US20030216294A1 - Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor - Google Patents
Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor Download PDFInfo
- Publication number
- US20030216294A1 US20030216294A1 US10/456,371 US45637103A US2003216294A1 US 20030216294 A1 US20030216294 A1 US 20030216294A1 US 45637103 A US45637103 A US 45637103A US 2003216294 A1 US2003216294 A1 US 2003216294A1
- Authority
- US
- United States
- Prior art keywords
- sulfonylurea
- atp channel
- channel blocker
- inhibitor
- phosphodiesterase type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940100389 Sulfonylurea Drugs 0.000 title claims abstract description 132
- BNYHRGTXRPWASY-UHFFFAOYSA-N nonylsulfonylurea Chemical compound CCCCCCCCCS(=O)(=O)NC(N)=O BNYHRGTXRPWASY-UHFFFAOYSA-N 0.000 title claims abstract description 120
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 230000002195 synergetic effect Effects 0.000 title claims abstract description 34
- 239000003112 inhibitor Substances 0.000 title claims description 23
- 101001098806 Dictyostelium discoideum cGMP-specific 3',5'-cGMP phosphodiesterase 3 Proteins 0.000 title 1
- 102000001707 3',5'-Cyclic-AMP Phosphodiesterases Human genes 0.000 claims abstract description 107
- 108010054479 3',5'-Cyclic-AMP Phosphodiesterases Proteins 0.000 claims abstract description 107
- 150000001875 compounds Chemical class 0.000 claims abstract description 105
- 239000002570 phosphodiesterase III inhibitor Substances 0.000 claims abstract description 100
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 60
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 42
- 208000011580 syndromic disease Diseases 0.000 claims abstract description 32
- 208000002705 Glucose Intolerance Diseases 0.000 claims abstract description 31
- 206010022489 Insulin Resistance Diseases 0.000 claims abstract description 31
- 201000010065 polycystic ovary syndrome Diseases 0.000 claims abstract description 31
- 201000009104 prediabetes syndrome Diseases 0.000 claims abstract description 31
- 208000002177 Cataract Diseases 0.000 claims abstract description 30
- 201000001421 hyperglycemia Diseases 0.000 claims abstract description 30
- 208000007342 Diabetic Nephropathies Diseases 0.000 claims abstract description 28
- 208000032131 Diabetic Neuropathies Diseases 0.000 claims abstract description 28
- 208000033679 diabetic kidney disease Diseases 0.000 claims abstract description 28
- 208000032781 Diabetic cardiomyopathy Diseases 0.000 claims abstract description 27
- 206010012689 Diabetic retinopathy Diseases 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims description 43
- 229960004580 glibenclamide Drugs 0.000 claims description 29
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 claims description 29
- 229960003574 milrinone Drugs 0.000 claims description 24
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 claims description 24
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 23
- 239000003288 aldose reductase inhibitor Substances 0.000 claims description 19
- -1 bemorandan Chemical compound 0.000 claims description 19
- 229940090865 aldose reductase inhibitors used in diabetes Drugs 0.000 claims description 14
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 claims description 12
- 239000005557 antagonist Substances 0.000 claims description 11
- 102000004877 Insulin Human genes 0.000 claims description 10
- 108090001061 Insulin Proteins 0.000 claims description 10
- YASAKCUCGLMORW-UHFFFAOYSA-N Rosiglitazone Chemical compound C=1C=CC=NC=1N(C)CCOC(C=C1)=CC=C1CC1SC(=O)NC1=O YASAKCUCGLMORW-UHFFFAOYSA-N 0.000 claims description 10
- 229940125396 insulin Drugs 0.000 claims description 10
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- FOZFSEMFCIPOSZ-SPCKQMHLSA-N (2r,3r,4r,5s)-2-(hydroxymethyl)-1-[[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-methoxyoxan-2-yl]methyl]piperidine-3,4,5-triol;trihydrate Chemical compound O.O.O.O[C@H]1[C@H](O)[C@@H](O)[C@@H](OC)O[C@@H]1CN1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)C1.O[C@H]1[C@H](O)[C@@H](O)[C@@H](OC)O[C@@H]1CN1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)C1 FOZFSEMFCIPOSZ-SPCKQMHLSA-N 0.000 claims description 8
- 239000000556 agonist Substances 0.000 claims description 7
- 229940123208 Biguanide Drugs 0.000 claims description 6
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 claims description 6
- 101800004266 Glucagon-like peptide 1(7-37) Proteins 0.000 claims description 6
- 150000004283 biguanides Chemical class 0.000 claims description 6
- OELFLUMRDSZNSF-BRWVUGGUSA-N nateglinide Chemical compound C1C[C@@H](C(C)C)CC[C@@H]1C(=O)N[C@@H](C(O)=O)CC1=CC=CC=C1 OELFLUMRDSZNSF-BRWVUGGUSA-N 0.000 claims description 5
- 229960005095 pioglitazone Drugs 0.000 claims description 5
- 229960004586 rosiglitazone Drugs 0.000 claims description 5
- GXPHKUHSUJUWKP-UHFFFAOYSA-N troglitazone Chemical compound C1CC=2C(C)=C(O)C(C)=C(C)C=2OC1(C)COC(C=C1)=CC=C1CC1SC(=O)NC1=O GXPHKUHSUJUWKP-UHFFFAOYSA-N 0.000 claims description 5
- 229960001641 troglitazone Drugs 0.000 claims description 5
- GXPHKUHSUJUWKP-NTKDMRAZSA-N troglitazone Natural products C([C@@]1(OC=2C(C)=C(C(=C(C)C=2CC1)O)C)C)OC(C=C1)=CC=C1C[C@H]1SC(=O)NC1=O GXPHKUHSUJUWKP-NTKDMRAZSA-N 0.000 claims description 5
- DBGIVFWFUFKIQN-UHFFFAOYSA-N (+-)-Fenfluramine Chemical compound CCNC(C)CC1=CC=CC(C(F)(F)F)=C1 DBGIVFWFUFKIQN-UHFFFAOYSA-N 0.000 claims description 4
- DZLOHEOHWICNIL-QGZVFWFLSA-N (2R)-2-[6-(4-chlorophenoxy)hexyl]-2-oxiranecarboxylic acid ethyl ester Chemical compound C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)OCC)CO1 DZLOHEOHWICNIL-QGZVFWFLSA-N 0.000 claims description 4
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 claims description 4
- JOBIFMUBWMXUJJ-XFMZQWNHSA-L (2r)-2-amino-3-(octylamino)-3-oxopropane-1-thiolate;oxovanadium(2+) Chemical compound [V+2]=O.CCCCCCCCNC(=O)[C@@H](N)C[S-].CCCCCCCCNC(=O)[C@@H](N)C[S-] JOBIFMUBWMXUJJ-XFMZQWNHSA-L 0.000 claims description 4
- JAKAFSGZUXCHLF-LSCFUAHRSA-N (2r,3r,4r,5r)-5-[6-(cyclohexylamino)purin-9-yl]-2-(hydroxymethyl)-4-methoxyoxolan-3-ol Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(NC3CCCCC3)=C2N=C1 JAKAFSGZUXCHLF-LSCFUAHRSA-N 0.000 claims description 4
- VCIPQQCYKMORDY-KBYFLBCBSA-N (2r,3r,4s,5s,6r)-2-(hydroxymethyl)-6-[[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]piperidine-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)N[C@@H]1CO[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 VCIPQQCYKMORDY-KBYFLBCBSA-N 0.000 claims description 4
- OPPLDIXFHYTSSR-GLECISQGSA-N (ne)-n-(1-methylpyrrolidin-2-ylidene)-n'-phenylmorpholine-4-carboximidamide Chemical compound CN1CCC\C1=N/C(N1CCOCC1)=NC1=CC=CC=C1 OPPLDIXFHYTSSR-GLECISQGSA-N 0.000 claims description 4
- RATZLMXRALDSJW-UHFFFAOYSA-N 2-(2-ethyl-3H-benzofuran-2-yl)-4,5-dihydro-1H-imidazole Chemical compound C1C2=CC=CC=C2OC1(CC)C1=NCCN1 RATZLMXRALDSJW-UHFFFAOYSA-N 0.000 claims description 4
- TYZQFNOLWJGHRZ-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1h-imidazol-2-yl)-1-phenylethyl]pyridine Chemical compound N=1CCNC=1CC(C=1N=CC=CC=1)C1=CC=CC=C1 TYZQFNOLWJGHRZ-UHFFFAOYSA-N 0.000 claims description 4
- ZGGNJJJYUVRADP-ACJLOTCBSA-N 2-[4-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetic acid Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(Cl)C=CC=1)C1=CC=C(OCC(O)=O)C=C1 ZGGNJJJYUVRADP-ACJLOTCBSA-N 0.000 claims description 4
- RVMBDLSFFNKKLG-SFHVURJKSA-N 2-[4-[2-[[(2s)-2-hydroxy-3-phenoxypropyl]amino]ethoxy]phenoxy]-n-(2-methoxyethyl)acetamide Chemical compound C1=CC(OCC(=O)NCCOC)=CC=C1OCCNC[C@H](O)COC1=CC=CC=C1 RVMBDLSFFNKKLG-SFHVURJKSA-N 0.000 claims description 4
- ACZKTJZXXSHIGF-UHFFFAOYSA-N 2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylic acid Chemical compound C=1C=C(Cl)C=CC=1CCCCCC1(C(=O)O)CO1 ACZKTJZXXSHIGF-UHFFFAOYSA-N 0.000 claims description 4
- OPPQEWZOPDBGAS-UHFFFAOYSA-N 4-[3-[bis(2-hydroxy-2-phenylethyl)amino]butyl]benzamide Chemical compound C=1C=CC=CC=1C(O)CN(CC(O)C=1C=CC=CC=1)C(C)CCC1=CC=C(C(N)=O)C=C1 OPPQEWZOPDBGAS-UHFFFAOYSA-N 0.000 claims description 4
- MVDXXGIBARMXSA-PYUWXLGESA-N 5-[[(2r)-2-benzyl-3,4-dihydro-2h-chromen-6-yl]methyl]-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1CC1=CC=C(O[C@@H](CC=2C=CC=CC=2)CC2)C2=C1 MVDXXGIBARMXSA-PYUWXLGESA-N 0.000 claims description 4
- DJQOOSBJCLSSEY-UHFFFAOYSA-N Acipimox Chemical compound CC1=CN=C(C(O)=O)C=[N+]1[O-] DJQOOSBJCLSSEY-UHFFFAOYSA-N 0.000 claims description 4
- FAEKWTJYAYMJKF-QHCPKHFHSA-N GlucoNorm Chemical group C1=C(C(O)=O)C(OCC)=CC(CC(=O)N[C@@H](CC(C)C)C=2C(=CC=CC=2)N2CCCCC2)=C1 FAEKWTJYAYMJKF-QHCPKHFHSA-N 0.000 claims description 4
- 108010065920 Insulin Lispro Proteins 0.000 claims description 4
- IBAQFPQHRJAVAV-ULAWRXDQSA-N Miglitol Chemical compound OCCN1C[C@H](O)[C@@H](O)[C@H](O)[C@H]1CO IBAQFPQHRJAVAV-ULAWRXDQSA-N 0.000 claims description 4
- 229940123464 Thiazolidinedione Drugs 0.000 claims description 4
- FZNCGRZWXLXZSZ-CIQUZCHMSA-N Voglibose Chemical compound OCC(CO)N[C@H]1C[C@](O)(CO)[C@@H](O)[C@H](O)[C@H]1O FZNCGRZWXLXZSZ-CIQUZCHMSA-N 0.000 claims description 4
- 229960002632 acarbose Drugs 0.000 claims description 4
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 claims description 4
- 229960003526 acipimox Drugs 0.000 claims description 4
- 239000003524 antilipemic agent Substances 0.000 claims description 4
- 229960001264 benfluorex Drugs 0.000 claims description 4
- CJAVTWRYCDNHSM-UHFFFAOYSA-N benzoic acid 2-[1-[3-(trifluoromethyl)phenyl]propan-2-ylamino]ethyl ester Chemical compound C=1C=CC=CC=1C(=O)OCCNC(C)CC1=CC=CC(C(F)(F)F)=C1 CJAVTWRYCDNHSM-UHFFFAOYSA-N 0.000 claims description 4
- XSEUMFJMFFMCIU-UHFFFAOYSA-N buformin Chemical compound CCCC\N=C(/N)N=C(N)N XSEUMFJMFFMCIU-UHFFFAOYSA-N 0.000 claims description 4
- 229960004111 buformin Drugs 0.000 claims description 4
- 229950001261 camiglibose Drugs 0.000 claims description 4
- YZFWTZACSRHJQD-UHFFFAOYSA-N ciglitazone Chemical compound C=1C=C(CC2C(NC(=O)S2)=O)C=CC=1OCC1(C)CCCCC1 YZFWTZACSRHJQD-UHFFFAOYSA-N 0.000 claims description 4
- 229950009226 ciglitazone Drugs 0.000 claims description 4
- 229950006376 clomoxir Drugs 0.000 claims description 4
- QQKNSPHAFATFNQ-UHFFFAOYSA-N darglitazone Chemical compound CC=1OC(C=2C=CC=CC=2)=NC=1CCC(=O)C(C=C1)=CC=C1CC1SC(=O)NC1=O QQKNSPHAFATFNQ-UHFFFAOYSA-N 0.000 claims description 4
- 229950006689 darglitazone Drugs 0.000 claims description 4
- BADQRNHAZHSOKC-UHFFFAOYSA-N deriglidole Chemical compound C1C(C2=3)=CC=CC=3CCN2C1(CCC)C1=NCCN1 BADQRNHAZHSOKC-UHFFFAOYSA-N 0.000 claims description 4
- 229950011527 deriglidole Drugs 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- FUZBPOHHSBDTJQ-CFOQQKEYSA-L disodium;5-[(2r)-2-[[(2r)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate Chemical compound [Na+].[Na+].C1([C@@H](O)CN[C@@H](CC=2C=C3OC(OC3=CC=2)(C([O-])=O)C([O-])=O)C)=CC=CC(Cl)=C1 FUZBPOHHSBDTJQ-CFOQQKEYSA-L 0.000 claims description 4
- 229950001765 efaroxan Drugs 0.000 claims description 4
- 229950000269 emiglitate Drugs 0.000 claims description 4
- 229950002375 englitazone Drugs 0.000 claims description 4
- NWWORXYTJRPSMC-QKPAOTATSA-N ethyl 4-[2-[(2r,3r,4r,5s)-3,4,5-trihydroxy-2-(hydroxymethyl)piperidin-1-yl]ethoxy]benzoate Chemical compound C1=CC(C(=O)OCC)=CC=C1OCCN1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](O)C1 NWWORXYTJRPSMC-QKPAOTATSA-N 0.000 claims description 4
- 229950006213 etomoxir Drugs 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 229960001582 fenfluramine Drugs 0.000 claims description 4
- XSOUHEXVEOQRKJ-IUCAKERBSA-N fluparoxan Chemical compound O1[C@H]2CNC[C@@H]2OC2=C1C=CC=C2F XSOUHEXVEOQRKJ-IUCAKERBSA-N 0.000 claims description 4
- 229950006702 fluparoxan Drugs 0.000 claims description 4
- 229960001381 glipizide Drugs 0.000 claims description 4
- ZJJXGWJIGJFDTL-UHFFFAOYSA-N glipizide Chemical compound C1=NC(C)=CN=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZJJXGWJIGJFDTL-UHFFFAOYSA-N 0.000 claims description 4
- HPMRFMKYPGXPEP-UHFFFAOYSA-N idazoxan Chemical compound N1CCN=C1C1OC2=CC=CC=C2OC1 HPMRFMKYPGXPEP-UHFFFAOYSA-N 0.000 claims description 4
- 229950001476 idazoxan Drugs 0.000 claims description 4
- 229950011269 isaglidole Drugs 0.000 claims description 4
- 229950004872 linogliride Drugs 0.000 claims description 4
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 claims description 4
- 229960003105 metformin Drugs 0.000 claims description 4
- ZFLBZHXQAMUEFS-UHFFFAOYSA-N methyl 2-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetate Chemical compound C1=CC(OCC(=O)OC)=CC=C1CC(C)NCC(O)C1=CC=CC(Cl)=C1 ZFLBZHXQAMUEFS-UHFFFAOYSA-N 0.000 claims description 4
- 229950001332 midaglizole Drugs 0.000 claims description 4
- 229960001110 miglitol Drugs 0.000 claims description 4
- ZLVARELBORDLAV-UHFFFAOYSA-N n-(4,5-dihydro-1h-imidazol-2-yl)-4-fluoro-1,3-dihydroisoindol-2-amine Chemical compound C1C=2C(F)=CC=CC=2CN1NC1=NCCN1 ZLVARELBORDLAV-UHFFFAOYSA-N 0.000 claims description 4
- 229950006031 naglivan Drugs 0.000 claims description 4
- 229960000698 nateglinide Drugs 0.000 claims description 4
- ICFJFFQQTFMIBG-UHFFFAOYSA-N phenformin Chemical compound NC(=N)NC(=N)NCCC1=CC=CC=C1 ICFJFFQQTFMIBG-UHFFFAOYSA-N 0.000 claims description 4
- 229960003243 phenformin Drugs 0.000 claims description 4
- 229960002354 repaglinide Drugs 0.000 claims description 4
- 150000001467 thiazolidinediones Chemical class 0.000 claims description 4
- 229960001729 voglibose Drugs 0.000 claims description 4
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 claims description 3
- HTQBXNHDCUEHJF-XWLPCZSASA-N Exenatide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 HTQBXNHDCUEHJF-XWLPCZSASA-N 0.000 claims description 3
- 102000051325 Glucagon Human genes 0.000 claims description 3
- 108060003199 Glucagon Proteins 0.000 claims description 3
- 229940121931 Gluconeogenesis inhibitor Drugs 0.000 claims description 3
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 claims description 3
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 claims description 3
- 108010016731 PPAR gamma Proteins 0.000 claims description 3
- 102000005157 Somatostatin Human genes 0.000 claims description 3
- 108010056088 Somatostatin Proteins 0.000 claims description 3
- 239000000670 adrenergic alpha-2 receptor antagonist Substances 0.000 claims description 3
- 239000003888 alpha glucosidase inhibitor Substances 0.000 claims description 3
- 230000003243 anti-lipolytic effect Effects 0.000 claims description 3
- 239000000883 anti-obesity agent Substances 0.000 claims description 3
- 229940125710 antiobesity agent Drugs 0.000 claims description 3
- 229940125388 beta agonist Drugs 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 claims description 3
- 229960004666 glucagon Drugs 0.000 claims description 3
- 150000002462 imidazolines Chemical class 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 claims description 3
- 229960000553 somatostatin Drugs 0.000 claims description 3
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 3
- 150000003681 vanadium Chemical class 0.000 claims description 3
- BOVGTQGAOIONJV-BETUJISGSA-N 1-[(3ar,6as)-3,3a,4,5,6,6a-hexahydro-1h-cyclopenta[c]pyrrol-2-yl]-3-(4-methylphenyl)sulfonylurea Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1C[C@H]2CCC[C@H]2C1 BOVGTQGAOIONJV-BETUJISGSA-N 0.000 claims description 2
- NUHPODZZKHQQET-UHFFFAOYSA-N 1-cyano-2-methyl-3-[4-(4-methyl-6-oxo-4,5-dihydro-1H-pyridazin-3-yl)phenyl]guanidine Chemical compound C1=CC(NC(NC#N)=NC)=CC=C1C1=NNC(=O)CC1C NUHPODZZKHQQET-UHFFFAOYSA-N 0.000 claims description 2
- LZCQFJKUAIWHRW-UHFFFAOYSA-N 3,3-dimethyl-5-(6-oxo-4,5-dihydro-1h-pyridazin-3-yl)-1h-indol-2-one Chemical compound C1=C2C(C)(C)C(=O)NC2=CC=C1C1=NNC(=O)CC1 LZCQFJKUAIWHRW-UHFFFAOYSA-N 0.000 claims description 2
- VXMYWVMXSWJFCV-UHFFFAOYSA-N 3-(4-imidazol-1-ylphenyl)-4,5-dihydro-1h-pyridazin-6-one Chemical compound N1C(=O)CCC(C=2C=CC(=CC=2)N2C=NC=C2)=N1 VXMYWVMXSWJFCV-UHFFFAOYSA-N 0.000 claims description 2
- KLEKLDFUYOZELG-UHFFFAOYSA-N 5-[4-[2-hydroxy-3-[4-(2-methoxyphenyl)piperazin-1-yl]propoxy]phenyl]-6-methyl-2-oxo-1h-pyridine-3-carbonitrile Chemical compound COC1=CC=CC=C1N1CCN(CC(O)COC=2C=CC(=CC=2)C2=C(NC(=O)C(C#N)=C2)C)CC1 KLEKLDFUYOZELG-UHFFFAOYSA-N 0.000 claims description 2
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 claims description 2
- 102000007390 Glycogen Phosphorylase Human genes 0.000 claims description 2
- 108010046163 Glycogen Phosphorylase Proteins 0.000 claims description 2
- UIAYVIIHMORPSJ-UHFFFAOYSA-N N-cyclohexyl-N-methyl-4-[(2-oxo-1H-quinolin-6-yl)oxy]butanamide Chemical compound C=1C=C2NC(=O)C=CC2=CC=1OCCCC(=O)N(C)C1CCCCC1 UIAYVIIHMORPSJ-UHFFFAOYSA-N 0.000 claims description 2
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 claims description 2
- ZVNYJIZDIRKMBF-UHFFFAOYSA-N Vesnarinone Chemical compound C1=C(OC)C(OC)=CC=C1C(=O)N1CCN(C=2C=C3CCC(=O)NC3=CC=2)CC1 ZVNYJIZDIRKMBF-UHFFFAOYSA-N 0.000 claims description 2
- 229960001466 acetohexamide Drugs 0.000 claims description 2
- VGZSUPCWNCWDAN-UHFFFAOYSA-N acetohexamide Chemical compound C1=CC(C(=O)C)=CC=C1S(=O)(=O)NC(=O)NC1CCCCC1 VGZSUPCWNCWDAN-UHFFFAOYSA-N 0.000 claims description 2
- TVLQBBHUNDMTEC-UHFFFAOYSA-N adibendan Chemical compound N=1C=2C=C3C(C)(C)C(=O)NC3=CC=2NC=1C1=CC=NC=C1 TVLQBBHUNDMTEC-UHFFFAOYSA-N 0.000 claims description 2
- 229950004648 adibendan Drugs 0.000 claims description 2
- RNLQIBCLLYYYFJ-UHFFFAOYSA-N amrinone Chemical compound N1C(=O)C(N)=CC(C=2C=CN=CC=2)=C1 RNLQIBCLLYYYFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002105 amrinone Drugs 0.000 claims description 2
- 229960001761 chlorpropamide Drugs 0.000 claims description 2
- 229950002934 cilostamide Drugs 0.000 claims description 2
- RRGUKTPIGVIEKM-UHFFFAOYSA-N cilostazol Chemical compound C=1C=C2NC(=O)CCC2=CC=1OCCCCC1=NN=NN1C1CCCCC1 RRGUKTPIGVIEKM-UHFFFAOYSA-N 0.000 claims description 2
- 229960004588 cilostazol Drugs 0.000 claims description 2
- 229960000972 enoximone Drugs 0.000 claims description 2
- ZJKNESGOIKRXQY-UHFFFAOYSA-N enoximone Chemical compound C1=CC(SC)=CC=C1C(=O)C1=C(C)NC(=O)N1 ZJKNESGOIKRXQY-UHFFFAOYSA-N 0.000 claims description 2
- 229960000346 gliclazide Drugs 0.000 claims description 2
- 229960004346 glimepiride Drugs 0.000 claims description 2
- WIGIZIANZCJQQY-RUCARUNLSA-N glimepiride Chemical compound O=C1C(CC)=C(C)CN1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)N[C@@H]2CC[C@@H](C)CC2)C=C1 WIGIZIANZCJQQY-RUCARUNLSA-N 0.000 claims description 2
- 229950000254 imazodan Drugs 0.000 claims description 2
- 229950009856 indolidan Drugs 0.000 claims description 2
- 229950009035 lixazinone Drugs 0.000 claims description 2
- WUECXCBONAGRSA-UHFFFAOYSA-N n-cyclohexyl-n-methyl-4-[(2-oxo-5,10-dihydro-3h-imidazo[2,1-b]quinazolin-7-yl)oxy]butanamide Chemical compound C=1C=C2NC3=NC(=O)CN3CC2=CC=1OCCCC(=O)N(C)C1CCCCC1 WUECXCBONAGRSA-UHFFFAOYSA-N 0.000 claims description 2
- 229960002164 pimobendan Drugs 0.000 claims description 2
- GLBJJMFZWDBELO-UHFFFAOYSA-N pimobendane Chemical compound C1=CC(OC)=CC=C1C1=NC2=CC=C(C=3C(CC(=O)NN=3)C)C=C2N1 GLBJJMFZWDBELO-UHFFFAOYSA-N 0.000 claims description 2
- 229950009373 saterinone Drugs 0.000 claims description 2
- 229950003177 siguazodan Drugs 0.000 claims description 2
- XMFCOYRWYYXZMY-UHFFFAOYSA-N sulmazole Chemical compound COC1=CC(S(C)=O)=CC=C1C1=NC2=NC=CC=C2N1 XMFCOYRWYYXZMY-UHFFFAOYSA-N 0.000 claims description 2
- 229950006153 sulmazole Drugs 0.000 claims description 2
- 229960002277 tolazamide Drugs 0.000 claims description 2
- OUDSBRTVNLOZBN-UHFFFAOYSA-N tolazamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)NN1CCCCCC1 OUDSBRTVNLOZBN-UHFFFAOYSA-N 0.000 claims description 2
- 229960005371 tolbutamide Drugs 0.000 claims description 2
- 229950005577 vesnarinone Drugs 0.000 claims description 2
- 102000000536 PPAR gamma Human genes 0.000 claims 1
- 239000003826 tablet Substances 0.000 description 19
- 239000000872 buffer Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 17
- 239000002775 capsule Substances 0.000 description 15
- 206010012601 diabetes mellitus Diseases 0.000 description 15
- 201000010099 disease Diseases 0.000 description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 229940079593 drug Drugs 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 201000001320 Atherosclerosis Diseases 0.000 description 11
- 241001465754 Metazoa Species 0.000 description 11
- 230000003914 insulin secretion Effects 0.000 description 11
- 208000028867 ischemia Diseases 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 206010020772 Hypertension Diseases 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 208000035150 Hypercholesterolemia Diseases 0.000 description 9
- 208000031226 Hyperlipidaemia Diseases 0.000 description 9
- 239000000651 prodrug Substances 0.000 description 9
- 229940002612 prodrug Drugs 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 235000012054 meals Nutrition 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 102000003676 Glucocorticoid Receptors Human genes 0.000 description 7
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 7
- 102100030980 Sodium/hydrogen exchanger 1 Human genes 0.000 description 7
- 108010093115 growth factor-activatable Na-H exchanger NHE-1 Proteins 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 108010009384 L-Iditol 2-Dehydrogenase Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 239000003850 glucocorticoid receptor antagonist Substances 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- 230000000929 thyromimetic effect Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- BCSVCWVQNOXFGL-UHFFFAOYSA-N 3,4-dihydro-4-oxo-3-((5-trifluoromethyl-2-benzothiazolyl)methyl)-1-phthalazine acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(C(F)(F)F)=CC=C2S1 BCSVCWVQNOXFGL-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 229940118148 Aldose reductase inhibitor Drugs 0.000 description 5
- 102000029816 Collagenase Human genes 0.000 description 5
- 108060005980 Collagenase Proteins 0.000 description 5
- 208000002249 Diabetes Complications Diseases 0.000 description 5
- 206010012655 Diabetic complications Diseases 0.000 description 5
- 102100026974 Sorbitol dehydrogenase Human genes 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 229960002424 collagenase Drugs 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000003862 glucocorticoid Substances 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 230000036470 plasma concentration Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000007619 statistical method Methods 0.000 description 5
- 229950005346 zopolrestat Drugs 0.000 description 5
- 102000016912 Aldehyde Reductase Human genes 0.000 description 4
- 108010053754 Aldehyde reductase Proteins 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 208000031229 Cardiomyopathies Diseases 0.000 description 4
- 229920001917 Ficoll Polymers 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 208000017442 Retinal disease Diseases 0.000 description 4
- 206010038923 Retinopathy Diseases 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 235000008504 concentrate Nutrition 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 208000017169 kidney disease Diseases 0.000 description 4
- 208000031225 myocardial ischemia Diseases 0.000 description 4
- 201000001119 neuropathy Diseases 0.000 description 4
- 230000007823 neuropathy Effects 0.000 description 4
- 208000033808 peripheral neuropathy Diseases 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005495 thyroid hormone Substances 0.000 description 4
- 229940036555 thyroid hormone Drugs 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 102100023374 Forkhead box protein M1 Human genes 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 101000907578 Homo sapiens Forkhead box protein M1 Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 235000012343 cottonseed oil Nutrition 0.000 description 3
- 239000002385 cottonseed oil Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 229940124750 glucocorticoid receptor agonist Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 210000000496 pancreas Anatomy 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 229940037128 systemic glucocorticoids Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- LKBFFDOJUKLQNY-UHFFFAOYSA-N 2-[3-[(4-bromo-2-fluorophenyl)methyl]-4-oxo-1-phthalazinyl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=CC=C(Br)C=C1F LKBFFDOJUKLQNY-UHFFFAOYSA-N 0.000 description 2
- BUYWFAJWTSIACV-UHFFFAOYSA-N 2-[3-oxo-4-[(4,5,7-trifluoro-1,3-benzothiazol-2-yl)methyl]-1,4-benzothiazin-2-yl]acetic acid Chemical compound FC1=CC(F)=C2SC(CN3C4=CC=CC=C4SC(C3=O)CC(=O)O)=NC2=C1F BUYWFAJWTSIACV-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- RIIVBOIBIOLLPO-UHFFFAOYSA-N 2-phthalazin-1-ylacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=NN=CC2=C1 RIIVBOIBIOLLPO-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 208000036119 Frailty Diseases 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 229940122199 Insulin secretagogue Drugs 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 206010003549 asthenia Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000460 chlorine Chemical group 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- SOWBFZRMHSNYGE-UHFFFAOYSA-N oxamic acid Chemical class NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- SXONDGSPUVNZLO-UHFFFAOYSA-N zenarestat Chemical compound O=C1N(CC(=O)O)C2=CC(Cl)=CC=C2C(=O)N1CC1=CC=C(Br)C=C1F SXONDGSPUVNZLO-UHFFFAOYSA-N 0.000 description 2
- BPCRJQJRJFLQHV-INIZCTEOSA-N (2s)-2-amino-3-[3,5-dibromo-4-[4-hydroxy-3-[(6-oxo-1h-pyridazin-3-yl)methyl]phenoxy]phenyl]propanoic acid Chemical class BrC1=CC(C[C@H](N)C(O)=O)=CC(Br)=C1OC1=CC=C(O)C(CC2=NNC(=O)C=C2)=C1 BPCRJQJRJFLQHV-INIZCTEOSA-N 0.000 description 1
- VSWSDTLXDWESGZ-AWEZNQCLSA-N (2s)-3-[4-(4-hydroxyphenoxy)phenyl]-2-(iodoamino)propanoic acid Chemical class C1=CC(C[C@@H](C(=O)O)NI)=CC=C1OC1=CC=C(O)C=C1 VSWSDTLXDWESGZ-AWEZNQCLSA-N 0.000 description 1
- WAAPEIZFCHNLKK-UFBFGSQYSA-N (2s,4s)-6-fluoro-2',5'-dioxospiro[2,3-dihydrochromene-4,4'-imidazolidine]-2-carboxamide Chemical compound C([C@H](OC1=CC=C(F)C=C11)C(=O)N)[C@@]21NC(=O)NC2=O WAAPEIZFCHNLKK-UFBFGSQYSA-N 0.000 description 1
- SRJRJOYFPZRDNH-NSHDSACASA-N (4s)-6-fluorospiro[3h-chromene-4,5'-imidazolidine]-2,4'-dione Chemical compound C12=CC(F)=CC=C2OC(=O)C[C@@]21NCNC2=O SRJRJOYFPZRDNH-NSHDSACASA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- 125000006582 (C5-C6) heterocycloalkyl group Chemical class 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical class CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- FYDPXVSFSSBHGW-UHFFFAOYSA-N 2,7-difluoro-4-methoxyspiro[fluorene-9,5'-imidazolidine]-2',4'-dione Chemical compound COC1=CC(F)=CC2=C1C1=CC=C(F)C=C1C21NC(=O)NC1=O FYDPXVSFSSBHGW-UHFFFAOYSA-N 0.000 description 1
- QCCHBHSAIQIQGO-UHFFFAOYSA-N 2,7-difluorospiro[fluorene-9,5'-imidazolidine]-2',4'-dione Chemical compound C12=CC(F)=CC=C2C2=CC=C(F)C=C2C21NC(=O)NC2=O QCCHBHSAIQIQGO-UHFFFAOYSA-N 0.000 description 1
- XSHTXZXPLDNDKC-UHFFFAOYSA-N 2-[3-[(5,7-dichloro-1,3-benzothiazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(Cl)=CC(Cl)=C2S1 XSHTXZXPLDNDKC-UHFFFAOYSA-N 0.000 description 1
- FTPBFNMYCGQFGU-UHFFFAOYSA-N 2-[3-[(5,7-dichloro-1,3-benzoxazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(Cl)=CC(Cl)=C2O1 FTPBFNMYCGQFGU-UHFFFAOYSA-N 0.000 description 1
- KNWXUWPPDTZSFW-UHFFFAOYSA-N 2-[3-[(5,7-difluoro-1,3-benzothiazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(F)=CC(F)=C2S1 KNWXUWPPDTZSFW-UHFFFAOYSA-N 0.000 description 1
- GDULRSFIHLMHJW-UHFFFAOYSA-N 2-[3-[(5,7-difluoro-1,3-benzoxazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(F)=CC(F)=C2O1 GDULRSFIHLMHJW-UHFFFAOYSA-N 0.000 description 1
- LNCWRJYGGOAOMU-UHFFFAOYSA-N 2-[3-[(5-chloro-1,3-benzothiazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(Cl)=CC=C2S1 LNCWRJYGGOAOMU-UHFFFAOYSA-N 0.000 description 1
- LURVWPRCGVAWKT-UHFFFAOYSA-N 2-[3-[(5-chloro-1,3-benzoxazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(Cl)=CC=C2O1 LURVWPRCGVAWKT-UHFFFAOYSA-N 0.000 description 1
- QUBABKJOUGUHAK-UHFFFAOYSA-N 2-[3-[(5-fluoro-1,3-benzothiazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(F)=CC=C2S1 QUBABKJOUGUHAK-UHFFFAOYSA-N 0.000 description 1
- WXNKRTWVLOSZPW-UHFFFAOYSA-N 2-[3-[(5-fluoro-1,3-benzoxazol-2-yl)methyl]-4-oxophthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(F)=CC=C2O1 WXNKRTWVLOSZPW-UHFFFAOYSA-N 0.000 description 1
- DGCTZGDPGOMMNB-UHFFFAOYSA-N 2-[3-oxo-2,8-di(propan-2-yl)-1,4-benzoxazin-4-yl]acetic acid Chemical compound C1=CC=C2N(CC(O)=O)C(=O)C(C(C)C)OC2=C1C(C)C DGCTZGDPGOMMNB-UHFFFAOYSA-N 0.000 description 1
- QKRGDZKQCDTVMW-UHFFFAOYSA-N 2-[4-oxo-3-[[5-(trifluoromethyl)-1,3-benzoxazol-2-yl]methyl]phthalazin-1-yl]acetic acid Chemical compound O=C1C2=CC=CC=C2C(CC(=O)O)=NN1CC1=NC2=CC(C(F)(F)F)=CC=C2O1 QKRGDZKQCDTVMW-UHFFFAOYSA-N 0.000 description 1
- JRGBXEJDIMXJAP-UHFFFAOYSA-N 2-fluorospiro[fluorene-9,5'-imidazolidine]-2',4'-dione Chemical compound C12=CC(F)=CC=C2C2=CC=CC=C2C21NC(=O)NC2=O JRGBXEJDIMXJAP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006895 Cachexia Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical group [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 1
- 208000014311 Cushing syndrome Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 206010054805 Macroangiopathy Diseases 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 102000052126 Sodium-Hydrogen Exchangers Human genes 0.000 description 1
- 108091006672 Sodium–hydrogen antiporter Proteins 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000006229 amino acid addition Effects 0.000 description 1
- 208000022531 anorexia Diseases 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001857 anti-mycotic effect Effects 0.000 description 1
- 239000003529 anticholesteremic agent Substances 0.000 description 1
- 229940127226 anticholesterol agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 150000005347 biaryls Chemical class 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000002374 bone meal Substances 0.000 description 1
- 229940036811 bone meal Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Chemical group 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 231100000867 compulsive behavior Toxicity 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- CHNUOJQWGUIOLD-NFZZJPOKSA-N epalrestat Chemical compound C=1C=CC=CC=1\C=C(/C)\C=C1/SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-NFZZJPOKSA-N 0.000 description 1
- 229950010170 epalrestat Drugs 0.000 description 1
- CHNUOJQWGUIOLD-UHFFFAOYSA-N epalrestate Natural products C=1C=CC=CC=1C=C(C)C=C1SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-UHFFFAOYSA-N 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 239000006052 feed supplement Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 208000004104 gestational diabetes Diseases 0.000 description 1
- 229940126013 glucocorticoid receptor antagonist Drugs 0.000 description 1
- MNQZXJOMYWMBOU-UHFFFAOYSA-N glyceraldehyde Chemical compound OCC(O)C=O MNQZXJOMYWMBOU-UHFFFAOYSA-N 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 206010022498 insulinoma Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 208000037906 ischaemic injury Diseases 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 229940099584 lactobionate Drugs 0.000 description 1
- JYTUSYBCFIZPBE-AMTLMPIISA-N lactobionic acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O JYTUSYBCFIZPBE-AMTLMPIISA-N 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 206010062198 microangiopathy Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- BMHZAHGTGIZZCT-UHFFFAOYSA-N minalrestat Chemical compound O=C1C2(C(NC(=O)C2)=O)C2=CC(F)=CC=C2C(=O)N1CC1=CC=C(Br)C=C1F BMHZAHGTGIZZCT-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- GZCNKQPANHRSAJ-UHFFFAOYSA-N n-[3,5-dimethyl-4-(nitromethylsulfonyl)phenyl]-2-(2-methylphenyl)acetamide Chemical compound CC1=CC=CC=C1CC(=O)NC1=CC(C)=C(S(=O)(=O)C[N+]([O-])=O)C(C)=C1 GZCNKQPANHRSAJ-UHFFFAOYSA-N 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000003538 oral antidiabetic agent Substances 0.000 description 1
- 229940127209 oral hypoglycaemic agent Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Chemical group 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000002638 palliative care Methods 0.000 description 1
- 210000000277 pancreatic duct Anatomy 0.000 description 1
- 208000021255 pancreatic insulinoma Diseases 0.000 description 1
- 210000004923 pancreatic tissue Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229950010884 ponalrestat Drugs 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 201000009395 primary hyperaldosteronism Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000004550 soluble concentrate Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- LXANPKRCLVQAOG-NSHDSACASA-N sorbinil Chemical compound C12=CC(F)=CC=C2OCC[C@@]21NC(=O)NC2=O LXANPKRCLVQAOG-NSHDSACASA-N 0.000 description 1
- 229950004311 sorbinil Drugs 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 210000001032 spinal nerve Anatomy 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- 239000003749 thyromimetic agent Substances 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 238000003354 tissue distribution assay Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- LUBHDINQXIHVLS-UHFFFAOYSA-N tolrestat Chemical compound OC(=O)CN(C)C(=S)C1=CC=CC2=C(C(F)(F)F)C(OC)=CC=C21 LUBHDINQXIHVLS-UHFFFAOYSA-N 0.000 description 1
- 229960003069 tolrestat Drugs 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 229950006343 zenarestat Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/64—Sulfonylureas, e.g. glibenclamide, tolbutamide, chlorpropamide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to methods of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- cAMP phosphodiesterase type 3 inhibitors A group of compounds that stimulate insulin secretion and stimulate de novo synthesis of insulin are the cAMP phosphodiesterase type 3 inhibitors. It is believed that cAMP phosphodiesterase type 3 inhibitors act to increase insulin secretion by increasing intracellular levels of cAMP in pancreatic ⁇ -cells in the islet of Langerhans. In contrast, sulfonylureas act on the K + ATP channels of pancreatic ⁇ -cells in the islet of Langerhans. Moreover, cAMP phosphodiesterase type 3 is known to exist in two forms: type A and type B. Type A cAMP phosphodiesterase 3 is associated with cardiac tissue and with platelets, and type B is associated with liver and adipose tissue, and ⁇ -cells in the pancreas.
- non-sulfonylureas which stimulate insulin secretion by acting on the K + ATP channels
- non-sulfonylurea insulin secretagogues include nateglinide and repaglinide.
- the present invention provides an improved method of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance using a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- the present invention provides methods of treating non-insulin dependent diabetes mellitus, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating insulin resistance comprising the step of administering to a patient having or at risk of having insulin resistance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating Syndrome X the methods comprising the step of administering to a patient having or at risk of having Syndrome X a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts comprising the step of administering to a patient having or at risk of having diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating hyperglycemia comprising the step of administering to a patient having or at risk of having hyperglycemia a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating impaired glucose tolerance comprising the step of administering to a patient having or at risk of having impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- compositions comprising a sulfonylurea and/or non-sulfonylurea K + ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor.
- compositions comprising a sulfonylurea and a cAMP phosphodiesterase type 3 inhibitor.
- compositions comprising a non-sulfonylurea K + ATP channel blocker and a cAMP phosphodiesterase type 3 inhibitor.
- compositions comprising a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor.
- kits for the treatment of non-insulin dependent diabetes mellitus comprising:
- a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
- b) a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus;
- the second compound is selected from:
- GLP-1 (7-37) (insulinotropin) and GLP-1 (7-36)-NH 2 ;
- glycogen phosphorylase inhibitors [0027] glycogen phosphorylase inhibitors
- the second compound is selected from LysPro insulin, GLP-1 (7-37) (insulinotropin), GLP-1 (7-36)-NH 2 , metformin, phenformin, buformin, midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan, linogliride, ciglitazone, pioglitazone, englitazone, troglitazone, darglitazone, rosiglitazone, clomoxir, etomoxir, acarbose, miglitol, emiglitate, voglibose, MDL-25,637, camiglibose, MDL-73,945, BRL 35135, BRL 37344, Ro 16-8714, ICI D7114, CL 316,243, benfluorex, fenfluramine, Na
- the second compound is selected from insulin, biguanides, or thiazolidinediones.
- kits for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance comprising:
- a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
- a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance; and
- kits for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance comprising:
- a) a first pharmaceutical composition comprising a sulfonylurea or a non-sulfonylurea K + ATP channel blocker
- the sulfonylurea is glyburide and the cAMP phosphodiesterase type 3 inhibitor is milrinone.
- the cAMP phosphodiesterase type 3 inhibitor is a selective cAMP phosphodiesterase type 3B inhibitor.
- the sulfonylurea is glyburide, chlorpropamide, glibenclamide, glipizide, gliclazide, glimepiride, tolbutamide, acetohexamide, or tolazamide.
- the sulfonylurea is glipizide or glyburide.
- the sulfonylurea is glyburide.
- the cAMP phosphodiesterase type 3 inhibitor is milrinone, amrinone, enoximone, indolidan, cilostamide, lixazinone, imazodan, cilostazol, bemorandan, siguazodan, adibendan, pimobendan, saterinone, sulmazol, or vesnarinone.
- the cAMP phosphodiesterase type 3 inhibitor is milrinone.
- the cAMP phosphodiesterase type 3 inhibitor is milrinone and the sulfonylurea is glyburide.
- the non-sulfonylurea K + ATP channel blocker is repaglinide or nateglinide.
- FIG. 1 is an isobologram that shows the synergistic effect of combinations of milrinone and glyburide on insulin secretion.
- the present invention provides methods of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phospho
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- the phrase “synergistic amount” means that the therapeutic effect of a sulfonylurea and/or non-sulfonylurea K + ATP channel blocker, when administered in combination with a cAMP phosphodiesterase type 3 inhibitor, is greater than the predicted additive therapeutic effect of a sulfonylurea and/or a non-sulfonylurea K + ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor when administered alone.
- therapeutic effect means an amount of a compound or combination of compounds that treats a disease; ameliorates, attenuates, or eliminates one or more symptom of a particular disease; or prevents or delays the onset of one of more symptom of a particular disease.
- non-sulfonylurea K + ATP channel blocker means a compound that is not a sulfonylurea, but acts like a sulfonylurea in that the compound is a K + ATP channel blocker.
- non-sulfonylurea K + ATP blockers include repaglinide and nateglinide.
- cAMP phosphodiesterase type 3 inhibitors means that an inhibitor shows greater binding affinity with respect to one of the two types A and B.
- a selective cAMP phosphodiesterase type 3B inhibitor has a higher binding affinity for cAMP phosphodiesterase type 3B than cAMP phosphodiesterase type 3A.
- the affinity is about 50% greater for one type than the other type. More preferably, the affinity is about 75% greater, and most preferably is about 90% greater.
- patient means animals, such as dogs, cats, cows, horses, sheep, and humans. Particularly preferred patients are mammals. The term patient includes males and females.
- phrases “pharmaceutically acceptable” means that the carrier, diluent, vehicle, excipients, and/or salt must be compatible with the other ingredients of the formulation, and not deleterious to the patient.
- sulfonylurea includes the stereoisomers of these compounds, pharmaceutically acceptable salts of the compounds, prodrugs of the compounds, and pharmaceutically acceptable salts of the prodrugs.
- treating include preventative (e.g., prophylactic) and palliative treatment.
- Patients at risk for having non-insulin dependent diabetes mellitus include obese patients, patients having polycystic ovary syndrome, impaired glucose tolerance, insulin resistance, or having or having had gestational diabetes.
- the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention are administered to a patient in synergistic amounts. It has been surprisingly and unexpectedly discovered that administration of a combination of: 1) a sulfonylurea, a non-sulfonylurea K + ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K + ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor results in greater therapeutic effect than the effect expected from the additive effects of each of the compounds.
- the present invention contemplates the use of both a sulfonylurea and a non-sulfonylurea K + ATP channel blocker along with a cAMP phosphodiesterase type 3 inhibitor. Also contemplated are the use of one or more sulfonylureas and/or one or more non-sulfonylurea K + ATP channel blockers in combination with one or more cAMP phosphodiesterase type 3 inhibitors.
- the compounds can be administered alone or as part of a pharmaceutically acceptable composition or formulation.
- the sulfonylureas and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors can be administered all at once, as for example, by a bolus injection, multiple times, such as by a series of tablets, or delivered substantially uniformly over a period of time, as for example, using transdermal delivery. It is also noted that the dose of the sulfonylureas and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors can be varied over time.
- the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered alone, in combination with other sulfonylureas, non-sulfonylurea K + ATP channel blockers, or cAMP phosphodiesterase type 3 inhibitors, or with other pharmaceutically active compounds.
- the other pharmaceutically active compounds can be intended to treat the same diseases as the sulfonylureas, non-sulfonylurea K + ATP channel blockers, or cAMP phosphodiesterase type 3 inhibitors or different diseases.
- the compounds can be administered simultaneously, or sequentially in any order.
- the active compound(s) can be found in one tablet or in separate tablets, which can be administered at once or sequentially in any order.
- the compositions can be different forms.
- one or more compounds may be delivered via a tablet, while another is administered via injection or orally as a syrup. All combinations, delivery methods and administration sequences are contemplated.
- kits comprises two separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K + ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor; and the second composition comprising a second pharmaceutically active compound.
- a kit comprises two separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K + ATP channel blocker; and the second composition comprising a cAMP phosphodiesterase type 3 inhibitor.
- the kit comprises three separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K + ATP channel blocker; the second composition comprising a cAMP phosphodiesterase type 3 inhibitor; and the third composition comprising a third pharmaceutically active compound.
- kits also comprise a container for the separate compositions such as a divided bottle or a divided foil packet. Additional examples of containers include syringes, boxes, bags, and the like. Typically, the kits comprise directions for the administration of the separate components.
- the kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of a combination of compounds is desired by the prescribing physician.
- Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil that is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet.
- the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.
- a memory aid on the kit, e.g., in the form of numbers next to the tablets or capsules whereby the numbers correspond with the days of the regimen which the tablets or capsules so specified should be ingested.
- a memory aid is a calendar printed on the card, e.g., as follows “First Week, Monday, Tuesday, . . . etc . . . Second Week, Monday, Tuesday,” etc.
- a “daily dose” can be a single tablet or capsule or several pills or capsules to be taken on a given day.
- a daily dose of a compound of the present invention can consist of one tablet or capsule, while a daily dose of a second compound can consist of several tablets or capsules and vice versa.
- the memory aid should reflect this and assist in correct administration of the compounds.
- a dispenser designed to dispense the daily doses one at a time in the order of their intended use is provided.
- the dispenser is equipped with a memory aid, so as to further facilitate compliance with the dosing regimen.
- a memory aid is a mechanical counter that indicates the number of daily doses that have been dispensed.
- a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds a patient when the next dose is to be taken.
- the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention and other pharmaceutically active compounds, if desired, can be administered to a patient either orally, rectally, parenterally, (for example, intravenously, intramuscularly, or subcutaneously) intracisternally, intravaginally, intraperitoneally, intravesically, locally (for example, powders, ointments or drops), or as a buccal or nasal spray. It is also noted that the administration methods include the use of controlled release compositions, including sustained release and delayed release, and immediate release compositions and combinations thereof.
- compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions, emulsions, or sterile powders for reconstitution into sterile injectable solutions or dispersions.
- suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants.
- compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents.
- adjuvants such as preserving, wetting, emulsifying, and dispersing agents.
- Microorganism contamination can be prevented by adding various antibacterial and antifungal agents to the compositions, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like.
- isotonic agents for example, sugars, sodium chloride, and the like.
- Prolonged absorption of injectable pharmaceutical compositions can be brought about by the use of agents delaying absorption, for example, aluminum monostearate or gelatin.
- Solid dosage forms for oral administration include capsules, tablets, powders, and granules.
- the compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or
- fillers or extenders as for example, starches, lactose, sucrose, mannitol, or silicic acid;
- binders as for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, or acacia;
- humectants as for example, glycerol;
- disintegrating agents as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, or sodium carbonate;
- solution retarders as for example, paraffin;
- absorption accelerators as for example, quaternary ammonium compounds;
- wetting such as sodium citrate or dicalcium phosphate
- fillers or extenders as
- compositions of a similar type may also be used as fillers in soft and hard filled gelatin capsules using such excipients as lactose or milk sugar, as well as high molecular weight polyethylene glycols, and the like.
- Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may also contain opacifying agents, and can also be of such composition that they release the compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions that can be used are polymeric substances and waxes. The compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs.
- the liquid dosage form may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and/or emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil, or sesame seed oil, glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols or fatty acid esters of sorbitan, or mixtures of these substances, and the like.
- inert diluents commonly used in the art, such as water or other solvents, solub
- the composition can also include adjuvants, such as wetting agents, emulsifying and/or suspending agents, sweetening, flavoring, or perfuming agents.
- adjuvants such as wetting agents, emulsifying and/or suspending agents, sweetening, flavoring, or perfuming agents.
- Suspensions in addition to the compound, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol or sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, or tragacanth, or mixtures of these substances, and the like.
- suspending agents as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol or sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, or tragacanth, or mixtures of these substances, and the like.
- compositions for rectal or vaginal administration can be prepared by mixing the compounds of the present invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary room temperature, but liquid at body temperature, and therefore, melt in the rectum or vaginal cavity and release the active component.
- suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary room temperature, but liquid at body temperature, and therefore, melt in the rectum or vaginal cavity and release the active component.
- Dosage forms for topical administration include ointments, powders, sprays and inhalants.
- the compound or compounds are admixed under sterile conditions with a physiologically acceptable carrier, and any preservatives, buffers, or propellants that may be required.
- Ophthalmic formulations, eye ointments, powders, and solutions are also contemplated as being within the scope of this invention.
- Each of the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered to a patient at synergistic dosage levels in the range of about 0.1 to about 7,000 mg per day.
- a preferred dosage range is about 0.1 to about 500 mg per day.
- the specific dosage and dosage range that can be used for each compound depends on a number of factors, including the requirements of the patient, the severity of the condition or disease being treated, and the pharmacological activity of the compound or compounds being administered. The determination of dosage ranges and optimal dosages for a particular patient is well within the ordinary skill in the art in view of the present disclosure.
- Suitable synergistic dosage ranges can be correlated with desired plasma concentrations.
- an effective plasma concentration of a cAMP phosphodiesterase type 3 inhibitor such as milrinone is about 10 ng/mL to about 10 mg/mL.
- a preferred plasma concentration is about 100 ng/mL to about 1 mcg/mL.
- an effective plasma concentration for a sulfonylurea such as glyburide is about 5 ng/mL to about 100 mcg/mL.
- a preferred plasma concentration is 49 ng/mL to about 5 mcg/mL.
- sulfonylureas can be effected orally or non-orally, for example by injection.
- An amount of a compound or combination of compounds is administered such that a synergistic dose is received, generally a daily dose which, when administered orally to an animal is usually between 0.01 and 100 mg/kg of body weight, preferably between 0.1 and 50 mg/kg of body weight of each of: a sulfonylurea and/or a non-sulfonylurea K + ATP channel blocker; and a cAMP phosphodiesterase type 3 inhibitor.
- each of the compounds administered in a combination can have the same or a different dosage.
- the medication can be carried in the drinking water so that a therapeutic dosage of the combination of compounds is ingested with the daily water supply.
- the combination of compounds can be directly metered into drinking water, preferably in the form of a liquid, water-soluble concentrate (such as an aqueous solution of a water soluble salt).
- the compounds of the present invention can also be added directly to the feed, as such, or in the form of an animal feed supplement, also referred to as a premix or concentrate.
- a premix or concentrate in a carrier is more commonly employed for the inclusion of a compound or compounds in the feed.
- Suitable carriers are liquid or solid, as desired, such as water, various meals such as alfalfa meal, soybean meal, cottonseed oil meal, linseed oil meal, corncob meal and corn meal, molasses, urea, bone meal, and mineral mixes such as are commonly employed in poultry feeds.
- a particularly effective carrier is the respective animal feed itself; that is, a small portion of such feed.
- the carrier facilitates uniform distribution of the compound or combination of compounds in the finished feed with which the premix is blended. It is important that a compound or combination of compounds be thoroughly blended into the premix and, subsequently, the feed.
- the compound or combination of compounds may be dispersed or dissolved in a suitable oily vehicle such as soybean oil, corn oil, cottonseed oil, and the like, or in a volatile organic solvent and then blended with the carrier.
- the proportions of the compound or combination of compounds in the concentrate are capable of wide variation since the amount of a compound or combination of compounds in the finished feed may be adjusted by blending the appropriate proportion of premix with the feed to obtain the desired level of the compound or compounds.
- High potency concentrates may be blended by the feed manufacturer with proteinaceous carrier such as soybean oil meal or other meals, as described above, to produce concentrated supplements which are suitable for direct feeding to animals. In such instances, the animals are permitted to consume the usual diet. Alternatively, such concentrated supplements may be added directly to the feed to produce a nutritionally balanced, finished feed containing a synergistic amount of the compounds according to the present invention.
- the mixtures are thoroughly blended by standard procedures, such as in a twin shell blender, to ensure homogeneity.
- the supplement is used as a top dressing for the feed, it likewise helps to ensure uniformity of distribution of the compound or combination of compounds across the top of the dressed feed.
- a sulfonylurea and/or non-sulfonylurea K + ATP channel blocker, and cAMP phosphodiesterase type 3 inhibitor may be prepared in the form of a paste or a pellet and administered as an implant, usually under the skin of the head or ear of the animal.
- parenteral administration involves the injection of a sufficient amount of a sulfonylurea, and/or non-sulfonylurea K + ATP channel blocker, in combination with a cAMP phosphodiesterase type 3 inhibitor to provide the animal with about 0.01 to about 100 mg/kg/day of body weight of each of the active ingredients in the combination.
- Paste formulations can be prepared by dispersing the compounds in a pharmaceutically acceptable oil such as peanut oil, sesame oil, corn oil or the like.
- Pellets containing an effective amount of compounds of the present invention can be prepared by admixing compounds of the present invention with a diluent such as carbowax, carnauba wax, or the like, and a lubricant, such as magnesium or calcium stearate, can be added to improve the pelleting process.
- a diluent such as carbowax, carnauba wax, or the like
- a lubricant such as magnesium or calcium stearate
- pharmaceutically acceptable salts or prodrugs includes the carboxylate salts, amino acid addition salts, and prodrugs of the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors that are, within the scope of sound medical judgment, suitable for use with patients without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible.
- salts refers to inorganic and organic salts of the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors.
- the salts can be prepared in situ during the final isolation and purification, or by separately reacting a purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed.
- Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, nitrate, acetate, oxalate, palmitiate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts, or the like.
- the salts may include cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, and the like, as well as non-toxic ammonium, quaternary ammonium, and amine cations including, but not limited to, ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. See, for example, S. M. Berge, et al., “Pharmaceutical Salts,” J Pharm Sci, 66: 1-19 (1977).
- esters of the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors include C 1 -C 8 alkyl esters. Acceptable esters also include C 5 -C 7 cycloalkyl esters, as well as arylalkyl esters such as benzyl. C 1 -C 4 Alkyl esters are preferred. Esters of a sulfonylurea, non-sulfonylurea K + ATP channel blocker, or cAMP phosphodiesterase type 3 inhibitor may be prepared according to methods that are well known in the art.
- Examples of pharmaceutically acceptable non-toxic amides of the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors include amides derived from ammonia, primary C 1 -C 8 alkyl amines, and secondary C 1 -C 8 dialkyl amines. In the case of secondary amines, the amine may also be in the form of a 5 or 6 membered heterocycloalkyl group containing at least one nitrogen atom. Amides derived from ammonia, C 1 -C 3 primary alkyl amines, and C 1 -C 2 dialkyl secondary amines are preferred. Amides of a sulfonylurea, non-sulfonylurea K + ATP channel blocker, and cAMP phosphodiesterase type 3 inhibitor may be prepared according to methods well known to those skilled in the art.
- prodrug means compounds that are transformed in vivo to yield a sulfonylurea, non-sulfonylurea K + ATP channel blocker, and/or cAMP phosphodiesterase type 3 inhibitor. The transformation may occur by various mechanisms, such as through hydrolysis in blood.
- a discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
- a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C 1 -C 8 )alkyl, (C 2 -C 12 )alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)a
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C 1 -C 6 )alkanoyloxymethyl, 1-((C 1 -C 6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1 -C 6 )alkanoyloxy)ethyl, (C 1 -C 6 )alkoxycarbonyloxymethyl, N-(C 1 -C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 -C 6 )alkanoyl, ⁇ -amino(C 1 -C 4 )alkanoyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇
- a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C 1 -C 10 )alkyl, (C 3 -C 7 )cycloalkyl, or benzyl, or R-carbonyl is a natural ⁇ -aminoacyl or natural ⁇ -aminoacyl-natural ⁇ -aminoacyl, —C(OH)C(O)OY wherein Y is H, (C 1 -C 6 )alkyl or benzyl, —C(OY 0 )Y 1 wherein Y 0 is (C 1 -C 4 )alkyl and Y
- the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and/or cAMP phosphodiesterase type 3 inhibitors of the present invention may contain asymmetric or chiral centers, and therefore, exist in different stereoisomeric forms. It is contemplated that all stereoisomeric forms of the compounds as well as mixtures thereof, including racemic mixtures, form part of the present invention. In addition, the present invention contemplates all geometric and positional isomers. For example, if a compound contains a double bond, both the cis and trans forms, as well as mixtures, are contemplated.
- Diasteromeric mixtures can be separated into their individual stereochemical components on the basis of their physical chemical differences by methods known per se, for example, by chromatography and/or fractional crystallization.
- Enantiomers can be separated by converting the enantiomeric mixture into a diasteromeric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers.
- an appropriate optically active compound e.g., alcohol
- some of the compounds of this invention may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention.
- the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and/or cAMP phosphodiesterase type 3 inhibitors of the present invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like.
- the present invention contemplates and encompasses both the solvated and unsolvated forms.
- sulfonylureas may exist in different tautomeric forms. All tautomers of compounds of the present invention are contemplated.
- the invention disclosed herein encompass compounds that are synthesized in vitro using laboratory techniques, such as those well known to synthetic chemists; or synthesized using in vivo techniques, such as through metabolism, fermentation, digestion, and the like. It is also contemplated that the compounds of the present invention may be synthesized using a combination of in vitro and in vivo techniques.
- the present invention also includes isotopically labelled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
- Compounds of the present invention that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention.
- isotopically labelled compounds of the present invention for example those into which radioactive isotopes such as 3 H and 14 C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., 3 H, and carbon-14, i.e., 14 C, isotopes are particularly preferred for their ease of preparation and detection. Further, substitution with heavier isotopes such as deuterium, i.e., 2 H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labelled compounds of this invention and prodrugs thereof can generally be prepared by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.
- Non-insulin dependent diabetes mellitus also called Type 2 or adult onset diabetes
- insulin resistance also called Type 2 or adult onset diabetes
- impaired glucose tolerance also called Type X
- hyperglycemia polycystic ovary syndrome
- cataracts or any of the diabetic complications such as neuropathy, nephropathy, retinopathy, or cardiomyopathy
- non-insulin dependent diabetes mellitus, insulin resistance, impaired glucose tolerance, Syndrome X, hyperglycemia, polycystic ovary syndrome, or cataracts or any of the diabetic complications such as neuropathy, nephropathy, retinopathy, or cardiomyopathy
- insulin and insulin analogs e.g. LysPro insulin
- GLP-1 (7-37) insulinotropin
- GLP-1 (7-36)-NH 2 biguanides: metformin, phenformin, buformin
- ⁇ 2-antagonists and imidazolines midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan; other insulin secretagogues: linogliride, A-4166
- glitazones ciglitazone, pioglitazone, englitazone, troglitazone, darglitazone, rosiglitazone
- fatty acid oxidation inhibitors clomoxir, etomoxir
- ⁇ -glucosidase inhibitors acarbose, miglitol, emiglitate
- Naglivan® and peroxovanadium complexes
- amylin antagonists and peroxovanadium complexes
- amylin antagonists and glucagon antagonists; gluconeogenesis inhibitors
- somatostatin agonists and antagonists antilipolytic agents: nicotinic acid, acipimox, WAG 994. Any combination of agents can be administered as described above.
- Preferred compounds from the above classes include: LysPro insulin; GLP-1 (7-37) (insulinotropin); GLP-1 (7-36)-NH 2 ; metformin; phenformin; buformin; midaglizole; isaglidole; deriglidole; idazoxan; efaroxan; fluparoxan; linogliride; ciglitazone; pioglitazone; englitazone; troglitazone; darglitazone; rosiglitazone; clomoxir; etomoxir; acarbose; miglitol; emiglitate; voglibose; MDL-25,637; camiglibose; MDL-73,945; BRL 35135; BRL 37344; Ro 16-8714; ICI D7114; CL 316,243; benfluorex; fenfluramine; Naglivan®;
- the sulfonylureas, non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered in combination with thyromimetic compounds, aldose reductase inhibitors, glucocorticoid receptor antagonists, NHE-1 inhibitors, or sorbitol dehydrogenase inhibitors, or combinations thereof, to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, and impaired glucose tolerance.
- sulfonylureas and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors described herein may be used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, which are diseases that occur more frequently in diabetic patients than in non-diabetic patients.
- sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors described herein that may be used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, can be used in combination with other compounds that are used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia.
- thyroid hormones specifically, biologically active iodothyronines
- Thyroid hormones stimulate the metabolism of cholesterol to bile acids and enhance the lipolytic responses of fat cells to other hormones.
- U.S. Pat. Nos. 4,766,121; 4,826,876; 4,910,305; and 5,061,798 disclose certain thyroid hormone mimetics (thyromimetics), namely, 3,5-dibromo-3′-[6-oxo-3(1H)-pyridazinylmethyl]-thyronines.
- 5,284,971 discloses certain thyromimetic cholesterol lowering agents, namely, 4-(3-cyclohexyl-4-hydroxy or -methoxy phenylsulfonyl)-3,5 dibromo-phenylacetic compounds.
- U.S. Pat. Nos. 5,401,772; 5,654,468; and 5,569,674 disclose certain thyromimetics that are lipid lowering agents, namely, heteroacetic acid derivatives.
- certain oxamic acid derivatives of thyroid hormones are known in the art. For example, N. Yokoyama, et al.
- Each of the thyromimetic compounds referenced above and other thyromimetic compounds can be used in combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyoapthy, polycystic ovary syndrome, cataracts hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia or impaired glucose tolerance.
- sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with aldose reductase inhibitors.
- Aldose reductase inhibitors constitute a class of compounds that have become widely known for their utility in preventing and treating conditions arising from complications of diabetes, such as diabetic neuropathy and nephropathy. Such compounds are well known to those skilled in the art and are readily identified by standard biological tests.
- aldose reductase inhibitors zopolrestat, 1-phthalazineacetic acid, 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-, and related compounds are described in U.S. Pat. No. 4,939,140.
- Aldose reductase inhibitors have been taught for use in lowering lipid levels in mammals. See, for example, U.S. Pat. No. 4,492,706 and EP 0 310 931 A2.
- U.S. Pat. No. 5,064,830 discloses the use of certain oxophthalazinyl acetic acid aldose reductase inhibitors, including zopolrestat, for lowering of blood uric acid levels.
- aldose reductase inhibitor refers to compounds that inhibit the bioconversion of glucose to sorbitol, which is catalyzed by the enzyme aldose reductase.
- Any aldose reductase inhibitor may be used in a combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention.
- Aldose reductase inhibition is readily determined by those skilled in the art according to standard assays (J. Malone, Diabetes, 29:861-864 (1980). “Red Cell Sorbitol, an Indicator of Diabetic Control”).
- a variety of aldose reductase inhibitors are described herein; however, other aldose reductase inhibitors useful in the compositions and methods of this invention will be known to those skilled in the art.
- the activity of an aldose reductase inhibitor in a tissue can be determined by testing the amount of aldose reductase inhibitor that is required to lower tissue sorbitol (i.e., by inhibiting the further production of sorbitol consequent to blocking aldose reductase) or lower tissue fructose (by inhibiting the production of sorbitol consequent to blocking aldose reductase and consequently the production of fructose).
- aldose reductase inhibitors useful in the present invention include:
- Each of the aldose reductase inhibitors referenced above and other aldose reductase inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with glucocorticoid receptor antagonists.
- the glucocorticoid receptor (GR) is present in glucocorticoid responsive cells where it resides in the cytosol in an inactive state until it is stimulated by an agonist. Upon stimulation the glucocorticoid receptor translocates to the cell nucleus where it specifically interacts with DNA and/or protein(s) and regulates transcription in a glucocorticoid responsive manner.
- glucocorticoid receptor agonists include cortisol and corticosterone. Many synthetic glucocorticoid receptor agonists exist including dexamethasone, prednisone and prednisilone.
- glucocorticoid receptor antagonists bind to the receptor and prevent glucocorticoid receptor agonists from binding and eliciting GR mediated events, including transcription.
- RU486 is an example of a non-selective glucocorticoid receptor antagonist.
- GR antagonists can be used in the treatment of diseases associated with an excess or a deficiency of glucocorticoids in the body.
- GR antagonists that can be used in combination with a compound of the present invention include the compounds disclosed in U.S. provisional patent application No. 60/132,130.
- Each of the glucocorticoid receptor antagonists referenced above and other glucocorticoid receptor antagonists can be used in combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with sorbitol dehydrogenase inhibitors.
- Sorbitol dehydrogenase inhibitors lower fructose levels and have been used to treat or prevent diabetic complications such as neuropathy, retinopathy, nephropathy, cardiomyopathy, microangiopathy, and macroangiopathy.
- U.S. Pat. Nos. 5,728,704 and 5,866,578 disclose compounds and a method for treating or preventing diabetic complications by inhibiting the enzyme sorbitol dehydrogenase.
- Each of the sorbitol dehydrogenase inhibitors referenced above and other sorbitol dehydrogenase inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with sodium-hydrogen exchanger type 1 (NHE-1) inhibitors.
- NHE-1 inhibitors can be used to reduce tissue damage resulting from ischemia. Of great concern is tissue damage that occurs as a result of ischemia in cardiac, brain, liver, kidney, lung, gut, skeletal muscle, spleen, pancreas, nerve, spinal cord, retina tissue, the vasculature, or intestinal tissue.
- NHE-1 inhibitors can also be administered to prevent perioperative myocardial ischemic injury. Examples of NHE-1 inhibitors include those disclosed in PCT patent application number PCT/IB99/00206.
- NHE-1 inhibitors referenced above and other NHE-1 inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K + ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- the INS-1 cell is a ⁇ -cell line derived from an X-ray induced transplantable rat insulinoma. Asfari, M. et al., Endocrinology, 130:167-178 (1992). When maintained in cell culture, the cells of this line secrete insulin in response to the same stimuli that stimulate insulin secretion from the ⁇ -cells present in the intact islet of Langerhans.
- the cells are grown until confluent in 24-well tissue culture plates in a standard tissue culture medium [RPMI1640 without L-glutamine (Gibco, Rockville, Md.) containing: 10% fetal bovine serum (Gibco), 1% penicillin/streptomycin (Gibco), 1% L-glutamine (Gibco), 10 mM sodium HEPES buffer (Gibco) pH 7.4, 1 mM sodium pyruvate (Sigma, St. Louis) and 50 ⁇ M 2-mercaptoethanol (Sigma).
- Rat islets of Langerhans were prepared from the pancreata of normal Sprague-Dawley rats by an adaptation of a published method. Lacy, P. E. et al., Diabetes, 16:35-39 (1967). This method is described below.
- Rats were anaesthetized by intraperitoneal administration of 35-50 mg/kg of pentobarbital.
- the abdominal cavity was opened and approximately 15 ml of a buffered solution of collagenase introduced into the pancreatic duct via a needle.
- the solution comprised 3 mg/ml collagenase in magnesium-free Hanks buffer (127 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.34 mM Na 2 HPO 4 , 1 mM KH 2 PO 4 , 1.19 mM CaCl 2 , pH 7.4).
- pancreas was then dissected free of connective tissue, excised from the body and minced with scissors in a beaker containing additional collagenase buffer as described above.
- the pancreatic tissue was then further digested by incubating it with stirring at 37° C. in the collagenase buffer for 10-15 minutes.
- the tissue was then transferred to two 16 ⁇ 125 mm tubes and centrifuged very briefly to settle the solid material. Half of each supernatant was removed and replaced with magnesium-free Hanks buffer without collagenase.
- the tubes were shaken vigorously by hand and then centrifuged as before. The wash, shake and centrifuge procedure was then repeated twice.
- the pancreatic digest was then washed 4 more times with magnesium-free Hanks buffer, pouring off all of the supernatant after each centrifugation step and omitting the shaking.
- the pellets were mixed with 4 ml of a 27% (w/v) solution of Ficoll (Sigma, St. Louis, Mo.) in magnesium-free Hanks buffer and transferred to 30 ml tubes.
- a 4 ml volume of 23% (w/v) Ficoll in magnesium-free Hanks buffer was layered on top followed by 4 ml of 20.5% Ficoll in magnesium-free Hanks buffer and 4 ml of 11% Ficoll in magnesium-free Hanks buffer.
- the tubes were centrifuged for 10 minutes at 250 ⁇ g.
- Islets were collected from the 11%/20.5% and 20.5%/23% interfaces and placed in 50 ml tubes. They were washed twice with Hanks buffer containing magnesium (127 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.34 mM Na 2 HPO 4 , 1 mM KH 2 PO 4 , 0.81 mM MgSO 4 , 1.19 mM CaCl 2 , pH 7.4), sedimenting the islets by centrifugation for 10 minutes at 250 ⁇ g between washes. After the last centrifugation step, the pellet was transferred to a petri dish and the islets manually transferred from the dish to an appropriate culture vessel using a 200 ⁇ l constriction pipette.
- Hanks buffer containing magnesium 127 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.34 mM Na 2 HPO 4 , 1 mM KH 2 PO 4 , 0.81 mM MgSO
- Insulin secretion in response to stimulation was measured as follows. Islets were transferred to Kreb's-Ringer bicarbonate (KRB) buffer pH 7.4 containing 2.8 mM glucose and 0.1% bovine serum albumin (Sigma) and placed for two hours in a humidified 37° C. incubator filled with air to which 5% CO 2 by volume was added. After the pre-incubation, islets were transferred to a 48 well tissue culture plate (8 islets per well) containing KRB buffer, 0.1% bovine serum albumin, and glucose and stimulatory compounds at the desired concentrations in the buffer composition. The plates were returned to the incubator for two hours. At the end of this time, aliquots of the buffer were collected from each well and the insulin concentration present was measured by radioimmunoassay (Linco Research, Inc., St. Louis, Mo.).
- a response surface was constructed from the combined data. From the response surface, a contour line corresponding to 95% of the maximum response level due to glyburide alone was obtained. This contour line is shown in FIG. 1.
- the contour line represents all the combinations of the two drugs that produce this fixed amount of response based on the data from the experiments.
- the plot in FIG. 1 is called an isobologram. Isobologorams are used in the study of synergism and are well known to those skilled in the art. If only an additive effect exists, the contour line would be a straight line connecting points C and D. Synergism exists if the actual contour is below the straight line.
- the magnitude of the synergistic effect is measured by how far the contour line is from the straight line.
- the line representing a fixed ratio of the two drugs is a straight line that goes through the origin in FIG. 1. This line intercepts the contour at point A and the additive straight line at point B.
- FIG. 1 shows that for a wide range of ratios synergism exists.
- the contour line, as well as the dose reduction factor r is derived from data, they are subject to uncertainties associated with the data.
- the uncertainties come from factors such as measurement errors, ⁇ -cell line variations, and other random factors.
- an observed dose reduction factor r is less than 1, the main objective of the statistical analysis is to determine whether it is real or it is due to random chance. This is accomplished by first calculating the standard error of r, sd(r), and then calculating the probability of having a dose reduction factor no greater than the observed r according to a normal distribution with mean 1 and standard deviation sd(r). This probability is the p-value. If the p-value is less than 0.05, we conclude that the synergistic effect is statistically significant.
- Table 1 lists the dose reduction factor r and the associated p-value for each of the selected ratios of the two drugs. We see that for each of the selected ratios, the synergistic effect is significant.
- Glyburide/Milrinone r sd(r) p-value 0.003 0.873 0.0236 3.45E ⁇ 08 0.01 0.741 0.0358 2.15E ⁇ 13 0.03 0.598 0.0404 1.08E ⁇ 23 0.1 0.452 0.0379 9.10E ⁇ 48 0.3 0.348 0.0301 3.39E ⁇ 104 1 0.276 0.0195 2.59E ⁇ 302 2.4 0.259 0.0256 4.78E ⁇ 185 3 0.26 0.0305 2.95E ⁇ 130 10 0.314 0.0711 2.46E ⁇ 22 30 0.44 0.113 3.78E ⁇ 07 100 0.64 0.129 0.00272 300 0.814 0.0964 0.0266
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Ophthalmology & Optometry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Paper (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present invention provides methods of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor. The present invention also provides kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor. The present invention also relates to kits and pharmaceutical compositions that comprise 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
Description
- This application is filed claiming priority to U.S. Ser. No. 09/829,874, filed Apr. 10, 2001, now allowed, which claims priority to U.S. Provisional Application Serial No. 60/196,728, filed Apr. 13, 2000.
- The present invention relates to methods of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor. The present invention also relates to kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor. The present invention also relates to kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- In spite of the early discovery of insulin and its subsequent widespread use in the treatment of diabetes, and the later discovery of and use of sulfonylureas, biguanides and thiazolidenediones, such as troglitazone, rosiglitazone or pioglitazone, as oral hypoglycemic agents, the treatment of diabetes can be improved.
- A group of compounds that stimulate insulin secretion and stimulate de novo synthesis of insulin are the cAMP phosphodiesterase type 3 inhibitors. It is believed that cAMP phosphodiesterase type 3 inhibitors act to increase insulin secretion by increasing intracellular levels of cAMP in pancreatic β-cells in the islet of Langerhans. In contrast, sulfonylureas act on the K+ ATP channels of pancreatic β-cells in the islet of Langerhans. Moreover, cAMP phosphodiesterase type 3 is known to exist in two forms: type A and type B. Type A cAMP phosphodiesterase 3 is associated with cardiac tissue and with platelets, and type B is associated with liver and adipose tissue, and β-cells in the pancreas.
- In addition to sulfonylureas, which stimulate insulin secretion by acting on the K+ ATP channels, a group of non-sulfonylureas are known to stimulate insulin secretion by acting on K+ ATP channels. Examples of such non-sulfonylurea insulin secretagogues include nateglinide and repaglinide.
- The present invention provides an improved method of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance using a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- The present invention also relates to kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- In addition, the present invention relates to kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- The present invention provides methods of treating non-insulin dependent diabetes mellitus, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating insulin resistance, the methods comprising the step of administering to a patient having or at risk of having insulin resistance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating Syndrome X, the methods comprising the step of administering to a patient having or at risk of having Syndrome X a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts, the methods comprising the step of administering to a patient having or at risk of having diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating hyperglycemia, the methods comprising the step of administering to a patient having or at risk of having hyperglycemia a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are methods of treating impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are pharmaceutical compositions comprising a sulfonylurea and/or non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are pharmaceutical compositions comprising a sulfonylurea and a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are pharmaceutical compositions comprising a non-sulfonylurea K+ ATP channel blocker and a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are pharmaceutical compositions comprising a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor.
- Also provided are kits for the treatment of non-insulin dependent diabetes mellitus, the kits comprising:
- a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
- b) a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus; and
- c) a container for the first and second compositions.
- In a preferred embodiment of the kits, the second compound is selected from:
- insulin and insulin analogs;
- GLP-1 (7-37) (insulinotropin) and GLP-1 (7-36)-NH2;
- biguanides;
- glycogen phosphorylase inhibitors;
- aldose reductase inhibitors;
- α2-antagonists;
- imidazolines;
- glitazones (thiazolidinediones);
- PPAR-gamma agonists;
- fatty acid oxidation inhibitors;
- α-glucosidase inhibitors;
- β-agonists;
- lipid-lowering agents;
- antiobesity agents;
- vanadate, vanadium complexes and peroxovanadium complexes;
- amylin antagonists;
- glucagon antagonists;
- gluconeogenesis inhibitors;
- somatostatin agonists and antagonists; or
- antilipolytic agents.
- In a more preferred embodiment of the kits, the second compound is selected from LysPro insulin, GLP-1 (7-37) (insulinotropin), GLP-1 (7-36)-NH2, metformin, phenformin, buformin, midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan, linogliride, ciglitazone, pioglitazone, englitazone, troglitazone, darglitazone, rosiglitazone, clomoxir, etomoxir, acarbose, miglitol, emiglitate, voglibose, MDL-25,637, camiglibose, MDL-73,945, BRL 35135, BRL 37344, Ro 16-8714, ICI D7114, CL 316,243, benfluorex, fenfluramine, Naglivan®, acipimox, WAG 994, Symlin™, or AC2993.
- In another preferred embodiment of the kits, the second compound is selected from insulin, biguanides, or thiazolidinediones.
- Also provided are kits for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the kits comprising:
- a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
- b) a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance; and
- c) a container for the first and second compositions.
- Also provided are kits for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the kits comprising:
- a) a first pharmaceutical composition comprising a sulfonylurea or a non-sulfonylurea K+ ATP channel blocker;
- b) a second pharmaceutical composition comprising a cAMP phosphodiesterase type 3 inhibitor; and
- c) a container for the first and second compositions.
- In a preferred embodiment of the methods, kits, and pharmaceutical compositions, the sulfonylurea is glyburide and the cAMP phosphodiesterase type 3 inhibitor is milrinone.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the cAMP phosphodiesterase type 3 inhibitor is a selective cAMP phosphodiesterase type 3B inhibitor.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the sulfonylurea is glyburide, chlorpropamide, glibenclamide, glipizide, gliclazide, glimepiride, tolbutamide, acetohexamide, or tolazamide.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the sulfonylurea is glipizide or glyburide.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the sulfonylurea is glyburide.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the cAMP phosphodiesterase type 3 inhibitor is milrinone, amrinone, enoximone, indolidan, cilostamide, lixazinone, imazodan, cilostazol, bemorandan, siguazodan, adibendan, pimobendan, saterinone, sulmazol, or vesnarinone.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the cAMP phosphodiesterase type 3 inhibitor is milrinone.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the cAMP phosphodiesterase type 3 inhibitor is milrinone and the sulfonylurea is glyburide.
- In another preferred embodiment of the methods, kits, and pharmaceutical compositions, the non-sulfonylurea K+ ATP channel blocker is repaglinide or nateglinide.
- FIG. 1 is an isobologram that shows the synergistic effect of combinations of milrinone and glyburide on insulin secretion.
- The present invention provides methods of treating non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the methods comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- The present invention also provides kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
- In addition, the present invention provides kits and pharmaceutical compositions that comprise: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; 2) a cAMP phosphodiesterase type 3 inhibitor; and 3) an additional compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance.
- Certain terms and phrases that are used in this application are defined below.
- The phrase “synergistic amount” means that the therapeutic effect of a sulfonylurea and/or non-sulfonylurea K+ ATP channel blocker, when administered in combination with a cAMP phosphodiesterase type 3 inhibitor, is greater than the predicted additive therapeutic effect of a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor when administered alone.
- The phrase “therapeutic effect” means an amount of a compound or combination of compounds that treats a disease; ameliorates, attenuates, or eliminates one or more symptom of a particular disease; or prevents or delays the onset of one of more symptom of a particular disease.
- The phrase “non-sulfonylurea K+ ATP channel blocker” means a compound that is not a sulfonylurea, but acts like a sulfonylurea in that the compound is a K+ ATP channel blocker. Examples of non-sulfonylurea K+ ATP blockers include repaglinide and nateglinide.
- The term “selective” with regard to cAMP phosphodiesterase type 3 inhibitors means that an inhibitor shows greater binding affinity with respect to one of the two types A and B. For example, a selective cAMP phosphodiesterase type 3B inhibitor has a higher binding affinity for cAMP phosphodiesterase type 3B than cAMP phosphodiesterase type 3A. In general, the affinity is about 50% greater for one type than the other type. More preferably, the affinity is about 75% greater, and most preferably is about 90% greater.
- The term “patient” means animals, such as dogs, cats, cows, horses, sheep, and humans. Particularly preferred patients are mammals. The term patient includes males and females.
- The phrase “pharmaceutically acceptable” means that the carrier, diluent, vehicle, excipients, and/or salt must be compatible with the other ingredients of the formulation, and not deleterious to the patient.
- The terms “sulfonylurea,” “non-sulfonylurea K+ ATP channel blocker,” and “cAMP phosphodiesterase type 3 inhibitor” and grammatical variations thereof, includes the stereoisomers of these compounds, pharmaceutically acceptable salts of the compounds, prodrugs of the compounds, and pharmaceutically acceptable salts of the prodrugs.
- The terms “treating”, “treat” or “treatment” include preventative (e.g., prophylactic) and palliative treatment.
- Patients at risk for having non-insulin dependent diabetes mellitus include obese patients, patients having polycystic ovary syndrome, impaired glucose tolerance, insulin resistance, or having or having had gestational diabetes.
- The sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention are administered to a patient in synergistic amounts. It has been surprisingly and unexpectedly discovered that administration of a combination of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor results in greater therapeutic effect than the effect expected from the additive effects of each of the compounds. In addition, the present invention contemplates the use of both a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker along with a cAMP phosphodiesterase type 3 inhibitor. Also contemplated are the use of one or more sulfonylureas and/or one or more non-sulfonylurea K+ ATP channel blockers in combination with one or more cAMP phosphodiesterase type 3 inhibitors.
- The compounds can be administered alone or as part of a pharmaceutically acceptable composition or formulation. In addition, the sulfonylureas and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors can be administered all at once, as for example, by a bolus injection, multiple times, such as by a series of tablets, or delivered substantially uniformly over a period of time, as for example, using transdermal delivery. It is also noted that the dose of the sulfonylureas and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors can be varied over time.
- In addition, the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered alone, in combination with other sulfonylureas, non-sulfonylurea K+ ATP channel blockers, or cAMP phosphodiesterase type 3 inhibitors, or with other pharmaceutically active compounds. The other pharmaceutically active compounds can be intended to treat the same diseases as the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, or cAMP phosphodiesterase type 3 inhibitors or different diseases. If the patient is to receive or is receiving multiple compounds, the compounds can be administered simultaneously, or sequentially in any order. For example, in the case of tablets, the active compound(s) can be found in one tablet or in separate tablets, which can be administered at once or sequentially in any order. In addition, it should be recognized that the compositions can be different forms. For example, one or more compounds may be delivered via a tablet, while another is administered via injection or orally as a syrup. All combinations, delivery methods and administration sequences are contemplated.
- Since the present invention contemplates the treatment of diseases with a combination of pharmaceutically active agents that can be administered separately, the invention further relates to combining separate pharmaceutical compositions in kit form. In one embodiment, a kit comprises two separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor; and the second composition comprising a second pharmaceutically active compound. In another embodiment, a kit comprises two separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker; and the second composition comprising a cAMP phosphodiesterase type 3 inhibitor. In still another embodiment, the kit comprises three separate pharmaceutical compositions: one composition comprising a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker; the second composition comprising a cAMP phosphodiesterase type 3 inhibitor; and the third composition comprising a third pharmaceutically active compound. Other kit variations for the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors are possible, and these variations are intended to be encompassed by the present invention. The kits also comprise a container for the separate compositions such as a divided bottle or a divided foil packet. Additional examples of containers include syringes, boxes, bags, and the like. Typically, the kits comprise directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of a combination of compounds is desired by the prescribing physician.
- An example of such a kit is a blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil that is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet. Preferably, the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.
- It may be desirable to provide a memory aid on the kit, e.g., in the form of numbers next to the tablets or capsules whereby the numbers correspond with the days of the regimen which the tablets or capsules so specified should be ingested. Another example of such a memory aid is a calendar printed on the card, e.g., as follows “First Week, Monday, Tuesday, . . . etc . . . Second Week, Monday, Tuesday,” etc. Other variations of memory aids will be readily apparent. A “daily dose” can be a single tablet or capsule or several pills or capsules to be taken on a given day. Also, a daily dose of a compound of the present invention can consist of one tablet or capsule, while a daily dose of a second compound can consist of several tablets or capsules and vice versa. The memory aid should reflect this and assist in correct administration of the compounds.
- In another embodiment of the invention, a dispenser designed to dispense the daily doses one at a time in the order of their intended use is provided. Preferably, the dispenser is equipped with a memory aid, so as to further facilitate compliance with the dosing regimen. An example of such a memory aid is a mechanical counter that indicates the number of daily doses that have been dispensed. Another example of such a memory aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds a patient when the next dose is to be taken.
- The sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention and other pharmaceutically active compounds, if desired, can be administered to a patient either orally, rectally, parenterally, (for example, intravenously, intramuscularly, or subcutaneously) intracisternally, intravaginally, intraperitoneally, intravesically, locally (for example, powders, ointments or drops), or as a buccal or nasal spray. It is also noted that the administration methods include the use of controlled release compositions, including sustained release and delayed release, and immediate release compositions and combinations thereof.
- Compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions, emulsions, or sterile powders for reconstitution into sterile injectable solutions or dispersions. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions, or by the use of surfactants.
- These compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. Microorganism contamination can be prevented by adding various antibacterial and antifungal agents to the compositions, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example, sugars, sodium chloride, and the like. Prolonged absorption of injectable pharmaceutical compositions can be brought about by the use of agents delaying absorption, for example, aluminum monostearate or gelatin.
- Solid dosage forms for oral administration include capsules, tablets, powders, and granules. In such solid dosage forms, the compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or (a) fillers or extenders, as for example, starches, lactose, sucrose, mannitol, or silicic acid; (b) binders, as for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, or acacia; (c) humectants, as for example, glycerol; (d) disintegrating agents, as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates, or sodium carbonate; (e) solution retarders, as for example, paraffin; (f) absorption accelerators, as for example, quaternary ammonium compounds; (g) wetting agents, as for example, cetyl alcohol and glycerol monostearate; (h) adsorbents, as for example, kaolin or bentonite; and (i) lubricants, as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, or mixtures thereof. In the case of capsules, and tablets, the dosage forms may also comprise buffering agents.
- Solid compositions of a similar type may also be used as fillers in soft and hard filled gelatin capsules using such excipients as lactose or milk sugar, as well as high molecular weight polyethylene glycols, and the like.
- Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may also contain opacifying agents, and can also be of such composition that they release the compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedding compositions that can be used are polymeric substances and waxes. The compounds can also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs. In addition to the active compounds, the liquid dosage form may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and/or emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil, or sesame seed oil, glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols or fatty acid esters of sorbitan, or mixtures of these substances, and the like.
- Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and/or suspending agents, sweetening, flavoring, or perfuming agents.
- Suspensions, in addition to the compound, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol or sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar, or tragacanth, or mixtures of these substances, and the like.
- Compositions for rectal or vaginal administration can be prepared by mixing the compounds of the present invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary room temperature, but liquid at body temperature, and therefore, melt in the rectum or vaginal cavity and release the active component.
- Dosage forms for topical administration include ointments, powders, sprays and inhalants. The compound or compounds are admixed under sterile conditions with a physiologically acceptable carrier, and any preservatives, buffers, or propellants that may be required. Ophthalmic formulations, eye ointments, powders, and solutions are also contemplated as being within the scope of this invention.
- Each of the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered to a patient at synergistic dosage levels in the range of about 0.1 to about 7,000 mg per day. A preferred dosage range is about 0.1 to about 500 mg per day. The specific dosage and dosage range that can be used for each compound depends on a number of factors, including the requirements of the patient, the severity of the condition or disease being treated, and the pharmacological activity of the compound or compounds being administered. The determination of dosage ranges and optimal dosages for a particular patient is well within the ordinary skill in the art in view of the present disclosure.
- Suitable synergistic dosage ranges can be correlated with desired plasma concentrations. For example, an effective plasma concentration of a cAMP phosphodiesterase type 3 inhibitor such as milrinone is about 10 ng/mL to about 10 mg/mL. A preferred plasma concentration is about 100 ng/mL to about 1 mcg/mL. Similarly, an effective plasma concentration for a sulfonylurea such as glyburide is about 5 ng/mL to about 100 mcg/mL. A preferred plasma concentration is 49 ng/mL to about 5 mcg/mL.
- The following paragraphs describe exemplary formulations, dosages, etc., useful for non-human patients. The administration of sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be effected orally or non-orally, for example by injection. An amount of a compound or combination of compounds is administered such that a synergistic dose is received, generally a daily dose which, when administered orally to an animal is usually between 0.01 and 100 mg/kg of body weight, preferably between 0.1 and 50 mg/kg of body weight of each of: a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker; and a cAMP phosphodiesterase type 3 inhibitor. It is noted that each of the compounds administered in a combination can have the same or a different dosage. Conveniently, the medication can be carried in the drinking water so that a therapeutic dosage of the combination of compounds is ingested with the daily water supply. The combination of compounds can be directly metered into drinking water, preferably in the form of a liquid, water-soluble concentrate (such as an aqueous solution of a water soluble salt). Conveniently, the compounds of the present invention can also be added directly to the feed, as such, or in the form of an animal feed supplement, also referred to as a premix or concentrate. A premix or concentrate in a carrier is more commonly employed for the inclusion of a compound or compounds in the feed. Suitable carriers are liquid or solid, as desired, such as water, various meals such as alfalfa meal, soybean meal, cottonseed oil meal, linseed oil meal, corncob meal and corn meal, molasses, urea, bone meal, and mineral mixes such as are commonly employed in poultry feeds. A particularly effective carrier is the respective animal feed itself; that is, a small portion of such feed. The carrier facilitates uniform distribution of the compound or combination of compounds in the finished feed with which the premix is blended. It is important that a compound or combination of compounds be thoroughly blended into the premix and, subsequently, the feed. In this respect, the compound or combination of compounds may be dispersed or dissolved in a suitable oily vehicle such as soybean oil, corn oil, cottonseed oil, and the like, or in a volatile organic solvent and then blended with the carrier. It will be appreciated that the proportions of the compound or combination of compounds in the concentrate are capable of wide variation since the amount of a compound or combination of compounds in the finished feed may be adjusted by blending the appropriate proportion of premix with the feed to obtain the desired level of the compound or compounds.
- High potency concentrates may be blended by the feed manufacturer with proteinaceous carrier such as soybean oil meal or other meals, as described above, to produce concentrated supplements which are suitable for direct feeding to animals. In such instances, the animals are permitted to consume the usual diet. Alternatively, such concentrated supplements may be added directly to the feed to produce a nutritionally balanced, finished feed containing a synergistic amount of the compounds according to the present invention. The mixtures are thoroughly blended by standard procedures, such as in a twin shell blender, to ensure homogeneity.
- If the supplement is used as a top dressing for the feed, it likewise helps to ensure uniformity of distribution of the compound or combination of compounds across the top of the dressed feed.
- For parenteral administration in non-human animals, a sulfonylurea and/or non-sulfonylurea K+ ATP channel blocker, and cAMP phosphodiesterase type 3 inhibitor may be prepared in the form of a paste or a pellet and administered as an implant, usually under the skin of the head or ear of the animal.
- In general, parenteral administration involves the injection of a sufficient amount of a sulfonylurea, and/or non-sulfonylurea K+ ATP channel blocker, in combination with a cAMP phosphodiesterase type 3 inhibitor to provide the animal with about 0.01 to about 100 mg/kg/day of body weight of each of the active ingredients in the combination.
- Paste formulations can be prepared by dispersing the compounds in a pharmaceutically acceptable oil such as peanut oil, sesame oil, corn oil or the like.
- Pellets containing an effective amount of compounds of the present invention can be prepared by admixing compounds of the present invention with a diluent such as carbowax, carnauba wax, or the like, and a lubricant, such as magnesium or calcium stearate, can be added to improve the pelleting process.
- It is, of course, recognized that more than one pellet may be administered to an animal to achieve the desired dose level. Moreover, it has been found that implants may also be made periodically during the animal treatment period in order to maintain the proper level of compound(s) in the animal's body.
- The term pharmaceutically acceptable salts or prodrugs includes the carboxylate salts, amino acid addition salts, and prodrugs of the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors that are, within the scope of sound medical judgment, suitable for use with patients without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible.
- The term “salts” refers to inorganic and organic salts of the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors. The salts can be prepared in situ during the final isolation and purification, or by separately reacting a purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, nitrate, acetate, oxalate, palmitiate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts, or the like. The salts may include cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, and the like, as well as non-toxic ammonium, quaternary ammonium, and amine cations including, but not limited to, ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. See, for example, S. M. Berge, et al., “Pharmaceutical Salts,” J Pharm Sci, 66: 1-19 (1977).
- Examples of pharmaceutically acceptable, non-toxic esters of the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors, if applicable, include C1-C8 alkyl esters. Acceptable esters also include C5-C7cycloalkyl esters, as well as arylalkyl esters such as benzyl. C1-C4 Alkyl esters are preferred. Esters of a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, or cAMP phosphodiesterase type 3 inhibitor may be prepared according to methods that are well known in the art.
- Examples of pharmaceutically acceptable non-toxic amides of the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors include amides derived from ammonia, primary C1-C8alkyl amines, and secondary C1-C8dialkyl amines. In the case of secondary amines, the amine may also be in the form of a 5 or 6 membered heterocycloalkyl group containing at least one nitrogen atom. Amides derived from ammonia, C1-C3 primary alkyl amines, and C1-C2 dialkyl secondary amines are preferred. Amides of a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, and cAMP phosphodiesterase type 3 inhibitor may be prepared according to methods well known to those skilled in the art.
- The term “prodrug” means compounds that are transformed in vivo to yield a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, and/or cAMP phosphodiesterase type 3 inhibitor. The transformation may occur by various mechanisms, such as through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, “Pro-drugs as Novel Delivery Systems,” Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
- For example, if a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, or a cAMP phosphodiesterase type 3 inhibitor of the invention comprises a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C1-C8)alkyl, (C2-C12)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(C1-C2)alkylamino(C2-C3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(C1-C2)alkyl, N,N-di(C1-C2)alkylcarbamoyl-(C1-C2)alkyl and piperidino-, pyrrolidino- or morpholino(C2-C3)alkyl.
- Similarly, if a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, or cAMP phosphodiesterase type 3 inhibitor comprises an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1-methyl-1-((C1-C6)alkanoyloxy)ethyl, (C1-C6)alkoxycarbonyloxymethyl, N-(C1-C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkanoyl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-C6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate).
- If a sulfonylurea, non-sulfonylurea K+ ATP channel blocker, or a cAMP phosphodiesterase type 3 inhibitor comprises an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR′-carbonyl where R and R′ are each independently (C1-C10)alkyl, (C3-C7)cycloalkyl, or benzyl, or R-carbonyl is a natural α-aminoacyl or natural α-aminoacyl-natural α-aminoacyl, —C(OH)C(O)OY wherein Y is H, (C1-C6)alkyl or benzyl, —C(OY0)Y1 wherein Y0 is (C1-C4)alkyl and Y1 is (C1-C6)alkyl, carboxy(C1-C6)alkyl, amino(C1-C4)alkyl or mono-N- or di-N,N-(C1-C6)alkylaminoalkyl, —C(Y2)Y3 wherein Y2 is H or methyl and Y3 is mono-N- or di-N,N-(C1-C6)alkylamino, morpholino, piperidin-1-yl or pyrrolidin-1-yl.
- The sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and/or cAMP phosphodiesterase type 3 inhibitors of the present invention may contain asymmetric or chiral centers, and therefore, exist in different stereoisomeric forms. It is contemplated that all stereoisomeric forms of the compounds as well as mixtures thereof, including racemic mixtures, form part of the present invention. In addition, the present invention contemplates all geometric and positional isomers. For example, if a compound contains a double bond, both the cis and trans forms, as well as mixtures, are contemplated.
- Diasteromeric mixtures can be separated into their individual stereochemical components on the basis of their physical chemical differences by methods known per se, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diasteromeric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the compounds of this invention may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention.
- The sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and/or cAMP phosphodiesterase type 3 inhibitors of the present invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The present invention contemplates and encompasses both the solvated and unsolvated forms.
- It is also possible that the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and/or cAMP phosphodiesterase type 3 inhibitors of the present invention may exist in different tautomeric forms. All tautomers of compounds of the present invention are contemplated.
- It is also intended that the invention disclosed herein encompass compounds that are synthesized in vitro using laboratory techniques, such as those well known to synthetic chemists; or synthesized using in vivo techniques, such as through metabolism, fermentation, digestion, and the like. It is also contemplated that the compounds of the present invention may be synthesized using a combination of in vitro and in vivo techniques.
- The present invention also includes isotopically labelled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as2H, 3H, 13C, 14C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively. Compounds of the present invention that contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically labelled compounds of the present invention, for example those into which radioactive isotopes such as 3H and 14C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, i.e., 3H, and carbon-14, i.e., 14C, isotopes are particularly preferred for their ease of preparation and detection. Further, substitution with heavier isotopes such as deuterium, i.e., 2H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labelled compounds of this invention and prodrugs thereof can generally be prepared by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.
- Non-insulin dependent diabetes mellitus (also called
Type 2 or adult onset diabetes), insulin resistance, impaired glucose tolerance, Syndrome X, hyperglycemia, polycystic ovary syndrome, cataracts, or any of the diabetic complications such as neuropathy, nephropathy, retinopathy, or cardiomyopathy can be treated by administering to a patient having or at risk of having one of the above-mentioned diseases a synergistic amount of: 1) a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor. It is also contemplated that non-insulin dependent diabetes mellitus, insulin resistance, impaired glucose tolerance, Syndrome X, hyperglycemia, polycystic ovary syndrome, or cataracts, or any of the diabetic complications such as neuropathy, nephropathy, retinopathy, or cardiomyopathy can be treated by administering to a patient having or at risk of having one of the above-mentioned diseases a synergistic amount a sulfonylurea and/or a non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor and another agent that can be used to treat non-insulin dependent diabetes mellitus, insulin resistance, impaired glucose tolerance, Syndrome X, hyperglycemia, polycystic ovary syndrome, or cataracts, or any of the diabetic complications such as neuropathy, nephropathy, retinopathy, or cardiomyopathy. - Representative examples of additional agents that can be used include insulin and insulin analogs (e.g. LysPro insulin); GLP-1 (7-37) (insulinotropin) and GLP-1 (7-36)-NH2; biguanides: metformin, phenformin, buformin; α2-antagonists and imidazolines: midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan; other insulin secretagogues: linogliride, A-4166; glitazones: ciglitazone, pioglitazone, englitazone, troglitazone, darglitazone, rosiglitazone; PPAR-gamma agonists; fatty acid oxidation inhibitors: clomoxir, etomoxir; α-glucosidase inhibitors: acarbose, miglitol, emiglitate, voglibose, MDL-25,637, camiglibose, MDL-73,945; β-agonists: BRL 35135, BRL 37344, Ro 16-8714, ICI D7114, CL 316,243; lipid-lowering agents: benfluorex; antiobesity agents: fenfluramine; vanadate and vanadium complexes (e.g. Naglivan®) and peroxovanadium complexes; amylin antagonists; glucagon antagonists; gluconeogenesis inhibitors; somatostatin agonists and antagonists; antilipolytic agents: nicotinic acid, acipimox, WAG 994. Any combination of agents can be administered as described above.
- Preferred compounds from the above classes include: LysPro insulin; GLP-1 (7-37) (insulinotropin); GLP-1 (7-36)-NH2; metformin; phenformin; buformin; midaglizole; isaglidole; deriglidole; idazoxan; efaroxan; fluparoxan; linogliride; ciglitazone; pioglitazone; englitazone; troglitazone; darglitazone; rosiglitazone; clomoxir; etomoxir; acarbose; miglitol; emiglitate; voglibose; MDL-25,637; camiglibose; MDL-73,945; BRL 35135; BRL 37344; Ro 16-8714; ICI D7114; CL 316,243; benfluorex; fenfluramine; Naglivan®; acipimox; WAG 994; Symlin™; or AC2993.
- In addition to the categories and compounds mentioned above, the sulfonylureas, non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can be administered in combination with thyromimetic compounds, aldose reductase inhibitors, glucocorticoid receptor antagonists, NHE-1 inhibitors, or sorbitol dehydrogenase inhibitors, or combinations thereof, to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, and impaired glucose tolerance.
- It is also contemplated that the combinations of sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors described herein may be used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, which are diseases that occur more frequently in diabetic patients than in non-diabetic patients.
- In addition, it is contemplated that the combinations of sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors described herein that may be used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia, can be used in combination with other compounds that are used to treat hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, or tissue ischemia, particularly myocardial ischemia.
- It is generally accepted that thyroid hormones, specifically, biologically active iodothyronines, are critical to normal development and to maintaining metabolic homeostasis. Thyroid hormones stimulate the metabolism of cholesterol to bile acids and enhance the lipolytic responses of fat cells to other hormones. U.S. Pat. Nos. 4,766,121; 4,826,876; 4,910,305; and 5,061,798 disclose certain thyroid hormone mimetics (thyromimetics), namely, 3,5-dibromo-3′-[6-oxo-3(1H)-pyridazinylmethyl]-thyronines. U.S. Pat. No. 5,284,971 discloses certain thyromimetic cholesterol lowering agents, namely, 4-(3-cyclohexyl-4-hydroxy or -methoxy phenylsulfonyl)-3,5 dibromo-phenylacetic compounds. U.S. Pat. Nos. 5,401,772; 5,654,468; and 5,569,674 disclose certain thyromimetics that are lipid lowering agents, namely, heteroacetic acid derivatives. In addition, certain oxamic acid derivatives of thyroid hormones are known in the art. For example, N. Yokoyama, et al. in an article published in theJournal of Medicinal Chemistry, 38 (4): 695-707 (1995) describe replacing a —CH2 group in a naturally occurring metabolite of T3 with an —NH group resulting in —HNCOCO2H. Likewise, R. E. Steele et al. in an article published in International Congressional Service (Atherosclerosis X) 1066: 321-324 (1995) and Z. F. Stephan et al. in an article published in Atherosclerosis, 126: 53-63 (1996), describe certain oxamic acid derivatives useful as lipid-lowering thyromimetic agents, yet devoid of undesirable cardiac activities.
- Each of the thyromimetic compounds referenced above and other thyromimetic compounds can be used in combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyoapthy, polycystic ovary syndrome, cataracts hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia or impaired glucose tolerance.
- The sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with aldose reductase inhibitors. Aldose reductase inhibitors constitute a class of compounds that have become widely known for their utility in preventing and treating conditions arising from complications of diabetes, such as diabetic neuropathy and nephropathy. Such compounds are well known to those skilled in the art and are readily identified by standard biological tests. For example, the aldose reductase inhibitors zopolrestat, 1-phthalazineacetic acid, 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-, and related compounds are described in U.S. Pat. No. 4,939,140.
- Aldose reductase inhibitors have been taught for use in lowering lipid levels in mammals. See, for example, U.S. Pat. No. 4,492,706 and EP 0 310 931 A2.
- U.S. Pat. No. 5,064,830 discloses the use of certain oxophthalazinyl acetic acid aldose reductase inhibitors, including zopolrestat, for lowering of blood uric acid levels.
- Commonly assigned U.S. Pat. No. 5,391,551 discloses the use of certain aldose reductase inhibitors, including zopolrestat, for lowering blood lipid levels in humans. The disclosure teaches that therapeutic utilities derive from the treatment of diseases caused by an increased level of triglycerides in the blood, such diseases include cardiovascular disorders such as thrombosis, arteriosclerosis, myocardial infarction, and angina pectoris. A preferred aldose reductase inhibitor is zopolrestat.
- The term aldose reductase inhibitor refers to compounds that inhibit the bioconversion of glucose to sorbitol, which is catalyzed by the enzyme aldose reductase.
- Any aldose reductase inhibitor may be used in a combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention. Aldose reductase inhibition is readily determined by those skilled in the art according to standard assays (J. Malone, Diabetes, 29:861-864 (1980). “Red Cell Sorbitol, an Indicator of Diabetic Control”). A variety of aldose reductase inhibitors are described herein; however, other aldose reductase inhibitors useful in the compositions and methods of this invention will be known to those skilled in the art.
- The activity of an aldose reductase inhibitor in a tissue can be determined by testing the amount of aldose reductase inhibitor that is required to lower tissue sorbitol (i.e., by inhibiting the further production of sorbitol consequent to blocking aldose reductase) or lower tissue fructose (by inhibiting the production of sorbitol consequent to blocking aldose reductase and consequently the production of fructose).
- Accordingly, examples of aldose reductase inhibitors useful in the present invention include:
- 1. 3-(4-bromo-2-fluorobenzyl)-3,4-dihydro-4-oxo-1-phthalazineacetic acid (ponalrestat, U.S. Pat. No. 4,251,528);
- 2. N[[(5-trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (tolrestat, U.S. Pat. No. 4,600,724);
- 3. 5-[(Z,E)-β-methylcinnamylidene]-4-oxo-2-thioxo-3-thiazolideneacetic acid (epalrestat, U.S. Pat. No. 4,464,382, U.S. Pat. No. 4,791,126, U.S. Pat. No. 4,831,045);
- 4. 3-(4-bromo-2-fluorobenzyl)-7-chloro-3,4-dihydro-2,4-dioxo-1(2H)-quinazolineacetic acid (zenarestat, U.S. Pat. Nos. 4,734,419, and 4,883,800);
- 5. 2R,4R-6,7-dichloro-4-hydroxy-2-methylchroman-4-acetic acid (U.S. Pat. No. 4,883,410);
- 6. 2R,4R-6,7-dichloro-6-fluoro-4-hydroxy-2-methylchroman-4-acetic acid (U.S. Pat. No. 4,883,410);
- 7. 3,4-dihydro-2,8-diisopropyl-3-oxo-2H-1,4-benzoxazine-4-acetic acid (U.S. Pat. No. 4,771,050);
- 8. 3,4-dihydro-3-oxo-4-[(4,5,7-trifluoro-2-benzothiazolyl)methyl]-2H-1,4-benzothiazine-2-acetic acid (SPR-210, U.S. Pat. No. 5,252,572);
- 9. N-[3,5-dimethyl-4-[(nitromethyl)sulfonyl]phenyl]-2-methyl-benzeneacetamide (ZD5522, U.S. Pat. No. 5,270,342 and U.S. Pat. No. 5,430,060);
- 10. (S)-6-fluorospiro[chroman-4,4′-imidazolidine]-2,5′-dione (sorbinil, U.S. Pat. No. 4,130,714);
- 11. d-2-methyl-6-fluoro-spiro(chroman-4′,4′-imidazolidine)-2′,5′-dione (U.S. Pat. No. 4,540,704);
- 12. 2-fluoro-spiro(9H-fluorene-9,4′-imidazolidine)2′,5′-dione (U.S. Pat. No. 4,438,272);
- 13. 2,7-di-fluoro-spiro(9H-fluorene-9,4′-imidazolidine)2′,5′-dione (U.S. Pat. No. 4,436,745, U.S. Pat. No. 4,438,272);
- 14. 2,7-di-fluoro-5-methoxy-spiro(9H-fluorene-9,4′-imidazolidine)2′,5′-dione (U.S. Pat. No. 4,436,745, U.S. Pat. No. 4,438,272);
- 15. 7-fluoro-spiro(5H-indenol[1,2-b]pyridine-5,3′-pyrrolidine)2,5′-dione (U.S. Pat. No. 4,436,745, U.S. Pat. No. 4,438,272);
- 16. d-cis-6′-chloro-2′,3′-dihydro-2′-methyl-spiro-(imidazolidine-4,4′-4′-H-pyrano(2,3-b)pyridine)-2,5-dione (U.S. Pat. No. 4,980,357);
- 17. spiro[imidazolidine-4,5′(6H)-quinoline]2,5-dione-3′-chloro-7,′8′-dihydro-7′-methyl-(5′-cis)(U.S. Pat. No. 5,066,659);
- 18. (2S,4S)-6-fluoro-2′,5′-dioxospiro(chroman-4,4′-imidazolidine)-2-carboxamide (U.S. Pat. No. 5,447,946);
- 19. 2-[(4-bromo-2-fluorophenyl)methyl]-6-fluorospiro[isoquinoline-4(1H),3′-pyrrolidine]-1,2′,3,5′(2H)-tetrone (ARI-509, U.S. Pat. No. 5,037,831);
- 20. 3,4-dihydro-3-(5-fluorobenzothiazol-2-ylmethyl)-4-oxophthalazin-1-yl-acetic acid;
- 21. 3-(5,7-difluorobenzothiazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid;
- 22. 3-(5-chlorobenzothiazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid;
- 23. 3-(5,7-dichlorobenzothiazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid;
- 24. 3,4-dihydro-4-oxo-3-(5-trifluoromethylbenzoxazol-2-ylmethyl)phthalazin-1-ylacetic acid;
- 25. 3,4-dihydro-3-(5-fluorobenzoxazol-2-ylmethyl)-4-oxophthalazin-1-yl-acetic acid;
- 26. 3-(5,7-difluorobenzoxazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid;
- 27. 3-(5-chlorobenzoxazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid;
- 28. 3-(5,7-dichlorobenzoxazol-2-ylmethyl)-3,4-dihydro-4-oxophthalazin-1-ylacetic acid; and
- 29. zopolrestat; 1-phthalazineacetic acid, 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-.
- Procedures for making the aldose reducatase inhibitors 20-29 can be found in PCT publication number WO 99/26659.
- Each of the aldose reductase inhibitors referenced above and other aldose reductase inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- The sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with glucocorticoid receptor antagonists. The glucocorticoid receptor (GR) is present in glucocorticoid responsive cells where it resides in the cytosol in an inactive state until it is stimulated by an agonist. Upon stimulation the glucocorticoid receptor translocates to the cell nucleus where it specifically interacts with DNA and/or protein(s) and regulates transcription in a glucocorticoid responsive manner. Two examples of proteins that interact with the glucocorticoid receptor are the transcription factors, API and NFκ-β. Such interactions result in inhibition of API- and NFκ-β- mediated transcription and are believed to be responsible for the anti-inflammatory activity of endogenously administered glucocorticoids. In addition, glucocorticoids may also exert physiologic effects independent of nuclear transcription. Biologically relevant glucocorticoid receptor agonists include cortisol and corticosterone. Many synthetic glucocorticoid receptor agonists exist including dexamethasone, prednisone and prednisilone. By definition, glucocorticoid receptor antagonists bind to the receptor and prevent glucocorticoid receptor agonists from binding and eliciting GR mediated events, including transcription. RU486 is an example of a non-selective glucocorticoid receptor antagonist. GR antagonists can be used in the treatment of diseases associated with an excess or a deficiency of glucocorticoids in the body. As such, they may be used to treat the following: obesity, diabetes, cardiovascular disease, hypertension, Syndrome X, depression, anxiety, glaucoma, human immunodeficiency virus (HIV) or acquired immunodeficiency syndrome (AIDS), neurodegeneration (for example, Alzheimer's and Parkinson's), cognition enhancement, Cushing's Syndrome, Addison's Disease, osteoporosis, frailty, inflammatory diseases (such as osteoarthritis, rheumatoid arthritis, asthma and rhinitis), adrenal function, viral infection, immunodeficiency, immunomodulation, autoimmune diseases, allergies, wound healing, compulsive behavior, multi-drug resistance, addiction, psychosis, anorexia, cachexia, post-traumatic stress syndrome, post-surgical bone fracture, medical catabolism and prevention of muscle frailty. Examples or GR antagonists that can be used in combination with a compound of the present invention include the compounds disclosed in U.S. provisional patent application No. 60/132,130.
- Each of the glucocorticoid receptor antagonists referenced above and other glucocorticoid receptor antagonists can be used in combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- The sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with sorbitol dehydrogenase inhibitors. Sorbitol dehydrogenase inhibitors lower fructose levels and have been used to treat or prevent diabetic complications such as neuropathy, retinopathy, nephropathy, cardiomyopathy, microangiopathy, and macroangiopathy. U.S. Pat. Nos. 5,728,704 and 5,866,578 disclose compounds and a method for treating or preventing diabetic complications by inhibiting the enzyme sorbitol dehydrogenase.
- Each of the sorbitol dehydrogenase inhibitors referenced above and other sorbitol dehydrogenase inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- The sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention can also be used in combination with sodium-hydrogen exchanger type 1 (NHE-1) inhibitors. NHE-1 inhibitors can be used to reduce tissue damage resulting from ischemia. Of great concern is tissue damage that occurs as a result of ischemia in cardiac, brain, liver, kidney, lung, gut, skeletal muscle, spleen, pancreas, nerve, spinal cord, retina tissue, the vasculature, or intestinal tissue. NHE-1 inhibitors can also be administered to prevent perioperative myocardial ischemic injury. Examples of NHE-1 inhibitors include those disclosed in PCT patent application number PCT/IB99/00206.
- Each of the NHE-1 inhibitors referenced above and other NHE-1 inhibitors can be used in combination with the sulfonylureas, and/or non-sulfonylurea K+ ATP channel blockers, and cAMP phosphodiesterase type 3 inhibitors of the present invention to treat diabetes, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, hypercholesterolemia, hypertension, hyperlipidemia, atherosclerosis, tissue ischemia, or impaired glucose tolerance.
- The examples presented below are intended to illustrate particular embodiments of the invention, and are not intended to limit the scope of the specification, including the claims, in any manner. All patents, patent applications, and other references cited in this application are hereby incorporated by reference.
- The INS-1 cell is a β-cell line derived from an X-ray induced transplantable rat insulinoma. Asfari, M. et al.,Endocrinology, 130:167-178 (1992). When maintained in cell culture, the cells of this line secrete insulin in response to the same stimuli that stimulate insulin secretion from the β-cells present in the intact islet of Langerhans. The cells are grown until confluent in 24-well tissue culture plates in a standard tissue culture medium [RPMI1640 without L-glutamine (Gibco, Rockville, Md.) containing: 10% fetal bovine serum (Gibco), 1% penicillin/streptomycin (Gibco), 1% L-glutamine (Gibco), 10 mM sodium HEPES buffer (Gibco) pH 7.4, 1 mM sodium pyruvate (Sigma, St. Louis) and 50 μM 2-mercaptoethanol (Sigma).
- Secretion of insulin from these cells was measured as follows. The incubation medium was removed from the confluent cell monolayers by aspiration and replaced with Kreb's-Ringer bicarbonate (KRB) buffer without glucose, but containing 0.1% bovine serum albumin (BSA). The cells were incubated for 2 hours in this medium in a humidified 37° C. incubator filled with air with 5% CO2 by volume added. The pre-incubation medium was then removed by aspiration and replaced with KRB buffer (pH 7.4) containing 0.1% BSA, and glucose and stimulatory compounds at the desired concentrations. The plates were returned to the incubator for four hours. At the end of this time, aliquots of the buffer were collected from each well and the insulin concentration present was measured by radioimmunoassay (Linco Research, Inc., St. Louis, Mo.).
- Rat islets of Langerhans were prepared from the pancreata of normal Sprague-Dawley rats by an adaptation of a published method. Lacy, P. E. et al.,Diabetes, 16:35-39 (1967). This method is described below.
- Rats were anaesthetized by intraperitoneal administration of 35-50 mg/kg of pentobarbital. The abdominal cavity was opened and approximately 15 ml of a buffered solution of collagenase introduced into the pancreatic duct via a needle. The solution comprised 3 mg/ml collagenase in magnesium-free Hanks buffer (127 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.34 mM Na2HPO4, 1 mM KH2PO4, 1.19 mM CaCl2, pH 7.4). The pancreas was then dissected free of connective tissue, excised from the body and minced with scissors in a beaker containing additional collagenase buffer as described above. The pancreatic tissue was then further digested by incubating it with stirring at 37° C. in the collagenase buffer for 10-15 minutes. The tissue was then transferred to two 16×125 mm tubes and centrifuged very briefly to settle the solid material. Half of each supernatant was removed and replaced with magnesium-free Hanks buffer without collagenase. The tubes were shaken vigorously by hand and then centrifuged as before. The wash, shake and centrifuge procedure was then repeated twice. The pancreatic digest was then washed 4 more times with magnesium-free Hanks buffer, pouring off all of the supernatant after each centrifugation step and omitting the shaking. After the final wash, the pellets were mixed with 4 ml of a 27% (w/v) solution of Ficoll (Sigma, St. Louis, Mo.) in magnesium-free Hanks buffer and transferred to 30 ml tubes. A 4 ml volume of 23% (w/v) Ficoll in magnesium-free Hanks buffer was layered on top followed by 4 ml of 20.5% Ficoll in magnesium-free Hanks buffer and 4 ml of 11% Ficoll in magnesium-free Hanks buffer. The tubes were centrifuged for 10 minutes at 250×g. Islets were collected from the 11%/20.5% and 20.5%/23% interfaces and placed in 50 ml tubes. They were washed twice with Hanks buffer containing magnesium (127 mM NaCl, 20 mM HEPES, 5.4 mM KCl, 0.34 mM Na2HPO4, 1 mM KH2PO4, 0.81 mM MgSO4, 1.19 mM CaCl2, pH 7.4), sedimenting the islets by centrifugation for 10 minutes at 250×g between washes. After the last centrifugation step, the pellet was transferred to a petri dish and the islets manually transferred from the dish to an appropriate culture vessel using a 200 μl constriction pipette.
- Once the islets were separated from residual non-islet tissue, they were either used immediately or maintained in a standard tissue culture medium [RPMI1640 medium (Gibco) containing 10% fetal bovine serum (Gibco), 1% antibiotic/antimycotic (Gibco) and 22 mM glucose].
- Insulin secretion in response to stimulation was measured as follows. Islets were transferred to Kreb's-Ringer bicarbonate (KRB) buffer pH 7.4 containing 2.8 mM glucose and 0.1% bovine serum albumin (Sigma) and placed for two hours in a humidified 37° C. incubator filled with air to which 5% CO2 by volume was added. After the pre-incubation, islets were transferred to a 48 well tissue culture plate (8 islets per well) containing KRB buffer, 0.1% bovine serum albumin, and glucose and stimulatory compounds at the desired concentrations in the buffer composition. The plates were returned to the incubator for two hours. At the end of this time, aliquots of the buffer were collected from each well and the insulin concentration present was measured by radioimmunoassay (Linco Research, Inc., St. Louis, Mo.).
- Data from in vitro experiments in the INS-1 cell assay described above combining glyburide and milrinone for induction of insulin secretion were analyzed. A total of 399 data points from six experiments were collected. The response is the amount of insulin secretion at various combinations of different concentrations of glyburide and milrinone. The response data from each experiment was normalized by the concentration of cells of β-cell lines in plates for the experiment. The data from the six experiments were then combined in the statistical analysis.
- A response surface was constructed from the combined data. From the response surface, a contour line corresponding to 95% of the maximum response level due to glyburide alone was obtained. This contour line is shown in FIG. 1. The contour line represents all the combinations of the two drugs that produce this fixed amount of response based on the data from the experiments. The plot in FIG. 1 is called an isobologram. Isobologorams are used in the study of synergism and are well known to those skilled in the art. If only an additive effect exists, the contour line would be a straight line connecting points C and D. Synergism exists if the actual contour is below the straight line.
- The magnitude of the synergistic effect is measured by how far the contour line is from the straight line. The line representing a fixed ratio of the two drugs is a straight line that goes through the origin in FIG. 1. This line intercepts the contour at point A and the additive straight line at point B. For a given ratio of the two drugs, we assess the magnitude of synergistic effect by a dose reduction factor r defined as:
- The points C and D represent the equivalent concentrations for glyburide and milrinone, respectively. If we define C and D as one unit for glyburide and milrinone, respectively, then the dose reduction factor r represents the fraction of the combined drugs needed to achieve the same level of response achieved by one unit of either drug individually. So if r is smaller than 1, then synergism exists. The smaller the r, the stronger the synergistic effect. It is possible to mathematically determine the ratio that produced the biggest synergistic effect and the dose reduction factor r associated with the ratio. We found that the ratio is glyburide/milrinone=2.4, and the corresponding dose reduction factor r is 0.259. The implication is that with this ratio of the two drugs, only 0.259 of one unit of the combined amount of glyburide and milrinone is needed to produce the same amount of response corresponding to one unit of either glyburide or milrinone alone. FIG. 1 shows that for a wide range of ratios synergism exists.
- Since the contour line, as well as the dose reduction factor r is derived from data, they are subject to uncertainties associated with the data. The uncertainties come from factors such as measurement errors, β-cell line variations, and other random factors. When an observed dose reduction factor r is less than 1, the main objective of the statistical analysis is to determine whether it is real or it is due to random chance. This is accomplished by first calculating the standard error of r, sd(r), and then calculating the probability of having a dose reduction factor no greater than the observed r according to a normal distribution with mean 1 and standard deviation sd(r). This probability is the p-value. If the p-value is less than 0.05, we conclude that the synergistic effect is statistically significant. Table 1 lists the dose reduction factor r and the associated p-value for each of the selected ratios of the two drugs. We see that for each of the selected ratios, the synergistic effect is significant.
TABLE 1 Summary of Statistical Analysis Results Glyburide/Milrinone r sd(r) p-value 0.003 0.873 0.0236 3.45E−08 0.01 0.741 0.0358 2.15E−13 0.03 0.598 0.0404 1.08E−23 0.1 0.452 0.0379 9.10E−48 0.3 0.348 0.0301 3.39E−104 1 0.276 0.0195 2.59E−302 2.4 0.259 0.0256 4.78E−185 3 0.26 0.0305 2.95E−130 10 0.314 0.0711 2.46E−22 30 0.44 0.113 3.78E−07 100 0.64 0.129 0.00272 300 0.814 0.0964 0.0266 - From the statistical analysis, we conclude that over a wide range of ratios of combinations of the two drugs, the synergistic effect is statistically significant. We also found that the ratio of the two drugs that produced the maximum synergistic effect is glyburide/milrinone=2.4. With this ratio, only 0.259 of one unit of the combined amount of glyburide and milrinone was needed to produce the same amount of response corresponding to one unit of either glyburide or milrinone alone. It is noted that the absolute concentration of milrinone was in the range of about 1 to about 100 micromolar and in the range of about 0.1 to about 10 micrormolar for glyburide. Various concentrations of each drug that corresponded to a particular ratio were tested.
Claims (25)
1. A method of treating non-insulin dependent diabetes mellitus, the method comprising the step of administering to a patient having or at risk of having non-insulin dependent diabetes a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
2. The method of claim 1 wherein the cAMP phosphodiesterase type 3 inhibitor is a selective cAMP phosphodiesterase type 3B inhibitor.
3. The method of claim 1 wherein the sulfonylurea is glyburide, chlorpropamide, glibenclamide, glipizide, gliclazide, glimepiride, tolbutamide, acetohexamide, or tolazamide.
4. The method of claim 1 wherein the sulfonylurea is glipizide or glyburide.
5. The method of claim 1 wherein the sulfonylurea is glyburide.
6. The method of claim 1 wherein the cAMP phosphodiesterase type 3 inhibitor is milrinone, amrinone, enoximone, indolidan, cilostamide, lixazinone, imazodan, cilostazol, bemorandan, siguazodan, adibendan, pimobendan, saterinone, sulmazol, or vesnarinone.
7. The method of claim 1 wherein the cAMP phosphodiesterase type 3 inhibitor is milrinone.
8. The method of claim 1 wherein the cAMP phosphodiesterase type 3 inhibitor is milrinone and the sulfonylurea is glyburide.
9. The method of claim 1 wherein the non-sulfonylurea K+ ATP channel blocker is repaglinide or nateglinide.
10. A method of treating insulin resistance, the method comprising the step of administering to a patient having or at risk of having insulin resistance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
11. A method of treating Syndrome X, the method comprising the step of administering to a patient having or at risk of having Syndrome X a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
12. A method of treating diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts, the method comprising the step of administering to a patient having or at risk of having diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, or cataracts a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
13. A method of treating hyperglycemia, the method comprising the step of administering to a patient having or at risk of having hyperglycemia a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
14. A method of treating impaired glucose tolerance, the method comprising the step of administering to a patient having or at risk of having impaired glucose tolerance a synergistic amount of: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor.
15. A pharmaceutical composition comprising a sulfonylurea or non-sulfonylurea K+ ATP channel blocker and a cAMP phosphodiesterase type 3 inhibitor.
16. A pharmaceutical composition according to claim 15 comprising a sulfonylurea and a cAMP phosphodiesterase type 3 inhibitor.
17. A pharmaceutical composition according to claim 15 comprising a non-sulfonylurea K+ ATP channel blocker and a cAMP phosphodiesterase type 3 inhibitor.
18. A pharmaceutical composition comprising a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, and a cAMP phosphodiesterase type 3 inhibitor.
19. A kit for the treatment of non-insulin dependent diabetes mellitus, the kit comprising:
a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
b) a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus; and
c) a container for containing the first and second compositions.
20. A kit in accordance with claim 19 wherein the second compound is selected from:
insulin and insulin analogs;
GLP-1 (7-37) (insulinotropin) and GLP-1 (7-36)-NH2;
biguanides;
glycogen phosphorylase inhibitors;
aldose reductase inhibitors;
α2-antagonists;
imidazolines;
glitazones (thiazolidinediones);
PPAR-gamma agonists;
fatty acid oxidation inhibitors;
α-glucosidase inhibitors;
β-agonists;
lipid-lowering agents;
antiobesity agents;
vanadate, vanadium complexes and peroxovanadium complexes;
amylin antagonists;
glucagon antagonists;
gluconeogenesis inhibitors;
somatostatin agonists and antagonists; or
antilipolytic agents.
21. A kit in accordance with claim 19 wherein the second compound is selected from LysPro insulin, GLP-1 (7-37) (insulinotropin), GLP-1 (7-36)-NH2, metformin, phenformin, buformin, midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan, linogliride, ciglitazone, pioglitazone, englitazone, troglitazone, darglitazone, rosiglitazone, clomoxir, etomoxir, acarbose, miglitol, emiglitate, voglibose, MDL-25,637, camiglibose, MDL-73,945, BRL 35135, BRL 37344, Ro 16-8714, ICI D7114, CL 316,243, benfluorex, fenfluramine, Naglivan®, acipimox, WAG 994, Symlin™, or AC2993.
22. A kit in accordance with claim 19 wherein the second compound is selected from insulin, biguanides, or thiazolidinediones.
23. A kit for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the kit comprising:
a) a first pharmaceutical composition comprising: 1) a sulfonylurea, a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker; and 2) a cAMP phosphodiesterase type 3 inhibitor;
b) a second pharmaceutical composition comprising a second compound useful for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance; and
c) a container for containing the first and second compositions.
24. A kit for the treatment of non-insulin dependent diabetes mellitus, insulin resistance, Syndrome X, diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, polycystic ovary syndrome, cataracts, hyperglycemia, or impaired glucose tolerance, the kit comprising:
a) a first pharmaceutical composition comprising a sulfonylurea or a non-sulfonylurea K+ ATP channel blocker, or a sulfonylurea and a non-sulfonylurea K+ ATP channel blocker
b) a second pharmaceutical composition comprising a cAMP phosphodiesterase type 3 inhibitor; and
c) a container for containing the first and second compositions.
25. A kit in accordance with claim 24 wherein the sulfonylurea is glyburide and the cAMP phosphodiesterase type 3 inhibitor is milrinone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/456,371 US20030216294A1 (en) | 2000-04-13 | 2003-06-05 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19672800P | 2000-04-13 | 2000-04-13 | |
US09/829,874 US6610746B2 (en) | 2000-04-13 | 2001-04-10 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor |
US10/456,371 US20030216294A1 (en) | 2000-04-13 | 2003-06-05 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/829,874 Division US6610746B2 (en) | 2000-04-13 | 2001-04-10 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030216294A1 true US20030216294A1 (en) | 2003-11-20 |
Family
ID=22726606
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/829,874 Expired - Fee Related US6610746B2 (en) | 2000-04-13 | 2001-04-10 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor |
US10/456,371 Abandoned US20030216294A1 (en) | 2000-04-13 | 2003-06-05 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea Kchannel blocker, and a phosphodiesterase 3 type inhibitor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/829,874 Expired - Fee Related US6610746B2 (en) | 2000-04-13 | 2001-04-10 | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor |
Country Status (12)
Country | Link |
---|---|
US (2) | US6610746B2 (en) |
EP (1) | EP1145717B1 (en) |
JP (1) | JP2001354568A (en) |
AT (1) | ATE266409T1 (en) |
BR (1) | BR0101461A (en) |
CA (1) | CA2343850A1 (en) |
DE (1) | DE60103203T2 (en) |
DK (1) | DK1145717T3 (en) |
ES (1) | ES2218338T3 (en) |
MX (1) | MXPA01003853A (en) |
PT (1) | PT1145717E (en) |
TR (1) | TR200401145T4 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030215889A1 (en) * | 2002-03-20 | 2003-11-20 | Simard J. Marc | Non-selective cation channel in neural cells and methods for treating brain swelling |
US20060100183A1 (en) * | 2004-09-18 | 2006-05-11 | University Of Maryland, Baltimore | Therapeutic agents targeting the NCCa-ATP channel and methods of use thereof |
US20060276411A1 (en) * | 2002-03-20 | 2006-12-07 | University Of Maryland, Baltimore | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
US20090130083A1 (en) * | 2004-09-18 | 2009-05-21 | University Of Maryland | Therapeutic Agents Targeting the NCCA-ATP Channel and Methods of Use Thereof |
US20100092469A1 (en) * | 2007-02-09 | 2010-04-15 | Simard J Marc | Antagonists of a non-selective cation channel in neural cells |
US7705016B2 (en) | 2003-02-13 | 2010-04-27 | Albert Einstein College Of Medicine Of Yeshiva University | Regulation of food intake by modulation of long-chain fatty acyl-CoA levels in the hypothalamus |
US20100143347A1 (en) * | 2007-01-12 | 2010-06-10 | The University Of Maryland, Baltimore | Targeting ncca-atp channel for organ protection following ischemic episode |
US9375438B2 (en) | 2007-06-22 | 2016-06-28 | University Of Maryland, Baltimore | Inhibitors of NCCa-ATP channels for therapy |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809310B1 (en) * | 2000-05-26 | 2004-02-13 | Centre Nat Rech Scient | USE OF BIGUANIDE DERIVATIVES FOR MANUFACTURING A MEDICINAL PRODUCT HAVING A HEALING EFFECT |
CA2369967A1 (en) * | 2001-02-12 | 2002-08-12 | Joseph Anthony Cornicelli | Methods of treating nuclear factor-kappa b mediated diseases and disorders |
SE0101980D0 (en) * | 2001-06-01 | 2001-06-01 | Astrazeneca Ab | Pharmaceutical combination |
SE0101981D0 (en) * | 2001-06-01 | 2001-06-01 | Astrazeneca Ab | Pharmaceutical combination |
WO2003012030A2 (en) | 2001-08-01 | 2003-02-13 | University Of Utah, Technology Transfer Office | Isoform-selective inhibitors and activators of pde3 cyclic |
US7105489B2 (en) * | 2002-01-22 | 2006-09-12 | Amylin Pharmaceuticals, Inc. | Methods and compositions for treating polycystic ovary syndrome |
GB0205170D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
GB0205162D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
GB0205165D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
GB0205176D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
GB0205175D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
GB0205166D0 (en) | 2002-03-06 | 2002-04-17 | Astrazeneca Ab | Chemical compounds |
WO2003097064A1 (en) * | 2002-05-17 | 2003-11-27 | Kyowa Hakko Kogyo Co., Ltd. | Therapeutic agent for diabetes |
US7654375B2 (en) * | 2004-03-02 | 2010-02-02 | Ntn Corporation | Rotation transmission device |
EP1724277A4 (en) * | 2004-03-04 | 2012-05-02 | Kissei Pharmaceutical | Fused heterocycle derivative, medicinal composition containing the same, and medicinal use thereof |
CN1946389A (en) * | 2004-04-23 | 2007-04-11 | 悉尼北方和中部海岸区医疗服务系统 | Methods and compositions for the treatment of myocardial conditions |
WO2006041922A2 (en) * | 2004-10-08 | 2006-04-20 | Dara Biosciences, Inc. | Agents and methods for administration to the central nervous system |
WO2006088798A2 (en) * | 2005-02-14 | 2006-08-24 | Albert Einstein College Of Medicine Of Yeshiva University | Modulation of hypothalamic atp-sensitive potassium channels |
US20110165236A1 (en) * | 2006-09-22 | 2011-07-07 | Biokey, Inc. | Controlled release hydrogel formulation |
US20080075785A1 (en) * | 2006-09-22 | 2008-03-27 | San-Laung Chow | Controlled release hydrogel formulation |
JP2010168301A (en) * | 2009-01-22 | 2010-08-05 | Kitasato Institute | Agent for ameliorating central circulation |
CN103372013A (en) * | 2013-06-28 | 2013-10-30 | 上海交通大学医学院附属瑞金医院 | Application of milrinone in preparation of medicine for treating diabetic foot ulcer |
US11260074B2 (en) | 2014-03-26 | 2022-03-01 | Enrique G. Gutierrez | Compositions and related methods for reconstituting the immune system of a subject |
EP3122190B1 (en) * | 2014-03-26 | 2019-07-31 | Enrique G. Gutierrez | Compositions and related methods for treating and preventing viral and retroviral infections |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6569463B2 (en) * | 1999-11-23 | 2003-05-27 | Lipocine, Inc. | Solid carriers for improved delivery of hydrophobic active ingredients in pharmaceutical compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5859037A (en) * | 1997-02-19 | 1999-01-12 | Warner-Lambert Company | Sulfonylurea-glitazone combinations for diabetes |
-
2001
- 2001-03-30 AT AT01303020T patent/ATE266409T1/en not_active IP Right Cessation
- 2001-03-30 DK DK01303020T patent/DK1145717T3/en active
- 2001-03-30 PT PT01303020T patent/PT1145717E/en unknown
- 2001-03-30 EP EP01303020A patent/EP1145717B1/en not_active Expired - Lifetime
- 2001-03-30 ES ES01303020T patent/ES2218338T3/en not_active Expired - Lifetime
- 2001-03-30 TR TR2004/01145T patent/TR200401145T4/en unknown
- 2001-03-30 DE DE60103203T patent/DE60103203T2/en not_active Expired - Fee Related
- 2001-04-10 US US09/829,874 patent/US6610746B2/en not_active Expired - Fee Related
- 2001-04-11 BR BR0101461-7A patent/BR0101461A/en not_active IP Right Cessation
- 2001-04-11 MX MXPA01003853A patent/MXPA01003853A/en unknown
- 2001-04-11 CA CA002343850A patent/CA2343850A1/en not_active Abandoned
- 2001-04-13 JP JP2001115674A patent/JP2001354568A/en active Pending
-
2003
- 2003-06-05 US US10/456,371 patent/US20030216294A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6569463B2 (en) * | 1999-11-23 | 2003-05-27 | Lipocine, Inc. | Solid carriers for improved delivery of hydrophobic active ingredients in pharmaceutical compositions |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050181980A1 (en) * | 2001-12-31 | 2005-08-18 | Simard J. M. | Novel non-selective cation channel in neural cells and method for treating brain swelling |
US20030215889A1 (en) * | 2002-03-20 | 2003-11-20 | Simard J. Marc | Non-selective cation channel in neural cells and methods for treating brain swelling |
US10533988B2 (en) | 2002-03-20 | 2020-01-14 | University Of Maryland, Baltimore | Methods for treating central or peripheral nervous system damage |
US20060276411A1 (en) * | 2002-03-20 | 2006-12-07 | University Of Maryland, Baltimore | Novel non-selective cation channel in neuronal cells and methods for treating brain swelling |
US7285574B2 (en) | 2002-03-20 | 2007-10-23 | University Of Maryland, Baltimore | Methods for treating neural cell swelling |
US20080139659A1 (en) * | 2002-03-20 | 2008-06-12 | University Of Maryland | Methods for treating neural cell swelling |
US9107932B2 (en) | 2002-03-20 | 2015-08-18 | University Of Maryland, Baltimore | Methods for treating neural cell swelling |
US8980952B2 (en) | 2002-03-20 | 2015-03-17 | University Of Maryland, Baltimore | Methods for treating brain swelling with a compound that blocks a non-selective cation channel |
US8318810B2 (en) | 2002-03-20 | 2012-11-27 | University Of Maryland, Baltimore | Methods for treating neural cell swelling |
US7705016B2 (en) | 2003-02-13 | 2010-04-27 | Albert Einstein College Of Medicine Of Yeshiva University | Regulation of food intake by modulation of long-chain fatty acyl-CoA levels in the hypothalamus |
US7872048B2 (en) | 2004-09-18 | 2011-01-18 | University Of Maryland, Baltimore | Methods for treating spinal cord injury with a compound that inhibits a NCCa-ATP channel |
US8569377B2 (en) | 2004-09-18 | 2013-10-29 | The United States Of America As Represented By The Department Of Veteran Affairs | Methods for treating spinal cord injury with a compound that inhibits a NCCA-ATP channel |
US20090130083A1 (en) * | 2004-09-18 | 2009-05-21 | University Of Maryland | Therapeutic Agents Targeting the NCCA-ATP Channel and Methods of Use Thereof |
US20060100183A1 (en) * | 2004-09-18 | 2006-05-11 | University Of Maryland, Baltimore | Therapeutic agents targeting the NCCa-ATP channel and methods of use thereof |
US10583094B2 (en) | 2004-09-18 | 2020-03-10 | University Of Maryland | Therapeutic methods that target the NCCA-ATP channel |
US20100143347A1 (en) * | 2007-01-12 | 2010-06-10 | The University Of Maryland, Baltimore | Targeting ncca-atp channel for organ protection following ischemic episode |
US9511075B2 (en) | 2007-01-12 | 2016-12-06 | The University Of Maryland, Baltimore | Targeting NCCA-ATP channel for organ protection following ischemic episode |
US10166244B2 (en) | 2007-01-12 | 2019-01-01 | University Of Maryland, Baltimore | Targeting NCCA-ATP channel for organ protection following ischemic episode |
US10898496B2 (en) | 2007-01-12 | 2021-01-26 | University Of Maryland, Baltimore | Targeting NCCa-ATP channel for organ protection following ischemic episode |
US12121526B2 (en) | 2007-01-12 | 2024-10-22 | The United States Government As Represented By The Department Of Veterans Affairs | Targeting NCCA-ATP channel for organ protection following ischemic episode |
US20100092469A1 (en) * | 2007-02-09 | 2010-04-15 | Simard J Marc | Antagonists of a non-selective cation channel in neural cells |
US9375438B2 (en) | 2007-06-22 | 2016-06-28 | University Of Maryland, Baltimore | Inhibitors of NCCa-ATP channels for therapy |
Also Published As
Publication number | Publication date |
---|---|
EP1145717A3 (en) | 2002-08-14 |
EP1145717A2 (en) | 2001-10-17 |
BR0101461A (en) | 2001-11-13 |
CA2343850A1 (en) | 2001-10-13 |
DK1145717T3 (en) | 2004-08-02 |
DE60103203T2 (en) | 2005-05-04 |
TR200401145T4 (en) | 2004-07-21 |
PT1145717E (en) | 2004-08-31 |
JP2001354568A (en) | 2001-12-25 |
MXPA01003853A (en) | 2005-06-30 |
US6610746B2 (en) | 2003-08-26 |
EP1145717B1 (en) | 2004-05-12 |
DE60103203D1 (en) | 2004-06-17 |
ATE266409T1 (en) | 2004-05-15 |
ES2218338T3 (en) | 2004-11-16 |
US20020013268A1 (en) | 2002-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6610746B2 (en) | Synergistic effect of a sulfonylurea and/or non-sulfonylurea K+ATP channel blocker, and a phosphodiesterase 3 type inhibitor | |
US8058264B2 (en) | Pharmaceutical compositions comprising CB1 cannabinoid receptor antagonists and potassium channel openers for the treatment of obesity and related conditions | |
US6867184B2 (en) | Methods of treating diabetic cardiomyopathy using glycogen phosphorylase inhibitors | |
DE60121096T2 (en) | Method for the treatment of obesity using a neurotensin receptor ligand | |
US6821977B2 (en) | Antidiabetic agents | |
AU2006310518A1 (en) | Pharmaceutical use of substituted amides | |
CN101516875A (en) | CGRP receptor antagonists | |
CA2318100A1 (en) | Chemokine receptor antagonists and methods of use therefor | |
EP2029124A1 (en) | Use of gpcr agonists to delay progression of diabetes | |
AU2006241806B2 (en) | Agent for prophylaxis and treating pancreatitis | |
US20020151565A1 (en) | Use of dual H3/M2 antagonists in the treatment of cognition deficit disorders | |
EP0735875A1 (en) | Use of thalidomide for the treatment of non-insulin dependent diabetes mellitus | |
WO2023129857A1 (en) | Methods of treating, ameliorating, and/or preventing stress-related disorder | |
JP2002527381A (en) | Compositions and methods for treating allergic diseases | |
CN101048153A (en) | Pharmaceutical compositions comprising CB1 cannabinoid receptor antagonists and potassium channel openers for the treatment of diabetes mellitus type I, obesity and related conditions | |
JPH0344321A (en) | Pharmaceutical composition for antihypertension and anticongestive heart failure | |
KR20070070226A (en) | Pharmaceutical composition comprising C1cannanabinoid receptor antagonist and potassium channel opener for the treatment of type I diabetes, obesity and related symptoms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |