US20050142210A1 - Thrombolytic agents and methods of treatment for thrombosis - Google Patents
Thrombolytic agents and methods of treatment for thrombosis Download PDFInfo
- Publication number
- US20050142210A1 US20050142210A1 US11/065,791 US6579105A US2005142210A1 US 20050142210 A1 US20050142210 A1 US 20050142210A1 US 6579105 A US6579105 A US 6579105A US 2005142210 A1 US2005142210 A1 US 2005142210A1
- Authority
- US
- United States
- Prior art keywords
- thrombus
- pharmaceutical composition
- microbubbles
- ultrasound
- dextrose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000007536 Thrombosis Diseases 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000003527 fibrinolytic agent Substances 0.000 title abstract description 12
- 229960000103 thrombolytic agent Drugs 0.000 title abstract description 12
- 238000002604 ultrasonography Methods 0.000 claims abstract description 42
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 22
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 241001465754 Metazoa Species 0.000 claims abstract description 8
- 238000010253 intravenous injection Methods 0.000 claims abstract description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 25
- 239000008121 dextrose Substances 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 22
- 102000009027 Albumins Human genes 0.000 claims description 16
- 108010088751 Albumins Proteins 0.000 claims description 16
- 238000000527 sonication Methods 0.000 claims description 15
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- KAVGMUDTWQVPDF-UHFFFAOYSA-N perflubutane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)F KAVGMUDTWQVPDF-UHFFFAOYSA-N 0.000 claims description 9
- 229950003332 perflubutane Drugs 0.000 claims description 9
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 8
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 8
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 claims description 7
- 229960004065 perflutren Drugs 0.000 claims description 7
- 208000014674 injury Diseases 0.000 claims description 6
- 230000008733 trauma Effects 0.000 claims description 6
- 239000002872 contrast media Substances 0.000 claims description 5
- 239000012895 dilution Substances 0.000 claims description 5
- 238000010790 dilution Methods 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 230000017531 blood circulation Effects 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 4
- 239000004005 microsphere Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 claims description 2
- 229960004692 perflenapent Drugs 0.000 claims description 2
- NJCBUSHGCBERSK-UHFFFAOYSA-N perfluoropentane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F NJCBUSHGCBERSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims 3
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 abstract description 21
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 abstract description 21
- 229960005356 urokinase Drugs 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 19
- 238000002560 therapeutic procedure Methods 0.000 abstract description 19
- 230000009089 cytolysis Effects 0.000 abstract description 16
- 230000002537 thrombolytic effect Effects 0.000 abstract description 13
- 230000002101 lytic effect Effects 0.000 abstract description 7
- 239000003146 anticoagulant agent Substances 0.000 abstract description 6
- 230000009885 systemic effect Effects 0.000 abstract description 5
- 238000002360 preparation method Methods 0.000 abstract description 4
- 238000001802 infusion Methods 0.000 abstract description 3
- 239000012298 atmosphere Substances 0.000 abstract description 2
- 231100001231 less toxic Toxicity 0.000 abstract 1
- 239000006193 liquid solution Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 24
- 239000007788 liquid Substances 0.000 description 12
- 108010023197 Streptokinase Proteins 0.000 description 10
- 229960005202 streptokinase Drugs 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 102000013566 Plasminogen Human genes 0.000 description 7
- 108010051456 Plasminogen Proteins 0.000 description 7
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 7
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 7
- 230000002785 anti-thrombosis Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229960000187 tissue plasminogen activator Drugs 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 108010088842 Fibrinolysin Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229940012957 plasmin Drugs 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 208000034158 bleeding Diseases 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 108010087959 dextrose albumin solution Proteins 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000002592 echocardiography Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010038848 Retinal detachment Diseases 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 230000004264 retinal detachment Effects 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 206010061372 Streptococcal infection Diseases 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- -1 dextrose Chemical class 0.000 description 1
- ORXJMBXYSGGCHG-UHFFFAOYSA-N dimethyl 2-methoxypropanedioate Chemical compound COC(=O)C(OC)C(=O)OC ORXJMBXYSGGCHG-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000002961 echo contrast media Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000014508 negative regulation of coagulation Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 201000005111 ocular hyperemia Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229930195724 β-lactose Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0028—Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/02—Halogenated hydrocarbons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5052—Proteins, e.g. albumin
Definitions
- This invention relates to a new and improved pharmaceutical composition and method for treating thrombosis in animals.
- the methods and composition of the invention can be used as an anticoagulant therapy to induce thrombolysis and to relieve trauma associated with obstruction of smaller vessels.
- thrombosis the formation and development of a blood clot or thrombus within the vascular system, while a life saving process when it occurs during a hemorrhage, can be life threatening when it occurs at any other time.
- the thrombus can block a vessel and stop blood supply to an organ or other body part. If detached, the thrombus can become an embolus and occlude a vessel distant from the original site.
- thrombosis clot formation
- fibronolysis fibronolysis
- thrombolytic agents used are not clot specific and while they do break up the thrombus and facilitate fibronolysis they also put the patient at significant risk as all clotting is inhibited and a patient could bleed to death from a small abrasion elsewhere.
- Current thrombolytic agents include streptokinase which is derived from Beta-hemolytic streptococci. When combined with plasminogen, streptokinase catalyzes the conversion of plasminogen to plasmin, the enzyme responsible for clot dissolution in the body.
- streptokinase therapy Three major problems encountered with the use of streptokinase therapy include its systemic lytic effects coupled with a long half life.
- streptokinase Because the anticoagulant activity of streptokinase is indiscriminent (non clot specific) and prolonged (half life 10-18 minutes), bleeding is a common complication which must be carefully monitored during 12 hours following immediately after administration. Further because streptokinase is a bacterial protein, it is strongly antigenic and can produce a variety of allergic reactions including anaphylaxis, particularly when administered to a patient who has previously received streptokinase therapy or who has had a recent streptococcal infection.
- Urokinase an enzyme protein secreted by the parenchyma cells of the human kidney. It acts to direct activation of plasminogen to form plasmin. This is different from streptokinase which first forms a complex with plasminogen to activate plasmin to dissolve the clot.
- Urokinase is also non clot specific (activates circulating non clot bound plasminogen as well as clot bound plasminogen) but has a shorter half life than streptokinase. Its administration is associated with fewer bleeding complications despite the fact that a systemic lytic state is also produced.
- Urokinase is produced by the kidney and as such it is not antigenic and well suited for use if subsequent thrombolytic therapy is needed.
- the major problem with urokinase is that it is difficult and expensive to produce precluding its extensive clinical use.
- tissue plasminogen activator is a naturally occurring enzyme (thus non antigenic) that is clot specific and has a very short half life (3-5 minutes). It converts plasminogen to plasmin after binding to the fibrin-containing clot. This clot specificity results in an increased concentration and activity of plasmin at the site of the clot, where it is needed. This characteristic of t-PA prevents the induction of the systemic lytic state that occurs with streptokinase and urokinase activity.
- a thrombolytic therapy which is site-specific and non-antigenic.
- the therapy involves the use of a pharmaceutical composition which comprises microbubbles of a diameter of about 0.1 to 10 microns, the interior of which has been enhanced with an insoluble gas such as fluorocarbon gas, helium or sulfur hexafluoride and which gas is encapsulated in a protein-coated shell.
- an insoluble gas such as fluorocarbon gas, helium or sulfur hexafluoride and which gas is encapsulated in a protein-coated shell.
- the invention uses agents and methods traditionally used in ultrasound imaging and as such provides a means for visualization of the clot as it is being lysed. Quite unexpectedly it was found that the insoluble gas microspheres of the invention act themselves as a thrombolytic agent in the presence of an ultrasound field and work as well as traditional thrombolytic agents such as urokinase.
- Ultrasonic imaging has long been used as a diagnostic tool to aid in therapeutic procedures. It is based on the principle that waves of sound energy can be focused upon an area of interest and reflected to produce an image. Generally an ultrasonic transducer is placed on a body surface overlying the area to be imaged and ultrasonic energy, produced by generating and receiving sound waves, is transmitted. The ultrasonic energy is reflected back to the transducer where it is translated into an ultrasonic image. The amount of characteristics of the reflected energy depend upon the acoustic properties of the tissues, and contrast agents which are echogenic are preferably used to create ultrasonic energy in the area of interest and improve the imaging received.
- Contrast echocardiography has been used to delineate intracardiac structures, assess valvular competence, and demonstrate intracardiac shunts.
- Myocardial contrast echocardiography has been used to measure coronary blood flow reserve in humans. MCE has been found to be a safe and useful technique for evaluating relative changes in myocardial perfusion and delineating areas at risk.
- Ultrasonic vibration has also been used in the medical field to increase the absorption of various medicaments.
- percutaneous absorption of a medicament is enhanced by applying an ultrasound vibration.
- U.S. Pat. Nos. 4,953,565 and 5,007,438 also disclose a technique of percutaneous absorption of medicaments by the aid of ultrasonic vibration.
- U.S. Pat. No. 5,315,998 discloses a booster for drug therapy comprising microbubbles in combination ultrasonic energy to allow the medicament to diffuse and penetrate at the site of interest.
- a microbubble composition in combination with ultrasound therapy can act as a thrombolytic medicament causing clot lysis at the site of a thrombus.
- the microbubbles themselves act as a medicament and are as effective as traditional thrombolytic agents such as urokinase or t-PA.
- the pharmaceutical composition of the invention comprises a liquid containing microbubbles of an insoluble gas having a diameter of 0.1 to 10 microns.
- the microbubbles are formed by entrapping microspheres of a gas into a liquid.
- the microbubbles are made of various gases preferably inert gases as xenon, krypton, argon, neon, helium, or fluorocarbon gases.
- the liquid includes any liquid which can form microbubbles.
- any inert gas can be used. It must be gaseous at body temperature and be nontoxic. The gas must also form stable microbubbles of average size of between about 0.1 and 10 microns in diameter when the pharmaceutical composition is sonicated to form microbubbles.
- perfluorocarbon gases such as perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, perfluoropentane are preferred. Of these gases, perfluoropropane and perfluorobutane are especially preferred because of their demonstrated safety for intraocular injection in humans.
- inert gases such as sulfur hexafluoride are also useful in the invention provided they have a diffusion coefficient and blood solubility lower than nitrogen or oxygen.
- the agent of the invention is formulated in a pharmaceutically effective dosage form for peripheral administration to the host in conjunction with ultrasound therapy.
- a host is a human host, although other mammalian hosts such as canine or equine can also be subject to this thrombolytic therapy.
- the pharmaceutical liquid composition of the invention uses a liquid wherein the microbubbles are stabilized by a filmogenic denaturable protein coating.
- suitable proteins include naturally occurring proteins such as albumin, human gamma globulin, human apatransferin, Betalactose and urease.
- the invention preferably employs a naturally occurring protein but synthetic proteins may also be used. Particularly preferred is human serum albumin.
- an aqueous solution containing a mixture of a pharmaceutically accepted saccharide e.g., dextrose in combination with the earlier described protein.
- the pharmaceutical liquid composition of the invention is the sonicated mixture of commercially available albumin (human), U.S.P. solution (generally supplied as 5% or 25% by weight sterile aqueous solutions), and commercially available dextrose, U.S.P. for intravenous administration.
- the mixture is sonicated under ambient conditions i.e. room air temperature and pressure and is perfused with an insoluble gas (99.9% by weight) during sonication.
- the pharmaceutical liquid composition includes a two-fold to eight-fold dilution of 5% to 50% by weight of dextrose and a 2% to 10% by weight of human serum albumin.
- exemplary of other saccharide solutions of the invention are aqueous monosaccharide solution (e.g. having the formula 6CH6012 such as the hexos sugars, dextrose or fructose or mixtures thereof), aqueous disaccharide solution (e.g. having a formula C 12 H 22 O 11 such as sucrose, lactose or maltose or mixtures thereof), or aqueous polysaccharide solution (e.g. soluble starches having the formula C 6 H 10 O 5 (n) wherein n is a whole number integer between 20 and about 200 such as amylase or dextran or mixtures thereof.
- microbubbles are formed by sonication, typically with a sonicating horn. Sonication by ultrasonic energy causes cavitation within the dextrose albumin solution at sites of particulate matter or gas in the fluid. These cavitation sites eventually resonate and produce small microbubbles (about 7 microns in size) which are non-collapsing and stable. In general, sonication conditions which produce concentrations of greater than about 4 ⁇ 10 8 m of between about 5 and about 6 micron microbubbles are preferred. Generally the mixture will be sonicated for about 80 seconds, while being perfused with an insoluble gas.
- a second method of preparation includes hand agitating 15 ⁇ 2 ml of sonicated dextrose albumin with 8 ⁇ 2 ml of perfluorocarbon gas prior to sonication. Sonication then proceeds for 80 ⁇ 5 seconds. Generally the pharmaceutical liquid composition is injected into the area of the thrombosis or close thereto and then ultrasound is applied.
- microbubble sizes are particularly ideal since a microbubble must have a mean diameter of less than 10 microns and greater than 0.1 to be sufficient for transpulminary passage, and must be stable enough to prevent significant diffusion of gases within the microbubble following intravenous injection and during transit to the thrombosis site.
- the method preferred for practicing the anti thrombosis therapy of the invention involves obtaining a pharmaceutical liquid agent of the invention, introducing said agent into a host by intravenous injection, intravenously (i.v. infusion), percutaneously or intramuscularly. Injection is such that the area of the thrombus is perfused with the pharmaceutical composition.
- ultrasound is applied thereto using a suitable Doppler or ultrasound echo apparatus so that the field of ultrasound encompasses the thrombus.
- the ultrasound signal activates the microbubbles so that the microbubbles themselves act as a thrombolytic agent.
- the desired ultrasound is applied by conventional ultrasonic devices which can supply an ultrasonic signal of 20 Khz to several Mhz and is generally applied from about 3 to about 5 Mhz.
- the agent of the invention is a perfluorocarbon enhanced sonicated dextrose albumin solution comprised of a sonicated three-fold dilution of 5% human serum albumin with 5% dextrose.
- the solution is perfused with perfluorocarbon gas for about 80 seconds which lowers the solubility and difusivity of the microbubble gas.
- the resulting microbubbles are concentrated at room temperature for at least about 120 ⁇ 5 minutes wherein the excess solution settles in the sonicating syringe.
- the excess solution is expelled and the concentrated microbubbles are transferred to a sterile syringe and injected parenterally into a mammal, near the site of the thrombus.
- the microbubble anti-thrombosis therapy can reduce any toxic effects of persons who cannot otherwise use traditional thrombolytic agents such as urokinase.
- the thrombosis can be treated simply with ultrasound in combination with a microbubble pharmaceutical composition of the invention and the protein substance such as human serum albumin is easily metabolized within the body and excreted outside and hence is not harmful to the human body.
- Further gas trapped within the microbubbles is extremely small and is easily dissolved in blood fluid, perfluoropropane and perfluorobutane have long been known to be safe in humans. Both have been used in humans for intra ocular injections to stabilize retinal detachments. Wong and Thompson, Opthalmology 95:609-613.
- the anti thrombosis agents of the invention are extremely safe and nontoxic for patients.
- Albumin (human) USP, 5% solution (hereinafter referred to as “albumin”) and dextrose USP, 5% solution (hereinafter referred to as “dextrose”) were obtained from a commercial source.
- the sonicating system used for sonication was a Heat System Ultrasonic Processor Model XL2020 (Heat Systems Inc., Farmingdale, N.Y.).
- the ⁇ fraction (1/2) ⁇ inch horn transducer was a resonating piezoelectric device.
- the ⁇ fraction (1/2) ⁇ inch sonicating horn tip was sterilized prior to each sonication.
- a second method of preparation includes hand agitating 15 ⁇ 2 ml of sonicated dextrose albumin with 8 ⁇ 2 ml of perfluorocarbon gas prior to sonication. Sonication then proceeds for 80 ⁇ 5 seconds. Generally the pharmaceutical liquid composition is injected into the area of the thrombosis or close thereto and then ultrasound is applied.
- the dextrose albumin mixture was exposed to either perfluoropropane or perfluorobutane gas (Commercial Grade, 99.9% by weight) by band agitating 15 ⁇ 2 ml of sonicated dextrose albumin with 8 ⁇ 2 ml of perfluorocarbon gas prior to sonication.
- the perfluorocarbon/dextrose-albumin mixture was then sonicated for 80 ⁇ 5 seconds.
- the total volume of perfluorocarbon-enhanced sonicated dextrose albumin produced with this formulation was 25 ⁇ 2 milliliters.
- Microbubble size and purity was determined using hemocytometry. Microscopic inspection of the microbubbles was performed to determine if any coalescent microbubbles were present in the solution. Microbubble concentration was determined using a Coulter Counter. The anti thrombosis pharmaceutical agent was rejected for use if any of the following conditions are present: the mean microbubble size was 4.0 to 6.0 microns; coalesced microbubbles or strands were detected by light microscopy; or the mean microbubble concentration was less than 0.8 ⁇ 10 9 or greater than 1.5 ⁇ 10 9 microbubble/milliliter. The sample was also rejected if the number of microbubbles greater than 10 microns in the sample was greater than 4%.
- compositions and method of the invention were shown to reduce the size of blood clots according to the following in vitro protocol.
- the protocol is known in the art and is predictive of success in vivo Sehgal, “Ultrasound-Assisted Thrombolysis”, Invest - Radiol ., October 1993, Vol. 28, No. 10: 939-43.
- 2 ml aliquots of freshly drawn whole blood were placed into a 10 cc plunger inverted syringes. The blood was then incubated for 2 hours at 37° C. After incubated, the syringes were removed from the water bath and left at room temperature until treatment.
- the serum was decanted from the clot by pouring the contents of the syringe over a wire mesh screen. The clot was then dried by rolling in the screen and blotting. The clot was then weighed and placed back into the syringe with lytic fluid (microbubble pharmaceutical composition of the invention). Samples without treatment were incubated at 37° C. in a water bath for 20 minutes. Samples with treatment involved placement of the ultrasound horn approximately 2 ml in solution and ultrasound was applied for 2 minutes. After 2 minutes the clot was incubated for 18 minutes at 37° C. Again the fluid was decanted, the clot was rolled and blotted on the bottom of the screen to dry and the clot was weighed subsequent to therapy.
- lytic fluid microbubble pharmaceutical composition of the invention
- PESDA microbubbles work as a thrombolytic agent to reduce the size of a thrombous at a level which rivals that of traditional thrombolytic agents such as urokinase.
- the anti thrombosis therapy includes doses of the liquid pharmaceutical composition, PESDA, from about as small as 0.0025 up to 0.1 ml/kg given depending on the ultrasonic procedure used.
- the contrast agent is given by peripheral intravenous infusion over about 1-25 minutes (the dose range is patient specific. Large patients may require slightly higher doses to produce equivalent thrombolysis).
- a patient will receive a 0.01 ml/kg of perfluorocarbon enhanced sonicated dextrose albumin or 0.0015 ml/kg perfluorobutane sonicated dextrose albumin as the initial injection. If this fails to produce significant clot lysis, the dose could then be doubled.
- Dosing protocols would be similar to those used for ultrasound imaging and are disclosed in Wyman, Arthur E. “Principles and Practice of Echocardiography”, Lee & Febiger, Malvern, Pa. (1994 2nd Edition).
- Any ultrasound device can be used including the commercially available Hewlett Packard Sonus 1500 Phased Ray Imaging System (Hewlett Packard, Andover Mass.).
- the patient is exposed to ultrasound for a time sufficient to experience significant clot lysis and generally will be from about 1 to about 25 minutes.
- Thrombolysis can be monitored by viewing with conventional angiography, using radiographic dyes, or other accepted methods.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The foregoing invention relates to a new microbubble preparation and thrombolytic therapy which relies on microbubbles and ultrasound for its lytic activity. The pharmaceutical composition of the invention comprises a liquid solution of microbubbles with an internal atmosphere enhanced with the perfluorocarbon gas which cavitate in the presence of an ultrasound field following intravenous injection or infusion of said composition into said host. For thrombolysis the area of a thrombus is exposed to an ultrasound field in the presence of the microbubbles and significant lysis is experienced. The method and pharmaceutical composition of the invention exhibit thrombolytic properties similar to those of other thrombolytic agents such as urokinase and are less toxic and are clot specific in that they do not introduce a systemic lytic state to a said animal.
Description
- This application is a continuation of Ser. No. 09/758,799 filed Jan. 11, 2001, which is a continuation of Ser. No. 09/435,050 filed Nov. 8, 1999, which is a continuation of Ser. No. 08/832, 532 filed Apr. 3, 1997, which is a divisional of Ser. No. 08/544,204 filed Oct. 17, 1995, now U.S. Pat. No. 5,648,098.
- This invention relates to a new and improved pharmaceutical composition and method for treating thrombosis in animals. The methods and composition of the invention can be used as an anticoagulant therapy to induce thrombolysis and to relieve trauma associated with obstruction of smaller vessels.
- Thrombosis, the formation and development of a blood clot or thrombus within the vascular system, while a life saving process when it occurs during a hemorrhage, can be life threatening when it occurs at any other time. The thrombus can block a vessel and stop blood supply to an organ or other body part. If detached, the thrombus can become an embolus and occlude a vessel distant from the original site.
- In the healthy person there is a balance between clot formation (thrombosis) which is needed to minimize blood loss and to repair blood vessels, and clot lysis (fibronolysis) which maintains the patency of blood vessels. When thrombosis occurs without concomitant fibronolysis effects can lead to strokes.
- Traditional thrombolytic agents used are not clot specific and while they do break up the thrombus and facilitate fibronolysis they also put the patient at significant risk as all clotting is inhibited and a patient could bleed to death from a small abrasion elsewhere. Current thrombolytic agents include streptokinase which is derived from Beta-hemolytic streptococci. When combined with plasminogen, streptokinase catalyzes the conversion of plasminogen to plasmin, the enzyme responsible for clot dissolution in the body. Three major problems encountered with the use of streptokinase therapy include its systemic lytic effects coupled with a long half life. Because the anticoagulant activity of streptokinase is indiscriminent (non clot specific) and prolonged (half life 10-18 minutes), bleeding is a common complication which must be carefully monitored during 12 hours following immediately after administration. Further because streptokinase is a bacterial protein, it is strongly antigenic and can produce a variety of allergic reactions including anaphylaxis, particularly when administered to a patient who has previously received streptokinase therapy or who has had a recent streptococcal infection.
- Another popular agent for use in treatment of thrombosis is urokinase, an enzyme protein secreted by the parenchyma cells of the human kidney. It acts to direct activation of plasminogen to form plasmin. This is different from streptokinase which first forms a complex with plasminogen to activate plasmin to dissolve the clot. Urokinase is also non clot specific (activates circulating non clot bound plasminogen as well as clot bound plasminogen) but has a shorter half life than streptokinase. Its administration is associated with fewer bleeding complications despite the fact that a systemic lytic state is also produced. Urokinase is produced by the kidney and as such it is not antigenic and well suited for use if subsequent thrombolytic therapy is needed. The major problem with urokinase is that it is difficult and expensive to produce precluding its extensive clinical use.
- The most recently developed drug in treating of thrombolysis is recombinant tissue plasminogen activator. Approved by the FDA in November of 1987, tissue plasminogen activator (t-PA) is a naturally occurring enzyme (thus non antigenic) that is clot specific and has a very short half life (3-5 minutes). It converts plasminogen to plasmin after binding to the fibrin-containing clot. This clot specificity results in an increased concentration and activity of plasmin at the site of the clot, where it is needed. This characteristic of t-PA prevents the induction of the systemic lytic state that occurs with streptokinase and urokinase activity. However the results of studies comparing the streptokinase and t-PA show similar incidences of bleeding following administration. Successful gene cloning has made sufficient quantities of t-PA available for clinical use, however, the recombinant technology necessary for its production have also resulted in a prohibitive cost. As can be seen a need in the art exists for a thrombolysis therapy which is clot specific, which does not induce a systemic lytic state and which is inexpensive and non antigenic to patients.
- According to the invention a thrombolytic therapy is provided which is site-specific and non-antigenic. The therapy involves the use of a pharmaceutical composition which comprises microbubbles of a diameter of about 0.1 to 10 microns, the interior of which has been enhanced with an insoluble gas such as fluorocarbon gas, helium or sulfur hexafluoride and which gas is encapsulated in a protein-coated shell. The invention uses agents and methods traditionally used in ultrasound imaging and as such provides a means for visualization of the clot as it is being lysed. Quite unexpectedly it was found that the insoluble gas microspheres of the invention act themselves as a thrombolytic agent in the presence of an ultrasound field and work as well as traditional thrombolytic agents such as urokinase.
- Ultrasonic imaging has long been used as a diagnostic tool to aid in therapeutic procedures. It is based on the principle that waves of sound energy can be focused upon an area of interest and reflected to produce an image. Generally an ultrasonic transducer is placed on a body surface overlying the area to be imaged and ultrasonic energy, produced by generating and receiving sound waves, is transmitted. The ultrasonic energy is reflected back to the transducer where it is translated into an ultrasonic image. The amount of characteristics of the reflected energy depend upon the acoustic properties of the tissues, and contrast agents which are echogenic are preferably used to create ultrasonic energy in the area of interest and improve the imaging received. For a discussion of contrast echographic instrumentation, see, DeJong and, “Acoustic Properties of Ultrasound Contrast Agents”, CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DENHAG (1993), pp. 120 et seq.
- Contrast echocardiography has been used to delineate intracardiac structures, assess valvular competence, and demonstrate intracardiac shunts. Myocardial contrast echocardiography (MCE) has been used to measure coronary blood flow reserve in humans. MCE has been found to be a safe and useful technique for evaluating relative changes in myocardial perfusion and delineating areas at risk.
- Ultrasonic vibration has also been used in the medical field to increase the absorption of various medicaments. For example in Japanese Patent Kokai number 115591/1977 discloses that percutaneous absorption of a medicament is enhanced by applying an ultrasound vibration. U.S. Pat. Nos. 4,953,565 and 5,007,438 also disclose a technique of percutaneous absorption of medicaments by the aid of ultrasonic vibration. U.S. Pat. No. 5,315,998 discloses a booster for drug therapy comprising microbubbles in combination ultrasonic energy to allow the medicament to diffuse and penetrate at the site of interest.
- Quite surprisingly applicant has demonstrated that a microbubble composition in combination with ultrasound therapy can act as a thrombolytic medicament causing clot lysis at the site of a thrombus. In the presence of ultrasound the microbubbles themselves act as a medicament and are as effective as traditional thrombolytic agents such as urokinase or t-PA. The pharmaceutical composition of the invention comprises a liquid containing microbubbles of an insoluble gas having a diameter of 0.1 to 10 microns. The microbubbles are formed by entrapping microspheres of a gas into a liquid. The microbubbles are made of various gases preferably inert gases as xenon, krypton, argon, neon, helium, or fluorocarbon gases. The liquid includes any liquid which can form microbubbles. Generally any inert gas can be used. It must be gaseous at body temperature and be nontoxic. The gas must also form stable microbubbles of average size of between about 0.1 and 10 microns in diameter when the pharmaceutical composition is sonicated to form microbubbles. Generally perfluorocarbon gases such as perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, perfluoropentane are preferred. Of these gases, perfluoropropane and perfluorobutane are especially preferred because of their demonstrated safety for intraocular injection in humans. They have been used in human studies for intraocular injections to stabilize retinal detachments (Wong and Thompson, Opthamology 95:609-613). Treatment with intraocular perfluoropropane is considered to be the standard of care for treatment of this disorder. The gases must also have a diffusion coefficient and blood solubility lower than nitrogen or oxygen which diffuse once in the internal atmosphere of the blood vessel.
- Other inert gases such as sulfur hexafluoride are also useful in the invention provided they have a diffusion coefficient and blood solubility lower than nitrogen or oxygen. The agent of the invention is formulated in a pharmaceutically effective dosage form for peripheral administration to the host in conjunction with ultrasound therapy. Generally such host is a human host, although other mammalian hosts such as canine or equine can also be subject to this thrombolytic therapy.
- In a preferred embodiment the pharmaceutical liquid composition of the invention uses a liquid wherein the microbubbles are stabilized by a filmogenic denaturable protein coating. Suitable proteins include naturally occurring proteins such as albumin, human gamma globulin, human apatransferin, Betalactose and urease. The invention preferably employs a naturally occurring protein but synthetic proteins may also be used. Particularly preferred is human serum albumin.
- It is also preferred to use an aqueous solution containing a mixture of a pharmaceutically accepted saccharide e.g., dextrose, in combination with the earlier described protein. In a most preferred embodiment the pharmaceutical liquid composition of the invention is the sonicated mixture of commercially available albumin (human), U.S.P. solution (generally supplied as 5% or 25% by weight sterile aqueous solutions), and commercially available dextrose, U.S.P. for intravenous administration. The mixture is sonicated under ambient conditions i.e. room air temperature and pressure and is perfused with an insoluble gas (99.9% by weight) during sonication.
- In a most preferred embodiment the pharmaceutical liquid composition includes a two-fold to eight-fold dilution of 5% to 50% by weight of dextrose and a 2% to 10% by weight of human serum albumin. Exemplary of other saccharide solutions of the invention are aqueous monosaccharide solution (e.g. having the formula 6CH6012 such as the hexos sugars, dextrose or fructose or mixtures thereof), aqueous disaccharide solution (e.g. having a formula C12H22O11 such as sucrose, lactose or maltose or mixtures thereof), or aqueous polysaccharide solution (e.g. soluble starches having the formula C6H10O5(n) wherein n is a whole number integer between 20 and about 200 such as amylase or dextran or mixtures thereof.
- The microbubbles are formed by sonication, typically with a sonicating horn. Sonication by ultrasonic energy causes cavitation within the dextrose albumin solution at sites of particulate matter or gas in the fluid. These cavitation sites eventually resonate and produce small microbubbles (about 7 microns in size) which are non-collapsing and stable. In general, sonication conditions which produce concentrations of greater than about 4×108 m of between about 5 and about 6 micron microbubbles are preferred. Generally the mixture will be sonicated for about 80 seconds, while being perfused with an insoluble gas.
- A second method of preparation includes hand agitating 15±2 ml of sonicated dextrose albumin with 8±2 ml of perfluorocarbon gas prior to sonication. Sonication then proceeds for 80±5 seconds. Generally the pharmaceutical liquid composition is injected into the area of the thrombosis or close thereto and then ultrasound is applied.
- These microbubble sizes are particularly ideal since a microbubble must have a mean diameter of less than 10 microns and greater than 0.1 to be sufficient for transpulminary passage, and must be stable enough to prevent significant diffusion of gases within the microbubble following intravenous injection and during transit to the thrombosis site. The method preferred for practicing the anti thrombosis therapy of the invention involves obtaining a pharmaceutical liquid agent of the invention, introducing said agent into a host by intravenous injection, intravenously (i.v. infusion), percutaneously or intramuscularly. Injection is such that the area of the thrombus is perfused with the pharmaceutical composition. Next ultrasound is applied thereto using a suitable Doppler or ultrasound echo apparatus so that the field of ultrasound encompasses the thrombus. The ultrasound signal activates the microbubbles so that the microbubbles themselves act as a thrombolytic agent.
- The desired ultrasound is applied by conventional ultrasonic devices which can supply an ultrasonic signal of 20 Khz to several Mhz and is generally applied from about 3 to about 5 Mhz.
- In the most preferred embodiment the agent of the invention is a perfluorocarbon enhanced sonicated dextrose albumin solution comprised of a sonicated three-fold dilution of 5% human serum albumin with 5% dextrose. During sonication, the solution is perfused with perfluorocarbon gas for about 80 seconds which lowers the solubility and difusivity of the microbubble gas. The resulting microbubbles are concentrated at room temperature for at least about 120±5 minutes wherein the excess solution settles in the sonicating syringe. The excess solution is expelled and the concentrated microbubbles are transferred to a sterile syringe and injected parenterally into a mammal, near the site of the thrombus.
- Methods of ultrasonic imaging in which microbubbles formed by sonicating an aqueous protein solution are injected into a mammal to alter the acoustic properties of a predetermined area which is then ultrasonically scanned to obtain an image for use in medical procedures is well known. For example see U.S. Pat. No. 4,572,203, U.S. Pat. No. 4,718,433 and U.S. Pat. No. 4,774,958, the contents of each of which are incorporated herein by reference.
- It is the use of these types of contrast agents as a pharmaceutical composition and application of ultrasound as an anti thrombosis therapy that is the novel improvement of this invention. Blood clots when treated with the microbubble composition and therapy of this invention were shown to decrease in size by a percentage equal to that of traditional thrombolytic agents such as urokinase. According to the invention, it was shown that treatment with decafluorobutane sonicated dextrose albumin microbubbles and subsequent application of ultrasound resulted in a higher percentage of clot reduction than treatment with urokinase alone. The combination of perfluorocarbon enhanced sonicated dextrose albumin microbubbles (PESDA) and ultrasound resulted in increased clot lysis from that of ultrasound alone or over use of PESDA alone.
- This is particularly significant as the microbubble anti-thrombosis therapy can reduce any toxic effects of persons who cannot otherwise use traditional thrombolytic agents such as urokinase. According to the invention the thrombosis can be treated simply with ultrasound in combination with a microbubble pharmaceutical composition of the invention and the protein substance such as human serum albumin is easily metabolized within the body and excreted outside and hence is not harmful to the human body. Further gas trapped within the microbubbles is extremely small and is easily dissolved in blood fluid, perfluoropropane and perfluorobutane have long been known to be safe in humans. Both have been used in humans for intra ocular injections to stabilize retinal detachments. Wong and Thompson, Opthalmology 95:609-613. Thus the anti thrombosis agents of the invention are extremely safe and nontoxic for patients.
- The following examples are for illustration purposes only and are not intended to limit this invention in any way. These examples demonstrate the effect of the pharmaceutical compositions and therapy of the invention. In all the following examples, all parts and percentages are by weight unless otherwise, all dilutions are by volume.
- Albumin (human) USP, 5% solution (hereinafter referred to as “albumin”) and dextrose USP, 5% solution (hereinafter referred to as “dextrose”) were obtained from a commercial source. The sonicating system used for sonication was a Heat System Ultrasonic Processor Model XL2020 (Heat Systems Inc., Farmingdale, N.Y.). The {fraction (1/2)} inch horn transducer was a resonating piezoelectric device. The {fraction (1/2)} inch sonicating horn tip was sterilized prior to each sonication.
- Sixteen milliliter aliquots of albumin diluted 1:3 with dextrose were drawn up into a 35 cc “Monoject” syringe (Becton Dickinson and Company, Rutherford, N.J.) and sonicated for 80±1 seconds. The “Leur-Lok” of the 35 milliliter syringe was then attached to a stopcock. After mixing the dextrose albumin solution by hand for about 7 to about 10 seconds, the plunger was removed from the top of the syringe. The sterile sonicating horn was then lowered into the open end of the syringe until at the surface of the albumin-dextrose solution. The solution was placed at the horn tip and manually held at this position while continuously sonicating at a frequency of 20,000 Hz and a power output of 210 W for 80±1 seconds to form a stable microbubble solution.
- A second method of preparation includes hand agitating 15±2 ml of sonicated dextrose albumin with 8±2 ml of perfluorocarbon gas prior to sonication. Sonication then proceeds for 80±5 seconds. Generally the pharmaceutical liquid composition is injected into the area of the thrombosis or close thereto and then ultrasound is applied.
- The dextrose albumin mixture was exposed to either perfluoropropane or perfluorobutane gas (Commercial Grade, 99.9% by weight) by band agitating 15±2 ml of sonicated dextrose albumin with 8±2 ml of perfluorocarbon gas prior to sonication. The perfluorocarbon/dextrose-albumin mixture was then sonicated for 80±5 seconds. The total volume of perfluorocarbon-enhanced sonicated dextrose albumin produced with this formulation was 25±2 milliliters. These samples were then used for intravenous injection.
- Microbubble size and purity was determined using hemocytometry. Microscopic inspection of the microbubbles was performed to determine if any coalescent microbubbles were present in the solution. Microbubble concentration was determined using a Coulter Counter. The anti thrombosis pharmaceutical agent was rejected for use if any of the following conditions are present: the mean microbubble size was 4.0 to 6.0 microns; coalesced microbubbles or strands were detected by light microscopy; or the mean microbubble concentration was less than 0.8×109 or greater than 1.5×109 microbubble/milliliter. The sample was also rejected if the number of microbubbles greater than 10 microns in the sample was greater than 4%.
- All samples were stored in 35 milliliter syringes until time of injection. All solutions were given within 36 hours of production. All samples were prepared in a laminar flow hood.
- The pharmaceutical compositions and method of the invention were shown to reduce the size of blood clots according to the following in vitro protocol. The protocol is known in the art and is predictive of success in vivo Sehgal, “Ultrasound-Assisted Thrombolysis”, Invest-Radiol., October 1993, Vol. 28, No. 10: 939-43. 2 ml aliquots of freshly drawn whole blood were placed into a 10 cc plunger inverted syringes. The blood was then incubated for 2 hours at 37° C. After incubated, the syringes were removed from the water bath and left at room temperature until treatment. Upon treatment the serum was decanted from the clot by pouring the contents of the syringe over a wire mesh screen. The clot was then dried by rolling in the screen and blotting. The clot was then weighed and placed back into the syringe with lytic fluid (microbubble pharmaceutical composition of the invention). Samples without treatment were incubated at 37° C. in a water bath for 20 minutes. Samples with treatment involved placement of the ultrasound horn approximately 2 ml in solution and ultrasound was applied for 2 minutes. After 2 minutes the clot was incubated for 18 minutes at 37° C. Again the fluid was decanted, the clot was rolled and blotted on the bottom of the screen to dry and the clot was weighed subsequent to therapy.
- Several experiments were run using this protocol and the results are shown in the following tables.
Experiment #1 With Ultrasound Without Ultrasound % clot lysis % clot lysis Sample n Average Sample n Average saline 4 7.4 saline 4 8.7 urokinase 4 46.3 urokinase 5 17.9 PESDA 4 15.3 PESDA 4 3.1 -
Experiment #2 With Ultrasound Without Ultrasound % clot lysis % clot lysis Sample n Average Sample n Average saline 4 33.3 saline 3 4.1 urokinase 4 54.9 urokinase 4 12.4 PESDA 6 58.7 PESDA 4 3.1 -
Experiment #3 With Ultrasound Without Ultrasound % clot lysis % clot lysis Sample n Average Sample n Average saline 4 10.9 saline 4 7.8 urokinase 4 45.1 urokinase 4 17.7 PESDA 4 50.9 PESDA 4 4.1 -
Experiments 1, 2 and 3 combined With Ultrasound Without Ultrasound % clot lysis % clot lysis Sample n Average Sample n Average saline 12 12.9 saline 11 6.9 urokinase 12 48.8 urokinase 13 16 PESDA 14 44.0 PESDA 12 3.4 - As can be seen from the foregoing tables, when all data is combined with over 10 separate experiments, ultrasound in combination with perfluorobutane enhanced, sonicated dextrose albumin microspheres demonstrated an average percent clot lysis that was approximately equal to that which resulted from urokinase in combination with ultrasound.
- As can be seen quite unexpectedly, in the presence of ultrasound, PESDA microbubbles work as a thrombolytic agent to reduce the size of a thrombous at a level which rivals that of traditional thrombolytic agents such as urokinase.
- For humans the anti thrombosis therapy includes doses of the liquid pharmaceutical composition, PESDA, from about as small as 0.0025 up to 0.1 ml/kg given depending on the ultrasonic procedure used. The contrast agent is given by peripheral intravenous infusion over about 1-25 minutes (the dose range is patient specific. Large patients may require slightly higher doses to produce equivalent thrombolysis). Generally in one protocol a patient will receive a 0.01 ml/kg of perfluorocarbon enhanced sonicated dextrose albumin or 0.0015 ml/kg perfluorobutane sonicated dextrose albumin as the initial injection. If this fails to produce significant clot lysis, the dose could then be doubled. Dosing protocols would be similar to those used for ultrasound imaging and are disclosed in Wyman, Arthur E. “Principles and Practice of Echocardiography”, Lee & Febiger, Malvern, Pa. (1994 2nd Edition). Any ultrasound device can be used including the commercially available Hewlett Packard Sonus 1500 Phased Ray Imaging System (Hewlett Packard, Andover Mass.). The patient is exposed to ultrasound for a time sufficient to experience significant clot lysis and generally will be from about 1 to about 25 minutes. Thrombolysis can be monitored by viewing with conventional angiography, using radiographic dyes, or other accepted methods.
Claims (16)
1. A method of relieving trauma associated with obstruction of vessels distal to a thrombus site by increasing blood flow without thrombus dissolution and recanalization in animals comprising:
introducing a pharmaceutical composition to an animal with a thrombus by intravenous injection, said pharmaceutical composition comprising a microbubble ultrasound agent, and a pharmaceutically acceptable carrier, wherein said carrier comprises a 5% solution of dextrose and thereafter;
applying ultrasound to the vessels in the area of trauma, distal to the thrombus site.
2. The method of claim 2 wherein said microbubble contrast agent comprises:
a plurality of gas filled microbubbles with a diameter of from about 0.1 to 10 microns.
3. The method of claim 2 wherein said gas is an insoluble gas.
4. The method of claim 2 wherein said microbubbles are protein coated.
5. The method of claim 3 wherein said protein coated microbubbles are albumin coated microspheres
6. The method of claim 2 wherein said insoluble gas is selected from the group consisting perfluoromethane, perfluoroethane, perfluoropropane, perfluorobutane, and perfluoropentane.
7. The method of claim 6 wherein said perfluorocarbon gas is perfluorobutane.
8. The method of claim 6 wherein said perfluorocarbon gas is perfluoropropane.
9. The method of claim 2 further comprising the following steps:
mixing an aqueous solution comprising 2% to about 10 T by weight of human serum albumin diluted about 2-fold to about 8-fold with 5% to 50% by weight dextrose; and
exposing said solution to a sonication horn to generate stable microbubbles from about 0.1 to 10 microns in diameter to create said pharmaceutical composition.
10. The method of claim 9 wherein said dilution of albumin with dextrose is a 3-fold dilution.
11. The method of claim 9 wherein said human serum albumin is a 5% by weight solution.
12. The method of claim 9 wherein said dextrose is a 5% by weight solution.
13. A method of relieving trauma associated with obstruction of vessels to a thrombus site by increasing blood flow with thrombus dissolution and recanalization in animals comprising:
introducing a pharmaceutical composition to an animal with a thrombus by intravenous injection, said pharmaceutical composition comprising a microbubble ultrasound agent, and a pharmaceutically acceptable carrier, wherein said carrier comprises a 5% solution of dextrose and thereafter;
applying ultrasound to the pharmaceutical composition following intravenous injection and during transit to the thrombus.
14. The method of claim 13 wherein said microbubble contrast agent comprises:
a plurality of gas filled microbubbles with a diameter of from about 0.1 to 10 microns.
15. The method of claim 14 further comprising the following steps:
mixing an aqueous solution comprising 2% to about 10% by weight of human serum albumin diluted about 2-fold to about 8-fold with 5% to 50% by weight dextrose; and
exposing said solution to a sonication horn to generate stable microbubbles from about 0.1 to 10 microns in diameter to create said pharmaceutical composition.
16. A method of relieving trauma associated with obstruction of vessels close to a thrombus site by increasing blood flow with thrombus dissolution and recanalization in animals comprising:
introducing a pharmaceutical composition to an animal with a thrombus by intravenous injection, said pharmaceutical composition comprising a microbubble ultrasound agent, and a pharmaceutically acceptable carrier, wherein said carrier comprises a 5% solution of dextrose and thereafter;
applying ultrasound to the vessels in the area of trauma, close to and not on the thrombus site.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/065,791 US20050142210A1 (en) | 1995-10-17 | 2005-02-25 | Thrombolytic agents and methods of treatment for thrombosis |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/544,204 US5648098A (en) | 1995-10-17 | 1995-10-17 | Thrombolytic agents and methods of treatment for thrombosis |
US08/832,532 US5980950A (en) | 1995-10-17 | 1997-04-03 | Thrombolytic agents and methods of treatment for thrombosis |
US09/435,050 US6197345B1 (en) | 1995-10-17 | 1999-11-08 | Thrombolytic agents and methods of treatment for thrombosis |
US09/758,799 US20010008880A1 (en) | 1995-10-17 | 2001-01-11 | Thrombolytic agents and methods of treatment for thrombosis |
US11/065,791 US20050142210A1 (en) | 1995-10-17 | 2005-02-25 | Thrombolytic agents and methods of treatment for thrombosis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/758,799 Continuation US20010008880A1 (en) | 1995-10-17 | 2001-01-11 | Thrombolytic agents and methods of treatment for thrombosis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050142210A1 true US20050142210A1 (en) | 2005-06-30 |
Family
ID=24171195
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/544,204 Expired - Lifetime US5648098A (en) | 1995-10-17 | 1995-10-17 | Thrombolytic agents and methods of treatment for thrombosis |
US08/832,532 Expired - Lifetime US5980950A (en) | 1995-10-17 | 1997-04-03 | Thrombolytic agents and methods of treatment for thrombosis |
US09/435,050 Expired - Lifetime US6197345B1 (en) | 1995-10-17 | 1999-11-08 | Thrombolytic agents and methods of treatment for thrombosis |
US09/758,799 Abandoned US20010008880A1 (en) | 1995-10-17 | 2001-01-11 | Thrombolytic agents and methods of treatment for thrombosis |
US11/065,791 Abandoned US20050142210A1 (en) | 1995-10-17 | 2005-02-25 | Thrombolytic agents and methods of treatment for thrombosis |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/544,204 Expired - Lifetime US5648098A (en) | 1995-10-17 | 1995-10-17 | Thrombolytic agents and methods of treatment for thrombosis |
US08/832,532 Expired - Lifetime US5980950A (en) | 1995-10-17 | 1997-04-03 | Thrombolytic agents and methods of treatment for thrombosis |
US09/435,050 Expired - Lifetime US6197345B1 (en) | 1995-10-17 | 1999-11-08 | Thrombolytic agents and methods of treatment for thrombosis |
US09/758,799 Abandoned US20010008880A1 (en) | 1995-10-17 | 2001-01-11 | Thrombolytic agents and methods of treatment for thrombosis |
Country Status (2)
Country | Link |
---|---|
US (5) | US5648098A (en) |
WO (1) | WO1997014409A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080097206A1 (en) * | 2006-09-27 | 2008-04-24 | Chomas James E | Enhanced contrast agent augmented ultrasound thrombus treatment |
US20080125657A1 (en) * | 2006-09-27 | 2008-05-29 | Chomas James E | Automated contrast agent augmented ultrasound therapy for thrombus treatment |
US7746106B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Circuits for enabling feedback paths in a self-timed integrated circuit |
US7746103B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Multi-mode circuit in a self-timed integrated circuit |
US7746112B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Output structure with cascaded control signals for logic blocks in integrated circuits, and methods of using the same |
US7948265B1 (en) | 2009-04-02 | 2011-05-24 | Xilinx, Inc. | Circuits for replicating self-timed logic |
US8317776B2 (en) | 2007-12-18 | 2012-11-27 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US8409132B2 (en) | 2007-12-18 | 2013-04-02 | The Invention Science Fund I, Llc | Treatment indications informed by a priori implant information |
US8636670B2 (en) | 2008-05-13 | 2014-01-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US20140271901A1 (en) * | 2013-03-15 | 2014-09-18 | Mark Humayun | Management of Tractional Membranes |
US9411554B1 (en) | 2009-04-02 | 2016-08-09 | Xilinx, Inc. | Signed multiplier circuit utilizing a uniform array of logic blocks |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US5922304A (en) | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
ATE146073T1 (en) * | 1991-03-22 | 1996-12-15 | Katsuro Tachibana | AMPLIFIER FOR ULTRASONIC THERAPY OF DISEASES AND LIQUID MEDICINAL COMPOSITIONS CONTAINING SAME |
US5205290A (en) | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US5648098A (en) * | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
ATE248511T1 (en) * | 1996-03-12 | 2003-09-15 | Univ Nebraska | COMPOSITION FOR TARGETED ADMINISTRATION OF A MEDICATION AND METHOD OF USE |
DE69736981D1 (en) | 1996-05-01 | 2007-01-04 | Imarx Pharmaceutical Corp | IN VITRO PROCESS FOR INTRODUCING NUCLEIC ACIDS INTO A CELL |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
JP2002515887A (en) * | 1996-10-19 | 2002-05-28 | クウォドラント、ヘルスケアー、(ユーケー)、リミテッド | Use of hollow microcapsules in diagnosis and therapy |
US6090800A (en) | 1997-05-06 | 2000-07-18 | Imarx Pharmaceutical Corp. | Lipid soluble steroid prodrugs |
DE69838669T2 (en) * | 1997-04-30 | 2008-10-30 | Point Biomedical Corp., San Carlos | MICROPARTICLES, SUITABLE AS A CONTRASTANT IN ULTRASOUND AND FOR ACTIVITY IN THE BLOOD CIRCUIT |
US6582392B1 (en) | 1998-05-01 | 2003-06-24 | Ekos Corporation | Ultrasound assembly for use with a catheter |
US6676626B1 (en) | 1998-05-01 | 2004-01-13 | Ekos Corporation | Ultrasound assembly with increased efficacy |
US6723063B1 (en) | 1998-06-29 | 2004-04-20 | Ekos Corporation | Sheath for use with an ultrasound element |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
US20010003580A1 (en) | 1998-01-14 | 2001-06-14 | Poh K. Hui | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US6135976A (en) * | 1998-09-25 | 2000-10-24 | Ekos Corporation | Method, device and kit for performing gene therapy |
US6309355B1 (en) | 1998-12-22 | 2001-10-30 | The Regents Of The University Of Michigan | Method and assembly for performing ultrasound surgery using cavitation |
WO2001024705A1 (en) * | 1999-10-06 | 2001-04-12 | Imarx Therapeutics, Inc. | Improved methods for delivering bioactive agents |
US7300414B1 (en) | 1999-11-01 | 2007-11-27 | University Of Cincinnati | Transcranial ultrasound thrombolysis system and method of treating a stroke |
US7037267B1 (en) * | 1999-11-10 | 2006-05-02 | David Lipson | Medical diagnostic methods, systems, and related equipment |
US7220239B2 (en) | 2001-12-03 | 2007-05-22 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US8226629B1 (en) | 2002-04-01 | 2012-07-24 | Ekos Corporation | Ultrasonic catheter power control |
US6921371B2 (en) | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
DK2351844T3 (en) | 2003-04-29 | 2014-09-22 | Sarepta Therapeutics Inc | Preparations for enhancing transport and antisense efficiency of nucleic acid analog in cells |
WO2005025403A2 (en) * | 2003-09-08 | 2005-03-24 | Board Of Trustees Of The University Of Arkansas | Ultrasound apparatus and method for augmented clot lysis |
US7025726B2 (en) * | 2004-01-22 | 2006-04-11 | The Regents Of The University Of Nebraska | Detection of endothelial dysfunction by ultrasonic imaging |
US9107590B2 (en) | 2004-01-29 | 2015-08-18 | Ekos Corporation | Method and apparatus for detecting vascular conditions with a catheter |
US7341569B2 (en) * | 2004-01-30 | 2008-03-11 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
KR20060043141A (en) * | 2004-02-23 | 2006-05-15 | 지벡스 코포레이션 | Charged particle beam device probe manipulator |
US7326293B2 (en) * | 2004-03-26 | 2008-02-05 | Zyvex Labs, Llc | Patterned atomic layer epitaxy |
WO2006110773A2 (en) * | 2005-04-12 | 2006-10-19 | Ekos Corporation | Ultrasound catheter with cavitation promoting surface |
US20070016040A1 (en) * | 2005-06-24 | 2007-01-18 | Henry Nita | Methods and apparatus for intracranial ultrasound delivery |
US7717853B2 (en) * | 2005-06-24 | 2010-05-18 | Henry Nita | Methods and apparatus for intracranial ultrasound delivery |
US20110160621A1 (en) * | 2005-06-24 | 2011-06-30 | Henry Nita | Methods and apparatus for dissolving intracranial blood clots |
JP5094723B2 (en) * | 2005-08-30 | 2012-12-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method of using combined imaging and therapy transducers to dissolve clots |
US20070083120A1 (en) * | 2005-09-22 | 2007-04-12 | Cain Charles A | Pulsed cavitational ultrasound therapy |
US10219815B2 (en) | 2005-09-22 | 2019-03-05 | The Regents Of The University Of Michigan | Histotripsy for thrombolysis |
US8057408B2 (en) * | 2005-09-22 | 2011-11-15 | The Regents Of The University Of Michigan | Pulsed cavitational ultrasound therapy |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
JP5336369B2 (en) * | 2006-08-11 | 2013-11-06 | コーニンクレッカ フィリップス エヌ ヴェ | Ultrasound system for cerebral blood flow imaging and microbubble improvement thrombus resolution |
US8192363B2 (en) | 2006-10-27 | 2012-06-05 | Ekos Corporation | Catheter with multiple ultrasound radiating members |
US10182833B2 (en) * | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
ES2538110T3 (en) * | 2007-01-08 | 2015-06-17 | Ekos Corporation | Power parameters for ultrasonic catheter |
EP2170181B1 (en) | 2007-06-22 | 2014-04-16 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
WO2009020994A2 (en) * | 2007-08-06 | 2009-02-12 | Doheny Eye Institute | Ultrasound and microbubbles in ocular diagnostics and therapies |
US20100036263A1 (en) * | 2008-08-07 | 2010-02-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US20090163856A1 (en) * | 2007-12-19 | 2009-06-25 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Treatment indications informed by a prior implant information |
US20090292214A1 (en) * | 2008-05-22 | 2009-11-26 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
WO2009105616A2 (en) * | 2008-02-20 | 2009-08-27 | Doheny Eye Institute | High frequency ultrasound imaging by rotational scanning of angled transducers |
WO2009117688A2 (en) * | 2008-03-21 | 2009-09-24 | The Board Of Trustees Of The University Of Arkansas | Methods for producing microbubbles |
WO2011003031A1 (en) * | 2009-07-03 | 2011-01-06 | Ekos Corporation | Power parameters for ultrasonic catheter |
US9061131B2 (en) | 2009-08-17 | 2015-06-23 | Histosonics, Inc. | Disposable acoustic coupling medium container |
JP5726191B2 (en) | 2009-08-26 | 2015-05-27 | リージェンツ オブ ザ ユニバーシティー オブ ミシガン | Apparatus and method using control of bubble turbidity cavitation phenomenon during fracture of ureteral stones |
JP5863654B2 (en) | 2009-08-26 | 2016-02-16 | リージェンツ オブ ザ ユニバーシティー オブ ミシガン | Micromanipulator control arm for therapeutic and image processing ultrasonic transducers |
US8539813B2 (en) | 2009-09-22 | 2013-09-24 | The Regents Of The University Of Michigan | Gel phantoms for testing cavitational ultrasound (histotripsy) transducers |
US9375223B2 (en) | 2009-10-06 | 2016-06-28 | Cardioprolific Inc. | Methods and devices for endovascular therapy |
US8740835B2 (en) | 2010-02-17 | 2014-06-03 | Ekos Corporation | Treatment of vascular occlusions using ultrasonic energy and microbubbles |
JP6291253B2 (en) | 2010-08-27 | 2018-03-14 | イーコス・コーポレイシヨン | Ultrasound catheter |
US11458290B2 (en) | 2011-05-11 | 2022-10-04 | Ekos Corporation | Ultrasound system |
US9144694B2 (en) | 2011-08-10 | 2015-09-29 | The Regents Of The University Of Michigan | Lesion generation through bone using histotripsy therapy without aberration correction |
US9049783B2 (en) | 2012-04-13 | 2015-06-02 | Histosonics, Inc. | Systems and methods for obtaining large creepage isolation on printed circuit boards |
EP2844343B1 (en) | 2012-04-30 | 2018-11-21 | The Regents Of The University Of Michigan | Ultrasound transducer manufacturing using rapid-prototyping method |
US20140100459A1 (en) | 2012-10-05 | 2014-04-10 | The Regents Of The University Of Michigan | Bubble-induced color doppler feedback during histotripsy |
US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
US20160030725A1 (en) | 2013-03-14 | 2016-02-04 | Ekos Corporation | Method and apparatus for treatment of intracranial hemorrhages |
CN105530869B (en) | 2013-07-03 | 2019-10-29 | 希斯托索尼克斯公司 | The histotripsy excitation sequence optimized is formed to bubble cloud using impact scattering |
WO2015003154A1 (en) | 2013-07-03 | 2015-01-08 | Histosonics, Inc. | Articulating arm limiter for cavitational ultrasound therapy system |
US10780298B2 (en) | 2013-08-22 | 2020-09-22 | The Regents Of The University Of Michigan | Histotripsy using very short monopolar ultrasound pulses |
US10092742B2 (en) | 2014-09-22 | 2018-10-09 | Ekos Corporation | Catheter system |
WO2016201136A1 (en) | 2015-06-10 | 2016-12-15 | Ekos Corporation | Ultrasound catheter |
WO2016210133A1 (en) | 2015-06-24 | 2016-12-29 | The Regents Of The Universtiy Of Michigan | Histotripsy therapy systems and methods for the treatment of brain tissue |
CN113286552A (en) | 2018-11-28 | 2021-08-20 | 希斯托索尼克斯公司 | Tissue Destruction System and Method |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US4718433A (en) * | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4957656A (en) * | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
US5040537A (en) * | 1987-11-24 | 1991-08-20 | Hitachi, Ltd. | Method and apparatus for the measurement and medical treatment using an ultrasonic wave |
US5215680A (en) * | 1990-07-10 | 1993-06-01 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
US5310540A (en) * | 1990-10-05 | 1994-05-10 | Sintetica Sa | Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography |
US5315998A (en) * | 1991-03-22 | 1994-05-31 | Katsuro Tachibana | Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same |
US5318014A (en) * | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5380519A (en) * | 1990-04-02 | 1995-01-10 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5385725A (en) * | 1992-07-27 | 1995-01-31 | National Science Council | Echo contrast agent for left heart opacification and method of using the same |
US5393524A (en) * | 1991-09-17 | 1995-02-28 | Sonus Pharmaceuticals Inc. | Methods for selecting and using gases as ultrasound contrast media |
US5399158A (en) * | 1990-05-31 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Army | Method of lysing thrombi |
US5401493A (en) * | 1993-03-26 | 1995-03-28 | Molecular Biosystems, Inc. | Perfluoro-1H,-1H-neopentyl containing contrast agents and method to use same |
US5413774A (en) * | 1992-01-23 | 1995-05-09 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US5509896A (en) * | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
US5512268A (en) * | 1993-03-26 | 1996-04-30 | Vivorx Pharmaceuticals, Inc. | Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof |
US5542935A (en) * | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5552133A (en) * | 1993-07-02 | 1996-09-03 | Molecular Biosystems, Inc. | Method of making encapsulated gas microspheres useful as an ultrasonic imaging agent |
US5558853A (en) * | 1993-01-25 | 1996-09-24 | Sonus Pharmaceuticals | Phase shift colloids as ultrasound contrast agents |
US5560364A (en) * | 1995-05-12 | 1996-10-01 | The Board Of Regents Of The University Of Nebraska | Suspended ultra-sound induced microbubble cavitation imaging |
US5567415A (en) * | 1993-05-12 | 1996-10-22 | The Board Of Regents Of The University Of Nebraska | Ultrasound contrast agents and methods for their manufacture and use |
US5605673A (en) * | 1993-07-30 | 1997-02-25 | Alliance Pharmaceutical Corp. | Stabilized microbubble compositions for ultrasound |
US5648098A (en) * | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US6167345A (en) * | 1996-01-17 | 2000-12-26 | Combitech Traffic Systems Ab | Method and a device for finalizing data carrying communication equipment in traffic control systems |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG54121A1 (en) * | 1991-09-17 | 1998-11-16 | Sonus Pharma Inc | Gaseous ultrasound contrast media and method for selecting gases for use as ultrasound contrast media |
WO1995007072A2 (en) * | 1993-09-09 | 1995-03-16 | Schering Aktiengesellschaft | Active principles and gas containing microparticles |
NO940711D0 (en) * | 1994-03-01 | 1994-03-01 | Nycomed Imaging As | Preparation of gas-filled microcapsules and contrast agents for diagnostic imaging |
US6113570A (en) * | 1994-09-09 | 2000-09-05 | Coraje, Inc. | Method of removing thrombosis in fistulae |
US5849727A (en) * | 1996-06-28 | 1998-12-15 | Board Of Regents Of The University Of Nebraska | Compositions and methods for altering the biodistribution of biological agents |
US5836896A (en) * | 1996-08-19 | 1998-11-17 | Angiosonics | Method of inhibiting restenosis by applying ultrasonic energy |
US5846517A (en) * | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
-
1995
- 1995-10-17 US US08/544,204 patent/US5648098A/en not_active Expired - Lifetime
-
1996
- 1996-10-16 WO PCT/US1996/016447 patent/WO1997014409A1/en active Application Filing
-
1997
- 1997-04-03 US US08/832,532 patent/US5980950A/en not_active Expired - Lifetime
-
1999
- 1999-11-08 US US09/435,050 patent/US6197345B1/en not_active Expired - Lifetime
-
2001
- 2001-01-11 US US09/758,799 patent/US20010008880A1/en not_active Abandoned
-
2005
- 2005-02-25 US US11/065,791 patent/US20050142210A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4718433A (en) * | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US5040537A (en) * | 1987-11-24 | 1991-08-20 | Hitachi, Ltd. | Method and apparatus for the measurement and medical treatment using an ultrasonic wave |
US4957656A (en) * | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
US5542935A (en) * | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5380519A (en) * | 1990-04-02 | 1995-01-10 | Bracco International B.V. | Stable microbubbles suspensions injectable into living organisms |
US5399158A (en) * | 1990-05-31 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Army | Method of lysing thrombi |
US5215680A (en) * | 1990-07-10 | 1993-06-01 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
US5310540A (en) * | 1990-10-05 | 1994-05-10 | Sintetica Sa | Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography |
US5315998A (en) * | 1991-03-22 | 1994-05-31 | Katsuro Tachibana | Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same |
US5393524A (en) * | 1991-09-17 | 1995-02-28 | Sonus Pharmaceuticals Inc. | Methods for selecting and using gases as ultrasound contrast media |
US5409688A (en) * | 1991-09-17 | 1995-04-25 | Sonus Pharmaceuticals, Inc. | Gaseous ultrasound contrast media |
US5413774A (en) * | 1992-01-23 | 1995-05-09 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US5385725A (en) * | 1992-07-27 | 1995-01-31 | National Science Council | Echo contrast agent for left heart opacification and method of using the same |
US5318014A (en) * | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US5558853A (en) * | 1993-01-25 | 1996-09-24 | Sonus Pharmaceuticals | Phase shift colloids as ultrasound contrast agents |
US5512268A (en) * | 1993-03-26 | 1996-04-30 | Vivorx Pharmaceuticals, Inc. | Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof |
US5401493A (en) * | 1993-03-26 | 1995-03-28 | Molecular Biosystems, Inc. | Perfluoro-1H,-1H-neopentyl containing contrast agents and method to use same |
US5567415A (en) * | 1993-05-12 | 1996-10-22 | The Board Of Regents Of The University Of Nebraska | Ultrasound contrast agents and methods for their manufacture and use |
US5552133A (en) * | 1993-07-02 | 1996-09-03 | Molecular Biosystems, Inc. | Method of making encapsulated gas microspheres useful as an ultrasonic imaging agent |
US5605673A (en) * | 1993-07-30 | 1997-02-25 | Alliance Pharmaceutical Corp. | Stabilized microbubble compositions for ultrasound |
US5695460A (en) * | 1994-09-09 | 1997-12-09 | Coraje, Inc. | Enhancement of ultrasound thrombolysis |
US5509896A (en) * | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
US5560364A (en) * | 1995-05-12 | 1996-10-01 | The Board Of Regents Of The University Of Nebraska | Suspended ultra-sound induced microbubble cavitation imaging |
US5648098A (en) * | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US5980950A (en) * | 1995-10-17 | 1999-11-09 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US6167345A (en) * | 1996-01-17 | 2000-12-26 | Combitech Traffic Systems Ab | Method and a device for finalizing data carrying communication equipment in traffic control systems |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080125657A1 (en) * | 2006-09-27 | 2008-05-29 | Chomas James E | Automated contrast agent augmented ultrasound therapy for thrombus treatment |
US20080097206A1 (en) * | 2006-09-27 | 2008-04-24 | Chomas James E | Enhanced contrast agent augmented ultrasound thrombus treatment |
US8403881B2 (en) | 2007-12-18 | 2013-03-26 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US9717896B2 (en) | 2007-12-18 | 2017-08-01 | Gearbox, Llc | Treatment indications informed by a priori implant information |
US8870813B2 (en) | 2007-12-18 | 2014-10-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US8409132B2 (en) | 2007-12-18 | 2013-04-02 | The Invention Science Fund I, Llc | Treatment indications informed by a priori implant information |
US8317776B2 (en) | 2007-12-18 | 2012-11-27 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US8636670B2 (en) | 2008-05-13 | 2014-01-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US7948265B1 (en) | 2009-04-02 | 2011-05-24 | Xilinx, Inc. | Circuits for replicating self-timed logic |
US7746112B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Output structure with cascaded control signals for logic blocks in integrated circuits, and methods of using the same |
US7746103B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Multi-mode circuit in a self-timed integrated circuit |
US9411554B1 (en) | 2009-04-02 | 2016-08-09 | Xilinx, Inc. | Signed multiplier circuit utilizing a uniform array of logic blocks |
US7746106B1 (en) | 2009-04-02 | 2010-06-29 | Xilinx, Inc. | Circuits for enabling feedback paths in a self-timed integrated circuit |
US20140271901A1 (en) * | 2013-03-15 | 2014-09-18 | Mark Humayun | Management of Tractional Membranes |
Also Published As
Publication number | Publication date |
---|---|
US5980950A (en) | 1999-11-09 |
US6197345B1 (en) | 2001-03-06 |
WO1997014409A1 (en) | 1997-04-24 |
US20010008880A1 (en) | 2001-07-19 |
US5648098A (en) | 1997-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6197345B1 (en) | Thrombolytic agents and methods of treatment for thrombosis | |
US5701899A (en) | Perfluorobutane ultrasound contrast agent and methods for its manufacture and use | |
US5695740A (en) | Perfluorocarbon ultrasound contrast agent comprising microbubbles containing a filmogenic protein and a saccharide | |
US5567415A (en) | Ultrasound contrast agents and methods for their manufacture and use | |
JP3735121B2 (en) | Microbubble cavitation imaging induced by interrupted ultrasound | |
Tiukinhoy-Laing et al. | Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes | |
US7115583B2 (en) | Microbubble compositions and methods for oligonucleotide delivery | |
US20160184464A1 (en) | Gas-Filled Microvesicles Composition For Contrast Imaging | |
US10357448B2 (en) | Echogenic vehicle for clinical delivery of plasminogen activator and other fibrin-binding therapeutics to thrombi | |
US5976501A (en) | Use of pressure resistant protein microspheres encapsulating gases as ultrasonic imaging agents for vascular perfusion | |
US6439236B1 (en) | Methods for inducing atrial and ventricular rhythms using ultrasound and microbubbles | |
CA2401879A1 (en) | Embolic agents visible under ultrasound | |
US6086540A (en) | Methods of ultrasound imaging using echogenically persistent contrast agents | |
US5578291A (en) | Method and composition for optimizing left ventricular videointensity in echocardiography | |
Killam et al. | Lack of bioeffects of ultrasound energy after intravenous administration of FS069 (Optison) in the anesthetized rabbit. | |
KR100649035B1 (en) | Targeted Site-Specific Drug Delivery Compositions and Methods of Use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |