US20040106867A1 - Non-invasive ultrasonic body contouring - Google Patents
Non-invasive ultrasonic body contouring Download PDFInfo
- Publication number
- US20040106867A1 US20040106867A1 US10/250,955 US25095503A US2004106867A1 US 20040106867 A1 US20040106867 A1 US 20040106867A1 US 25095503 A US25095503 A US 25095503A US 2004106867 A1 US2004106867 A1 US 2004106867A1
- Authority
- US
- United States
- Prior art keywords
- adipose tissue
- ultrasonic energy
- target volume
- lysing
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000000577 adipose tissue Anatomy 0.000 claims abstract description 186
- 230000002934 lysing effect Effects 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 80
- 238000003384 imaging method Methods 0.000 claims description 24
- 210000001519 tissue Anatomy 0.000 claims description 13
- 230000009089 cytolysis Effects 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 9
- 230000004130 lipolysis Effects 0.000 description 36
- 230000001225 therapeutic effect Effects 0.000 description 8
- 238000009529 body temperature measurement Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
- A61B17/2251—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
- A61B2017/2253—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient using a coupling gel or liquid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3937—Visible markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0008—Destruction of fat cells
Definitions
- the present invention relates to lipolysis generally and more particularly to ultrasonic lipolysis.
- the present invention seeks to provide improved apparatus and methodology for ultrasonic lipolysis.
- a method for lysing adipose tissue including the steps of:
- a method for lysing adipose tissue including the steps of:
- apparatus for lysing adipose tissue including:
- a focused ultrasonic energy director directing focused ultrasonic energy at a target volume in a region of a body containing adipose tissue
- a modulator cooperating with the energy director to produce a focused ultrasonic energy so as to selectively lyse the adipose tissue in the target volume and generally not lyse non-adipose tissue in the target volume.
- apparatus for lysing adipose tissue including:
- an ultrasonic energy director which employs the ultrasonic energy to selectively generally lyse adipose tissue and generally not lyse non-adipose tissue in a target volume of a body containing adipose tissue.
- a region definer defining a region in a body at least partially by detecting spatial indications on the body
- a director directing ultrasonic energy at a multiplicity of target volumes within the region, which target volumes contain adipose tissue thereby to selectively lyse the adipose tissue in the target volumes and generally not lyse non-adipose tissue in the target volumes.
- apparatus for lysing adipose tissue including:
- a director directing ultrasonic energy at a multiplicity of target volumes within the region, which target volumes contain adipose tissue, thereby to selectively lyse the adipose tissue in the target volumes and generally not lyse non-adipose tissue in the target volumes;
- directing focused ultrasonic energy generally prevents lysis of tissue outside of the target volume.
- the method also includes ultrasonic imaging of the region at least partially concurrently with directing the focused ultrasonic energy at the target volume.
- directing includes positioning at least one ultrasonic transducer relative to the body in order to direct the focused ultrasonic energy at the target volume.
- the directing may also include varying the focus of at least one ultrasonic transducer in order to direct the focused ultrasonic energy at the target volume. Varying the focus may change the volume of the target volume, and/or the distance of the target volume from the at least one ultrasonic transducer.
- the directing may also include positioning at least one ultrasonic transducer relative to the body in order to direct the focused ultrasonic energy at the target volume.
- the method preferably also includes sensing ultrasonic energy coupling to an external surface of the body adjacent the target volume.
- the method preferably additionally includes sensing of cavitation at the target volume.
- directing takes place from an ultrasonic transducer located outside of the body.
- the ultrasonic energy has a frequency in a range of 50 KHz-1000 KHz, more preferably in a range of 100 KHz-500 KHz, and most preferably in a range of 150 KHz-300 KHz.
- the modulating provides a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
- the modulating provides between 2 and 1000 sequential cycles at an amplitude above a cavitation threshold, more preferably between 25 and 500 sequential cycles at an 15 amplitude above a cavitation threshold and most preferably between 100 and 300 sequential cycles at an amplitude above a cavitation threshold.
- the modulating includes modulating the amplitude of the ultrasonic energy over time.
- directing includes directing focused ultrasonic energy at a multiplicity of target volumes in a time sequence.
- directing includes directing focused ultrasonic energy at plural ones of the multiplicity of target volumes at times which at least partially overlap.
- At least some of the multiplicity of target volumes at least partially overlap in space.
- the method includes defining the region by marking at least one surface of the body.
- the method may also include defining the region by selecting at least one depth in the body and/or by detecting adipose tissue in the body and/or by detecting non-lysed adipose tissue.
- directing also includes defining the target volumes as unit volumes of non-lysed adipose tissue within the region.
- modulating the ultrasonic energy so as to selectively lyse the adipose tissue in the multiplicity of target volumes proceeds sequentially in time wherein selective lysis of adipose tissue in each target volume takes place only following detection of non-lysed adipose tissue therein.
- the method also includes computerized tracking of the multiplicity of target volumes notwithstanding movement of the body.
- the computerized tracking includes sensing changes in the position of markings on the body and employing sensed changes for tracking the positions of the target volumes in the body.
- the modulation provides a decreasing amplitude over time which exceeds a cavitation threshold.
- FIG. 1 is a simplified pictorial illustration of the general structure and operation of ultrasonic lipolysis apparatus constructed and operative in accordance with a preferred embodiment of the present invention
- FIG. 2 is a simplified block diagram illustration of a preferred power source and modulator showing a pattern of variation of ultrasonic pressure over time in accordance with a preferred embodiment of the present invention
- FIGS. 3A and 3B are simplified pictorial illustrations of the appearance of an operator interface display during normal operation and faulty operation respectively;
- FIG. 4 is a simplified block diagram illustration of an ultrasonic lipolysis system constructed and operative in accordance with a preferred embodiment of the present invention.
- FIGS. 5A, 5B and 5 C are together a simplified flowchart illustrating operator steps in carrying out lipolysis in accordance with a preferred embodiment of the present invention.
- the Appendix includes computer listings which, taken together, form a computational tracking functionality in accordance with a preferred software embodiment of the present invention.
- FIG. 1 is a simplified pictorial illustration of the general structure and operation of ultrasonic lipolysis apparatus constructed and operative in accordance with a preferred embodiment of the present 10 invention.
- an ultrasonic energy generator and director such as an ultrasonic transducer 10 , disposed outside a body, generates ultrasonic energy which, by suitable placement of the transducer 10 relative to the body, is directed to a target-volume 12 inside the body and is operative to selectively generally lyse adipose tissue and generally not lyse non-adipose tissue in the target volume.
- a preferred embodiment of ultrasonic energy generator and director useful in the present invention comprises an ultrasonic therapeutic transducer 13 including a curved phased array 14 of piezoelectric elements 15 , typically defining a portion of a sphere or of a cylinder, and having conductive coatings 16 on opposite surfaces thereof.
- the piezoelectric elements 15 may be of any suitable configuration, shape and distribution.
- An intermediate element 18 formed of a material, such as polyurethane, which has acoustic impedance similar to that of soft mammalian tissue, generally fills the curvature defined by phased array 14 and defines a contact surface 20 for engagement with the body, typically via a suitable coupling gel (not shown). Contact surface 20 may be planar, but need not be.
- Suitable modulated AC electrical power is supplied by conductors 22 to conductive coatings 16 to cause the piezoelectric elements 15 to provide a desired focused acoustic energy output.
- an imaging ultrasonic transducer subassembly 23 is incorporated within transducer 10 and typically comprises a piezoelectric element 24 having conductive surfaces 26 associated with opposite surfaces thereof.
- Suitably modulated AC electrical power is supplied by conductors 32 to conductive surfaces 26 in order to cause the piezoelectric element 24 to provide an acoustic energy output.
- Conductors 32 coupled to surfaces 26 , also provide an imaging output from imaging ultrasonic transducer subassembly 23 .
- ultrasonic transducers 10 may be employed.
- such transducers may include multiple piezoelectric elements, multilayered piezoelectric elements and piezoelectric elements of various shapes and sizes arranged in a phase array.
- the ultrasonic energy generator and director are combined in transducer 10 .
- the functions of generating ultrasonic energy and focusing such energy may be provided by distinct devices.
- a skin temperature sensor 34 such as an infrared sensor, may be mounted alongside imaging ultrasonic transducer subassembly 23 .
- a transducer temperature sensor 36 such as a thermocouple, may also be mounted alongside imaging ultrasonic transducer subassembly 23 .
- Ultrasonic transducer 10 preferably receives suitably modulated electrical power from a power source and modulator assembly 40 , forming part of a control subsystem 42 .
- Control subsystem 42 also typically includes a lipolysis control computer 44 , having associated therewith a camera 46 , such as a video camera, and a display 48 .
- a preferred embodiment of power source and modulator assembly 40 is illustrated in FIG. 2 and described hereinbelow.
- Ultrasonic transducer 10 is preferably positioned automatically or semi-automatically as by an X-Y-Z positioning assembly 49 . Alternatively, ultrasonic transducer 10 may be positioned at desired positions by an operator.
- camera 46 is operative for imaging a portion of the body on which lipolysis is to be performed.
- a picture of the portion of the patient's body viewed by the camera is preferably displayed in real time on display 48 .
- An operator may designate the outline of a region containing adipose tissue.
- designation of this region is effected by an operator marking the skin of a patient with an outline 50 , which outline is imaged by camera 46 and displayed by display 48 and is also employed by the lipolysis control computer 44 for controlling the application of ultrasonic energy to locations within the region.
- a computer calculated representation of the outline may also be displayed on display 48 , as designated by reference numeral 52 .
- the operator may make a virtual marking on the skin, such as by using a digitizer (not shown), which also may provide computer calculated outline representation 52 on display 48 .
- the functionality of the system of the present invention preferably also employs a plurality of markers 54 which are typically located outside the region containing adipose tissue, but may be located inside the region designated by outline 50 .
- Markers 54 are visually sensible markers, which are clearly seen by camera 46 , captured by camera 46 and displayed on display 48 .
- Markers 54 may be natural anatomic markers, such as distinct portions of the body or alternatively artificial markers such as colored stickers. These markers are preferably employed to assist the system in dealing with deformation of the region nominally defined by outline 50 due to movement and reorientation of the body.
- the transducer 10 also bears a visible marker 56 which is also captured by camera 46 and displayed on display 48 .
- Markers 54 and 56 are typically processed by computer 44 and may be displayed on display 48 as respective computed marker representations 58 and 60 on display 48 .
- FIG. 1 illustrates the transducer 10 being positioned on the body over a location within the region containing adipose tissue.
- Blocks designated by reference numerals 62 and 64 show typical portions of a region containing adipose tissue, respectively before and after lipolysis in accordance with a preferred embodiment of the invention. It is seen from a comparison of blocks 62 and 64 that, in accordance with a preferred embodiment of the present invention, within the region containing adipose tissue, the adipose tissue, designated by reference numeral 66 , is lysed, while non-adipose tissue, such as connective tissue, designated by reference numeral 68 , is not lysed.
- FIG. 2 is a simplified block diagram illustration of a preferred power source and modulator assembly 40 (FIG. 1), showing a pattern of variation of ultrasonic pressure over time in accordance with a preferred embodiment of he present invention.
- the power source and modulator assembly 40 preferably comprises a signal generator 100 which provides a time varying signal which is modulated so as to have a series of relatively high amplitude portions 102 separated in time by a series of typically relatively low amplitude portions 104 each relatively high amplitude portion 102 preferably corresponds to a cavitation period and preferably has a decreasing amplitude over time.
- the relationship between the time durations of portions 102 and portions 104 is such as to provide a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
- the output of signal generator 100 has a frequency in a range of 50 KHz-1000 KHz, more preferably between 100 KHz-500 KHz and most preferably between 150 KHz-300 KHz.
- the output of signal generator 100 is preferably provided to a suitable power amplifier 106 , which outputs via impedance matching circuitry 108 to an input of ultrasonic transducer 10 (FIG. 1), which converts the electrical signal received thereby to a corresponding ultrasonic energy output.
- the ultrasonic energy output comprises a time varying signal which is modulated correspondingly to the output of signal generator 100 so as to having a series of relatively high amplitude portions 112 , corresponding to portions 102 , separated in time by a series of typically relatively low amplitude portions 114 , corresponding to portions 104 .
- Each relatively high amplitude portion 102 preferably corresponds to a cavitation period and has an amplitude at a target volume 12 (FIG. 1) in the body which exceeds a cavitation maintaining threshold 120 and preferably has a decreasing amplitude over time. At least an initial pulse of each relatively high amplitude portion 112 has an amplitude at the target volume 12 , which also exceeds a cavitation initiation threshold 122 .
- Relatively low amplitude portions 114 have an amplitude which lies below both thresholds 120 and 122 .
- the relationship between the time durations of portions 112 and portions 114 is such as to provide a duty cycle between 1:2 and 1:250, more preferably between 1:5 and 1:30 and most preferably between 1:10 and 1:20.
- the ultrasonic energy output of ultrasonic transducer 10 has a frequency in a range of 50 KHz-1000 KHz, more preferably between 100 KHz-500 KHz and most preferably between 150 KHz-300 KHz.
- each high amplitude portion 112 is comprised of between 2 and 1000 sequential cycles at an amplitude above the cavitation maintaining threshold 120 , more preferably between 25 and 500 sequential cycles at an amplitude above the cavitation maintaining threshold 120 and most preferably between 100 and 300 sequential cycles at an amplitude above the cavitation maintaining threshold 120 .
- FIGS. 3A and 3B are simplified pictorial illustrations of the appearance of an operator interface display during normal operation and faulty operation respectively.
- display 48 typically shows a plurality of target volumes 12 (FIG. 1) within a calculated target region 200 , typically delimited by outline representation 52 (FIG. 1). Additionally, display 48 preferably provides one or more pre-programmed performance messages 202 and status messages 203 .
- target volumes 12 are shown with different shading in order to indicate their treatment status.
- unshaded target volumes here designated by reference numerals 204 have already experienced lipolysis.
- a blackened target volume 12 designated by reference numeral 205 is the target volume next in line for lipolysis.
- a partially shaded target volume 206 typically represents a target volume which has been insufficiently treated to achieve complete lipolysis, typically due to an insufficient treatment duration.
- target volumes such as those not to be treated due to insufficient presence of adipose tissue therein or for other reasons, may be designated by suitable colors or other designations, and are here indicated by reference numerals 208 and 210 .
- Typical performance messages 202 may include “CAVITATION IN PROCESS” and “FAT LYSED IN TIES VOLUME”.
- Typical status messages 203 may include an indication of the power level, the operating frequency, the number of target volumes 12 within the calculated target region 200 and the number of target volumes 12 which remain to undergo lipolysis.
- Display 48 also preferably includes an graphical cross sectional indication 212 derived from an ultrasonic image preferably provided by imaging ultrasonic transducer subassembly 23 (FIG. 1).
- Indication 212 preferably indicates various tissues in the body in cross section and shows the target volumes 12 in relation thereto. In accordance with a preferred embodiment of the present invention, indication 212 may also provide a visually sensible indication of cavitation within the target volume 12 .
- display 48 provides pre-programmed warning messages 214 .
- Typical warning messages may include “BAD ACOUSTIC CONTACT”, “TEMPERATURE TOO HIGH”.
- the “TEMPERATURE TOO HIGH” message typically relates to the skin tissue, although it may alternatively or additionally relate to other tissue inside or outside of the target volume or in transducer 10 (FIG. 1).
- FIG. 4 illustrates an ultrasonic lipolysis system constructed and operative in accordance with a preferred embodiment of the present invention.
- the ultrasonic lipolysis system comprises a lipolysis control computer 44 , which outputs to a display 48 .
- Lipolysis control computer 44 preferably receives inputs from video camera 46 (FIG. 1) and from a temperature measurement unit 300 , which receives temperature threshold settings as well as inputs from skin temperature sensor 34 (FIG. 1) and transducer temperature sensor 36 (FIG. 1).
- Temperature measurement unit 300 preferably compares the outputs of both sensors 34 and 36 with appropriate threshold settings and provides an indication to lipolysis control computer 44 of exceedance of either threshold.
- Lipolysis control computer 44 also preferably receives an input from an acoustic contact monitoring unit 302 , which in turn preferably receives an input from a transducer electrical properties measurement unit 304 .
- Transducer electrical properties measurement unit 304 preferably monitors the output of power source and modulator assembly 40 (FIG. 1) to ultrasonic therapeutic transducer 13 .
- An output of transducer electrical properties measurement unit 304 is preferably also supplied to a power meter 306 , which provides an output to the lipolysis control computer 44 and a feedback output to power source and modulator assembly 40 .
- Lipolysis control computer 44 also preferably receives inputs from cavitation detection functionality 308 , tissue layer identification functionality 310 and lysed adipose tissue identification functionality 312 , all of which receive inputs from ultrasonic reflection analysis functionality 3 14 .
- Ultrasonic reflection analysis functionality 3 14 receives ultrasonic imaging inputs from an ultrasonic imaging subsystem 3 16 , which operates ultrasonic imaging transducer 23 (FIG. 1).
- Lipolysis control computer 44 provides outputs to power source and modulator assembly 40 , for operating ultrasonic therapeutic transducer 13 , and to ultrasonic imaging subsystem 316 , for operating ultrasonic imaging transducer 23 .
- a positioning control unit 318 also receives an output from lipolysis control computer 44 for driving X-Y-Z positioning assembly 49 (FIG. 1) in order to correctly position transducer 10 , which includes ultrasonic therapeutic transducer 13 and ultrasonic 15 imaging transducer 23 .
- FIGS. 5A, 5B and 5 C are together a simplified flowchart illustrating operator steps in carrying out lipolysis in accordance with a preferred embodiment of the present invention.
- an operator preferably draws an outline 50 (FIG. 1) on a patient's body.
- the operator also adheres stereotactic markers 54 (FIG. 1) to the patient's body and places transducer 10 , bearing marker 56 , at a desired location within outline 50 .
- Camera 46 captures outline 50 and markers 54 and 56 .
- outline 50 and markers 54 and 56 are displayed on display 48 in real time.
- the output of camera 46 is also preferably supplied to a memory associated with lipolysis control computer 44 (FIG. 1).
- a computerized tracking functionality preferably embodied in lipolysis control computer 44 preferably employs the output of camera 46 for computing outline representation 52 , which may be displayed for the operator on display 48 .
- the computerized tracking functionality also preferably computes coordinates of target volumes for lipolysis treatment, as well as adding up the total volume of tissue sought to undergo lipolysis.
- the operator confirms the locations of markers 54 and 56 on display 48 and the computerized tracking functionality calculates corresponding marker representations 58 and 60 .
- the computerized tracking functionality employs markers 54 and marker representations 58 for continuously maintaining registration of outline 50 with respect to outline representation 52 , and thus of target volumes 12 with respect to the patient's body, notwithstanding movements of the patients body during treatment, such as due to breathing or any other movements, such as the patient leaving and returning to the treatment location.
- the computerized tracking functionality selects an initial target volume to be treated and positioning control unit 318 (FIG. 4), computes the required repositioning of transducer 10 .
- X-Y-Z positioning assembly 49 repositions transducer 10 to overlie the selected target volume.
- the lipolysis control computer 44 confirms accurate positioning of transducer 10 with respect to the selected target volume.
- the ultrasonic imaging subsystem 316 (FIG. 4) operates ultrasonic imaging transducer 23 , causing it to provide an ultrasonic reflection analysis functionality 3314 for analysis.
- the thicknesses of the various tissue layers of the patient are determined.
- an operator may approve the selected target volume and activates the power source and modulator assembly 40 (FIG. 1).
- Transducer electrical properties measurement unit 304 provides an output to acoustic contact monitoring unit 302 , which determines whether sufficient acoustic contact with the patient is present, preferably by analyzing the current and voltage at therapeutic transducer 13 .
- Transducer electrical properties measurement unit 304 provides an output to power meter 306 , which computes the average electrical power received by the therapeutic transducer 13 . If the average electrical power received by the therapeutic transducer 13 exceeds a predetermined threshold, operation of the power source and modulator assembly 40 may be automatically terminated.
- Skin temperature sensor 34 measures the current temperature of the skin at transducer 10 and supplies it to temperature measurement unit 300 , which compares the skin temperature to the threshold temperature.
- transducer temperature sensor 36 measures the current temperature at transducer 10 and supplies it to temperature measurement unit 300 , which compares the transducer temperature to the threshold temperature.
- the outputs of temperature measurement unit 300 are supplied to lipolysis control computer 44 .
- the ultrasonic imaging subsystem 316 operates ultrasonic imaging transducer 23 and receives an imaging output, which is analyzed by ultrasonic reflection analysis functionality 314 . The result of this analysis is employed for cavitation detection and a cavitation detection output is supplied to lipolysis control computer 44 .
- the power source and modulator assembly 40 automatically terminates operation of therapeutic transducer 13 . Should none of the following conditions occur, the automatic operation of power source and modulator assembly 40 continues:
- video camera 46 preferably records the target region and notes whether the transducer 10 remained stationary during the entire treatment duration of the selected target volume 12 . If so, and if none of the aforesaid four conditions took place, lipolysis control computer 44 confirms that the selected target volume was treated. The computerized tracking functionality of lipolysis control computer 44 then proposes a further target volume 12 to be treated.
- the selected target volume is designated by lipolysis control computer 44 as having been insufficiently treated.
- multiplicity of target volumes can be treated at various time patterns such as sequential time patterns or partially overlapping time patterns.
- multiplicity of target volumes may also overlap in space or partially overlap in space.
- the Appendix includes a software object code for the computational functionality and includes the following steps:
- PC computer such as an Intel-based Pentium III 800 MHz computer with Microsoft Windows 2000 operating system, a hard disk with a minimal capacity of 10 GB, 1 available PCI slot and a 17′′ computer screen.
- the software components of the present invention may, if desired, be implemented in ROM (read-only memory) form.
- the software components may, generally, be implemented in hardware, if desired, using conventional techniques.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Robotics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Surgical Instruments (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- External Artificial Organs (AREA)
- Control And Other Processes For Unpacking Of Materials (AREA)
- Medicinal Preparation (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/808,632 US7815570B2 (en) | 2001-01-03 | 2007-06-12 | Non-invasive ultrasonic body contouring |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/752,530 US6607498B2 (en) | 2001-01-03 | 2001-01-03 | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
US10/021,238 US7347855B2 (en) | 2001-10-29 | 2001-10-29 | Non-invasive ultrasonic body contouring |
PCT/IL2001/001220 WO2002054018A2 (fr) | 2001-01-03 | 2001-12-31 | Systeme non invasif par ultrasons permettant de definir le contour d'un corps humain |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/752,530 Continuation-In-Part US6607498B2 (en) | 2001-01-03 | 2001-01-03 | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/808,632 Continuation US7815570B2 (en) | 2001-01-03 | 2007-06-12 | Non-invasive ultrasonic body contouring |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040106867A1 true US20040106867A1 (en) | 2004-06-03 |
Family
ID=26694458
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/250,955 Abandoned US20040106867A1 (en) | 2001-01-03 | 2001-12-31 | Non-invasive ultrasonic body contouring |
US11/808,632 Expired - Fee Related US7815570B2 (en) | 2001-01-03 | 2007-06-12 | Non-invasive ultrasonic body contouring |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/808,632 Expired - Fee Related US7815570B2 (en) | 2001-01-03 | 2007-06-12 | Non-invasive ultrasonic body contouring |
Country Status (13)
Country | Link |
---|---|
US (2) | US20040106867A1 (fr) |
EP (1) | EP1362223B1 (fr) |
JP (2) | JP4727903B2 (fr) |
KR (1) | KR100948543B1 (fr) |
CN (1) | CN100370961C (fr) |
AT (1) | ATE395948T1 (fr) |
AU (1) | AU2002217412B2 (fr) |
BR (1) | BR0116707A (fr) |
CA (1) | CA2433745C (fr) |
DE (1) | DE60134177D1 (fr) |
IL (1) | IL156439A0 (fr) |
RU (1) | RU2295366C2 (fr) |
WO (1) | WO2002054018A2 (fr) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070055179A1 (en) * | 2005-09-07 | 2007-03-08 | Deem Mark E | Method for treating subcutaneous tissues |
US20070060989A1 (en) * | 2005-09-07 | 2007-03-15 | Deem Mark E | Apparatus and method for disrupting subcutaneous structures |
US20070239075A1 (en) * | 2006-02-16 | 2007-10-11 | Avner Rosenberg | Method and apparatus for treatment of adipose tissue |
US7452358B2 (en) | 1996-01-05 | 2008-11-18 | Thermage, Inc. | RF electrode assembly for handpiece |
US7473251B2 (en) | 1996-01-05 | 2009-01-06 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US20090099484A1 (en) * | 2007-10-11 | 2009-04-16 | Yehuda Zadok | Coating of polyurethane membrane |
US20100076350A1 (en) * | 2008-09-22 | 2010-03-25 | Eilaz Babaev | Methods for Treatment of Spider Veins |
US20100076349A1 (en) * | 2008-09-19 | 2010-03-25 | Eilaz Babaev | Spider Vein Treatment Apparatus |
US20100286520A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to determine mechanical properties of a target region |
US20100286518A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to deliver therapy based on user defined treatment spaces |
US20100286519A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to automatically identify and treat adipose tissue |
US8439940B2 (en) | 2010-12-22 | 2013-05-14 | Cabochon Aesthetics, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9011473B2 (en) | 2005-09-07 | 2015-04-21 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US9272124B2 (en) | 2005-12-02 | 2016-03-01 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
US9283409B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9283410B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9314368B2 (en) | 2010-01-25 | 2016-04-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods |
US9320537B2 (en) | 2004-10-06 | 2016-04-26 | Guided Therapy Systems, Llc | Methods for noninvasive skin tightening |
US9358033B2 (en) | 2005-09-07 | 2016-06-07 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US9358064B2 (en) | 2009-08-07 | 2016-06-07 | Ulthera, Inc. | Handpiece and methods for performing subcutaneous surgery |
US9375345B2 (en) | 2006-09-26 | 2016-06-28 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US9408745B2 (en) | 2007-08-21 | 2016-08-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US9427600B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9440096B2 (en) | 2004-10-06 | 2016-09-13 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
US9655770B2 (en) | 2007-07-13 | 2017-05-23 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US9737434B2 (en) | 2008-12-17 | 2017-08-22 | Zeltiq Aestehtics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US9861520B2 (en) | 2009-04-30 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US9861421B2 (en) | 2014-01-31 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US10046182B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US10046181B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US10092346B2 (en) | 2010-07-20 | 2018-10-09 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
US10383787B2 (en) | 2007-05-18 | 2019-08-20 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US10524956B2 (en) | 2016-01-07 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US10548659B2 (en) | 2006-01-17 | 2020-02-04 | Ulthera, Inc. | High pressure pre-burst for improved fluid delivery |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
US11096708B2 (en) | 2009-08-07 | 2021-08-24 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US11154418B2 (en) | 2015-10-19 | 2021-10-26 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
US11338156B2 (en) | 2004-10-06 | 2022-05-24 | Guided Therapy Systems, Llc | Noninvasive tissue tightening system |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US11395760B2 (en) | 2006-09-26 | 2022-07-26 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US11446175B2 (en) | 2018-07-31 | 2022-09-20 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US11986421B2 (en) | 2006-09-26 | 2024-05-21 | Zeltiq Aesthetics, Inc. | Cooling devices with flexible sensors |
US12070411B2 (en) | 2006-04-28 | 2024-08-27 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
JP2005530548A (ja) * | 2002-06-25 | 2005-10-13 | ウルトラシェイプ インコーポレイティド | 身体の美感に有効な装置及び方法 |
PT1603507T (pt) | 2003-03-13 | 2017-08-11 | Real Aesthetics Ltd | Tratamento da celulite por ultrassons |
US8870796B2 (en) | 2003-09-04 | 2014-10-28 | Ahof Biophysical Systems Inc. | Vibration method for clearing acute arterial thrombotic occlusions in the emergency treatment of heart attack and stroke |
EP1699407A4 (fr) * | 2003-12-30 | 2010-12-01 | Medicis Technologies Corp | Tete therapeutique a ultrasons avec commande de mouvement |
JP2007516809A (ja) | 2003-12-30 | 2007-06-28 | ライポソニックス, インコーポレイテッド | 超音波トランスデューサ構成要素 |
US20050154332A1 (en) | 2004-01-12 | 2005-07-14 | Onda | Methods and systems for removing hair using focused acoustic energy |
WO2005120373A1 (fr) * | 2004-06-11 | 2005-12-22 | Hitachi Medical Corporation | Dispositif de soins ultrasonique |
CN101146574A (zh) * | 2005-02-06 | 2008-03-19 | 超形态公司 | 非热的声波组织改变 |
US20080243035A1 (en) | 2007-03-26 | 2008-10-02 | Liposonix, Inc. | Interchangeable high intensity focused ultrasound transducer |
EP2142128B1 (fr) | 2007-04-19 | 2014-08-06 | Miramar Labs, Inc. | Systèmes pour créer un effet sur un tissu déterminé à l'aide d'une energie micro-onde |
EP2532320A3 (fr) | 2007-04-19 | 2013-04-03 | Miramar Labs, Inc. | Appareil pour réduire la production de sueur |
US20100211059A1 (en) | 2007-04-19 | 2010-08-19 | Deem Mark E | Systems and methods for creating an effect using microwave energy to specified tissue |
US20100114086A1 (en) | 2007-04-19 | 2010-05-06 | Deem Mark E | Methods, devices, and systems for non-invasive delivery of microwave therapy |
WO2009075879A1 (fr) | 2007-12-12 | 2009-06-18 | Miramar Labs, Inc. | Systèmes, appareil, procédés et procédures pour le traitement non invasif d'un tissu à l'aide d'énergie à micro-ondes |
KR100771058B1 (ko) * | 2007-05-18 | 2007-10-30 | 이희영 | 지질이 제거된 인체 부피 대체용 또는 세포 배양용 지지체및 그 제조방법 |
JP5545668B2 (ja) | 2007-12-12 | 2014-07-09 | ミラマー ラブズ, インコーポレイテッド | マイクロ波エネルギーを用いる非侵襲性組織治療のためのシステム、装置方法、および手技 |
JP5300871B2 (ja) | 2008-02-01 | 2013-09-25 | ライポソニックス, インコーポレイテッド | 超音波システムを伴う使用のための治療ヘッド |
EP2271276A4 (fr) | 2008-04-17 | 2013-01-23 | Miramar Labs Inc | Systèmes, appareil, procédés et procédures pour le traitement non invasif d'un tissu à l'aide d'une énergie micro-onde |
PT2789684T (pt) | 2008-05-23 | 2017-02-14 | Siwa Corp | Métodos e composições para facilitar a regeneração |
RU2383372C2 (ru) * | 2008-05-26 | 2010-03-10 | Нуга Медикал Ко., Лтд | Устройство для удаления жира |
US8357150B2 (en) | 2009-07-20 | 2013-01-22 | Syneron Medical Ltd. | Method and apparatus for fractional skin treatment |
KR101028805B1 (ko) * | 2009-05-13 | 2011-04-12 | 주식회사 퍼시픽시스템 | 고강도 집속 초음파 트랜스듀서의 출력 조절 방법, 고강도 집속 초음파 시스템 및 컴퓨터로 읽을 수 있는 기록 매체 |
JP5702788B2 (ja) * | 2009-09-24 | 2015-04-15 | コーニンクレッカ フィリップス エヌ ヴェ | 高強度集束超音波の位置決め機構 |
US9078594B2 (en) * | 2010-04-09 | 2015-07-14 | Hitachi, Ltd. | Ultrasound diagnostic and treatment device |
WO2011161559A1 (fr) * | 2010-06-24 | 2011-12-29 | Koninklijke Philips Electronics N.V. | Contrôle et commande en temps réel d'une thérapie par hifu en dimensions multiples |
ES2725852T3 (es) | 2010-09-27 | 2019-09-27 | Siwa Corp | Eliminación selectiva de células modificadas por AGE para el tratamiento de la aterosclerosis |
US8721571B2 (en) | 2010-11-22 | 2014-05-13 | Siwa Corporation | Selective removal of cells having accumulated agents |
US20120330284A1 (en) * | 2011-06-23 | 2012-12-27 | Elwha LLC, a limited liability corporation of the State of Delaware | Systems, devices, and methods to induce programmed cell death in adipose tissue |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
CN103028205B (zh) * | 2011-10-09 | 2016-02-17 | 北京汇福康医疗技术有限公司 | 利用超声减脂换能器的治疗装置 |
CN103028203B (zh) * | 2011-10-09 | 2016-08-31 | 北京汇福康医疗技术股份有限公司 | 超声减脂治疗头及其工作方法 |
US10779885B2 (en) | 2013-07-24 | 2020-09-22 | Miradry. Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
CN107001459B (zh) | 2014-09-19 | 2021-11-23 | Siwa有限公司 | 用于治疗炎症和自身免疫紊乱的抗age抗体 |
US9993535B2 (en) | 2014-12-18 | 2018-06-12 | Siwa Corporation | Method and composition for treating sarcopenia |
US10358502B2 (en) | 2014-12-18 | 2019-07-23 | Siwa Corporation | Product and method for treating sarcopenia |
CA3021150C (fr) | 2016-02-19 | 2023-02-07 | Siwa Corporation | Procede et composition pour traiter le cancer, detruire les cellules cancereuses metastatiques et prevenir la metastase cancereuse en utilisant des anticorps contre les produits t erminaux de glycation avancee (age) |
AU2017250301A1 (en) | 2016-04-15 | 2018-11-15 | Siwa Corporation | Anti-age antibodies for treating neurodegenerative disorders |
EP3475306A1 (fr) | 2016-06-23 | 2019-05-01 | Siwa Corporation | Vaccins pour l'utilisation dans le traitement de diverses maladies et troubles |
US10995151B1 (en) | 2017-01-06 | 2021-05-04 | Siwa Corporation | Methods and compositions for treating disease-related cachexia |
US10858449B1 (en) | 2017-01-06 | 2020-12-08 | Siwa Corporation | Methods and compositions for treating osteoarthritis |
US10961321B1 (en) | 2017-01-06 | 2021-03-30 | Siwa Corporation | Methods and compositions for treating pain associated with inflammation |
US10925937B1 (en) | 2017-01-06 | 2021-02-23 | Siwa Corporation | Vaccines for use in treating juvenile disorders associated with inflammation |
CA3059803A1 (fr) | 2017-04-13 | 2018-10-18 | Siwa Corporation | Anticorps monoclonal humanise de produit final de glycation avancee |
US11518801B1 (en) | 2017-12-22 | 2022-12-06 | Siwa Corporation | Methods and compositions for treating diabetes and diabetic complications |
US20220062660A1 (en) * | 2018-12-11 | 2022-03-03 | Ines Verner Rashkovsky | Ultrasonic system for skin-tightening or body-shaping treatment |
Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3637437A (en) * | 1970-06-03 | 1972-01-25 | Catalytic Technology Corp | Raney metal sheet material |
US3735755A (en) * | 1971-06-28 | 1973-05-29 | Interscience Research Inst | Noninvasive surgery method and apparatus |
US4043946A (en) * | 1976-07-30 | 1977-08-23 | The United States Of America As Represented By The Secretary Of The Interior | Production of supported Raney nickel catalysts by reactive diffusion |
US4049580A (en) * | 1976-07-23 | 1977-09-20 | The United States Of America As Represented By The Secretary Of The Interior | Method for producing supported Raney nickel catalyst |
US4110257A (en) * | 1977-07-01 | 1978-08-29 | The United States Of America As Represented By The United States Department Of Energy | Raney nickel catalytic device |
US4116804A (en) * | 1976-11-17 | 1978-09-26 | E. I. Du Pont De Nemours And Company | Catalytically active porous nickel electrodes |
US4126934A (en) * | 1974-02-05 | 1978-11-28 | Siemens Aktiengesellschaft | Method for the manufacture of an electrode for electrochemical cells |
US4169025A (en) * | 1976-11-17 | 1979-09-25 | E. I. Du Pont De Nemours & Company | Process for making catalytically active Raney nickel electrodes |
US4450056A (en) * | 1981-11-23 | 1984-05-22 | Olin Corporation | Raney alloy coated cathode for chlor-alkali cells |
US4605009A (en) * | 1983-04-06 | 1986-08-12 | Universite Francois Rabelais | Ultrasonic sweep echography and display endoscopic probe |
US4826799A (en) * | 1988-04-14 | 1989-05-02 | W. R. Grace & Co.-Conn. | Shaped catalyst and process for making it |
US4886491A (en) * | 1988-02-29 | 1989-12-12 | Tulio Parisi | Liposuction procedure with ultrasonic probe |
US4938216A (en) * | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Mechanically scanned line-focus ultrasound hyperthermia system |
US4986275A (en) * | 1987-08-05 | 1991-01-22 | Kabushiki Kaisha Toshiba | Ultrasonic therapy apparatus |
US5005579A (en) * | 1987-02-17 | 1991-04-09 | Richard Wolf Gmbh | Apparatus for spatial location and destruction of objects inside the body by means of ultrasound |
US5079952A (en) * | 1989-03-25 | 1992-01-14 | Poppan Printing Co. | Ultrasonic transducer assembly and ultrasonic acoustic microscope |
US5080102A (en) * | 1983-12-14 | 1992-01-14 | Edap International, S.A. | Examining, localizing and treatment with ultrasound |
US5143063A (en) * | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
US5209221A (en) * | 1988-03-01 | 1993-05-11 | Richard Wolf Gmbh | Ultrasonic treatment of pathological tissue |
US5211164A (en) * | 1987-11-10 | 1993-05-18 | Allen George S | Method of locating a target on a portion of anatomy |
US5219401A (en) * | 1989-02-21 | 1993-06-15 | Technomed Int'l | Apparatus for selective destruction of cells by implosion of gas bubbles |
US5301660A (en) * | 1992-04-16 | 1994-04-12 | Siemens Aktiengesellschaft | Therapy apparatus for treating a subject with focused acoustic waves |
US5419761A (en) * | 1993-08-03 | 1995-05-30 | Misonix, Inc. | Liposuction apparatus and associated method |
US5431621A (en) * | 1984-11-26 | 1995-07-11 | Edap International | Process and device of an anatomic anomaly by means of elastic waves, with tracking of the target and automatic triggering of the shootings |
US5507790A (en) * | 1994-03-21 | 1996-04-16 | Weiss; William V. | Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism |
US5512327A (en) * | 1993-11-11 | 1996-04-30 | Gesellschaft Fur Anlagen-Und Reaktorsicherheit (Grs) Mbh | Procedure for producing a highly porous catalyst layer consisting of a palladium or platinum alloy |
US5526815A (en) * | 1993-01-29 | 1996-06-18 | Siemens Aktiengesellschat | Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves |
US5618275A (en) * | 1995-10-27 | 1997-04-08 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
US5640371A (en) * | 1994-03-22 | 1997-06-17 | Western Atlas International, Inc. | Method and apparatus for beam steering and bessel shading of conformal array |
US5643179A (en) * | 1993-12-28 | 1997-07-01 | Kabushiki Kaisha Toshiba | Method and apparatus for ultrasonic medical treatment with optimum ultrasonic irradiation control |
US5827204A (en) * | 1996-11-26 | 1998-10-27 | Grandia; Willem | Medical noninvasive operations using focused modulated high power ultrasound |
US5884631A (en) * | 1997-04-17 | 1999-03-23 | Silberg; Barry | Body contouring technique and apparatus |
US5938608A (en) * | 1995-03-03 | 1999-08-17 | Siemens Aktiengesellschaft | Therapy apparatus for carrying out treatment with focused ultrasound |
US5944663A (en) * | 1995-04-28 | 1999-08-31 | Siemens Aktiengesellschaft | Apparatus for treatment with acoustic waves |
US5948911A (en) * | 1998-11-20 | 1999-09-07 | Cell Pathways, Inc. | Method for inhibiting neoplastic cells and related conditions by exposure to thienopyrimidine derivatives |
US5993979A (en) * | 1997-04-29 | 1999-11-30 | E. I. Du Pont De Nemours And Company | Skeletal columnar coatings |
US6038467A (en) * | 1997-01-24 | 2000-03-14 | U.S. Philips Corporation | Image display system and image guided surgery system |
US6039048A (en) * | 1998-04-08 | 2000-03-21 | Silberg; Barry | External ultrasound treatment of connective tissue |
US6071239A (en) * | 1997-10-27 | 2000-06-06 | Cribbs; Robert W. | Method and apparatus for lipolytic therapy using ultrasound energy |
US6086535A (en) * | 1995-03-31 | 2000-07-11 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparataus |
US6113558A (en) * | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US6206873B1 (en) * | 1996-02-13 | 2001-03-27 | El. En. S.P.A. | Device and method for eliminating adipose layers by means of laser energy |
US6384516B1 (en) * | 2000-01-21 | 2002-05-07 | Atl Ultrasound, Inc. | Hex packed two dimensional ultrasonic transducer arrays |
US6573213B1 (en) * | 1999-07-16 | 2003-06-03 | Degussa Ag | Metal catalysts |
US6607498B2 (en) * | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
US6645162B2 (en) * | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6684097B1 (en) * | 1999-04-22 | 2004-01-27 | University Of Miami | Intraoperative monitoring of temperature-induced tissue changes with a high-resolution digital x-ray system during thermotherapy |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4951653A (en) * | 1988-03-02 | 1990-08-28 | Laboratory Equipment, Corp. | Ultrasound brain lesioning system |
US5601526A (en) * | 1991-12-20 | 1997-02-11 | Technomed Medical Systems | Ultrasound therapy apparatus delivering ultrasound waves having thermal and cavitation effects |
IT1257200B (it) * | 1992-05-27 | 1996-01-10 | Rosso & C Snc Lica | Procedimento ed apparecchio per il trattamento cosmetico del corpo umano mediante rimozione di accumuli adiposi. |
JPH06315541A (ja) * | 1993-03-12 | 1994-11-15 | Toshiba Corp | 画像診断装置を用いた治療装置 |
US5694936A (en) * | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
US6241753B1 (en) * | 1995-05-05 | 2001-06-05 | Thermage, Inc. | Method for scar collagen formation and contraction |
RU2125863C1 (ru) * | 1995-05-18 | 1999-02-10 | Сиротин Иван Игоревич | Способ коррекции фигуры |
GB2303552A (en) * | 1995-07-24 | 1997-02-26 | Gar Investment Corp | Ultrasound apparatus for non invasive cellulite reduction |
AU5780498A (en) | 1997-05-26 | 1998-12-30 | Miwa Science Laboratory Inc. | Body fat decomposer using ultrasonic waves |
JPH11155894A (ja) | 1997-11-27 | 1999-06-15 | Toshiba Corp | 超音波治療装置及びその照射条件設定方法 |
ES2335826T3 (es) * | 1998-02-05 | 2010-04-05 | Miwa Science Laboratory Inc. | Aparato de irradiacion de ondas ultrasonicas y procedimiento de tratamiento no terapeutico. |
EP1169088A1 (fr) | 1999-03-08 | 2002-01-09 | Angiosonics Inc. | Procede et appareil de lyse a transducteur double a ultrasons |
US6595934B1 (en) * | 2000-01-19 | 2003-07-22 | Medtronic Xomed, Inc. | Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6680497B1 (en) * | 2000-09-22 | 2004-01-20 | Trw Inc. | Interstitial diffusion barrier |
US7347855B2 (en) * | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
JP2005530548A (ja) * | 2002-06-25 | 2005-10-13 | ウルトラシェイプ インコーポレイティド | 身体の美感に有効な装置及び方法 |
KR20050049199A (ko) * | 2003-11-21 | 2005-05-25 | 삼성전자주식회사 | 콤보시어터 시스템 및 그의 동작 제어방법 |
US20060241440A1 (en) * | 2005-02-07 | 2006-10-26 | Yoram Eshel | Non-thermal acoustic tissue modification |
-
2001
- 2001-12-31 IL IL15643901A patent/IL156439A0/xx unknown
- 2001-12-31 US US10/250,955 patent/US20040106867A1/en not_active Abandoned
- 2001-12-31 DE DE60134177T patent/DE60134177D1/de not_active Expired - Lifetime
- 2001-12-31 AU AU2002217412A patent/AU2002217412B2/en not_active Ceased
- 2001-12-31 CN CNB018216862A patent/CN100370961C/zh not_active Expired - Fee Related
- 2001-12-31 RU RU2003124635/14A patent/RU2295366C2/ru not_active IP Right Cessation
- 2001-12-31 KR KR1020037008983A patent/KR100948543B1/ko not_active Expired - Fee Related
- 2001-12-31 BR BR0116707-3A patent/BR0116707A/pt not_active IP Right Cessation
- 2001-12-31 AT AT01272795T patent/ATE395948T1/de not_active IP Right Cessation
- 2001-12-31 CA CA2433745A patent/CA2433745C/fr not_active Expired - Fee Related
- 2001-12-31 JP JP2002554474A patent/JP4727903B2/ja not_active Expired - Fee Related
- 2001-12-31 EP EP01272795A patent/EP1362223B1/fr not_active Expired - Lifetime
- 2001-12-31 WO PCT/IL2001/001220 patent/WO2002054018A2/fr active IP Right Grant
-
2007
- 2007-06-12 US US11/808,632 patent/US7815570B2/en not_active Expired - Fee Related
-
2008
- 2008-04-24 JP JP2008114363A patent/JP2008212708A/ja active Pending
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3637437A (en) * | 1970-06-03 | 1972-01-25 | Catalytic Technology Corp | Raney metal sheet material |
US3735755A (en) * | 1971-06-28 | 1973-05-29 | Interscience Research Inst | Noninvasive surgery method and apparatus |
US4126934A (en) * | 1974-02-05 | 1978-11-28 | Siemens Aktiengesellschaft | Method for the manufacture of an electrode for electrochemical cells |
US4049580A (en) * | 1976-07-23 | 1977-09-20 | The United States Of America As Represented By The Secretary Of The Interior | Method for producing supported Raney nickel catalyst |
US4043946A (en) * | 1976-07-30 | 1977-08-23 | The United States Of America As Represented By The Secretary Of The Interior | Production of supported Raney nickel catalysts by reactive diffusion |
US4116804A (en) * | 1976-11-17 | 1978-09-26 | E. I. Du Pont De Nemours And Company | Catalytically active porous nickel electrodes |
US4169025A (en) * | 1976-11-17 | 1979-09-25 | E. I. Du Pont De Nemours & Company | Process for making catalytically active Raney nickel electrodes |
US4110257A (en) * | 1977-07-01 | 1978-08-29 | The United States Of America As Represented By The United States Department Of Energy | Raney nickel catalytic device |
US4450056A (en) * | 1981-11-23 | 1984-05-22 | Olin Corporation | Raney alloy coated cathode for chlor-alkali cells |
US4605009A (en) * | 1983-04-06 | 1986-08-12 | Universite Francois Rabelais | Ultrasonic sweep echography and display endoscopic probe |
US5111822A (en) * | 1983-12-14 | 1992-05-12 | Edap International, S.A. | Piezoelectric article |
US5143073A (en) * | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
US5080102A (en) * | 1983-12-14 | 1992-01-14 | Edap International, S.A. | Examining, localizing and treatment with ultrasound |
US5431621A (en) * | 1984-11-26 | 1995-07-11 | Edap International | Process and device of an anatomic anomaly by means of elastic waves, with tracking of the target and automatic triggering of the shootings |
US5005579A (en) * | 1987-02-17 | 1991-04-09 | Richard Wolf Gmbh | Apparatus for spatial location and destruction of objects inside the body by means of ultrasound |
US4986275A (en) * | 1987-08-05 | 1991-01-22 | Kabushiki Kaisha Toshiba | Ultrasonic therapy apparatus |
US5211164A (en) * | 1987-11-10 | 1993-05-18 | Allen George S | Method of locating a target on a portion of anatomy |
US5143063A (en) * | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
US4886491A (en) * | 1988-02-29 | 1989-12-12 | Tulio Parisi | Liposuction procedure with ultrasonic probe |
US5209221A (en) * | 1988-03-01 | 1993-05-11 | Richard Wolf Gmbh | Ultrasonic treatment of pathological tissue |
US4826799A (en) * | 1988-04-14 | 1989-05-02 | W. R. Grace & Co.-Conn. | Shaped catalyst and process for making it |
US4938216A (en) * | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Mechanically scanned line-focus ultrasound hyperthermia system |
US5219401A (en) * | 1989-02-21 | 1993-06-15 | Technomed Int'l | Apparatus for selective destruction of cells by implosion of gas bubbles |
US5079952A (en) * | 1989-03-25 | 1992-01-14 | Poppan Printing Co. | Ultrasonic transducer assembly and ultrasonic acoustic microscope |
US5301660A (en) * | 1992-04-16 | 1994-04-12 | Siemens Aktiengesellschaft | Therapy apparatus for treating a subject with focused acoustic waves |
US5526815A (en) * | 1993-01-29 | 1996-06-18 | Siemens Aktiengesellschat | Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves |
US5419761A (en) * | 1993-08-03 | 1995-05-30 | Misonix, Inc. | Liposuction apparatus and associated method |
US5512327A (en) * | 1993-11-11 | 1996-04-30 | Gesellschaft Fur Anlagen-Und Reaktorsicherheit (Grs) Mbh | Procedure for producing a highly porous catalyst layer consisting of a palladium or platinum alloy |
US5643179A (en) * | 1993-12-28 | 1997-07-01 | Kabushiki Kaisha Toshiba | Method and apparatus for ultrasonic medical treatment with optimum ultrasonic irradiation control |
US5507790A (en) * | 1994-03-21 | 1996-04-16 | Weiss; William V. | Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism |
US5640371A (en) * | 1994-03-22 | 1997-06-17 | Western Atlas International, Inc. | Method and apparatus for beam steering and bessel shading of conformal array |
US5938608A (en) * | 1995-03-03 | 1999-08-17 | Siemens Aktiengesellschaft | Therapy apparatus for carrying out treatment with focused ultrasound |
US6086535A (en) * | 1995-03-31 | 2000-07-11 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparataus |
US5944663A (en) * | 1995-04-28 | 1999-08-31 | Siemens Aktiengesellschaft | Apparatus for treatment with acoustic waves |
US5618275A (en) * | 1995-10-27 | 1997-04-08 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
US6206873B1 (en) * | 1996-02-13 | 2001-03-27 | El. En. S.P.A. | Device and method for eliminating adipose layers by means of laser energy |
US5827204A (en) * | 1996-11-26 | 1998-10-27 | Grandia; Willem | Medical noninvasive operations using focused modulated high power ultrasound |
US6038467A (en) * | 1997-01-24 | 2000-03-14 | U.S. Philips Corporation | Image display system and image guided surgery system |
US5884631A (en) * | 1997-04-17 | 1999-03-23 | Silberg; Barry | Body contouring technique and apparatus |
US5993979A (en) * | 1997-04-29 | 1999-11-30 | E. I. Du Pont De Nemours And Company | Skeletal columnar coatings |
US6113558A (en) * | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US6071239A (en) * | 1997-10-27 | 2000-06-06 | Cribbs; Robert W. | Method and apparatus for lipolytic therapy using ultrasound energy |
US6039048A (en) * | 1998-04-08 | 2000-03-21 | Silberg; Barry | External ultrasound treatment of connective tissue |
US5948911A (en) * | 1998-11-20 | 1999-09-07 | Cell Pathways, Inc. | Method for inhibiting neoplastic cells and related conditions by exposure to thienopyrimidine derivatives |
US6684097B1 (en) * | 1999-04-22 | 2004-01-27 | University Of Miami | Intraoperative monitoring of temperature-induced tissue changes with a high-resolution digital x-ray system during thermotherapy |
US6573213B1 (en) * | 1999-07-16 | 2003-06-03 | Degussa Ag | Metal catalysts |
US6747180B2 (en) * | 1999-07-16 | 2004-06-08 | Degussa Ag | Metal catalysts |
US6384516B1 (en) * | 2000-01-21 | 2002-05-07 | Atl Ultrasound, Inc. | Hex packed two dimensional ultrasonic transducer arrays |
US6645162B2 (en) * | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6607498B2 (en) * | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7452358B2 (en) | 1996-01-05 | 2008-11-18 | Thermage, Inc. | RF electrode assembly for handpiece |
US7473251B2 (en) | 1996-01-05 | 2009-01-06 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10328289B2 (en) | 2004-09-24 | 2019-06-25 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11590370B2 (en) | 2004-09-24 | 2023-02-28 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US10245450B2 (en) | 2004-10-06 | 2019-04-02 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US10525288B2 (en) | 2004-10-06 | 2020-01-07 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10532230B2 (en) | 2004-10-06 | 2020-01-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US10046181B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US10046182B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9533175B2 (en) | 2004-10-06 | 2017-01-03 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11717707B2 (en) | 2004-10-06 | 2023-08-08 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US11697033B2 (en) | 2004-10-06 | 2023-07-11 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US10010726B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10010721B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US9833639B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US10010725B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US10010724B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11400319B2 (en) | 2004-10-06 | 2022-08-02 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US10252086B2 (en) | 2004-10-06 | 2019-04-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10603523B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Ultrasound probe for tissue treatment |
US11338156B2 (en) | 2004-10-06 | 2022-05-24 | Guided Therapy Systems, Llc | Noninvasive tissue tightening system |
US10603519B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11235180B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10888718B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10238894B2 (en) | 2004-10-06 | 2019-03-26 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US10610705B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US9283409B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9522290B2 (en) | 2004-10-06 | 2016-12-20 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US11207547B2 (en) | 2004-10-06 | 2021-12-28 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9827450B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US10610706B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10265550B2 (en) | 2004-10-06 | 2019-04-23 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US9833640B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment of skin |
US9283410B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US11179580B2 (en) | 2004-10-06 | 2021-11-23 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9320537B2 (en) | 2004-10-06 | 2016-04-26 | Guided Therapy Systems, Llc | Methods for noninvasive skin tightening |
US9713731B2 (en) | 2004-10-06 | 2017-07-25 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11167155B2 (en) | 2004-10-06 | 2021-11-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US9707412B2 (en) | 2004-10-06 | 2017-07-18 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US9694211B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US9427600B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9440096B2 (en) | 2004-10-06 | 2016-09-13 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US10888717B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US10960236B2 (en) | 2004-10-06 | 2021-03-30 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10888716B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9005229B2 (en) | 2005-09-07 | 2015-04-14 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US20070055181A1 (en) * | 2005-09-07 | 2007-03-08 | Deem Mark E | Apparatus for treating subcutaneous tissues |
US20070055180A1 (en) * | 2005-09-07 | 2007-03-08 | Mark Deem | System for treating subcutaneous tissues |
US20070060989A1 (en) * | 2005-09-07 | 2007-03-15 | Deem Mark E | Apparatus and method for disrupting subcutaneous structures |
US9364246B2 (en) | 2005-09-07 | 2016-06-14 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9358033B2 (en) | 2005-09-07 | 2016-06-07 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US8366643B2 (en) | 2005-09-07 | 2013-02-05 | Cabochon Aesthetics, Inc. | System and method for treating subcutaneous tissues |
US20070055179A1 (en) * | 2005-09-07 | 2007-03-08 | Deem Mark E | Method for treating subcutaneous tissues |
US7967763B2 (en) | 2005-09-07 | 2011-06-28 | Cabochon Aesthetics, Inc. | Method for treating subcutaneous tissues |
US9179928B2 (en) | 2005-09-07 | 2015-11-10 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7588547B2 (en) | 2005-09-07 | 2009-09-15 | Cabochon Aesthetics, Inc. | Methods and system for treating subcutaneous tissues |
US9011473B2 (en) | 2005-09-07 | 2015-04-21 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7601128B2 (en) | 2005-09-07 | 2009-10-13 | Cabochon Aesthetics, Inc. | Apparatus for treating subcutaneous tissues |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US9272124B2 (en) | 2005-12-02 | 2016-03-01 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
US10548659B2 (en) | 2006-01-17 | 2020-02-04 | Ulthera, Inc. | High pressure pre-burst for improved fluid delivery |
US20070239075A1 (en) * | 2006-02-16 | 2007-10-11 | Avner Rosenberg | Method and apparatus for treatment of adipose tissue |
US8133191B2 (en) | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
US12070411B2 (en) | 2006-04-28 | 2024-08-27 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US11179269B2 (en) | 2006-09-26 | 2021-11-23 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US11986421B2 (en) | 2006-09-26 | 2024-05-21 | Zeltiq Aesthetics, Inc. | Cooling devices with flexible sensors |
US11219549B2 (en) | 2006-09-26 | 2022-01-11 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US11395760B2 (en) | 2006-09-26 | 2022-07-26 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US9375345B2 (en) | 2006-09-26 | 2016-06-28 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US10292859B2 (en) | 2006-09-26 | 2019-05-21 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US11291606B2 (en) | 2007-05-18 | 2022-04-05 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
US10383787B2 (en) | 2007-05-18 | 2019-08-20 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
US9655770B2 (en) | 2007-07-13 | 2017-05-23 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US11583438B1 (en) | 2007-08-21 | 2023-02-21 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US10675178B2 (en) | 2007-08-21 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US9408745B2 (en) | 2007-08-21 | 2016-08-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US10220122B2 (en) | 2007-10-09 | 2019-03-05 | Ulthera, Inc. | System for tissue dissection and aspiration |
US9039722B2 (en) | 2007-10-09 | 2015-05-26 | Ulthera, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US20090099484A1 (en) * | 2007-10-11 | 2009-04-16 | Yehuda Zadok | Coating of polyurethane membrane |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US11123039B2 (en) | 2008-06-06 | 2021-09-21 | Ulthera, Inc. | System and method for ultrasound treatment |
US11723622B2 (en) | 2008-06-06 | 2023-08-15 | Ulthera, Inc. | Systems for ultrasound treatment |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US20100076349A1 (en) * | 2008-09-19 | 2010-03-25 | Eilaz Babaev | Spider Vein Treatment Apparatus |
US8323220B2 (en) * | 2008-09-19 | 2012-12-04 | Eilaz Babaev | Spider vein treatment apparatus |
US20100076350A1 (en) * | 2008-09-22 | 2010-03-25 | Eilaz Babaev | Methods for Treatment of Spider Veins |
US8376969B2 (en) * | 2008-09-22 | 2013-02-19 | Bacoustics, Llc | Methods for treatment of spider veins |
US9737434B2 (en) | 2008-12-17 | 2017-08-22 | Zeltiq Aestehtics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
US11224536B2 (en) | 2009-04-30 | 2022-01-18 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US9861520B2 (en) | 2009-04-30 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US11452634B2 (en) | 2009-04-30 | 2022-09-27 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US20100286520A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to determine mechanical properties of a target region |
US20100286518A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to deliver therapy based on user defined treatment spaces |
US20100286519A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to automatically identify and treat adipose tissue |
US9757145B2 (en) | 2009-08-07 | 2017-09-12 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US8906054B2 (en) | 2009-08-07 | 2014-12-09 | Ulthera, Inc. | Apparatus for reducing the appearance of cellulite |
US9358064B2 (en) | 2009-08-07 | 2016-06-07 | Ulthera, Inc. | Handpiece and methods for performing subcutaneous surgery |
US10271866B2 (en) | 2009-08-07 | 2019-04-30 | Ulthera, Inc. | Modular systems for treating tissue |
US8894678B2 (en) | 2009-08-07 | 2014-11-25 | Ulthera, Inc. | Cellulite treatment methods |
US8900261B2 (en) | 2009-08-07 | 2014-12-02 | Ulthera, Inc. | Tissue treatment system for reducing the appearance of cellulite |
US11337725B2 (en) | 2009-08-07 | 2022-05-24 | Ulthera, Inc. | Handpieces for tissue treatment |
US9078688B2 (en) | 2009-08-07 | 2015-07-14 | Ulthera, Inc. | Handpiece for use in tissue dissection |
US8900262B2 (en) | 2009-08-07 | 2014-12-02 | Ulthera, Inc. | Device for dissection of subcutaneous tissue |
US10485573B2 (en) | 2009-08-07 | 2019-11-26 | Ulthera, Inc. | Handpieces for tissue treatment |
US9510849B2 (en) | 2009-08-07 | 2016-12-06 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US8920452B2 (en) | 2009-08-07 | 2014-12-30 | Ulthera, Inc. | Methods of tissue release to reduce the appearance of cellulite |
US11096708B2 (en) | 2009-08-07 | 2021-08-24 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US8979881B2 (en) | 2009-08-07 | 2015-03-17 | Ulthera, Inc. | Methods and handpiece for use in tissue dissection |
US10531888B2 (en) | 2009-08-07 | 2020-01-14 | Ulthera, Inc. | Methods for efficiently reducing the appearance of cellulite |
US9044259B2 (en) | 2009-08-07 | 2015-06-02 | Ulthera, Inc. | Methods for dissection of subcutaneous tissue |
US9314368B2 (en) | 2010-01-25 | 2016-04-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods |
US9844461B2 (en) | 2010-01-25 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
US10603066B2 (en) | 2010-05-25 | 2020-03-31 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US10092346B2 (en) | 2010-07-20 | 2018-10-09 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
US8439940B2 (en) | 2010-12-22 | 2013-05-14 | Cabochon Aesthetics, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US11213618B2 (en) | 2010-12-22 | 2022-01-04 | Ulthera, Inc. | System for tissue dissection and aspiration |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9802063B2 (en) | 2012-09-21 | 2017-10-31 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11517772B2 (en) | 2013-03-08 | 2022-12-06 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11969609B2 (en) | 2013-03-08 | 2024-04-30 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
US10201380B2 (en) | 2014-01-31 | 2019-02-12 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US10806500B2 (en) | 2014-01-31 | 2020-10-20 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US11819257B2 (en) | 2014-01-31 | 2023-11-21 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US10575890B2 (en) | 2014-01-31 | 2020-03-03 | Zeltiq Aesthetics, Inc. | Treatment systems and methods for affecting glands and other targeted structures |
US9861421B2 (en) | 2014-01-31 | 2018-01-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US10912599B2 (en) | 2014-01-31 | 2021-02-09 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
US11351401B2 (en) | 2014-04-18 | 2022-06-07 | Ulthera, Inc. | Band transducer ultrasound therapy |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
US11154418B2 (en) | 2015-10-19 | 2021-10-26 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US10524956B2 (en) | 2016-01-07 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US11446175B2 (en) | 2018-07-31 | 2022-09-20 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
US12102557B2 (en) | 2018-07-31 | 2024-10-01 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
Also Published As
Publication number | Publication date |
---|---|
RU2003124635A (ru) | 2005-01-27 |
JP2004522492A (ja) | 2004-07-29 |
BR0116707A (pt) | 2005-08-16 |
AU2002217412B2 (en) | 2006-09-14 |
CN1484520A (zh) | 2004-03-24 |
IL156439A0 (en) | 2004-01-04 |
US7815570B2 (en) | 2010-10-19 |
EP1362223A2 (fr) | 2003-11-19 |
KR100948543B1 (ko) | 2010-03-18 |
CN100370961C (zh) | 2008-02-27 |
ATE395948T1 (de) | 2008-06-15 |
US20080281201A1 (en) | 2008-11-13 |
DE60134177D1 (de) | 2008-07-03 |
EP1362223A4 (fr) | 2005-07-06 |
CA2433745A1 (fr) | 2002-07-11 |
EP1362223B1 (fr) | 2008-05-21 |
JP2008212708A (ja) | 2008-09-18 |
JP4727903B2 (ja) | 2011-07-20 |
WO2002054018A2 (fr) | 2002-07-11 |
HK1064277A1 (zh) | 2005-01-28 |
WO2002054018A3 (fr) | 2003-09-18 |
CA2433745C (fr) | 2014-04-01 |
RU2295366C2 (ru) | 2007-03-20 |
KR20040015045A (ko) | 2004-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040106867A1 (en) | Non-invasive ultrasonic body contouring | |
US7875023B2 (en) | Non-invasive ultrasonic body contouring | |
US7331951B2 (en) | Devices and methodologies useful in body aesthetics | |
US20130310714A1 (en) | Non-Thermal Acoustic Tissue Modification | |
AU2007200712B2 (en) | Lesion assessment by pacing | |
CN101146574A (zh) | 非热的声波组织改变 | |
KR20120087962A (ko) | 초음파 신장 신경차단술을 통한 고혈압의 비-침습적 치료를 위한 방법 및 장치 | |
EP2844342A2 (fr) | Affichage vidéographique d'un traitement médical en temps réel | |
US12121305B2 (en) | Methods and systems for controlling cooperative surgical instruments with variable surgical site access trajectories | |
IL156439A (en) | Non-invasive ultrasonic body contouring | |
HK1064277B (en) | Apparatus for lysing adipose tissue | |
EP3725257A1 (fr) | Marqueur de tissu électroluminescent actionné par la lumière |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ULTRASHAPE INC., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESHEL, YORAM;VITSNUDEL, ILIA;REEL/FRAME:014841/0173 Effective date: 20031007 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |