US20050131486A1 - Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator - Google Patents
Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator Download PDFInfo
- Publication number
- US20050131486A1 US20050131486A1 US11/047,232 US4723205A US2005131486A1 US 20050131486 A1 US20050131486 A1 US 20050131486A1 US 4723205 A US4723205 A US 4723205A US 2005131486 A1 US2005131486 A1 US 2005131486A1
- Authority
- US
- United States
- Prior art keywords
- pulse generator
- rechargeable
- blocking
- nerve
- implantable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000903 blocking effect Effects 0.000 title claims abstract description 70
- 230000000638 stimulation Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000001515 vagal effect Effects 0.000 title claims abstract description 33
- 238000002560 therapeutic procedure Methods 0.000 title claims abstract description 26
- 208000008589 Obesity Diseases 0.000 title claims abstract description 24
- 235000020824 obesity Nutrition 0.000 title claims abstract description 24
- 208000018522 Gastrointestinal disease Diseases 0.000 title abstract description 4
- 210000005036 nerve Anatomy 0.000 claims abstract description 45
- 210000001186 vagus nerve Anatomy 0.000 claims abstract description 28
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- 208000008384 ileus Diseases 0.000 claims abstract description 7
- 206010021518 Impaired gastric emptying Diseases 0.000 claims abstract description 6
- 206010033645 Pancreatitis Diseases 0.000 claims abstract description 6
- 201000010099 disease Diseases 0.000 claims abstract description 6
- 208000001288 gastroparesis Diseases 0.000 claims abstract description 6
- 230000011514 reflex Effects 0.000 claims abstract description 6
- 230000001939 inductive effect Effects 0.000 claims abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 26
- 208000035475 disorder Diseases 0.000 claims description 12
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 11
- 210000000944 nerve tissue Anatomy 0.000 claims description 9
- 235000014632 disordered eating Nutrition 0.000 claims description 8
- 229920001296 polysiloxane Polymers 0.000 claims description 8
- 208000030814 Eating disease Diseases 0.000 claims description 7
- 208000019454 Feeding and Eating disease Diseases 0.000 claims description 7
- 229910000575 Ir alloy Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 230000007383 nerve stimulation Effects 0.000 claims description 6
- 210000000056 organ Anatomy 0.000 claims description 5
- 230000004580 weight loss Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 230000004899 motility Effects 0.000 claims description 4
- 208000024891 symptom Diseases 0.000 claims 3
- 230000002457 bidirectional effect Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 7
- 230000006855 networking Effects 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 39
- 239000000835 fiber Substances 0.000 description 31
- 238000004891 communication Methods 0.000 description 27
- 230000036982 action potential Effects 0.000 description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 230000002496 gastric effect Effects 0.000 description 14
- 239000010936 titanium Substances 0.000 description 14
- 229910052719 titanium Inorganic materials 0.000 description 14
- 210000004556 brain Anatomy 0.000 description 12
- 210000003050 axon Anatomy 0.000 description 10
- 210000002569 neuron Anatomy 0.000 description 10
- 210000002784 stomach Anatomy 0.000 description 9
- 239000012528 membrane Substances 0.000 description 8
- 210000004126 nerve fiber Anatomy 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 230000036279 refractory period Effects 0.000 description 7
- 230000001953 sensory effect Effects 0.000 description 7
- 101800001982 Cholecystokinin Proteins 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000004007 neuromodulation Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000036186 satiety Effects 0.000 description 6
- 102100025841 Cholecystokinin Human genes 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 5
- 229940107137 cholecystokinin Drugs 0.000 description 5
- 210000003792 cranial nerve Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 235000019627 satiety Nutrition 0.000 description 5
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 5
- 210000003169 central nervous system Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 230000001734 parasympathetic effect Effects 0.000 description 4
- 210000000578 peripheral nerve Anatomy 0.000 description 4
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000000644 propagated effect Effects 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 210000001679 solitary nucleus Anatomy 0.000 description 4
- 230000002889 sympathetic effect Effects 0.000 description 4
- 230000009278 visceral effect Effects 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 235000012054 meals Nutrition 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 210000001835 viscera Anatomy 0.000 description 3
- 206010000060 Abdominal distension Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 210000003626 afferent pathway Anatomy 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000002049 efferent pathway Anatomy 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004634 feeding behavior Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000003007 myelin sheath Anatomy 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- -1 polytetrafluoro-ethylene Polymers 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 230000036390 resting membrane potential Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 208000010235 Food Addiction Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000004727 amygdala Anatomy 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 235000021407 appetite control Nutrition 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 235000005686 eating Nutrition 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000003626 gastrointestinal polypeptide Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000003666 myelinated nerve fiber Anatomy 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 230000005015 neuronal process Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 210000000584 nodose ganglion Anatomy 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000001107 psychogenic effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000029556 regulation of feeding behavior Effects 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 210000001103 thalamus Anatomy 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 210000003384 transverse colon Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 210000001260 vocal cord Anatomy 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36114—Cardiac control, e.g. by vagal stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36007—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36071—Pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3627—Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
Definitions
- This invention relates generally to providing electrical pulses for blocking/stimulation therapy for medical disorders, more specifically to neuromodulation therapy comprising vagal blocking with or without vagal stimulation, for providing therapy for obesity and other gastrointestinal (GI) disorders, utilizing rechargeable implantable pulse generator.
- GI gastrointestinal
- Obesity is a significant health problem in the United States and many other developed countries. Obesity results from excessive accumulation of fat in the body. It is caused by ingestion of greater amounts of food than can be used by the body for energy. The excess food, whether fats, carbohydrates, or proteins, is then stored almost entirely as fat in the adipose tissue, to be used later for energy. Obesity is not simply the result of gluttony and a lack of willpower. Rather, each individual inherits a set of genes that control appetite and metabolism, and a genetic tendency to gain weight that may be exacerbated by environmental conditions such as food availability, level of physical activity and individual psychology and culture. Other causes of obesity also include psychogenic, neurogenic, and other metabolic related factors.
- Obesity is defined in terms of body mass index (BMI), which provides an index of the relationship between weight and height.
- BMI body mass index
- the BMI is calculated as weight (in Kilograms) divided by height (in square meters), or as weight (in pounds) times 703 divided by height (in square inches).
- the primary classification of overweight and obesity relates to the BMI and the risk of mortality.
- the prevalence of obesity in adults in the United States without coexisting morbidity increased from 12% in 1991 to 17.9% in 1998, and is still increasing.
- Treatment of obesity depends on decreasing energy input below energy expenditure. Treatment has included among other things various drugs, starvation, and even stapling or surgical resection of a portion of the stomach.
- Surgery for obesity has included gastroplasty and gastric bypass procedure. Gastroplasty which is also known as stomach stapling, involves constructing a 15- to 30 mL pouch along the lesser curvature of the stomach. A modification of this procedure involves the use of an adjustable band that wraps around the proximal stomach to create a small pouch. Both gastroplasty and gastric bypass procedures have a number of complications.
- the vagus nerve (which is the 10 th cranial nerve) plays a role in mediating afferent information from the stomach to the satiety center in the brain.
- the vagus nerve arises directly from the brain, but unlike the other cranial nerves extends well beyond the head. At its farthest extension it reaches the lower parts of the intestines. This is shown schematically in FIG. 1 , and in more detail in FIG. 2 .
- the regulation of feeding behavior involves the concentrated action of several satiety signals such as gastric distention, the release of the gastrointestinal peptide cholecystokinin (CCK), and the release of the pancreatic hormone insulin.
- the stomach wall is richly innervated by mechanosensory axons, and most of these ascend to the brain via the vagus nerve(s) 54 .
- the vagus sensory axons activate neurons in the Nucleus of the Solitary Tract in the medulla of the brain. These signals inhibit feeding behavior.
- the peptide CCK is released in response to stimulation of the intestines by certain types of food, especially fatty ones. CCK reduces frequency of eating and size of meals. As depicted schematically in FIG. 4 , both gastric distension and CCK act synergistically to inhibit feeding behavior.
- pulsed electrical neuromodulation therapy for obesity and other medical conditions is obtained by providing electrical pulses to the vagus nerve(s) via an implanted lead comprising plurality of electrodes.
- the electrical pulses are provided by at least one electrode on the lead.
- vagal block with or without selective vagal stimulation may be used to provide therapy for obesity, weight loss, eating disorders, and other gastrointestinal disorders such as FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, ileus and the like.
- FGIDs gastroparesis
- gastro-esophageal reflex disease GABAD
- pancreatitis pancreatitis
- ileus ileus and the like.
- the nerve blocking methodology can also be used to provide therapy for other ailments, and to provide electric pulses for blocking of other nerves such as sympathetic nerve(s), sacral nerves, or other cranial nerves or their branches or part thereof.
- GI gastrointestinal
- stimulation of the vagus nerve(s) is adequate and is the preferred mode of providing therapy.
- stimulation and selective block is the preferred mode of therapy.
- vagal nerve(s) blocking only is the preferred mode of providing therapy.
- the method and system disclosed in this patent application can provide vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders.
- the stimulation is conducted both in the Afferent (towards the brain) and Efferent (away from the brain) direction.
- FIG. 7 by placing blocking electrodes proximal to the stimulating electrodes, and supplying blocking pulses, the conduction in the Afferent direction (towards the brain) can be blocked or significantly reduced.
- the blocking pulses may be 500 Hz or other frequency, as described later in this disclosure. This is useful for certain GI disorders, for example ileus and the like.
- the blocking electrodes may be placed distal to the stimulating electrodes. If the stimulator provides blocking pulses to the blocking electrode, then the vagus nerve(s) impulses in the Efferent direction are either blocked or are significantly reduced. As the vagus nerves are involved in pancreatitus, the down-regulating of vagal activity can be used to treat pancreatitus and the like.
- the different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C.
- the vagus nerve for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one.
- the diameter of individual fibers vary substantially, as is also shown schematically in FIG. 12 .
- the largest nerve fibers are approximately 20 ⁇ m in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 ⁇ m in diameter and are unmyelinated.
- the diameters of group A and group B fibers include the thickness of the myelin sheaths.
- Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups.
- the smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
- Nerve cells have membranes that are composed of lipids and proteins, and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately ⁇ 90 mV relative to the outside.
- the electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments.
- the cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it, separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
- a nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid.
- the threshold stimulus intensity is the value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around ⁇ 55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon.
- This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon.
- This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
- Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by an electrical model in FIG. 13 , where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (r m ), membrane capacitance (c m ), and axonal resistance (r a ).
- an action potential When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in FIG. 14 , the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period).
- the absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na + channels have returned to their resting state by the voltage activated K + current.
- the refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies.
- FIG. 15 A single electrical impulse passing down an axon is shown schematically in FIG. 15 .
- the top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers.
- the information in the nervous system is coded by frequency of firing rather than the size of the action potential.
- myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers.
- the A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds ( ⁇ s), for example.
- the A fiber conducts slightly faster than the B fiber and has a slightly lower threshold.
- the C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 ⁇ s) and a higher amplitude for activation.
- C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
- a compound action potential is recorded by an electrode located more proximally.
- a compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities.
- the waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below, TABLE 1 Conduction Fiber Fiber Velocity Diameter Type (m/sec) ( ⁇ m) Myelination A Fibers Alpha 70-120 12-20 Yes Beta 40-70 5-12 Yes Gamma 10-50 3-6 Yes Delta 6-30 2-5 Yes B Fibers 5-15 ⁇ 3 Yes C Fibers 0.5-2.0 0.4-1.2 No
- Vagus nerve blocking and stimulation is a means of directly affecting central function, as well as, peripheral function.
- FIG. 17 shows cranial nerves have both afferent pathway 19 (inward conducting nerve fibers which convey impulses toward the brain) and efferent pathway 21 (outward conducting nerve fibers which convey impulses to an effector).
- Vagus nerve (the 10 th cranial nerve) is composed of 80% afferent sensory fibers carrying information to the brain from the head, neck, thorax, and abdomen. The sensory afferent cell bodies of the vagus reside in the nodose ganglion and relay information to the nucleus tractus solitarius (NTS).
- vagus nerve spans from the brain stem all the way to the splenic flexure of the colon. Not only is the vagus the parasympathetic nerve to the thoracic and abdominal viscera, it also the largest visceral sensory (afferent) nerve. Sensory fibers outnumber parasympathetic fibers four to one. In the medulla, the vagal fibers are connected to the nucleus of the tractus solitarius (viceral sensory), and three other nuclei. The central projections terminate largely in the nucleus of the solitary tract, which sends fibers to various regions of the brain (e.g., the thalamus, hypothalamus and amygdala).
- Prior art is generally directed to adapting cardiac pacemaker technology for nerve stimulation, where U.S. Pat. Nos. 5,263,480 (Wernicke et al.) and 5,188,104 (Wernicke et al.) are generally directed to treatment of eating disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device. There is no disclosure for vagal blocking.
- NCP implantable neurocybernetic prosthesis
- U.S. Pat. No. 5,540,730 (Terry et al.) is generally directed to treating motility disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device.
- NCP implantable neurocybernetic prosthesis
- U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery.
- an implantable pulse generator I PG
- an external stimulator for providing modulating pulses to sympathetic nerve(s), as in the applicant's disclosure.
- U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil.
- a magnetic shield is required between the externalized coil and the pulse generator case.
- the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
- U.S. Pat. No. 6,600,954 B2 (Cohen et al.) is generally directed to selectively blocking propagation of body-generated action potentials particularly useful for pain control.
- U.S. Pat. No. 6,684,105 B2 (Cohen et al.) is generally directed to an apparatus for unidirectional nerve stimulation.
- U.S. Pat. No. 6,611,715 B1 (Boveja) is generally directed to a system and method to provide therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator.
- the method and system of the current invention overcomes many shortcomings of the prior art by providing a system for neuromodulation with extended power source either in the form of rechargeable battery, or by utilizing an external stimulator in conjunction with an implanted pulse generator device, to provide therapy for obesity, motility disorders, eating disorders, inducing weight loss, FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, and ileus.
- electrical pulses are provided utilizing a rechargeable implantable pulse generator for nerve blocking, with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof for treating obesity and other GI disorders.
- the electrical pulses are provided for at least one of afferent block, efferent block, or organ block.
- the nerve blocking comprises at least one from a group consisting of: DC or anodal block, Wedenski block, and Collision block.
- a coil used in recharging said pulse generator is around the implantable pulse generator case, and in a silicone enclosure.
- the rechargeable implanted pulse generator comprises two feedthroughs.
- the rechargeable implanted pulse generator comprises only one feed-through for externalizing the recharge coil.
- the implantable rechargeable pulse generator comprises stimulus-receiver means such that, the implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide nerve blocking with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof.
- the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
- the external programmer or the external stimulator comprises networking capabilities for remote communications over a wide area network for remote interrogation and/or remote programming.
- the implanted lead comprises at least two electrode(s) which are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
- FIG. 1 is a diagram depicting vagal nerves in a patient.
- FIG. 2 is a diagram showing vagal nerve innervation to the viceral organs.
- FIG. 3 is a schematic diagram showing the relationship of meals and satiety signals.
- FIG. 4 is a schematic diagram showing impulses traveling via the vagus nerve in response to gastric distention and CCK release.
- FIG. 5 is a diagram depicting two-way communication between the gut and central nervous system (CNS).
- FIG. 6 is a diagram showing conduction of nerve impulses in both afferent and efferent direction with artificial electrical stimulation.
- FIG. 7 is a diagram depicting blocking in the afferent direction, but conducting in the efferent direction with electrical stimulation.
- FIG. 8 is a diagram depicting electrical stimulation with conduction in the afferent direction and blocking in the efferent direction.
- FIG. 9 is a diagram depicting electrical stimulation with conduction in the afferent direction and selective organ blocking in the efferent direction.
- FIG. 10 is a diagram depicting electrical stimulation with conduction in the efferent direction and selective organ blocking in the afferent direction.
- FIG. 11 is a diagram of the structure of a nerve.
- FIG. 12 is a diagram showing different types of nerve fibers.
- FIG. 13 is a schematic illustration of electrical circuit model of nerve cell membrane.
- FIG. 14 is an illustration of propagation of action potential in nerve cell membrane.
- FIG. 15 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon.
- FIG. 16 is a diagram showing recordings of compound action potentials.
- FIG. 17 is a schematic diagram of brain showing afferent and efferent pathways.
- FIG. 18 is a diagram of implanted components of stimulation/blocking system with multiple electrodes around anterior and posterior vagal nerves.
- FIG. 19A is a diagram showing the implanted components (rechargeable implantable pulse generator), and an external stimulator coupled to implanted stimulus-receiver.
- FIG. 19B is a diagram showing placement of the external (primary) coil in relation of the implanted stimulus-receiver.
- FIG. 20 is a simplified general block diagram of an implantable pulse generator.
- FIG. 21A shows energy density of different types of batteries.
- FIG. 21B shows discharge curves for different types of batteries.
- FIG. 22 shows a block diagram of an implantable stimulator which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery.
- FIG. 23 is a block diagram highlighting battery charging circuit of the implantable stimulator of FIG. 22 .
- FIG. 24 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment.
- FIG. 25 depicts externalizing recharge and telemetry coil from the titanium case.
- FIG. 26A depicts coil around the titanium case with two feedthroughs for a bipolar configuration.
- FIG. 26B depicts coil around the titanium case with one feedthrough for a unipolar configuration.
- FIG. 26C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal.
- FIG. 26D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal.
- FIGS. 27A and 27B depict recharge coil on the titanium case with a magnetic shield in-between.
- FIG. 28 shows a rechargeable implantable pulse generator in block diagram form.
- FIG. 29 depicts in block diagram form, the implanted and external components of an implanted rechargable system.
- FIG. 30 depicts the alignment function of rechargable implantable pulse generator.
- FIG. 31 is a block diagram of the external recharger.
- FIG. 32A is a schematic diagram of an implantable lead with three electrodes.
- FIG. 32B is a schematic diagram of an implantable lead with multiple electrodes.
- FIG. 32C is a schematic diagram of an implantable lead with two electrodes.
- FIG. 33 is a schematic diagram of the pulse generator and two-way communication through a server.
- FIG. 34 is a diagram depicting wireless remote interrogation and programming of the external pulse generator.
- FIG. 35 is a schematic diagram of the wireless protocol.
- FIG. 36 is a simplified block diagram of the networking interface board.
- FIGS. 37A and 37B are simplified diagrams showing communication of modified PDA/phone with an external stimulator via a cellular tower/base station.
- blocking and stimulation electrodes are implanted at the appropriate sites.
- multiple electrodes comprising both blocking and stimulation electrodes are placed in a band.
- the band comprising multiple electrodes is wrapped around the esophagus, close to the junction of esophagus and the stomach 5 (just below the diaphragm).
- the individual electrodes do not have to be in a band, and may be individual electrodes, connected to the body of the lead via insulated conductors (shown in FIG. 32B ). In such a case, the portion of the electrode contacting the nerve tissue would be exposed and the rest of the electrode being insulated with a non-conductive material such as silicone or polyurethane.
- Such electrodes are well known in the art.
- the electrodes may be implanted using laproscopic surgery or alternatively a surgical exposure may be made for implantation of the electrodes at the appropriate site to be stimulated and/or blocked.
- the terminal portion of the lead is tunneled to a subcutaneous site where the electronics package is to be implanted.
- the terminal end of the lead is connected to the rechargeable implantable pulse generator.
- the patient is surgically closed in layers, and electrical pulse delivery can begin once the patient has fully recovered from the surgery.
- stimulation without block may be provided. Additionally, stimulation with selective block may be provided. Furthermore, block alone (without stimulation) may be provided, which would be functionally equivalent to reversible vagotomy.
- Blocking can be generally divided into 3 categories: (a) DC or anodal block, (b) Wedenski Block, and (c) Collision block.
- anodal block there is a steady potential which is applied to the nerve causing a reversible and selective block.
- Wedenski Block the nerve is stimulated at a high rate causing the rapid depletion of the neurotransmitter.
- collision blocking unidirectional action potentials are generated anti-dromically.
- the maximal frequency for complete block is the reciprocal of the refractory period plus the transit time, i.e. typically less than a few hundred hertz. The use of any of these blocking techniques can be applied for the practice of this invention, and all are considered within the scope of this invention.
- FIGS. 19A and 19B depict the implantable components of the system.
- a rechargeable implantable pulse generator 391 R is connected to the lead 40 for delivering pulses via multiple electrodes in contact with nerve tissue.
- the selective blocking and/or stimulation to the vagal nerve tissue 54 can be performed by “pre-determined” programs stored in the memory, or by “customized” programs where the electrical parameters are selectively programmed for specific therapy to the individual patient.
- the electrical parameters which can be individually programmed include variables such as pulse amplitude, pulse width, frequency of stimulation, type of pulse (e.g. blocking pulses may be sinusoidal), stimulation on-time, and stimulation off-time.
- the parameters in Table 2 are the electrical signals delivered to the nerve tissue via the two stimulation electrodes 61 , 62 (or blocking electrodes) at the nerve tissue 54 .
- FIG. 20 Shown in conjunction with FIG. 20 , is an overall schematic of a general implantable pulse generator system to deliver electrical pulses for modulating the vagus nerve(s) (selective stimulation and/or blocking) and providing therapy.
- the implantable pulse generator unit 391 is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can.
- the logic & control unit 398 provides the proper timing for the output circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via a lead 40 . Timing is provided by oscillator 393 .
- the pair of electrodes to which the stimulation energy is delivered is switchable.
- the implantable pulse generator (IPG) 391 Programming of the implantable pulse generator (IPG) 391 is done via an external programmer 85 . Once programmed via an external programmer 85 , the implanted pulse generator 391 provides appropriate electrical blocking and/or stimulation pulses to the vagal nerve(s) 54 via the blocking/stimulating electrodes 61 , 62 , 63 .
- FIG. 21A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction with FIG. 21B , which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production.
- implantable pulse generators For preferred method of the current invention, two embodiments of implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
- the implanted stimulator comprises a stimulus-receiver module and a pulse generator module.
- this embodiment provides an ideal power source, since the power source can be an external stimulator in conjunction with an implanted stimulus-receiver, or the power source can be from the implanted rechargable battery 740 .
- Shown in conjunction with FIG. 22 is a simplified overall block diagram of this embodiment.
- a coil 48 C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil.
- the coil 48 C may be externalized at the header portion 79 C of the implanted device, and may be wrapped around the titanium case, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79 C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield.
- the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internal rechargeable battery 740 or an external power source.
- the external device serves as a source of energy, and as a programmer that sends telemetry to the IPG.
- the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46 C.
- the telemetry is passed through coupling capacitor 727 to the IPG's telemetry circuit 742 .
- the stimulus-receiver portion will receive the energy coupled to the implanted coil 48 C and, using the power conditioning circuit 726 , rectify it to produce DC, filter and regulate the DC, and couple it to the IPG's voltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implanted battery 740 .
- the system provides a power sense circuit 728 that senses the presence of external power communicated with the power control 730 , when adequate and stable power is available from an external source.
- the power control circuit controls a switch 736 that selects either implanted rechargeable battery power 740 or conditioned external power from 726 .
- the logic and control section 732 and memory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for the telemetry circuit 742 and power control 730 , this section controls the output circuit 734 that generates the output pulses.
- this embodiment of the invention is practiced with a rechargeable battery 740 .
- This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later.
- Capacitor C 1 ( 729 ) makes the combination of C 1 and L 1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46 C is inductively transferred to the implanted unit via the secondary coil 48 C.
- the AC signal is rectified to DC via diode 731 , and filtered via capacitor 733 .
- a regulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage.
- the output capacitor C 4 ( 737 ), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction with FIGS. 23 and 24 , a capacitor C 3 ( 727 ) couples signals for forward and back telemetry.
- existing implantable pulse generators can be modified to incorporate rechargeable batteries.
- the coil is externalized from the titanium case 57 .
- the RF pulses transmitted via coil 46 and received via subcutaneous coil 48 A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge the battery 694 / 740 in the implanted pulse generator.
- the coil 48 may be externalized at the header portion 79 C of the implanted device, and may be wrapped around the titanium case, as shown in FIGS. 26A and 26B .
- Shown in FIG. 26A is a bipolar configuration which requires two feedthroughs 76 , 77 .
- FIG. 26A Shown in FIG. 26A is a bipolar configuration which requires two feedthroughs 76 , 77 .
- 26B unipolar configuration may also be used which requires only one feedthrough 75 .
- the other end is electronically connected to the case.
- the coil is encased in the same material as the header 79 .
- the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations.
- the coil may be positioned on the titanium case as shown in conjunction with FIGS. 27A and 27B .
- FIG. 27A shows a diagram of the finished implantable stimulator 391 R of one embodiment.
- FIG. 27B shows the pulse generator with some of the components used in assembly in an exploded view. These components include a coil cover 13 , the secondary coil 48 and associated components, a magnetic shield 9 , and a coil assembly carrier 11 .
- the coil assembly carrier 11 has at least one positioning detail 80 located between the coil assembly and the feed through for positioning the electrical connection. The positioning detail 80 secures the electrical connection in this embodiment.
- FIG. 28 A schematic diagram of the implanted pulse generator (IPG 391 R), with re-chargeable battery 694 of one preferred embodiment of this invention, is shown in conjunction with FIG. 28 .
- the IPG 391 R includes logic and control circuitry 673 connected to memory circuitry 691 .
- the operating program and stimulation parameters are typically stored within the memory 691 via forward telemetry.
- Blocking/stimulation pulses are provided to the nerve tissue 54 via output circuitry 677 controlled by the microcontroller.
- the operating power for the IPG 391 R is derived from a rechargeable power source 694 .
- the rechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implanted coil 48 B underneath the skin 60 .
- the rechargeable battery 694 may be recharged repeatedly as needed. Additionally, the IPG 391 R is able to monitor and telemeter the status of its rechargeable battery 691 each time a communication link is established with the external programmer 85 .
- Much of the circuitry included within the IPG 391 R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of the IPG 391 R to be quite small, and readily housed within a suitable hermetically-sealed case.
- the IPG case is preferably made from titanium and is shaped in a rounded case.
- the recharging system uses a portable external charger to couple energy into the power source of the IPG 391 R.
- the DC-to-AC conversion circuitry 696 of the recharger receives energy from a battery 672 in the recharger.
- a charger base station 680 and conventional AC power line may also be used.
- the AC signals amplified via power amplifier 674 are inductively coupled between an external coil 46 B and an implanted coil 48 B located subcutaneously with the implanted pulse generator (IPG) 391 R.
- the AC signal received via implanted coil 48 B is rectified 686 to a DC signal which is used for recharging the rechargable battery 694 of the IPG, through a charge controller IC 682 .
- Additional circuitry within the IPG 391 R includes, battery protection IC 688 which controls a FET switch 690 to make sure that the rechargable battery 694 is charged at the proper rate, and is not overcharged.
- the battery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implanted rechargable battery 694 to ensure safe operation.
- the battery protection IC 688 opens charge enabling FET switches 690 , and prevents further charging.
- a fuse 692 acts as an additional safeguard, and disconnects the battery 694 if the battery charging current exceeds a safe level.
- charge completion detection is achieved by a back-telemetry transmitter 684 , which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through a back telemetry receiver 676 , either an audible alarm is generated or a LED is turned on.
- FIG. 30 A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with FIG. 30 .
- a switch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging and protection circuitry 698 .
- the energy induced in implanted coil 48 B passes through the switch rectifier 686 and charging and protection circuitry 698 to the implanted rechargable battery 694 .
- the charging and protection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging and protection circuitry 698 triggers a control signal.
- This control signal causes the switch rectifier 686 to switch to half-wave rectifier operation.
- the voltage sensed by voltage detector 702 causes the alignment indicator 706 to be activated.
- This indicator 706 may be an audible sound or a flashing LED type of indicator.
- the indicator 706 may similarly be used as a misalignment indicator.
- the voltage V s sensed by voltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when the coils 46 B and 48 B become misaligned, then less than a maximum energy transfer occurs, and the voltage V s sensed by detection circuit 704 increases significantly. If the voltage V s reaches a predetermined level, alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing V s to decrease below the predetermined threshold level, the alignment indicator 706 is turned off.
- the elements of the external recharger are shown as a block diagram in conjunction with FIG. 31 .
- the charger base station 680 receives its energy from a standard power outlet 714 , which is then converted to 5 volts DC by a AC-to-DC transformer 712 .
- the rechargable battery 672 of the recharger is fully recharged in a few hours and is able to recharge the battery 694 of the IPG 391 R. If the battery 672 of the external recharger falls below a prescribed limit of 2.5 volt DC, the battery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process.
- a battery protection circuit 718 monitors the voltage condition, and disconnects the battery 672 through one of the FET switches 716 , 720 if a fault occurs until a normal condition returns.
- a fuse 724 will disconnect the battery 672 should the charging or discharging current exceed a prescribed amount.
- the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead.
- This figure depicts a lead with tripolar electrodes 62 , 61 , 63 for stimulation and/or blocking.
- FIG. 32B shows a lead with multiple pairs of electrodes ( 63 , 62 , 61 ). Different electrodes or electrode pairs are used for blocking or for stimulation, as directed by logic and control unit 673 of rechargeable implantable pulse generator 691 R.
- An alternative embodiment with a pair of electrodes 61 , 62 is also shown in FIG. 32C .
- the lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means.
- the lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane.
- the electrodes 61 , 62 , 63 for stimulating/blocking the vagus nerve 54 may either wrap around the nerve or may be adapted to be in contact with tissue to be blocked/stimulated. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride.
- the conductor connecting the terminal to the electrodes 61 , 62 is made of an alloy of nickel-cobalt.
- the implanted lead design variables are also summarized in table four below.
- coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
- the external stimulator 42 and/or programmer 85 may comprise two-way wireless communication capabilities with a remote server, using a communication protocol such as the wireless application protocol (WAP).
- WAP wireless application protocol
- the purpose of the telemetry module is to enable the physician to remotely, via the wireless medium change the programs, activate, or disengage programs. Additionally, schedules of therapy programs, can be remotely transmitted and verified.
- the physician is thus able to remotely control the stimulation therapy.
- FIG. 34 is a simplified schematic showing the communication aspects between the external stimulator 42 and or programmer 85 , and the remote hand-held computer.
- a desktop or laptop computer can be a server 130 which is situated remotely, perhaps at a health-care provider's facility or a hospital. The data can be viewed at this facility or reviewed remotely by medical personnel on a wireless internet supported hand-held device 140 , which could be a personal data assistant (PDA), for example, a “palm-pilot” from PALM corp. (Santa Clara, Calif.), a “Visor” from Handspring Corp. (Mountain view, CA) or on a personal computer (PC) available from numerous vendors or a cell phone or a handheld device being a combination thereof.
- PDA personal data assistant
- the physician or appropriate medical personnel is able to interrogate the external stimulator 42 device and know what the device is currently programmed to, as well as, get a graphical display of the pulse train.
- the wireless communication with the remote server 130 and hand-held device (wireless internet supported) 140 can be achieved in all geographical locations within and outside the United States (US) that provides cell phone voice and data communication service.
- the pulse generation parameter data can also be viewed on the handheld devices 140 .
- WAP Wireless Application Protocol
- WAP is a set of communication protocols standardizing Internet access for wireless devices. Previously, manufacturers used different technologies to get Internet on hand-held devices. With WAP, devices and services inter-operate. WAP promotes convergence of wireless data and the Internet.
- the WAP Layers are Wireless Application Environment (WAE), Wireless Session Layer (WSL), Wireless Transport Layer Security (WTLS) and Wireless Transport Layer (WTP).
- WAE Wireless Application Environment
- WSL Wireless Session Layer
- WTLS Wireless Transport Layer Security
- WTP Wireless Transport Layer
- the WAP programming model which is heavily based on the existing Internet programming model, is shown schematically in FIG. 35 .
- Introducing a gateway function provides a mechanism for optimizing and extending this model to match the characteristics of the wireless environment. Over-the-air traffic is minimized by binary encoding/decoding of Web pages and readapting the Internet Protocol stack to accommodate the unique characteristics of a wireless medium such as call drops. Such features are facilitated with WAP.
- WML Wireless Mark-up Language
- a service constitutes a number of cards collected in a deck.
- a card can be displayed on a small screen.
- WML supported Web pages reside on traditional Web servers.
- WML Script which is a scripting language, enables application modules or applets to be dynamically transmitted to the client device and allows the user interaction with these applets.
- Microbrowser which is a lightweight application resident on the wireless terminal that controls the user interface and interprets the WML/WMLScript content.
- a lightweight protocol stack 402 which minimizes bandwidth requirements, guaranteeing that a broad range of wireless networks can run WAP applications.
- the protocol stack of WAP can comprise a set of protocols for the transport (WTP), session (WSP), and security (WTLS) layers.
- WTP transport
- WSP session
- WTLS security
- WSP is binary encoded and able to support header caching, thereby economizing on bandwidth requirements.
- WSP also compensates for high latency by allowing requests and responses to be handles asynchronously, sending before receiving the response to an earlier request. For lost data segments, perhaps due to fading or lack of coverage, WTP only retransmits lost segments using selective retransmission, thereby compensating for a less stable connection in wireless.
- the above mentioned features are industry standards adopted for wireless applications, and well known to those skilled in the art.
- WAP has the following advantages, 1) WAP protocol uses less than one-half the number of packets that the standard HTTP or TCP/IP Internet stack uses to deliver the same content. 2) Addressing the limited resources of the terminal, the browser, and the lightweight protocol stack are designed to make small claims on CPU and ROM. 3) Binary encoding of WML and SMLScript helps keep the RAM as small as possible. And, 4) Keeping the bearer utilization low takes account of the limited battery power of the terminal.
- the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page.
- the web page is managed with adequate security and password protection.
- the physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
- the physician is also able to set up long-term schedules of stimulation therapy for their patient population, through wireless communication with the server.
- the server in turn communicates these programs to the neurostimulator.
- Each schedule is securely maintained on the server, and is editable by the physician and can get uploaded to the patient's stimulator device at a scheduled time.
- therapy can be customized for each individual patient.
- Each device issued to a patient has a unique identification key in order to guarantee secure communication between the wireless server 130 and stimulator device 42 .
- the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page.
- the physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
- the external stimulator 42 and/or the programmer 85 may also be networked to a central collaboration computer 286 as well as other devices such as a remote computer 294 , PDA 140 , phone 141 , physician computer 143 .
- the interface unit 292 in this embodiment communicates with the central collaborative network 290 via land-lines such as cable modem or wirelessly via the internet.
- a central computer 286 which has sufficient computing power and storage capability to collect and process large amounts of data, contains information regarding device history and serial number, and is in communication with the network 290 .
- Communication over collaboration network 290 may be effected by way of a TCP/IP connection, particularly one using the internet, as well as a PSTN, DSL, cable modem, LAN, WAN or a direct dial-up connection.
- interface unit shown in block 292 The standard components of interface unit shown in block 292 are processor 305 , storage 310 , memory 308 , transmitter/receiver 306 , and a communication device such as network interface card or modem 312 .
- these components are embedded in the external stimulator 42 and can also be embedded in the programmer 85 . These can be connected to the network 290 through appropriate security measures (Firewall) 293 .
- remote computer 294 Another type of remote unit that may be accessed via central collaborative network 290 is remote computer 294 .
- This remote computer 294 may be used by an appropriate attending physician to instruct or interact with interface unit 292 , for example, instructing interface unit 292 to send instruction downloaded from central computer 286 to remote implanted unit.
- the physician's remote communication's module is a Modified PDA/Phone 140 in this embodiment.
- the Modified PDA/Phone 140 is a microprocessor based device as shown in a simplified block diagram in FIGS. 37A and 37B .
- the PDA/Phone 140 is configured to accept PCM/CIA cards specially configured to fulfill the role of communication module 292 of the present invention.
- the Modified PDA/Phone 140 may operate under any of the useful software including Microsoft Window's based, Linux, Palm OS, Java OS, SYMBIAN, or the like.
- the telemetry module 362 comprises an RF telemetry antenna 142 coupled to a telemetry transceiver and antenna driver circuit board which includes a telemetry transmitter and telemetry receiver.
- the telemetry transmitter and receiver are coupled to control circuitry and registers, operated under the control of microprocessor 364 .
- a telemetry antenna 142 is coupled to a telemetry transceiver comprising RF telemetry transmitter and receiver circuit. This circuit is coupled to control circuitry and registers operated under the control of microcomputer circuit.
- the communication and data exchange between Modified PDA/Phone 140 and external stimulator 42 operates on commercially available frequency bands.
- the 2.4-to-2.4853 GHz bands or 5.15 and 5.825 GHz are the two unlicensed areas of the spectrum, and set aside for industrial, scientific, and medical (ISM) uses.
- ISM industrial, scientific, and medical
- the telecommunications technology especially the wireless internet technology, which this invention utilizes in one embodiment, is constantly improving and evolving at a rapid pace, due to advances in RF and chip technology as well as software development. Therefore, one of the intents of this invention is to utilize “state of the art” technology available for data communication between Modified PDA/Phone 140 and external stimulator 42 .
- the intent of this invention is to use 3G technology for wireless communication and data exchange, even though in some cases 2.5G is being used currently.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Neurosurgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Hospice & Palliative Care (AREA)
- Pain & Pain Management (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Gastroenterology & Hepatology (AREA)
- Electrotherapy Devices (AREA)
Abstract
Method and system to provide therapy for obesity and gastrointestinal disorders such as FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis and ileus comprises vagal blocking and/or vagal stimulation, utilizing implanted and external components. Vagal blocking may be in the afferent or efferent direction, and may be with or without selective stimulation. Blocking may be provided by one of a number of different electrical blocking techniques. The implantable components are a lead and an implantable pulse generator (IPG), comprising re-chargeable lithium-ion or lithium-ion polymer battery. The external components are a programmer and an external recharger. In one embodiment, the implanted pulse generator may also comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein. The implanted system comprises a lead with two or more electrodes, for vagus nerve(s) modulation with selective stimulation and/or blocking. In another embodiment, the external stimulator and/or programmer may comprise an optional telemetry unit. The addition of the telemetry unit to the external stimulator and/or programmer provides the ability to remotely interrogate and change stimulation programs over a wide area network, as well as other networking capabilities.
Description
- This application is a continuation of application Ser. No. 11/035,374 filed Jan. 13, 2005, entitled “Method and system for providing electrical pulses for neuromodulation of vagus nerve(s) using rechargeable implanted pulse generator”, which is a continuation of application Ser. No. 10/841,995 filed May 8, 2004, which is a continuation of application Ser. No. 10/196,533 filed Jul. 16, 2002, which is a continuation of application Ser. No. 10/142,298 filed on May 9, 2002. The prior applications being incorporated herein in entirety by reference, and priority is claimed from these applications.
- This invention relates generally to providing electrical pulses for blocking/stimulation therapy for medical disorders, more specifically to neuromodulation therapy comprising vagal blocking with or without vagal stimulation, for providing therapy for obesity and other gastrointestinal (GI) disorders, utilizing rechargeable implantable pulse generator.
- Obesity is a significant health problem in the United States and many other developed countries. Obesity results from excessive accumulation of fat in the body. It is caused by ingestion of greater amounts of food than can be used by the body for energy. The excess food, whether fats, carbohydrates, or proteins, is then stored almost entirely as fat in the adipose tissue, to be used later for energy. Obesity is not simply the result of gluttony and a lack of willpower. Rather, each individual inherits a set of genes that control appetite and metabolism, and a genetic tendency to gain weight that may be exacerbated by environmental conditions such as food availability, level of physical activity and individual psychology and culture. Other causes of obesity also include psychogenic, neurogenic, and other metabolic related factors.
- Obesity is defined in terms of body mass index (BMI), which provides an index of the relationship between weight and height. The BMI is calculated as weight (in Kilograms) divided by height (in square meters), or as weight (in pounds) times 703 divided by height (in square inches). The primary classification of overweight and obesity relates to the BMI and the risk of mortality. The prevalence of obesity in adults in the United States without coexisting morbidity increased from 12% in 1991 to 17.9% in 1998, and is still increasing.
- Treatment of obesity depends on decreasing energy input below energy expenditure. Treatment has included among other things various drugs, starvation, and even stapling or surgical resection of a portion of the stomach. Surgery for obesity has included gastroplasty and gastric bypass procedure. Gastroplasty which is also known as stomach stapling, involves constructing a 15- to 30 mL pouch along the lesser curvature of the stomach. A modification of this procedure involves the use of an adjustable band that wraps around the proximal stomach to create a small pouch. Both gastroplasty and gastric bypass procedures have a number of complications.
- The vagus nerve (which is the 10th cranial nerve) plays a role in mediating afferent information from the stomach to the satiety center in the brain. The vagus nerve arises directly from the brain, but unlike the other cranial nerves extends well beyond the head. At its farthest extension it reaches the lower parts of the intestines. This is shown schematically in
FIG. 1 , and in more detail inFIG. 2 . - In 1988 it was reported in the American Journal of Physiology, that the afferent vagal fibers from the stomach wall increased their firing rate when the stomach was filled. One way to look at this regulatory process is to imagine that the drive to eat, which may vary rather slowly with the rise and fall of hormone Leptin, is inhibited by satiety signals that occur when we eat and begin the digestive process (i.e., the prandial period). As shown schematically in
FIG. 3 , these satiety signals both terminate the meal and inhibit feeding for some time afterward. During this postabsorptive (fasting) period, the satiety signals slowly dissipate until the drive to eat again takes over. - The regulation of feeding behavior involves the concentrated action of several satiety signals such as gastric distention, the release of the gastrointestinal peptide cholecystokinin (CCK), and the release of the pancreatic hormone insulin. The stomach wall is richly innervated by mechanosensory axons, and most of these ascend to the brain via the vagus nerve(s) 54. The vagus sensory axons activate neurons in the Nucleus of the Solitary Tract in the medulla of the brain. These signals inhibit feeding behavior. In a related mechanism, the peptide CCK is released in response to stimulation of the intestines by certain types of food, especially fatty ones. CCK reduces frequency of eating and size of meals. As depicted schematically in
FIG. 4 , both gastric distension and CCK act synergistically to inhibit feeding behavior. - In commonly assigned disclosures, application Ser. No. 10/079,21 now U.S. Pat. ______, and U.S. Pat. No. 6,611,715, pulsed electrical neuromodulation therapy for obesity and other medical conditions is obtained by providing electrical pulses to the vagus nerve(s) via an implanted lead comprising plurality of electrodes. In those disclosures, the electrical pulses are provided by at least one electrode on the lead. This patent application is directed to system and method for neuromodulation of vagal activity, wherein vagal block with or without selective vagal stimulation may be used to provide therapy for obesity, weight loss, eating disorders, and other gastrointestinal disorders such as FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, ileus and the like. Even though the invention is disclosed in the context of vagal blocking, the nerve blocking methodology can also be used to provide therapy for other ailments, and to provide electric pulses for blocking of other nerves such as sympathetic nerve(s), sacral nerves, or other cranial nerves or their branches or part thereof.
- The gastrointestinal tract and central nervous system (CNS) engage each other in two-way communication. This has both parasympathetic and sympathetic components. Of particular interest in this disclosure is the parasympathetic component or the vagal pathway, which is shown in conjunction with
FIG. 5 . - In some gastrointestinal (GI) disorders, to provide therapy, stimulation of the vagus nerve(s) is adequate and is the preferred mode of providing therapy. For other GI disorders, to provide therapy, stimulation and selective block is the preferred mode of therapy. For some GI disorders, vagal nerve(s) blocking only is the preferred mode of providing therapy. Advantageously, the method and system disclosed in this patent application can provide vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders.
- As is shown in conjunction with
FIG. 6 when vagal pathway is stimulated, the stimulation is conducted both in the Afferent (towards the brain) and Efferent (away from the brain) direction. Shown in conjunction withFIG. 7 , by placing blocking electrodes proximal to the stimulating electrodes, and supplying blocking pulses, the conduction in the Afferent direction (towards the brain) can be blocked or significantly reduced. The blocking pulses may be 500 Hz or other frequency, as described later in this disclosure. This is useful for certain GI disorders, for example ileus and the like. - Shown in conjunction with
FIG. 8 , the blocking electrodes may be placed distal to the stimulating electrodes. If the stimulator provides blocking pulses to the blocking electrode, then the vagus nerve(s) impulses in the Efferent direction are either blocked or are significantly reduced. As the vagus nerves are involved in pancreatitus, the down-regulating of vagal activity can be used to treat pancreatitus and the like. - It will be clear to one of ordinary skill in the art, that by selectively placing the blocking electrode, selective block can be obtained when the stimulator applies blocking pulses to the blocking electrode. Selective Efferent block is depicted in conjunction with
FIG. 9 . As shown in the figure, because of the selective placement of blocking electrode(s), only the impulses tovisceral organ 2 are blocked or significantly reduced, and impulses to visceral organ-1 and visceral organ-2 continue unimpeded. Selective Afferent block can also be achieved, and is depicted in conjunction withFIG. 10 . Here the nerve impulses to visceral organ and visceral organ-5 are selectively blocked. An example would be where Afferent vagal pulses are desired, but impulses to the heart and vocal cords would be blocked. Thus, advantageously providing the desired therapy without the side effects of voice or cardiac complications such as bradycardia. Similarly other side effects can be alleviated or minimized with nerve blocking. - Most nerves in the human body are composed of thousands of fibers of different sizes. This is shown schematically in
FIG. 11 . The different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C. The vagus nerve, for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one. - In a cross section of peripheral nerve it is seen that the diameter of individual fibers vary substantially, as is also shown schematically in
FIG. 12 . The largest nerve fibers are approximately 20 μm in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 μm in diameter and are unmyelinated. - The diameters of group A and group B fibers include the thickness of the myelin sheaths. Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups. The smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
- Nerve cells have membranes that are composed of lipids and proteins, and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately −90 mV relative to the outside. The electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments. The cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it, separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
- A nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid. The threshold stimulus intensity is the value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around −55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon. This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon. This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
- To stimulate an excitable cell, it is only necessary to reduce the transmembrane potential by a critical amount. When the membrane potential is reduced by an amount ΔV, reaching the critical or threshold potential. When the threshold potential is reached, a regenerative process takes place: sodium ions enter the cell, potassium ions exit the cell, and the transmembrane potential falls to zero (depolarizes), reverses slightly, and then recovers or repolarizes to the resting membrane potential (RMP). For a stimulus to be effective in producing an excitation, it must have an abrupt onset, be intense enough, and last long enough.
- Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by an electrical model in
FIG. 13 , where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (rm), membrane capacitance (cm), and axonal resistance (ra). - When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in
FIG. 14 , the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period). The absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na+ channels have returned to their resting state by the voltage activated K+ current. The refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies. - A single electrical impulse passing down an axon is shown schematically in
FIG. 15 . The top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers. - The information in the nervous system is coded by frequency of firing rather than the size of the action potential. In terms of electrical conduction, myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers. The A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds (μs), for example. The A fiber conducts slightly faster than the B fiber and has a slightly lower threshold. The C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 μs) and a higher amplitude for activation. Because of their very slow conduction, C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
- As shown in
FIG. 16 , when the distal part of a nerve is electrically stimulated, a compound action potential is recorded by an electrode located more proximally. A compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities. The waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below,TABLE 1 Conduction Fiber Fiber Velocity Diameter Type (m/sec) (μm) Myelination A Fibers Alpha 70-120 12-20 Yes Beta 40-70 5-12 Yes Gamma 10-50 3-6 Yes Delta 6-30 2-5 Yes B Fibers 5-15 <3 Yes C Fibers 0.5-2.0 0.4-1.2 No - Vagus nerve blocking and stimulation, performed by the system and method of the current patent application, is a means of directly affecting central function, as well as, peripheral function.
FIG. 17 shows cranial nerves have both afferent pathway 19 (inward conducting nerve fibers which convey impulses toward the brain) and efferent pathway 21 (outward conducting nerve fibers which convey impulses to an effector). Vagus nerve (the 10th cranial nerve) is composed of 80% afferent sensory fibers carrying information to the brain from the head, neck, thorax, and abdomen. The sensory afferent cell bodies of the vagus reside in the nodose ganglion and relay information to the nucleus tractus solitarius (NTS). - The vagus nerve spans from the brain stem all the way to the splenic flexure of the colon. Not only is the vagus the parasympathetic nerve to the thoracic and abdominal viscera, it also the largest visceral sensory (afferent) nerve. Sensory fibers outnumber parasympathetic fibers four to one. In the medulla, the vagal fibers are connected to the nucleus of the tractus solitarius (viceral sensory), and three other nuclei. The central projections terminate largely in the nucleus of the solitary tract, which sends fibers to various regions of the brain (e.g., the thalamus, hypothalamus and amygdala).
- This application is also related to co-pending applications entitled “METHOD AND SYSTEM FOR PROVIDING ELECTRICAL PULSES TO GASTRIC WALL OF A PATIENT WITH RECHARGEABLE IMPLANTABLE PULSE GENERATOR FOR TREATING OR CONTROLLING OBESITY AND EATING DISORDERS” and “METHOD AND SYSTEM TO PROVIDE THERAPY FOR OBESITY AND OTHER MEDICAL DISORDERS, BY PROVIDING ELECTRICAL PULSES TO SYMPATHETIC NERVES OR VAGAL NERVE(S) WITH RECHARGEABLE IMPLANTED PULSE GENERATOR.
- Prior art is generally directed to adapting cardiac pacemaker technology for nerve stimulation, where U.S. Pat. Nos. 5,263,480 (Wernicke et al.) and 5,188,104 (Wernicke et al.) are generally directed to treatment of eating disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device. There is no disclosure for vagal blocking.
- U.S. Pat. No. 5,540,730 (Terry et al.) is generally directed to treating motility disorders with vagus nerve stimulation using an implantable neurocybernetic prosthesis (NCP), which is a “cardiac pacemaker-like” device.
- U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery. In the Meadows '263 patent there is no disclosure or suggestion for combing a stimulus-receiver module to an implantable pulse generator (I PG) for use with an external stimulator, for providing modulating pulses to sympathetic nerve(s), as in the applicant's disclosure.
- U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil. In the Kast '077 disclosure, a magnetic shield is required between the externalized coil and the pulse generator case. In one embodiment of the applicant's disclosure, the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
- U.S. Pat. No. 6,600,954 B2 (Cohen et al.) is generally directed to selectively blocking propagation of body-generated action potentials particularly useful for pain control.
- U.S. Pat. No. 6,684,105 B2 (Cohen et al.) is generally directed to an apparatus for unidirectional nerve stimulation.
- U.S. Pat. No. 6,611,715 B1 (Boveja) is generally directed to a system and method to provide therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator.
- The method and system of the current invention overcomes many shortcomings of the prior art by providing a system for neuromodulation with extended power source either in the form of rechargeable battery, or by utilizing an external stimulator in conjunction with an implanted pulse generator device, to provide therapy for obesity, motility disorders, eating disorders, inducing weight loss, FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, and ileus.
- Accordingly, in one aspect of the invention, electrical pulses are provided utilizing a rechargeable implantable pulse generator for nerve blocking, with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof for treating obesity and other GI disorders.
- In another aspect of the invention, the electrical pulses are provided for at least one of afferent block, efferent block, or organ block.
- In another aspect of the invention, the nerve blocking comprises at least one from a group consisting of: DC or anodal block, Wedenski block, and Collision block.
- In another aspect of the invention, a coil used in recharging said pulse generator is around the implantable pulse generator case, and in a silicone enclosure.
- In another aspect of the invention, the rechargeable implanted pulse generator comprises two feedthroughs.
- In another aspect of the invention, the rechargeable implanted pulse generator comprises only one feed-through for externalizing the recharge coil.
- In another aspect of the invention, the implantable rechargeable pulse generator comprises stimulus-receiver means such that, the implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide nerve blocking with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof.
- In another aspect of the invention, the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
- In another aspect of the invention, the external programmer or the external stimulator comprises networking capabilities for remote communications over a wide area network for remote interrogation and/or remote programming.
- In yet another aspect of the invention, the implanted lead comprises at least two electrode(s) which are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
- This and other objects are provided by one or more of the embodiments described below.
- For the purpose of illustrating the invention, there are shown in accompanying drawing forms which are presently preferred, it being understood that the invention is not intended to be limited to the precise arrangement and instrumentalities shown.
-
FIG. 1 is a diagram depicting vagal nerves in a patient. -
FIG. 2 is a diagram showing vagal nerve innervation to the viceral organs. -
FIG. 3 is a schematic diagram showing the relationship of meals and satiety signals. -
FIG. 4 is a schematic diagram showing impulses traveling via the vagus nerve in response to gastric distention and CCK release. -
FIG. 5 is a diagram depicting two-way communication between the gut and central nervous system (CNS). -
FIG. 6 is a diagram showing conduction of nerve impulses in both afferent and efferent direction with artificial electrical stimulation. -
FIG. 7 is a diagram depicting blocking in the afferent direction, but conducting in the efferent direction with electrical stimulation. -
FIG. 8 is a diagram depicting electrical stimulation with conduction in the afferent direction and blocking in the efferent direction. -
FIG. 9 is a diagram depicting electrical stimulation with conduction in the afferent direction and selective organ blocking in the efferent direction. -
FIG. 10 is a diagram depicting electrical stimulation with conduction in the efferent direction and selective organ blocking in the afferent direction. -
FIG. 11 is a diagram of the structure of a nerve. -
FIG. 12 is a diagram showing different types of nerve fibers. -
FIG. 13 is a schematic illustration of electrical circuit model of nerve cell membrane. -
FIG. 14 is an illustration of propagation of action potential in nerve cell membrane. -
FIG. 15 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon. -
FIG. 16 is a diagram showing recordings of compound action potentials. -
FIG. 17 is a schematic diagram of brain showing afferent and efferent pathways. -
FIG. 18 is a diagram of implanted components of stimulation/blocking system with multiple electrodes around anterior and posterior vagal nerves. -
FIG. 19A is a diagram showing the implanted components (rechargeable implantable pulse generator), and an external stimulator coupled to implanted stimulus-receiver. -
FIG. 19B is a diagram showing placement of the external (primary) coil in relation of the implanted stimulus-receiver. -
FIG. 20 is a simplified general block diagram of an implantable pulse generator. -
FIG. 21A shows energy density of different types of batteries. -
FIG. 21B shows discharge curves for different types of batteries. -
FIG. 22 shows a block diagram of an implantable stimulator which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery. -
FIG. 23 is a block diagram highlighting battery charging circuit of the implantable stimulator ofFIG. 22 . -
FIG. 24 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment. -
FIG. 25 depicts externalizing recharge and telemetry coil from the titanium case. -
FIG. 26A depicts coil around the titanium case with two feedthroughs for a bipolar configuration. -
FIG. 26B depicts coil around the titanium case with one feedthrough for a unipolar configuration. -
FIG. 26C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal. -
FIG. 26D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal. -
FIGS. 27A and 27B depict recharge coil on the titanium case with a magnetic shield in-between. -
FIG. 28 shows a rechargeable implantable pulse generator in block diagram form. -
FIG. 29 depicts in block diagram form, the implanted and external components of an implanted rechargable system. -
FIG. 30 depicts the alignment function of rechargable implantable pulse generator. -
FIG. 31 is a block diagram of the external recharger. -
FIG. 32A is a schematic diagram of an implantable lead with three electrodes. -
FIG. 32B is a schematic diagram of an implantable lead with multiple electrodes. -
FIG. 32C is a schematic diagram of an implantable lead with two electrodes. -
FIG. 33 is a schematic diagram of the pulse generator and two-way communication through a server. -
FIG. 34 is a diagram depicting wireless remote interrogation and programming of the external pulse generator. -
FIG. 35 is a schematic diagram of the wireless protocol. -
FIG. 36 is a simplified block diagram of the networking interface board. -
FIGS. 37A and 37B are simplified diagrams showing communication of modified PDA/phone with an external stimulator via a cellular tower/base station. - To provide vagal blocking and/or vagal stimulation therapy to a patient, blocking and stimulation electrodes are implanted at the appropriate sites. In one preferred embodiment, without limitation, multiple electrodes comprising both blocking and stimulation electrodes are placed in a band. As shown in conjunction with
FIG. 18 , the band comprising multiple electrodes is wrapped around the esophagus, close to the junction of esophagus and the stomach 5 (just below the diaphragm). Alternatively, the individual electrodes do not have to be in a band, and may be individual electrodes, connected to the body of the lead via insulated conductors (shown inFIG. 32B ). In such a case, the portion of the electrode contacting the nerve tissue would be exposed and the rest of the electrode being insulated with a non-conductive material such as silicone or polyurethane. Such electrodes are well known in the art. - The electrodes may be implanted using laproscopic surgery or alternatively a surgical exposure may be made for implantation of the electrodes at the appropriate site to be stimulated and/or blocked. After placing the electrodes, the terminal portion of the lead is tunneled to a subcutaneous site where the electronics package is to be implanted. The terminal end of the lead is connected to the rechargeable implantable pulse generator. The patient is surgically closed in layers, and electrical pulse delivery can begin once the patient has fully recovered from the surgery.
- In the method and system of this invention, stimulation without block may be provided. Additionally, stimulation with selective block may be provided. Furthermore, block alone (without stimulation) may be provided, which would be functionally equivalent to reversible vagotomy.
- Blocking of nerve impulses, unidirectional blocking, and selective blocking of nerve impulses is well known in the scientific literature. Some of the general literature is listed below and is incorporated herein by reference. (a) “Generation of unidirectionally propagating action potentials using a monopolar electrode cuff”, Annals of Biomedical Engineering, volume 14, pp. 437-450, By Ira J. Ungar et al. (b) “An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials”, IEEE Transactions on Biomedical Engineering, volume BME-33, No. 6, June 1986, By James D. Sweeney, et al. (c) A spiral nerve cuff electrode for peripheral nerve stimulation, IEEE Transactions on Biomedical Engineering,
volume 35, No. 11, November 1988, By Gregory G. Naples. et al. (d) “A nerve cuff technique for selective excitation of peripheral nerve trunk regions, IEEE Transactions on Biomedical Engineering,volume 37, No. 7, July 1990, By James D. Sweeney, et al. (e) “Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli”, Science, volume 206 pp. 1311-1312, Dec. 14, 1979, By Van Den Honert et al. (f “A technique for collision block of perpheral nerve: Frequency dependence” IEEE Transactions on Biomedical Engineering, MP-12, volume 28, pp. 379-382, 1981, By Van Den Honert et al. (g) “A nerve cuff design for the selective activation and blocking of myelinated nerve fibers” Ann. Conf. of the IEEE Engineering in Medicine and Biology Soc.,volume 13, No. 2, p 906, 1991, By D. M Fitzpatrick et al. (h) “Orderly recruitment of motoneurons in an acute rabbit model”, “Ann. Conf. of the IEEE Engineering in Medicine and Biology Soc.,volume 20, No. 5, page 2564, 1998, By N. J. M. Rijkhof, et al. (i) “Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode”, IEEE Transactions on Biomedical Engineering, volume 36, No. 8, pp. 836,1989, By R. Bratta. (j) M. Devor, “Pain Networks”, Handbook of Brand Theory and Neural Networks, Ed. M. A. Arbib, MIT Press,page 698, 1998. - Blocking can be generally divided into 3 categories: (a) DC or anodal block, (b) Wedenski Block, and (c) Collision block. In anodal block there is a steady potential which is applied to the nerve causing a reversible and selective block. In Wedenski Block the nerve is stimulated at a high rate causing the rapid depletion of the neurotransmitter. In collision blocking, unidirectional action potentials are generated anti-dromically. The maximal frequency for complete block is the reciprocal of the refractory period plus the transit time, i.e. typically less than a few hundred hertz. The use of any of these blocking techniques can be applied for the practice of this invention, and all are considered within the scope of this invention.
-
FIGS. 19A and 19B depict the implantable components of the system. A rechargeableimplantable pulse generator 391R is connected to thelead 40 for delivering pulses via multiple electrodes in contact with nerve tissue. The selective blocking and/or stimulation to thevagal nerve tissue 54 can be performed by “pre-determined” programs stored in the memory, or by “customized” programs where the electrical parameters are selectively programmed for specific therapy to the individual patient. The electrical parameters which can be individually programmed, include variables such as pulse amplitude, pulse width, frequency of stimulation, type of pulse (e.g. blocking pulses may be sinusoidal), stimulation on-time, and stimulation off-time. Table two below defines the approximate range of parameters,TABLE 2 Electrical parameter range delivered to the nerve for stimulation and/or blocking PARAMER RANGE Pulse Amplitude 0.1 Volt-10 Volts Pulse width 20 μS-5 mSec. Stim. Frequency 5 Hz-200 Hz Freq. for blocking DC to 5,000 Hz On- time 5 Secs-24 hours Off- time 5 Secs-24 hours - The parameters in Table 2 are the electrical signals delivered to the nerve tissue via the two
stimulation electrodes 61,62 (or blocking electrodes) at thenerve tissue 54. - Shown in conjunction with
FIG. 20 , is an overall schematic of a general implantable pulse generator system to deliver electrical pulses for modulating the vagus nerve(s) (selective stimulation and/or blocking) and providing therapy. The implantable pulse generator unit 391 is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can. As shown in the overall block diagram, the logic &control unit 398 provides the proper timing for theoutput circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via alead 40. Timing is provided byoscillator 393. The pair of electrodes to which the stimulation energy is delivered is switchable. Programming of the implantable pulse generator (IPG) 391 is done via anexternal programmer 85. Once programmed via anexternal programmer 85, the implanted pulse generator 391 provides appropriate electrical blocking and/or stimulation pulses to the vagal nerve(s) 54 via the blocking/stimulatingelectrodes - Because of the high energy requirements for the pulses required for blocking and/or selective stimulation of
vagal nerve tissue 54, there is a real need for power sources that will provide an acceptable service life under conditions of continuous delivery of high frequency pulses.FIG. 21A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction withFIG. 21B , which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production. - For preferred method of the current invention, two embodiments of implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
- In one embodiment of this invention, the implanted stimulator comprises a stimulus-receiver module and a pulse generator module. Advantageously, this embodiment provides an ideal power source, since the power source can be an external stimulator in conjunction with an implanted stimulus-receiver, or the power source can be from the implanted
rechargable battery 740. Shown in conjunction withFIG. 22 is a simplified overall block diagram of this embodiment. Acoil 48C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil. Thecoil 48C may be externalized at the header portion 79C of the implanted device, and may be wrapped around the titanium case, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield. - In this embodiment, as disclosed in
FIG. 22 , the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internalrechargeable battery 740 or an external power source. The external device serves as a source of energy, and as a programmer that sends telemetry to the IPG. For programming, the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46C. The telemetry is passed throughcoupling capacitor 727 to the IPG'stelemetry circuit 742. For pulse delivery using external power source, the stimulus-receiver portion will receive the energy coupled to the implantedcoil 48C and, using thepower conditioning circuit 726, rectify it to produce DC, filter and regulate the DC, and couple it to the IPG'svoltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implantedbattery 740. - The system provides a
power sense circuit 728 that senses the presence of external power communicated with thepower control 730, when adequate and stable power is available from an external source. The power control circuit controls aswitch 736 that selects either implantedrechargeable battery power 740 or conditioned external power from 726. The logic andcontrol section 732 andmemory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for thetelemetry circuit 742 andpower control 730, this section controls theoutput circuit 734 that generates the output pulses. - Shown in conjunction with
FIG. 23 , this embodiment of the invention is practiced with arechargeable battery 740. This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later. - The stimulus-receiver portion of the circuitry is shown in conjunction with
FIG. 24 . Capacitor C1 (729) makes the combination of C1 and L1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46C is inductively transferred to the implanted unit via thesecondary coil 48C. The AC signal is rectified to DC via diode 731, and filtered viacapacitor 733. Aregulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage. The output capacitor C4 (737), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction withFIGS. 23 and 24 , a capacitor C3 (727) couples signals for forward and back telemetry. - In another embodiment, existing implantable pulse generators can be modified to incorporate rechargeable batteries. As shown in conjunction with
FIG. 25 , in both embodiments, the coil is externalized from thetitanium case 57. The RF pulses transmitted viacoil 46 and received viasubcutaneous coil 48A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge thebattery 694/740 in the implanted pulse generator. In one embodiment thecoil 48 may be externalized at the header portion 79C of the implanted device, and may be wrapped around the titanium case, as shown inFIGS. 26A and 26B . Shown inFIG. 26A is a bipolar configuration which requires twofeedthroughs FIG. 26B unipolar configuration may also be used which requires only onefeedthrough 75. The other end is electronically connected to the case. In both cases, the coil is encased in the same material as theheader 79. Advantageously, as shown in conjunction withFIGS. 26C and 26D , the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations. - In one embodiment, the coil may be positioned on the titanium case as shown in conjunction with
FIGS. 27A and 27B .FIG. 27A shows a diagram of the finishedimplantable stimulator 391R of one embodiment.FIG. 27B shows the pulse generator with some of the components used in assembly in an exploded view. These components include acoil cover 13, thesecondary coil 48 and associated components, amagnetic shield 9, and acoil assembly carrier 11. Thecoil assembly carrier 11 has at least onepositioning detail 80 located between the coil assembly and the feed through for positioning the electrical connection. Thepositioning detail 80 secures the electrical connection in this embodiment. - A schematic diagram of the implanted pulse generator (
IPG 391R), withre-chargeable battery 694 of one preferred embodiment of this invention, is shown in conjunction withFIG. 28 . TheIPG 391R includes logic andcontrol circuitry 673 connected tomemory circuitry 691. The operating program and stimulation parameters are typically stored within thememory 691 via forward telemetry. Blocking/stimulation pulses are provided to thenerve tissue 54 viaoutput circuitry 677 controlled by the microcontroller. - The operating power for the
IPG 391R is derived from arechargeable power source 694. Therechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implantedcoil 48B underneath theskin 60. Therechargeable battery 694 may be recharged repeatedly as needed. Additionally, theIPG 391R is able to monitor and telemeter the status of itsrechargeable battery 691 each time a communication link is established with theexternal programmer 85. - Much of the circuitry included within the
IPG 391R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of theIPG 391R to be quite small, and readily housed within a suitable hermetically-sealed case. The IPG case is preferably made from titanium and is shaped in a rounded case. - Shown in conjunction with
FIG. 29 are the recharging elements of the invention. The recharging system uses a portable external charger to couple energy into the power source of theIPG 391R. The DC-to-AC conversion circuitry 696 of the recharger receives energy from abattery 672 in the recharger. Acharger base station 680 and conventional AC power line may also be used. The AC signals amplified viapower amplifier 674 are inductively coupled between anexternal coil 46B and an implantedcoil 48B located subcutaneously with the implanted pulse generator (IPG) 391R. The AC signal received via implantedcoil 48B is rectified 686 to a DC signal which is used for recharging therechargable battery 694 of the IPG, through acharge controller IC 682. Additional circuitry within theIPG 391R includes,battery protection IC 688 which controls aFET switch 690 to make sure that therechargable battery 694 is charged at the proper rate, and is not overcharged. Thebattery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implantedrechargable battery 694 to ensure safe operation. If the battery voltage rises above a safe maximum voltage, thebattery protection IC 688 opens charge enabling FET switches 690, and prevents further charging. Afuse 692 acts as an additional safeguard, and disconnects thebattery 694 if the battery charging current exceeds a safe level. As also shown inFIG. 29 , charge completion detection is achieved by a back-telemetry transmitter 684, which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through aback telemetry receiver 676, either an audible alarm is generated or a LED is turned on. - A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with
FIG. 30 . As shown, aswitch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging andprotection circuitry 698. The energy induced in implantedcoil 48B (fromexternal coil 46B) passes through theswitch rectifier 686 and charging andprotection circuitry 698 to the implantedrechargable battery 694. As the implantedbattery 694 continues to be charged, the charging andprotection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging andprotection circuitry 698 triggers a control signal. This control signal causes theswitch rectifier 686 to switch to half-wave rectifier operation. When this change happens, the voltage sensed byvoltage detector 702 causes thealignment indicator 706 to be activated. Thisindicator 706 may be an audible sound or a flashing LED type of indicator. - The
indicator 706 may similarly be used as a misalignment indicator. In normal operation, when coils 46B (external) and 48B (implanted) are properly aligned, the voltage Vs sensed byvoltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when thecoils detection circuit 704 increases significantly. If the voltage Vs reaches a predetermined level,alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing Vs to decrease below the predetermined threshold level, thealignment indicator 706 is turned off. - The elements of the external recharger are shown as a block diagram in conjunction with
FIG. 31 . Thecharger base station 680 receives its energy from astandard power outlet 714, which is then converted to 5 volts DC by a AC-to-DC transformer 712. When the recharger is placed in acharger base station 680, therechargable battery 672 of the recharger is fully recharged in a few hours and is able to recharge thebattery 694 of theIPG 391R. If thebattery 672 of the external recharger falls below a prescribed limit of 2.5 volt DC, thebattery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process. - As also shown in
FIG. 31 , abattery protection circuit 718 monitors the voltage condition, and disconnects thebattery 672 through one of the FET switches 716, 720 if a fault occurs until a normal condition returns. Afuse 724 will disconnect thebattery 672 should the charging or discharging current exceed a prescribed amount. - Referring now to
FIG. 32A , the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead. This figure depicts a lead withtripolar electrodes FIG. 32B shows a lead with multiple pairs of electrodes (63, 62, 61). Different electrodes or electrode pairs are used for blocking or for stimulation, as directed by logic andcontrol unit 673 of rechargeable implantable pulse generator 691R. An alternative embodiment with a pair ofelectrodes FIG. 32C . The lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means. Thelead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane. Theelectrodes vagus nerve 54 may either wrap around the nerve or may be adapted to be in contact with tissue to be blocked/stimulated. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride. The conductor connecting the terminal to theelectrodes TABLE 4 Lead design variables Proximal Distal End End Conductor (connecting Lead body- proximal Lead Insulation and distal Electrode - Electrode - Terminal Materials Lead-Coating ends) Material Type Linear Polyurethane Antimicrobial Alloy of Pure Wrap-around bipolar coating Nickel- Platinum electrodes Cobalt Bifurcated Silicone Anti- Platinum- Standard Ball Inflammatory Iridium and Ring coating (Pt/Ir) Alloy electrodes Silicone with Lubricious Pt/Ir coated Steroid Polytetrafluoroethylene coating with Titanium eluting (PTFE) Nitride Carbon - Once the lead is fabricated, coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
- Shown in conjunction with
FIG. 33 , in one embodiment of the invention theexternal stimulator 42 and/orprogrammer 85 may comprise two-way wireless communication capabilities with a remote server, using a communication protocol such as the wireless application protocol (WAP). The purpose of the telemetry module is to enable the physician to remotely, via the wireless medium change the programs, activate, or disengage programs. Additionally, schedules of therapy programs, can be remotely transmitted and verified. Advantageously, the physician is thus able to remotely control the stimulation therapy. -
FIG. 34 is a simplified schematic showing the communication aspects between theexternal stimulator 42 and orprogrammer 85, and the remote hand-held computer. A desktop or laptop computer can be aserver 130 which is situated remotely, perhaps at a health-care provider's facility or a hospital. The data can be viewed at this facility or reviewed remotely by medical personnel on a wireless internet supported hand-helddevice 140, which could be a personal data assistant (PDA), for example, a “palm-pilot” from PALM corp. (Santa Clara, Calif.), a “Visor” from Handspring Corp. (Mountain view, CA) or on a personal computer (PC) available from numerous vendors or a cell phone or a handheld device being a combination thereof. The physician or appropriate medical personnel, is able to interrogate theexternal stimulator 42 device and know what the device is currently programmed to, as well as, get a graphical display of the pulse train. The wireless communication with theremote server 130 and hand-held device (wireless internet supported) 140 can be achieved in all geographical locations within and outside the United States (US) that provides cell phone voice and data communication service. The pulse generation parameter data can also be viewed on thehandheld devices 140. - The telecommunications component of this invention uses Wireless Application Protocol (WAP). WAP is a set of communication protocols standardizing Internet access for wireless devices. Previously, manufacturers used different technologies to get Internet on hand-held devices. With WAP, devices and services inter-operate. WAP promotes convergence of wireless data and the Internet. The WAP Layers are Wireless Application Environment (WAE), Wireless Session Layer (WSL), Wireless Transport Layer Security (WTLS) and Wireless Transport Layer (WTP).
- The WAP programming model, which is heavily based on the existing Internet programming model, is shown schematically in
FIG. 35 . Introducing a gateway function provides a mechanism for optimizing and extending this model to match the characteristics of the wireless environment. Over-the-air traffic is minimized by binary encoding/decoding of Web pages and readapting the Internet Protocol stack to accommodate the unique characteristics of a wireless medium such as call drops. Such features are facilitated with WAP. - The key components of the WAP technology, as shown in
FIG. 35 , includes 1) Wireless Mark-up Language (WML) 400 which incorporates the concept of cards and decks, where a card is a single unit of interaction with the user. A service constitutes a number of cards collected in a deck. A card can be displayed on a small screen. WML supported Web pages reside on traditional Web servers. 2) WML Script which is a scripting language, enables application modules or applets to be dynamically transmitted to the client device and allows the user interaction with these applets. 3) Microbrowser, which is a lightweight application resident on the wireless terminal that controls the user interface and interprets the WML/WMLScript content. 4) A lightweight protocol stack 402 which minimizes bandwidth requirements, guaranteeing that a broad range of wireless networks can run WAP applications. The protocol stack of WAP can comprise a set of protocols for the transport (WTP), session (WSP), and security (WTLS) layers. WSP is binary encoded and able to support header caching, thereby economizing on bandwidth requirements. WSP also compensates for high latency by allowing requests and responses to be handles asynchronously, sending before receiving the response to an earlier request. For lost data segments, perhaps due to fading or lack of coverage, WTP only retransmits lost segments using selective retransmission, thereby compensating for a less stable connection in wireless. The above mentioned features are industry standards adopted for wireless applications, and well known to those skilled in the art. - The presently preferred embodiment utilizes WAP, because WAP has the following advantages, 1) WAP protocol uses less than one-half the number of packets that the standard HTTP or TCP/IP Internet stack uses to deliver the same content. 2) Addressing the limited resources of the terminal, the browser, and the lightweight protocol stack are designed to make small claims on CPU and ROM. 3) Binary encoding of WML and SMLScript helps keep the RAM as small as possible. And, 4) Keeping the bearer utilization low takes account of the limited battery power of the terminal.
- In this embodiment two modes of communication are possible. In the first, the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page. The web page is managed with adequate security and password protection. The physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
- The physician is also able to set up long-term schedules of stimulation therapy for their patient population, through wireless communication with the server. The server in turn communicates these programs to the neurostimulator. Each schedule is securely maintained on the server, and is editable by the physician and can get uploaded to the patient's stimulator device at a scheduled time. Thus, therapy can be customized for each individual patient. Each device issued to a patient has a unique identification key in order to guarantee secure communication between the
wireless server 130 andstimulator device 42. - In this embodiment, two modes of communication are possible. In the first, the server initiates an upload of the actual parameters being applied to the patient, receives these from the stimulator, and stores these in its memory, accessible to the authorized user as a dedicated content driven web page. The physician or authorized user can make alterations to the actual parameters, as available on the server, and then initiate a communication session with the stimulator device to download these parameters.
- Shown in conjunction with
FIG. 36 , in one embodiment, theexternal stimulator 42 and/or theprogrammer 85 may also be networked to acentral collaboration computer 286 as well as other devices such as a remote computer 294,PDA 140,phone 141,physician computer 143. Theinterface unit 292 in this embodiment communicates with the centralcollaborative network 290 via land-lines such as cable modem or wirelessly via the internet. Acentral computer 286 which has sufficient computing power and storage capability to collect and process large amounts of data, contains information regarding device history and serial number, and is in communication with thenetwork 290. Communication overcollaboration network 290 may be effected by way of a TCP/IP connection, particularly one using the internet, as well as a PSTN, DSL, cable modem, LAN, WAN or a direct dial-up connection. - The standard components of interface unit shown in
block 292 areprocessor 305,storage 310,memory 308, transmitter/receiver 306, and a communication device such as network interface card ormodem 312. In the preferred embodiment these components are embedded in theexternal stimulator 42 and can also be embedded in theprogrammer 85. These can be connected to thenetwork 290 through appropriate security measures (Firewall) 293. - Another type of remote unit that may be accessed via central
collaborative network 290 is remote computer 294. This remote computer 294 may be used by an appropriate attending physician to instruct or interact withinterface unit 292, for example, instructinginterface unit 292 to send instruction downloaded fromcentral computer 286 to remote implanted unit. - Shown in conjunction with
FIG. 37A the physician's remote communication's module is a Modified PDA/Phone 140 in this embodiment. The Modified PDA/Phone 140 is a microprocessor based device as shown in a simplified block diagram inFIGS. 37A and 37B . The PDA/Phone 140 is configured to accept PCM/CIA cards specially configured to fulfill the role ofcommunication module 292 of the present invention. The Modified PDA/Phone 140 may operate under any of the useful software including Microsoft Window's based, Linux, Palm OS, Java OS, SYMBIAN, or the like. - The
telemetry module 362 comprises anRF telemetry antenna 142 coupled to a telemetry transceiver and antenna driver circuit board which includes a telemetry transmitter and telemetry receiver. The telemetry transmitter and receiver are coupled to control circuitry and registers, operated under the control ofmicroprocessor 364. Similarly, within stimulator atelemetry antenna 142 is coupled to a telemetry transceiver comprising RF telemetry transmitter and receiver circuit. This circuit is coupled to control circuitry and registers operated under the control of microcomputer circuit. - With reference to the telecommunications aspects of the invention, the communication and data exchange between Modified PDA/
Phone 140 andexternal stimulator 42 operates on commercially available frequency bands. The 2.4-to-2.4853 GHz bands or 5.15 and 5.825 GHz, are the two unlicensed areas of the spectrum, and set aside for industrial, scientific, and medical (ISM) uses. Most of the technology today including this invention, use either the 2.4 or 5 GHz radio bands and spread-spectrum technology. - The telecommunications technology, especially the wireless internet technology, which this invention utilizes in one embodiment, is constantly improving and evolving at a rapid pace, due to advances in RF and chip technology as well as software development. Therefore, one of the intents of this invention is to utilize “state of the art” technology available for data communication between Modified PDA/
Phone 140 andexternal stimulator 42. The intent of this invention is to use 3G technology for wireless communication and data exchange, even though in some cases 2.5G is being used currently. - For the system of the current invention, the use of any of the “3G” technologies for communication for the Modified PDA/
Phone 140, is considered within the scope of the invention. Further, it will be evident to one of ordinary skill in the art that as future 4G systems, which will include new technologies such as improved modulation and smart antennas, can be easily incorporated into the system and method of current invention, and are also considered within the scope of the invention.
Claims (25)
1. A method of providing electrical pulses with rechargeable implantable pulse generator for nerve blocking with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof for treating, controlling, or alleviating the symptoms for at least one of obesity, motility disorders, eating disorders, inducing weight loss, FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, and ileus, comprising the steps of:
providing said rechargeable implantable pulse generator, comprising a microcontroller, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
providing a lead with at least two electrodes adapted to be in contact with said nerve tissue, and in electrical contact with said rechargeable implantable pulse generator;
providing an external power source to charge said rechargeable implantable pulse generator; and
providing an external programmer to program said rechargeable implantable pulse generator.
2. A method of claim 1 , wherein said nerve blocking comprises selective blocking of nerve impulses of a vagus nerve(s), its branch(es) or part thereof, at one or more sites with said electrical pulses.
3. A method of claim 1 , wherein said electrical pulses are for at least one of afferent block, efferent block, or organ block.
4. A method of claim 1 , wherein nerve blocking may also be provided to alleviate the side effects of nerve stimulation therapy.
5. A method of claim 1 , wherein said nerve blocking comprises at least one from a group consisting of: DC or anodal block, Wedenski block, and Collision block.
6. A method of claim 1 , wherein said rechargeable implantable pulse generator further comprises stimulus-receiver means such that, said implantable rechargeable pulse generator can also function in conjunction with an external stimulator, to provide said electrical pulses for said nerve blocking and/or stimulation.
7. A method of claim 1 , wherein said external power source to recharge said rechargeable implantable pulse generator can be an external re-charger or an external stimulator.
8. A method of claim 1 , wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
9. A method of claim 1 , wherein said rechargeable implanted pulse generator further comprises one or two feed-through(s) for externalizing coils, for unipolar or bipolar configurations respectively.
10. A method of claim 1 , wherein said at least two electrodes are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
11. A method of claim 1 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
12. A method of claim 1 , wherein said rechargeable implanted pulse generator is adapted to be remotely interrogated and/or programmed over a wide area network by an external interface means.
13. A method of providing electrical pulses with rechargeable implantable pulse generator for vagal blocking with or without selective vagal stimulation for treating or alleviating the symptoms for at least one of obesity, eating disorders, inducing weight loss, FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, and ileus, comprising the steps of:
providing an implantable rechargeable pulse generator, wherein said implantable rechargeable pulse generator comprises a stimulus-receiver means, and an implantable pulse generator means comprising a microcontroller, pulse generation circuitry, rechargeable battery, and battery recharging circuitry;
providing a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof, and in electrical contact with said implantable rechargeable pulse generator;
providing an external power source to charge rechargeable implantable pulse generator; and
providing an external programmer to program the said rechargeable implantable pulse generator.
14. A method of claim 13 , wherein said rechargeable implantable pulse generator can function in conjunction with an external stimulator, to provide said blocking to said vagus nerve(s) and/or its branches with or without said selective stimulation.
15. A method of claim 13 , wherein said coil used in recharging said pulse generator is around said rechargeable implantable pulse generator case in a silicone enclosure.
16. A method of claim 13 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
17. A system for providing electrical pulses with rechargeable implantable pulse generator for nerve blocking with or without selective electrical stimulation of vagus nerve(s) or its branches or part thereof for treating, controlling, or alleviating the symptoms for at least one of obesity, motility disorders, eating disorders, inducing weight loss, FGIDs, gastroparesis, gastro-esophageal reflex disease (GERD), pancreatitis, and ileus, comprising:
a rechargeable implantable pulse generator, comprising, a microprocessor, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
a lead with at least two electrodes adapted to be in contact with said nerve tissue and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge said rechargeable implantable pulse generator; and
an external programmer to program said rechargeable implantable pulse generator.
18. A system of claim 17 , wherein said nerve blocking comprises at least one from a group consisting of: DC or anodal block, Wedenski block, and Collision block.
19. A system of claim 17 , wherein said coil is used for bidirectional telemetry, or receiving electrical pulses from said external stimulator.
20. A system of claim 17 , wherein said coil used in recharging said pulse generator is around said rechargeable implantable pulse generator case in a silicone enclosure.
21. A system of claim 17 , wherein said rechargeable implanted pulse generator further comprises one or two feed-through(s) for externalizing coils, for unipolar or bipolar configurations respectively.
22. A system of claim 17 , wherein said implantable rechargeable pulse generator further comprises stimulus receiver means such that said implantable rechargeable pulse generator can also function in conjunction with an external stimulator, to provide said blocking with or without stimulation to said vagus nerve(s) and/or its branches.
23. A system of claim 17 , wherein said at least two electrodes are made of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
24. A system of claim 17 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
25. A system of claim 17 , wherein said rechargeable implanted pulse generator is adapted to be remotely interrogated and/or programmed over a wide area network by an external interface means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/047,232 US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14229802A | 2002-05-09 | 2002-05-09 | |
US10/196,533 US20030212440A1 (en) | 2002-05-09 | 2002-07-16 | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US10/841,995 US7076307B2 (en) | 2002-05-09 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US11035374A | 2005-01-13 | 2005-01-13 | |
US11/047,232 US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/035,374 Continuation US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050131486A1 true US20050131486A1 (en) | 2005-06-16 |
Family
ID=34704997
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/841,995 Expired - Lifetime US7076307B2 (en) | 1998-10-26 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US11/035,374 Abandoned US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
US11/047,233 Abandoned US20050131487A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders |
US11/047,232 Abandoned US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
US11/047,137 Abandoned US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/841,995 Expired - Lifetime US7076307B2 (en) | 1998-10-26 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US11/035,374 Abandoned US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
US11/047,233 Abandoned US20050131487A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/047,137 Abandoned US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
Country Status (1)
Country | Link |
---|---|
US (5) | US7076307B2 (en) |
Cited By (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040024428A1 (en) * | 1999-07-01 | 2004-02-05 | Burke Barrett | Treatment of obesity by bilateral vagus nerve stimulation |
US20040039427A1 (en) * | 2001-01-02 | 2004-02-26 | Cyberonics, Inc. | Treatment of obesity by sub-diaphragmatic nerve stimulation |
US20050065571A1 (en) * | 2001-05-01 | 2005-03-24 | Imran Mir A. | Responsive gastric stimulator |
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US20050149146A1 (en) * | 2002-05-09 | 2005-07-07 | Boveja Birinder R. | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US20050222226A1 (en) * | 2000-06-30 | 2005-10-06 | Sumitomo Pharmaceuticals Company, Limited | Five-membered cyclic compounds |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US20060200208A1 (en) * | 2005-03-04 | 2006-09-07 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US20060247722A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Noninvasively adjustable gastric band |
US20060247721A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Identification of electrodes for nerve stimulation in the treatment of eating disorders |
US20060247719A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Weight loss method and advice |
US20070016263A1 (en) * | 2005-07-13 | 2007-01-18 | Cyberonics, Inc. | Neurostimulator with reduced size |
US20070021786A1 (en) * | 2005-07-25 | 2007-01-25 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of angina pectoris |
US20070027492A1 (en) * | 2005-07-28 | 2007-02-01 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a gastrointestinal disorder |
US20070027484A1 (en) * | 2005-07-28 | 2007-02-01 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a pancreatic disorder |
US20070027497A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Nerve stimulation for treatment of syncope |
US20070027504A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Cranial nerve stimulation to treat a hearing disorder |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
US20070106337A1 (en) * | 2005-11-10 | 2007-05-10 | Electrocore, Inc. | Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention |
WO2007053881A1 (en) * | 2005-11-08 | 2007-05-18 | Ventrassist Pty Ltd | Improvements to control systems and power systems for rotary blood pumps |
US20070255379A1 (en) * | 2003-06-04 | 2007-11-01 | Williams Michael S | Intravascular device for neuromodulation |
US20070282387A1 (en) * | 2006-05-17 | 2007-12-06 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US20080027293A1 (en) * | 2006-07-27 | 2008-01-31 | Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. | Transfer assembly |
US20080051839A1 (en) * | 2006-08-25 | 2008-02-28 | Imad Libbus | System for abating neural stimulation side effects |
US20080086179A1 (en) * | 2006-10-09 | 2008-04-10 | Virender K Sharma | Method and apparatus for treatment of the gastrointestinal tract |
US20080097412A1 (en) * | 2006-09-01 | 2008-04-24 | Shuros Allan C | Method and apparatus for endolymphatic drug delivery |
US20080183237A1 (en) * | 2006-04-18 | 2008-07-31 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
US20080195092A1 (en) * | 2006-11-03 | 2008-08-14 | Kim Daniel H | Apparatus and methods for minimally invasive obesity treatment |
US20080221644A1 (en) * | 2007-03-09 | 2008-09-11 | Enteromedics, Inc. | Remote monitoring and control of implantable devices |
US20080243196A1 (en) * | 2007-04-02 | 2008-10-02 | Imad Libbus | Unidirectional neural stimulation systems, devices and methods |
US20080300656A1 (en) * | 2007-05-31 | 2008-12-04 | Adrianus Donders | Implantable therapy system |
US20090054947A1 (en) * | 2007-08-20 | 2009-02-26 | Medtronic, Inc. | Electrode configurations for directional leads |
US20090099415A1 (en) * | 2001-05-01 | 2009-04-16 | Intrapace, Inc. | Endoscopic Instrument System for Implanting a Device in the Stomach |
US20090132001A1 (en) * | 2006-05-18 | 2009-05-21 | Soffer Edy E | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US20090234417A1 (en) * | 2005-11-10 | 2009-09-17 | Electrocore, Inc. | Methods And Apparatus For The Treatment Of Metabolic Disorders |
US20090264951A1 (en) * | 2008-01-25 | 2009-10-22 | Sharma Virender K | Device and Implantation System for Electrical Stimulation of Biological Systems |
US20100023088A1 (en) * | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US7657310B2 (en) | 2006-01-26 | 2010-02-02 | Cyberonics, Inc. | Treatment of reproductive endocrine disorders by vagus nerve stimulation |
US20100057178A1 (en) * | 2006-04-18 | 2010-03-04 | Electrocore, Inc. | Methods and apparatus for spinal cord stimulation using expandable electrode |
US20100100151A1 (en) * | 2008-10-20 | 2010-04-22 | Terry Jr Reese S | Neurostimulation with signal duration determined by a cardiac cycle |
US7706875B2 (en) | 2007-01-25 | 2010-04-27 | Cyberonics, Inc. | Modulation of drug effects by vagus nerve stimulation |
US7706874B2 (en) | 2005-07-28 | 2010-04-27 | Cyberonics, Inc. | Stimulating cranial nerve to treat disorders associated with the thyroid gland |
US7756582B2 (en) | 2001-05-01 | 2010-07-13 | Intrapace, Inc. | Gastric stimulation anchor and method |
US20100191311A1 (en) * | 2009-01-27 | 2010-07-29 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
US20100217346A1 (en) * | 2006-06-06 | 2010-08-26 | Shuros Allan C | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US20100228313A1 (en) * | 2009-03-03 | 2010-09-09 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US20100256708A1 (en) * | 2009-04-03 | 2010-10-07 | Thornton Arnold W | Implantable device with heat storage |
US7840280B2 (en) | 2005-07-27 | 2010-11-23 | Cyberonics, Inc. | Cranial nerve stimulation to treat a vocal cord disorder |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
US7869884B2 (en) | 2007-04-26 | 2011-01-11 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US7869885B2 (en) | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US7904175B2 (en) | 2007-04-26 | 2011-03-08 | Cyberonics, Inc. | Trans-esophageal vagus nerve stimulation |
US20110071589A1 (en) * | 2009-09-21 | 2011-03-24 | Medtronic, Inc. | Waveforms for electrical stimulation therapy |
US7962214B2 (en) | 2007-04-26 | 2011-06-14 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US7974697B2 (en) | 2006-01-26 | 2011-07-05 | Cyberonics, Inc. | Medical imaging feedback for an implantable medical device |
US7974701B2 (en) | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US8150508B2 (en) | 2006-03-29 | 2012-04-03 | Catholic Healthcare West | Vagus nerve stimulation method |
US8204603B2 (en) | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
US8239028B2 (en) | 2009-04-24 | 2012-08-07 | Cyberonics, Inc. | Use of cardiac parameters in methods and systems for treating a chronic medical condition |
US8295943B2 (en) | 2007-08-20 | 2012-10-23 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US8326418B2 (en) | 2007-08-20 | 2012-12-04 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8369943B2 (en) | 2006-06-06 | 2013-02-05 | Cardiac Pacemakers, Inc. | Method and apparatus for neural stimulation via the lymphatic system |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8391970B2 (en) | 2007-08-27 | 2013-03-05 | The Feinstein Institute For Medical Research | Devices and methods for inhibiting granulocyte activation by neural stimulation |
US8412338B2 (en) | 2008-11-18 | 2013-04-02 | Setpoint Medical Corporation | Devices and methods for optimizing electrode placement for anti-inflamatory stimulation |
US8417344B2 (en) | 2008-10-24 | 2013-04-09 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US8447404B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8452387B2 (en) | 2010-09-16 | 2013-05-28 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US8612002B2 (en) | 2009-12-23 | 2013-12-17 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US8660647B2 (en) | 2005-07-28 | 2014-02-25 | Cyberonics, Inc. | Stimulating cranial nerve to treat pulmonary disorder |
US8679009B2 (en) | 2010-06-15 | 2014-03-25 | Flint Hills Scientific, Llc | Systems approach to comorbidity assessment |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
US8725239B2 (en) | 2011-04-25 | 2014-05-13 | Cyberonics, Inc. | Identifying seizures using heart rate decrease |
US8729129B2 (en) | 2004-03-25 | 2014-05-20 | The Feinstein Institute For Medical Research | Neural tourniquet |
US8788034B2 (en) | 2011-05-09 | 2014-07-22 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US20140203770A1 (en) * | 2013-01-24 | 2014-07-24 | Ford Global Technologies, Llc | System and method for indicating charging status during wireless charging |
US8805519B2 (en) | 2010-09-30 | 2014-08-12 | Nevro Corporation | Systems and methods for detecting intrathecal penetration |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
US8827912B2 (en) | 2009-04-24 | 2014-09-09 | Cyberonics, Inc. | Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters |
US8831729B2 (en) | 2011-03-04 | 2014-09-09 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US8868215B2 (en) | 2008-07-11 | 2014-10-21 | Gep Technology, Inc. | Apparatus and methods for minimally invasive obesity treatment |
US8886339B2 (en) | 2009-06-09 | 2014-11-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US20140347009A1 (en) * | 2011-12-07 | 2014-11-27 | Panasonic Corporation | Vehicle-mounted charger |
US8914114B2 (en) | 2000-05-23 | 2014-12-16 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US8929986B2 (en) | 2011-11-04 | 2015-01-06 | Nevro Corporation | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US8996116B2 (en) | 2009-10-30 | 2015-03-31 | Setpoint Medical Corporation | Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction |
US9020597B2 (en) | 2008-11-12 | 2015-04-28 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9037245B2 (en) | 2011-09-02 | 2015-05-19 | Endostim, Inc. | Endoscopic lead implantation method |
US9050469B1 (en) | 2003-11-26 | 2015-06-09 | Flint Hills Scientific, Llc | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
USD736383S1 (en) | 2012-11-05 | 2015-08-11 | Nevro Corporation | Implantable signal generator |
US9124124B2 (en) | 2012-10-16 | 2015-09-01 | Ford Global Technologies, Llc | System and method for reducing interference during wireless charging |
US9148033B2 (en) | 2012-12-21 | 2015-09-29 | Ford Global Technologies, Llc | System of securing a wide-range of devices during wireless charging |
US9211409B2 (en) | 2008-03-31 | 2015-12-15 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation of T-cell activity |
US9211410B2 (en) | 2009-05-01 | 2015-12-15 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US9345879B2 (en) | 2006-10-09 | 2016-05-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US9455596B2 (en) | 2012-10-16 | 2016-09-27 | Ford Global Technologies, Llc | System and method for reducing interference between wireless charging and amplitude modulation reception |
US9472963B2 (en) | 2013-02-06 | 2016-10-18 | Ford Global Technologies, Llc | Device for wireless charging having a plurality of wireless charging protocols |
US9498619B2 (en) | 2013-02-26 | 2016-11-22 | Endostim, Inc. | Implantable electrical stimulation leads |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
US9572983B2 (en) | 2012-03-26 | 2017-02-21 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US9616234B2 (en) | 2002-05-03 | 2017-04-11 | Trustees Of Boston University | System and method for neuro-stimulation |
US9623238B2 (en) | 2012-08-23 | 2017-04-18 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9662490B2 (en) | 2008-03-31 | 2017-05-30 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug |
US9682234B2 (en) | 2014-11-17 | 2017-06-20 | Endostim, Inc. | Implantable electro-medical device programmable for improved operational life |
US9724510B2 (en) | 2006-10-09 | 2017-08-08 | Endostim, Inc. | System and methods for electrical stimulation of biological systems |
US9827425B2 (en) | 2013-09-03 | 2017-11-28 | Endostim, Inc. | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9833621B2 (en) | 2011-09-23 | 2017-12-05 | Setpoint Medical Corporation | Modulation of sirtuins by vagus nerve stimulation |
US9884198B2 (en) | 2014-10-22 | 2018-02-06 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US9925367B2 (en) | 2011-09-02 | 2018-03-27 | Endostim, Inc. | Laparoscopic lead implantation method |
US9950171B2 (en) | 2014-10-31 | 2018-04-24 | Medtronic, Inc. | Paired stimulation pulses based on sensed compound action potential |
US10065044B2 (en) | 2013-05-03 | 2018-09-04 | Nevro Corp. | Molded headers for implantable signal generators, and associated systems and methods |
US10206591B2 (en) | 2011-10-14 | 2019-02-19 | Flint Hills Scientific, Llc | Seizure detection methods, apparatus, and systems using an autoregression algorithm |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US10226637B2 (en) | 2016-06-15 | 2019-03-12 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having alignment and centering capabilities |
US10314501B2 (en) | 2016-01-20 | 2019-06-11 | Setpoint Medical Corporation | Implantable microstimulators and inductive charging systems |
US10342984B2 (en) | 2016-06-15 | 2019-07-09 | Boston Scientific Neuromodulation Corporation | Split coil for uniform magnetic field generation from an external charger for an implantable medical device |
US10363426B2 (en) | 2016-06-15 | 2019-07-30 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position using phase angle or a plurality of parameters as determined from at least one sense coil |
US10420935B2 (en) | 2015-12-31 | 2019-09-24 | Nevro Corp. | Controller for nerve stimulation circuit and associated systems and methods |
US10426955B2 (en) | 2006-10-09 | 2019-10-01 | Endostim, Inc. | Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US10583304B2 (en) | 2016-01-25 | 2020-03-10 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US10596367B2 (en) | 2016-01-13 | 2020-03-24 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US10603501B2 (en) | 2016-06-15 | 2020-03-31 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having at least one sense coil concentric with a charging coil for determining position |
US10653883B2 (en) | 2009-01-23 | 2020-05-19 | Livanova Usa, Inc. | Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation |
US10695569B2 (en) | 2016-01-20 | 2020-06-30 | Setpoint Medical Corporation | Control of vagal stimulation |
US10912712B2 (en) | 2004-03-25 | 2021-02-09 | The Feinstein Institutes For Medical Research | Treatment of bleeding by non-invasive stimulation |
US10933238B2 (en) | 2019-01-31 | 2021-03-02 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US10980999B2 (en) | 2017-03-09 | 2021-04-20 | Nevro Corp. | Paddle leads and delivery tools, and associated systems and methods |
US11051744B2 (en) | 2009-11-17 | 2021-07-06 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US11129996B2 (en) | 2016-06-15 | 2021-09-28 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil |
US11173307B2 (en) | 2017-08-14 | 2021-11-16 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US11202907B2 (en) | 2016-12-12 | 2021-12-21 | The Regents Of The University Of California | Implantable and non-invasive stimulators for gastrointestinal therapeutics |
US11207518B2 (en) | 2004-12-27 | 2021-12-28 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway |
US11260229B2 (en) | 2018-09-25 | 2022-03-01 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11311725B2 (en) | 2014-10-24 | 2022-04-26 | Setpoint Medical Corporation | Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation |
US11344724B2 (en) | 2004-12-27 | 2022-05-31 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by electrical vagus nerve stimulation |
US11406833B2 (en) | 2015-02-03 | 2022-08-09 | Setpoint Medical Corporation | Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator |
US11420045B2 (en) | 2018-03-29 | 2022-08-23 | Nevro Corp. | Leads having sidewall openings, and associated systems and methods |
US11471692B2 (en) | 2016-06-15 | 2022-10-18 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for adjusting charging power based on determined position using at least one sense coil |
US11471681B2 (en) | 2016-01-20 | 2022-10-18 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US11577077B2 (en) | 2006-10-09 | 2023-02-14 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US11717681B2 (en) | 2010-03-05 | 2023-08-08 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US11819683B2 (en) | 2016-11-17 | 2023-11-21 | Endostim, Inc. | Modular stimulation system for the treatment of gastrointestinal disorders |
US11938324B2 (en) | 2020-05-21 | 2024-03-26 | The Feinstein Institutes For Medical Research | Systems and methods for vagus nerve stimulation |
US12053626B2 (en) | 2017-04-06 | 2024-08-06 | Endostim, Inc. | Surface electrodes |
US12172017B2 (en) | 2011-05-09 | 2024-12-24 | Setpoint Medical Corporation | Vagus nerve stimulation to treat neurodegenerative disorders |
US12220579B2 (en) | 2022-01-18 | 2025-02-11 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
Families Citing this family (314)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7799337B2 (en) | 1997-07-21 | 2010-09-21 | Levin Bruce H | Method for directed intranasal administration of a composition |
US9113801B2 (en) * | 1998-08-05 | 2015-08-25 | Cyberonics, Inc. | Methods and systems for continuous EEG monitoring |
US9042988B2 (en) | 1998-08-05 | 2015-05-26 | Cyberonics, Inc. | Closed-loop vagus nerve stimulation |
US9415222B2 (en) | 1998-08-05 | 2016-08-16 | Cyberonics, Inc. | Monitoring an epilepsy disease state with a supervisory module |
US9375573B2 (en) | 1998-08-05 | 2016-06-28 | Cyberonics, Inc. | Systems and methods for monitoring a patient's neurological disease state |
US7747325B2 (en) * | 1998-08-05 | 2010-06-29 | Neurovista Corporation | Systems and methods for monitoring a patient's neurological disease state |
US7209787B2 (en) | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US7277758B2 (en) * | 1998-08-05 | 2007-10-02 | Neurovista Corporation | Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder |
US8762065B2 (en) * | 1998-08-05 | 2014-06-24 | Cyberonics, Inc. | Closed-loop feedback-driven neuromodulation |
US20060217782A1 (en) * | 1998-10-26 | 2006-09-28 | Boveja Birinder R | Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components |
US7062330B1 (en) * | 1998-10-26 | 2006-06-13 | Boveja Birinder R | Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator |
US7493171B1 (en) * | 2000-11-21 | 2009-02-17 | Boston Scientific Neuromodulation Corp. | Treatment of pathologic craving and aversion syndromes and eating disorders by electrical brain stimulation and/or drug infusion |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US6907295B2 (en) | 2001-08-31 | 2005-06-14 | Biocontrol Medical Ltd. | Electrode assembly for nerve control |
US8571653B2 (en) | 2001-08-31 | 2013-10-29 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
US7904176B2 (en) * | 2006-09-07 | 2011-03-08 | Bio Control Medical (B.C.M.) Ltd. | Techniques for reducing pain associated with nerve stimulation |
US7734355B2 (en) * | 2001-08-31 | 2010-06-08 | Bio Control Medical (B.C.M.) Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US7778703B2 (en) * | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Selective nerve fiber stimulation for treating heart conditions |
US7239912B2 (en) * | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
US7702386B2 (en) * | 2002-03-22 | 2010-04-20 | Leptos Biomedical, Inc. | Nerve stimulation for treatment of obesity, metabolic syndrome, and Type 2 diabetes |
US20090259279A1 (en) * | 2002-03-22 | 2009-10-15 | Dobak Iii John D | Splanchnic nerve stimulation for treatment of obesity |
US7689277B2 (en) * | 2002-03-22 | 2010-03-30 | Leptos Biomedical, Inc. | Neural stimulation for treatment of metabolic syndrome and type 2 diabetes |
US7689276B2 (en) * | 2002-09-13 | 2010-03-30 | Leptos Biomedical, Inc. | Dynamic nerve stimulation for treatment of disorders |
US7236822B2 (en) * | 2002-03-22 | 2007-06-26 | Leptos Biomedical, Inc. | Wireless electric modulation of sympathetic nervous system |
US7937145B2 (en) | 2002-03-22 | 2011-05-03 | Advanced Neuromodulation Systems, Inc. | Dynamic nerve stimulation employing frequency modulation |
US7551964B2 (en) * | 2002-03-22 | 2009-06-23 | Leptos Biomedical, Inc. | Splanchnic nerve stimulation for treatment of obesity |
US20050209654A1 (en) * | 2002-05-09 | 2005-09-22 | Boveja Birinder R | Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s) |
US20060009815A1 (en) * | 2002-05-09 | 2006-01-12 | Boveja Birinder R | Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s) |
US20050216070A1 (en) * | 2002-05-09 | 2005-09-29 | Boveja Birinder R | Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s) |
US20060079936A1 (en) * | 2003-05-11 | 2006-04-13 | Boveja Birinder R | Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders |
US20060004423A1 (en) * | 2002-05-09 | 2006-01-05 | Boveja Birinder R | Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves |
US8204591B2 (en) * | 2002-05-23 | 2012-06-19 | Bio Control Medical (B.C.M.) Ltd. | Techniques for prevention of atrial fibrillation |
US7189204B2 (en) | 2002-12-04 | 2007-03-13 | Cardiac Pacemakers, Inc. | Sleep detection using an adjustable threshold |
US7627384B2 (en) * | 2004-11-15 | 2009-12-01 | Bio Control Medical (B.C.M.) Ltd. | Techniques for nerve stimulation |
US8880192B2 (en) | 2012-04-02 | 2014-11-04 | Bio Control Medical (B.C.M.) Ltd. | Electrode cuffs |
US7184839B2 (en) * | 2002-12-16 | 2007-02-27 | Medtronic, Inc. | Catheter-delivered cardiac lead |
JP2004201901A (en) * | 2002-12-25 | 2004-07-22 | Yoshimi Kurokawa | Stomach electrostimulator |
US7844338B2 (en) * | 2003-02-03 | 2010-11-30 | Enteromedics Inc. | High frequency obesity treatment |
US7613515B2 (en) * | 2003-02-03 | 2009-11-03 | Enteromedics Inc. | High frequency vagal blockage therapy |
US7167750B2 (en) * | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
US20040172084A1 (en) | 2003-02-03 | 2004-09-02 | Knudson Mark B. | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
EP1594439A2 (en) * | 2003-02-13 | 2005-11-16 | Albert Einstein College Of Medicine Of Yeshiva University | REGULATION OF FOOD INTAKE AND GLUCOSE PRODUCTION BY MODULATION OF LONG-CHAIN FATTY ACYL-CoA LEVELS IN THE HYPOTHALAMUS |
EP1596928A4 (en) * | 2003-02-25 | 2011-03-09 | Advanced Neuromodulation Sys | Splanchnic nerve stimulation for treatment of obesity |
US20050197678A1 (en) * | 2003-05-11 | 2005-09-08 | Boveja Birinder R. | Method and system for providing therapy for Alzheimer's disease and dementia by providing electrical pulses to vagus nerve(s) |
US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
US20050187590A1 (en) * | 2003-05-11 | 2005-08-25 | Boveja Birinder R. | Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s) |
US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
EP1648560A4 (en) | 2003-06-13 | 2015-10-28 | Biocontrol Medical Ltd | Vagal stimulation for anti-embolic therapy |
EP1670547B1 (en) | 2003-08-18 | 2008-11-12 | Cardiac Pacemakers, Inc. | Patient monitoring system |
US8606356B2 (en) | 2003-09-18 | 2013-12-10 | Cardiac Pacemakers, Inc. | Autonomic arousal detection system and method |
US7887493B2 (en) | 2003-09-18 | 2011-02-15 | Cardiac Pacemakers, Inc. | Implantable device employing movement sensing for detecting sleep-related disorders |
US8002553B2 (en) | 2003-08-18 | 2011-08-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
US7343202B2 (en) | 2004-02-12 | 2008-03-11 | Ndi Medical, Llc. | Method for affecting urinary function with electrode implantation in adipose tissue |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US20050070970A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Movement disorder stimulation with neural block |
US7783353B2 (en) * | 2003-12-24 | 2010-08-24 | Cardiac Pacemakers, Inc. | Automatic neural stimulation modulation based on activity and circadian rhythm |
US8200331B2 (en) | 2004-11-04 | 2012-06-12 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
US7706884B2 (en) | 2003-12-24 | 2010-04-27 | Cardiac Pacemakers, Inc. | Baroreflex stimulation synchronized to circadian rhythm |
US7509166B2 (en) * | 2003-12-24 | 2009-03-24 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation responsive to adverse event |
US8024050B2 (en) | 2003-12-24 | 2011-09-20 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
US7460906B2 (en) | 2003-12-24 | 2008-12-02 | Cardiac Pacemakers, Inc. | Baroreflex stimulation to treat acute myocardial infarction |
US20050149132A1 (en) | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation based on cardiac activity |
US7647114B2 (en) | 2003-12-24 | 2010-01-12 | Cardiac Pacemakers, Inc. | Baroreflex modulation based on monitored cardiovascular parameter |
US8126560B2 (en) | 2003-12-24 | 2012-02-28 | Cardiac Pacemakers, Inc. | Stimulation lead for stimulating the baroreceptors in the pulmonary artery |
US9020595B2 (en) * | 2003-12-24 | 2015-04-28 | Cardiac Pacemakers, Inc. | Baroreflex activation therapy with conditional shut off |
US7869881B2 (en) | 2003-12-24 | 2011-01-11 | Cardiac Pacemakers, Inc. | Baroreflex stimulator with integrated pressure sensor |
US20080161874A1 (en) * | 2004-02-12 | 2008-07-03 | Ndi Medical, Inc. | Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation |
US8467875B2 (en) | 2004-02-12 | 2013-06-18 | Medtronic, Inc. | Stimulation of dorsal genital nerves to treat urologic dysfunctions |
US7747323B2 (en) | 2004-06-08 | 2010-06-29 | Cardiac Pacemakers, Inc. | Adaptive baroreflex stimulation therapy for disordered breathing |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US9205255B2 (en) | 2004-06-10 | 2015-12-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US7283867B2 (en) | 2004-06-10 | 2007-10-16 | Ndi Medical, Llc | Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue |
WO2005123184A2 (en) * | 2004-06-10 | 2005-12-29 | Ndi Medical, Llc | System and method for treating incontinence with implantation in adipose tissue |
US8195304B2 (en) * | 2004-06-10 | 2012-06-05 | Medtronic Urinary Solutions, Inc. | Implantable systems and methods for acquisition and processing of electrical signals |
US8165692B2 (en) | 2004-06-10 | 2012-04-24 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator power management |
US9308382B2 (en) | 2004-06-10 | 2016-04-12 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US20060020298A1 (en) * | 2004-07-20 | 2006-01-26 | Camilleri Michael L | Systems and methods for curbing appetite |
US7751891B2 (en) * | 2004-07-28 | 2010-07-06 | Cyberonics, Inc. | Power supply monitoring for an implantable device |
US7623924B2 (en) * | 2004-08-31 | 2009-11-24 | Leptos Biomedical, Inc. | Devices and methods for gynecologic hormone modulation in mammals |
WO2006041922A2 (en) * | 2004-10-08 | 2006-04-20 | Dara Biosciences, Inc. | Agents and methods for administration to the central nervous system |
US7483746B2 (en) * | 2004-12-06 | 2009-01-27 | Boston Scientific Neuromodulation Corp. | Stimulation of the stomach in response to sensed parameters to treat obesity |
US20060161217A1 (en) * | 2004-12-21 | 2006-07-20 | Jaax Kristen N | Methods and systems for treating obesity |
US20060137699A1 (en) * | 2004-12-23 | 2006-06-29 | Moore Mark P | Providing data destination information to a medical device |
US20060212097A1 (en) * | 2005-02-24 | 2006-09-21 | Vijay Varadan | Method and device for treatment of medical conditions and monitoring physical movements |
WO2006101917A2 (en) * | 2005-03-16 | 2006-09-28 | Purdue Research Foundation | Devices for treatment of central nervous system injuries |
US7493161B2 (en) | 2005-05-10 | 2009-02-17 | Cardiac Pacemakers, Inc. | System and method to deliver therapy in presence of another therapy |
US7555341B2 (en) | 2005-04-05 | 2009-06-30 | Cardiac Pacemakers, Inc. | System to treat AV-conducted ventricular tachyarrhythmia |
US7499748B2 (en) * | 2005-04-11 | 2009-03-03 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device |
US7676275B1 (en) | 2005-05-02 | 2010-03-09 | Pacesetter, Inc. | Endovascular lead for chronic nerve stimulation |
US20060248672A1 (en) * | 2005-05-06 | 2006-11-09 | Alex Dussaussoy | Lotion applicator |
US7617003B2 (en) * | 2005-05-16 | 2009-11-10 | Cardiac Pacemakers, Inc. | System for selective activation of a nerve trunk using a transvascular reshaping lead |
EP1909694B1 (en) | 2005-07-25 | 2014-06-11 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US7532935B2 (en) * | 2005-07-29 | 2009-05-12 | Cyberonics, Inc. | Selective neurostimulation for treating mood disorders |
US20070027499A1 (en) * | 2005-07-29 | 2007-02-01 | Cyberonics, Inc. | Neurostimulation device for treating mood disorders |
US7499752B2 (en) | 2005-07-29 | 2009-03-03 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of eating disorders |
US7822486B2 (en) * | 2005-08-17 | 2010-10-26 | Enteromedics Inc. | Custom sized neural electrodes |
US7672727B2 (en) * | 2005-08-17 | 2010-03-02 | Enteromedics Inc. | Neural electrode treatment |
US7616990B2 (en) * | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US8428731B2 (en) | 2005-10-27 | 2013-04-23 | Cyberonics, Inc. | Sequenced therapy protocols for an implantable medical device |
US8694118B2 (en) | 2005-10-28 | 2014-04-08 | Cyberonics, Inc. | Variable output ramping for an implantable medical device |
US7555344B2 (en) | 2005-10-28 | 2009-06-30 | Cyberonics, Inc. | Selective neurostimulation for treating epilepsy |
US9037247B2 (en) | 2005-11-10 | 2015-05-19 | ElectroCore, LLC | Non-invasive treatment of bronchial constriction |
US8041428B2 (en) | 2006-02-10 | 2011-10-18 | Electrocore Llc | Electrical stimulation treatment of hypotension |
WO2007058780A2 (en) | 2005-11-10 | 2007-05-24 | Electrocore, Inc. | Electrical stimulation treatment of bronchial constriction |
US8812112B2 (en) | 2005-11-10 | 2014-08-19 | ElectroCore, LLC | Electrical treatment of bronchial constriction |
US20070142696A1 (en) * | 2005-12-08 | 2007-06-21 | Ventrassist Pty Ltd | Implantable medical devices |
US20070150027A1 (en) * | 2005-12-22 | 2007-06-28 | Rogers Lesco L | Non-invasive device and method for electrical stimulation of neural tissue |
US20070149952A1 (en) * | 2005-12-28 | 2007-06-28 | Mike Bland | Systems and methods for characterizing a patient's propensity for a neurological event and for communicating with a pharmacological agent dispenser |
US8725243B2 (en) | 2005-12-28 | 2014-05-13 | Cyberonics, Inc. | Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US8868172B2 (en) * | 2005-12-28 | 2014-10-21 | Cyberonics, Inc. | Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders |
US7869869B1 (en) | 2006-01-11 | 2011-01-11 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US7813805B1 (en) | 2006-01-11 | 2010-10-12 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US7801601B2 (en) | 2006-01-27 | 2010-09-21 | Cyberonics, Inc. | Controlling neuromodulation using stimulus modalities |
JP2009525805A (en) | 2006-02-10 | 2009-07-16 | エレクトロコア、インコーポレイテッド | Method and apparatus for treating anaphylaxis using electrical modulation |
JP2009525806A (en) * | 2006-02-10 | 2009-07-16 | エレクトロコア、インコーポレイテッド | Electrical stimulation treatment for hypotension |
US20070287931A1 (en) * | 2006-02-14 | 2007-12-13 | Dilorenzo Daniel J | Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US20070233204A1 (en) | 2006-02-16 | 2007-10-04 | Lima Marcelo G | RFID-based apparatus, system, and method for therapeutic treatment of a patient |
US20070225781A1 (en) * | 2006-03-21 | 2007-09-27 | Nidus Medical, Llc | Apparatus and methods for altering temperature in a region within the body |
US20090157138A1 (en) * | 2006-04-18 | 2009-06-18 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
US8401650B2 (en) | 2008-04-10 | 2013-03-19 | Electrocore Llc | Methods and apparatus for electrical treatment using balloon and electrode |
US8209034B2 (en) * | 2008-12-18 | 2012-06-26 | Electrocore Llc | Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode |
US7348805B2 (en) * | 2006-05-02 | 2008-03-25 | International Business Machines Corporation | Chip-to-chip digital transmission circuit delivering power over signal lines |
US8753334B2 (en) * | 2006-05-10 | 2014-06-17 | Covidien Ag | System and method for reducing leakage current in an electrosurgical generator |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US8295926B2 (en) | 2006-06-02 | 2012-10-23 | Advanced Neuromodulation Systems, Inc. | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
US7894906B2 (en) * | 2006-06-06 | 2011-02-22 | Cardiac Pacemakers, Inc. | Amelioration of chronic pain by endolymphatic stimulation |
US20080021341A1 (en) * | 2006-06-23 | 2008-01-24 | Neurovista Corporation A Delware Corporation | Methods and Systems for Facilitating Clinical Trials |
US8170668B2 (en) | 2006-07-14 | 2012-05-01 | Cardiac Pacemakers, Inc. | Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy |
US8682445B2 (en) * | 2006-07-28 | 2014-03-25 | Cyberonics, Inc. | Patient management system for treating depression using an implantable medical device |
US8295934B2 (en) | 2006-11-14 | 2012-10-23 | Neurovista Corporation | Systems and methods of reducing artifact in neurological stimulation systems |
WO2008060633A2 (en) * | 2006-11-17 | 2008-05-22 | Stryker Development Llc | Enhancement of and continuous biasing of afferent nerves for treatment of obesity |
WO2008092133A2 (en) * | 2007-01-25 | 2008-07-31 | Neurovista Corporation | Methods and systems for measuring a subject's susceptibility to a seizure |
US9898656B2 (en) | 2007-01-25 | 2018-02-20 | Cyberonics, Inc. | Systems and methods for identifying a contra-ictal condition in a subject |
DK2107920T3 (en) | 2007-01-29 | 2013-10-21 | Univ Fraser Simon | TRANSVASCULAR NERVESTIMULATION DEVICE |
WO2008100974A2 (en) * | 2007-02-13 | 2008-08-21 | Sharma Virender K | Method and apparatus for electrical stimulation of the pancreatico-biliary system |
WO2008103842A2 (en) * | 2007-02-21 | 2008-08-28 | Neurovista Corporation | Methods and systems for characterizing and generating a patient-specific seizure advisory system |
US8036736B2 (en) | 2007-03-21 | 2011-10-11 | Neuro Vista Corporation | Implantable systems and methods for identifying a contra-ictal condition in a subject |
WO2008121703A1 (en) * | 2007-03-28 | 2008-10-09 | University Of Florida Research Foundation, Inc. | Variational parameter neurostimulation paradigm for treatment of neurologic disease |
US20080262557A1 (en) * | 2007-04-19 | 2008-10-23 | Brown Stephen J | Obesity management system |
US20080281365A1 (en) * | 2007-05-09 | 2008-11-13 | Tweden Katherine S | Neural signal duty cycle |
US8249717B2 (en) * | 2007-07-18 | 2012-08-21 | Cardiac Pacemakers, Inc. | Systems and methods for providing neural stimulation transitions |
US8036754B2 (en) | 2007-07-20 | 2011-10-11 | Boston Scientific Neuromodulation Corporation | Use of stimulation pulse shape to control neural recruitment order and clinical effect |
US11376435B2 (en) | 2007-07-20 | 2022-07-05 | Boston Scientific Neuromodulation Corporation | System and method for shaped phased current delivery |
US9788744B2 (en) | 2007-07-27 | 2017-10-17 | Cyberonics, Inc. | Systems for monitoring brain activity and patient advisory device |
EP2183019A4 (en) * | 2007-08-06 | 2012-12-12 | Great Lakes Biosciences Llc | Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance |
US20090118777A1 (en) * | 2007-08-09 | 2009-05-07 | Kobi Iki | Efferent and afferent splanchnic nerve stimulation |
WO2009027755A1 (en) * | 2007-08-28 | 2009-03-05 | Institut National De La Recherche Agronomique (Inra) | Device and method for reducing weight |
CA2697822A1 (en) | 2007-10-09 | 2009-04-16 | Imthera Medical, Inc. | Apparatus, system, and method for selective stimulation |
US7949397B1 (en) | 2007-10-29 | 2011-05-24 | Pacesetter, Inc. | Implantable medical device capable of depressing appetite to control obesity using stochastic resonance electrical stimulation |
WO2009064408A1 (en) * | 2007-11-12 | 2009-05-22 | Dilorenzo Daniel J | Method and apparatus for programming of autonomic neuromodulation for the treatment of obesity |
US9089707B2 (en) | 2008-07-02 | 2015-07-28 | The Board Of Regents, The University Of Texas System | Systems, methods and devices for paired plasticity |
US8457757B2 (en) * | 2007-11-26 | 2013-06-04 | Micro Transponder, Inc. | Implantable transponder systems and methods |
US8165668B2 (en) | 2007-12-05 | 2012-04-24 | The Invention Science Fund I, Llc | Method for magnetic modulation of neural conduction |
US8170658B2 (en) * | 2007-12-05 | 2012-05-01 | The Invention Science Fund I, Llc | System for electrical modulation of neural conduction |
US8180446B2 (en) | 2007-12-05 | 2012-05-15 | The Invention Science Fund I, Llc | Method and system for cyclical neural modulation based on activity state |
US8233976B2 (en) | 2007-12-05 | 2012-07-31 | The Invention Science Fund I, Llc | System for transdermal chemical modulation of neural activity |
US8195287B2 (en) | 2007-12-05 | 2012-06-05 | The Invention Science Fund I, Llc | Method for electrical modulation of neural conduction |
US8170659B2 (en) * | 2007-12-05 | 2012-05-01 | The Invention Science Fund I, Llc | Method for thermal modulation of neural activity |
US8165669B2 (en) | 2007-12-05 | 2012-04-24 | The Invention Science Fund I, Llc | System for magnetic modulation of neural conduction |
US8160695B2 (en) | 2007-12-05 | 2012-04-17 | The Invention Science Fund I, Llc | System for chemical modulation of neural activity |
US9140476B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-controlled storage systems |
US8211516B2 (en) | 2008-05-13 | 2012-07-03 | Tokitae Llc | Multi-layer insulation composite material including bandgap material, storage container using same, and related methods |
US8887944B2 (en) | 2007-12-11 | 2014-11-18 | Tokitae Llc | Temperature-stabilized storage systems configured for storage and stabilization of modular units |
US8603598B2 (en) * | 2008-07-23 | 2013-12-10 | Tokitae Llc | Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods |
US8215835B2 (en) | 2007-12-11 | 2012-07-10 | Tokitae Llc | Temperature-stabilized medicinal storage systems |
US9139351B2 (en) * | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-stabilized storage systems with flexible connectors |
US9174791B2 (en) * | 2007-12-11 | 2015-11-03 | Tokitae Llc | Temperature-stabilized storage systems |
US9205969B2 (en) * | 2007-12-11 | 2015-12-08 | Tokitae Llc | Temperature-stabilized storage systems |
US8485387B2 (en) | 2008-05-13 | 2013-07-16 | Tokitae Llc | Storage container including multi-layer insulation composite material having bandgap material |
US20090145912A1 (en) * | 2007-12-11 | 2009-06-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage containers |
US20090171168A1 (en) | 2007-12-28 | 2009-07-02 | Leyde Kent W | Systems and Method for Recording Clinical Manifestations of a Seizure |
US9259591B2 (en) * | 2007-12-28 | 2016-02-16 | Cyberonics, Inc. | Housing for an implantable medical device |
CA2747264A1 (en) * | 2008-01-30 | 2009-08-06 | Great Lakes Biosciences, Llc | Brain-related chronic pain disorder treatment method and apparatus |
US8538535B2 (en) | 2010-08-05 | 2013-09-17 | Rainbow Medical Ltd. | Enhancing perfusion by contraction |
US9005106B2 (en) | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
US8588908B2 (en) * | 2008-02-04 | 2013-11-19 | University Of Virginia Patent Foundation | System, method and computer program product for detection of changes in health status and risk of imminent illness |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
US8682449B2 (en) | 2008-04-10 | 2014-03-25 | ElectroCore, LLC | Methods and apparatus for transcranial stimulation |
US8543211B2 (en) | 2008-04-10 | 2013-09-24 | ElectroCore, LLC | Methods and apparatus for deep brain stimulation |
US8473062B2 (en) | 2008-05-01 | 2013-06-25 | Autonomic Technologies, Inc. | Method and device for the treatment of headache |
CN102014779B (en) | 2008-05-09 | 2014-10-22 | 赫莱拉公司 | Systems, assemblies, and methods for treating a bronchial tree |
US9089703B2 (en) * | 2008-07-02 | 2015-07-28 | Microtransponder, Inc. | Methods for enhancing exposure therapy using vagus nerve stimulation |
US10213577B2 (en) | 2008-07-02 | 2019-02-26 | Microtransponder, Inc. | Methods for enhancing exposure therapy using pairing with vagus nerve stimulation |
US11554243B2 (en) | 2008-07-02 | 2023-01-17 | The Board Of Regents, The University Of Texas System | Methods for enhancing exposure therapy using pairing with vagus nerve stimulation |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
WO2010042686A1 (en) | 2008-10-09 | 2010-04-15 | Sharma Virender K | Method and apparatus for stimulating the vascular system |
AU2009302591B2 (en) | 2008-10-09 | 2014-08-07 | Imthera Medical, Inc. | Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue |
US9320909B2 (en) * | 2008-10-10 | 2016-04-26 | Peter Forsell | Accessory for an implant |
EP2369986A4 (en) * | 2008-12-23 | 2013-08-28 | Neurovista Corp | Brain state analysis based on select seizure onset characteristics and clinical manifestations |
US8849390B2 (en) | 2008-12-29 | 2014-09-30 | Cyberonics, Inc. | Processing for multi-channel signals |
US8412336B2 (en) | 2008-12-29 | 2013-04-02 | Autonomic Technologies, Inc. | Integrated delivery and visualization tool for a neuromodulation system |
US8588933B2 (en) | 2009-01-09 | 2013-11-19 | Cyberonics, Inc. | Medical lead termination sleeve for implantable medical devices |
US8494641B2 (en) | 2009-04-22 | 2013-07-23 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US9320908B2 (en) | 2009-01-15 | 2016-04-26 | Autonomic Technologies, Inc. | Approval per use implanted neurostimulator |
US20100198281A1 (en) * | 2009-01-30 | 2010-08-05 | C.Y. Joseph Chang, MD, PA | Methods for treating disorders of perceptual integration by brain modulation |
US20100268297A1 (en) * | 2009-02-24 | 2010-10-21 | Hans Neisz | Duodenal Stimulation To Induce Satiety |
US9030169B2 (en) * | 2009-03-03 | 2015-05-12 | Robert Bosch Gmbh | Battery system and method for system state of charge determination |
US10376696B2 (en) * | 2009-03-20 | 2019-08-13 | Electrocore, Inc. | Medical self-treatment using non-invasive vagus nerve stimulation |
US8321030B2 (en) | 2009-04-20 | 2012-11-27 | Advanced Neuromodulation Systems, Inc. | Esophageal activity modulated obesity therapy |
US8340772B2 (en) | 2009-05-08 | 2012-12-25 | Advanced Neuromodulation Systems, Inc. | Brown adipose tissue utilization through neuromodulation |
AU2010256756A1 (en) * | 2009-06-01 | 2011-12-01 | Autonomic Technologies, Inc. | Methods and devices for adrenal stimulation |
US8786624B2 (en) | 2009-06-02 | 2014-07-22 | Cyberonics, Inc. | Processing for multi-channel signals |
US9345878B2 (en) * | 2009-06-30 | 2016-05-24 | Boston Scientific Neuromodulation Corporation | System and method for compensating for shifting of neurostimulation leads in a patient |
US9697336B2 (en) | 2009-07-28 | 2017-07-04 | Gearbox, Llc | Electronically initiating an administration of a neuromodulation treatment regimen chosen in response to contactlessly acquired information |
US8346354B2 (en) * | 2009-07-28 | 2013-01-01 | The Invention Science Fund I, Llc | Determining a neuromodulation treatment regimen in response to contactlessly acquired information |
US8374701B2 (en) | 2009-07-28 | 2013-02-12 | The Invention Science Fund I, Llc | Stimulating a nervous system component of a mammal in response to contactlessly acquired information |
US8942817B2 (en) * | 2009-07-28 | 2015-01-27 | The Invention Science Fund I, Llc | Broadcasting a signal indicative of a disease, disorder, or symptom determined in response to contactlessly acquired information |
US9024766B2 (en) * | 2009-08-28 | 2015-05-05 | The Invention Science Fund, Llc | Beverage containers with detection capability |
US8898069B2 (en) * | 2009-08-28 | 2014-11-25 | The Invention Science Fund I, Llc | Devices and methods for detecting an analyte in salivary fluid |
CN104856757B (en) | 2009-10-27 | 2017-06-23 | 赫莱拉公司 | Delivery apparatus with coolable energy transmitting device |
CA2780096A1 (en) | 2009-11-10 | 2011-05-19 | Imthera Medical, Inc. | System for stimulating a hypoglossal nerve for controlling the position of a patient's tongue |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
KR101820542B1 (en) | 2009-11-11 | 2018-01-19 | 호라이라 인코포레이티드 | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
WO2011059570A1 (en) * | 2009-11-12 | 2011-05-19 | Cardiac Pacemakers, Inc. | Fiber reinforced silicone for cardiac and neurostimulation leads |
US8321012B2 (en) | 2009-12-22 | 2012-11-27 | The Invention Science Fund I, Llc | Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US9372016B2 (en) | 2013-05-31 | 2016-06-21 | Tokitae Llc | Temperature-stabilized storage systems with regulated cooling |
US9447995B2 (en) | 2010-02-08 | 2016-09-20 | Tokitac LLC | Temperature-stabilized storage systems with integral regulated cooling |
US9643019B2 (en) | 2010-02-12 | 2017-05-09 | Cyberonics, Inc. | Neurological monitoring and alerts |
US20110218820A1 (en) * | 2010-03-02 | 2011-09-08 | Himes David M | Displaying and Manipulating Brain Function Data Including Filtering of Annotations |
US20110219325A1 (en) * | 2010-03-02 | 2011-09-08 | Himes David M | Displaying and Manipulating Brain Function Data Including Enhanced Data Scrolling Functionality |
US8594806B2 (en) | 2010-04-30 | 2013-11-26 | Cyberonics, Inc. | Recharging and communication lead for an implantable device |
US8825164B2 (en) | 2010-06-11 | 2014-09-02 | Enteromedics Inc. | Neural modulation devices and methods |
US9579504B2 (en) | 2010-06-24 | 2017-02-28 | Robert Bosch Llc | Personalized patient controlled neurostimulation system |
WO2012068247A1 (en) | 2010-11-16 | 2012-05-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for treatment of dry eye |
US9821159B2 (en) | 2010-11-16 | 2017-11-21 | The Board Of Trustees Of The Leland Stanford Junior University | Stimulation devices and methods |
US8644921B2 (en) * | 2011-03-28 | 2014-02-04 | Neurostream Technologies G. P. | Neuromodulation system and method for treating apnea |
US9011510B2 (en) | 2011-05-09 | 2015-04-21 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US9238133B2 (en) | 2011-05-09 | 2016-01-19 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US11413458B2 (en) | 2011-05-19 | 2022-08-16 | Neuros Medical, Inc. | Nerve cuff electrode for neuromodulation in large human nerve trunks |
GB201113602D0 (en) * | 2011-08-08 | 2011-09-21 | Queen Mary & Westfield College | Selective nerve stimulation for relief of abdominal pain |
US8599009B2 (en) | 2011-08-16 | 2013-12-03 | Elwha Llc | Systematic distillation of status data relating to regimen compliance |
US9526637B2 (en) | 2011-09-09 | 2016-12-27 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US8986337B2 (en) | 2012-02-24 | 2015-03-24 | Elwha Llc | Devices, systems, and methods to control stomach volume |
EP3556427B1 (en) | 2012-03-05 | 2022-06-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus |
US9144488B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with analyte sensors responsive to external power source |
US9211185B2 (en) | 2012-06-13 | 2015-12-15 | Elwha Llc | Breast implant with analyte sensors and internal power source |
US8808373B2 (en) | 2012-06-13 | 2014-08-19 | Elwha Llc | Breast implant with regionalized analyte sensors responsive to external power source |
US9144489B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with covering, analyte sensors and internal power source |
US8795359B2 (en) | 2012-06-13 | 2014-08-05 | Elwha Llc | Breast implant with regionalized analyte sensors and internal power source |
US8790400B2 (en) | 2012-06-13 | 2014-07-29 | Elwha Llc | Breast implant with covering and analyte sensors responsive to external power source |
CA2877049C (en) | 2012-06-21 | 2022-08-16 | Simon Fraser University | Transvascular diaphragm pacing systems and methods of use |
US9343923B2 (en) | 2012-08-23 | 2016-05-17 | Cyberonics, Inc. | Implantable medical device with backscatter signal based communication |
US9935498B2 (en) | 2012-09-25 | 2018-04-03 | Cyberonics, Inc. | Communication efficiency with an implantable medical device using a circulator and a backscatter signal |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US9174053B2 (en) | 2013-03-08 | 2015-11-03 | Boston Scientific Neuromodulation Corporation | Neuromodulation using modulated pulse train |
WO2014138709A1 (en) | 2013-03-08 | 2014-09-12 | Oculeve, Inc. | Devices and methods for treating dry eye in animals |
US9717627B2 (en) | 2013-03-12 | 2017-08-01 | Oculeve, Inc. | Implant delivery devices, systems, and methods |
CN105164920B (en) | 2013-03-15 | 2018-02-06 | 艾尔弗雷德·E·曼科学研究基金会 | Current sense multi-output current stimulator with fast on-times |
US9370660B2 (en) | 2013-03-29 | 2016-06-21 | Rainbow Medical Ltd. | Independently-controlled bidirectional nerve stimulation |
EP2986339A4 (en) | 2013-04-19 | 2016-12-21 | Oculeve Inc | Nasal stimulation devices and methods |
CA3075310C (en) | 2013-07-29 | 2022-04-05 | Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class e driver |
WO2015068167A2 (en) | 2013-11-06 | 2015-05-14 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
CN110975145B (en) | 2013-11-22 | 2024-08-23 | 隆佩瑟尔医疗公司 | Apparatus and method for assisting breathing by transvascular neural stimulation |
WO2015109401A1 (en) | 2014-01-21 | 2015-07-30 | Simon Fraser University | Systems and related methods for optimization of multi-electrode nerve pacing |
EP3689338A1 (en) | 2014-02-25 | 2020-08-05 | Oculeve, Inc. | Polymer formulations for nasolacrimal stimulation |
EP3903875A1 (en) | 2014-05-20 | 2021-11-03 | Nevro Corporation | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
EP3151906B1 (en) | 2014-06-03 | 2019-12-11 | Pop Test Abuse Deterrent Technology LLC | Drug device configured for wireless communication |
US9782584B2 (en) | 2014-06-13 | 2017-10-10 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US10130809B2 (en) | 2014-06-13 | 2018-11-20 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US10940318B2 (en) * | 2014-06-17 | 2021-03-09 | Morton M. Mower | Method and apparatus for electrical current therapy of biological tissue |
US9597517B2 (en) | 2014-07-03 | 2017-03-21 | Boston Scientific Neuromodulation Corporation | Neurostimulation system with flexible patterning and waveforms |
CA2956176A1 (en) | 2014-07-25 | 2016-01-28 | Oculeve, Inc. | Stimulation patterns for treating dry eye |
AU2015301400B2 (en) | 2014-08-15 | 2020-05-28 | Axonics Modulation Technologies, Inc. | Systems and methods for neurostimulation electrode configurations based on neural localization |
EP3180071B1 (en) | 2014-08-15 | 2021-09-22 | Axonics, Inc. | External pulse generator device and associated system for trial nerve stimulation |
EP3180072B1 (en) | 2014-08-15 | 2018-11-28 | Axonics Modulation Technologies Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
WO2016025915A1 (en) | 2014-08-15 | 2016-02-18 | Axonics Modulation Technologies, Inc. | Integrated electromyographic clinician programmer for use with an implantable neurostimulator |
CA2982572C (en) | 2014-08-15 | 2022-10-11 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indications |
US9737712B2 (en) | 2014-10-22 | 2017-08-22 | Oculeve, Inc. | Stimulation devices and methods for treating dry eye |
CA2965363A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Implantable nasal stimulator systems and methods |
CA2965514A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Contact lens for increasing tear production |
ES2729702T3 (en) | 2015-01-09 | 2019-11-05 | Axonics Modulation Tech Inc | Enhanced antenna and use procedures for an implantable nerve stimulator |
AU2016205047B2 (en) | 2015-01-09 | 2020-07-02 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
WO2016112401A1 (en) | 2015-01-09 | 2016-07-14 | Axonics Modulation Technologies, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US9827422B2 (en) | 2015-05-28 | 2017-11-28 | Boston Scientific Neuromodulation Corporation | Neuromodulation using stochastically-modulated stimulation parameters |
JP6946261B2 (en) | 2015-07-10 | 2021-10-06 | アクソニクス インコーポレイテッド | Implantable nerve stimulators and methods with internal electronics without ASICs |
WO2017041138A1 (en) * | 2015-09-08 | 2017-03-16 | D'urso Paul S | Systems and methods of neuromodulation |
US10342975B2 (en) * | 2015-09-14 | 2019-07-09 | Cochlear Limited | Micro-charge stimulation |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
US10426958B2 (en) | 2015-12-04 | 2019-10-01 | Oculeve, Inc. | Intranasal stimulation for enhanced release of ocular mucins and other tear proteins |
CN108697886B (en) | 2016-01-29 | 2022-11-08 | 艾克索尼克斯股份有限公司 | Method and system for frequency adjustment to optimize charging of implantable neurostimulators |
EP3413970B1 (en) | 2016-02-12 | 2021-06-30 | Axonics, Inc. | External pulse generator device for trial nerve stimulation |
US10252048B2 (en) | 2016-02-19 | 2019-04-09 | Oculeve, Inc. | Nasal stimulation for rhinitis, nasal congestion, and ocular allergies |
WO2017176776A1 (en) | 2016-04-04 | 2017-10-12 | General Electric Company | Techniques for neuromodulation |
AU2017260237A1 (en) | 2016-05-02 | 2018-11-22 | Oculeve, Inc. | Intranasal stimulation for treatment of meibomian gland disease and blepharitis |
ES2910203T3 (en) * | 2016-08-26 | 2022-05-11 | Univ California | Treatment of cardiac dysfunction |
US10792491B2 (en) | 2016-11-23 | 2020-10-06 | Boston Scientific Neuromodulation Corporation | Pulsed passive charge recovery circuitry for an implantable medical device |
KR20190124698A (en) | 2016-12-02 | 2019-11-05 | 오큘레브, 인크. | Apparatus and Method for Dry Eye Prediction and Treatment Recommendations |
US11541015B2 (en) | 2017-05-17 | 2023-01-03 | Massachusetts Institute Of Technology | Self-righting systems, methods, and related components |
BR112019023985A2 (en) | 2017-05-17 | 2020-06-09 | Massachusetts Inst Technology | self-correction system and related components and methods |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
CN111163834A (en) | 2017-06-30 | 2020-05-15 | 隆佩瑟尔医疗公司 | Device for preventing, reducing and/or treating cognitive impairment |
US10195429B1 (en) | 2017-08-02 | 2019-02-05 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US20190175908A1 (en) | 2017-12-11 | 2019-06-13 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
BR112020011807A2 (en) | 2017-12-13 | 2020-11-17 | Neuros Medical, Inc. | nerve sheath implantation devices |
AU2019214966B2 (en) | 2018-01-30 | 2024-12-05 | Nevro Corp. | Efficient use of an implantable pulse generator battery, and associated systems and methods |
EP3755418B1 (en) | 2018-02-22 | 2023-06-21 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation |
CA3096599A1 (en) | 2018-04-09 | 2019-10-17 | Neuros Medical, Inc. | Apparatuses and methods for setting an electrical dose |
KR102187646B1 (en) * | 2018-04-24 | 2020-12-07 | 고려대학교 산학협력단 | Stimulator for digestive organ |
EP3793667A1 (en) | 2018-05-17 | 2021-03-24 | Massachusetts Institute of Technology | Systems for electrical stimulation |
US11951308B2 (en) * | 2018-10-26 | 2024-04-09 | Daniel H. Kim | Apparatus and method for transoral minimally invasive treatment of gastrointestinal diseases |
WO2020097331A1 (en) | 2018-11-08 | 2020-05-14 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
EP3917598A1 (en) | 2019-02-01 | 2021-12-08 | Massachusetts Institute of Technology | Systems and methods for liquid injection |
WO2020185902A1 (en) | 2019-03-11 | 2020-09-17 | Axonics Modulation Technologies, Inc. | Charging device with off-center coil |
WO2020232333A1 (en) | 2019-05-16 | 2020-11-19 | Lungpacer Medical Inc. | Systems and methods for sensing and stimulation |
US11848090B2 (en) | 2019-05-24 | 2023-12-19 | Axonics, Inc. | Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
EP3983057A4 (en) | 2019-06-12 | 2023-07-12 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
US11541216B2 (en) | 2019-11-21 | 2023-01-03 | Massachusetts Institute Of Technology | Methods for manufacturing tissue interfacing components |
EP4103267A4 (en) | 2020-02-11 | 2024-02-28 | Neuros Medical, Inc. | SYSTEM AND METHOD FOR QUANTIFYING QUALITATIVE DATA SETS FROM PATIENT REPORTS |
PL242569B1 (en) * | 2020-03-04 | 2023-03-13 | Univ Medyczny Im Piastow Slaskich We Wroclawiu | Wireless electrostimulating applicator and method of the determination of acupuncture points |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134408A (en) * | 1976-11-12 | 1979-01-16 | Research Corporation | Cardiac pacer energy conservation system |
US4573481A (en) * | 1984-06-25 | 1986-03-04 | Huntington Institute Of Applied Research | Implantable electrode array |
US5188104A (en) * | 1991-02-01 | 1993-02-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5263480A (en) * | 1991-02-01 | 1993-11-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5314457A (en) * | 1993-04-08 | 1994-05-24 | Jeutter Dean C | Regenerative electrical |
US5540730A (en) * | 1995-06-06 | 1996-07-30 | Cyberonics, Inc. | Treatment of motility disorders by nerve stimulation |
US5713939A (en) * | 1996-09-16 | 1998-02-03 | Sulzer Intermedics Inc. | Data communication system for control of transcutaneous energy transmission to an implantable medical device |
US5733313A (en) * | 1996-08-01 | 1998-03-31 | Exonix Corporation | RF coupled, implantable medical device with rechargeable back-up power source |
US6067474A (en) * | 1997-08-01 | 2000-05-23 | Advanced Bionics Corporation | Implantable device with improved battery recharging and powering configuration |
US6205359B1 (en) * | 1998-10-26 | 2001-03-20 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US20020087192A1 (en) * | 2001-01-02 | 2002-07-04 | Barrett Burke T. | Treatment of obesity by sub-diaphragmatic nerve stimulation |
US6480743B1 (en) * | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US20020193842A1 (en) * | 2001-05-23 | 2002-12-19 | Peter Forsell | Heartburn and reflux disease treatment apparatus |
US6505077B1 (en) * | 2000-06-19 | 2003-01-07 | Medtronic, Inc. | Implantable medical device with external recharging coil electrical connection |
US20030045914A1 (en) * | 2001-08-31 | 2003-03-06 | Biocontrol Medical Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US6553263B1 (en) * | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6591137B1 (en) * | 2000-11-09 | 2003-07-08 | Neuropace, Inc. | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US6600954B2 (en) * | 2001-01-25 | 2003-07-29 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
US6611715B1 (en) * | 1998-10-26 | 2003-08-26 | Birinder R. Boveja | Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator |
US20030212440A1 (en) * | 2002-05-09 | 2003-11-13 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US20040172086A1 (en) * | 2003-02-03 | 2004-09-02 | Beta Medical, Inc. | Nerve conduction block treatment |
US20050038484A1 (en) * | 2003-02-03 | 2005-02-17 | Enteromedics, Inc. | Controlled vagal blockage therapy |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US20050131485A1 (en) * | 2003-02-03 | 2005-06-16 | Enteromedics, Inc. | High frequency vagal blockage therapy |
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US6941171B2 (en) * | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US20060069412A1 (en) * | 2004-09-30 | 2006-03-30 | Codman Neuro Sciences Sarl | Dual power supply switching circuitry for use in a closed system |
US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796221A (en) * | 1971-07-07 | 1974-03-12 | N Hagfors | Apparatus for delivering electrical stimulation energy to body-implanted apparatus with signal-receiving means |
US3942535A (en) * | 1973-09-27 | 1976-03-09 | G. D. Searle & Co. | Rechargeable tissue stimulating system |
US5025807A (en) * | 1983-09-14 | 1991-06-25 | Jacob Zabara | Neurocybernetic prosthesis |
US4867164A (en) * | 1983-09-14 | 1989-09-19 | Jacob Zabara | Neurocybernetic prosthesis |
US4702254A (en) * | 1983-09-14 | 1987-10-27 | Jacob Zabara | Neurocybernetic prosthesis |
US5299569A (en) * | 1991-05-03 | 1994-04-05 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by nerve stimulation |
US5304206A (en) * | 1991-11-18 | 1994-04-19 | Cyberonics, Inc. | Activation techniques for implantable medical device |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
IT1260485B (en) * | 1992-05-29 | 1996-04-09 | PROCEDURE AND DEVICE FOR THE TREATMENT OF THE OBESITY OF A PATIENT | |
US5997476A (en) * | 1997-03-28 | 1999-12-07 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US5591217A (en) * | 1995-01-04 | 1997-01-07 | Plexus, Inc. | Implantable stimulator with replenishable, high value capacitive power source and method therefor |
US5690691A (en) * | 1996-05-08 | 1997-11-25 | The Center For Innovative Technology | Gastro-intestinal pacemaker having phased multi-point stimulation |
US5749909A (en) * | 1996-11-07 | 1998-05-12 | Sulzer Intermedics Inc. | Transcutaneous energy coupling using piezoelectric device |
US5861014A (en) * | 1997-04-30 | 1999-01-19 | Medtronic, Inc. | Method and apparatus for sensing a stimulating gastrointestinal tract on-demand |
US6321124B1 (en) * | 1997-05-28 | 2001-11-20 | Transneuronix, Inc. | Implant device for electrostimulation and/or monitoring of endo-abdominal cavity tissue |
US6104955A (en) * | 1997-12-15 | 2000-08-15 | Medtronic, Inc. | Method and apparatus for electrical stimulation of the gastrointestinal tract |
US5978713A (en) * | 1998-02-06 | 1999-11-02 | Intermedics Inc. | Implantable device with digital waveform telemetry |
US5928272A (en) * | 1998-05-02 | 1999-07-27 | Cyberonics, Inc. | Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity |
US7599736B2 (en) * | 2001-07-23 | 2009-10-06 | Dilorenzo Biomedical, Llc | Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease |
US6356788B2 (en) * | 1998-10-26 | 2002-03-12 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US7076307B2 (en) * | 2002-05-09 | 2006-07-11 | Boveja Birinder R | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US6505075B1 (en) * | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US6270457B1 (en) * | 1999-06-03 | 2001-08-07 | Cardiac Intelligence Corp. | System and method for automated collection and analysis of regularly retrieved patient information for remote patient care |
US6853862B1 (en) * | 1999-12-03 | 2005-02-08 | Medtronic, Inc. | Gastroelectric stimulation for influencing pancreatic secretions |
US6418346B1 (en) * | 1999-12-14 | 2002-07-09 | Medtronic, Inc. | Apparatus and method for remote therapy and diagnosis in medical devices via interface systems |
US6708064B2 (en) * | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
US6650943B1 (en) * | 2000-04-07 | 2003-11-18 | Advanced Bionics Corporation | Fully implantable neurostimulator for cavernous nerve stimulation as a therapy for erectile dysfunction and other sexual dysfunction |
US6443891B1 (en) * | 2000-09-20 | 2002-09-03 | Medtronic, Inc. | Telemetry modulation protocol system for medical devices |
US6615084B1 (en) * | 2000-11-15 | 2003-09-02 | Transneuronix, Inc. | Process for electrostimulation treatment of morbid obesity |
US7493172B2 (en) * | 2001-01-30 | 2009-02-17 | Boston Scientific Neuromodulation Corp. | Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition |
US20050143789A1 (en) * | 2001-01-30 | 2005-06-30 | Whitehurst Todd K. | Methods and systems for stimulating a peripheral nerve to treat chronic pain |
US6735475B1 (en) * | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
US6662052B1 (en) * | 2001-04-19 | 2003-12-09 | Nac Technologies Inc. | Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites |
US7481759B2 (en) * | 2001-08-03 | 2009-01-27 | Cardiac Pacemakers, Inc. | Systems and methods for treatment of coronary artery disease |
US6622041B2 (en) * | 2001-08-21 | 2003-09-16 | Cyberonics, Inc. | Treatment of congestive heart failure and autonomic cardiovascular drive disorders |
US6760626B1 (en) * | 2001-08-29 | 2004-07-06 | Birinder R. Boveja | Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system |
US20030144708A1 (en) * | 2002-01-29 | 2003-07-31 | Starkebaum Warren L. | Methods and apparatus for retarding stomach emptying for treatment of eating disorders |
US7239912B2 (en) * | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
US7236822B2 (en) * | 2002-03-22 | 2007-06-26 | Leptos Biomedical, Inc. | Wireless electric modulation of sympathetic nervous system |
US7167750B2 (en) * | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
-
2004
- 2004-05-08 US US10/841,995 patent/US7076307B2/en not_active Expired - Lifetime
-
2005
- 2005-01-13 US US11/035,374 patent/US20050143787A1/en not_active Abandoned
- 2005-01-31 US US11/047,233 patent/US20050131487A1/en not_active Abandoned
- 2005-01-31 US US11/047,232 patent/US20050131486A1/en not_active Abandoned
- 2005-01-31 US US11/047,137 patent/US20050149146A1/en not_active Abandoned
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134408A (en) * | 1976-11-12 | 1979-01-16 | Research Corporation | Cardiac pacer energy conservation system |
US4573481A (en) * | 1984-06-25 | 1986-03-04 | Huntington Institute Of Applied Research | Implantable electrode array |
US5188104A (en) * | 1991-02-01 | 1993-02-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5263480A (en) * | 1991-02-01 | 1993-11-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5314457A (en) * | 1993-04-08 | 1994-05-24 | Jeutter Dean C | Regenerative electrical |
US5540730A (en) * | 1995-06-06 | 1996-07-30 | Cyberonics, Inc. | Treatment of motility disorders by nerve stimulation |
US5733313A (en) * | 1996-08-01 | 1998-03-31 | Exonix Corporation | RF coupled, implantable medical device with rechargeable back-up power source |
US5713939A (en) * | 1996-09-16 | 1998-02-03 | Sulzer Intermedics Inc. | Data communication system for control of transcutaneous energy transmission to an implantable medical device |
US6067474A (en) * | 1997-08-01 | 2000-05-23 | Advanced Bionics Corporation | Implantable device with improved battery recharging and powering configuration |
US6941171B2 (en) * | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US6205359B1 (en) * | 1998-10-26 | 2001-03-20 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US6611715B1 (en) * | 1998-10-26 | 2003-08-26 | Birinder R. Boveja | Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator |
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US6553263B1 (en) * | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6480743B1 (en) * | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US6505077B1 (en) * | 2000-06-19 | 2003-01-07 | Medtronic, Inc. | Implantable medical device with external recharging coil electrical connection |
US6591137B1 (en) * | 2000-11-09 | 2003-07-08 | Neuropace, Inc. | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US20020087192A1 (en) * | 2001-01-02 | 2002-07-04 | Barrett Burke T. | Treatment of obesity by sub-diaphragmatic nerve stimulation |
US6600954B2 (en) * | 2001-01-25 | 2003-07-29 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
US20020193842A1 (en) * | 2001-05-23 | 2002-12-19 | Peter Forsell | Heartburn and reflux disease treatment apparatus |
US20030045914A1 (en) * | 2001-08-31 | 2003-03-06 | Biocontrol Medical Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US20030212440A1 (en) * | 2002-05-09 | 2003-11-13 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US20040172086A1 (en) * | 2003-02-03 | 2004-09-02 | Beta Medical, Inc. | Nerve conduction block treatment |
US20040172085A1 (en) * | 2003-02-03 | 2004-09-02 | Beta Medical, Inc. | Nerve stimulation and conduction block therapy |
US20050038484A1 (en) * | 2003-02-03 | 2005-02-17 | Enteromedics, Inc. | Controlled vagal blockage therapy |
US20050131485A1 (en) * | 2003-02-03 | 2005-06-16 | Enteromedics, Inc. | High frequency vagal blockage therapy |
US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US20060069412A1 (en) * | 2004-09-30 | 2006-03-30 | Codman Neuro Sciences Sarl | Dual power supply switching circuitry for use in a closed system |
Cited By (301)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US7299091B2 (en) | 1999-07-01 | 2007-11-20 | Cyberonics, Inc. | Treatment of obesity by bilateral vagus nerve stimulation |
US20040024428A1 (en) * | 1999-07-01 | 2004-02-05 | Burke Barrett | Treatment of obesity by bilateral vagus nerve stimulation |
US8914114B2 (en) | 2000-05-23 | 2014-12-16 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US9987492B2 (en) | 2000-05-23 | 2018-06-05 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US10166395B2 (en) | 2000-05-23 | 2019-01-01 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US10561846B2 (en) | 2000-05-23 | 2020-02-18 | The Feinstein Institutes For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US20050222226A1 (en) * | 2000-06-30 | 2005-10-06 | Sumitomo Pharmaceuticals Company, Limited | Five-membered cyclic compounds |
US20040039427A1 (en) * | 2001-01-02 | 2004-02-26 | Cyberonics, Inc. | Treatment of obesity by sub-diaphragmatic nerve stimulation |
US7340306B2 (en) | 2001-01-02 | 2008-03-04 | Cyberonics, Inc. | Treatment of obesity by sub-diaphragmatic nerve stimulation |
US20100305656A1 (en) * | 2001-05-01 | 2010-12-02 | Intrapace, Inc. | Gastric Simulation Anchor and Method |
US7747322B2 (en) | 2001-05-01 | 2010-06-29 | Intrapace, Inc. | Digestive organ retention device |
US8364269B2 (en) | 2001-05-01 | 2013-01-29 | Intrapace, Inc. | Responsive gastric stimulator |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US20090099415A1 (en) * | 2001-05-01 | 2009-04-16 | Intrapace, Inc. | Endoscopic Instrument System for Implanting a Device in the Stomach |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US7979127B2 (en) | 2001-05-01 | 2011-07-12 | Intrapace, Inc. | Digestive organ retention device |
US7756582B2 (en) | 2001-05-01 | 2010-07-13 | Intrapace, Inc. | Gastric stimulation anchor and method |
US8239027B2 (en) | 2001-05-01 | 2012-08-07 | Intrapace, Inc. | Responsive gastric stimulator |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US7702394B2 (en) | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US7689284B2 (en) | 2001-05-01 | 2010-03-30 | Intrapace, Inc. | Pseudounipolar lead for stimulating a digestive organ |
US20050065571A1 (en) * | 2001-05-01 | 2005-03-24 | Imran Mir A. | Responsive gastric stimulator |
US9517152B2 (en) | 2001-05-01 | 2016-12-13 | Intrapace, Inc. | Responsive gastric stimulator |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US9616234B2 (en) | 2002-05-03 | 2017-04-11 | Trustees Of Boston University | System and method for neuro-stimulation |
US20050149146A1 (en) * | 2002-05-09 | 2005-07-07 | Boveja Birinder R. | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US8116883B2 (en) | 2003-06-04 | 2012-02-14 | Synecor Llc | Intravascular device for neuromodulation |
US20070255379A1 (en) * | 2003-06-04 | 2007-11-01 | Williams Michael S | Intravascular device for neuromodulation |
US9050469B1 (en) | 2003-11-26 | 2015-06-09 | Flint Hills Scientific, Llc | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
US11185695B1 (en) | 2003-11-26 | 2021-11-30 | Flint Hills Scientific, L.L.C. | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
US10912712B2 (en) | 2004-03-25 | 2021-02-09 | The Feinstein Institutes For Medical Research | Treatment of bleeding by non-invasive stimulation |
US8729129B2 (en) | 2004-03-25 | 2014-05-20 | The Feinstein Institute For Medical Research | Neural tourniquet |
US9662240B2 (en) | 2004-09-23 | 2017-05-30 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9259342B2 (en) | 2004-09-23 | 2016-02-16 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US11207518B2 (en) | 2004-12-27 | 2021-12-28 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway |
US11344724B2 (en) | 2004-12-27 | 2022-05-31 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by electrical vagus nerve stimulation |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US9586047B2 (en) | 2005-01-28 | 2017-03-07 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US8700163B2 (en) | 2005-03-04 | 2014-04-15 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US20060200208A1 (en) * | 2005-03-04 | 2006-09-07 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US20060247722A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Noninvasively adjustable gastric band |
US7310557B2 (en) | 2005-04-29 | 2007-12-18 | Maschino Steven E | Identification of electrodes for nerve stimulation in the treatment of eating disorders |
US7899540B2 (en) | 2005-04-29 | 2011-03-01 | Cyberonics, Inc. | Noninvasively adjustable gastric band |
US20060247721A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Identification of electrodes for nerve stimulation in the treatment of eating disorders |
US20060247719A1 (en) * | 2005-04-29 | 2006-11-02 | Cyberonics, Inc. | Weight loss method and advice |
US7835796B2 (en) | 2005-04-29 | 2010-11-16 | Cyberonics, Inc. | Weight loss method and device |
US20070016263A1 (en) * | 2005-07-13 | 2007-01-18 | Cyberonics, Inc. | Neurostimulator with reduced size |
US7711419B2 (en) | 2005-07-13 | 2010-05-04 | Cyberonics, Inc. | Neurostimulator with reduced size |
US20070021786A1 (en) * | 2005-07-25 | 2007-01-25 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of angina pectoris |
US20070027497A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Nerve stimulation for treatment of syncope |
US20070027504A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Cranial nerve stimulation to treat a hearing disorder |
US7840280B2 (en) | 2005-07-27 | 2010-11-23 | Cyberonics, Inc. | Cranial nerve stimulation to treat a vocal cord disorder |
US7706874B2 (en) | 2005-07-28 | 2010-04-27 | Cyberonics, Inc. | Stimulating cranial nerve to treat disorders associated with the thyroid gland |
US8660647B2 (en) | 2005-07-28 | 2014-02-25 | Cyberonics, Inc. | Stimulating cranial nerve to treat pulmonary disorder |
US20070027484A1 (en) * | 2005-07-28 | 2007-02-01 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a pancreatic disorder |
US20070027492A1 (en) * | 2005-07-28 | 2007-02-01 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a gastrointestinal disorder |
US7856273B2 (en) | 2005-07-28 | 2010-12-21 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a gastrointestinal disorder |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
US8032223B2 (en) | 2005-09-01 | 2011-10-04 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US20100023087A1 (en) * | 2005-09-01 | 2010-01-28 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
WO2007053881A1 (en) * | 2005-11-08 | 2007-05-18 | Ventrassist Pty Ltd | Improvements to control systems and power systems for rotary blood pumps |
US20090234417A1 (en) * | 2005-11-10 | 2009-09-17 | Electrocore, Inc. | Methods And Apparatus For The Treatment Of Metabolic Disorders |
US20070106337A1 (en) * | 2005-11-10 | 2007-05-10 | Electrocore, Inc. | Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention |
US7657310B2 (en) | 2006-01-26 | 2010-02-02 | Cyberonics, Inc. | Treatment of reproductive endocrine disorders by vagus nerve stimulation |
US7974697B2 (en) | 2006-01-26 | 2011-07-05 | Cyberonics, Inc. | Medical imaging feedback for an implantable medical device |
US8660666B2 (en) | 2006-03-29 | 2014-02-25 | Catholic Healthcare West | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US9108041B2 (en) | 2006-03-29 | 2015-08-18 | Dignity Health | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US8738126B2 (en) | 2006-03-29 | 2014-05-27 | Catholic Healthcare West | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US9533151B2 (en) | 2006-03-29 | 2017-01-03 | Dignity Health | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US8615309B2 (en) | 2006-03-29 | 2013-12-24 | Catholic Healthcare West | Microburst electrical stimulation of cranial nerves for the treatment of medical conditions |
US8280505B2 (en) | 2006-03-29 | 2012-10-02 | Catholic Healthcare West | Vagus nerve stimulation method |
US8219188B2 (en) | 2006-03-29 | 2012-07-10 | Catholic Healthcare West | Synchronization of vagus nerve stimulation with the cardiac cycle of a patient |
US9289599B2 (en) | 2006-03-29 | 2016-03-22 | Dignity Health | Vagus nerve stimulation method |
US8150508B2 (en) | 2006-03-29 | 2012-04-03 | Catholic Healthcare West | Vagus nerve stimulation method |
US20100057178A1 (en) * | 2006-04-18 | 2010-03-04 | Electrocore, Inc. | Methods and apparatus for spinal cord stimulation using expandable electrode |
US20080183237A1 (en) * | 2006-04-18 | 2008-07-31 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
US7869885B2 (en) | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US20070282387A1 (en) * | 2006-05-17 | 2007-12-06 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US8185206B2 (en) | 2006-05-17 | 2012-05-22 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
WO2007136712A3 (en) * | 2006-05-17 | 2008-02-21 | Medtronic Inc | Electrical stimulation therapy to promote gastric distention for obesity management |
US20090132001A1 (en) * | 2006-05-18 | 2009-05-21 | Soffer Edy E | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US10272242B2 (en) | 2006-05-18 | 2019-04-30 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8538534B2 (en) | 2006-05-18 | 2013-09-17 | Endostim, Inc. | Systems and methods for electrically stimulating the lower esophageal sphincter to treat gastroesophageal reflux disease |
US8160709B2 (en) | 2006-05-18 | 2012-04-17 | Endostim, Inc. | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US11517750B2 (en) | 2006-05-18 | 2022-12-06 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9616225B2 (en) | 2006-05-18 | 2017-04-11 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20100217346A1 (en) * | 2006-06-06 | 2010-08-26 | Shuros Allan C | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US8897878B2 (en) * | 2006-06-06 | 2014-11-25 | Cardiac Pacemakers, Inc. | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US8369943B2 (en) | 2006-06-06 | 2013-02-05 | Cardiac Pacemakers, Inc. | Method and apparatus for neural stimulation via the lymphatic system |
US20080027293A1 (en) * | 2006-07-27 | 2008-01-31 | Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. | Transfer assembly |
EP1882484A3 (en) * | 2006-07-27 | 2008-02-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Transmission assembly |
US9427509B2 (en) | 2006-07-27 | 2016-08-30 | Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. | Transfer assembly |
US8103341B2 (en) | 2006-08-25 | 2012-01-24 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
US20080051839A1 (en) * | 2006-08-25 | 2008-02-28 | Imad Libbus | System for abating neural stimulation side effects |
US8897881B2 (en) | 2006-08-25 | 2014-11-25 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
US8527042B2 (en) | 2006-08-25 | 2013-09-03 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
US8905999B2 (en) | 2006-09-01 | 2014-12-09 | Cardiac Pacemakers, Inc. | Method and apparatus for endolymphatic drug delivery |
US20080097412A1 (en) * | 2006-09-01 | 2008-04-24 | Shuros Allan C | Method and apparatus for endolymphatic drug delivery |
US11577077B2 (en) | 2006-10-09 | 2023-02-14 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US20080086179A1 (en) * | 2006-10-09 | 2008-04-10 | Virender K Sharma | Method and apparatus for treatment of the gastrointestinal tract |
US11786726B2 (en) * | 2006-10-09 | 2023-10-17 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US7738961B2 (en) | 2006-10-09 | 2010-06-15 | Endostim, Inc. | Method and apparatus for treatment of the gastrointestinal tract |
US10426955B2 (en) | 2006-10-09 | 2019-10-01 | Endostim, Inc. | Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease |
US20110004266A1 (en) * | 2006-10-09 | 2011-01-06 | Sharma Virender K | Method and Apparatus for Treatment of the Gastrointestinal Tract |
US9345879B2 (en) | 2006-10-09 | 2016-05-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9561367B2 (en) | 2006-10-09 | 2017-02-07 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20220054834A1 (en) * | 2006-10-09 | 2022-02-24 | Endostim, Inc. | Device and Implantation System for Electrical Stimulation of Biological Systems |
US10406356B2 (en) | 2006-10-09 | 2019-09-10 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US9724510B2 (en) | 2006-10-09 | 2017-08-08 | Endostim, Inc. | System and methods for electrical stimulation of biological systems |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
US8874216B2 (en) | 2006-11-03 | 2014-10-28 | Gep Technology, Inc. | Apparatus and methods for minimally invasive obesity treatment |
US20080195092A1 (en) * | 2006-11-03 | 2008-08-14 | Kim Daniel H | Apparatus and methods for minimally invasive obesity treatment |
US7706875B2 (en) | 2007-01-25 | 2010-04-27 | Cyberonics, Inc. | Modulation of drug effects by vagus nerve stimulation |
US8521299B2 (en) | 2007-03-09 | 2013-08-27 | Enteromedics Inc. | Remote monitoring and control of implantable devices |
US20080221644A1 (en) * | 2007-03-09 | 2008-09-11 | Enteromedics, Inc. | Remote monitoring and control of implantable devices |
US8068918B2 (en) | 2007-03-09 | 2011-11-29 | Enteromedics Inc. | Remote monitoring and control of implantable devices |
US8725247B2 (en) | 2007-04-02 | 2014-05-13 | Cardiac Pacemakers, Inc. | Unidirectional neural stimulation systems, devices and methods |
US8224436B2 (en) | 2007-04-02 | 2012-07-17 | Cardiac Research, Inc. | Unidirectional neural stimulation systems, devices and methods |
US20080243196A1 (en) * | 2007-04-02 | 2008-10-02 | Imad Libbus | Unidirectional neural stimulation systems, devices and methods |
US7869884B2 (en) | 2007-04-26 | 2011-01-11 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US7904175B2 (en) | 2007-04-26 | 2011-03-08 | Cyberonics, Inc. | Trans-esophageal vagus nerve stimulation |
US7962214B2 (en) | 2007-04-26 | 2011-06-14 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US8306627B2 (en) | 2007-04-27 | 2012-11-06 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US7974701B2 (en) | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US20080300657A1 (en) * | 2007-05-31 | 2008-12-04 | Mark Raymond Stultz | Therapy system |
US8532787B2 (en) | 2007-05-31 | 2013-09-10 | Enteromedics Inc. | Implantable therapy system having multiple operating modes |
US20080300656A1 (en) * | 2007-05-31 | 2008-12-04 | Adrianus Donders | Implantable therapy system |
US8140167B2 (en) | 2007-05-31 | 2012-03-20 | Enteromedics, Inc. | Implantable therapy system with external component having multiple operating modes |
US20080300654A1 (en) * | 2007-05-31 | 2008-12-04 | Scott Anthony Lambert | Implantable therapy system |
US8326418B2 (en) | 2007-08-20 | 2012-12-04 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
US8630719B2 (en) | 2007-08-20 | 2014-01-14 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US8295943B2 (en) | 2007-08-20 | 2012-10-23 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US20090054947A1 (en) * | 2007-08-20 | 2009-02-26 | Medtronic, Inc. | Electrode configurations for directional leads |
US8538523B2 (en) | 2007-08-20 | 2013-09-17 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
US8391970B2 (en) | 2007-08-27 | 2013-03-05 | The Feinstein Institute For Medical Research | Devices and methods for inhibiting granulocyte activation by neural stimulation |
US8543210B2 (en) | 2008-01-25 | 2013-09-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20090264951A1 (en) * | 2008-01-25 | 2009-10-22 | Sharma Virender K | Device and Implantation System for Electrical Stimulation of Biological Systems |
US8798753B2 (en) | 2008-01-25 | 2014-08-05 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US7925352B2 (en) | 2008-03-27 | 2011-04-12 | Synecor Llc | System and method for transvascularly stimulating contents of the carotid sheath |
US8369954B2 (en) | 2008-03-27 | 2013-02-05 | Synecor Llc | System and method for transvascularly stimulating contents of the carotid sheath |
US20100023088A1 (en) * | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US9662490B2 (en) | 2008-03-31 | 2017-05-30 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug |
US9211409B2 (en) | 2008-03-31 | 2015-12-15 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation of T-cell activity |
US8204603B2 (en) | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
US8868215B2 (en) | 2008-07-11 | 2014-10-21 | Gep Technology, Inc. | Apparatus and methods for minimally invasive obesity treatment |
US20100100151A1 (en) * | 2008-10-20 | 2010-04-22 | Terry Jr Reese S | Neurostimulation with signal duration determined by a cardiac cycle |
US8874218B2 (en) | 2008-10-20 | 2014-10-28 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8457747B2 (en) | 2008-10-20 | 2013-06-04 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8849409B2 (en) | 2008-10-24 | 2014-09-30 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US8417344B2 (en) | 2008-10-24 | 2013-04-09 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US8768471B2 (en) | 2008-10-24 | 2014-07-01 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US9020597B2 (en) | 2008-11-12 | 2015-04-28 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8412338B2 (en) | 2008-11-18 | 2013-04-02 | Setpoint Medical Corporation | Devices and methods for optimizing electrode placement for anti-inflamatory stimulation |
US10653883B2 (en) | 2009-01-23 | 2020-05-19 | Livanova Usa, Inc. | Implantable medical device for providing chronic condition therapy and acute condition therapy using vagus nerve stimulation |
US9370654B2 (en) | 2009-01-27 | 2016-06-21 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
WO2010088116A1 (en) * | 2009-01-27 | 2010-08-05 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
US20100191311A1 (en) * | 2009-01-27 | 2010-07-29 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
US8538532B2 (en) | 2009-03-03 | 2013-09-17 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US20100228313A1 (en) * | 2009-03-03 | 2010-09-09 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US20100256708A1 (en) * | 2009-04-03 | 2010-10-07 | Thornton Arnold W | Implantable device with heat storage |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US8326426B2 (en) | 2009-04-03 | 2012-12-04 | Enteromedics, Inc. | Implantable device with heat storage |
US8715181B2 (en) | 2009-04-03 | 2014-05-06 | Intrapace, Inc. | Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments |
US8239028B2 (en) | 2009-04-24 | 2012-08-07 | Cyberonics, Inc. | Use of cardiac parameters in methods and systems for treating a chronic medical condition |
US8827912B2 (en) | 2009-04-24 | 2014-09-09 | Cyberonics, Inc. | Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters |
US9211410B2 (en) | 2009-05-01 | 2015-12-15 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US9849286B2 (en) | 2009-05-01 | 2017-12-26 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US10220203B2 (en) | 2009-06-09 | 2019-03-05 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US8886339B2 (en) | 2009-06-09 | 2014-11-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US9700716B2 (en) | 2009-06-09 | 2017-07-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US10716936B2 (en) | 2009-06-09 | 2020-07-21 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US9174041B2 (en) | 2009-06-09 | 2015-11-03 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US20110071589A1 (en) * | 2009-09-21 | 2011-03-24 | Medtronic, Inc. | Waveforms for electrical stimulation therapy |
US9937344B2 (en) | 2009-09-21 | 2018-04-10 | Medtronic, Inc. | Waveforms for electrical stimulation therapy |
US8996116B2 (en) | 2009-10-30 | 2015-03-31 | Setpoint Medical Corporation | Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction |
US11051744B2 (en) | 2009-11-17 | 2021-07-06 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US8855767B2 (en) | 2009-12-23 | 2014-10-07 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US10384068B2 (en) | 2009-12-23 | 2019-08-20 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8612002B2 (en) | 2009-12-23 | 2013-12-17 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US9993651B2 (en) | 2009-12-23 | 2018-06-12 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US11110287B2 (en) | 2009-12-23 | 2021-09-07 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US9162064B2 (en) | 2009-12-23 | 2015-10-20 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8712529B2 (en) | 2010-03-05 | 2014-04-29 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US10058703B2 (en) | 2010-03-05 | 2018-08-28 | Endostim, Inc. | Methods of treating gastroesophageal reflux disease using an implanted device |
US11058876B2 (en) | 2010-03-05 | 2021-07-13 | Endostim (Abc), Llc | Device and implantation system for electrical stimulation of biological systems |
US11717681B2 (en) | 2010-03-05 | 2023-08-08 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US9789309B2 (en) | 2010-03-05 | 2017-10-17 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9381344B2 (en) | 2010-03-05 | 2016-07-05 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US10420934B2 (en) | 2010-03-05 | 2019-09-24 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US8447404B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8447403B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8712530B2 (en) | 2010-03-05 | 2014-04-29 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9061147B2 (en) | 2010-03-05 | 2015-06-23 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US9241647B2 (en) | 2010-04-29 | 2016-01-26 | Cyberonics, Inc. | Algorithm for detecting a seizure from cardiac data |
US9700256B2 (en) | 2010-04-29 | 2017-07-11 | Cyberonics, Inc. | Algorithm for detecting a seizure from cardiac data |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
US8679009B2 (en) | 2010-06-15 | 2014-03-25 | Flint Hills Scientific, Llc | Systems approach to comorbidity assessment |
US9220910B2 (en) | 2010-07-30 | 2015-12-29 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8452387B2 (en) | 2010-09-16 | 2013-05-28 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US8948855B2 (en) | 2010-09-16 | 2015-02-03 | Flint Hills Scientific, Llc | Detecting and validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US9020582B2 (en) | 2010-09-16 | 2015-04-28 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US10279183B2 (en) | 2010-09-30 | 2019-05-07 | Nevro Corp. | Systems and methods for detecting intrathecal penetration |
US8805519B2 (en) | 2010-09-30 | 2014-08-12 | Nevro Corporation | Systems and methods for detecting intrathecal penetration |
US9358388B2 (en) | 2010-09-30 | 2016-06-07 | Nevro Corporation | Systems and methods for detecting intrathecal penetration |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
US8888702B2 (en) | 2010-10-01 | 2014-11-18 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8852100B2 (en) | 2010-10-01 | 2014-10-07 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8945006B2 (en) | 2010-10-01 | 2015-02-03 | Flunt Hills Scientific, LLC | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
US8831729B2 (en) | 2011-03-04 | 2014-09-09 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
US8725239B2 (en) | 2011-04-25 | 2014-05-13 | Cyberonics, Inc. | Identifying seizures using heart rate decrease |
US9498162B2 (en) | 2011-04-25 | 2016-11-22 | Cyberonics, Inc. | Identifying seizures using heart data from two or more windows |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US12172017B2 (en) | 2011-05-09 | 2024-12-24 | Setpoint Medical Corporation | Vagus nerve stimulation to treat neurodegenerative disorders |
US8788034B2 (en) | 2011-05-09 | 2014-07-22 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US9925367B2 (en) | 2011-09-02 | 2018-03-27 | Endostim, Inc. | Laparoscopic lead implantation method |
US9037245B2 (en) | 2011-09-02 | 2015-05-19 | Endostim, Inc. | Endoscopic lead implantation method |
US11052243B2 (en) | 2011-09-02 | 2021-07-06 | Endostim (Abc), Llc | Laparoscopic lead for esophageal sphincter implantation |
US9833621B2 (en) | 2011-09-23 | 2017-12-05 | Setpoint Medical Corporation | Modulation of sirtuins by vagus nerve stimulation |
US10206591B2 (en) | 2011-10-14 | 2019-02-19 | Flint Hills Scientific, Llc | Seizure detection methods, apparatus, and systems using an autoregression algorithm |
US9776002B2 (en) | 2011-11-04 | 2017-10-03 | Nevro Corp. | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US8929986B2 (en) | 2011-11-04 | 2015-01-06 | Nevro Corporation | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US10918866B2 (en) | 2011-11-04 | 2021-02-16 | Nevro Corp. | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US20140347009A1 (en) * | 2011-12-07 | 2014-11-27 | Panasonic Corporation | Vehicle-mounted charger |
US9438069B2 (en) * | 2011-12-07 | 2016-09-06 | Panasonic Intellectual Property Management Co., Ltd. | Vehicle-mounted charger |
US9572983B2 (en) | 2012-03-26 | 2017-02-21 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US10449358B2 (en) | 2012-03-26 | 2019-10-22 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US11596314B2 (en) | 2012-04-23 | 2023-03-07 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US9623238B2 (en) | 2012-08-23 | 2017-04-18 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US11052248B2 (en) | 2012-08-23 | 2021-07-06 | Endostim (Abc), Llc | Device and implantation system for electrical stimulation of biological systems |
US9124124B2 (en) | 2012-10-16 | 2015-09-01 | Ford Global Technologies, Llc | System and method for reducing interference during wireless charging |
US9455596B2 (en) | 2012-10-16 | 2016-09-27 | Ford Global Technologies, Llc | System and method for reducing interference between wireless charging and amplitude modulation reception |
USD736930S1 (en) | 2012-11-05 | 2015-08-18 | Nevro Corporation | Implantable signal generator |
USD736383S1 (en) | 2012-11-05 | 2015-08-11 | Nevro Corporation | Implantable signal generator |
US9148033B2 (en) | 2012-12-21 | 2015-09-29 | Ford Global Technologies, Llc | System of securing a wide-range of devices during wireless charging |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US11103707B2 (en) | 2013-01-22 | 2021-08-31 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US12144992B2 (en) | 2013-01-22 | 2024-11-19 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US20140203770A1 (en) * | 2013-01-24 | 2014-07-24 | Ford Global Technologies, Llc | System and method for indicating charging status during wireless charging |
US9472963B2 (en) | 2013-02-06 | 2016-10-18 | Ford Global Technologies, Llc | Device for wireless charging having a plurality of wireless charging protocols |
US9498619B2 (en) | 2013-02-26 | 2016-11-22 | Endostim, Inc. | Implantable electrical stimulation leads |
US11969253B2 (en) | 2013-04-10 | 2024-04-30 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US10946204B2 (en) | 2013-05-03 | 2021-03-16 | Nevro Corp. | Methods for forming implantable signal generators with molded headers |
US10065044B2 (en) | 2013-05-03 | 2018-09-04 | Nevro Corp. | Molded headers for implantable signal generators, and associated systems and methods |
US11052254B2 (en) | 2013-09-03 | 2021-07-06 | Endostim (Abc), Llc | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9827425B2 (en) | 2013-09-03 | 2017-11-28 | Endostim, Inc. | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9884198B2 (en) | 2014-10-22 | 2018-02-06 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US11090502B2 (en) | 2014-10-22 | 2021-08-17 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US11311725B2 (en) | 2014-10-24 | 2022-04-26 | Setpoint Medical Corporation | Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation |
US9950171B2 (en) | 2014-10-31 | 2018-04-24 | Medtronic, Inc. | Paired stimulation pulses based on sensed compound action potential |
US9682234B2 (en) | 2014-11-17 | 2017-06-20 | Endostim, Inc. | Implantable electro-medical device programmable for improved operational life |
US11406833B2 (en) | 2015-02-03 | 2022-08-09 | Setpoint Medical Corporation | Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator |
US10420935B2 (en) | 2015-12-31 | 2019-09-24 | Nevro Corp. | Controller for nerve stimulation circuit and associated systems and methods |
US10596367B2 (en) | 2016-01-13 | 2020-03-24 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US11278718B2 (en) | 2016-01-13 | 2022-03-22 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US11964150B2 (en) | 2016-01-20 | 2024-04-23 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US11547852B2 (en) | 2016-01-20 | 2023-01-10 | Setpoint Medical Corporation | Control of vagal stimulation |
US11471681B2 (en) | 2016-01-20 | 2022-10-18 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US12121726B2 (en) | 2016-01-20 | 2024-10-22 | Setpoint Medical Corporation | Control of vagal stimulation |
US10314501B2 (en) | 2016-01-20 | 2019-06-11 | Setpoint Medical Corporation | Implantable microstimulators and inductive charging systems |
US10695569B2 (en) | 2016-01-20 | 2020-06-30 | Setpoint Medical Corporation | Control of vagal stimulation |
US10583304B2 (en) | 2016-01-25 | 2020-03-10 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US11383091B2 (en) | 2016-01-25 | 2022-07-12 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US10603501B2 (en) | 2016-06-15 | 2020-03-31 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having at least one sense coil concentric with a charging coil for determining position |
US10632319B2 (en) | 2016-06-15 | 2020-04-28 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position using phase angle or a plurality of parameters as determined from at least one sense coil |
US10881870B2 (en) | 2016-06-15 | 2021-01-05 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having at least one sense coil concentric with a charging coil for determining position |
US11471692B2 (en) | 2016-06-15 | 2022-10-18 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for adjusting charging power based on determined position using at least one sense coil |
US10960219B2 (en) | 2016-06-15 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having alignment and centering capabilities |
US10363426B2 (en) | 2016-06-15 | 2019-07-30 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position using phase angle or a plurality of parameters as determined from at least one sense coil |
US11129996B2 (en) | 2016-06-15 | 2021-09-28 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil |
US12115377B2 (en) | 2016-06-15 | 2024-10-15 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for adjusting charging power based on determined position using at least one sense coil |
US10342984B2 (en) | 2016-06-15 | 2019-07-09 | Boston Scientific Neuromodulation Corporation | Split coil for uniform magnetic field generation from an external charger for an implantable medical device |
US10576294B2 (en) | 2016-06-15 | 2020-03-03 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having alignment and centering capabilities |
US10226637B2 (en) | 2016-06-15 | 2019-03-12 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having alignment and centering capabilities |
US11819683B2 (en) | 2016-11-17 | 2023-11-21 | Endostim, Inc. | Modular stimulation system for the treatment of gastrointestinal disorders |
US11202907B2 (en) | 2016-12-12 | 2021-12-21 | The Regents Of The University Of California | Implantable and non-invasive stimulators for gastrointestinal therapeutics |
US11857783B2 (en) | 2016-12-12 | 2024-01-02 | The Regents Of The University Of California | Implantable and non-invasive stimulators for gastrointestinal therapeutics |
US11759631B2 (en) | 2017-03-09 | 2023-09-19 | Nevro Corp. | Paddle leads and delivery tools, and associated systems and methods |
US10980999B2 (en) | 2017-03-09 | 2021-04-20 | Nevro Corp. | Paddle leads and delivery tools, and associated systems and methods |
US12053626B2 (en) | 2017-04-06 | 2024-08-06 | Endostim, Inc. | Surface electrodes |
US11173307B2 (en) | 2017-08-14 | 2021-11-16 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US11890471B2 (en) | 2017-08-14 | 2024-02-06 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US11420045B2 (en) | 2018-03-29 | 2022-08-23 | Nevro Corp. | Leads having sidewall openings, and associated systems and methods |
US11857788B2 (en) | 2018-09-25 | 2024-01-02 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11260229B2 (en) | 2018-09-25 | 2022-03-01 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11571570B2 (en) | 2019-01-31 | 2023-02-07 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US10933238B2 (en) | 2019-01-31 | 2021-03-02 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US11938324B2 (en) | 2020-05-21 | 2024-03-26 | The Feinstein Institutes For Medical Research | Systems and methods for vagus nerve stimulation |
US12220579B2 (en) | 2022-01-18 | 2025-02-11 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
Also Published As
Publication number | Publication date |
---|---|
US20050131487A1 (en) | 2005-06-16 |
US20050149146A1 (en) | 2005-07-07 |
US20050004621A1 (en) | 2005-01-06 |
US7076307B2 (en) | 2006-07-11 |
US20050143787A1 (en) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050131486A1 (en) | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator | |
US20050137644A1 (en) | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders | |
US7444184B2 (en) | Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s) | |
US20050216070A1 (en) | Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s) | |
US20050197678A1 (en) | Method and system for providing therapy for Alzheimer's disease and dementia by providing electrical pulses to vagus nerve(s) | |
US20060009815A1 (en) | Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s) | |
US7263405B2 (en) | System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities | |
US20050209654A1 (en) | Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s) | |
US20050165458A1 (en) | Method and system to provide therapy for depression using electroconvulsive therapy(ECT) and pulsed electrical stimulation to vagus nerve(s) | |
US6611715B1 (en) | Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator | |
US7191012B2 (en) | Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders | |
US20050187590A1 (en) | Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s) | |
US20050154426A1 (en) | Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation | |
US6879859B1 (en) | External pulse generator for adjunct (add-on) treatment of obesity, eating disorders, neurological, neuropsychiatric, and urological disorders | |
US20060079936A1 (en) | Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders | |
US20030212440A1 (en) | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system | |
US20050131467A1 (en) | Method and apparatus for electrical stimulation therapy for at least one of atrial fibrillation, congestive heart failure, inappropriate sinus tachycardia, and refractory hypertension | |
US20060122660A1 (en) | Method and system for modulating sacral nerves and/or its branches in a patient to provide therapy for urological disorders and/or fecal incontinence, using rectangular and/or complex electrical pulses | |
US11051744B2 (en) | Closed-loop vagus nerve stimulation | |
US9492675B2 (en) | Method of recharging a power source for implantable medical device | |
US20070067004A1 (en) | Methods and systems for modulating the vagus nerve (10th cranial nerve) to provide therapy for neurological, and neuropsychiatric disorders | |
US20060004423A1 (en) | Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves | |
AU2006276847B2 (en) | Autonomic nerve stimulation to treat a gastrointestinal disorder | |
US20060129205A1 (en) | Method and system for cortical stimulation with rectangular and/or complex electrical pulses to provide therapy for stroke and other neurological disorders | |
US20100010582A1 (en) | Medical system and method for setting programmable heat limits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEURO AND CARDIAC TECHNOLOGIES, LLC, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOVEJA, BIRINDER R.;WIDHANY, ANGELY;REEL/FRAME:018728/0352;SIGNING DATES FROM 20060911 TO 20060914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |