101710191360 Eosinophil cationic protein Proteins 0.000 description 1
- 102000013888 Eosinophil-Derived Neurotoxin Human genes 0.000 description 1
- 108010050456 Eosinophil-Derived Neurotoxin Proteins 0.000 description 1
- 102100036725 Epithelial discoidin domain-containing receptor 1 Human genes 0.000 description 1
- 101710131668 Epithelial discoidin domain-containing receptor 1 Proteins 0.000 description 1
- 102100030146 Epithelial membrane protein 3 Human genes 0.000 description 1
- 101710143764 Epithelial membrane protein 3 Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 102100037682 Fasciculation and elongation protein zeta-1 Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 102000016621 Focal Adhesion Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108010067715 Focal Adhesion Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108090000852 Forkhead Transcription Factors Proteins 0.000 description 1
- 102100021245 G-protein coupled receptor 183 Human genes 0.000 description 1
- 101710101406 G-protein coupled receptor 183 Proteins 0.000 description 1
- 102000004300 GABA-A Receptors Human genes 0.000 description 1
- 108090000839 GABA-A Receptors Proteins 0.000 description 1
- 102100037740 GRB2-associated-binding protein 1 Human genes 0.000 description 1
- 101710098687 GRB2-associated-binding protein 1 Proteins 0.000 description 1
- 102100028496 Galactocerebrosidase Human genes 0.000 description 1
- 108010042681 Galactosylceramidase Proteins 0.000 description 1
- 102100021735 Galectin-2 Human genes 0.000 description 1
- 241001669573 Galeorhinus galeus Species 0.000 description 1
- 102100039928 Gamma-interferon-inducible protein 16 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 108010026389 Gramicidin Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100033067 Growth factor receptor-bound protein 2 Human genes 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 102100027377 HBS1-like protein Human genes 0.000 description 1
- 102100033079 HLA class II histocompatibility antigen, DM alpha chain Human genes 0.000 description 1
- 102100031258 HLA class II histocompatibility antigen, DM beta chain Human genes 0.000 description 1
- 102100031547 HLA class II histocompatibility antigen, DO alpha chain Human genes 0.000 description 1
- 108010050568 HLA-DM antigens Proteins 0.000 description 1
- 101150065642 HOXA4 gene Proteins 0.000 description 1
- 101150008172 HOXA9 gene Proteins 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 102100022599 Homeobox protein Hox-C6 Human genes 0.000 description 1
- 101000779382 Homo sapiens A-kinase anchor protein 12 Proteins 0.000 description 1
- 101000774738 Homo sapiens A-kinase anchor protein 2 Proteins 0.000 description 1
- 101000897856 Homo sapiens Adenylyl cyclase-associated protein 2 Proteins 0.000 description 1
- 101000775042 Homo sapiens Adhesion G-protein coupled receptor G1 Proteins 0.000 description 1
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 1
- 101000920937 Homo sapiens Alpha-crystallin A chain Proteins 0.000 description 1
- 101000757160 Homo sapiens Aminopeptidase N Proteins 0.000 description 1
- 101000964346 Homo sapiens Ankyrin repeat and BTB/POZ domain-containing protein 2 Proteins 0.000 description 1
- 101000935689 Homo sapiens Brain acid soluble protein 1 Proteins 0.000 description 1
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 1
- 101000883304 Homo sapiens Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 Proteins 0.000 description 1
- 101000638315 Homo sapiens Dr1-associated corepressor Proteins 0.000 description 1
- 101000624426 Homo sapiens Dual specificity mitogen-activated protein kinase kinase 6 Proteins 0.000 description 1
- 101000838016 Homo sapiens Dual specificity tyrosine-phosphorylation-regulated kinase 1A Proteins 0.000 description 1
- 101000636713 Homo sapiens E3 ubiquitin-protein ligase NEDD4 Proteins 0.000 description 1
- 101000895701 Homo sapiens ER degradation-enhancing alpha-mannosidase-like protein 1 Proteins 0.000 description 1
- 101001049697 Homo sapiens Early growth response protein 1 Proteins 0.000 description 1
- 101000960209 Homo sapiens Gamma-interferon-inducible protein 16 Proteins 0.000 description 1
- 101000871017 Homo sapiens Growth factor receptor-bound protein 2 Proteins 0.000 description 1
- 101001009070 Homo sapiens HBS1-like protein Proteins 0.000 description 1
- 101000927344 Homo sapiens HLA class II histocompatibility antigen, DM alpha chain Proteins 0.000 description 1
- 101000866278 Homo sapiens HLA class II histocompatibility antigen, DO alpha chain Proteins 0.000 description 1
- 101001045154 Homo sapiens Homeobox protein Hox-C6 Proteins 0.000 description 1
- 101000840577 Homo sapiens Insulin-like growth factor-binding protein 7 Proteins 0.000 description 1
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 description 1
- 101000984198 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 1 Proteins 0.000 description 1
- 101000984190 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 1 Proteins 0.000 description 1
- 101000984186 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily B member 4 Proteins 0.000 description 1
- 101000573526 Homo sapiens Membrane protein MLC1 Proteins 0.000 description 1
- 101001027938 Homo sapiens Metallothionein-1G Proteins 0.000 description 1
- 101000775053 Homo sapiens Neuroblast differentiation-associated protein AHNAK Proteins 0.000 description 1
- 101000708763 Homo sapiens Nonsense-mediated mRNA decay factor SMG7 Proteins 0.000 description 1
- 101001098352 Homo sapiens OX-2 membrane glycoprotein Proteins 0.000 description 1
- 101000735213 Homo sapiens Palladin Proteins 0.000 description 1
- 101001094872 Homo sapiens Plexin-C1 Proteins 0.000 description 1
- 101001130132 Homo sapiens Protein LDOC1 Proteins 0.000 description 1
- 101000855055 Homo sapiens Putative Wilms tumor upstream neighbor 1 gene protein Proteins 0.000 description 1
- 101100524554 Homo sapiens RGL1 gene Proteins 0.000 description 1
- 101000836079 Homo sapiens Serpin B8 Proteins 0.000 description 1
- 101000596825 Homo sapiens Testin Proteins 0.000 description 1
- 101000652726 Homo sapiens Transgelin-2 Proteins 0.000 description 1
- 101000798702 Homo sapiens Transmembrane protease serine 4 Proteins 0.000 description 1
- 101000785650 Homo sapiens Zinc finger protein 268 Proteins 0.000 description 1
- 101000785703 Homo sapiens Zinc finger protein 273 Proteins 0.000 description 1
- 101000976599 Homo sapiens Zinc finger protein 423 Proteins 0.000 description 1
- 101150013773 Hoxa7 gene Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000026633 IL6 Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 102100029228 Insulin-like growth factor-binding protein 7 Human genes 0.000 description 1
- 102000000426 Integrin alpha6 Human genes 0.000 description 1
- 108010041100 Integrin alpha6 Proteins 0.000 description 1
- 102100040018 Interferon alpha-2 Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010079944 Interferon-alpha2b Proteins 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100039064 Interleukin-3 Human genes 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 102000000743 Interleukin-5 Human genes 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000010782 Interleukin-7 Receptors Human genes 0.000 description 1
- 108010038498 Interleukin-7 Receptors Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 101710142669 Leucine zipper putative tumor suppressor 1 Proteins 0.000 description 1
- 102100025587 Leukocyte immunoglobulin-like receptor subfamily A member 1 Human genes 0.000 description 1
- 102100025584 Leukocyte immunoglobulin-like receptor subfamily B member 1 Human genes 0.000 description 1
- 102100025578 Leukocyte immunoglobulin-like receptor subfamily B member 4 Human genes 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010075639 MAP Kinase Kinase Kinase 5 Proteins 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 102100024573 Macrophage-capping protein Human genes 0.000 description 1
- 108050006096 Macrophage-capping proteins Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102100026290 Membrane protein MLC1 Human genes 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 102100037512 Metallothionein-1G Human genes 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- VFKZTMPDYBFSTM-KVTDHHQDSA-N Mitobronitol Chemical compound BrC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CBr VFKZTMPDYBFSTM-KVTDHHQDSA-N 0.000 description 1
- 102100033127 Mitogen-activated protein kinase kinase kinase 5 Human genes 0.000 description 1
- 101100082892 Mus musculus Per1 gene Proteins 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102100031837 Neuroblast differentiation-associated protein AHNAK Human genes 0.000 description 1
- 102100030830 Nicotinate-nucleotide pyrophosphorylase [carboxylating] Human genes 0.000 description 1
- 102100032729 Nonsense-mediated mRNA decay factor SMG7 Human genes 0.000 description 1
- 102400000977 Nuclear pore complex protein Nup98 Human genes 0.000 description 1
- 101800000051 Nuclear pore complex protein Nup98 Proteins 0.000 description 1
- 101800002013 Nucleoporin nup98 Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 102100035031 Palladin Human genes 0.000 description 1
- 241000237988 Patellidae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100027351 Pentraxin-related protein PTX3 Human genes 0.000 description 1
- 101710192097 Pentraxin-related protein PTX3 Proteins 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 102100035381 Plexin-C1 Human genes 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102000004257 Potassium Channel Human genes 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100031705 Protein LDOC1 Human genes 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 102100020713 Putative Wilms tumor upstream neighbor 1 gene protein Human genes 0.000 description 1
- 102100032665 Ral guanine nucleotide dissociation stimulator-like 1 Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 101710151245 Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 102100022942 Retinol-binding protein 2 Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 208000035389 Ring chromosome 6 syndrome Diseases 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- AUVVAXYIELKVAI-UHFFFAOYSA-N SJ000285215 Natural products N1CCC2=CC(OC)=C(OC)C=C2C1CC1CC2C3=CC(OC)=C(OC)C=C3CCN2CC1CC AUVVAXYIELKVAI-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100325792 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) BAT1 gene Proteins 0.000 description 1
- 101100325791 Schizosaccharomyces pombe (strain 972 / ATCC 24843) eca39 gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108700019889 TEL-AML1 fusion Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 108010033710 Telomeric Repeat Binding Protein 2 Proteins 0.000 description 1
- 102100030784 Telomeric repeat-binding factor 2 Human genes 0.000 description 1
- 102100035115 Testin Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100038312 Transcription factor Dp-2 Human genes 0.000 description 1
- 101710102998 Transcription factor Dp-2 Proteins 0.000 description 1
- 102100038313 Transcription factor E2-alpha Human genes 0.000 description 1
- 101710195626 Transcriptional activator protein Proteins 0.000 description 1
- 102100031016 Transgelin-2 Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 102100032471 Transmembrane protease serine 4 Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 1
- 108010037543 Type 3 Cyclic Nucleotide Phosphodiesterases Proteins 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 102100021359 Zinc finger protein 263 Human genes 0.000 description 1
- 101710143812 Zinc finger protein 263 Proteins 0.000 description 1
- 102100026516 Zinc finger protein 268 Human genes 0.000 description 1
- 102100026333 Zinc finger protein 273 Human genes 0.000 description 1
- 102100040308 Zinc finger protein 385A Human genes 0.000 description 1
- 101710185375 Zinc finger protein 385A Proteins 0.000 description 1
- 102100023563 Zinc finger protein 423 Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- ISRODTBNJUAWEJ-UHFFFAOYSA-N amixetrine Chemical compound C=1C=CC=CC=1C(OCCC(C)C)CN1CCCC1 ISRODTBNJUAWEJ-UHFFFAOYSA-N 0.000 description 1
- 229950001993 amixetrine Drugs 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- 229940051880 analgesics and antipyretics pyrazolones Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 101150016587 bcat-1 gene Proteins 0.000 description 1
- 108010056708 bcr-abl Fusion Proteins Proteins 0.000 description 1
- 102000004441 bcr-abl Fusion Proteins Human genes 0.000 description 1
- BYFMCKSPFYVMOU-UHFFFAOYSA-N bendazac Chemical compound C12=CC=CC=C2C(OCC(=O)O)=NN1CC1=CC=CC=C1 BYFMCKSPFYVMOU-UHFFFAOYSA-N 0.000 description 1
- 229960005149 bendazac Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000333 benzydamine Drugs 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 108010005713 bis(5'-adenosyl)triphosphatase Proteins 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- RSIHSRDYCUFFLA-DYKIIFRCSA-N boldenone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 RSIHSRDYCUFFLA-DYKIIFRCSA-N 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 235000010633 broth Nutrition 0.000 description 1
- 229950003872 bucolome Drugs 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 102100037094 cGMP-inhibited 3',5'-cyclic phosphodiesterase B Human genes 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 108010011716 cellular retinoic acid binding protein II Proteins 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- NDAYQJDHGXTBJL-MWWSRJDJSA-N chembl557217 Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](CC(C)C)NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](NC(=O)CNC(=O)[C@@H](NC=O)C(C)C)CC(C)C)C(=O)NCCO)=CNC2=C1 NDAYQJDHGXTBJL-MWWSRJDJSA-N 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- BFPSDSIWYFKGBC-UHFFFAOYSA-N chlorotrianisene Chemical compound C1=CC(OC)=CC=C1C(Cl)=C(C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 BFPSDSIWYFKGBC-UHFFFAOYSA-N 0.000 description 1
- 229960002559 chlorotrianisene Drugs 0.000 description 1
- 108010039524 chondroitin sulfate proteoglycan 4 Proteins 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- 231100000409 cytocidal Toxicity 0.000 description 1
- 230000000445 cytocidal effect Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 239000003145 cytotoxic factor Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- RSIHSRDYCUFFLA-UHFFFAOYSA-N dehydrotestosterone Natural products O=C1C=CC2(C)C3CCC(C)(C(CC4)O)C4C3CCC2=C1 RSIHSRDYCUFFLA-UHFFFAOYSA-N 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000014155 detection of activity Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- PWHROYKAGRUWDQ-UHFFFAOYSA-N difenpiramide Chemical compound C=1C=CC=NC=1NC(=O)CC(C=C1)=CC=C1C1=CC=CC=C1 PWHROYKAGRUWDQ-UHFFFAOYSA-N 0.000 description 1
- 229960001536 difenpiramide Drugs 0.000 description 1
- RJBIAAZJODIFHR-UHFFFAOYSA-N dihydroxy-imino-sulfanyl-$l^{5}-phosphane Chemical compound NP(O)(O)=S RJBIAAZJODIFHR-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- UUCMDZWCRNZCOY-UHFFFAOYSA-N ditazole Chemical compound O1C(N(CCO)CCO)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 UUCMDZWCRNZCOY-UHFFFAOYSA-N 0.000 description 1
- 229960005067 ditazole Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- AUVVAXYIELKVAI-CKBKHPSWSA-N emetine Chemical compound N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@@H]1CC AUVVAXYIELKVAI-CKBKHPSWSA-N 0.000 description 1
- 229960002694 emetine Drugs 0.000 description 1
- AUVVAXYIELKVAI-UWBTVBNJSA-N emetine Natural products N1CCC2=CC(OC)=C(OC)C=C2[C@H]1C[C@H]1C[C@H]2C3=CC(OC)=C(OC)C=C3CCN2C[C@H]1CC AUVVAXYIELKVAI-UWBTVBNJSA-N 0.000 description 1
- 229950010243 emorfazone Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229960001766 estramustine phosphate sodium Drugs 0.000 description 1
- IIUMCNJTGSMNRO-VVSKJQCTSA-L estramustine sodium phosphate Chemical compound [Na+].[Na+].ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP([O-])([O-])=O)[C@@H]4[C@@H]3CCC2=C1 IIUMCNJTGSMNRO-VVSKJQCTSA-L 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 229960002350 guaiazulen Drugs 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000001744 histochemical effect Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 101150003074 hoxa5 gene Proteins 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 1
- 229960002411 imatinib Drugs 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 230000002122 leukaemogenic effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000003473 lipid group Chemical group 0.000 description 1
- 230000029226 lipidation Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000003738 lymphoid progenitor cell Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000001785 maturational effect Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960004616 medroxyprogesterone Drugs 0.000 description 1
- FRQMUZJSZHZSGN-HBNHAYAOSA-N medroxyprogesterone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FRQMUZJSZHZSGN-HBNHAYAOSA-N 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229960001810 meprednisone Drugs 0.000 description 1
- PIDANAQULIKBQS-RNUIGHNZSA-N meprednisone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)CC2=O PIDANAQULIKBQS-RNUIGHNZSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 229960005485 mitobronitol Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- ZTLGJPIZUOVDMT-UHFFFAOYSA-N n,n-dichlorotriazin-4-amine Chemical compound ClN(Cl)C1=CC=NN=N1 ZTLGJPIZUOVDMT-UHFFFAOYSA-N 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- BLUYEPLOXLPVCJ-INIZCTEOSA-N n-[(1s)-2-[4-(3-aminopropylamino)butylamino]-1-hydroxyethyl]-7-(diaminomethylideneamino)heptanamide Chemical compound NCCCNCCCCNC[C@H](O)NC(=O)CCCCCCNC(N)=N BLUYEPLOXLPVCJ-INIZCTEOSA-N 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000003538 neomorphic effect Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 108090000277 nicotinate-nucleotide diphosphorylase (carboxylating) Proteins 0.000 description 1
- 229960000965 nimesulide Drugs 0.000 description 1
- HYWYRSMBCFDLJT-UHFFFAOYSA-N nimesulide Chemical compound CS(=O)(=O)NC1=CC=C([N+]([O-])=O)C=C1OC1=CC=CC=C1 HYWYRSMBCFDLJT-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 229960004534 orgotein Drugs 0.000 description 1
- 108010070915 orgotein Proteins 0.000 description 1
- 229960005113 oxaceprol Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- XKFIQZCHJUUSBA-UHFFFAOYSA-N perisoxal Chemical compound C1=C(C=2C=CC=CC=2)ON=C1C(O)CN1CCCCC1 XKFIQZCHJUUSBA-UHFFFAOYSA-N 0.000 description 1
- 229950005491 perisoxal Drugs 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229950006452 pifoxime Drugs 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 108020001213 potassium channel Proteins 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 208000017426 precursor B-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 108010006693 promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229960002466 proquazone Drugs 0.000 description 1
- JTIGKVIOEQASGT-UHFFFAOYSA-N proquazone Chemical compound N=1C(=O)N(C(C)C)C2=CC(C)=CC=C2C=1C1=CC=CC=C1 JTIGKVIOEQASGT-UHFFFAOYSA-N 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- OLTAWOVKGWWERU-UHFFFAOYSA-N proxazole Chemical compound C=1C=CC=CC=1C(CC)C1=NOC(CCN(CC)CC)=N1 OLTAWOVKGWWERU-UHFFFAOYSA-N 0.000 description 1
- 229960001801 proxazole Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940058287 salicylic acid derivative anticestodals Drugs 0.000 description 1
- 150000003872 salicylic acid derivatives Chemical class 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229960003676 tenidap Drugs 0.000 description 1
- LXIKEPCNDFVJKC-QXMHVHEDSA-N tenidap Chemical compound C12=CC(Cl)=CC=C2N(C(=O)N)C(=O)\C1=C(/O)C1=CC=CS1 LXIKEPCNDFVJKC-QXMHVHEDSA-N 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- BPEWUONYVDABNZ-DZBHQSCQSA-N testolactone Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(OC(=O)CC4)[C@@H]4[C@@H]3CCC2=C1 BPEWUONYVDABNZ-DZBHQSCQSA-N 0.000 description 1
- 229960005353 testolactone Drugs 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- TUGDLVFMIQZYPA-UHFFFAOYSA-N tetracopper;tetrazinc Chemical compound [Cu+2].[Cu+2].[Cu+2].[Cu+2].[Zn+2].[Zn+2].[Zn+2].[Zn+2] TUGDLVFMIQZYPA-UHFFFAOYSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- FYZXEMANQYHCFX-UHFFFAOYSA-K tripotassium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxymethyl)amino]acetate Chemical compound [K+].[K+].[K+].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O FYZXEMANQYHCFX-UHFFFAOYSA-K 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 1
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- KDQAABAKXDWYSZ-PNYVAJAMSA-N vinblastine sulfate Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 KDQAABAKXDWYSZ-PNYVAJAMSA-N 0.000 description 1
- 229960004982 vinblastine sulfate Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57426—Specifically defined cancers leukemia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- MLL Mixed Lineàge Leukemia
- HRX chromosome 1
- AU-1 Acute Lymphoblastic Leukemia
- ALL Acute Lymphoblastic Leukemia
- MLL translocations unlike the majority of childhood ALL, the presence of the MLL translocations often results in an early relapse after chemotherapy.
- MLL translocations are typically found in leukemias of infants and chemotherapy-induced leukemia, it has remained uncertain whether host related factors or tumor-intrinsic biological differences are responsible for the poor survival in patients with the translocations.
- Lymphoblastic leukemias with either rearranged or germline MLL are similar with respect to most morphological and histochemical characteristics. Inmunophenotypic differences associated with lymphoblasts bearing an MLL translocation include the lack of the early lymphocyte antigen CD10, expression of the proteoglycan NG2, and the propensity to co-express the myeloid antigens CD15 and CD65. This prompted the corresponding disease to be called Mixed Lineage Leukemia and suggested models, largely unresolved, in which the leukemia reflects disordered cell fate decisions or the transformation of a more multi-potential progenitor.
- MLL is significantly different from ALL and AML, as assessed by gene expression profiling.
- the expression profiles reported here reveal that lymphoblastic leukemias bearing MLL translocations display a remarkably uniform and highly distinct pattern that clearly distinguishes them from conventional ALL or AML and warrants designation as a distinct disease, MLL.
- the invention relates to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells, wherein the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells, and wherein the gene expression profile is correlated with mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia.
- the gene expression product is RNA.
- the gene expression profile is determined utilizing specific hybridization probes.
- the gene expression profile is determined utilizing oligonucleotide microarrays.
- the gene expression profile is determined utilizing antibodies.
- the informative gene(s) is selected from the group consisting of the genes in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the invention further relates to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia, comprising determining a gene expression profile of mRNA from at least one informative gene, wherein the mRNA is isolated from one or more cells of an individual selected from the group consisting of mononuclear blood cells and bone marrow cells; and comparing the obtained gene expression profile to a gene expression profile of a control sample selected from the group consisting of a mixed lineage leukemia sample, an acute lymphoblastic leukemia sample and an acute myelogenous leukemia sample, wherein the gene expression profile of the cell from the individual is indicative of mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia.
- the invention also relates to a method of diagnosing mixed lineage leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear cells and bone marrow cells, wherein the gene expression profile is correlated with mixed lineage leukemia.
- the invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear blood cells and bone marrow cells of an individual with mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia; administering a test agent to the individual; determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear blood cells and bone marrow cells from the individual; and comparing the two gene expression profiles, wherein if the gene expression profile from the individual after administration of the agent is correlated with effective treatment of mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, the test agent is a therapeutic agent.
- the disease is mixed lineage leukemia
- the gene expression profiles compared prior to and after administration of the test agent consist of one or more of the same informative genes.
- the invention also relates to a method for evaluating drug candidates for their effectiveness in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that increases the gene expression profile of at least one informative gene which is decreased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- the invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that decreases the gene expression profile of at least one informative gene which is increased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- the invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that increases the gene expression profile of at least one informative gene which is decreased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating acute lymphoblastic leukemia.
- the disease is mixed lineage leukemia
- the informative gene is selected from the group consisting of FLT3, MEIS1, and HoxA9.
- the invention relates to a method of identifying a compound that modulates (increases or decreases) the biological activity of an informative gene.
- the invention features a method of identifying a compound that decreases the biological activity of an informative gene expression product having increased expression in MLL, AML, or ALL.
- the method comprises contacting the informative gene expression product with a candidate compound under conditions suitable for activity of the informative gene expression product; and assessing the biological activity level of the informative gene expression product.
- a candidate compound that decreases the biological activity level of the informative gene expression product relative to a control is a compound that decreases the biological activity of the informative gene expression product having increased expression in MLL, AML, or ALL.
- the method is carried out in a cell or animal.
- the method is carried out in a cell-free system.
- the informative gene expression product is selected from the gene expression products encoded by the genes in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the invention features a method of identifying a compound that increases the biological activity of an informative gene expression product having decreased expression in MLL, AML, or ALL.
- the method comprises contacting the informative gene expression product with a candidate compound under conditions suitable for biological activity of the informative gene expression product; and assessing the biological activity level of the informative gene expression product.
- a candidate compound that increases the biological activity level of the informative gene expression product relative to a control is a compound that increases the biological activity of the informative gene expression product having decreased expression in MLL, AML, or ALL.
- the method is carried out in a cell or animal.
- the method is carried out in a cell-free system.
- the informative gene expression product is selected from the gene expression products encoded by the genes in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- screens can be carried out for compounds that further increase the expression of a gene or the biological activity of a gene expression product already overexpressed in MLL, ALL, or AML, or that further decrease the expression of a gene or the biological activity of a gene expression product already underexpressed in MLL, ALL, or AML.
- These compounds can be identified according the screening methods described herein. These compounds should be avoided during treatment regimens for MLL, ALL, or AML.
- the invention features a method of identifying a polypeptide that interacts with an informative gene expression product having increased or decreased expression in MLL, AML or ALL in a yeast two-hybrid system.
- the method comprises providing a first nucleic acid vector comprising a nucleic acid molecule encoding a DNA binding domain and a polypeptide encoded by the informative gene that is increased or decreased in MLL, AML, or ALL; providing a second nucleic acid vector comprising a nucleic acid encoding a transcription activation domain and a nucleic acid encoding a test polypeptide; contacting the first nucleic acid vector with the second nucleic acid vector in a yeast two-hybrid system; and assessing transcriptional activation in the yeast two-hybrid system.
- An increase in transcriptional activation relative to a control indicates that the test polypeptide is a polypeptide that interacts with the informative gene expression product having increased or decreased expression in MLL, AML or ALL.
- the invention also relates to compounds identified according to the above-described screening methods. Such compounds can be used to treat mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, as appropriate.
- the invention further relates to a method for evaluating a drug candidate for effectiveness in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene, wherein the gene expression product is isolated from cells derived from a blood or bone marrow sample from an individual to whom the drug candidate has been administered, wherein the gene expression profile is indicative of the effectiveness of the drug candidate in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- the invention also relates to a method for monitoring the efficacy of a mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia treatment, comprising determining the gene expression profile a gene expression product from at least one informative gene in a cell from blood samples derived from an individual being treated, wherein the samples are obtained at various time points; and comparing the treatment outcome of the samples at various times during treatment, wherein the efficacy of mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia treatment is determined.
- the gene expression profiles obtained over time is compared to gene expression profiles from individuals who do not have MLL, ALL, or AML (normal individuals).
- the gene expression profiles determined at various time points include one or more of the same informative genes.
- the invention also encompasses a method of predicting the efficacy of treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene, the gene expression product isolated from one or more cells selected from the group consisting of mononuclear cells and bone marrow cells of an individual with mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, wherein the gene expression profile is correlated with a treatment outcome.
- the gene expression profiles obtained is compared to gene expression profiles from individuals who do not have MLL, ALL, or AML (normal individuals)
- the invention also relates to a method of treating mixed lineage leukemia, comprising administering to an individual in need thereof a therapeutic amount of an agent that inhibits the activity of a gene product that is increased in mixed lineage leukemia.
- gene product is encoded by an informative gene selected from the group consisting of FLT3, MEIS1, and HoxA9.
- the invention further relates to a method of treating mixed lineage leukemia, comprising administering to an individual in need thereof a therapeutic amount of an agent which enhances the activity of a gene product which is decreased in mixed lineage leukemia.
- the gene expression product may be RNA and the gene expression profile can be determined utilizing specific hybridization probes.
- the gene expression profile is determined utilizing oligonucleotide microarrays.
- the gene expression profile is determined utilizing antibodies.
- the informative gene(s) is selected from the group consisting of the genes in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the invention also relates to an oligonucleotide microarray having immobilized thereon a plurality of oligonucleotide probes specific for one or more informative genes for diagnosing mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia wherein the informative genes are selected from the group consisting of the genes in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the present invention will significantly improve the diagnosis of MLL, ALL, and ALL, and thereby improve the treatment of leukemic individuals.
- FIG. 1A illustrates genes that distinguish ALL from MLL. The 100 genes most highly correlated with the class distinction are shown. Each column represents a leukemia sample and each row represents an individual gene. Expression levels are normalized for each gene where the mean is 0. Expression levels greater than the mean are shown in red, whereas levels less than the mean are shown in blue. Increasing distance from the mean is represented by increasing color intensity.
- FIG. 1B illustrates genes that distinguish ALL (left-most 20 columns) from MLL (right-most 17 columns). The 100 genes most highly correlated with the class distinction are shown. Each column represents a leukemia sample and each row represents an individual gene. Expression levels are normalized for each gene where the mean is 0. Expression levels greater than the mean are shown in red, whereas levels less than the mean are shown in blue. Increasing distance from the mean is represented by increasing color intensity.
- FIG. 2A illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD10 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 2B illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD19 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 2C illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of IgB in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 2D illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD24 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 2E illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD43 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 2F illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD44 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample.
- the expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples.
- FIG. 3A illustrates selected HOXA9 gene expression in ALL and MLL. Relative levels of expression of HOXA9 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples.
- FIG. 3B illustrates selected HOXA5 gene expression in ALL and MLL. Relative levels of expression of HOXA5 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples.
- FIG. 3C illustrates selected HOXA4 gene expression in ALL and MLL. Relative levels of expression of HOXA4 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples.
- FIG. 3D illustrates selected HOXA7 gene expression in ALL and MLL. Relative levels of expression of HOXA7 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples.
- FIG. 4A illustrates the comparison of gene expression between ALL, MLL and AML, and shows the principal component analysis (PCA) plot of ALL (red), MLL (blue), and AML (yellow) performed using 8700 genes that passed filtering.
- PCA principal component analysis
- FIG. 4B illustrates the comparison of gene expression between ALL, MLL and AML, and shows the PCA plot comparing ALL (red), MLL (blue), and AML (yellow) using the 500 genes that best distinguished ALL from AML.
- FIG. 5 illustrates genes specifically expressed in MLL, ALL or AML.
- the top 15 genes, and their corresponding GenBank Accession Numbers, that are most highly correlated with one type of leukemia versus the other two are shown.
- Each column represents a leukemia sample and each row a gene.
- the relative levels of expression are shown in red (relatively high) and blue (relatively low) as described in FIGS. 1 A and 1 B 1 .
- FIG. 6 illustrates the classification of ALL, MLL and AML based on gene expression profile through a plot showing the error rate in class prediction using a cross-validation approach.
- One sample was withheld, and the class membership of this sample predicted based on gene expression levels.
- the genes used are the top 1-250 genes that are best correlated with the ALL/MLL/AML three-class distinction.
- the present invention relates to the diagnosis of mixed lineage leukemia (MLL), acute lymphoblastic leukemia (ALL), and acute myelogenous leukemia (AML) according to the gene expression profile of a sample from an individual, as well as to methods of therapy and screening that utilize the genes identified herein as targets.
- MLL mixed lineage leukemia
- ALL acute lymphoblastic leukemia
- AML acute myelogenous leukemia
- the present invention is directed to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia, comprising isolating a gene expression product from at least one informative gene from one or more cells of an individual selected from the group consisting of mononuclear blood cells and bone marrow cells; and determining a gene expression profile of at least one informative gene, wherein the gene expression profile is correlated with mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia.
- the present invention is directed toward a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia, comprising isolating mRNA from one or more cells of an individual, wherein the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells, determining a gene expression profile of at least one informative gene, and comparing the gene expression profile with a gene expression profile of a control sample selected from the group consisting of mixed lineage leukemia sample, acute lymphoblastic leukemia sample and acute myelogenous leukemia sample, wherein the gene expression profile obtained from the cells of the individual is indicative of mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia.
- the individual is diagnosed as having MLL; and if the gene expression product obtained from the sample is similar to the gene expression product of ALL, then the individual is diagnosed as having ALL; and if the gene expression product obtained from the sample is similar to the gene expression product of AML, then the individual is diagnosed as having AML.
- the diagnosis of certain types of leukemias can also be ruled out.
- Gene expression profile as used herein is defined as the level or amount of gene expression of particular genes as assessed by methods described herein.
- the gene expression profile can comprise data for one or more genes and can be measured at a single time point or over a period of time.
- gene expression products are proteins, polypeptides, or nucleic acid molecules (e.g., mRNA, tRNA, rRNA, or cRNA) that result from transcription or translation of genes.
- the present invention can be effectively used to analyze proteins, peptides or nucleic acid molecules that are the result of transcription or translation.
- the nucleic acid molecule levels measured can be derived directly from the gene or, alternatively, from a corresponding regulatory gene or regulatory sequence element. All forms of gene expression products can be measured. Additionally, variants of genes and gene expression products including, for example, spliced variants and polymorphic alleles, can be measured. Similarly, gene expression can be measured by assessing the level of protein or derivative thereof translated from mRNA.
- the sample to be assessed can be any sample that contains a gene expression product.
- Suitable sources of gene expression products e.g., samples, can include intact cells, lysed cells, cellular material for determining gene expression, or material containing gene expression products. Examples of such samples are brain, blood, bone marrow, plasma, lymph, urine, tissue, mucus, sputum, saliva or other cell samples. Methods of obtaining such samples are known in the art. In a preferred embodiment, mononuclear bloods cells are used. In another preferred embodiment, bone marrow tissue is used.
- the gene expression product is a protein or polypeptide.
- the determination of the gene expression profile can be made using techniques for protein detection and quantitation known in the art.
- antibodies specific for the protein or polypeptide can be obtained using methods which are routine in the art, and the specific binding of such antibodies to protein or polypeptide gene expression products can be detected and measured.
- the present invention also provides methods for classifying the sample.
- a sample can be classified in many ways including but not limited to leukemia subclass (e.g., ALL, AML, or MLL), response to a particular treatment, referred to herein as treatment outcome, or treatment efficacy.
- Informative genes include, but are not limited to, those shown in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- expression of numerous genes can be measured simultaneously. The assessment of numerous genes provides for a more accurate evaluation of the sample because there are more genes that can assist in classifying the sample.
- the gene expression product is mRNA and the gene expression levels are obtained, e.g., by contacting the sample with a suitable microarray, and determining the extent of hybridization of the nucleic acid in the sample to the probes on the microarray.
- the gene expression value measured or assessed is the numeric value obtained from an apparatus that can measure gene expression levels.
- Gene expression levels refer to the amount of expression of the gene expression product, as described herein.
- the values are raw values from the apparatus, or values that are optionally rescaled, filtered and/or normalized. Such data is obtained, for example, from a GeneChip® probe array or Microarray (Affymetrix, Inc.) (U.S. Pat. Nos.
- the nucleic acid to be analyzed (e.g., the target) is isolated, amplified and labeled with a detectable label, (e.g., 32 P or fluorescent label) prior to hybridization to the arrays.
- a detectable label e.g. 32 P or fluorescent label
- the arrays are inserted into a scanner which can detect patterns of hybridization.
- the hybridization data are collected as light emitted from the labeled groups which is now bound to the probe array.
- the probes that perfectly match the target produce a stronger signal than those that have mismatches. Since the sequence and position of each probe on the array are known, by complementarity, the identity of the target nucleic acid applied to the probe is determined.
- Ci and Mi are defined as relative steady-state mRNA levels, where i refers to the ith timepoint and n to the total number of timepoints of the entire timecourse.
- ⁇ M and ⁇ M are defined as the mean and standard deviation of the control time course, respectively.
- Microarrays are only one method of obtaining gene expression values. Other methods for obtaining gene expression values known in the art or developed in the future can be used with the present invention.
- the sample can be classified. Genes that are particularly relevant for classification have been identified as a result of work described herein and are shown in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the genes that are relevant for classification are referred to herein as “informative genes.” Not all informative genes for a particular class distinction must be assessed in order to classify a sample. For example, a subset of the informative genes which demonstrate a high correlation with a class distinction can be used.
- This subset can be, for example, one or more genes, for example 2, 3, or 4 genes, 5 or more genes, for example 6, 7, 8, or 9 genes, 10 or more genes, 25 or more genes, 45 or more genes, or 50 or more genes.
- the accuracy of the classification will increase with the number of informative genes assessed.
- the present invention also provides methods for monitoring the effect of a treatment regimen in an individual by monitoring the gene expression profile for one or more informative genes.
- Treatment efficacy classification can be made by comparing the gene expression profile of a sample at several time points during treatment with respect to one or more informative genes.
- a treatment can be considered efficacious if the gene expression profile with regard to one or more informative genes tends toward a normal gene expression profile. That is, for example, treatment can be considered efficacious if a gene having increased expression in a disorder (e.g., MLL) shows reduced expression (i.e., expression tending toward normal expression) as a result of treatment.
- a baseline gene expression profile for the individual can be determined, and repeated gene expression profiles can be determined at time points during treatment.
- a shift in gene expression profile from a profile correlated with poor treatment outcome to profile correlated with improved treatment outcome is evidence of an effective therapeutic regimen, while a repeated profile correlated with poor treatment outcome is evidence of an ineffective therapeutic regimen.
- HOXA9 and MEIS1 upregulation has been correlated with a poor prognosis.
- An effective therapeutic regimen might be expected to reduce the level of HOXA9 and MEIS1 expression.
- expression of FLT3 is correlated with MLL.
- a reduction in the baseline level of FLT3 or its kinase activity can be indicative of an effective therapeutic.
- FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2 provide additional gene products which can be useful in evaluating the efficacy of treatment.
- the present invention also provides information regarding the genes that are important in MLL treatment response, thereby providing additional targets for diagnosis and therapy. It is also clear that the present invention can be used to generate databases comprising informative genes which will have many applications in medicine, research and industry.
- the present invention is directed to a method of screening for a therapeutic agent for an individual with mixed lineage leukemia, comprising isolating a gene expression product from at least one informative gene from one or more cells of the individual with mixed lineage leukemia; identifying a therapeutic agent by determining a gene expression profile of at least one informative gene before and after administration of the agent, wherein if the gene expression profile from the individual after administration of the agent is correlated with effective treatment of mixed lineage leukemia the agent is identified as a therapeutic agent.
- the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells.
- the above method can utilize a cell line derived from an individual with mixed lineage leukemia.
- the invention also provides methods (also referred to herein as “screening assays”) for identifying agents or compounds (e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) that alter or modulate (e.g., increase or decrease) the activity of the gene expression products of the informative genes (e.g., polypeptides encoded by the informative genes) as described herein, or that otherwise interact with the informative genes and/or polypeptides described herein.
- agents or compounds e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes
- Such compounds can be compounds or agents that bind to informative gene expression products described herein (e.g., the polypeptides encoded by the informative genes in FIGS.
- the binding agent is an MLL binding agent.
- an MLL binding agent“ is meant an agent as described herein that binds to a polypeptide encoded by an informative gene of the present invention and modulates the occurrence, severity, or progression of mixed lineage leukemia. The modulation can be an increase or a decrease in the occurrence, severity, or progression of prostate cancer.
- an MLL binding agent includes an agent that binds to a polypeptide that is upstream (earlier) or downstream (later) of the cell signaling events mediated by a polypeptide encoded by an informative gene of the present invention, and thereby modulates the overall activity of the signaling pathway; in turn, the mixed lineage leukemia disease state of is modulated.
- the candidate compound can cause an alteration in the activity of a polypeptide encoded by an informative gene of the present invention.
- the activity of the polypeptide can be altered (increased or decreased) by at least 1.5-fold to 2-fold, at least 3-fold, or, at least 5-fold, relative to the control.
- the polypeptide activity can be altered, for example, by at least 10%, at least 20%, 40%, 50%, or 75%, or by at least 90%, relative to the control.
- the invention provides assays for screening candidate compounds or test agents to identify compounds that bind to or modulate the activity of a polypeptide encoded by an informative gene described herein (or biologically active portion(s) thereof), as well as agents identifiable by the assays.
- a “candidate compound” or “test agent” is a chemical molecule, be it naturally-occurring or artificially-derived, and includes, for example, peptides, proteins, synthesized molecules, for example, synthetic organic molecules, naturally-occurring molecule, for example, naturally occurring organic molecules, nucleic acid molecules, and components thereof.
- candidate compounds for use in the present invention may be identified from large libraries of natural products or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art.
- test extracts or compounds are not critical to the screening procedure(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds.
- Synthetic compound libraries are commercially available, e.g., from Brandon Associates (Merrimack, N.H.) and Aldrich Chemical (Milwaukee, Wis.).
- libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, Fla.), and PharmaMar, U.S.A.
- candidate compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- biological libraries include: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
- the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des., 12: 145 (1997)).
- any library or compound is readily modified using standard chemical, physical, or biochemical methods.
- the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having an activity that stimulates or inhibits nucleic acid expression, polypeptide expression, or polypeptide biological activity.
- the same assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogenous extracts are known in the art.
- compounds shown to be useful agents for treatment are chemically modified according to methods known in the art.
- Compounds identified as being of therapeutic value may be subsequently analyzed using animal models for diseases in which it is desirable to alter the activity or expression of the nucleic acids or polypeptides of the present invention.
- a cell, tissue, cell lysate, tissue lysate, or solution containing or expressing a polypeptide encoded by the informative gene e.g., a polypeptide encoded by a gene in any of FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2
- a polypeptide encoded by the informative gene e.g., a polypeptide encoded by a gene in any of FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2
- the polypeptide can be contacted directly with the candidate compound to be tested.
- the level (amount) of polypeptide biological activity is assessed/measured, either directly or indirectly, and is compared with the level of biological activity in a control (i.e., the level of activity of the polypeptide or active fragment or derivative thereof in the absence of the candidate compound to be tested, or in the presence of the candidate compound vehicle only). If the level of the biological activity in the presence of the candidate compound differs, by an amount that is statistically significant, from the level of the biological activity in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the biological activity of the polypeptide encoded by an informative gene of the invention.
- an increase in the level of polypeptide biological activity relative to a control indicates that the candidate compound is a compound that enhances (is an agonist of) the polypeptide biological activity.
- a decrease in the polypeptide biological activity relative to a control indicates that the candidate compound is a compound that inhibits (is an antagonist of) the polypeptide biological activity.
- the level of biological activity of a polypeptide encoded by an informative gene, or a derivative or fragment thereof in the presence of the candidate compound to be tested is compared with a control level that has previously been established.
- a level of polypeptide biological activity in the presence of the candidate compound that differs from (i.e., increases or decreases) the control level by an amount that is statistically significant indicates that the compound alters the biological activity of the polypeptide.
- the present invention also relates to an assay for identifying compounds (e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) that alter (e.g., increase or decrease) expression (e.g., transcription or translation) of an informative gene or that otherwise interact with an informative gene described herein, as well as compounds identifiable by the assays.
- a solution containing an informative gene can be contacted with a candidate compound to be tested.
- the solution can comprise, for example, cells containing the informative gene or cell lysate containing the informative gene; alternatively, the solution can be another solution that comprises elements necessary for transcription/translation of the informative gene.
- the level and/or pattern of informative gene expression (e.g., the level and/or pattern of mRNA or protein expressed) is assessed, and is compared with the level and/or pattern of expression in a control (i.e., the level and/or pattern of the informative gene expressed in the absence of the candidate compound, or in the presence of the candidate compound vehicle only). If the expression level and/or pattern in the presence of the candidate compound differs by an amount or in a manner that is statistically significant from the level and/or pattern in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the expression of an informative gene. Enhancement of informative gene expression indicates that the candidate compound is an agonist of informative gene polypeptide activity. Similarly, inhibition of informative gene expression indicates that the candidate compound is an antagonist of informative gene polypeptide activity.
- a control i.e., the level and/or pattern of the informative gene expressed in the absence of the candidate compound, or in the presence of the candidate compound vehicle only.
- the level and/or pattern of an informative gene in the presence of the candidate compound to be tested is compared with a control level and/or pattern that has previously been established.
- a level and/or pattern informative gene expression in the presence of the candidate compound that differs from the control level and/or pattern by an amount or in a manner that is statistically significant indicates that the candidate compound alters informative gene expression.
- compounds that alter the expression of an informative gene, or that otherwise interact with an informative gene described herein can be identified using a cell, cell lysate, or solution containing a nucleic acid encoding the promoter region of the informative gene operably linked to a reporter gene.
- promoter means a minimal nucleotide sequence sufficient to direct transcription
- operably linked means that a gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences.
- reporter genes and methods for operably linking a reporter gene to a promoter are known in the art.
- the level of expression of the reporter gene (e.g., the level of mRNA or of protein expressed) is assessed, and is compared with the level of expression in a control (i.e., the level of expression of the reporter gene in the absence of the candidate compound, or in the presence of the candidate compound vehicle only). If the level of expression in the presence of the candidate compound differs by an amount or in a manner that is statistically significant from the level in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the expression of the informative gene, as indicated by its ability to alter expression of the reporter gene that is operably linked to the informative gene promoter. Enhancement of the expression of the reporter gene indicates that the compound is an agonist of the informative gene polypeptide activity. Similarly, inhibition of the expression of the reporter gene indicates that the compound is an antagonist of the informative gene polypeptide activity.
- a control i.e., the level of expression of the reporter gene in the absence of the candidate compound, or in the presence of the candidate compound vehicle
- the level of expression of the reporter in the presence of the candidate compound to be tested is compared with a control level that has been established previously.
- a level in the presence of the candidate compound that differs from the control level by an amount or in a manner that is statistically significant indicates that the candidate compound alters informative gene expression.
- the present invention also features methods of detecting and/or identifying a compound that alters the interaction between a polypeptide encoded by an informative gene and a polypeptide (or other molecule) with which the polypeptide normally interacts with (e.g., in a cell or under physiological conditions).
- a cell or tissue that expresses or contains a compound e.g., a polypeptide or other molecule
- a compound e.g., a polypeptide or other molecule
- a polypeptide substrate such a molecule is referred to herein as a “polypeptide substrate”
- the ability of the candidate compound to alter the interaction between the polypeptide encoded by the informative gene and the polypeptide substrate is determined, for example, by assaying activity of the polypeptide.
- a cell lysate or a solution containing the informative gene polypeptide, the polypeptide substrate, and the candidate compound can be used.
- a compound that binds to the informative gene polypeptide or to the polypeptide substrate can alter the interaction between the informative gene polypeptide and the polypeptide substrate by interfering with (inhibiting), or enhancing the ability of the informative gene polypeptide to bind to, associate with, or otherwise interact with the polypeptide substrate.
- Determining the ability of the candidate compound to bind to the informative gene polypeptide or a polypeptide substrate can be accomplished, for example, by coupling the candidate compound with a radioisotope or enzymatic label such that binding of the candidate compound to the informative gene polypeptide or polypeptide substrate can be determined by directly or indirectly detecting the candidate compound labeled with 125 I, 35 S, 14 C, or 3 H, and the detecting the radioisotope (e.g., by direct counting of radioemission or by scintillation counting).
- the candidate compound can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label is then detected by determination of conversion of an appropriate substrate to product.
- one of the other components of the screening assay e.g., the polypeptide substrate or the informative gene polypeptide
- labeled unbound components can be removed (e.g., by washing) after the interaction step in order to accurately detect the effect of the candidate compound on the interaction between the informative gene polypeptide and the polypeptide substrate.
- a microphysiometer can be used to detect the interaction of a candidate compound with a polypeptide encoded by an informative gene or a polypeptide substrate without the labeling of either the candidate compound, the polypeptide encoded by the informative gene, or the polypeptide substrate (McConnell et al., Science 257: 1906-1912 (1992)).
- a “microphysiometer” e.g., CYTOSENSORTM
- LAPS light-addressable potentiometric sensor
- assays can be used to identify polypeptides that interact with one or more polypeptides encoded by an informative gene.
- a yeast two-hybrid system such as that described by Fields and Song (Fields and Song, Nature 340: 245-246 (1989)) can be used to identify polypeptides that interact with one or more polypeptides encoded by an informative gene.
- vectors are constructed based on the flexibility of a transcription factor that has two functional domains (a DNA binding domain and a transcription activation domain).
- a first vector is used that includes a nucleic acid encoding a DNA binding domain and a polypeptide encoded by an informative gene, or fragment or derivative thereof
- a second vector is used that includes a nucleic acid encoding a transcription activation domain and a nucleic acid encoding a polypeptide that potentially may interact with the informative gene polypeptide, or fragment or derivative thereof.
- Incubation of yeast containing the first vector and the second vector under appropriate conditions allows identification of colonies that express the markers of the polypeptide(s). These colonies can be examined to identify the polypeptide(s) that interact with the polypeptide encoded by the informative gene or a fragment or derivative thereof.
- appropriate conditions e.g., mating conditions such as used in the MATCHMAKERTM system from Clontech
- Such polypeptides may be useful as compounds that alter the activity or expression of an informative gene polypeptide.
- binding of a candidate compound to the polypeptide, or interaction of the polypeptide with a polypeptide substrate in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes.
- a fusion protein e.g., a glutathione-S-transferase fusion protein
- a fusion protein e.g., a glutathione-S-transferase fusion protein
- This invention further pertains to novel compounds identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use a compound identified as described herein in an appropriate animal model. For example, a compound identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such a compound. Alternatively, a compound identified as described herein can be used in an animal model to determine the mechanism of action of such a compound. Furthermore, this invention pertains to uses of novel compounds identified by the above-described screening assays for treatments as described herein.
- a compound identified as described herein can be used to alter activity of a polypeptide encoded by an informative gene, or to alter expression of the informative gene, by contacting the polypeptide or the nucleic acid molecule (or contacting a cell comprising the polypeptide or the nucleic acid molecule) with the compound identified as described herein.
- the present invention encompasses a method of treating MLL, AML or ALL, comprising the administration of an agent which modulates the expression level or activity of an informative gene product.
- a therapeutic agent may increase or decrease the level or activity of the gene product.
- an inhibitor of the kinase FLT3 should be useful in treating MLL.
- Other suitable therapeutic targets for drug development include genes described herein in FIGS. 1A, 1B , 2 A- 2 F, 3 A- 3 D, and 5 , and Tables 1 and 2.
- the present invention further relates to antibodies that specifically bind a polypeptide, preferably an epitope, of an informative gene of the present invention (as determined, for example, by immunoassays, a technique well known in the art for assaying specific antibody-antigen binding).
- Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments F(ab′) fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, for example, anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above.
- antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, and more specifically, molecules that contain an antigen binding site that specifically binds an antigen.
- the immunoglobulin molecules of the invention can be of any type (for example, IgG, IgE, IgM, IgD, IgA and IgY), and of any class (for example, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of an immunoglobulin molecule.
- the antibodies are antigen-binding antibody fragments and include, without limitation, Fab, Fab′ and F(ab′) 2 , Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a V L or V H domain.
- Antigen-binding antibody fragments, including single-chain antibodies can comprise the variable region(s) alone or in combination with the entirety or a portion of one or more of the following: hinge region, CH1, CH2, and CH3 domains.
- antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CH1, CH2, and/or CH3 domains.
- the antibodies of the invention may be from any animal origin including birds and mammals.
- the antibodies are human, murine, donkey, sheep, rabbit, goat, guinea pig, hamster, horse, or chicken.
- human antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies produced by human B cells, or isolated from human sera, human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described in U.S. Pat. No. 5,939,598 by Kucherlapati et al., for example.
- the antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material.
- Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention that they recognize or specifically bind.
- the epitope(s) of polypeptide portion(s) may be specified, for example, by N-terminal and/or C-terminal positions, or by size in contiguous amino acid residues.
- Antibodies that specifically bind any epitope or polypeptide encoded by an informative gene of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind a polypeptide encoded by an informative gene of the present invention, and allows for the exclusion of the same.
- epitope refers to a portion of a polypeptide which contacts an antigen-binding site(s) of an antibody or T cell receptor. Specific binding of an antibody to an antigen having one or more epitopes excludes non-specific binding to unrelated antigens, but does not necessarily exclude cross-reactivity with other antigens with similar epitopes.
- Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies of the present invention may not display any cross-reactivity, such that they do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention. Alternatively, antibodies of the invention can bind polypeptides with at least about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50% identity (as calculated using methods known in the art) to a polypeptide encoded by an informative gene of the present invention. Further included in the present invention are antibodies that bind polypeptides encoded by informative genes that hybridize to an informative gene of the present invention under stringent hybridization conditions, as will be appreciated by one of skill in the art.
- Antibodies of the present invention can also be described or specified in terms of their binding affinity to a polypeptide of the invention.
- Preferred binding affinities include those with a dissociation constant or Kd less than 5 ⁇ 10 ⁇ 6 M, 10 ⁇ 6 M, 5 ⁇ 10 ⁇ 7 M, 10 ⁇ 7 M, 5 ⁇ 10 ⁇ 8 M, 10 ⁇ 8 M, 5 ⁇ 10 ⁇ 9 M, 10 ⁇ 9 M, 5 ⁇ 10 ⁇ 10 M, 10 ⁇ 10 M, 5 ⁇ 10 ⁇ 11 M, 10 ⁇ 11 M, 5 ⁇ 10 ⁇ 12 M, 10 ⁇ 12 M, 5 ⁇ 10 ⁇ 13 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 14 M, 10 ⁇ 13 M, 5 ⁇ 10 ⁇ 15 M, and 10 ⁇ 15 M.
- the invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of a polypeptide of the invention, as determined by any method known in the art for determining competitive binding, for example, using immunoassays.
- the antibody competitively inhibits binding to the epitope by at least about 90%, 80%, 70%, 60%, or 50%.
- Antibodies of the present invention can act as agonists or antagonists of polypeptides encoded by the informative genes of the present invention.
- the present invention includes antibodies which disrupt interactions with the polypeptides encoded by the informative genes of the invention either partially or fully.
- the invention also includes antibodies that do not prevent binding, but prevent activation or activity of the polypeptide. Activation or activity (for example, signaling) may be determined by techniques known in the art.
- neutralizing antibodies are also included.
- Antibodies of the present invention may be used, for example, and without limitation, to purify, detect, and target the polypeptides encoded by the informative genes described herein, including both in vitro and in vivo diagnostic and therapeutic methods.
- the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides in biological samples. See, for example, Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).
- the antibodies of the present invention may be used either alone or in combination with other compositions.
- the antibodies may further be recombinantly fused to a heterologous polypeptide at the N- and/or C-terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions.
- antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays, or effector molecules such as heterologous polypeptides, drugs, or toxins.
- the antibodies of the invention include derivatives that are modified, for example, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from recognizing its epitope.
- the antibody derivatives include antibodies that have been modified, for example, by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or linkage to a cellular ligand or other protein. Any of numerous chemical modifications can be carried out by known techniques, including, but not limited to, specific chemical cleavage, acetylation, formylation, and metabolic synthesis of tunicamycin. Additionally, the derivative can contain one or more non-classic amino acids.
- the antibodies of the present invention can be generated by any suitable method known in the art.
- Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art.
- a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, or the like, to induce the production of sera containing polyclonal antibodies specific for the antigen.
- adjuvants can be used to increase the immunological response, depending on the host species, and include, but are not limited to, Freund's adjuvant (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and corynebacterium parvum.
- BCG Bacille Calmette-Guerin
- corynebacterium parvum Such adjuvants are well known in the art.
- Monoclonal antibodies can be prepared using a wide variety of techniques also known in the art, including hybridoma cell culture, recombinant, and phage display technologies, or a combination thereof.
- monoclonal antibodies can be produced using hybridoma techniques as is known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).
- the term “monoclonal antibody” as used herein is not necessarily limited to antibodies produced through hybridoma technology, but also refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone.
- Human antibodies are desirable for therapeutic treatment of human patients. These antibodies can be made by a variety of methods known in the art including phage display methods using antibody libraries derived from human immunoglobulin sequences. Human antibodies can also be produced using transgenic mice that are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. The transgenic mice are immunized with a selected antigen, for example, all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
- antibodies to the polypeptides encoded by the informative genes as described herein can, in turn, be utilized to generate anti-idiotype antibodies that “mimic” polypeptides of the invention using techniques well known to those skilled in the art. (See, for example, Greenspan & Bona, FASEB J. 7(5):537-444 (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)).
- antibodies that bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide to a ligand can be used to generate anti-idiotypes that “mimic” the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand.
- anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand.
- anti-idiotypic antibodies can be used to bind a polypeptide encoded by an informative gene and/or to bind its ligands, and thereby block its biological activity.
- the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate their purification.
- the marker amino acid sequence is a hexa-histidine peptide, and HA tag, or a FLAG tag, as will be readily appreciated by one of skill in the art.
- the present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent.
- the antibodies can be used diagnostically, for example, to monitor the development or progression of a tumor as part of a clinical testing procedure to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance.
- detectable substances include enzymes (such as, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase), prosthetic group (such as streptavidin/biotin and avidin/biotin), fluorescent materials (such as umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin), luminescent materials (such as luminol), bioluminescent materials (such as luciferase, luciferin, and aequorin), radioactive materials (such as, 125 I, 131 I, 111 In, or 99 Tc), and positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.
- enzymes such as, horseradish peroxidase, alkaline phosphatase,
- an antibody or fragment thereof can be conjugated to a therapeutic moiety such as a cytotoxin, for example, a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion.
- a cytotoxin or cytotoxic agent includes any agent that id detrimental to cells.
- Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
- Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (for example, daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (for example, actinomycin, bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (for example, vincristine and vinblastine).
- the conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents.
- the drug moiety may be a protein or polypeptide possessing a desired biological activity.
- Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, ⁇ - interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, for example, angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukins, granulocyte macrophase colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
- a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin
- a protein such as tumor necrosis factor, ⁇ - interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activ
- Antibodies of the invention can also be attached to solid supports. These are particularly useful for immunoassays or purification of the target antigen.
- solid supports include, but are not limited to, glass, cellulose, silicon, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
- Techniques for conjugating such therapeutic moiety to antibodies are well known in the art, see, for example, Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. eds., pp. 243-56 (Alan R. Liss, Inc. 1985).
- an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980.
- An antibody of the invention with or without conjugation to a therapeutic moiety, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s), can be used as a therapeutic.
- Antisense antagonists of the present invention are also included. Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA. In one embodiment, an antisense sequence is generated internally by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991)).
- the 5′ coding portion of an informative gene can be used to design an antisense RNA oligonucleotide from about 10 to 40 base pairs in length.
- a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor.
- the antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
- the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence.
- a vector or a portion thereof is transcribed, producing an antisense nucleic acid of the invention.
- Such a vector contains the sequence encoding the antisense nucleic acid.
- the vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA.
- Vectors can be constructed by recombinant DNA technology and can be plasmid, viral, or otherwise, as is known to one of skill in the art.
- Expression can be controlled by any promoter known in the art to act in the target cells, such as vertebrate cells, and preferably human cells.
- promoters can be inducible or constitutive and include, without limitation, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980)), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981)), and the regulatory sequences of the metallothionein gene (Brinster et al., Nature 296:39-42 (1982)).
- the antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of an informative gene. Absolute complementarity, although preferred, is not required.
- a sequence “complementary to at least a portion of an RNA,” referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with the RNA it may contain and still form a stable duplex. One skilled in the art can ascertain a tolerable degree or mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- Oligonucleotides that are complementary to the 5′ end of the RNA are generally regarded to work most efficiently at inhibiting translation.
- sequences complementary to the 3′ untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well.
- oligonucleotides complementary to either the 5′- or 3′-non-translated, non-coding regions of a nucleotide sequence can be used in an antisense approach to inhibit mRNA translation.
- Oligonucleotides complementary to the 5′ untranslated region of the mRNA can include the complement of the AUG start codon.
- Antisense oligonucleotides complementary to mRNA coding regions can also be used in accordance with the invention.
- the antisense nucleic acids are at least six nucleotides in length, and are preferably oligonucleotides ranging from about 6 to about 50 nucleotides in length. In other embodiments, the oligonucleotide is at least about 10, 17, 25 or 50 nucleotides in length.
- the antisense oligonucleotides of the invention can be DNA or RNA, or chimeric mixtures, or derivatives or modified versions thereof, single-stranded or double-stranded.
- the oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, or example, to improve stability of the molecule, hybridization, and the like.
- the oligonucleotide can include other appended groups such as peptides (for example, to target host cell receptors in vivo), or agents that facilitate transport across the cell membrane, or the blood-brain barrier, or intercalating agents.
- the antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, a-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosy
- the antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.
- the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
- the antisense oligonucleotide is an ⁇ -anomeric oligonucleotide.
- An ⁇ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-6641 (1987)).
- the oligonucleotide is a 2′-O-methylribonucleotide (Inoue et al., Nucl. Acids Res. 15:6131-6148 (1987)), or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330 (1987)).
- Antisense oligonucleotides of the invention may be synthesized by standard methods known in the art, for example, by use of an automated DNA synthesizer.
- Potential antagonists according to the invention also include catalytic RNA, or a ribozyme.
- Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA.
- the target mRNA has the following sequence of two bases: 5 40 -UG-3′.
- the construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach (Nature 334:585-591 (1988)).
- the ribozyme is engineered so that the cleavage recognition site is located near the 5′ end of the mRNA in order to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.
- Ribozymes of the invention can be composed of modified oligonucleotides (for example for improved stability, targeting, and the like).
- DNA constructs encoding the ribozyme can be under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that a transfected cell will produce sufficient quantities of the ribozyme to destroy endogenous target mRNA and inhibit translation. Since ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is generally required for efficiency.
- compositions including both therapeutic and prophylatic compositions.
- Compositions within the scope of this invention include all compositions wherein the therapeutic abent, antibody, fragment or derivative, antisense oligonucleotide or ribozyme is contained in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. The effective does is a function of a number of factors, including the specific antibody, the antisense construct, ribozyme or polypeptide of the invention, the presence of a conjugated therapeutic agent (see below), the patient and their clinical status.
- Mode of administration may be by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes.
- administration may be orally.
- the dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.
- compositions generally comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skimmed milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.
- Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
- the formulation should suit the mode of administration.
- the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to a human.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- the compounds of the invention can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, and the like, and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- compositions of the invention can be administered alone or in combination with other therapeutic agents.
- Therapeutic agents that can be administered in combination with the compositions of the invention include but are not limited to chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, cytokines and/or growth factors. Combinations may be administered either concomitantly, for example, as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, for example, as through separate intravenous lines into the same individual. Administration “in combination” further includes the separate administration of one of the compounds or agents given first, followed by the second.
- Nonspecific immunosuppressive agents that may be administered in combination with the compositions of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents.
- compositions of the invention are administered in combination with an antibiotic agent.
- Antibiotic agents that may be administered with the compositions of the invention include, but are not limited to, tetracycline, metronidazole, amoxicillin, beta-lactamases, aminoglycosides, macrolides, quinolones, fluoroquinolones, cephalosporins, erythromycin, ciprofloxacin, and streptomycin.
- compositions of the invention are administered alone or in combination with an anti-inflammatory agent.
- Anti-inflammatory agents that can be administered with the compositions of the invention include, but are not limited to, glucocorticoids and the nonsteroidal anti-inflammatories, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline,
- compositions of the invention are administered in combination with a chemotherapeutic agent.
- Chemotherapeutic agents that may be administered with the compositions of the invention include, but are not limited to, antibiotic derivatives (e.g., doxorubicin, bleomycin, daunorubicin, and dactinomycin); antiestrogens (e.g., tamoxifen); antimetabolites (e.g., fluorouracil, 5-FU, methotrexate, floxuridine, interferon alpha-2b, glutamic acid, plicamycin, mercaptopurine, and 6-thioguanine); cytotoxic agents (e.g., carmustine, BCNU, lomustine, CCNU, cytosine arabinoside, cyclophosphamide, estramustine, hydroxyurea, procarbazine, mitomycin, busulfan, cis-platin, and vincristine sulfate); hormones (e.g.
- compositions of the invention are administered in combination with cytokines.
- Cytokines that may be administered with the compositions of the invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF-alpha.
- compositions of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.
- the present invention is further directed to therapies which involve administering pharmaceutical compositions of the invention to an animal, preferably a mammal, and most preferably a human patient for treating one or more of the described disorders.
- Therapeutic compositions of the invention include, for example, therapeutic agents identified in screening assays, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein), antisense oligonucleotides, ribozymes and nucleic acids encoding same.
- compositions of the invention can be used to treat, inhibit, prognose, diagnose or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, any one or more of the diseases, disorders, or conditions such as, for example, MLL, AML, or ALL.
- the treatment and/or prevention of diseases and disorders associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases and disorders.
- the amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques.
- in vitro assays may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight.
- the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight.
- human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible.
- the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration of the antibodies by modifications such as, for example, lipidation or addition of cell-specific tags.
- in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample.
- the effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays.
- in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
- the invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention.
- the compound is substantially purified such that the compound is substantially free from substances that limit its effect or produce undesired side-effects.
- the subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.
- compositions of the invention for example, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, and the like as will be known by one of skill in the art.
- Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
- the compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
- intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.
- Pulmonary administration can also be employed, for example, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- a protein, including an antibody, of the invention care must be taken to use materials to which the protein does not absorb.
- the compound or composition can be delivered in a vesicle, such as a liposome (Langer, Science 249:1527-1533 (1990)).
- a vesicle such as a liposome
- the compound or composition can be delivered in a controlled release system.
- a controlled release system can be placed in proximity of the therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
- a pump may be used.
- polymeric materials can be used.
- the nucleic acid can be administered in vivo to promote expression of its mRNA and encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering, for example, by use of a retroviral vector, or by direct injection, or by use of microparticle bombardment for example, a gene gun, or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad Sci. USA 88:1864-1868 (1991)).
- a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
- kits that can be used in the above methods.
- a kit comprises a pharmaceutical composition of the invention in one or more containers.
- the kit is a diagnostic kit for use in testing biological samples.
- the kit can include a control antibody that does not react with the polypeptide of interest in addition to a specific antibody or antigen-binding fragment thereof which binds to the polypeptide (antigen) or the invention being tested for in the biological sample.
- a kit may include a substantially isolated polypeptide antigen comprising an epitope that is specifically immunoreactive with at least one anti-polypeptide antigen antibody.
- a kit can include a means for detecting the binding of said antibody to the antigen (for example, the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry).
- the kit may include a recombinantly produced or chemically synthesized polypeptide antigen.
- the polypeptide antigen of the kit may also be attached to a solid support.
- the detecting means of the above-described kit includes a solid support to which the polypeptide antigen is attached.
- the kit can also include a non-attached reporter-labeled anti-human antibody. Binding of the antibody to the polypeptide antigen can be detected by binding of the reporter-labeled antibody.
- the invention includes a diagnostic kit for use in screening serum samples containing antigens of the polypeptide of the invention.
- the diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody.
- the antibody is attached to a solid support.
- the antibody may be a monoclonal antibody.
- the detecting means of the kit can include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means can include a labeled, competing antigen.
- the test serum sample is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention.
- the reagent After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support.
- the reagent is washed again to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined.
- the reporter can be an enzyme, for example, which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or calorimetric substrate, as is standard in the art.
- the solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material.
- suitable solid support materials include, for example and without limitation, polymeric beads, dip sticks, 96-well plate or filter material.
- MLL translocations result in the production of a chimeric protein where the NH 2 -terminal portion of MLL is fused to the COOH-terminal portion of one of >20 fusion partners (Dimartino and Cleary, Br J Haematol 106:614-626 (1999)). This has prompted models of leukemogenesis in which the MLL-fusion protein may confer a gain-of-function or neomorphic properties, or alternatively represent a dominant negative that interferes with normal MLL function.
- mice heterozygous for MLL (+/ ⁇ ) demonstrate developmental aberration (Yu et al., Nature 378:505-508 (1995); Hess et al., Blood 90:1799-1806 (1997)), suggesting the disruption of one allele by chromosomal translocation might also manifest as haplo-insufficiency in leukemic cells.
- MLL is a homeotic regulator which shares homology with Drosophila trithorax ( trx ) and positively regulates the maintenance of homeotic (Hox), gene expression during development (Yu et al., Nature 378:505-508 (1995)). MLL deficient mice indicate that MLL is required for proper segment identity in the axioskeletal system, and also regulates hematopoiesis (Hess et al, Blood 90:1799-1806 (1997)). As MLL normally regulates Hox gene expression, its role in leukemogenesis may include altered patterns of HOX gene expression.
- HOX genes are important for appropriate hematopoietic development (Buske and Humphries, Int J I Hematol 71:301-308 (2000)). Also, the t(7;11)(p15;p15) translocation found in human acute myelogenous leukemia (AML) results in a fusion of HOXA9 to the nucleoporin NUP98 (Nakamura et al., Nat Genet 12:154-158 (1996) and Borrow et al., Nat Genet 12:159-167 (1996)). thus, HOX genes represent one set of transcriptional targets that warrants assessment in leukemias with MLL translocation.
- AML acute myelogenous leukemia
- RNA profiles might help resolve whether leukemias bearing an MLL translocation represent a truly biphenotypic leukemia of mixed identity, a conventional B-cell precursor ALL with expression of limited myeloid genes, or a less committed hematopoietic progenitor cell.
- comparing gene expression profiles of lymphoblastic leukemias with and without rearranged MLL is important because of their dramatically different response to standard ALL therapy, and because such analysis may identify new molecular targets for therapeutic approaches.
- the expression profiles reported here reveal that lymphoblastic leukemias bearing MLL translocations display a remarkable uniform and highly distinct pattern that clearly distinguishes them from conventional ALL or AML and warrants designation as a distinct disease, MLL.
- leukemia samples were obtained from peripheral blood or bone marrow from patients or diagnosis or relapse. When the samples were obtained from peripheral blood, the percentage of blasts was greater than 60% of the total white blood cells present. Fifteen of the samples with an MLL translocation and all of the conventional childhood ALL samples were obtained from patients treated on Dana Farber Cancer Institute protocols between 1980 and 2001. Three of the infant leukemia samples with MLL rearrangements were obtained from patients treated on the Interfant99 protocol, and the two adult patients with MLL rearrangements were obtained from patients treated at Princess Margaret Hospital in Toronto. Except for one of the conventional ALL samples and four of the MLL samples that were obtained at relapse, ass samples were diagnostic specimens.
- the AML samples have been previously described (Golub et al., Science 286:531-537 (1999)), and were from both adults and children.
- Eight of the MLL rearranged samples contain t(4;11), one t(9; 11), three t(11;19), one t(3;11) and one t(1;11).
- Six of the MLL rearrangements were detected by either FISH or Southern blot, and thus the translocation partner is unknown.
- the mononuclear cells were purified from red blood cells and neutrophils by ficoll-hypaque density centrifugation and either frozen in liquid nitrogen with 10% DMSO in fetal calf serum or put directly into Trizol (Life Sciences) for RNA purification.
- RNA purification, labeling and hybridization A total of 10-20 ⁇ 10 6 cells were used to prepare total RNA using the Trizol (Life Sciences) purification method. This generally yielded between 5 and 20 ⁇ g of total RNA the quality of which was analyzed by gel electrophoresis. If the rRNA bands were intact, the RNA was determined to be of good quality and 5-15 ⁇ g was used for subsequent production of biotinylated cRNA as described previously (Golub et al., Science 286:531-537 (1999)), and were from both adults and children. Briefly, first strand cDNA synthesis was generated using a T7-linked oligo-dT primer, followed by second strand synthesis.
- the signal was amplified using a biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, Calif.) at 3 ⁇ g/ml. This was followed by a second staining with SAPE. Normal goat IgG was used as a blocking agent. The scans were performed on Affymetrix canners and the expression values calculated using Affymetrix GENECHIP software. The chip image was then scanned visually for obvious differences between arrays. If there were obvious abnormalities present in the image, the sample was re-hybridized. The scans were then normalized based on a linear scaling method as described in the supplementary material.
- the raw expression data was obtained from Affymetrix's GeneChip s re-scaled to account for different chip intensities. Briefly, each column (sample) in the dataset was multiplied by 1/slope of at least squares linear fit of the sample versus the reference (the first sample in the dataset). This linear fit is done using only genes that have ‘Present’ calls in both the sample being re-scaled and the reference.
- the sample chosen as reference was a typical one (i.e., one with the number of “P” calls closer to the average over all samples in the dataset). Samples were disregarded if the scaling factor was greater than 3 fold.
- a threshold of 100 units was imposed before analysis because at those low values the data is noisy and not very reproducible. A ceiling of 16,000 units was also imposed due to saturation effects.
- the variation filter tests for a fold-change and absolute variation over samples (comparing max/min and max-min with predefined values and excluding genes not obeying both conditions). The max/min filter was 5 and the max-min 500 for all experiments.
- the class predictor was performed using a cross-validation approach and the K-Nearest Neighbors (K-nn) algorithm as follows.
- K-nn K-Nearest Neighbors
- the k-nearest neighbors (k-NN) algorithm predicts the class of a new sample by calculating the Euclidean distance of the new sample to samples in a training set whose location has been identified in expression space.
- the predicted class of the new sample is then determined by identifying the class to which the majority of the k-nearest neighbors belong.
- Principal component analysis was performed using S-plus statistical software and the default settings.
- a commonly used technique for data reduction and visualization is principal component analysis (PCA).
- PCA principal component analysis
- the linear combinations of variables are identified as the principal components that explain the variability in the dataset.
- the top 2 or 3 components can be graphed.
- the tope 3 principal were thus used to project the samples in 3-dimensional space based on the gene expression profile.
- PCA was then performed using the top 500 genes that correlated with the AML/ALL class distinction. ALL, MLL, AML samples were then projected in that 500 gene space.
- MLL translocations To further define the biological characteristics specified by MLL translocations, gene expression profiles of leukemic cells from patients diagnosed with acute lymphoblastic leukemia bearing an MLL translocation were compared with conventional ALL which lack this translocation. Initially, samples from 20 patients with childhood ALL (denoted ALL), and 17 patients with MLL translocation (referred to as MLL) were collected. Patient details are presented in Table 1 (MLL) and Table 2 (ALL).
- MLL_1 t(4; 11) MLL_2 So.Blot+# BM 3 months Relapse Column 2 MLL_3 t(4; 11) PB 8 months Diagnostic Column 3 MLL_4 FISH+* PB 2 months Relapse Column 4 MLL_5 FISH+ BM 2 months Diagnostic Column 5 MLL_6 FISH+ PB 18 months Diagnostic Column 6 MLL_7 t(4; 11) BM 8 months Relapse Column 7 MLL_8 t(4; 11) PB 5 months Diagnostic Column 8 MLL_9 So.Blot+ PB 7 months Diagnostic Column 9 MLL_10 t(1; 11) PB 1 month Diagnostic Column 10 MLL_11 t(3; 11) PB 1 day Diagnostic (q13; q23) Column 11 MLL_12 t(11; 19) BM 3 months Relapse Column 12 MLL_13
- FIGS. 1A and 1B show the degree of correlation with the MLL/ALL distinction
- permutation testing was used to assess the statistical significance of the observed differences in gene expression (Golub et al., Science 286:531-537 (1999)).
- FIG. 1A shows the top 50 genes that are relatively underexpressed in MLL
- FIG. 1B shows the bottom 50 genes that are relatively overexpressed in MLL.
- top 200 genes that make the ALL/MLL distinction and their GenBank Accession Numbers can be found in Table 3 (top 100 genes that are underexpressed in MLL compared to ALL) and Table 4 (top 100 genes that are overexpressed in MLL compared to ALL). TABLE 3 Genes Underexpressed in MLL Compared to ALL GenBank No. Name GenBank No.
- MLL shows a dramatically different gene expression profile from ALL.
- Many underexpressed genes in MLL have a unction in early B cell development. These include genes expressed in early B-cells (CD10, CD24, CD22, TdT) (Hardy and Hayakawa, Annu Rev Immunol., 19:595-621 (2001); LeBien, Blood 96:9-23 (2000)), genes required for appropriate B-cell development (E2A, E2-2, PI3-Kinase, Octamer Binding Factor-1, and DNA ligase IV) (Murre, Cold Spring Barb Symp Quant Bio 164:39-44 (1999); Fruman et al., Science 283:393-397 (1999); Schubart et al., Nat Immunol 2:69-74 (2001); and Frank et al., Nature 396:173-177 (1998)), and genes found to be correlated with B-precursor ALL in
- FKHR forkhead
- SMAD1 forkhead
- TCF-4 transcription factors suggest they may also be involved in later stages of B-cell differentiation or leukemogenesis.
- Relatively overexpressed genes in MLL include the adhesion molecules HL14, Annexin I, Annexin II, CD44, and CD43. Multiple genes that are expressed in hematopoietic lineages other than lymphocytes are also highly expressed in MLL.
- progenitors AC133, FLT3, LMO2
- myeloid specific genes Cyclin A1, monocyte elastase inhibitor, macrophage capping protein, eosinophil-CRP
- Rosnet et al. Blood 82:1110-1119 (1993)
- myeloid specific genes Cyclin A1, monocyte elastase inhibitor, macrophage capping protein, eosinophil-CRP
- FIGS. 1A, 1B and Tables 1 and 2 Overexpression of HOXA9 and Proteoglycan I in MLL is of particular interest as these genes were previously reported to be highly expressed in AML (Golub et al., Science 286:531-537 (1999)), and overexpression of HOXA9 has been associated with a poor prognosis (Golub et al., Science 286:531-537 (1999)).
- MLL is Arrested at an Early Stage of Hematopoietic Development
- lymphoblasts with MLL rearrangement express many myeloid specific genes
- a detailed assessment of the expression of lymphoid genes was performed.
- Genes known to mark early B-lymphoid commitment such as Ig ⁇ and CD19 are expressed in MLL albeit at lower levels than in ALL ( FIGS. 2C and 2B ).
- CD10 CALLA
- IL-7 receptor is expressed at similar levels in ALL and MLL.
- Ig ⁇ , CD24, CD44 and CD43 represent early steps of lymphoid development (Hardy and Hayakawa, Annu Rev Immunol 19:595-621 (2001) and Kondo et al., Cell 91:661-672 (1997)). Ig ⁇ and CD24 expression increases with maturation while CD44 and CD43 levels decrease (Kondo et al., Cell 91:661-672 (1997)). the MLL samples express relatively low levels of CD24 and Ig ⁇ but high levels of both CD44 and CD43 ( FIGS. 2F and 2E ). In total these data suggest that MLL represents a maturational arrest at an early lymphoid progenitor stage of development.
- HOXA9 and HOXA5 were not expressed in conventional ALL, but were expressed, often at high levels, in most MLL samples ( FIGS. 3A-3D ). Similarly, HOXA4 was typically expressed in MLL, but rarely in conventional ALL ( FIG. 3C ).
- HOXC6 showed mildly elevated levels of expression in MLL (Supplemental Information at http://research.dfci.harvard.edu/korsmeyer/MLL.htm). However, the HOX patterns displayed selectivity as other genes such as HOXA7 showed no obvious difference in their expression pattern ( FIG. 3D ).
- MEIS1 a cofactor for HOX proteins, which can accelerate HoxA9 dependent leukemia (Nakamura et al., Nat Genet 19:149-1531 (1996)), was also significantly overexpressed in MLL as previously reported for the t(4;11) containing subset (Rozovskaia et al., Oncogene 20:874-878 (2001)).
- MLL is characterized by the expression of myeloid specific genes, which raised the possibility that MLL is more closely related to acute myelogenous leukemia (AML).
- AML acute myelogenous leukemia
- PCA principal component analysis
- the MLL samples proved largely separate from either AML or ALL ( FIG. 4A ).
- a similar analysis was performed using the 500 genes whose expression best distinguished the separation of AML versus ALL.
- the MLL samples principally fall between the AML and ALL samples ( FIG. 4B ).
- ALL expressed high levels of the following genes compared to MLL and AML: CD10, CD24, DYRK, TdT, FKHR, DNA ligase IV, KIAA0867, CD22, OBF-1, B-spectrin, DKFZp5641083, Snf-2B, MLCK, VAMP5, and cDNA wg66h09) and these genes were underexpressed in MLL and ALL.
- AML samples expressed high levels of the following genes compared to ALL and MLL: adipsin, cathepsinD, CD13, M6 antigen, gap junction protein, a-endosulfine, NF-2 transcription factor DP-2, DRAP1, cDNA 20c1, phosphodiesterase 3B, cosmid 19p13.2, chromosome 19 clone, chromosome 22q11 clone, and CRYAA, and these genes were underexpressed in ALL and MLL.
- GenBank Accession Numbers for each of these genes is shown in FIG. 5 . Permutation analysis indicated that approximately 200 genes were significantly overexpressed in MLL as compared to the other two leukemia categories. In combination, the PCA and gene expression comparisons ( FIGS.
- MLL is a separable, distinct disease based on gene expression profile.
- ALL and AML are separable distinct diseases.
- the genes shown in FIG. 5 particularly the genes that are over expressed in each disease type, can be used in gene expression profile studies to diagnose MLL, ALL, or AML. These genes, including underexpressed and overexpressed genes for each disease type, can also be used as target for identifying and/or detecting compounds that alter expression and/or activity of these genes or their gene products, for therapeutic methods, and for monitoring efficacy of treatment, as described herein.
- a more stringent assessment of the power of the aforementioned difference in gene expression profiles would be their capacity to assign individual samples as MLL, ALL, or AML.
- the detection of MLL translocations in leukemia samples is currently most often performed by either cytogenetic analysis or by fluorescence in situ hybridization (FISH) which can technically fail or may be unavailable.
- FISH fluorescence in situ hybridization
- other approaches to correctly assign individual cases to meaningful subsets of leukemia would be useful.
- a three-class predictor was developed based on a k-nearest neighbors algorithm (Dasarathy (ed), IEEE Computer Society Press, Los Altos, Calif., December 1991. ISBN: 0818689307).
- This algorithm assigns a test sample to a class by identifying the k nearest samples in the training set and choosing the most common class among these k nearest neighbors. For this purpose, distances were defined by a euclidean metric based on the expression levels of a specified number of genes.
- the accuracy of this method was assessed using a cross validation approach. When one of the 57 samples is removed, the genes that most closely correlate with the ALL/MLL/AML class distinction are identified, and the expression of these genes used to determine the class of the withheld sample. The model assigned the withheld sample to the appropriate class with 95% accuracy. Moreover this accuracy was maintained as we extended from 40 to 250 genes to build the predictor ( FIG. 6 ), as further testimony to the strong distinction among these leukemia categories.
- the test set consisted of 3 childhood (>12 months) conventional ALLs, 2 lymphoblastic leukemias of childhood carrying cytogenetically verified MLL translocations, 2 infant ( ⁇ 12 months) leukemias in which cytogenetic analysis did not detect an MLL translocation and 3 AML samples. Utilizing the 100 genes that best correlated with the three-class distinction, nine of ten samples were correctly classified as MLL, ALL or AML. The one apparent error was an infant reported to be negative for an MLL rearrangement by cytogenetics, yet consistently predicted to have a rearrangement based on gene expression profile.
- MLL Gene expression patterns of MLL provide insight into the proposed models for its cellular origin.
- a summary of expression profiles shows that MLL expresses some lymphocyte specific and myeloid specific genes, but at lower levels than either conventional ALL or AML, respectively.
- the low-level expression of CD24 and Ig ⁇ , along with high expression of CD43 and CD44 suggests that MLL is arrested at an earlier stage of development than conventional ALL.
- the expression of genes typically found in progenitor cells suggests MLL represents an early hematopoietic progenitor.
- MLL may represent the expansion of a bipotential B-macrophage progenitor (Montecino-Rodriguez et al., Nat Immunol 2:83-88 (2001); and Cumano et al., Nature 356:612-615 (1992)).
- MLL-fusion protein drives the “transdifferentiation” of an early lymphocyte progenitor.
- the expression of many myeloid and monocyte/macrophage specific genes is consistent with MLL reflecting a very early B cell progenitor that has initiated transdifferentiation.
- the multiple HOX genes that are selectively expressed in MLL are attractive candidates for direct targets of the MLL-fusion proteins.
- Mll gene ablated mice have indicated that select members of the clustered Hox genes require MLL for their expression.
- overexpression of HoxA9 has also been shown to induce AML in mouse models (Nakamura et al., Nat Genet 12:149-1531 (1996)), and its expression is controlled by levels of Mll (Hanson et al., Proc Natl Acad Sci USA, 96:14372-14377 (1999)); misexpression of HOXA9 may be an important component of MLL-translocation driven leukemogenesis.
- the findings here prompt further studies to determine if MLL-fusion proteins directly activate HOX genes, and thus lead to defects in hematopoietic differentiation.
- CML chronic myelogenous leukemia
- APL acute promyelocytic leukemia
- FLT3 Aberrations of FLT3, especially duplication of its juxtamembrane domain, have been noted in some cases of AML and may be leukemogenic (Nakao et al., Leukemia 10:1911-1918 (1996); Zhao et al., Leukemia 14:374-378 (2000); and Tse et al., Leukemia 14:1766-1776 (2000)).
- FLT3 represents an attractive target for rational drug development.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Hospice & Palliative Care (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a divisional of U.S. Application No. 10/198,064, filed Jul. 17, 2002, which claims the benefit of U.S. Provisional Application No. 60/306,103 filed on Jul. 17, 2001. The entire teachings of the above applications are incorporated herein by reference.
- The invention was supported, in whole or in part, by a grant P01CA68484 from the National Institutes of Health. The Government has certain rights in the invention.
- A subset of human acute leukemias with a decidedly unfavorable prognosis possess a chromosomal translocation involving the Mixed Lineàge Leukemia (MLL, HRX, AU-1) gene on chromosome segment 11q23. The leukemic cells, which typically have a lymphoblastic morphology, have been classified as Acute Lymphoblastic Leukemia (ALL). However, unlike the majority of childhood ALL, the presence of the MLL translocations often results in an early relapse after chemotherapy. As MLL translocations are typically found in leukemias of infants and chemotherapy-induced leukemia, it has remained uncertain whether host related factors or tumor-intrinsic biological differences are responsible for the poor survival in patients with the translocations. Lymphoblastic leukemias with either rearranged or germline MLL are similar with respect to most morphological and histochemical characteristics. Inmunophenotypic differences associated with lymphoblasts bearing an MLL translocation include the lack of the early lymphocyte antigen CD10, expression of the proteoglycan NG2, and the propensity to co-express the myeloid antigens CD15 and CD65. This prompted the corresponding disease to be called Mixed Lineage Leukemia and suggested models, largely unresolved, in which the leukemia reflects disordered cell fate decisions or the transformation of a more multi-potential progenitor.
- Generally, therapeutic treatment is more successful when tailored to the specific type of leukemia. Thus, a need exists for accurate and efficient methods for diagnosis of leukemia and identification of subclasses of leukemias.
- As described herein, MLL is significantly different from ALL and AML, as assessed by gene expression profiling. The expression profiles reported here reveal that lymphoblastic leukemias bearing MLL translocations display a remarkably uniform and highly distinct pattern that clearly distinguishes them from conventional ALL or AML and warrants designation as a distinct disease, MLL.
- In one embodiment, the invention relates to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells, wherein the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells, and wherein the gene expression profile is correlated with mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia. In one embodiment, the gene expression product is RNA. In a preferred embodiment, the gene expression profile is determined utilizing specific hybridization probes. In a particularly preferred embodiment, the gene expression profile is determined utilizing oligonucleotide microarrays. In a preferred embodiment, the gene expression profile is determined utilizing antibodies. In particular embodiments, the informative gene(s) is selected from the group consisting of the genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - The invention further relates to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia, comprising determining a gene expression profile of mRNA from at least one informative gene, wherein the mRNA is isolated from one or more cells of an individual selected from the group consisting of mononuclear blood cells and bone marrow cells; and comparing the obtained gene expression profile to a gene expression profile of a control sample selected from the group consisting of a mixed lineage leukemia sample, an acute lymphoblastic leukemia sample and an acute myelogenous leukemia sample, wherein the gene expression profile of the cell from the individual is indicative of mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia.
- The invention also relates to a method of diagnosing mixed lineage leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear cells and bone marrow cells, wherein the gene expression profile is correlated with mixed lineage leukemia.
- The invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear blood cells and bone marrow cells of an individual with mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia; administering a test agent to the individual; determining a gene expression profile of a gene expression product from at least one informative gene from one or more cells selected from the group consisting of mononuclear blood cells and bone marrow cells from the individual; and comparing the two gene expression profiles, wherein if the gene expression profile from the individual after administration of the agent is correlated with effective treatment of mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, the test agent is a therapeutic agent. In one embodiment, the disease is mixed lineage leukemia, and a decrease in the expression of the informative gene selected from the group consisting of FLT3, MEIS1, and HoxA9, is indicative of effective treatment of mixed lineage leukemia. In another embodiment, the gene expression profiles compared prior to and after administration of the test agent consist of one or more of the same informative genes.
- The invention also relates to a method for evaluating drug candidates for their effectiveness in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that increases the gene expression profile of at least one informative gene which is decreased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- The invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that decreases the gene expression profile of at least one informative gene which is increased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- The invention further relates to a method of identifying a compound for use in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising contacting a cell sample or lysate thereof with a candidate compound, wherein the cell is selected from the group consisting of mononuclear blood cells and bone marrow cells; and detecting an alteration of a gene expression profile of a gene expression product from at least one informative gene from the cell sample or lysate thereof, wherein a compound that increases the gene expression profile of at least one informative gene which is decreased in mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia is a compound for use in treating acute lymphoblastic leukemia. In a preferred embodiment, the disease is mixed lineage leukemia, and the informative gene is selected from the group consisting of FLT3, MEIS1, and HoxA9.
- In another aspect, the invention relates to a method of identifying a compound that modulates (increases or decreases) the biological activity of an informative gene.
- In still another aspect, the invention features a method of identifying a compound that decreases the biological activity of an informative gene expression product having increased expression in MLL, AML, or ALL. The method comprises contacting the informative gene expression product with a candidate compound under conditions suitable for activity of the informative gene expression product; and assessing the biological activity level of the informative gene expression product. A candidate compound that decreases the biological activity level of the informative gene expression product relative to a control is a compound that decreases the biological activity of the informative gene expression product having increased expression in MLL, AML, or ALL. In one embodiment, the method is carried out in a cell or animal. In another embodiment, the method is carried out in a cell-free system. In still another embodiment the informative gene expression product is selected from the gene expression products encoded by the genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - In another aspect, the invention features a method of identifying a compound that increases the biological activity of an informative gene expression product having decreased expression in MLL, AML, or ALL. The method comprises contacting the informative gene expression product with a candidate compound under conditions suitable for biological activity of the informative gene expression product; and assessing the biological activity level of the informative gene expression product. A candidate compound that increases the biological activity level of the informative gene expression product relative to a control is a compound that increases the biological activity of the informative gene expression product having decreased expression in MLL, AML, or ALL. In one embodiment, the method is carried out in a cell or animal. In another embodiment, the method is carried out in a cell-free system. In still another embodiment the informative gene expression product is selected from the gene expression products encoded by the genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - In other embodiments, screens can be carried out for compounds that further increase the expression of a gene or the biological activity of a gene expression product already overexpressed in MLL, ALL, or AML, or that further decrease the expression of a gene or the biological activity of a gene expression product already underexpressed in MLL, ALL, or AML. These compounds can be identified according the screening methods described herein. These compounds should be avoided during treatment regimens for MLL, ALL, or AML.
- In still another aspect, the invention features a method of identifying a polypeptide that interacts with an informative gene expression product having increased or decreased expression in MLL, AML or ALL in a yeast two-hybrid system. The method comprises providing a first nucleic acid vector comprising a nucleic acid molecule encoding a DNA binding domain and a polypeptide encoded by the informative gene that is increased or decreased in MLL, AML, or ALL; providing a second nucleic acid vector comprising a nucleic acid encoding a transcription activation domain and a nucleic acid encoding a test polypeptide; contacting the first nucleic acid vector with the second nucleic acid vector in a yeast two-hybrid system; and assessing transcriptional activation in the yeast two-hybrid system. An increase in transcriptional activation relative to a control indicates that the test polypeptide is a polypeptide that interacts with the informative gene expression product having increased or decreased expression in MLL, AML or ALL.
- The invention also relates to compounds identified according to the above-described screening methods. Such compounds can be used to treat mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, as appropriate.
- The invention further relates to a method for evaluating a drug candidate for effectiveness in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene, wherein the gene expression product is isolated from cells derived from a blood or bone marrow sample from an individual to whom the drug candidate has been administered, wherein the gene expression profile is indicative of the effectiveness of the drug candidate in treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia.
- The invention also relates to a method for monitoring the efficacy of a mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia treatment, comprising determining the gene expression profile a gene expression product from at least one informative gene in a cell from blood samples derived from an individual being treated, wherein the samples are obtained at various time points; and comparing the treatment outcome of the samples at various times during treatment, wherein the efficacy of mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia treatment is determined. In one embodiment the gene expression profiles obtained over time is compared to gene expression profiles from individuals who do not have MLL, ALL, or AML (normal individuals). In another embodiment, the gene expression profiles determined at various time points include one or more of the same informative genes.
- The invention also encompasses a method of predicting the efficacy of treating mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, comprising determining a gene expression profile of a gene expression product from at least one informative gene, the gene expression product isolated from one or more cells selected from the group consisting of mononuclear cells and bone marrow cells of an individual with mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia, wherein the gene expression profile is correlated with a treatment outcome. In one embodiment the gene expression profiles obtained is compared to gene expression profiles from individuals who do not have MLL, ALL, or AML (normal individuals)
- The invention also relates to a method of treating mixed lineage leukemia, comprising administering to an individual in need thereof a therapeutic amount of an agent that inhibits the activity of a gene product that is increased in mixed lineage leukemia. In a preferred embodiment, gene product is encoded by an informative gene selected from the group consisting of FLT3, MEIS1, and HoxA9.
- The invention further relates to a method of treating mixed lineage leukemia, comprising administering to an individual in need thereof a therapeutic amount of an agent which enhances the activity of a gene product which is decreased in mixed lineage leukemia.
- In any of the above methods, the gene expression product may be RNA and the gene expression profile can be determined utilizing specific hybridization probes. In a particularly preferred embodiment, the gene expression profile is determined utilizing oligonucleotide microarrays. In another preferred embodiment, the gene expression profile is determined utilizing antibodies. In particular embodiments, the informative gene(s) is selected from the group consisting of the genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - The invention also relates to an oligonucleotide microarray having immobilized thereon a plurality of oligonucleotide probes specific for one or more informative genes for diagnosing mixed lineage leukemia, acute lymphoblastic leukemia, or acute myelogenous leukemia wherein the informative genes are selected from the group consisting of the genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - It is well known that proper diagnosis of disease is essential for successful treatment of individuals. The present invention will significantly improve the diagnosis of MLL, ALL, and ALL, and thereby improve the treatment of leukemic individuals.
- The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
-
FIG. 1A illustrates genes that distinguish ALL from MLL. The 100 genes most highly correlated with the class distinction are shown. Each column represents a leukemia sample and each row represents an individual gene. Expression levels are normalized for each gene where the mean is 0. Expression levels greater than the mean are shown in red, whereas levels less than the mean are shown in blue. Increasing distance from the mean is represented by increasing color intensity. -
FIG. 1B illustrates genes that distinguish ALL (left-most 20 columns) from MLL (right-most 17 columns). The 100 genes most highly correlated with the class distinction are shown. Each column represents a leukemia sample and each row represents an individual gene. Expression levels are normalized for each gene where the mean is 0. Expression levels greater than the mean are shown in red, whereas levels less than the mean are shown in blue. Increasing distance from the mean is represented by increasing color intensity. -
FIG. 2A illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD10 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 2B illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD19 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 2C illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of IgB in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 2D illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD24 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 2E illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD43 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 2F illustrates selected early lymphocyte gene expression in ALL and MLL. Relative levels of expression of CD44 in ALL and MLL samples are shown. Each bar represents an individual leukemia sample. The expression values are raw data obtained from Affymetrix GENECHIP® analysis after scaling of the arrays based on the scaling described in the Examples. -
FIG. 3A illustrates selected HOXA9 gene expression in ALL and MLL. Relative levels of expression of HOXA9 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples. -
FIG. 3B illustrates selected HOXA5 gene expression in ALL and MLL. Relative levels of expression of HOXA5 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples. -
FIG. 3C illustrates selected HOXA4 gene expression in ALL and MLL. Relative levels of expression of HOXA4 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples. -
FIG. 3D illustrates selected HOXA7 gene expression in ALL and MLL. Relative levels of expression of HOXA7 in ALL and MLL samples are shown. The expression values are obtained using Affymetrix GENECHIP® analysis after scaling of the arrays as described in the Examples. -
FIG. 4A illustrates the comparison of gene expression between ALL, MLL and AML, and shows the principal component analysis (PCA) plot of ALL (red), MLL (blue), and AML (yellow) performed using 8700 genes that passed filtering. -
FIG. 4B illustrates the comparison of gene expression between ALL, MLL and AML, and shows the PCA plot comparing ALL (red), MLL (blue), and AML (yellow) using the 500 genes that best distinguished ALL from AML. -
FIG. 5 illustrates genes specifically expressed in MLL, ALL or AML. The top 15 genes, and their corresponding GenBank Accession Numbers, that are most highly correlated with one type of leukemia versus the other two are shown. Each column represents a leukemia sample and each row a gene. The relative levels of expression are shown in red (relatively high) and blue (relatively low) as described in FIGS. 1A and 1B1. -
FIG. 6 illustrates the classification of ALL, MLL and AML based on gene expression profile through a plot showing the error rate in class prediction using a cross-validation approach. One sample was withheld, and the class membership of this sample predicted based on gene expression levels. The genes used are the top 1-250 genes that are best correlated with the ALL/MLL/AML three-class distinction. - Early and accurate diagnosis of disease is of paramount importance in rendering effective treatment. The present invention relates to the diagnosis of mixed lineage leukemia (MLL), acute lymphoblastic leukemia (ALL), and acute myelogenous leukemia (AML) according to the gene expression profile of a sample from an individual, as well as to methods of therapy and screening that utilize the genes identified herein as targets.
- In one embodiment, the present invention is directed to a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia, comprising isolating a gene expression product from at least one informative gene from one or more cells of an individual selected from the group consisting of mononuclear blood cells and bone marrow cells; and determining a gene expression profile of at least one informative gene, wherein the gene expression profile is correlated with mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia.
- In another embodiment, the present invention is directed toward a method of diagnosing mixed lineage leukemia, acute lymphoblastic leukemia and acute myelogenous leukemia, comprising isolating mRNA from one or more cells of an individual, wherein the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells, determining a gene expression profile of at least one informative gene, and comparing the gene expression profile with a gene expression profile of a control sample selected from the group consisting of mixed lineage leukemia sample, acute lymphoblastic leukemia sample and acute myelogenous leukemia sample, wherein the gene expression profile obtained from the cells of the individual is indicative of mixed lineage leukemia, acute lymphoblastic leukemia or acute myelogenous leukemia.
- In one example of the above method, if the gene expression product obtained from the sample is similar to the gene expression product of MLL, then the individual is diagnosed as having MLL; and if the gene expression product obtained from the sample is similar to the gene expression product of ALL, then the individual is diagnosed as having ALL; and if the gene expression product obtained from the sample is similar to the gene expression product of AML, then the individual is diagnosed as having AML. Using similar methods, the diagnosis of certain types of leukemias (MLL, ALL, or AML) can also be ruled out.
- “Gene expression profile” as used herein is defined as the level or amount of gene expression of particular genes as assessed by methods described herein. The gene expression profile can comprise data for one or more genes and can be measured at a single time point or over a period of time.
- As used herein, “gene expression products” are proteins, polypeptides, or nucleic acid molecules (e.g., mRNA, tRNA, rRNA, or cRNA) that result from transcription or translation of genes. The present invention can be effectively used to analyze proteins, peptides or nucleic acid molecules that are the result of transcription or translation. The nucleic acid molecule levels measured can be derived directly from the gene or, alternatively, from a corresponding regulatory gene or regulatory sequence element. All forms of gene expression products can be measured. Additionally, variants of genes and gene expression products including, for example, spliced variants and polymorphic alleles, can be measured. Similarly, gene expression can be measured by assessing the level of protein or derivative thereof translated from mRNA. The sample to be assessed can be any sample that contains a gene expression product. Suitable sources of gene expression products, e.g., samples, can include intact cells, lysed cells, cellular material for determining gene expression, or material containing gene expression products. Examples of such samples are brain, blood, bone marrow, plasma, lymph, urine, tissue, mucus, sputum, saliva or other cell samples. Methods of obtaining such samples are known in the art. In a preferred embodiment, mononuclear bloods cells are used. In another preferred embodiment, bone marrow tissue is used.
- In one embodiment, the gene expression product is a protein or polypeptide. In this embodiment the determination of the gene expression profile can be made using techniques for protein detection and quantitation known in the art. For example, antibodies specific for the protein or polypeptide can be obtained using methods which are routine in the art, and the specific binding of such antibodies to protein or polypeptide gene expression products can be detected and measured.
- The present invention also provides methods for classifying the sample. A sample can be classified in many ways including but not limited to leukemia subclass (e.g., ALL, AML, or MLL), response to a particular treatment, referred to herein as treatment outcome, or treatment efficacy. Informative genes include, but are not limited to, those shown in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. Using the methods described herein, expression of numerous genes can be measured simultaneously. The assessment of numerous genes provides for a more accurate evaluation of the sample because there are more genes that can assist in classifying the sample. - In a preferred embodiment, the gene expression product is mRNA and the gene expression levels are obtained, e.g., by contacting the sample with a suitable microarray, and determining the extent of hybridization of the nucleic acid in the sample to the probes on the microarray.
- The gene expression value measured or assessed is the numeric value obtained from an apparatus that can measure gene expression levels. Gene expression levels refer to the amount of expression of the gene expression product, as described herein. The values are raw values from the apparatus, or values that are optionally rescaled, filtered and/or normalized. Such data is obtained, for example, from a GeneChip® probe array or Microarray (Affymetrix, Inc.) (U.S. Pat. Nos. 5,631,734, 5,874,219, 5,861,242, 5,858,659, 5,856,174, 5,843,655, 5,837,832, 5,834,758, 5,770,722, 5,770,456, 5,733,729, 5,556,752, all of which are incorporated herein by reference in their entirety), and the expression levels are calculated with software (e.g., Affymetrix GENECHIP® software). Nucleic acids (e.g., mRNA) from a sample which has been subjected to particular stringency conditions hybridize to the probes on the chip. The nucleic acid to be analyzed (e.g., the target) is isolated, amplified and labeled with a detectable label, (e.g., 32P or fluorescent label) prior to hybridization to the arrays. Once hybridization occurs, the arrays are inserted into a scanner which can detect patterns of hybridization. The hybridization data are collected as light emitted from the labeled groups which is now bound to the probe array. The probes that perfectly match the target produce a stronger signal than those that have mismatches. Since the sequence and position of each probe on the array are known, by complementarity, the identity of the target nucleic acid applied to the probe is determined. Quantitation of gene profiles from the hybridization of labeled mRNA /DNA microarray can be performed by scanning the microarrays to measure the amount of hybridization at each position on the microarray with an Affymetrix scanner (Affymetrix, Santa Clara, Calif.). For each stimulus a time series of mRNA levels (C={C1,C2,C3, . . . Cn}) and a corresponding time series of mRNA levels (M={M1,M2,M3, . . . Mn}) in control medium in the same experiment as the stimulus is obtained. Quantitative data is then analyzed. Ci and Mi are defined as relative steady-state mRNA levels, where i refers to the ith timepoint and n to the total number of timepoints of the entire timecourse. μM and σM are defined as the mean and standard deviation of the control time course, respectively. Microarrays are only one method of obtaining gene expression values. Other methods for obtaining gene expression values known in the art or developed in the future can be used with the present invention.
- Once the gene expression values are prepared, the sample can be classified. Genes that are particularly relevant for classification have been identified as a result of work described herein and are shown in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. The genes that are relevant for classification are referred to herein as “informative genes.” Not all informative genes for a particular class distinction must be assessed in order to classify a sample. For example, a subset of the informative genes which demonstrate a high correlation with a class distinction can be used. This subset can be, for example, one or more genes, for example 2, 3, or 4 genes, 5 or more genes, for example 6, 7, 8, or 9 genes, 10 or more genes, 25 or more genes, 45 or more genes, or 50 or more genes. Typically the accuracy of the classification will increase with the number of informative genes assessed. - The correlation between gene expression profiles and class distinction can be determined using a variety of methods. Methods of defining classes and classifying samples are described, for example, in U.S. patent application Ser. No. 09/544,627, filed Apr. 6, 2000 by Golub et al., the teachings of which are incorporated herein by reference in their entirety. The information provided by the present invention, alone or in conjunction with other test results, aids in sample classification and diagnosis of disease.
- The present invention also provides methods for monitoring the effect of a treatment regimen in an individual by monitoring the gene expression profile for one or more informative genes. Treatment efficacy classification can be made by comparing the gene expression profile of a sample at several time points during treatment with respect to one or more informative genes. A treatment can be considered efficacious if the gene expression profile with regard to one or more informative genes tends toward a normal gene expression profile. That is, for example, treatment can be considered efficacious if a gene having increased expression in a disorder (e.g., MLL) shows reduced expression (i.e., expression tending toward normal expression) as a result of treatment. For example, in one method, a baseline gene expression profile for the individual can be determined, and repeated gene expression profiles can be determined at time points during treatment. A shift in gene expression profile from a profile correlated with poor treatment outcome to profile correlated with improved treatment outcome is evidence of an effective therapeutic regimen, while a repeated profile correlated with poor treatment outcome is evidence of an ineffective therapeutic regimen. For example, HOXA9 and MEIS1 upregulation has been correlated with a poor prognosis. An effective therapeutic regimen might be expected to reduce the level of HOXA9 and MEIS1 expression. Similarly, as described herein, expression of FLT3 is correlated with MLL. Thus, a reduction in the baseline level of FLT3 or its kinase activity can be indicative of an effective therapeutic.
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2 provide additional gene products which can be useful in evaluating the efficacy of treatment. - The present invention also provides information regarding the genes that are important in MLL treatment response, thereby providing additional targets for diagnosis and therapy. It is also clear that the present invention can be used to generate databases comprising informative genes which will have many applications in medicine, research and industry.
- Also encompassed in the present invention is the use of gene expression profiles to screen for therapeutic agents. In one embodiment, the present invention is directed to a method of screening for a therapeutic agent for an individual with mixed lineage leukemia, comprising isolating a gene expression product from at least one informative gene from one or more cells of the individual with mixed lineage leukemia; identifying a therapeutic agent by determining a gene expression profile of at least one informative gene before and after administration of the agent, wherein if the gene expression profile from the individual after administration of the agent is correlated with effective treatment of mixed lineage leukemia the agent is identified as a therapeutic agent. In another embodiment, the cells are selected from the group consisting of mononuclear blood cells and bone marrow cells. Alternatively, the above method can utilize a cell line derived from an individual with mixed lineage leukemia.
- The invention also provides methods (also referred to herein as “screening assays”) for identifying agents or compounds (e.g., fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) that alter or modulate (e.g., increase or decrease) the activity of the gene expression products of the informative genes (e.g., polypeptides encoded by the informative genes) as described herein, or that otherwise interact with the informative genes and/or polypeptides described herein. Such compounds can be compounds or agents that bind to informative gene expression products described herein (e.g., the polypeptides encoded by the informative genes in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2), and that have a stimulatory or inhibitory effect on, for example, activity of the polypeptide encoded by an informative gene described herein; or that change (e.g., enhance or inhibit) the ability of a polypeptide encoded by an informative gene to interact with compounds or agents that bind such an informative gene polypeptide; or the alter post-translational processing of such a polypeptide (e.g., agents that alter proteolytic processing to direct the polypeptide from where it is normally synthesized to another location in the cell, such as the cell surface or the nucleus; or agents that alter proteolytic processing such that more polypeptide is released from the cell, etc.). In one example, the binding agent is an MLL binding agent. As used herein, by an MLL binding agent“ is meant an agent as described herein that binds to a polypeptide encoded by an informative gene of the present invention and modulates the occurrence, severity, or progression of mixed lineage leukemia. The modulation can be an increase or a decrease in the occurrence, severity, or progression of prostate cancer. In addition, an MLL binding agent includes an agent that binds to a polypeptide that is upstream (earlier) or downstream (later) of the cell signaling events mediated by a polypeptide encoded by an informative gene of the present invention, and thereby modulates the overall activity of the signaling pathway; in turn, the mixed lineage leukemia disease state of is modulated. - The candidate compound can cause an alteration in the activity of a polypeptide encoded by an informative gene of the present invention. For example, the activity of the polypeptide can be altered (increased or decreased) by at least 1.5-fold to 2-fold, at least 3-fold, or, at least 5-fold, relative to the control. Alternatively, the polypeptide activity can be altered, for example, by at least 10%, at least 20%, 40%, 50%, or 75%, or by at least 90%, relative to the control.
- In one embodiment, the invention provides assays for screening candidate compounds or test agents to identify compounds that bind to or modulate the activity of a polypeptide encoded by an informative gene described herein (or biologically active portion(s) thereof), as well as agents identifiable by the assays. As used herein, a “candidate compound” or “test agent” is a chemical molecule, be it naturally-occurring or artificially-derived, and includes, for example, peptides, proteins, synthesized molecules, for example, synthetic organic molecules, naturally-occurring molecule, for example, naturally occurring organic molecules, nucleic acid molecules, and components thereof.
- In general, candidate compounds for use in the present invention may be identified from large libraries of natural products or synthetic (or semi-synthetic) extracts or chemical libraries according to methods known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the screening procedure(s) of the invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using the exemplary methods described herein. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic- or animal-based extracts, fermentation broths, and synthetic compounds, as well as modification of existing compounds. Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid-based compounds. Synthetic compound libraries are commercially available, e.g., from Brandon Associates (Merrimack, N.H.) and Aldrich Chemical (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceangraphics Institute (Ft. Pierce, Fla.), and PharmaMar, U.S.A. (Cambridge, Mass.). In addition, natural and synthetically produced libraries are generated, if desired, according to methods known in the art, e.g., by standard extraction and fractionation methods. For example, candidate compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the “one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des., 12: 145 (1997)). Furthermore, if desired, any library or compound is readily modified using standard chemical, physical, or biochemical methods.
- In addition, those skilled in the art of drug discovery and development readily understand that methods for dereplication (e.g., taxonomic dereplication, biological dereplication, and chemical dereplication, or any combination thereof) or the elimination of replicates or repeats of materials already known for their activities should be employed whenever possible.
- When a crude extract is found to modulate (i.e., stimulate or inhibit) the expression and/or activity of the informative genes and/or their encoded polypeptides, further fractionation of the positive lead extract is necessary to isolate chemical constituents responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having an activity that stimulates or inhibits nucleic acid expression, polypeptide expression, or polypeptide biological activity. The same assays described herein for the detection of activities in mixtures of compounds can be used to purify the active component and to test derivatives thereof. Methods of fractionation and purification of such heterogenous extracts are known in the art. If desired, compounds shown to be useful agents for treatment are chemically modified according to methods known in the art. Compounds identified as being of therapeutic value may be subsequently analyzed using animal models for diseases in which it is desirable to alter the activity or expression of the nucleic acids or polypeptides of the present invention.
- In one embodiment, to identify candidate compounds that alter the biological activity of a polypeptide encoded by an informative gene as described herein, a cell, tissue, cell lysate, tissue lysate, or solution containing or expressing a polypeptide encoded by the informative gene (e.g., a polypeptide encoded by a gene in any of
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2), or a fragment of derivative thereof, can be contacted with a candidate compound to be tested under conditions suitable for biological activity of the polypeptide. Alternatively, the polypeptide can be contacted directly with the candidate compound to be tested. The level (amount) of polypeptide biological activity is assessed/measured, either directly or indirectly, and is compared with the level of biological activity in a control (i.e., the level of activity of the polypeptide or active fragment or derivative thereof in the absence of the candidate compound to be tested, or in the presence of the candidate compound vehicle only). If the level of the biological activity in the presence of the candidate compound differs, by an amount that is statistically significant, from the level of the biological activity in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the biological activity of the polypeptide encoded by an informative gene of the invention. For example, an increase in the level of polypeptide biological activity relative to a control, indicates that the candidate compound is a compound that enhances (is an agonist of) the polypeptide biological activity. Similarly, a decrease in the polypeptide biological activity relative to a control, indicates that the candidate compound is a compound that inhibits (is an antagonist of) the polypeptide biological activity. - In another embodiment, the level of biological activity of a polypeptide encoded by an informative gene, or a derivative or fragment thereof in the presence of the candidate compound to be tested, is compared with a control level that has previously been established. A level of polypeptide biological activity in the presence of the candidate compound that differs from (i.e., increases or decreases) the control level by an amount that is statistically significant indicates that the compound alters the biological activity of the polypeptide.
- The present invention also relates to an assay for identifying compounds (e.g., antisense nucleic acids, fusion proteins, polypeptides, peptidomimetics, prodrugs, receptors, binding agents, antibodies, small molecules or other drugs, or ribozymes) that alter (e.g., increase or decrease) expression (e.g., transcription or translation) of an informative gene or that otherwise interact with an informative gene described herein, as well as compounds identifiable by the assays. For example, a solution containing an informative gene can be contacted with a candidate compound to be tested. The solution can comprise, for example, cells containing the informative gene or cell lysate containing the informative gene; alternatively, the solution can be another solution that comprises elements necessary for transcription/translation of the informative gene. Cells not suspended in solution can also be employed, if desired. The level and/or pattern of informative gene expression (e.g., the level and/or pattern of mRNA or protein expressed) is assessed, and is compared with the level and/or pattern of expression in a control (i.e., the level and/or pattern of the informative gene expressed in the absence of the candidate compound, or in the presence of the candidate compound vehicle only). If the expression level and/or pattern in the presence of the candidate compound differs by an amount or in a manner that is statistically significant from the level and/or pattern in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the expression of an informative gene. Enhancement of informative gene expression indicates that the candidate compound is an agonist of informative gene polypeptide activity. Similarly, inhibition of informative gene expression indicates that the candidate compound is an antagonist of informative gene polypeptide activity.
- In another embodiment, the level and/or pattern of an informative gene in the presence of the candidate compound to be tested, is compared with a control level and/or pattern that has previously been established. A level and/or pattern informative gene expression in the presence of the candidate compound that differs from the control level and/or pattern by an amount or in a manner that is statistically significant indicates that the candidate compound alters informative gene expression.
- In another embodiment of the invention, compounds that alter the expression of an informative gene, or that otherwise interact with an informative gene described herein, can be identified using a cell, cell lysate, or solution containing a nucleic acid encoding the promoter region of the informative gene operably linked to a reporter gene. As used herein by “promoter” means a minimal nucleotide sequence sufficient to direct transcription, and by “operably linked” means that a gene and one or more regulatory sequences are connected in such a way as to permit gene expression when the appropriate molecules (e.g., transcriptional activator proteins) are bound to the regulatory sequences. Examples of reporter genes and methods for operably linking a reporter gene to a promoter are known in the art. After contact with a candidate compound to be tested, the level of expression of the reporter gene (e.g., the level of mRNA or of protein expressed) is assessed, and is compared with the level of expression in a control (i.e., the level of expression of the reporter gene in the absence of the candidate compound, or in the presence of the candidate compound vehicle only). If the level of expression in the presence of the candidate compound differs by an amount or in a manner that is statistically significant from the level in the absence of the candidate compound, or in the presence of the candidate compound vehicle only, then the candidate compound is a compound that alters the expression of the informative gene, as indicated by its ability to alter expression of the reporter gene that is operably linked to the informative gene promoter. Enhancement of the expression of the reporter gene indicates that the compound is an agonist of the informative gene polypeptide activity. Similarly, inhibition of the expression of the reporter gene indicates that the compound is an antagonist of the informative gene polypeptide activity.
- In another embodiment, the level of expression of the reporter in the presence of the candidate compound to be tested, is compared with a control level that has been established previously. A level in the presence of the candidate compound that differs from the control level by an amount or in a manner that is statistically significant indicates that the candidate compound alters informative gene expression.
- The present invention also features methods of detecting and/or identifying a compound that alters the interaction between a polypeptide encoded by an informative gene and a polypeptide (or other molecule) with which the polypeptide normally interacts with (e.g., in a cell or under physiological conditions). In one example, a cell or tissue that expresses or contains a compound (e.g., a polypeptide or other molecule) that interacts with a polypeptide encoded by an informative gene (such a molecule is referred to herein as a “polypeptide substrate”) is contacted with the informative gene polypeptide in the presence of a candidate compound, and the ability of the candidate compound to alter the interaction between the polypeptide encoded by the informative gene and the polypeptide substrate is determined, for example, by assaying activity of the polypeptide. Alternatively, a cell lysate or a solution containing the informative gene polypeptide, the polypeptide substrate, and the candidate compound can be used. A compound that binds to the informative gene polypeptide or to the polypeptide substrate can alter the interaction between the informative gene polypeptide and the polypeptide substrate by interfering with (inhibiting), or enhancing the ability of the informative gene polypeptide to bind to, associate with, or otherwise interact with the polypeptide substrate.
- Determining the ability of the candidate compound to bind to the informative gene polypeptide or a polypeptide substrate can be accomplished, for example, by coupling the candidate compound with a radioisotope or enzymatic label such that binding of the candidate compound to the informative gene polypeptide or polypeptide substrate can be determined by directly or indirectly detecting the candidate compound labeled with 125I, 35S, 14C, or 3H, and the detecting the radioisotope (e.g., by direct counting of radioemission or by scintillation counting). Alternatively, the candidate compound can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label is then detected by determination of conversion of an appropriate substrate to product. In another alternative, one of the other components of the screening assay (e.g., the polypeptide substrate or the informative gene polypeptide) can be labeled, and alterations in the interaction between the informative gene polypeptide and the polypeptide substrate can be detected. In these methods, labeled unbound components can be removed (e.g., by washing) after the interaction step in order to accurately detect the effect of the candidate compound on the interaction between the informative gene polypeptide and the polypeptide substrate.
- It is also within the scope of this invention to determine the ability of a candidate compound to interact with the informative gene polypeptide or polypeptide substrate without the labeling of any of the interactants. For example, a microphysiometer can be used to detect the interaction of a candidate compound with a polypeptide encoded by an informative gene or a polypeptide substrate without the labeling of either the candidate compound, the polypeptide encoded by the informative gene, or the polypeptide substrate (McConnell et al., Science 257: 1906-1912 (1992)). As used herein, a “microphysiometer” (e.g., CYTOSENSOR™) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between ligand and polypeptide.
- In another embodiment of the invention, assays can be used to identify polypeptides that interact with one or more polypeptides encoded by an informative gene. For example, a yeast two-hybrid system such as that described by Fields and Song (Fields and Song, Nature 340: 245-246 (1989)) can be used to identify polypeptides that interact with one or more polypeptides encoded by an informative gene. In such a yeast two-hybrid system, vectors are constructed based on the flexibility of a transcription factor that has two functional domains (a DNA binding domain and a transcription activation domain). If the two domains are separated but fused to two different proteins that interact with one another, transcriptional activation can be achieved, and transcription of specific markers (e.g., nutritional markers such as His and Ade, or color markers such as lacZ) can be used to identify the presence of interaction and transcriptional activation. For example, in the methods of the invention, a first vector is used that includes a nucleic acid encoding a DNA binding domain and a polypeptide encoded by an informative gene, or fragment or derivative thereof, and a second vector is used that includes a nucleic acid encoding a transcription activation domain and a nucleic acid encoding a polypeptide that potentially may interact with the informative gene polypeptide, or fragment or derivative thereof. Incubation of yeast containing the first vector and the second vector under appropriate conditions (e.g., mating conditions such as used in the MATCHMAKER™ system from Clontech) allows identification of colonies that express the markers of the polypeptide(s). These colonies can be examined to identify the polypeptide(s) that interact with the polypeptide encoded by the informative gene or a fragment or derivative thereof. Such polypeptides may be useful as compounds that alter the activity or expression of an informative gene polypeptide.
- In more than one embodiment of the above assay methods of the present invention, it may be desirable to immobilize a polypeptide encoded by an informative gene, or a polypeptide substrate, or other components of the assay on a solid support, in order to facilitate separation of complexed from uncomplexed forms of one or both of the polypeptides, as well as to accommodate automation of the assay. Binding of a candidate compound to the polypeptide, or interaction of the polypeptide with a polypeptide substrate in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein (e.g., a glutathione-S-transferase fusion protein) can be provided that adds a domain that allows the informative gene polypeptide, or the polypeptide substrate to be bound to a matrix or other solid support.
- This invention further pertains to novel compounds identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use a compound identified as described herein in an appropriate animal model. For example, a compound identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such a compound. Alternatively, a compound identified as described herein can be used in an animal model to determine the mechanism of action of such a compound. Furthermore, this invention pertains to uses of novel compounds identified by the above-described screening assays for treatments as described herein. In addition, a compound identified as described herein can be used to alter activity of a polypeptide encoded by an informative gene, or to alter expression of the informative gene, by contacting the polypeptide or the nucleic acid molecule (or contacting a cell comprising the polypeptide or the nucleic acid molecule) with the compound identified as described herein.
- The present invention encompasses a method of treating MLL, AML or ALL, comprising the administration of an agent which modulates the expression level or activity of an informative gene product. A therapeutic agent may increase or decrease the level or activity of the gene product. For example, an inhibitor of the kinase FLT3 should be useful in treating MLL. Other suitable therapeutic targets for drug development include genes described herein in
FIGS. 1A, 1B , 2A-2F, 3A-3D, and 5, and Tables 1 and 2. - The present invention further relates to antibodies that specifically bind a polypeptide, preferably an epitope, of an informative gene of the present invention (as determined, for example, by immunoassays, a technique well known in the art for assaying specific antibody-antigen binding). Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments F(ab′) fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, for example, anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above.
- The term “antibody,” as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, and more specifically, molecules that contain an antigen binding site that specifically binds an antigen. The immunoglobulin molecules of the invention can be of any type (for example, IgG, IgE, IgM, IgD, IgA and IgY), and of any class (for example, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of an immunoglobulin molecule.
- In one embodiment, the antibodies are antigen-binding antibody fragments and include, without limitation, Fab, Fab′ and F(ab′)2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, can comprise the variable region(s) alone or in combination with the entirety or a portion of one or more of the following: hinge region, CH1, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CH1, CH2, and/or CH3 domains.
- The antibodies of the invention may be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine, donkey, sheep, rabbit, goat, guinea pig, hamster, horse, or chicken.
- As used herein, “human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies produced by human B cells, or isolated from human sera, human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulins and that do not express endogenous immunoglobulins, as described in U.S. Pat. No. 5,939,598 by Kucherlapati et al., for example.
- The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material.
- Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention that they recognize or specifically bind. The epitope(s) of polypeptide portion(s) may be specified, for example, by N-terminal and/or C-terminal positions, or by size in contiguous amino acid residues. Antibodies that specifically bind any epitope or polypeptide encoded by an informative gene of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind a polypeptide encoded by an informative gene of the present invention, and allows for the exclusion of the same.
- The term “epitope,” as used herein, refers to a portion of a polypeptide which contacts an antigen-binding site(s) of an antibody or T cell receptor. Specific binding of an antibody to an antigen having one or more epitopes excludes non-specific binding to unrelated antigens, but does not necessarily exclude cross-reactivity with other antigens with similar epitopes.
- Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies of the present invention may not display any cross-reactivity, such that they do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention. Alternatively, antibodies of the invention can bind polypeptides with at least about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, or 50% identity (as calculated using methods known in the art) to a polypeptide encoded by an informative gene of the present invention. Further included in the present invention are antibodies that bind polypeptides encoded by informative genes that hybridize to an informative gene of the present invention under stringent hybridization conditions, as will be appreciated by one of skill in the art.
- Antibodies of the present invention can also be described or specified in terms of their binding affinity to a polypeptide of the invention. Preferred binding affinities include those with a dissociation constant or Kd less than 5×10−6 M, 10−6 M, 5×10−7 M, 10−7 M, 5×10−8 M, 10−8 M, 5×10−9 M, 10−9 M, 5×10−10 M, 10−10 M, 5×10−11 M, 10−11 M, 5×10−12 M, 10−12 M, 5×10−13 M, 10−13 M, 5×10−14 M, 10−13 M, 5×10−15 M, and 10−15 M.
- The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of a polypeptide of the invention, as determined by any method known in the art for determining competitive binding, for example, using immunoassays. In particular embodiments, the antibody competitively inhibits binding to the epitope by at least about 90%, 80%, 70%, 60%, or 50%.
- Antibodies of the present invention can act as agonists or antagonists of polypeptides encoded by the informative genes of the present invention. For example, the present invention includes antibodies which disrupt interactions with the polypeptides encoded by the informative genes of the invention either partially or fully. The invention also includes antibodies that do not prevent binding, but prevent activation or activity of the polypeptide. Activation or activity (for example, signaling) may be determined by techniques known in the art. Also included are antibodies that prevent both binding to and activity of a polypeptide encoded by an informative gene. Likewise included are neutralizing antibodies.
- Antibodies of the present invention may be used, for example, and without limitation, to purify, detect, and target the polypeptides encoded by the informative genes described herein, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides in biological samples. See, for example, Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).
- As discussed in more detail below, the antibodies of the present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- and/or C-terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays, or effector molecules such as heterologous polypeptides, drugs, or toxins.
- The antibodies of the invention include derivatives that are modified, for example, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from recognizing its epitope. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, for example, by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, or linkage to a cellular ligand or other protein. Any of numerous chemical modifications can be carried out by known techniques, including, but not limited to, specific chemical cleavage, acetylation, formylation, and metabolic synthesis of tunicamycin. Additionally, the derivative can contain one or more non-classic amino acids.
- The antibodies of the present invention can be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, or the like, to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants can be used to increase the immunological response, depending on the host species, and include, but are not limited to, Freund's adjuvant (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (Bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are well known in the art.
- Monoclonal antibodies can be prepared using a wide variety of techniques also known in the art, including hybridoma cell culture, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques as is known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1988). The term “monoclonal antibody” as used herein is not necessarily limited to antibodies produced through hybridoma technology, but also refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone.
- Human antibodies are desirable for therapeutic treatment of human patients. These antibodies can be made by a variety of methods known in the art including phage display methods using antibody libraries derived from human immunoglobulin sequences. Human antibodies can also be produced using transgenic mice that are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. The transgenic mice are immunized with a selected antigen, for example, all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, for example, PCT publications WO 98/24893; WO 96/34096; WO 96/33735; and U.S. Pat. Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5661,016; 5,545,806; 5,814,318; and 5,939,598.
- In another embodiment, antibodies to the polypeptides encoded by the informative genes as described herein can, in turn, be utilized to generate anti-idiotype antibodies that “mimic” polypeptides of the invention using techniques well known to those skilled in the art. (See, for example, Greenspan & Bona, FASEB J. 7(5):537-444 (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies that bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide to a ligand can be used to generate anti-idiotypes that “mimic” the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand. For example, such anti-idiotypic antibodies can be used to bind a polypeptide encoded by an informative gene and/or to bind its ligands, and thereby block its biological activity.
- The antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate their purification. In one embodiment, the marker amino acid sequence is a hexa-histidine peptide, and HA tag, or a FLAG tag, as will be readily appreciated by one of skill in the art.
- The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically, for example, to monitor the development or progression of a tumor as part of a clinical testing procedure to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include enzymes (such as, horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase), prosthetic group (such as streptavidin/biotin and avidin/biotin), fluorescent materials (such as umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin), luminescent materials (such as luminol), bioluminescent materials (such as luciferase, luciferin, and aequorin), radioactive materials (such as, 125I, 131I, 111In, or 99Tc), and positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions.
- In an additional embodiment, an antibody or fragment thereof can be conjugated to a therapeutic moiety such as a cytotoxin, for example, a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that id detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (for example, daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (for example, actinomycin, bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (for example, vincristine and vinblastine).
- The conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, α- interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, for example, angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukins, granulocyte macrophase colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.
- Antibodies of the invention can also be attached to solid supports. These are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, silicon, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. Techniques for conjugating such therapeutic moiety to antibodies are well known in the art, see, for example, Arnon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. eds., pp. 243-56 (Alan R. Liss, Inc. 1985).
- Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980.
- An antibody of the invention, with or without conjugation to a therapeutic moiety, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s), can be used as a therapeutic.
- Antisense antagonists of the present invention are also included. Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA. In one embodiment, an antisense sequence is generated internally by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991)).
- In one embodiment, the 5′ coding portion of an informative gene can be used to design an antisense RNA oligonucleotide from about 10 to 40 base pairs in length. Generally, a DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
- In one embodiment, the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid of the invention. Such a vector contains the sequence encoding the antisense nucleic acid. The vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Vectors can be constructed by recombinant DNA technology and can be plasmid, viral, or otherwise, as is known to one of skill in the art.
- Expression can be controlled by any promoter known in the art to act in the target cells, such as vertebrate cells, and preferably human cells. Such promoters can be inducible or constitutive and include, without limitation, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980)), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981)), and the regulatory sequences of the metallothionein gene (Brinster et al., Nature 296:39-42 (1982)).
- The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of an informative gene. Absolute complementarity, although preferred, is not required. A sequence “complementary to at least a portion of an RNA,” referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with the RNA it may contain and still form a stable duplex. One skilled in the art can ascertain a tolerable degree or mismatch by use of standard procedures to determine the melting point of the hybridized complex.
- Oligonucleotides that are complementary to the 5′ end of the RNA, for example, the 5′ untranslated sequence up to and including the AUG initiation codon, are generally regarded to work most efficiently at inhibiting translation. However, sequences complementary to the 3′ untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. Thus, oligonucleotides complementary to either the 5′- or 3′-non-translated, non-coding regions of a nucleotide sequence can be used in an antisense approach to inhibit mRNA translation. Oligonucleotides complementary to the 5′ untranslated region of the mRNA can include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions can also be used in accordance with the invention. In one embodiment, the antisense nucleic acids are at least six nucleotides in length, and are preferably oligonucleotides ranging from about 6 to about 50 nucleotides in length. In other embodiments, the oligonucleotide is at least about 10, 17, 25 or 50 nucleotides in length.
- The antisense oligonucleotides of the invention can be DNA or RNA, or chimeric mixtures, or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, or example, to improve stability of the molecule, hybridization, and the like. The oligonucleotide can include other appended groups such as peptides (for example, to target host cell receptors in vivo), or agents that facilitate transport across the cell membrane, or the blood-brain barrier, or intercalating agents.
- The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, a-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
- The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.
- In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
- In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-6641 (1987)). The oligonucleotide is a 2′-O-methylribonucleotide (Inoue et al., Nucl. Acids Res. 15:6131-6148 (1987)), or a chimeric RNA-DNA analog (Inoue et al., FEBS Lett. 215:327-330 (1987)).
- Antisense oligonucleotides of the invention may be synthesized by standard methods known in the art, for example, by use of an automated DNA synthesizer.
- Potential antagonists according to the invention also include catalytic RNA, or a ribozyme. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The target mRNA has the following sequence of two bases: 540 -UG-3′. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach (Nature 334:585-591 (1988)). Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5′ end of the mRNA in order to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.
- Ribozymes of the invention can be composed of modified oligonucleotides (for example for improved stability, targeting, and the like). DNA constructs encoding the ribozyme can be under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that a transfected cell will produce sufficient quantities of the ribozyme to destroy endogenous target mRNA and inhibit translation. Since ribozymes, unlike antisense molecules, are catalytic, a lower intracellular concentration is generally required for efficiency.
- The present invention also provides pharmaceutical compositions, including both therapeutic and prophylatic compositions. Compositions within the scope of this invention include all compositions wherein the therapeutic abent, antibody, fragment or derivative, antisense oligonucleotide or ribozyme is contained in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. The effective does is a function of a number of factors, including the specific antibody, the antisense construct, ribozyme or polypeptide of the invention, the presence of a conjugated therapeutic agent (see below), the patient and their clinical status.
- Mode of administration may be by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes. Alternatively, or concurrently, administration may be orally. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.
- Such compositions generally comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skimmed milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
- In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to a human. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, and the like, and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
- The compositions of the invention can be administered alone or in combination with other therapeutic agents. Therapeutic agents that can be administered in combination with the compositions of the invention, include but are not limited to chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, cytokines and/or growth factors. Combinations may be administered either concomitantly, for example, as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, for example, as through separate intravenous lines into the same individual. Administration “in combination” further includes the separate administration of one of the compounds or agents given first, followed by the second.
- Conventional nonspecific immunosuppressive agents, that may be administered in combination with the compositions of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents.
- In a further embodiment the compositions of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the compositions of the invention include, but are not limited to, tetracycline, metronidazole, amoxicillin, beta-lactamases, aminoglycosides, macrolides, quinolones, fluoroquinolones, cephalosporins, erythromycin, ciprofloxacin, and streptomycin.
- In an additional embodiment, the compositions of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that can be administered with the compositions of the invention include, but are not limited to, glucocorticoids and the nonsteroidal anti-inflammatories, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap.
- In another embodiment, compositions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the compositions of the invention include, but are not limited to, antibiotic derivatives (e.g., doxorubicin, bleomycin, daunorubicin, and dactinomycin); antiestrogens (e.g., tamoxifen); antimetabolites (e.g., fluorouracil, 5-FU, methotrexate, floxuridine, interferon alpha-2b, glutamic acid, plicamycin, mercaptopurine, and 6-thioguanine); cytotoxic agents (e.g., carmustine, BCNU, lomustine, CCNU, cytosine arabinoside, cyclophosphamide, estramustine, hydroxyurea, procarbazine, mitomycin, busulfan, cis-platin, and vincristine sulfate); hormones (e.g., medroxyprogesterone, estramustine phosphate sodium, ethinyl estradiol, estradiol, megestrol acetate, methyltestosterone, dietylstilbestrol diphosphate, chlorotrianisene, and testolactone); nitrogen mustard derivatives (e.g., mephalen, chorambucil, mechlorethamine (nitrogen mustard) and thiotepa); steroids and combinations (e.g., bethamethasone sodium phosphate); and others (e.g., dicarbazine, asparaginase, mitotane, vincristine sulfate, vinblastine sulfate, and etoposide).
- In an additional embodiment, the compositions of the invention are administered in combination with cytokines. Cytokines that may be administered with the compositions of the invention include, but are not limited to, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL12, IL13, IL15, anti-CD40, CD40L, IFN-gamma and TNF-alpha.
- In additional embodiments, the compositions of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.
- The present invention is further directed to therapies which involve administering pharmaceutical compositions of the invention to an animal, preferably a mammal, and most preferably a human patient for treating one or more of the described disorders. Therapeutic compositions of the invention include, for example, therapeutic agents identified in screening assays, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein), antisense oligonucleotides, ribozymes and nucleic acids encoding same. The compositions of the invention can be used to treat, inhibit, prognose, diagnose or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, any one or more of the diseases, disorders, or conditions such as, for example, MLL, AML, or ALL.
- The treatment and/or prevention of diseases and disorders associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases and disorders.
- The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Furthermore, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration of the antibodies by modifications such as, for example, lipidation or addition of cell-specific tags.
- The compounds or pharmaceutical compositions of the invention can be tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample. The effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays. In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
- The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention. In one aspect, the compound is substantially purified such that the compound is substantially free from substances that limit its effect or produce undesired side-effects. The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.
- Various delivery systems are known and can be used to administer a composition of the invention, for example, encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, and the like as will be known by one of skill in the art.
- Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection, intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, for example, by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, for example, in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.
- In another embodiment, the compound or composition can be delivered in a vesicle, such as a liposome (Langer, Science 249:1527-1533 (1990)).
- In yet another embodiment, the compound or composition can be delivered in a controlled release system. Furthermore, a controlled release system can be placed in proximity of the therapeutic target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)). In a further embodiment, a pump may be used. In another embodiment, polymeric materials can be used.
- In a particular embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its mRNA and encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering, for example, by use of a retroviral vector, or by direct injection, or by use of microparticle bombardment for example, a gene gun, or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad Sci. USA 88:1864-1868 (1991)). Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
- The present invention also provides kits that can be used in the above methods. In one embodiment, a kit comprises a pharmaceutical composition of the invention in one or more containers.
- In another embodiment, the kit is a diagnostic kit for use in testing biological samples. The kit can include a control antibody that does not react with the polypeptide of interest in addition to a specific antibody or antigen-binding fragment thereof which binds to the polypeptide (antigen) or the invention being tested for in the biological sample. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope that is specifically immunoreactive with at least one anti-polypeptide antigen antibody. Further, such a kit can include a means for detecting the binding of said antibody to the antigen (for example, the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In a further embodiment, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen of the kit may also be attached to a solid support.
- In an alternative embodiment, the detecting means of the above-described kit includes a solid support to which the polypeptide antigen is attached. The kit can also include a non-attached reporter-labeled anti-human antibody. Binding of the antibody to the polypeptide antigen can be detected by binding of the reporter-labeled antibody.
- In an additional embodiment, the invention includes a diagnostic kit for use in screening serum samples containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody. In one embodiment, the antibody is attached to a solid support. In another embodiment, the antibody may be a monoclonal antibody. The detecting means of the kit can include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means can include a labeled, competing antigen.
- In one diagnostic configuration, the test serum sample is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. Generally, the reagent is washed again to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. The reporter can be an enzyme, for example, which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or calorimetric substrate, as is standard in the art.
- The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material. Suitable solid support materials include, for example and without limitation, polymeric beads, dip sticks, 96-well plate or filter material.
- The invention will be further described with reference to the following non-limiting examples. The teaching of all patents, patent applications and all other publications and websites cited herein are incorporated by reference in their entirety.
- Invariable, MLL translocations result in the production of a chimeric protein where the NH2-terminal portion of MLL is fused to the COOH-terminal portion of one of >20 fusion partners (Dimartino and Cleary, Br J Haematol 106:614-626 (1999)). This has prompted models of leukemogenesis in which the MLL-fusion protein may confer a gain-of-function or neomorphic properties, or alternatively represent a dominant negative that interferes with normal MLL function. Moreover, mice heterozygous for MLL (+/−) demonstrate developmental aberration (Yu et al., Nature 378:505-508 (1995); Hess et al., Blood 90:1799-1806 (1997)), suggesting the disruption of one allele by chromosomal translocation might also manifest as haplo-insufficiency in leukemic cells.
- MLL is a homeotic regulator which shares homology with Drosophila trithorax (trx) and positively regulates the maintenance of homeotic (Hox), gene expression during development (Yu et al., Nature 378:505-508 (1995)). MLL deficient mice indicate that MLL is required for proper segment identity in the axioskeletal system, and also regulates hematopoiesis (Hess et al, Blood 90:1799-1806 (1997)). As MLL normally regulates Hox gene expression, its role in leukemogenesis may include altered patterns of HOX gene expression. An expanding body of literature shows that HOX genes are important for appropriate hematopoietic development (Buske and Humphries, Int J I Hematol 71:301-308 (2000)). Also, the t(7;11)(p15;p15) translocation found in human acute myelogenous leukemia (AML) results in a fusion of HOXA9 to the nucleoporin NUP98 (Nakamura et al., Nat Genet 12:154-158 (1996) and Borrow et al., Nat Genet 12:159-167 (1996)). thus, HOX genes represent one set of transcriptional targets that warrants assessment in leukemias with MLL translocation.
- We hypothesized that MLL translocations maintain a gene expression program that results in a distinct form of leukemia. It was reasoned that RNA profiles might help resolve whether leukemias bearing an MLL translocation represent a truly biphenotypic leukemia of mixed identity, a conventional B-cell precursor ALL with expression of limited myeloid genes, or a less committed hematopoietic progenitor cell. Moreover, comparing gene expression profiles of lymphoblastic leukemias with and without rearranged MLL is important because of their dramatically different response to standard ALL therapy, and because such analysis may identify new molecular targets for therapeutic approaches. The expression profiles reported here reveal that lymphoblastic leukemias bearing MLL translocations display a remarkable uniform and highly distinct pattern that clearly distinguishes them from conventional ALL or AML and warrants designation as a distinct disease, MLL.
- Methods
- Patient samples. After informed consent was obtained, leukemia samples were obtained from peripheral blood or bone marrow from patients or diagnosis or relapse. When the samples were obtained from peripheral blood, the percentage of blasts was greater than 60% of the total white blood cells present. Fifteen of the samples with an MLL translocation and all of the conventional childhood ALL samples were obtained from patients treated on Dana Farber Cancer Institute protocols between 1980 and 2001. Three of the infant leukemia samples with MLL rearrangements were obtained from patients treated on the Interfant99 protocol, and the two adult patients with MLL rearrangements were obtained from patients treated at Princess Margaret Hospital in Toronto. Except for one of the conventional ALL samples and four of the MLL samples that were obtained at relapse, ass samples were diagnostic specimens. The AML samples have been previously described (Golub et al., Science 286:531-537 (1999)), and were from both adults and children. Eight of the MLL rearranged samples contain t(4;11), one t(9; 11), three t(11;19), one t(3;11) and one t(1;11). Six of the MLL rearrangements were detected by either FISH or Southern blot, and thus the translocation partner is unknown. The mononuclear cells were purified from red blood cells and neutrophils by ficoll-hypaque density centrifugation and either frozen in liquid nitrogen with 10% DMSO in fetal calf serum or put directly into Trizol (Life Sciences) for RNA purification.
- Assessment for the presence of MLL translocations. All patient samples were assessed by standard cytogenetics. All childhood ALL patient samples were screened for the presence of a TEL-AML1 translocation by RT-PCR as previously described, Loh, M. L. et al., Blood 92:4792-4797 (1998). Any patient sample where cytogenetics failed and had no TEL-AML I translocation was further assessed by fluorescence in situ hybridization (FISH) using a probe that spans the 11q23 breakpoint or by Southern blot (Silverman et al., Cancer 80:2285-2295 (1997); and Cuthbert et al, Genes Chromosomes Cancer 29:180-185 (2000)). AML samples were not assessed for chromosomal translocations.
- RNA purification, labeling and hybridization. A total of 10-20×106 cells were used to prepare total RNA using the Trizol (Life Sciences) purification method. This generally yielded between 5 and 20 μg of total RNA the quality of which was analyzed by gel electrophoresis. If the rRNA bands were intact, the RNA was determined to be of good quality and 5-15 μg was used for subsequent production of biotinylated cRNA as described previously (Golub et al., Science 286:531-537 (1999)), and were from both adults and children. Briefly, first strand cDNA synthesis was generated using a T7-linked oligo-dT primer, followed by second strand synthesis. An in vitro transcription reaction was done to generate the cRNA containing biotinylated UTP and CTP, which was subsequently chemically fragmented at 95° C. for 35 minutes. Samples were excluded if less than 15 μg of labeled RNA was produced. Labeled RNA was then hybridized to Affymetrix (Santa Clara, Calif.) U95A or U95A V2 oligonucleotide arrays at 45° C. for 16 hours. Arrays were washed and stained with streptavidin-phycoerytherin (SAPE, Molecular Probes). The signal was amplified using a biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, Calif.) at 3 μg/ml. This was followed by a second staining with SAPE. Normal goat IgG was used as a blocking agent. The scans were performed on Affymetrix canners and the expression values calculated using Affymetrix GENECHIP software. The chip image was then scanned visually for obvious differences between arrays. If there were obvious abnormalities present in the image, the sample was re-hybridized. The scans were then normalized based on a linear scaling method as described in the supplementary material. The raw expression data was obtained from Affymetrix's GeneChip s re-scaled to account for different chip intensities. Briefly, each column (sample) in the dataset was multiplied by 1/slope of at least squares linear fit of the sample versus the reference (the first sample in the dataset). This linear fit is done using only genes that have ‘Present’ calls in both the sample being re-scaled and the reference. The sample chosen as reference was a typical one (i.e., one with the number of “P” calls closer to the average over all samples in the dataset). Samples were disregarded if the scaling factor was greater than 3 fold.
- A threshold of 100 units was imposed before analysis because at those low values the data is noisy and not very reproducible. A ceiling of 16,000 units was also imposed due to saturation effects. After this preprocessing gene expression values were subjected to a variation filter which excluded genes showing minimal variation across the samples being analyzed. The variation filter tests for a fold-change and absolute variation over samples (comparing max/min and max-min with predefined values and excluding genes not obeying both conditions). The max/min filter was 5 and the max-
min 500 for all experiments. - Data analysis. Identification of genes that are correlated with particular class distinctions was performed as previously described (Golub et al., Science 286:531-537 (1999)). The signal-to-noise statistic (μ0−μ1)/(σ0+σ1) was used where μ and σ represent the median and standard deviation of expression, respectively for each class. One hundred permutations of the samples were performed to determine if the correlations were greater than would be expected by chance with a 99% confidence.
- The class predictor was performed using a cross-validation approach and the K-Nearest Neighbors (K-nn) algorithm as follows. The k-nearest neighbors (k-NN) algorithm predicts the class of a new sample by calculating the Euclidean distance of the new sample to samples in a training set whose location has been identified in expression space. The predicted class of the new sample is then determined by identifying the class to which the majority of the k-nearest neighbors belong. The genes used to determine the location in expression space of each sample were identified by determining which genes best correlated with the class distinction as described above using the signal to noise statistic. For all experiments k=5. The prediction results shown in
FIG. 6 were done using a cross validation approach where 1 of the 57 samples was withheld, the genes that best correlated with the ALL/MLL/AML distinction were determined, and those genes were used to build the k-nn algorithm. This was done for anywhere from 1-250 genes and the error rate (number of failures/57) is graphed vs. the number of genes. For the test set samples, the model was built with the 57 train set samples and then the class membership was determined for each “test sample” by determining the samples “neighbors” in gene expression space as described above. - Principal component analysis was performed using S-plus statistical software and the default settings. A commonly used technique for data reduction and visualization is principal component analysis (PCA). In this type of analysis, the linear combinations of variables are identified as the principal components that explain the variability in the dataset. To reduce the dimensionality of the data, the top 2 or 3 components can be graphed. In our case, the
tope 3 principal were thus used to project the samples in 3-dimensional space based on the gene expression profile. We first performed the analysis using the 8700 genes that passed the filtering described above. PCA was then performed using the top 500 genes that correlated with the AML/ALL class distinction. ALL, MLL, AML samples were then projected in that 500 gene space. These analysis were performed using S-plus statistical software using the default settings and covariance, followed by a three dimensional scatter plot of the coordinates of the 3 principal components for each sample. Singular value decomposition was used to derive the eigen values of the covariance matrix for the 8700 gene analysis. The S-Plus function used was “princomp( )”. The coordinates of the three principal components for each sample were then used to project the samples in three dimensions. - Results
- MLL is Distinct From ALL
- To further define the biological characteristics specified by MLL translocations, gene expression profiles of leukemic cells from patients diagnosed with acute lymphoblastic leukemia bearing an MLL translocation were compared with conventional ALL which lack this translocation. Initially, samples from 20 patients with childhood ALL (denoted ALL), and 17 patients with MLL translocation (referred to as MLL) were collected. Patient details are presented in Table 1 (MLL) and Table 2 (ALL).
TABLE 1 MLL Patient Data Chromo- Sam- Age at FIG./Column Patient some ple Diagnosis Specimen (MLL) MLL_1 t(4; 11) BM 1 month Diagnostic Column 1 MLL_2 So.Blot+# BM 3 months Relapse Column 2 MLL_3 t(4; 11) PB 8 months Diagnostic Column 3 MLL_4 FISH+* PB 2 months Relapse Column 4 MLL_5 FISH+ BM 2 months Diagnostic Column 5 MLL_6 FISH+ PB 18 months Diagnostic Column 6 MLL_7 t(4; 11) BM 8 months Relapse Column 7 MLL_8 t(4; 11) PB 5 months Diagnostic Column 8 MLL_9 So.Blot+ PB 7 months Diagnostic Column 9 MLL_10 t(1; 11) PB 1 month Diagnostic Column 10 MLL_11 t(3; 11) PB 1 day Diagnostic (q13; q23) Column 11 MLL_12 t(11; 19) BM 3 months Relapse Column 12 MLL_13 t(4; 11) PB 1 month Diagnostic Column 13 MLL_14 t(11; 19) BM 3 months Diagnostic Column 14 MLL_15 t(11; 19) PB 7 months Diagnostic Column 15 MLL_16 t(4; 11) PB >21 years Diagnostic Column 16 MLL_17 t(4; 11) PB >21 years Diagnostic Column 17 MLL_18 FISH+ PB 10 months Diagnostic Column 18 MLL_19 t(9; 11) PB 4 years Diagnostic Column 19 MLL_20 t(4; 11) PB 6 years Diagnostic Column 20
PB = peripheral blood
BM = bone marrow
-
TABLE 2 ALL Patient Data Age at FIG./Column Patient Tel/AML1 Chromosomes Sample Diagnosis Specimen (ALL) ALL_1 Pos. 46 xy (+6) BM 6 y Diagnostic Column 1 ALL_2 Pos. Diploid BM 5 y Diagnostic Column 2 ALL_3 Pos. No data BM 4 y Diagnostic Column 3 ALL_4 Pos. Hyperdiploid, PB 12 y Diagnostic del7q Column 4 ALL_5 Pos. Hyperdiploid, BM 12 y Relapse del7q Column 5 ALL_6 Pos. Add 1p36, BM 4 y Diagnostic del 12p Column 6 ALL_7 Pos. Diploid BM 2 y Diagnostic Column 7 ALL_8 Pos. No Data BM 3 y Diagnostic Column 8 ALL_9 Neg. Diploid BM 9 y Diagnostic Column 9 ALL_10 Neg. Del 3p, BM 5 y Diagnostic Add 12p, Column Add 17q 10 ALL_11 Neg. del 12p13 BM 20 m Relapse Column 11 ALL_12 Neg. Hyperdiploid BM 13 m Diagnostic Column 12 ALL_13 Neg. Hyperdiploid PB 4 y Relapse Column 13 ALL_14 Neg. Diploid BM 20 m Diagnostic Column 14 ALL_15 Neg. Diploid BM 10 y Diagnostic Column 15 ALL_16 Neg. Diploid BM 4 y Diagnostic Column 16 ALL_17 Neg. Del 9p21 PB 11 y Diagnostic Column 17 ALL_18 Neg. Failed PB 15 y Diagnostic (MLL FISH Column Neg.) 18 ALL_19 Neg. Hyperdiploid BM 23 m Diagnostic Column 19 ALL_20 Neg. Diploid BM 9 y Diagnostic Column 20 ALL-21 Neg. Failed PB 12 m Diagnostic (MLL FISH Column Neg.) 21 ALL_22 Neg. t(1; 19) PB 7 y Diagnostic Column 22 ALL_23 Pos. Diploid PB 3 y Diagnostic Column 23 ALL_24 Pos. No Data BM 8 y Diagnostic Column 24
Pos. = positive for TelAML1 translocation
Neg. = negative for TelAML1 translocation
PB = peripheral blood
BM = bone marrow
m = months
y = years
- First, it was determined if there were genes among the 12,600 tested whose expression pattern correlated with the presence of an MLL translocation. The genes were sorted by their degree of correlation with the MLL/ALL distinction (
FIGS. 1A and 1B ), and permutation testing was used to assess the statistical significance of the observed differences in gene expression (Golub et al., Science 286:531-537 (1999)). For the 37 samples tested, approximately 1000 genes proved underexpressed in MLL as compared to conventional ALL while approximately 200 genes were relatively highly expressed.FIG. 1A shows the top 50 genes that are relatively underexpressed in MLL, andFIG. 1B shows the bottom 50 genes that are relatively overexpressed in MLL. Genes, and their GenBank Accession Numbers, are labeled at the right. The top 200 genes that make the ALL/MLL distinction and their GenBank Accession Numbers can be found in Table 3 (top 100 genes that are underexpressed in MLL compared to ALL) and Table 4 (top 100 genes that are overexpressed in MLL compared to ALL).TABLE 3 Genes Underexpressed in MLL Compared to ALL GenBank No. Name GenBank No. Name J03779 CD10 AA808961 cDNA nw16h03.s1 AL050105 DKFZp586H0519 AB018303 KIAA0760 L33930 CD24 X74837 HUMM9 Y12735 Dyrk3 AL022723 Chromosome 6 sequence AB020674 KIAA0867 M74719 E2-2 D26070 ITPR3 M63838 IFI16 M11722 TdT U81607 Gravin M61877 a-spectrin U96113 Nedd-4 like ubiquitin ligase X59350 CD22 D13639 KIAK0002 W25798 cDNA 13f12 X53586 Integrin alpha 6 AL049279 DKFZp564I083 U01062 ITPR3 AF032885 FKHR M21535 ERG11 L46922 FHIT D88827 Zinc finger protein FPM315 S67427 myosin W26406 cDNA 29b7 AL079277 Unknown cDNA U15642 E2F-5 M96803 b-spectrin D43949 KIAA0082 X83441 DNA Ligase IV J011001 TM7XN1 X15357 ANP-receptor M63928 CD27 M55284 Protein Kinase C-L AB028961 KIAA1038 AI146846 cDNA qb92h04 X55740 5′ Nucleotidase AB023176 KIAA0959 L05186 Focal adhesion kinase AF002999 TRF2 AF070588 cDNA 24554 D26070 ITPR3 U48705 Tyrosine Kinase DDR Y11312 PI3-Kinase AF070614 cDNA 24732 U48959 MLCK U23850 ITPR3 J05243 a-spectrin AF054180 Hematopoietic zinc finger protein Y14768 Cosmid TN62 AL049471 DKFZp586N012 U01062 ITPR3 AF084481 WFS1 Z49194 OBF-1 U90547 Human Ro V59423 Smad1 U15085 HLA-DMB U29175 Snf2-b AJ001381 cDNA for an allele of myosin M81141 HLA-DQ-b AL049933 DKFZp564K1216 D87437 KIAA0250 AI198311 cDNA qi61f11.x1 Y00264 Amyloid A4 precursor AL050060 DKFZp566H073 U59912 Smad1 X06318 PKC-b1 AJ007583 acetylglucosaminyltransferase U43885 Grb2-associated binder-1 L75847 ZNF-45 M31523 E2A transcription factor D17530 Dreberin E L10373 clone CCG-B7 D86967 KIAA0212 Y11306 TCF-4 J03600 Lipoxygenase X05323 MIRC OX-2 gene D42055 KIAA0093 X78932 Zinc finger protein HZF9 AL021154 Chromosome 1 PAC W26633 cDNA 34b1 AI761647 cDNA wg66h09 AF052131 clone 23930 AF054815 VAMP5 AL050260 DKFZp564E1082 N36926 cDNA YY38E04 AL080218 DKFZp586N1323 U96113 Nedd-4-like ubiquitin ligase A1561196 cDNA tq27a01.x1 AB019527 LDOC1 W26023 cDNA 18c3 M34641 FGF Receptor-1 U68186 Extracellular matrix I L29376 MHC class I mRNA X62744 RING6 M60028 HLA-DQ-b X78926 Zinc Finger HZF3 -
TABLE 4 Genes Overexpressed in MLL Compared to ALL GenBank No. Name GenBank No. Name AI535946 Lectin HL14 U67516 MAPKKK5 M14087 Lectin HL14 AF072099 Immunoglobulin-like transcript 3 AI201310 cDNAqf71b11 X96753 chondroitin sulfate proteoglycan NG2 M80899 AHNAK X52075 CD43 AJ001687 NKG2D U38545 Phospholipase I U66838 Cyclin A1 D00017 Annexin II M59040 CD44 U02687 FLT-3 M95929 Phox1 AA570193 cDNAnf38c11.s1 D25217 KIAA0027 U21551 ECA39 AI597616 cDNAtn15f08 X55988 eosinophil derived neurotoxin W72186 cDNAzd69b10 D78177 quinolinate phosphoribosyl transferase U41813 HOXA9 Z48579 disintegrin-metalloprotease L05424 CD44 AF039656 NAP-22 L05424 CD44 Y00638 CD45 AC004080 Chromosome 7 PAC J03910 Metallothionein-IG X05908 Annexin I AF030339 VESPR U78027 chromosome X BAC M28713 NADH-cytochrome B5 reductase Y00062 CD45 AB023209 KIAA0992 AF098641 CD44 L40377 CAP2 Y000638 CD45 D86181 galactocerebrosidase AF004230 monocyte elastase inhibitor M83215 AML1 W60864 cDNAzd27g05 X61118 LMO2 X55989 Eosinophil CRP U01147 ABR M93056 Monocyte MIR-7 M96995 GRB2 AF027208 AC133 AF040704 putative tumor suppressor (101F6) Z83844 Chromosome 22 sequence U57971 calcium ATPase AL050396 DKFZp586K1720 AB028948 KIAA1025 AA978353 cDNAoq40b07 U11791 cyclin H D21261 KIAA0120 AF022991 Rigui L08177 EBV induced EBI2 L11669 Tetracycline-like transporter L19182 MAC25 U39064 MAPKK6 D28364 Annexin II AF054176 Angiotensin D15057 DAD-1 U87947 HNMP-1 AF020044 C-type lectin precursor L19872 AH-receptor AI138834 cDNAqe04b02 M36035 benzodiazepine receptor X73882 E-MAP-115 U93305 Chromosome X p11 sequence AF026816 Putative Oncogene AF009615 ADAM10 X17042 Proteoglycan I X52541 EGR1 M20867 glutamate dehydrogenase AF044253 potassium channel beta-2 U60060 FEZ1 M26683 Interferon gamma inducible mRNA AF025529 LIR-6 M31166 TSG-14 AB007888 KIAA0428 R93527 cDNAyq35f10.r1 M13485 Metallothionein I-B X15998 chondroiton sulfate proteoglycan M26679 HOX A5 X55990 eosinophil cationic protein AL050267 DKFZp564A032 U73960 ARF-like protein 4 R92331 cDNA03h03 M13452 Lamin A AL050162 DKFZp586B2022 AI560890 cDNA tq41d05.x1 AI017574 cDNAou23f10 AB024057 vascular rab-gap M62896 Annexin II M97815 CRABP-II AL050374 DKFZp586c1619 M60614 WIT-1 - As shown in
FIGS. 1A and 1B and Tables 1 and 2, MLL shows a dramatically different gene expression profile from ALL. - MLL Shows Multi-Lineage Gene Expression
- Inspection of the genes differentially expressed between MLL and ALL was instructive (
FIGS. 1A and 1B and Tables 1 and 2). Many underexpressed genes in MLL have a unction in early B cell development. These include genes expressed in early B-cells (CD10, CD24, CD22, TdT) (Hardy and Hayakawa, Annu Rev Immunol., 19:595-621 (2001); LeBien, Blood 96:9-23 (2000)), genes required for appropriate B-cell development (E2A, E2-2, PI3-Kinase, Octamer Binding Factor-1, and DNA ligase IV) (Murre, Cold Spring Barb Symp Quant Bio 164:39-44 (1999); Fruman et al., Science 283:393-397 (1999); Schubart et al., Nat Immunol 2:69-74 (2001); and Frank et al., Nature 396:173-177 (1998)), and genes found to be correlated with B-precursor ALL in an AML/ALL comparison (Snj2-β) (Golub et al., Science 286:531-537 (1999)). The relative underexpression of the forkhead (FKHR), SMAD1 and TCF-4 transcription factors suggests they may also be involved in later stages of B-cell differentiation or leukemogenesis. Relatively overexpressed genes in MLL include the adhesion molecules HL14, Annexin I, Annexin II, CD44, and CD43. Multiple genes that are expressed in hematopoietic lineages other than lymphocytes are also highly expressed in MLL. These include genes expressed in progenitors (AC133, FLT3, LMO2) (Yin et al., Blood 90:5002-5012 (1997); Rosnet et al., Blood 82:1110-1119 (1993); and Dong et al., Br J Haematol 93:280-286 (1996)), myeloid specific genes (Cyclin A1, monocyte elastase inhibitor, macrophage capping protein, eosinophil-CRP), (Yang et al., Blood 93:2067-2074 (1999); Remold-O'Donnell et al., Proc NatlAcad Sci USA 89:5635-5639 (1992); and Rosenberg et al., J Exp Med. 170:163-176 (1989)), and at least one natural killer cell specific gene (NKG2D) (Ho et al., Proc Natl Acad Sci USA, 95:6320-6325 (1998)) (FIGS. 1A, 1B and Tables 1 and 2). Overexpression of HOXA9 and Proteoglycan I in MLL is of particular interest as these genes were previously reported to be highly expressed in AML (Golub et al., Science 286:531-537 (1999)), and overexpression of HOXA9 has been associated with a poor prognosis (Golub et al., Science 286:531-537 (1999)). - MLL is Arrested at an Early Stage of Hematopoietic Development
- Since lymphoblasts with MLL rearrangement express many myeloid specific genes, a detailed assessment of the expression of lymphoid genes was performed. Genes known to mark early B-lymphoid commitment such as Igβ and CD19 are expressed in MLL albeit at lower levels than in ALL (
FIGS. 2C and 2B ). CD10 (CALLA) is not expressed in MLL (FIG. 2A ), whereas the IL-7 receptor is expressed at similar levels in ALL and MLL. - A number of genes have been shown to vary their expression level as murine hematopoietic cells transition from stem cell, to common lymphoid progenitor, to pro-B and then pre-B cells. Igβ, CD24, CD44 and CD43 represent early steps of lymphoid development (Hardy and Hayakawa, Annu Rev Immunol 19:595-621 (2001) and Kondo et al., Cell 91:661-672 (1997)). Igβ and CD24 expression increases with maturation while CD44 and CD43 levels decrease (Kondo et al., Cell 91:661-672 (1997)). the MLL samples express relatively low levels of CD24 and Igβ but high levels of both CD44 and CD43 (
FIGS. 2F and 2E ). In total these data suggest that MLL represents a maturational arrest at an early lymphoid progenitor stage of development. - Selected HOX Genes are Highly Expressed in MLL versus ALL
- Multiple members of the class I Hox genes are known to be regulated by Mll (Yu et al., Nature 378:505-508 (1995)) prompting a detailed comparison of the patterns of HOX gene expression between ALL and MLL. Several of the 20 class I HOX genes present on the microarrays demonstrated significant and consistent differences in expression. HOXA9 and HOXA5 were not expressed in conventional ALL, but were expressed, often at high levels, in most MLL samples (
FIGS. 3A-3D ). Similarly, HOXA4 was typically expressed in MLL, but rarely in conventional ALL (FIG. 3C ). HOXC6 showed mildly elevated levels of expression in MLL (Supplemental Information at http://research.dfci.harvard.edu/korsmeyer/MLL.htm). However, the HOX patterns displayed selectivity as other genes such as HOXA7 showed no obvious difference in their expression pattern (FIG. 3D ). MEIS1, a cofactor for HOX proteins, which can accelerate HoxA9 dependent leukemia (Nakamura et al., Nat Genet 19:149-1531 (1996)), was also significantly overexpressed in MLL as previously reported for the t(4;11) containing subset (Rozovskaia et al., Oncogene 20:874-878 (2001)). - MLL is Distinct From Both AML and ALL
- MLL is characterized by the expression of myeloid specific genes, which raised the possibility that MLL is more closely related to acute myelogenous leukemia (AML). To determine if this is the case, or if MLL is separable as a distinct type of leukemia, a principal component analysis (PCA) was performed using the gene expression profiles of MLL, ALL and AML specimens. This clustering algorithm reduces complex multidimensional data to a few specified dimensions so that it can be visualized effectively (Venables and Ripley, Modern Applied Statistics with S-Plus, Springer Verlag, New York (1994)). First, the analysis was performed in an unsupervised manner using the 8700 genes that showed some variability in expression level. As expected, the ALL and AML samples displayed substantial separation (
FIG. 4A ). Of note, the MLL samples proved largely separate from either AML or ALL (FIG. 4A ). In order to determine if this separation could be attributed to a difference in hematopoietic identity, a similar analysis was performed using the 500 genes whose expression best distinguished the separation of AML versus ALL. When projected into this 500-gene space using PCA the MLL samples principally fall between the AML and ALL samples (FIG. 4B ). - Since the above clustering analyses supported three distinct entities of ALL, AML and MLL, it was queried if selected genes could be identified which distinguished each type of leukemia from the other two (
FIG. 5 ). Conventional ALL expressed high levels of the following genes compared to MLL and AML: CD10, CD24, DYRK, TdT, FKHR, DNA ligase IV, KIAA0867, CD22, OBF-1, B-spectrin, DKFZp5641083, Snf-2B, MLCK, VAMP5, and cDNA wg66h09) and these genes were underexpressed in MLL and ALL. AML samples expressed high levels of the following genes compared to ALL and MLL: adipsin, cathepsinD, CD13, M6 antigen, gap junction protein, a-endosulfine, NF-2 transcription factor DP-2, DRAP1, cDNA 20c1,phosphodiesterase 3B, cosmid 19p13.2, chromosome 19 clone, chromosome 22q11 clone, and CRYAA, and these genes were underexpressed in ALL and MLL. MLL samples expressed high levels of the following genes compared to ALL and AML: AC 133, LMO2, FLT3, KIAA0428, NKG2D, ADAM10, KIAA1025, Lectin HL14, cDNA ag36c04, cyclin A1, ADAM10, putative oncogene, DKFZp588o01, KIAA0920, and LMO2, and these genes were underexpressed in ALL and AML. The GenBank Accession Numbers for each of these genes is shown inFIG. 5 . Permutation analysis indicated that approximately 200 genes were significantly overexpressed in MLL as compared to the other two leukemia categories. In combination, the PCA and gene expression comparisons (FIGS. 4A, 4B and 5) indicate that MLL is a separable, distinct disease based on gene expression profile. These data also show that ALL and AML are separable distinct diseases. The genes shown inFIG. 5 , particularly the genes that are over expressed in each disease type, can be used in gene expression profile studies to diagnose MLL, ALL, or AML. These genes, including underexpressed and overexpressed genes for each disease type, can also be used as target for identifying and/or detecting compounds that alter expression and/or activity of these genes or their gene products, for therapeutic methods, and for monitoring efficacy of treatment, as described herein. - Gene Expression Profiles Correctly Classify ALL, MLL and AML
- A more stringent assessment of the power of the aforementioned difference in gene expression profiles would be their capacity to assign individual samples as MLL, ALL, or AML. The detection of MLL translocations in leukemia samples is currently most often performed by either cytogenetic analysis or by fluorescence in situ hybridization (FISH) which can technically fail or may be unavailable. Thus, other approaches to correctly assign individual cases to meaningful subsets of leukemia would be useful. To test this possibility a three-class predictor was developed based on a k-nearest neighbors algorithm (Dasarathy (ed), IEEE Computer Society Press, Los Altos, Calif., December 1991. ISBN: 0818689307). This algorithm assigns a test sample to a class by identifying the k nearest samples in the training set and choosing the most common class among these k nearest neighbors. For this purpose, distances were defined by a euclidean metric based on the expression levels of a specified number of genes.
- The accuracy of this method was assessed using a cross validation approach. When one of the 57 samples is removed, the genes that most closely correlate with the ALL/MLL/AML class distinction are identified, and the expression of these genes used to determine the class of the withheld sample. The model assigned the withheld sample to the appropriate class with 95% accuracy. Moreover this accuracy was maintained as we extended from 40 to 250 genes to build the predictor (
FIG. 6 ), as further testimony to the strong distinction among these leukemia categories. - To assess if the unique signature of gene profiles in MLL samples could be attributed to their occurrence in infants, the above model was tested using 10 independent leukemia samples. The test set consisted of 3 childhood (>12 months) conventional ALLs, 2 lymphoblastic leukemias of childhood carrying cytogenetically verified MLL translocations, 2 infant (<12 months) leukemias in which cytogenetic analysis did not detect an MLL translocation and 3 AML samples. Utilizing the 100 genes that best correlated with the three-class distinction, nine of ten samples were correctly classified as MLL, ALL or AML. The one apparent error was an infant reported to be negative for an MLL rearrangement by cytogenetics, yet consistently predicted to have a rearrangement based on gene expression profile. This prompted further analysis by FISH, which confirmed that this infant leukemia did indeed possess an MLL translocation and that the prospective assignment by expression profiling was correct. Taken together these data show that the unique gene expression profile characteristic of MLL cannot be attributed merely to the fact that most samples are from infants.
- Discussion
- Gene expression profiles of lymphoblastic leukemias which possess an MLL translocation are remarkable consistent and differ significantly from those of other leukemias. Consequently, it is appropriate that they be considered a distinct disease entitled MLL for “Mixed Lineage Leukemia.” This is supported by their comparison to conventional B cell precursor ALL that lacks MLL rearrangement where ˜1000 genes proved underexpressed and ˜200 overexpressed in the MLL rearranged group. Moreover, evaluation of the expression profiles using principal component analysis indicated that MLL was clearly separable from conventional ALL and also AML. The expression differences are so robust that ˜95% of leukemic samples were correctly classified as MLL, ALL or AML. As testimony to the extent of divergence of MLL, it remained separable from ALL and AML when 250 genes were used to build the class predictor. This provides strong evidence that a specific chromosomal translocation results in a distinct type of lymphoblastic leukemia, rather than a model in which all translocations merely provide transformation events that subsequently converge upon a common pathway of leukemogenesis. In addition, the data indicate that MLL is arrested at an earlier stage of differentiation and/or has a different cell of origin than ALL. Select Hox genes are overexpressed in MLL-dependent leukemia, as compared to normal B-cell progenitors and other ALL. FLT3 expression best distinguishes MLL from ALL.
- Gene expression patterns of MLL provide insight into the proposed models for its cellular origin. A summary of expression profiles shows that MLL expresses some lymphocyte specific and myeloid specific genes, but at lower levels than either conventional ALL or AML, respectively. Based on murine studies that have defined gene expression patterns during lymphocyte commitment (Hardy and Hayakawa, Annu Rev Immunol 19:595-621 (2001); and Kondo et al., Cell 91:661-672 (1997)), the low-level expression of CD24 and Igβ, along with high expression of CD43 and CD44 suggests that MLL is arrested at an earlier stage of development than conventional ALL. Furthermore, the expression of genes typically found in progenitor cells suggests MLL represents an early hematopoietic progenitor. This is consistent with studies that have shown multi-lineage gene expression in hematopoietic progenitors prior to full lineage commitment (Hu et al., Genes Dev 11:774-785 (1997)). Of particular interest is the possibility that MLL may represent the expansion of a bipotential B-macrophage progenitor (Montecino-Rodriguez et al., Nat Immunol 2:83-88 (2001); and Cumano et al., Nature 356:612-615 (1992)). Early B-cells can be induced to differentiate into myelomonocytic cells under certain conditions (Nutt et al., Nature 401:556-562 (1999)), and derivation of macrophages from leukemia cell lines has been well documented (Borrello and Phipps, Immunol Today 17:471-475 (1996)). An attractive model would hold that the MLL-fusion protein drives the “transdifferentiation” of an early lymphocyte progenitor. The expression of many myeloid and monocyte/macrophage specific genes is consistent with MLL reflecting a very early B cell progenitor that has initiated transdifferentiation. The multiple HOX genes that are selectively expressed in MLL are attractive candidates for direct targets of the MLL-fusion proteins. Mll gene ablated mice have indicated that select members of the clustered Hox genes require MLL for their expression. As overexpression of HoxA9 has also been shown to induce AML in mouse models (Nakamura et al., Nat Genet 12:149-1531 (1996)), and its expression is controlled by levels of Mll (Hanson et al., Proc Natl Acad Sci USA, 96:14372-14377 (1999)); misexpression of HOXA9 may be an important component of MLL-translocation driven leukemogenesis. The findings here prompt further studies to determine if MLL-fusion proteins directly activate HOX genes, and thus lead to defects in hematopoietic differentiation.
- This is the first demonstration in which whole genome profiling reveals that a chromosomal translocation can specify a unique gene expression program. This separates MLL as a distinct disease, which is of both pathogenic and therapeutic importance. Lymphoblastic leukemias with MLL translocations are recognized as having a poor prognosis, as standard ALL therapies have been relatively ineffective. The unique identity of MLL noted here provides insight into the poor response. As MLL is a distinct disease, new therapeutic approaches are needed. Of note, pilot studies have shown that addition of the drug cytarabine, an important agent in myeloid leukemia treatment, may improve the outcome for MLL patients (Ludwig et al., Blood 92:1898-1909 (1998); Silverman et al, Cancer 80:2285-2295 (1997); and Pieters et al., Leukemia 12:1344-1348 (1998)). However, it is the translocation-specific therapies which have recently proven attractive for their efficacy and lack of toxicity. Other leukemias in which a translocation specifies a distinct disease are chronic myelogenous leukemia (CML) with the BCR-ABL fusion and acute promyelocytic leukemia (APL) with the PML-RARα fusion. The tailored development of the tyrosine kinase inhibitor STI571 and its treatment of CML and the use of all trans retinoic acid (ATRA) in APL has substantially improved the outcome in those diseases (Tallman et al., N Engl J Med 337:1021-1028 (1997) and Druker et al., N Engl J Med 344:1031-1037 (2001)). While pharmacologic approaches to the complex regulatory capacity of MLL may prove challenging, the distinct gene expression signature defined here for MLL may provide unanticipated molecular targets. Of special note, FLT3 is the most differentially expressed gene that distinguishes MLL from ALL and AML (
FIG. 5 ). Aberrations of FLT3, especially duplication of its juxtamembrane domain, have been noted in some cases of AML and may be leukemogenic (Nakao et al., Leukemia 10:1911-1918 (1996); Zhao et al., Leukemia 14:374-378 (2000); and Tse et al., Leukemia 14:1766-1776 (2000)). As a tyrosine kinase receptor, FLT3 represents an attractive target for rational drug development. - Additional information regarding the methods used to carry out the above described studies, patient samples, and the differentially expressed genes identified though these studies can be found at
- http://research.dfci.harvard.edu/korsmeyer/MLL.htm, and http://www-genome.wi.mit.edu/MPR, the teachings of which are incorporated herein by reference in their entirety.
- While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/256,381 US20060057630A1 (en) | 2001-07-17 | 2005-10-20 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30610301P | 2001-07-17 | 2001-07-17 | |
US10/198,064 US7011947B2 (en) | 2001-07-17 | 2002-07-17 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11/256,381 US20060057630A1 (en) | 2001-07-17 | 2005-10-20 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,064 Division US7011947B2 (en) | 2001-07-17 | 2002-07-17 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060057630A1 true US20060057630A1 (en) | 2006-03-16 |
Family
ID=23183813
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,064 Expired - Fee Related US7011947B2 (en) | 2001-07-17 | 2002-07-17 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11/233,905 Abandoned US20060024734A1 (en) | 2001-07-17 | 2005-09-22 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11/256,381 Abandoned US20060057630A1 (en) | 2001-07-17 | 2005-10-20 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/198,064 Expired - Fee Related US7011947B2 (en) | 2001-07-17 | 2002-07-17 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11/233,905 Abandoned US20060024734A1 (en) | 2001-07-17 | 2005-09-22 | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Country Status (3)
Country | Link |
---|---|
US (3) | US7011947B2 (en) |
AU (1) | AU2002354941A1 (en) |
WO (1) | WO2003008552A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060057630A1 (en) * | 2001-07-17 | 2006-03-16 | Golub Todd R | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11384648B2 (en) | 2018-03-19 | 2022-07-12 | Applied Materials, Inc. | Methods for depositing coatings on aerospace components |
US11466364B2 (en) | 2019-09-06 | 2022-10-11 | Applied Materials, Inc. | Methods for forming protective coatings containing crystallized aluminum oxide |
US11697879B2 (en) | 2019-06-14 | 2023-07-11 | Applied Materials, Inc. | Methods for depositing sacrificial coatings on aerospace components |
US11732353B2 (en) | 2019-04-26 | 2023-08-22 | Applied Materials, Inc. | Methods of protecting aerospace components against corrosion and oxidation |
US11739429B2 (en) | 2020-07-03 | 2023-08-29 | Applied Materials, Inc. | Methods for refurbishing aerospace components |
US11753726B2 (en) | 2018-04-27 | 2023-09-12 | Applied Materials, Inc. | Protection of components from corrosion |
US11794382B2 (en) | 2019-05-16 | 2023-10-24 | Applied Materials, Inc. | Methods for depositing anti-coking protective coatings on aerospace components |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361336B1 (en) * | 1997-09-18 | 2008-04-22 | Ivan Bergstein | Methods of cancer therapy targeted against a cancer stem line |
US20040023248A1 (en) * | 2001-12-07 | 2004-02-05 | Whitehead Institiute For Biomedical Research | Methods and reagents for improving nucleic acid detection |
US20040018513A1 (en) * | 2002-03-22 | 2004-01-29 | Downing James R | Classification and prognosis prediction of acute lymphoblastic leukemia by gene expression profiling |
US7273704B2 (en) * | 2002-08-12 | 2007-09-25 | Hitachi High-Technologies Corporation | Method of detecting nucleic acid by using DNA microarrays and nucleic acid detection apparatus |
WO2004053074A2 (en) * | 2002-12-06 | 2004-06-24 | Science And Technology Corporation @ Unm | Outcome prediction and risk classification in childhood leukemia |
AU2003297840A1 (en) * | 2002-12-10 | 2004-06-30 | Stephen Hsu | Chemopreventive and therapeutic aspects of polyphenolic compositions and assays |
EP1457573B1 (en) * | 2003-03-04 | 2006-06-21 | PamGene B.V. | Method for integrated nucleic acid integrity assessment and analysis |
AU2003268185A1 (en) | 2003-08-25 | 2005-04-11 | Dana-Farber Cancer Institute Inc. | Method of treating mixed lineage leukemia gene-rearranged acute lymphoblastic leukemias |
KR20060120063A (en) | 2003-09-29 | 2006-11-24 | 패스워크 인포메틱스 아이엔씨 | Biological Character Detection System and Biological Character Detection Method |
US20050069863A1 (en) * | 2003-09-29 | 2005-03-31 | Jorge Moraleda | Systems and methods for analyzing gene expression data for clinical diagnostics |
US8321137B2 (en) | 2003-09-29 | 2012-11-27 | Pathwork Diagnostics, Inc. | Knowledge-based storage of diagnostic models |
WO2006048265A2 (en) * | 2004-11-04 | 2006-05-11 | Roche Diagnostics Gmbh | Classifying leukemia with translocation (9;22) |
WO2006086043A2 (en) * | 2004-11-23 | 2006-08-17 | Science & Technology Corporation @ Unm | Molecular technologies for improved risk classification and therapy for acute lymphoblastic leukemia in children and adults |
ES2324435B1 (en) | 2005-10-27 | 2010-05-31 | Fundacion Para El Estudio De La Hematologia Y Hemoterapia De Aragon (Fehha) | PROCEDURE AND DEVICE OF IN VITRO MRNA ANALYSIS OF GENES INVOLVED IN HEMATOLOGICAL NEOPLASIAS. |
DE102005056365A1 (en) * | 2005-11-25 | 2007-05-31 | Vogt, Ulf, Dr. rer. nat. | Individualized prognosis, monitoring and aftercare of tumor patients, by determining changes in genomic or expression profiles over time |
KR100832946B1 (en) | 2006-11-13 | 2008-05-27 | (주)지노첵 | Derivation method of marker gene for leukemia subtype, and marker gene and DNA chip |
WO2009012382A2 (en) * | 2007-07-17 | 2009-01-22 | Dana-Farber Cancer Institute, Inc. | Compositions, kits, and methods for the modulation of immune responses using galectin-1 |
WO2009012384A2 (en) * | 2007-07-17 | 2009-01-22 | Dana-Farber Cancer Institute, Inc. | Compositions, kits, and methods for the diagnosis, prognosis, and monitoring of immune disorders using galectin-1 |
WO2018083481A1 (en) | 2016-11-03 | 2018-05-11 | Ucl Business Plc | Cancer therapy |
CN110609469B (en) * | 2019-06-30 | 2022-06-24 | 南京理工大学 | Consistency control method of heterogeneous time-lag multi-agent system based on PI |
CN110609467B (en) * | 2019-06-30 | 2022-06-21 | 南京理工大学 | Time-lag multi-agent system consistency control method based on PID |
CN110699454A (en) * | 2019-10-25 | 2020-01-17 | 北京艾迪康医学检验实验室有限公司 | Oligonucleotide, method and kit for detecting relative expression quantity of MLL5 gene in sample |
CN112779333B (en) * | 2021-03-07 | 2022-09-06 | 浙江理工大学 | Application of NF2 gene in the preparation of products for diagnosis/prevention of long bone developmental diseases |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060057630A1 (en) * | 2001-07-17 | 2006-03-16 | Golub Todd R | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69426948T2 (en) * | 1993-02-09 | 2001-10-11 | Becton Dickinson And Co., Franklin Lakes | Automatic determination of the cell line of severe leukaemias by flow cytometry |
US5998136A (en) * | 1996-08-19 | 1999-12-07 | Arcaris, Inc. | Selection systems and methods for identifying genes and gene products involved in cell proliferation |
US6190857B1 (en) | 1997-03-24 | 2001-02-20 | Urocor, Inc. | Diagnosis of disease state using MRNA profiles in peripheral leukocytes |
-
2002
- 2002-07-17 AU AU2002354941A patent/AU2002354941A1/en not_active Abandoned
- 2002-07-17 WO PCT/US2002/022823 patent/WO2003008552A2/en not_active Application Discontinuation
- 2002-07-17 US US10/198,064 patent/US7011947B2/en not_active Expired - Fee Related
-
2005
- 2005-09-22 US US11/233,905 patent/US20060024734A1/en not_active Abandoned
- 2005-10-20 US US11/256,381 patent/US20060057630A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060057630A1 (en) * | 2001-07-17 | 2006-03-16 | Golub Todd R | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060057630A1 (en) * | 2001-07-17 | 2006-03-16 | Golub Todd R | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia |
US11384648B2 (en) | 2018-03-19 | 2022-07-12 | Applied Materials, Inc. | Methods for depositing coatings on aerospace components |
US11560804B2 (en) | 2018-03-19 | 2023-01-24 | Applied Materials, Inc. | Methods for depositing coatings on aerospace components |
US11603767B2 (en) | 2018-03-19 | 2023-03-14 | Applied Materials, Inc. | Methods of protecting metallic components against corrosion using chromium-containing thin films |
US11753726B2 (en) | 2018-04-27 | 2023-09-12 | Applied Materials, Inc. | Protection of components from corrosion |
US11753727B2 (en) | 2018-04-27 | 2023-09-12 | Applied Materials, Inc. | Protection of components from corrosion |
US11761094B2 (en) | 2018-04-27 | 2023-09-19 | Applied Materials, Inc. | Protection of components from corrosion |
US11732353B2 (en) | 2019-04-26 | 2023-08-22 | Applied Materials, Inc. | Methods of protecting aerospace components against corrosion and oxidation |
US11794382B2 (en) | 2019-05-16 | 2023-10-24 | Applied Materials, Inc. | Methods for depositing anti-coking protective coatings on aerospace components |
US11697879B2 (en) | 2019-06-14 | 2023-07-11 | Applied Materials, Inc. | Methods for depositing sacrificial coatings on aerospace components |
US11466364B2 (en) | 2019-09-06 | 2022-10-11 | Applied Materials, Inc. | Methods for forming protective coatings containing crystallized aluminum oxide |
US11739429B2 (en) | 2020-07-03 | 2023-08-29 | Applied Materials, Inc. | Methods for refurbishing aerospace components |
Also Published As
Publication number | Publication date |
---|---|
US20060024734A1 (en) | 2006-02-02 |
US20030134300A1 (en) | 2003-07-17 |
US7011947B2 (en) | 2006-03-14 |
WO2003008552A3 (en) | 2003-12-11 |
AU2002354941A1 (en) | 2003-03-03 |
WO2003008552A9 (en) | 2004-01-15 |
WO2003008552A2 (en) | 2003-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7011947B2 (en) | MLL translocations specify a distinct gene expression profile, distinguishing a unique leukemia | |
US7501248B2 (en) | Prostate cancer diagnosis and outcome prediction by expression analysis | |
JP6895718B2 (en) | Methods for treating, diagnosing and monitoring rheumatoid arthritis | |
JP6404208B2 (en) | Methods of prognosis, diagnosis and treatment of idiopathic pulmonary fibrosis | |
US7504211B2 (en) | Methods of using EPHA2 for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in breast cells | |
US7537891B2 (en) | Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in breast cells | |
US20060019284A1 (en) | Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells | |
KR101787768B1 (en) | Methods for assessing responsiveness of b-cell lymphoma to treatment with anti-cd40 antibodies | |
US20110045999A1 (en) | Identification of novel subgroups of high-risk pediatric precursor b acute lymphoblastic leukemia, outcome correlations and diagnostic and therapeutic methods related to same | |
US20200399703A1 (en) | Diagnostic and therapeutic methods for the treatment of rheumatoid arthritis (ra) | |
KR20180109811A (en) | Methods and compositions for determining resistance of cancer treatment | |
US6933119B2 (en) | Methods and compositions for the detection and treatment of multiple sclerosis | |
US20220128543A1 (en) | Macrophage markers in cancer | |
EP1417297A2 (en) | Leukemogenic transcription factors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HOWARD HUGHES MEDICAL INSTITUTE, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KORSMEYER, STANLEY J.;REEL/FRAME:017150/0120 Effective date: 20011219 Owner name: KORSMEYER, STANLEY J., MASSACHUSETTS Free format text: APPOINTMENT OF INVESTIGATOR AS AGENT;ASSIGNOR:HOWARD HUGHES MEDICAL INSTITUTE;REEL/FRAME:017416/0158 Effective date: 20020109 |
|
AS | Assignment |
Owner name: WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH, MASSA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLUB, TODD R.;REEL/FRAME:021889/0905 Effective date: 20030110 Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KORSMEYER, STANLEY J.;HOWARD HUGHES MEDICAL INSTITUTE, INC.;REEL/FRAME:021889/0878 Effective date: 20020925 Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARMSTRONG, SCOTT A.;REEL/FRAME:021889/0828 Effective date: 20020911 Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GOLUB, TODD R.;REEL/FRAME:021889/0905 Effective date: 20030110 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |