US20040134152A1 - Method and apparatus for precast and framed block element construction - Google Patents
Method and apparatus for precast and framed block element construction Download PDFInfo
- Publication number
- US20040134152A1 US20040134152A1 US10/680,939 US68093903A US2004134152A1 US 20040134152 A1 US20040134152 A1 US 20040134152A1 US 68093903 A US68093903 A US 68093903A US 2004134152 A1 US2004134152 A1 US 2004134152A1
- Authority
- US
- United States
- Prior art keywords
- block
- edge chord
- chord
- edge
- blocks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010276 construction Methods 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims description 17
- 238000005266 casting Methods 0.000 claims description 36
- 239000004567 concrete Substances 0.000 claims description 20
- 230000002787 reinforcement Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 3
- 239000011150 reinforced concrete Substances 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 4
- 230000000452 restraining effect Effects 0.000 claims 3
- 238000009432 framing Methods 0.000 description 19
- 238000013461 design Methods 0.000 description 16
- 239000002184 metal Substances 0.000 description 12
- 230000008901 benefit Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011178 precast concrete Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009433 steel framing Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 241000167857 Bourreria Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000000414 obstructive effect Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 231100000817 safety factor Toxicity 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/38—Arched girders or portal frames
- E04C3/44—Arched girders or portal frames of concrete or other stone-like material, e.g. with reinforcements or tensioning members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/0056—Means for inserting the elements into the mould or supporting them in the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/0088—Moulds in which at least one surface of the moulded article serves as mould surface, e.g. moulding articles on or against a previously shaped article, between previously shaped articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/16—Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes
- B28B7/18—Moulds for making shaped articles with cavities or holes open to the surface, e.g. with blind holes the holes passing completely through the article
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/02—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
- E04B1/04—Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/20—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/04—Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/43—Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B7/00—Roofs; Roof construction with regard to insulation
- E04B7/02—Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs
- E04B7/022—Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B7/00—Roofs; Roof construction with regard to insulation
- E04B7/08—Vaulted roofs
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B7/00—Roofs; Roof construction with regard to insulation
- E04B7/20—Roofs consisting of self-supporting slabs, e.g. able to be loaded
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/20—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
- E04C3/205—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members with apertured web, e.g. frameworks, trusses
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/02—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
- E04C3/29—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
- E04C3/293—Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C3/00—Structural elongated elements designed for load-supporting
- E04C3/30—Columns; Pillars; Struts
- E04C3/34—Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B23/00—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
- B28B23/02—Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
Definitions
- This invention is related to a building system that consists of pre-cast structural building blocks and precast or framed floor, wall and roof blocks, the combination of those blocks to create structural elements, and methods of manufacturing, assembly, disassembly and reconfiguration of those blocks.
- engineered structures are typically designed to safely resist code-specified loads without necessarily providing large reserve capacity beyond that achieved by virtue of required safety factors.
- Conventional construction generally consists either cast-in-place construction with obstructive and costly formwork, or of interconnected stick or panel framing that relies on diagonal bracing or shear walls for lateral stability. Because much of conventional construction is inherently unstable until the construction of structural diaphragms and lateral systems are complete, structural failures during the relatively brief construction period are more common than in completed buildings that stand for years of service.
- the lateral bracing and shoring that is typically required for conventional construction creates building site obstructions that contribute to many construction accidents. Because conventional construction commonly involves the field assembly of parts that can be lifted and handled by one or two workers, the construction of exterior walls and roofs generally involves a significant amount of labor far above ground level; this creates the potential for falling hazards that generate the most lethal jobsite injuries. Where conventional construction utilizes large parts, such as with tilt-wall construction, expensive crane time is typically consumed holding those parts in position while lateral shoring and bracing members and connections are installed; this is required to stabilize the part prior to releasing the hoisting lines. It is desirable to build using a system of independently stable modules that eliminate the need for temporary shoring and bracing, and that allow crane time to be utilized efficiently.
- the structural elements are typically either cast in place on site such as with flat-plate or beam and slab type of applications, prefabricated on-site such as with tilt wall construction, or prefabricated off-site such as with precast concrete planks, tees, and wall blocks.
- Most significant building structures are built based on a unique design that is the result of the work a team of design professionals; the design of a given building is generally unique to that project.
- the design of unique projects under ever-increasing time, budget, and liability pressures presents real challenges to design professionals; it also places an enormous burden on the builder that must interpret and build a unique and complex project from what will inevitably prove to be an imperfect set of drawings and specifications. It is highly desirable to introduce a building system that allows design flexibility while offering vast simplifications in both design and construction; this can be accomplished by means of an expanding kit of compatible parts.
- Tilt wall construction provides some advantage in pre-casting wall elements, but has the disadvantage of requiring the advance construction of large areas of grade-supported slab to serve as a casting surface for the wall blocks. Tilt wall construction also requires the use of temporary shoring during the assembly process to hold walls in place until additional structural elements are attached to the walls. It is desirable to provide pre-cast concrete structural elements that can be assembled into a variety of structural elements and finished buildings without the use of temporary shoring.
- Concrete building blocks such as cinder blocks are typically provided in relatively small units that require labor-intensive mortared assembly to form walls and structures. It is desirable to provide larger structural units that can be site cast in stacks or trucked to a job site and assembled together into a wide variety of structural forms without extensive use of mortar or adhesive.
- This invention provides the unexpected benefit of deliberately using a large footprint for structural modules.
- support elements such as concrete columns or steel beams have relatively small footprints to maximize usable floor space of a structure.
- blocks and structural modules with large footprints are used.
- the advantages of this approach include the ability to construct a structural frame from relatively simple planar elements that can be cast on site or efficiently manufactured under controlled conditions and shipped to the site. Much of the assembly can be done at ground level. Structural modules assembled in this manner may be erected quickly and are stable without temporary shoring. The completed frame may be disassembled quickly, and components can be reused. There is less load per area on base elements, so slab or foundation requirements are relaxed. Some applications can be assembled on grade. In many cases, the space inside the structural modules can be accessed and used effectively.
- the method and apparatus for construction described herein provides a system of precast reinforced structural building blocks that may be replicated and combined with identical blocks to form a variety of structural elements, and with modified but similar and complimentary blocks to form a complete primary structure.
- the primary structure can then be enclosed using manufactured blocks or either precast or framed construction to establish perimeter walls and roofs.
- precast elements maybe fabricated in an efficient controlled environment such as through stack casting to provide plurality of building elements which maybe configured into a wide variety of desirable structures.
- the elements that can be created by combining modular blocks include walls, portions of walls, support columns, roof trusses and completed structural frames. These building blocks may be quickly assembled at a construction site and may be supported on a concrete slab, on discreet foundations, and in some cases directly on grade. By combining individual blocks or combinations of blocks with other combinations of blocks, diverse structural frames and buildings can be quickly designed and assembled. By building using large manufactured blocks with simple bolted or interlocking connections, frames and entire buildings of this construction can also be modified or dismantled without demolition.
- FIG. 1A is an elevation view of a single block.
- FIG. 1B is an isometric view of the block of FIG. 1A.
- FIG. 2A is a perspective view of blocks being lifted by a top edge.
- FIG. 2B is a perspective view of blocks being lifted by a first edge chord and assembled on the ground.
- FIG. 3A is a front view of various block configurations
- FIG. 3B is a cross section view of a rectangular beam
- FIG. 3C is a cross section view of a six sided polygonal beam
- FIG. 4 is a front view of a variety of block shapes.
- FIG. 5A is a front view of biaxial block connection sleeves
- FIG. 5B is a perspective view of biaxial block connection sleeves
- FIG. 6 is a perspective view of a portion of the block reinforcement
- FIG. 7 is a perspective view showing the alignment and connection of blocks with biaxial sleeves.
- FIG. 8A is a detailed perspective view of a portion of a form with a sleeve receiver
- FIG. 8B is a detailed perspective view of a portion of a form with a sleeve and a sleeve receiver
- FIG. 9 is a front view of typical reinforcement for a block.
- FIG. 10A is a perspective view of a reinforcement cage step in a stack casting sequence
- FIG. 10B is a perspective view of a first level form tying step in a stack casting sequence
- FIG. 10C is a perspective view of a first level concrete cast step in a stack casting sequence
- FIG. 10D is a perspective view of an inverting forms step in a stack casting sequence
- FIG. 10E is a perspective view of a subsequent level preparation step in a stack casting sequence
- FIG. 11 is a perspective view of several block columns attached to a surface with connectors through base sleeves.
- FIG. 12 is a perspective view of pairs of blocks forming “L” shaped elements.
- FIG. 13A is a perspective view of several blocks forming a flat wall.
- FIG. 13B is a perspective view of several blocks forming a perimeter wall system of arbitrary layout
- FIG. 14 is a perspective view of several blocks forming a pilastered wall.
- FIG. 15 is a perspective view of several blocks forming a ribbed wall.
- FIG. 16 is a perspective view of several blocks forming square and rectangular box columns.
- FIG. 17 is a perspective view of box columns supporting steel floor framing blocks.
- FIG. 18 is a perspective view of a completed primary structural frame with box columns supporting roof trusses on discrete cap elements
- FIG. 19 is the frame of FIG. 18 carrying light-gage steel secondary framing
- FIG. 20A is a one-story block with cantilever chord extensions at the second level
- FIG. 20B is a two-story block with cantilever chord extensions at the second level
- FIG. 20C is a three-story block with cantilever chord extensions at the second level
- FIG. 20D shows a three-story block with a lateral bay to carry a shed roof and an omitted bottom chord for pedestrian passage
- FIG. 20E is a two-story block with an omitted bottom chord for pedestrian passage
- FIG. 20F is a three-story block with cantilever chord extensions and a sloping top chord for roof block support
- FIG. 20G is a one-story block with a sloping top chord
- FIG. 20H is a one-story block with a stepped, double-sloping top chord
- FIG. 20J is a two-story block with a stepped bottom chord to receive a dropped floor and a sloping top chord for roof block support
- FIG. 21A is a triangular block
- FIG. 21B is a wishbone spacer block for connection of two adjacent blocks into a module
- FIG. 21C is a roof truss block with a segmented arc top chord
- FIG. 21D is a bowstring truss block with a steel tie rod
- FIG. 21E is a perspective view of a corner cap block
- FIG. 21F is a view of the underside of the block shown in 21 E
- FIG. 22A is an exploded perspective view of a paired roof truss module
- FIG. 22B is an asymmetric box column
- FIG. 23A is a framed wall block with light gauge metal wall framing
- FIG. 23B is an inside view of the wall block shown in FIG. 23A
- FIG. 23C is an exterior view of three varieties of precast wall blocks that depicts a cast pattern that emulates stacked stone
- FIG. 23D is an inside view three varieties of precast wall blocks
- FIG. 23E is hinged wall blocks
- FIG. 24A is a view of the interior framework of a framed wall block
- FIG. 24B is a view of the framed wall block of FIG. 24A with inner and outer metal skins installed
- FIG. 25A is a perspective view of an assembled wall block on open box columns
- FIG. 25B is a detailed view of a hanger connection.
- FIG. 26A is a top view of precast roof blocks
- FIG. 26B is an underside view of precast roof blocks
- FIG. 27A is a perspective view of steel framing for a framed roof block
- FIG. 27B is a perspective view of a framed roof block with metal panels installed
- FIG. 27C is a detail view of a bolted connection clip
- FIG. 27D is an underside view of the completed roof block
- FIG. 28 is an assembly of a roof block on an asymmetric column
- FIG. 29A is an assembly of two box columns fitted with bolted haunches carrying floor support blocks
- FIG. 29B is three winged box columns supporting precast floor blocks
- FIG. 29C is a top view of two precast floor blocks
- FIG. 29D is an underside view of two precast floor blocks
- FIG. 30A is an exploded view of a three part precast floor block assembly
- FIG. 30B is an underside view of a precast floor block assembly
- FIG. 31A is three modules that are used to begin assembly of a structural shell
- FIG. 31B is three modules with installed floor blocks
- FIG. 31C is three modules with installed wall blocks added to the structural shell
- FIG. 31D is a completed structural shell with roof blocks
- FIG. 32A is six modules on a slab with an overhang that is used to build a structural shell
- FIG. 32B is the addition of suspended access floor blocks and paired roof truss modules
- FIG. 32C is adding the installed wall blocks, clerestory blocks, wall header blocks, and sliding door blocks
- FIG. 32D is the enclosed structural shell completed by the installation of roof blocks
- FIG. 33A is twelve box columns sitting on a slab to begin assembly of a structural shell
- FIG. 33B is a detailed view of bolted haunches
- FIG. 33C is a perspective view of box column modules carrying framed floor blocks
- FIG. 33D is a primary frame with solid cap blocks carrying tied bowstring trusses
- FIG. 33E is a near completed structure after installation of precast wall blocks, metal wall studs, and metal roof deck
- FIG. 34A is an example of a multi level structural shell with slab, box columns, various winged box columns of various heights
- FIG. 34B is an example of a multi level structural shell with the addition of cap blocks, floor modules and a hinged wall block.
- FIG. 35A is an example of walk through box columns on a slab with simple box columns at each end
- FIG. 35B is the addition of the corner cap elements and cap elements added to the walk through box columns and box columns
- FIG. 35C is the addition of wall and low roof blocks to the assembled structure
- FIG. 35D is the upper roof consisting of framed roof blocks and clerestory roof blocks
- FIG. 1A and FIG. 1B are an elevation and isometric view of a single block. It is from the geometry of this most basic block of the building system that LadderBlockTM derives its name.
- the block 10 shown is 5 feet wide, 30 feet tall, and 6 inches thick, with two edge chords 21 and 22 , and three vertical openings 41 - 43 defined by beam sections 31 - 34 .
- This block is referred to as a three-story block in this discussion.
- reinforced concrete chord sections of this embodiment are 6′′ wide by 6′′ thick, and beam sections are 12′′ deep by 6′′ thick.
- the block overall geometry, dimensions, number of openings, cross-sectional dimensions and reinforcement may each be adjusted within practical limits for a specific application.
- FIG. 2A is a perspective view of blocks 10 being lifted by a top edge 34 , such as by a crane (not shown).
- FIG. 2B is a perspective view of blocks 10 being lifted by a first edge chord 21 , and then assembled on the ground as illustrated by block 10 a being attached by a edge chord 22 to the first edge chord.
- Replication of blocks may be accomplished by stack-casting a series of blocks one on top of another, or by means of a forming system that allows rapid stripping and re-utilization of forms.
- Blocks may be site-cast on a previously built concrete floor slab, or they may be precast and shipped to the jobsite on flatbed trailers.
- Blocks are planar elements that generally consist of two or more chords with monolithically cast rigid joints at chord intersections. Chords may or may not be orthogonal to one another, and they may cantilever beyond the shape enclosed by other beams and chords as required to provide extensions for the support of foundation, floor, or roof elements. Cross-sections of block chords may also be thickened and more heavily reinforced where required by structural analysis. In addition, cross-sections of beams and chords may be modified in cross-section to be other than rectangular as shown in FIG. 3B; what is essential to permit stack-casting and stacked shipping is that elements remain planar.
- the geometry in the example embodiment provides three openings through the erected block with a horizontal clearance of 4 feet between parallel chords and a vertical clearance of 8 feet 8 inches between parallel beam elements. These clear openings are constricted by 4 inch chamfers 38 at each corner, and are intended to provide the required headroom and lateral clearance required for a person to pass through the opening with floor framing supported by the beam element below the opening.
- the base block may be modified by the introduction of additional and variously spaced beam elements as illustrated in FIG. 3A which is a front view of various block configurations 10 c - 10 g .
- the beams may be used to stiffen the block or to provide additional lines of support for secondary framing where passage through the block is not required.
- FIG. 3A illustrates variability of block height, block width, the number and location of beams in a block, and in the beam or chord cross sectional shape.
- FIG. 4 is a front view of a variety of block shapes.
- block 12 includes the addition of sloped diagonal struts 61 .
- Struts may be steel assemblies that are designed to bolt to cast-in sleeves, or they may be reinforced concrete cast monolithically with the module.
- Block 11 illustrates the use of a sloped chords 23 such as may be utilized to build a battered wall, to stiffen a block in response to high lateral forces, or to utilize a block as a long-span horizontal framing member.
- a sloped chord roof truss 13 may be formed by assembling two sloped chord blocks 11 with optional diagonal struts 61 , or may be cast as a single unit.
- the block is designed to incorporate a series of cast-in sleeves that serve a number of functions.
- sleeves are shown as 11 ⁇ 2′′ diameter steel pipe. Sleeves are intentionally oversized to provide fit-up tolerance. Threaded rod connectors that pass through the 11 ⁇ 2′′ diameter sleeves will typically be in the 3 ⁇ 4′′ to 1′′ diameter range.
- pipe sleeve lengths are 6′′ through chord sections and 12′′ through beam sections, and pairs of sleeves 101 and 102 are centered and tack-welded at 90 degrees to one another, as illustrated in FIGS. 5A and 5B, to form biaxial modular connection sleeves 100 .
- connection sleeves are positioned at modular locations within each chord element, typically centered within the reinforcement 120 as shown in FIG. 6.
- Other sleeves such as vertical sleeves 103 for attachment to a foundation, attachment of roofing elements, or attachment of shelving or flooring members are typically also included in the block reinforcement.
- the sleeve pairs are asymmetric and may be rotated 90 degrees from the left edge chord 22 to the right edge chord 21 of the block as shown by pairs of connection sleeves 105 and 106 in FIG. 7.
- the result of this rotation is that a chord sleeve at any given level will align with its counterpart in a second identical block, but it will also align with a sleeve in the 90 degree opposing face of the other chord of the second identical block.
- block 10 i is located between block 10 h , which is rotated 180 degrees with respect to block 10 i
- block 10 j which is rotated 270 degrees with respect to block 10 i .
- the sleeve pairs are symmetric so that they can be used to form modules such as paired trusses or asymmetric columns as discussed below.
- sleeves may serve a number of functions both during construction of the block and in the assembled structure. During construction of the block, sleeves serve as internal chairs to hold reinforcing steel in position.
- FIGS. 8A and 8B which are detailed perspective view of a portion of a forming system for this embodiment, form 201 incorporates a sleeve receiver 120 on its inside face that positions sleeve 100 and provides a simple method for tying the form together during casting.
- forms may also incorporate a spaced sleeve receiver that serves to position the form for a subsequent, stack-cast replication of the block.
- Sleeves also provide connection points for stripping and lifting the cast block, and for connections to and support of secondary framing in the assembled structure.
- Sleeves through beam elements provide opportunities for anchor bolt connections to the supporting structure, for the connection of intermediate levels of supported framing, and for the connection of cap elements or roof framing.
- biaxial connection sleeves are oriented to provide consistent sleeve heights at each side of the spacer block. In cases such as this the orientation of biaxial sleeves is not rotated 90 degrees between sides, but is placed consistently at both edge chords of the spacer block such as 290 in FIG. 22B.
- Biaxial modular connection sleeves allow the designer near limitless variety in the structural assemblies including wall blocks, box columns, paired blocks, and trusses that may be built into structural modules using repetitive identical elements.
- Potential configurations may include, but are not limited to, the following structural elements.
- a single block may used as a lightly loaded column and/or a pilaster for the lateral support of secondary exterior wall framing as illustrated in FIG. 11.
- a pair of blocks 10 a and 10 b may connected at 90 degrees to form an “L” shaped element as illustrated in FIG. 12.
- a series of blocks 10 m - 10 p may be interconnected, by rotating alternating blocks by 180 degrees in plan to align modular sleeves, to form a flat wall as illustrated in FIG. 13.
- a combination of blocks may also be used to construction a perimeter load-bearing wall system of arbitrary shape as illustrated in FIG. 13B.
- a similar assembly that also utilizes additional blocks 10 q - 10 r to form a pilastered wall system as illustrated in FIG. 14.
- a series of blocks 10 s - 10 v may be interconnected at 90 degree angles to one another to form a ribbed wall system as illustrated in FIG. 15.
- a rectangular or square box column 70 may be constructed from blocks 10 w - 10 z as illustrated in FIG. 16. Square box columns are formed by radial lapping of block edges, and rectangular box columns are formed by paired spacer blocks between outer blocks. Asymmetric blocks may also be used to construct asymmetric column elements 290 as illustrated by FIG. 22B.
- Biaxial sleeve connectors may be omitted in other embodiments where alternate connection means, such as mechanical interlock, are provided for the combination of blocks into structural modules and completed structures.
- Concrete cross-sections, reinforcing steel bar sizes, and tie spacing may be selected by the structural engineer on the basis of anticipated design forces for a given application.
- a block must be designed to safely resist stripping and handling forces, gravity loads, shears, lateral loads, and forces induced by the interaction of the block with other elements. This system is intended to give the design engineer flexibility in the selection of geometry, cross-sections and reinforcement as required for a specific application.
- the construction sequence for stack-cast blocks is designed to yield easily and quickly erected structures.
- sleeve assemblies may be pre-cut and tack-welded.
- FIG. 9 is a front view of typical reinforcement for a block, reinforcing steel cages 220 are tied into units using deformed bar or wire ties. The ties may be standard cross-ties or they may spiral ties 225 as shown.
- FIGS. 10 A- 10 E illustrate a stack casting procedure.
- FIG. 10A is a perspective view of a reinforcement cage step in a stack casting sequence. Reinforcing steel is spaced and held in position by the sleeve assemblies 100 , which are in turn held in position by sleeve receivers 120 mounted on the forms 201 .
- FIG. 10B is a perspective view of a first level form tying step in a stack casting sequence. After the tied cage 220 is positioned in the form 201 and 202 sleeve receivers 120 , threaded rods 210 are temporarily placed through sleeves and forms, and nuts are tightened on rods to tie the side forms together.
- FIG. 10A is a perspective view of a reinforcement cage step in a stack casting sequence. Reinforcing steel is spaced and held in position by the sleeve assemblies 100 , which are in turn held in position by sleeve receivers 120 mounted on the forms 201 .
- FIG. 10B is a perspective view of
- FIG. 10C is a perspective view of a first level concrete casting step in a stack casting sequence.
- the form set may be temporarily anchored to a casting slab or surface. Bond between the casting slab concrete and the element is prevented by use of a sheet membrane or common bond-breaker applied to the casting surface.
- FIG. 10D is a perspective view of an inverting forms step in a stack casting sequence. After casting and initial curing of the first block 240 , forms are stripped, and a bond-breaker is applied to the top surface of the cast block.
- FIG. 10E is a perspective view of a subsequent level preparation step in a stack casting sequence.
- the forming systems of this embodiment is designed to facilitate stack-casting, and can incorporate extension tabs 208 and spaced sleeve receivers 120 that allow a form section 201 , 202 to be inverted after the first cast and the spaced receiver to be “snapped” onto the cast sleeve in the first block 240 .
- This system allows multiple blocks to be stack-cast and consistently reproduced, one on top of another, quickly and easily.
- the LadderBlockTM Building System derives its name from the most basic block in the building set as shown in FIG. 1.
- the framing system consists of planar elements that form story-high rigid frames, and may be multi-story with multiple lateral cells as shown in FIGS. 20A through 20I.
- FIGS. 20A through 20I are representative shapes of planar structural blocks.
- FIG. 20A shows a simple rectangular block such as a one story block 230 which includes a top beam 34 having a cantilevered extension 50 on both sides.
- FIG. 20B shows a rectangular block with cantilevered extensions 50 from each side of an intermediate beam 32 .
- FIG. 20C shows a taller rectangular three story block 234 with cantilevered extension 50 , these cantilevered extensions typically serve as bearing supports and are designed to occupy recesses in the underside beams of interlocking floor blocks (not shown).
- FIG. 20D shows a stepped block 236 which includes a first edge chord 21 , a second edge chord 22 , an intermediate chord 23 , a first top beam 36 between the first edge chord and the intermediate chord, and a second top beam 35 between the second edge chord and the intermediate chord.
- the second top beam 35 is used to support high roof structural elements.
- the first top beam 36 is used to support a low sloped roof.
- FIG. 20E shows an open rectangular block 238 without a base beam which is omitted to allow pedestrian access without a tripping hazard.
- FIG. 20F shows rectangular element 240 which includes a sloped cantilevered extension 52 from top beam 34 . This combination of top beam 34 and extension 52 is used to support a high roof with overhang.
- FIG. 20G shows a simple block which includes a sloped top beam 34 .
- FIG. 20H shows a stepped block 244 with two sloped top beams 35 and 36 and an intermediate beam 23 .
- This top beam configuration accommodates planar roof blocks of opposing slopes and clerestory windows for natural lighting.
- FIG. 20I shows a planar block 246 with a first side edge chord 21 , an offset extension 51 , a top beam extension 52 and an intermediate beam extension 50 .
- the ends of these extensions are connected by a vertical chord 24 .
- the offset extension 51 is above the surface and in some cases it is below the surface.
- base beam 31 distributes loads to the supporting foundation
- offset extension 51 is intended to cantilever beyond the supporting foundation edge with the top of the lower extension at the same elevation as the top of slab.
- the first edge chord 21 and the second edge chord 22 may rest on a slab such that the first edge chord overhangs the slab. In other embodiments, the two edge chords may rest on discrete footings.
- FIG. 21A shows a basic triangular block 260 having a first edge chord 21 , a top beam 34 and a base beam 31 .
- FIG. 21B shows a wishbone spacer 280 having a first flange 281 and a second flange 282 .
- FIG. 21C shows a segmented arc roof truss 300 having a first edge chord 301 and a second edge chord 302 , a base beam 311 , and segmented top chords 304 , 305 , 306 , and 307 .
- the roof truss includes the notches or daps 303 which are typically used to provide a horizontal bearing surface at truss supports.
- the first edge chord 21 has an extension 28 which provides the horizontal bearing surface.
- FIG. 21D shows a tied bowstring truss 319 with a segmented arch top chord 320 , a steel tie 321 , a bearing seat 324 and a tapered key 322 .
- FIG. 21E shows a perspective view of a cap element 400 , with side beams 401 and 402 , box column split pockets 403 and 404 , with a cross beam 405 , and a tapered key receiver 406 .
- FIG. 21F shows a view of the underside of cap element 400 .
- FIG. 21G shows a corner cap element 410 incorporating a side beam 401 .
- the end 413 of a cap element is typically centered over a box column, such that the ends 412 and 413 meet over a corner box column.
- FIG. 21H shows an underside view of the corner cap element 410 .
- FIGS. 21I and 21J show top side and underside views of another embodiment cap element 409 that features simple cross beams 405 , split box column pockets 404 and box column pockets 420 that center over a box column, and cantilevered extension 422 .
- these structural blocks are typically combined into structural modules such as box column 70 as shown in FIG. 16 and other examples discussed below.
- FIG. 22A is an exploded perspective view of a paired roof truss module 440 which comprises a pair of segmented arc roof trusses 300 joined by wishbone spacers 280 .
- the segmented arc roof trusses are held in rigid parallel alignment by the wishbone spacers such that they form a laterally stable structural module that may be preassembled at ground level and hoisted into position as a unit.
- the module is assembled by a threaded connectors inserted through beam or chord elements 308 and wishbone spacer flange such as 281 .
- Other connection schemes may be used.
- FIG. 22B shows an asymmetric box column 450 formed by a pair of stepped blocks 246 , a rectangular block 248 , and a rectangular block 290 with bolted edge chord extensions 291 and 292 .
- the bolted edge chord extensions work in conjunction with edge chord extension 28 of stepped block 246 to form a keyed and bolted bearing seat for paired roof truss module 440 . This mating is shown in perspective in FIG. 28.
- One embodiment will employ at least two basic methodologies of combining structural modules to form complete building structures.
- One method as depicted in FIGS. 18 and 32B, can be characterized as base modules such as 70 and 450 supporting discrete roof blocks or modules such as 15 or 440 .
- a second method incorporates cap blocks such as 400 and 409 of FIGS. 21E and 21I spanning between and bearing on base modules to support a series of more closely spaced roof framing blocks, as shown in FIGS. 33D and 35B.
- FIG. 23A shows a framed wall block 460 with light gauge metal wall framing, an inside surface 462 and outside surface 461 .
- Metal wall blocks on both faces of the block provide finished surfaces and stressed skin panel rigidity for handling of the block.
- the use of metal panels on both faces of a wall element in an industrial building is non-obvious.
- the incorporation of the inner skin brings significant benefit by creating a stressed-skin panel that is structurally redundant and is of sufficient durability to resist lifting and handling forces on the block and to carry reactions back to discreet and simple connections, thus allowing ease and speed of assembly and disassembly. This feature enables the wholesale recycling of buildings without visits to the landfill, as well as enabling the rapid erection of quality buildings where needed, as in the case of an emergency relief shelter.
- FIG. 23B shows an inside view of the wall block shown in FIG. 23A.
- FIG. 23C shows an exterior view of three varieties of precast wall blocks 470 , 471 , and 472 , and depicts a cast pattern that emulates stacked stone.
- FIG. 23D shows an inside view of the same three blocks. These blocks feature flanges such as 473 to interlock with beam elements of the LadderBlock frame. In another embodiment, keyed interlock connections are omitted in lieu of bolted flange connections through LadderBlock sleeves.
- FIG. 23E shows hinged wall blocks 475 .
- FIG. 24A is a view of the interior framework 465 of another embodiment of a framed wall block 464 .
- the framework includes bent plate clips 466 which typically engage box column beams.
- FIG. 24B shows the framed wall block of FIG. 24A with inner and outer metal skins installed.
- FIG. 25A is a perspective view of an assembled wall block on open box columns.
- the wall block 464 may be hung on cross beams 32 of LadderBlock 248 which is part of open box column 451 .
- FIG. 25B is a detailed view of this hanger connection.
- Heavy precast wall blocks and framed wall blocks that are restrained against upward movement by roof elements may rely solely on interlock for connectivity to the base structure, but wall blocks that do not meet these criteria must be bolted to the supporting structure to ensure competence under high wind loads.
- FIG. 26A is a top view of precast roof blocks 480 and 482 .
- FIG. 26B is an underside view of those same blocks, and shows tapered beam 481 which is upslope of beam 484 . These beams serve to carry joists 483 and bear on LadderBlock module beams at bearing seats 485 . In most applications, the mass and interlock of precast roof blocks offer sufficient connection to the supporting structure such that mechanical connectors may not be required.
- FIG. 27A is a perspective view of steel framing 492 for framed roof block 490 . These lighter blocks require bolted connection clips 493 to resist wind uplift pressures; these clips are shown projecting from the underside of the framing in FIG. 27A.
- FIG. 27B shows a perspective view of framed roof block 490 with metal panels installed. As with framed wall blocks such as 460 , framed roof blocks 490 typically incorporate an inner and outer structural skin to enable lifting and handling of the block.
- FIG. 27C is a detail view of a bolted connection clip b, and FIG. 27D shows an underside view of the completed roof block 490 .
- FIG. 28 shows an assembly of a roof block 490 on an asymmetric column 450 as shown in FIG. 22B.
- the roof block is mounted on top beams 34 of stepped block 246 with bolted connection clips 493 .
- FIG. 29A shows an assembly of two box columns 70 fitted with bolted haunches 76 carrying floor support blocks 496 which in turn support framed floor blocks 494 .
- Bolted haunches 76 are shown in detail in FIG. 33B.
- FIG. 29B shows three winged box columns 74 each comprised of pair of blocks 232 and a pair of rectangular blocks 10 .
- the winged box columns are shown supporting two interlocking interior spans of precast floor block 486 and one precast floor end block 488 .
- FIG. 29C shows a top view of these two floor blocks and
- FIG. 29D shows an underside view of the same blocks.
- the beam configuration on the underside of these precast floor blocks forms receiving pockets 489 for bearing on cantilevered beam extension of blocks 232 .
- FIG. 30A is an exploded view of a three part precast floor block assembly consisting of interior block 500 , infill frame 506 , and infill plank 504 .
- FIG. 30B shows an underside view of this precast assembly installed on stepped blocks 510 .
- blocks are allowed cure until concrete has gained the necessary strength to resist lifting and handling forces.
- the initial lifting operation must break the suction and/or bond forces on the down-cast face of the element. Stripping forces can represent the most severe loading to which a block will ever be subjected.
- stripping may be accomplished by using a strong-back (as illustrated in FIG. 2B) that simultaneously lifts from several of the chord sleeves.
- a stiffened structure that is formed of interconnected blocks will be more easily erected. The risk of damage due to lifting stresses is reduced and the structural assembly is more likely to be independently stable without the need of temporary bracing.
- the weight of the example embodiment is on the order of 3,500 lb, and a four-block box column weighs 7 tons, so that only a light crane is required to lift these elements.
- base connections on a slab 50 may consist of pre-set anchor bolts or drilled and epoxy or grout-set threaded rods that pass through base sleeves 103 and are tensioned using nuts in combination with oversized washers or spreader plates.
- An erected block that has not been assembled into a structural module can be temporarily braced using diagonal struts that are perpendicular to the face of the block, by immediate connection to other stable blocks; but the preferred construction method using this system will consist of the assembly of multiple blocks into independently stable modules prior to lifting.
- temporary struts may connect using modular sleeves and temporary anchors to the slab.
- Final construction will typically employ interconnected assemblies of perpendicular blocks or lateral bracing via secondary members 52 .
- Interconnection of blocks is accomplished using washers and nuts in conjunction with standard length threaded rods that pass through modular connection sleeves.
- Secondary elements such as wall girts, roof purlins, or miscellaneous framing may be similarly connected at modular connection sleeves.
- girts and purlins are replaced with blocks of construction that are built at ground level, lifted into position with a light crane, and connected to the structural frame be means of interlocking or simple bolted or interlocking connections.
- This system is designed to allow forces to be distributed over a relatively large area at the base of a structural assembly and to receive forces from multiple sources at the top of an assembly, such as roof framing and rail beam for bridge crane carried on a single box-column assembly, while concurrently providing an element with inherent lateral stability and the potential for a flexible range of secondary functionality.
- blocks may carry intermediate floors or industrial shelves, and closed box-column sections may house storage space, mechanical rooms, restrooms, elevators or other building functions.
- the LadderBlock building system is designed to allow the economical construction of structures that can safely carry loads that are much greater than most conventional building systems are designed to carry. By building to provide structural capacities that are significantly in excess of those required to resist the minimum loads required by building codes, new opportunities are created in the functionality and versatility of the built structure. Buildings of this construction can generally carry high-load floors, support heavy hinged-panel operable walls, provide support for hoisting systems, and carry future levels of floor structure without modification to the original structure. This reserve structural capacity is achieved economically through the straight-forward, repetitive construction at ground level of identical pre-engineered blocks.
- Precast blocks are generally open frameworks with rigid joints at member intersections. They are made of structural-grade castable material such as concrete and are reinforced, such as by rebar, as indicated by an engineering analysis for a given application. Precast and framed blocks are designed to be easily interconnected to form independently stable structural modules. This enables the construction of structural modules that can be set in position with a light crane and immediately let go, without the need for installation of temporary lateral bracing prior to releasing the hoist lines, as is necessary with tilt-wall construction.
- Independent base modules are typically interconnected with roof and/or floor construction that generally consists of other pre-assembled modules that are themselves independently stable.
- the independent modules effectively create large-scale building blocks that may be erected and will stand stable without the need for temporary shoring or bracing, in contrast to conventional construction that relies on diagonal bracing or shear walls for lateral stability.
- building with large, independently stable blocks made of interconnected precast parts construction may progress much more rapidly and safely.
- the construction site can be kept clear of obstructions that contribute to many construction accidents.
- LadderBlock parts are built at ground level, and can generally be interconnected into modules at ground level, elevated work and the associated falling hazards are minimized.
- the structural redundancy provided by building with independently stable blocks should also significantly enhance the performance of the overall building if subjected to a collapse-initiating overload; redundancy is the best insurance against progressive and total collapse of a building structure.
- the supporting surface to which a structural module is tied down may consist of an underlying layer of structure or a stiffened concrete slab. In light-use, low-rise construction, the supporting surface may consist of nothing more than a level pad of compacted fill or natural soils that exhibit adequate bearing capacity and stability.
- Assemblies of blocks may be utilized for functions beyond that of the primary structural system for a building.
- Beam elements 75 and 76 between block columns, pairs, or individual blocks may be utilized to support intermediate levels of occupied floor space or large-scale industrial shelf space as illustrated in FIG. 17.
- the vertical shaft within an appropriately sized box column 70 may be utilized as the framework for an elevator, as multi-level storage closets that can be loaded with a forklift, or as a plenum for mechanical, electrical, or plumbing systems.
- assemblies of blocks can provide the required structural capacity to support bridge cranes, jib hoists, and other lifting devices without the need for additional structure.
- FIG. 18 shows a sample of a completed primary structural frame that is built using this system.
- a plurality of box columns 70 support roof trusses 15 . Additional elements such as wall blocks and roof blocks may be attached to the structural frame.
- FIG. 19 shows the frame of FIG. 18 carrying secondary framing in the form of roof purlins 18 and wall girts 19 , prior to installing remaining minor framing and the exterior skin that completes the building envelope.
- FIGS. 31A to 31 D show a sequence of assembly of an enclosed structural shell.
- three modules 520 as shown in FIG. 31A are set on a support surface, such as a compacted fill pad.
- Each of these modules 520 is comprised of stepped blocks 244 and two rectangular blocks 243 and 245 .
- the blocks are stable and self supporting when set into position, and are ready to receive floor blocks 494 and 496 as illustrated in FIG. 31B, wall blocks 522 , 524 , and 526 as illustrated in FIG. 31C, and roof blocks 528 and 529 as show in FIG. 31D.
- FIGS. 32A through 32D Another example is illustrated in FIGS. 32A through 32D.
- six modules 450 are set so that they partially overhang a slab 540 .
- FIG. 32B shows suspended access floor blocks 541 and paired roof truss modules 440 prior to installation of wall and roof blocks.
- FIG. 32C shows installed wall blocks 542 and 543 , clerestory blocks 544 , wall header blocks 545 , and sliding door blocks 546 .
- FIG. 32D shows the enclosed structural shell completed by the installation of roof blocks 550 .
- FIGS. 33A through 33E represent a structural shell of an open industrial building of box columns 70 supporting two upper levels of framed floor blocks 494 , and shows passage floor blocks 495 to receive stair units 497 .
- FIG. 33A shows the box columns erected
- FIG. 33B provides a detail view of bolted haunches
- FIG. 33C shows the box columns 70 carrying framed floor blocks 494 .
- FIG. 33D shows the primary frame with solid cap blocks 408 carrying tied bowstring trusses 319 .
- FIG. 33E shows the near completed structure after installation of precast wall blocks 552 , metal wall studs 554 , and metal roof deck 558 .
- FIGS. 34A and 34B show another example of a multi level structural shell including a slab 540 , box columns 70 , and an assortment of winged box columns of various heights 560 , 562 , and 564 .
- These box columns support floor modules 486 and 488 , and cap blocks 409 .
- the box columns also support hinged wall blocks 475 .
- FIGS. 35A though 35 D show another example of a structural shell.
- box columns 70 and asymmetric walk through box columns 580 are provided.
- the walk through box columns 580 provide walk up access to the interior of the box column to allow utilization of this space.
- the cap elements 400 and corner cap elements 410 are used to support roof trusses such as 319 .
- the asymmetric box columns 580 support concrete roof blocks 480 and 482 which provide fire resistant structure at low roofs.
- the upper roof shown in FIG. 35D consists of framed roof blocks 490 and clerestory roof blocks 499 .
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Joining Of Building Structures In Genera (AREA)
- Revetment (AREA)
- Load-Bearing And Curtain Walls (AREA)
- Panels For Use In Building Construction (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/680,939 US20040134152A1 (en) | 2002-10-08 | 2003-10-08 | Method and apparatus for precast and framed block element construction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41706502P | 2002-10-08 | 2002-10-08 | |
US10/680,939 US20040134152A1 (en) | 2002-10-08 | 2003-10-08 | Method and apparatus for precast and framed block element construction |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040134152A1 true US20040134152A1 (en) | 2004-07-15 |
Family
ID=32093957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/680,939 Abandoned US20040134152A1 (en) | 2002-10-08 | 2003-10-08 | Method and apparatus for precast and framed block element construction |
Country Status (15)
Country | Link |
---|---|
US (1) | US20040134152A1 (zh) |
EP (1) | EP1554442A2 (zh) |
JP (1) | JP2006502330A (zh) |
CN (2) | CN100532747C (zh) |
AU (1) | AU2003284022A1 (zh) |
BR (1) | BR0315163A (zh) |
CA (1) | CA2507005A1 (zh) |
EA (1) | EA006995B1 (zh) |
EG (1) | EG24128A (zh) |
MX (1) | MXPA05003704A (zh) |
NO (1) | NO20051702L (zh) |
NZ (1) | NZ539799A (zh) |
PL (1) | PL375844A1 (zh) |
WO (1) | WO2004033810A2 (zh) |
ZA (1) | ZA200503652B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007134073A2 (en) * | 2006-05-08 | 2007-11-22 | Powell David W | Construction method using precast planar frame elements |
US20090188186A1 (en) * | 2008-01-29 | 2009-07-30 | Ebanks Desmond A | Building Construction System and Structural Modules Thereof |
US20100266349A1 (en) * | 2009-02-27 | 2010-10-21 | Jennmar Corporation | Impact Resistant Lagging, Method For Designing Impact Resistant Lagging, and Apparatus for Testing Impact Resistant Lagging |
US20160340855A1 (en) * | 2009-07-15 | 2016-11-24 | Megamold Infrastructure Systems LLC | Modular construction mold apparatus and method for constructing concrete buildings and structures |
WO2019056045A1 (en) * | 2017-09-23 | 2019-03-28 | J & S Joyce Pty Ltd | IMPROVEMENTS IN THE CONSTRUCTION OF BUILDINGS |
US11214955B2 (en) | 2017-09-23 | 2022-01-04 | J & S Joyce Pty Ltd | Building construction |
US11230837B2 (en) * | 2020-04-27 | 2022-01-25 | Randall Engineered Wall Systems, Inc. | Structures for use in erecting multistory buildings and methods for making such structures |
US20220403642A1 (en) * | 2020-09-29 | 2022-12-22 | Masaomi TESHIGAWARA | Reinforced structure for column and beam frame |
US20230067627A1 (en) * | 2021-08-30 | 2023-03-02 | Andrew Wise | Suspended system with orientation control |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1015567A3 (fr) * | 2003-06-16 | 2005-06-07 | Rebuild World Rbw Sa | Element de plancher. |
US20060272267A1 (en) * | 2005-01-31 | 2006-12-07 | Javier Mentado-Duran | Concrete truss |
ES2281298B1 (es) * | 2006-03-15 | 2008-08-16 | Equipo 63, S.A. | Estructura modular. |
FR2898918A1 (fr) * | 2006-03-24 | 2007-09-28 | Destreit Olivier Sa | Edifice modulaire d'habitation |
US8371087B2 (en) * | 2006-08-28 | 2013-02-12 | Studio Dror | Folding support or frame structure |
ITBO20080360A1 (it) * | 2008-06-09 | 2009-12-10 | Cogefrin S P A | Pilastro per edilizia e metodo di messa in opera di una struttura edile comprendente lo stesso. |
GB201202273D0 (en) * | 2012-02-09 | 2012-03-28 | Modular Walling Systems Ltd | Modular construction system |
RU2641801C1 (ru) * | 2016-09-30 | 2018-01-22 | Дмитрий Константинович Сутормин | Способ возведения каркаса одноэтажного каркасного здания |
CZ2017230A3 (cs) * | 2017-04-27 | 2018-08-15 | Kryštofová Pavla | Základová prefabrikovaná tvarovka pro montované základové konstrukce staveb a základová sestava z nich vytvořená |
CN107471423A (zh) * | 2017-07-03 | 2017-12-15 | 广州容联建筑科技有限公司 | 一种钢筋混凝土梁腔体的施工方法 |
CN110076886A (zh) * | 2019-05-30 | 2019-08-02 | 甘肃新路交通工程有限公司 | 一种桥梁预制箱梁负弯矩槽口定位模板及其使用方法 |
CN112962863B (zh) * | 2021-02-08 | 2022-10-28 | 江西科技学院 | 一种半预制圈梁的施工方法及半预制圈梁结构 |
JP7372276B2 (ja) | 2021-03-18 | 2023-10-31 | ミサワホーム株式会社 | 躯体補強構造 |
CN113235446B (zh) * | 2021-05-31 | 2022-11-08 | 中建五局(烟台)建设工程有限公司 | 基于桥梁施工的整体式预制桥面附属结构构件及其制备方法 |
WO2024149433A1 (ru) * | 2023-01-12 | 2024-07-18 | Антон ИЩЕНКО | Способ быстрого строительства здания ищенко |
JP7654183B1 (ja) | 2023-09-19 | 2025-04-01 | 山口 康史 | 建築用の組立用の骨組セットの組立方法 |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1891837A (en) * | 1929-07-23 | 1932-12-20 | Vincent V Pittman | Concrete unit for wall construction |
US2080618A (en) * | 1936-02-10 | 1937-05-18 | Elwood C Madsen | Structural unit |
US2423936A (en) * | 1945-05-11 | 1947-07-15 | William P Witherow | Precast reinforced concrete member |
US2912849A (en) * | 1958-01-10 | 1959-11-17 | Kenneth C Wissinger | Precast concrete construction |
US2948995A (en) * | 1953-02-24 | 1960-08-16 | Shell Oil Co | Connections between reinforced, precast concrete structures and method of making same |
US3201907A (en) * | 1956-12-05 | 1965-08-24 | Henderson Albert | Precast segmental building units |
US3818671A (en) * | 1970-08-10 | 1974-06-25 | Ishikawajima Harima Heavy Ind | Frame structure |
US3834681A (en) * | 1972-08-17 | 1974-09-10 | Marley Co | Fireproof, prefab fill support structure for cooling tower |
US4059931A (en) * | 1976-01-29 | 1977-11-29 | Mongan William T | Building framing system for post-tensioned modular building structures |
US4219978A (en) * | 1978-08-03 | 1980-09-02 | Brown Billy R | Pre-cast reinforced concrete building panel wall structure |
US4299785A (en) * | 1979-06-20 | 1981-11-10 | Coignet S.A. | Induced draft cooling tower with improved outer support structure |
USD285586S (en) * | 1984-12-17 | 1986-09-09 | Little Tikes Company | Toy construction piece |
US5113630A (en) * | 1990-09-05 | 1992-05-19 | Rock Of Ages Corporation | Adjustable stone formed work support and method of providing same |
US5161340A (en) * | 1988-08-09 | 1992-11-10 | Pce Group Holdings Limited, A British Company | Precast concrete structures |
USD344143S (en) * | 1992-11-02 | 1994-02-08 | Bass William W | Baluster |
US5317848A (en) * | 1989-04-28 | 1994-06-07 | Abbey Jay E | Modular, precast corner panels |
US5333426A (en) * | 1993-01-06 | 1994-08-02 | Forintek Canada Corporation | Wood frame construction system with prefabricated components |
US5437135A (en) * | 1992-07-02 | 1995-08-01 | Horst Witte Entwicklungs Und Vertriebs-Kg | Diagonal strut for a system for the construction of arrangements used for mounting workpieces |
US5493836A (en) * | 1993-12-20 | 1996-02-27 | Lopez-Munoz; Humberto | Building system based upon preformed modules |
US5802780A (en) * | 1994-06-22 | 1998-09-08 | Hammerschlag; Peter G. | Construction system with pre-manufactured hole patterns |
US6014842A (en) * | 1996-12-04 | 2000-01-18 | Matsubara; Hideo | Modular units, modular structures having modular units, and method for constructing modular structures |
US6230465B1 (en) * | 1998-08-04 | 2001-05-15 | Oldcastle Precast, Inc. | Precast concrete structural modules |
US6260320B1 (en) * | 1998-06-09 | 2001-07-17 | Nick Di Lorenzo | Concrete panel construction system |
US6360320B2 (en) * | 1997-04-23 | 2002-03-19 | Sony Corporation | Information processing apparatus, information processing method, information processing system and recording medium using an apparatus id and provided license key for authentication of each information to be processed |
US20020059756A1 (en) * | 2000-01-20 | 2002-05-23 | Hideo Matsubara | Modular units, modular structures having modular units, and method for constructing modular structures |
US6698150B1 (en) * | 1998-06-09 | 2004-03-02 | Brentmuir Developments (1993) Limited | Concrete panel construction system |
USD500148S1 (en) * | 2004-03-26 | 2004-12-21 | Allwood Stillwell Stairs & Railings, Inc. | Baluster |
US7010890B2 (en) * | 2003-02-06 | 2006-03-14 | Ericksen Roed & Associates, Inc. | Precast, prestressed concrete truss |
US20060137269A1 (en) * | 2004-11-26 | 2006-06-29 | Nick Di Lorenzo | Concrete panel construction system and method of making panels |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR567451A (fr) * | 1922-06-27 | 1924-03-03 | Procédé de construction de bâtiments en béton armé | |
DE849300C (de) * | 1939-04-20 | 1952-09-15 | Wilhelm Dr-Ing Ludowici | Dachstuhl fuer Wohn- und Lagergebaeude od. dgl. |
GB567758A (en) * | 1942-06-12 | 1945-03-01 | Percy Lionel Gilbert Johnston | Improvements in or relating to building construction frames and the like |
US4144692A (en) * | 1977-05-03 | 1979-03-20 | Jonas Gerald L | Building unit |
US5671573A (en) * | 1996-04-22 | 1997-09-30 | Board Of Regents, University Of Nebraska-Lincoln | Prestressed concrete joist |
CN2315180Y (zh) * | 1997-04-04 | 1999-04-21 | 白文彪 | 混凝土墙体空心预制件 |
CN1166560A (zh) * | 1997-04-25 | 1997-12-03 | 徐光中 | 一种房屋框架式结构的施工方法及其基本构件 |
-
2003
- 2003-10-08 BR BR0315163-8A patent/BR0315163A/pt not_active IP Right Cessation
- 2003-10-08 EA EA200500622A patent/EA006995B1/ru not_active IP Right Cessation
- 2003-10-08 MX MXPA05003704A patent/MXPA05003704A/es active IP Right Grant
- 2003-10-08 ZA ZA200503652A patent/ZA200503652B/en unknown
- 2003-10-08 CN CNB2003801042976A patent/CN100532747C/zh not_active Expired - Fee Related
- 2003-10-08 CA CA002507005A patent/CA2507005A1/en not_active Abandoned
- 2003-10-08 JP JP2004543556A patent/JP2006502330A/ja active Pending
- 2003-10-08 US US10/680,939 patent/US20040134152A1/en not_active Abandoned
- 2003-10-08 AU AU2003284022A patent/AU2003284022A1/en not_active Abandoned
- 2003-10-08 EP EP03776251A patent/EP1554442A2/en not_active Withdrawn
- 2003-10-08 WO PCT/US2003/031929 patent/WO2004033810A2/en active Application Filing
- 2003-10-08 NZ NZ539799A patent/NZ539799A/en not_active IP Right Cessation
- 2003-10-08 CN CNA2008100089359A patent/CN101269521A/zh active Pending
- 2003-10-08 PL PL03375844A patent/PL375844A1/xx not_active Application Discontinuation
-
2005
- 2005-04-06 EG EGNA2005000112 patent/EG24128A/xx active
- 2005-04-06 NO NO20051702A patent/NO20051702L/no not_active Application Discontinuation
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1891837A (en) * | 1929-07-23 | 1932-12-20 | Vincent V Pittman | Concrete unit for wall construction |
US2080618A (en) * | 1936-02-10 | 1937-05-18 | Elwood C Madsen | Structural unit |
US2423936A (en) * | 1945-05-11 | 1947-07-15 | William P Witherow | Precast reinforced concrete member |
US2948995A (en) * | 1953-02-24 | 1960-08-16 | Shell Oil Co | Connections between reinforced, precast concrete structures and method of making same |
US3201907A (en) * | 1956-12-05 | 1965-08-24 | Henderson Albert | Precast segmental building units |
US2912849A (en) * | 1958-01-10 | 1959-11-17 | Kenneth C Wissinger | Precast concrete construction |
US3818671A (en) * | 1970-08-10 | 1974-06-25 | Ishikawajima Harima Heavy Ind | Frame structure |
US3834681A (en) * | 1972-08-17 | 1974-09-10 | Marley Co | Fireproof, prefab fill support structure for cooling tower |
US4059931A (en) * | 1976-01-29 | 1977-11-29 | Mongan William T | Building framing system for post-tensioned modular building structures |
US4219978A (en) * | 1978-08-03 | 1980-09-02 | Brown Billy R | Pre-cast reinforced concrete building panel wall structure |
US4299785A (en) * | 1979-06-20 | 1981-11-10 | Coignet S.A. | Induced draft cooling tower with improved outer support structure |
USD285586S (en) * | 1984-12-17 | 1986-09-09 | Little Tikes Company | Toy construction piece |
US5161340A (en) * | 1988-08-09 | 1992-11-10 | Pce Group Holdings Limited, A British Company | Precast concrete structures |
US5317848A (en) * | 1989-04-28 | 1994-06-07 | Abbey Jay E | Modular, precast corner panels |
US5113630A (en) * | 1990-09-05 | 1992-05-19 | Rock Of Ages Corporation | Adjustable stone formed work support and method of providing same |
US5437135A (en) * | 1992-07-02 | 1995-08-01 | Horst Witte Entwicklungs Und Vertriebs-Kg | Diagonal strut for a system for the construction of arrangements used for mounting workpieces |
USD344143S (en) * | 1992-11-02 | 1994-02-08 | Bass William W | Baluster |
US5333426A (en) * | 1993-01-06 | 1994-08-02 | Forintek Canada Corporation | Wood frame construction system with prefabricated components |
US5493836A (en) * | 1993-12-20 | 1996-02-27 | Lopez-Munoz; Humberto | Building system based upon preformed modules |
US5802780A (en) * | 1994-06-22 | 1998-09-08 | Hammerschlag; Peter G. | Construction system with pre-manufactured hole patterns |
US6014842A (en) * | 1996-12-04 | 2000-01-18 | Matsubara; Hideo | Modular units, modular structures having modular units, and method for constructing modular structures |
US6360320B2 (en) * | 1997-04-23 | 2002-03-19 | Sony Corporation | Information processing apparatus, information processing method, information processing system and recording medium using an apparatus id and provided license key for authentication of each information to be processed |
US6260320B1 (en) * | 1998-06-09 | 2001-07-17 | Nick Di Lorenzo | Concrete panel construction system |
US6698150B1 (en) * | 1998-06-09 | 2004-03-02 | Brentmuir Developments (1993) Limited | Concrete panel construction system |
US6230465B1 (en) * | 1998-08-04 | 2001-05-15 | Oldcastle Precast, Inc. | Precast concrete structural modules |
US20020059756A1 (en) * | 2000-01-20 | 2002-05-23 | Hideo Matsubara | Modular units, modular structures having modular units, and method for constructing modular structures |
US6609336B2 (en) * | 2000-01-20 | 2003-08-26 | Hideo Matsubara | Modular units, modular structures having modular units, and method for constructing modular structures |
US7010890B2 (en) * | 2003-02-06 | 2006-03-14 | Ericksen Roed & Associates, Inc. | Precast, prestressed concrete truss |
USD500148S1 (en) * | 2004-03-26 | 2004-12-21 | Allwood Stillwell Stairs & Railings, Inc. | Baluster |
US20060137269A1 (en) * | 2004-11-26 | 2006-06-29 | Nick Di Lorenzo | Concrete panel construction system and method of making panels |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007134073A2 (en) * | 2006-05-08 | 2007-11-22 | Powell David W | Construction method using precast planar frame elements |
WO2007134073A3 (en) * | 2006-05-08 | 2008-04-03 | David W Powell | Construction method using precast planar frame elements |
US20090188186A1 (en) * | 2008-01-29 | 2009-07-30 | Ebanks Desmond A | Building Construction System and Structural Modules Thereof |
US20100266349A1 (en) * | 2009-02-27 | 2010-10-21 | Jennmar Corporation | Impact Resistant Lagging, Method For Designing Impact Resistant Lagging, and Apparatus for Testing Impact Resistant Lagging |
US9249663B2 (en) * | 2009-02-27 | 2016-02-02 | Fci Holdings Delaware, Inc. | Impact resistant lagging, method for designing impact resistant lagging, and apparatus for testing impact resistant lagging |
US20160340855A1 (en) * | 2009-07-15 | 2016-11-24 | Megamold Infrastructure Systems LLC | Modular construction mold apparatus and method for constructing concrete buildings and structures |
AU2022259853B2 (en) * | 2017-09-23 | 2023-03-16 | J & S Joyce Pty Ltd | Improvements in Building Construction |
WO2019056045A1 (en) * | 2017-09-23 | 2019-03-28 | J & S Joyce Pty Ltd | IMPROVEMENTS IN THE CONSTRUCTION OF BUILDINGS |
AU2023203733B2 (en) * | 2017-09-23 | 2024-07-11 | J & S Joyce Pty Ltd | Improvements in building construction |
US20220098850A1 (en) * | 2017-09-23 | 2022-03-31 | J & S Joyce Pty Ltd | Building construction |
US11732460B2 (en) * | 2017-09-23 | 2023-08-22 | J & S Joyce Pty Ltd | Building construction |
AU2018337065B2 (en) * | 2017-09-23 | 2022-07-28 | J & S Joyce Pty Ltd | Improvements in building construction |
US20230124415A1 (en) * | 2017-09-23 | 2023-04-20 | J & S Joyce Pty Ltd | Building construction |
US11566412B2 (en) * | 2017-09-23 | 2023-01-31 | J & S Joyce Pty Ltd | Building construction |
US11214955B2 (en) | 2017-09-23 | 2022-01-04 | J & S Joyce Pty Ltd | Building construction |
US20220162847A1 (en) * | 2020-04-27 | 2022-05-26 | Randall Engineered Wall Systems, Inc. | Structures for Use in Erecting Multistory Buildings and Methods for Making Such Structures |
US11913217B2 (en) * | 2020-04-27 | 2024-02-27 | Randall Offsite Construction, Inc. | Structures for use in erecting multistory buildings and methods for making such structures |
US11230837B2 (en) * | 2020-04-27 | 2022-01-25 | Randall Engineered Wall Systems, Inc. | Structures for use in erecting multistory buildings and methods for making such structures |
US20220403642A1 (en) * | 2020-09-29 | 2022-12-22 | Masaomi TESHIGAWARA | Reinforced structure for column and beam frame |
US11746521B2 (en) * | 2020-09-29 | 2023-09-05 | The University Of Tokyo | Reinforced structure for column and beam frame |
US20230067627A1 (en) * | 2021-08-30 | 2023-03-02 | Andrew Wise | Suspended system with orientation control |
US11688312B2 (en) * | 2021-08-30 | 2023-06-27 | Drone Aerial Services, Llc | Suspended system with orientation control |
US12223859B2 (en) | 2021-08-30 | 2025-02-11 | Drone Aerial Services, Llc | Suspended system with orientation control |
Also Published As
Publication number | Publication date |
---|---|
NZ539799A (en) | 2008-12-24 |
CA2507005A1 (en) | 2004-04-22 |
CN100532747C (zh) | 2009-08-26 |
EG24128A (en) | 2008-07-09 |
EA200500622A1 (ru) | 2005-12-29 |
EP1554442A2 (en) | 2005-07-20 |
JP2006502330A (ja) | 2006-01-19 |
BR0315163A (pt) | 2005-08-16 |
MXPA05003704A (es) | 2005-09-30 |
ZA200503652B (en) | 2008-05-28 |
PL375844A1 (en) | 2005-12-12 |
WO2004033810A2 (en) | 2004-04-22 |
AU2003284022A1 (en) | 2004-05-04 |
EA006995B1 (ru) | 2006-06-30 |
NO20051702L (no) | 2005-05-13 |
CN1717518A (zh) | 2006-01-04 |
WO2004033810A3 (en) | 2005-01-27 |
CN101269521A (zh) | 2008-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040134152A1 (en) | Method and apparatus for precast and framed block element construction | |
US6244008B1 (en) | Lightweight floor panel | |
AU2011223504B2 (en) | Improvements in prefabricated modular building units | |
US6920728B2 (en) | Column and beam construction and method | |
US4023315A (en) | Prefabricated buildings | |
US20210025164A1 (en) | Pre-stressed intersecting modular truss and concrete decking floor system | |
US6955016B1 (en) | Structure and method for constructing building framework and concrete wall | |
US20070261335A1 (en) | Precast construction method and apparatus for variable size elevated platform | |
Ghosh et al. | Performance of precast concrete building structures | |
US20240328154A1 (en) | Primary Shell Structure Consisting of Plane Load-bearing Modules Made of Elements and Assembly Methods | |
CN107401215A (zh) | 装配式建筑及建筑方法 | |
CA2592820A1 (en) | Composite floor and composite steel stud wall construction systems | |
EA010210B1 (ru) | Многоэтажное каркасное здание | |
RU2233953C2 (ru) | Способ возведения безригельного каркаса здания методом подъема перекрытий | |
Hassler | Erecting the staggered-truss system: A view from the field | |
CN217232352U (zh) | 一种大跨度装配式组合拱形重屋盖结构 | |
WO2007134073A2 (en) | Construction method using precast planar frame elements | |
Wong | The construction of super high-rise composite structures in Hong Kong | |
WO2025063851A1 (en) | Floor slab, load-bearing structural system comprising the floor slab, and method of assembly of the system | |
JPH0352812Y2 (zh) | ||
JPH07279247A (ja) | コンクリートコア壁と鉄骨フレームからなる建築物の架構 | |
OA21321A (en) | Module for use in preparing a prefabricated structure, method for manufacturing same and transport frame. | |
JPH02120435A (ja) | 鉄骨造建築物における架構の構築方法 | |
JP2001032376A (ja) | 床スラブ用架構および躯体の構築方法 | |
Nagy | The lift‐form method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |