US20030017359A1 - Increased stability low concentration gases, products comprising same, and methods of making same - Google Patents
Increased stability low concentration gases, products comprising same, and methods of making same Download PDFInfo
- Publication number
- US20030017359A1 US20030017359A1 US10/157,466 US15746602A US2003017359A1 US 20030017359 A1 US20030017359 A1 US 20030017359A1 US 15746602 A US15746602 A US 15746602A US 2003017359 A1 US2003017359 A1 US 2003017359A1
- Authority
- US
- United States
- Prior art keywords
- silicon
- reactive gas
- concentration
- gas
- metal surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000007789 gas Substances 0.000 title claims description 120
- 239000000203 mixture Substances 0.000 claims abstract description 66
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 51
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 27
- 239000010703 silicon Substances 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 239000000047 product Substances 0.000 claims description 46
- 150000001875 compounds Chemical class 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 239000002210 silicon-based material Substances 0.000 claims description 23
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 17
- 229910000077 silane Inorganic materials 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 2
- 239000001272 nitrous oxide Substances 0.000 claims description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 1
- 238000002161 passivation Methods 0.000 abstract description 11
- 238000012423 maintenance Methods 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 description 20
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 19
- 150000001282 organosilanes Chemical class 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 17
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 17
- 230000008569 process Effects 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 239000003082 abrasive agent Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 7
- -1 hydoxyl Chemical class 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- 239000006061 abrasive grain Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 150000004678 hydrides Chemical class 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004634 thermosetting polymer Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910002796 Si–Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- LKTZODAHLMBGLG-UHFFFAOYSA-N alumanylidynesilicon;$l^{2}-alumanylidenesilylidenealuminum Chemical compound [Si]#[Al].[Si]#[Al].[Al]=[Si]=[Al] LKTZODAHLMBGLG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940074993 carbon disulfide Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/20—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
- B08B9/28—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/08—Cleaning containers, e.g. tanks
- B08B9/20—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
- B08B9/22—Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by soaking alone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G5/00—Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/10—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for protection against corrosion, e.g. due to gaseous acid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/12—Vessels not under pressure with provision for protection against corrosion, e.g. due to gaseous acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B2203/00—Details of cleaning machines or methods involving the use or presence of liquid or steam
- B08B2203/005—Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0128—Shape spherical or elliptical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
- F17C2203/0643—Stainless steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0646—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0648—Alloys or compositions of metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2172—Polishing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/232—Manufacturing of particular parts or at special locations of walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/037—Containing pollutant, e.g. H2S, Cl
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/013—Single phase liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
- F17C2260/053—Reducing corrosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12951—Fe-base component
- Y10T428/12972—Containing 0.01-1.7% carbon [i.e., steel]
Definitions
- the invention is generally related to the field of gases and packaging and using same. More specifically, the invention relates to increased stability, low concentration reactive gases, products including same, and methods of making same.
- Moisture is known to react with so-called “acid gases”, such as hydrogen sulfide, carbonylsulfide, carbondisulfide and mercaptans (mercaptans are also referred to as thiols) to form a complex compound.
- acid gases such as hydrogen sulfide, carbonylsulfide, carbondisulfide and mercaptans (mercaptans are also referred to as thiols)
- U.S. Pat. Nos. 5,255,445 and 5,480,677 describe processes for drying and passivating a metal surface to enhance the stability of gas mixtures containing one or more gaseous hydrides in low concentrations in contact therewith.
- the process comprises purging gas in contact with the metal surface with inert gas to remove the purged gas, exposing the metal surface to an amount of a gaseous passivating or drying agent comprising an effective amount of a gaseous hydride of silicon, germanium, tin or lead and for a time sufficient to passivate the metal surface, and purging the gaseous passivating agent using inert gas.
- an oxidizing agent is applied after the third step to stabilize the adsorbed stabilizing agent.
- the patent also mentions prior known processes, such as saturation passivation, where the container is subjected to several cycles of evacuating and filling with a much higher concentration of the same gaseous hydride, prior to being filled with the low concentration hydride mixture of interest.
- the two patents do not mention or describe processes to passivate containers adapted to store sulfur-containing gases, nor do they mention passivation techniques in which a first passivating agent is applied to the surface, followed by contacting with a higher concentration of the gas to be stored.
- shelf-life means that time during which the initial concentration of a gas stored in a container is substantially maintained at the intended or desired concentration.
- substantially maintained means that for concentrations of about 1000 parts per billion (ppb), the concentration does not vary by more than +/ ⁇ 10 percent; for concentrations of about 500 ppb, the concentration does not vary by more than +/ ⁇ 15 percent; for concentrations of about 100 ppb, the concentration does not vary by more than +/ ⁇ 20 percent.
- Low concentration means gases having a concentration in another gas, such as inert gas, of 1000 ppb or less.
- Gases which benefit for the passivation techniques of the present invention include nitrous oxide, nitric oxide, hydrogen chloride, chlorine, boron trichloride, and any acid gases except those that would react with a silicon-containing compound.
- acid gas means sulfur-containing compounds, including carbon disulfide, carbonylsulfide, and compounds within formula (I):
- X and Y are the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, oxygen, hydoxyl, amine, aminosilane, oxygen, and alcohol.
- Examples of preferred sulfur-containing compounds within formula (I) include hydrogen sulfide, methylthiol, ethylthiol, n-propylthiol, i-propylthiol, benzylthiol, and the like.
- a first aspect of the invention relates to a manufactured product comprising:
- Preferred manufactured products of the invention are those wherein the reactive gas is selected from the group consisting of chlorine and an acid as selected from the group consisting of carbondisulfide, carbonylsulfide, and compounds within formula (I).
- Other preferred manufactured products include products wherein the passivated internal surface is a passivated metal.
- the metal is selected from the group consisting of aluminum, aluminum alloys, steel, iron and combinations thereof.
- Yet other preferred manufactured products of the invention are those wherein the silicon-containing material is selected from the group consisting of compounds within the general formula (II):
- R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, amine, alkyl, aryl, halogenated alkyl, and halogenated aryl; and manufactured products wherein the compound is silane or a methyl-containing silane, more preferably wherein the methyl-containing silane is selected from the group consisting of methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane.
- Preferred manufactured products of the invention are those wherein the composition comprises a reactive gas having a concentration of about 1000 ppb and that does not vary by more than +/ ⁇ 10 percent; products wherein the composition comprises a reactive gas having a concentration of about 500 ppb and that does not vary by more than +/ ⁇ 15 percent; products wherein the composition comprises a reactive gas having a concentration of about 100 ppb and that does not vary by more than +/ ⁇ 20 percent;. Products wherein the composition comprises higher or lower concentration of reactive gas, and correspondingly larger or smaller variation in concentration, are considered within the invention.
- Preferred manufactured products of the invention comprise only a single reactive gas with an inert gas like nitrogen, argon, helium, and the like.
- the composition may comprise a mixture of two or more reactive gases.
- the balance of the fluid composition is, in some preferred embodiments, a hydrocarbon, such as ethylene, propylene, and the like.
- a second aspect of the invention is a method of making a manufactured product of the invention, the method comprising the steps of:
- R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, alkyl, aryl, amine, halogenated alkyl, and halogenated aryl;
- Preferred methods in this aspect of the invention are those wherein the silicon-containing compound is silane or a methyl-containing organosilane; particularly those wherein the methyl-containing organosilane is selected from the group consisting of silane, methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane.
- the second fluid composition has a concentration of reactive gas at least 10 times the intended reactive gas concentration of the manufactured product; methods wherein steps i) and ii) are repeated prior to step iii); methods wherein the metal surface is cleaned prior to step i); methods wherein the concentration of the silicon-containing compound used in step i) ranges from about 100 ppm to 100 percent; methods wherein during step i) the silicon-containing compound is heated to a temperature of not more than 74° C., and methods wherein during step iii) the second composition is heated to a temperature of not more than 74° C.
- Other preferred methods are those wherein the container is a gas cylinder having an attached cylinder valve, and the cylinder valve is removed prior to step i).
- steps i) and iii) After all the steps are completed, preferably at very high temperatures for steps i) and iii), the cylinder valve is reattached, and the process steps i)-v) are repeated, but steps i) and iii) take place at not more than 74° C.
- a third aspect of the invention is a method of passivating a metal surface, the method comprising the steps of:
- R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, amine, alkyl, aryl, halogenated alkyl, and halogenated aryl;
- the metal surface is part of a pipe, piping manifold, tubing, tubing manifold, ton unit, tube trailer, tank trailer, cylinder, flow regulator, pressure regulator, valve, cylinder valve, or other pressure-reducing device.
- the metal surface is preferably cleaned prior to step i) as disclosed further herein.
- FIG. 1 is a logic diagram illustrating the methods of the invention
- FIG. 2 illustrates that a prior art process of “vacuum baking” an aluminum cylinder at 65° C. to vacuum of 1 micrometer Hg for 3 days was not sufficient to provide stability of a 150 ppb H 2 S balance nitrogen mixture for a cylinder which was previously exposed to moisture;
- FIG. 3 illustrates that a prior art process of passivation of a cylinder and valve after vacuum baking with a high concentration of the gas mixture to be prepared, which had also been used to extend shelf life of a high purity mixture, did not prove successful;
- FIGS. 4 and 5 illustrate stability of gas products made in accordance with the invention.
- Silicon-containing compounds within the general formula (II) are known to react with oxygen-containing compounds, such as H 2 O, N 2 O, CO 2 , and the like, to produce SiO 2 , especially when the silicon-containing compounds are in the gaseous or vapor state. This fact is taken advantage of in the practice of the various aspects of the invention.
- the reaction product of a silicon-containing compound and an oxygen-containing compound such as water forms an amorphous or crystalline glassy material on the surfaces on which it is deposited.
- the amorphous or crystalline glassy material may include aluminum silicide, if the container or surface being treated comprises aluminum.
- the deposited material is referred top herein as a “coating”, it shall be readily understood that in fact the material may deposit non-uniformly, or not at all on certain areas of the surface being treated.
- This coating then serves the function of deactivating a surface for the adsorption of molecules of the gas that is ultimately to be contained in the container or piping system at low concentration. In other words, the coating serves to decrease the number of reactive sites on the metal surface being treated.
- silicon-containing compounds within formula (II) shall be referred to as organosilanes, although their formal name under IUPAC convention may differ.
- the reaction of an organosilane within general formula (II) with oxygen-containing materials such as water proceeds without catalyst at room temperature (25° C.); however, it is preferred to carry out the reaction at moderately elevated temperatures, such as temperature ranging from 25° C. up to 100° C, in order to produce the coatings in reasonable time.
- the pressure of the reaction of an organosilane with water vapor will generally also proceed at atmospheric pressure, however, the pressure in the container, or near the surface being treated, may either be in vacuum or above atmospheric pressure. This will of course depend on the rates of reaction of the organosilane with the oxygen-containing compound, the desired coating deposition rate, and desired thickness of the coating.
- organosilane/oxygen-containing compound reaction products It is of course within the invention to make layered coatings of two or more organosilane/oxygen-containing compound reaction products. It is also considered within the invention to employ two or more organosilanes simultaneously to make a “mixed” coating. Indeed, it is possible that the organosilane may be employed in conjunction with a non-organosilane to form either layered or mixed coatings.
- Silane and organosilanes are toxic materials, and, depending on the organosilane, pyrophoric. Special care in handling these materials is warranted, preferably well-ventilated hoods.
- Electronic grade silane (SiH 4 ) is available commercially in cylinders from Air Liquide America Corporation, Houston, Tex.
- Trimethylsilane is available commercially from Dow Corning Corporation.
- Preferred silicon-containing compounds include silane, and methyl-containing organosilanes; particularly those wherein the methyl-containing organosilane is selected from the group consisting of methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane.
- the most preferred organosilane compound is methylsilane, CH 3 SiH 3 .
- the organosilane compounds are hydrolyzed by reaction with water, oxygen or water-containing gases such as humid air and/or other oxygen-containing gases, such that the carbon content of the deposited film is from 1 to 50% by atomic weight, preferably about 20%.
- adjuvants include physical and chemical adjuvants, and combinations thereof. Suitable physical adjuvants include electrostatic discharge, plasma discharge, laser excitation, and the like, under temperatures and pressures suitable for each of these processes. For example, plasmas are preferably best employed in moderate vacuum.
- a chemical adjuvant might include an oxidant gas such as oxygen, ozone, chlorine dioxide, combinations thereof, and the like.
- ozone and plasma discharge the reaction product may be described as similar to the films produced b the process described in U.S. Pat. No. 6,054,379, which is incorporated herein by reference for its teaching of the production of such films.
- the container or surface to be treated may be selected from the group consisting of iron, stainless steel (for example 301, 316, 401), aluminum, aluminum alloy, steel alloys and the like.
- the internal surface of the container, or the surface to be treated may be subject to abrasion prior to reaction of the organosilane with water vapor in order to improve adhesion of the reaction product to the metal.
- Residues may be removed by a variety of mechanical means such as scrubbing, grinding, and peening. Scrubbing may be performed with non-woven abrasives.
- the use of lofty, fibrous, nonwoven abrasive products for scouring surfaces such as the soiled surfaces of pots and pans is well known.
- These products are typically lofty, nonwoven, open mats formed of staple fibers which are bonded together at points where they intersect and contact each other.
- the staple fibers of low-density abrasive products of this type can be, and typically are, bonded together at points of contact with a binder that may or may not contain abrasive particles.
- the staple fibers are typically crimped, have a length of about 3.8 cm, a diameter ranging from about 25 to about 250 micrometers, and are formed into lofty open webs by equipment such as “Rando-Webber” and “Rando-Feeder” equipment (marketed by the Curlator Corporation, of Rochester, N.Y. and described in U.S. Pat. Nos.
- Low-density, lofty abrasive products may also be formed of webs or mats of continuous filaments.
- Fitzer incorporated herein by reference, discloses a low-density abrasive product comprising a uniform cross-section, generally flat-surfaced, open, porous, lofty web of autogenously bonded, continuous, undulated, interengaged filaments.
- the web of Fitzer is formed by downwardly extruding a plurality of thermoplastic organic (e.g. polyamide, polyester) filaments from a spinneret into a quench bath.
- the filaments As the filaments enter the quench bath, they begin to coil and undulate, thereby setting up a degree of resistance to the flow of the molten filaments, causing the molten filaments to oscillate just above the bath surface.
- the spacing of the extrusion openings from which the filaments are formed is such that, as the molten filaments coil and undulate at the bath surface, adjacent filaments touch one another.
- the coiling and undulating filaments are still sufficiently tacky as this occurs, and, where the filaments touch, most adhere to one another to cause autogenous bonding to produce a lofty, open, porous, handlable filament web.
- Fibrous polishing and/or abrading materials can be prepared from continuous or substantially continuous synthetic filaments by the method disclosed by Zimmer et al., in U.S. Pat. No. 3,260,582, incorporated herein by reference.
- crimped or curled continuous filaments are straightened out under tension into a substantially parallel relationship with one another, uniformly coated while under tension with an adhesive which may or may not contain abrasive particles, interlocked with one another by release of such tension and then set in a permanently interlocked and lofty, open, 3-dimensional state by curing or setting up the adhesive.
- Low-density, lofty, open, porous, nonwoven scouring articles have been more easily and economically manufactured from continuous filaments by the method disclosed by Heyer et al., in U.S. Pat. Nos. 4,991,362, and 5,025,596, both incorporated herein by reference.
- the scouring pads described in these patents comprise a multiplicity of crimped or undulated, continuous, thermoplastic organic filaments that are bonded together (e.g., by fusion or an adhesive) at opposite ends.
- the pad is made by arranging a multiplicity of continuous, crimped or undulated, thermoplastic organic filaments in an open lofty array, with one point of each filament in the array corresponding to a first filament bonding site and a second point of each filament, distant from the first point, corresponding to a second filament bonding site.
- a pad is formed in the filament array by bonding substantially all of the thermoplastic organic filaments together at the first and second bonding sites.
- abrasive particles may be adherently bonded to the filaments of the pad, preferably before the individual pad is cut from the filament array.
- These pads have also enjoyed commercial success and are economical to make.
- U.S. Pat. No. 5,363,604, incorporated by reference, describes nonwoven scouring articles comprising a low-density, lofty, open, porous, nonwoven web, the web comprising a multiplicity of crimped or undulated, continuous, preformed thermoplastic organic filaments, at least partially coated with an organic thermoset binder which binds the filaments at least at a portion of points where they contact.
- the continuous thermoplastic organic filaments are entangled together at a multiplicity of points along their length to provide a cross-direction tensile strength the web of at least about 0.02 kg/cm, more preferably at least about 0.03 kg/cm, before coating the web with a thermosetting binder precursor solution.
- the continuous filaments are “entangled”, preferably by needlepunching from a plurality of directions perpendicular to the machine direction.
- Other background references include U.S. Pat. Nos. 3,688,453; 4,622,253; 4,669,163; 4,902,561; 4,927,432; 4,931,358; and 4,935,295; World Patent Application No. WO 92/01536, published Feb. 6, 1992; European Patent Application number 0 492 868 A1, published Jul. 1, 1992, the disclosures of which are incorporated herein by reference.
- Bonded abrasives typically consist of a shaped mass of abrasive grains held together by a binder.
- the shaped mass can be in any number of conventional forms such as wheels, points, discs, and cylinders, but is preferably in the form of a grinding wheel.
- a preferred bonded abrasive product useful in the present invention comprises between about 50 to about 90 weight percent abrasive grains dispersed and adhered within a binder. Bonded abrasives products are preferably manufactured by a molding process, and are made with varying degrees of porosity to control the breakdown.
- Bonded abrasives which may be used for this purpose are such as those described in U.S. Pat. Nos. 5,250,085; 5,269,821; and 5,273,558, all incorporated herein by reference.
- Abrasive products comprising a solid or foamed organic polymeric matrix having abrasive granules dispersed throughout and bonded therein are well known and widely used.
- the polymeric matrix is composed of either a hard, thermoset resin, such as a catalyzed phenol-formaldehyde, or resilient elastomer, such as a polyurethane or a vulcanized rubber.
- Bonded abrasives are to be distinguished from coated abrasives in their construction and mode of operation.
- Bonded abrasives e.g., grinding wheels
- Coated abrasives typically have only a single layer of abrasive grains. See, for example, U.S. Pat. No. 5,011,512, incorporated herein by reference.
- elastomeric binder matrices When elastomeric binder matrices are used in bonded abrasives they generally produce an abrasive article having some degree of flexibility and resiliency. These abrasive articles typically provide a smoother abrasive action and a finer surface finish than that provided by a bonded abrasive article made with hard, thermoset resin. As a result of this, elastomeric bonded abrasive articles have found a wide range of industrial applications, such as deburring, finishing, and sanding in the metal and wood-working industries. However, often these elastomeric bonded abrasive articles have shown premature loss of abrasive particles and, in some cases, undesirable smearing or transfer of portions of the elastomeric binder to the surface of the workpiece.
- polyurethane binder matrix may be a foam, as disclosed in U.S. Pat. Nos. 4,613,345, 4,459,779, 2,972,527, 3,850,589; UK Patent Specification No. 1,245,373 (published Sep. 8, 1971); or the polyurethane binder may be a solid, as disclosed in U.S. Pat. Nos. 3,982,359, 4,049,396, 4,221,572, and 4,933,373, all incorporated herein by reference.
- U.S. Pat. Nos. 3,638,464 and 3,834,200 disclose a high-intensity peening flap construction which includes an elongate strap of a flexible, tear-resistant material, and at least one metal peening particle support base fastened to the elongate strap. A plurality of refractory-hard, impact fracture-resistant peening particles are metallurgically joined to an exposed face of the support base.
- one or more of the flaps are mounted on a hub, and the hub is rotated while the flaps are forced against the workpiece to be peened.
- the peening particles on each support base strike the workpiece in turn, thereby causing the peening particles to perform their normal peening function, but preventing the normal uncontrolled scattering which occurs in conventional shot peening. Improvements to these articles are described in U.S. Pat. Nos. 5,179,852 and 5,203,189, incorporated herein by reference where necessary to understand their use in removing residues.
- the processes of the invention comprise evacuating the container for a time and vacuum sufficient to remove substantially all organosilane that has not reacted with oxygen-containing compounds.
- This first evacuation step preferably includes evacuation down to a vacuum of about 1 torr, more preferably down to 0.01 torr.
- the temperature during this evacuation process is not critical, but higher temperatures may tend to increase the removal rate of organosilane. This will be balanced by safety issues, in that higher temperatures may be more hazardous. Therefore, room temperature (about 25° C.), or slightly lower or slightly higher than room temperature is preferred.
- the next step is exposing the coating to a gas composition, the gas composition having a concentration of reactive gas that is greater than an intended reactive gas concentration of a manufactured product.
- the reactive gas is caused to contact the coating and deactivate the surface even further.
- the reactive gas preferably has a concentration of at least 10 times the concentration of the reactive gas that is to be ultimately stored in the container or exposed to the surface, and more preferably has a concentration 500 times greater than the ultimate concentration, even more preferably 50,000 times the concentration of the reactive gas to be stored in the container or exposed to the surface.
- the degree of adsorption of the reactive gas onto the coating depends in a complicated way on the composition and physical properties of the coating, the temperature and pressure employed during this step, as well as on the chemical and physical properties of the particular reactive gas that is being adsorbed thereon. These parameters are in turn dictated by the final concentration of reactive gas that is to be stored in the container.
- a discussion of adsorption of gaseous species onto surfaces that is helpful in this respect is included in Daniels, F. et al., “Experimental Physical Chemistry”, Seventh Edition, McGraw-Hill, pages 369-374 (1970).
- the surface area of a coating produced by the practice of the present invention may be determined by the B.E.T. method, and preferably is at least about 1 m 2 /gram, more preferably at least 10 m 2 /gram. If the coating is somewhat porous, the pore volume may be determined by nitrogen adsorption isotherm methods, and is preferably at least 0.1 ml/gram.
- the B.E.T. method is described in detail in Brunauer, S.
- Emmet, P. H., and Teller E., J.Am.Chem.Soc., 60, 309-16 (1938).
- the nitrogen adsorption isotherm method is described in detail in Barrett, E. P., Joyner, L. G. and Helenda, P. P., J.Am.Chem.Soc., 73, 373-80 (1951), incorporated by reference herein.
- concentration of reactive gas to be stored in the container is 100 ppb
- the concentration of reactive gas used in this step will be higher than if the ultimate concentration of reactive gas is to be only 50 ppb, assuming adsorption is the governing pathway.
- An increase in temperature will tend to require an increase in concentration of reactive gas, an increase in pressure, or both, to achieve the same degree of adsorption.
- a decrease in temperature will tend to require a decreased concentration of reactive gas, a decrease in pressure, or both to achieve the same level of adsorption.
- a second evacuation step is carried out to remove excess reactive gas.
- evacuation of the container is carried out for a time sufficient to remove substantially all of non-adsorbed reactive gas, leaving reactive gas adsorbed on the coating.
- the container is then filled with a gas composition comprising the intended low concentration of reactive gas.
- FIG. 1 there is illustrated schematically a logic diagram for carrying out processes of the invention.
- a container having a metal internal surface is selected at 12 .
- the metal surface is exposed to a silicon-containing passivation material, 14 , for a time and at a temperature and pressure sufficient to react most of the silicon-containing material with oxygen-containing compounds present on the metal surface.
- the container is then evacuated for a time sufficient to remove the bulk of the non-reacted silicon-containing material, at 16 .
- the metal surface is exposed to high concentration of reactive gas or liquid of the desired end product to be contained in the container, at 18 .
- the container is again evacuated at 20 for a time sufficient to remove substantially all of the non-adsorbed reactive gas, then the container is filled with the composition having the desired material at the desired concentration, at 22 .
- the container is allowed to equilibrate and the concentration of the gas in the container is tested at various times to determine the concentration of reactive gas in the container. If the shelf life is acceptable at 24 , the product is made in accordance with the procedure followed, at 26 . If the concentration of the gas increases or decreases beyondthe accepted tolerances, then the process of steps 20 , 22 , and 24 are repeated. Optionally, steps 14 and 16 may be repeated, as indicated at 26 .
- Vacuum baking has long been employed to reduce moisture in cylinders to prevent and/or decrease corrosion due to acid as reactions with moisture and the cylinder wall (and cylinder valve).
- vacuum baking an aluminum cylinder at 65° C. to vacuum of 1 micrometer of Hg for 3 days was not sufficient to provide stability of a 150 ppb H 2 S balance nitrogen mixture for a cylinder which was previously exposed to moisture.
- Silane a silicon-containing material having the formula SiH 4
- SiO 2 can bind to aluminum, and we have data indicating formation of weak Si—Al bonds when treating an aluminum alloy cylinder known under the trade designation “Calgaz 3003”.
- a 1 percent silane balance nitrogen mixture was introduced into an aluminum cylinder (note: this was not a cylinder known under the trade designation “Calgaz 3003”) and left in the cylinder overnight. Subsequently the balance was vacuumed out and the cylinder was filled with a 250 ppb H 2 S balance nitrogen mixture. As illustrated in FIG.
- the signal decay for the curve labeled “No H 2 S Passiv” was slower than observed previously, indicating that the reaction of moisture with the H 2 S was not solely responsible for the loss of stability of the H 2 S.
- the cylinder was subsequently evacuated and passivated with a 5000 ppm mixture of H 2 S at 62° C.
- the cylinder was evacuated and filled with 150 ppb H 2 S. The signal was observed to increase with time, indicating that substantially all of the passivation mixture had not been removed prior to filling.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
- This application claims priority from copending provisional patent application serial Nos. 60/306,014, and 60/306,012, both filed Jul. 17, 2001, both incorporated by reference herein.
- 1. Field of the Invention
- The invention is generally related to the field of gases and packaging and using same. More specifically, the invention relates to increased stability, low concentration reactive gases, products including same, and methods of making same.
- 2. Related Art
- Moisture is known to react with so-called “acid gases”, such as hydrogen sulfide, carbonylsulfide, carbondisulfide and mercaptans (mercaptans are also referred to as thiols) to form a complex compound. (The term “acid gas” is used herein to denote either gas phase, liquid phase, or mixture of gas and liquid phases, unless the phase is specifically mentioned.)
- One problem presents itself: if one is interested in producing acid gas standard compositions, in other words acid gases having a known concentration of one of these gases in a matrix or carrier fluid, then one must consider how to reduce or remove the moisture. Gas standards may have to have, and preferably do have, a long shelf life, since the standard acid gas may not be required immediately after production. A source of acid gas and/or matrix gas may contain a considerable amount of moisture. Therefore, the reduction or removal of moisture from the acid gas is of primary importance if the stability of the acid gas in the standard gas is to be maintained.
- U.S. Pat. Nos. 5,255,445 and 5,480,677 describe processes for drying and passivating a metal surface to enhance the stability of gas mixtures containing one or more gaseous hydrides in low concentrations in contact therewith. The process comprises purging gas in contact with the metal surface with inert gas to remove the purged gas, exposing the metal surface to an amount of a gaseous passivating or drying agent comprising an effective amount of a gaseous hydride of silicon, germanium, tin or lead and for a time sufficient to passivate the metal surface, and purging the gaseous passivating agent using inert gas. Optionally, an oxidizing agent is applied after the third step to stabilize the adsorbed stabilizing agent. The patent also mentions prior known processes, such as saturation passivation, where the container is subjected to several cycles of evacuating and filling with a much higher concentration of the same gaseous hydride, prior to being filled with the low concentration hydride mixture of interest. The two patents do not mention or describe processes to passivate containers adapted to store sulfur-containing gases, nor do they mention passivation techniques in which a first passivating agent is applied to the surface, followed by contacting with a higher concentration of the gas to be stored.
- Co-pending application Ser. No. 10/______, filed on even date herewith, (serie 5718) describes the use of certain acid gas resistant molecular sieves to reduce or remove moisture from fluid compositions comprising a sulfur-containing compound. There is no disclosure or suggestion, however, for the passivation of containers adapted to contain the moisture-reduced compositions. Such containers may have moisture adhered to the internal surfaces, which can and does react with acid gases, reducing their stability and shelf-life.
- Given the problem of moisture reacting with acid gases and reactive gases in general, it would be advantageous if passivation methods could be provided which increase the shelf-life during the storage of these compounds.
- In accordance with the present invention, methods of passivating internal surfaces of containers that have been cleaned are employed to increase the shelf-life of gas compositions, especially low concentration gas products. As used herein the term “shelf-life” means that time during which the initial concentration of a gas stored in a container is substantially maintained at the intended or desired concentration. In this context, the phrase “substantially maintained” means that for concentrations of about 1000 parts per billion (ppb), the concentration does not vary by more than +/−10 percent; for concentrations of about 500 ppb, the concentration does not vary by more than +/−15 percent; for concentrations of about 100 ppb, the concentration does not vary by more than +/−20 percent. “Low concentration” means gases having a concentration in another gas, such as inert gas, of 1000 ppb or less.
- Gases which benefit for the passivation techniques of the present invention include nitrous oxide, nitric oxide, hydrogen chloride, chlorine, boron trichloride, and any acid gases except those that would react with a silicon-containing compound.
- As used herein the term “acid gas” means sulfur-containing compounds, including carbon disulfide, carbonylsulfide, and compounds within formula (I):
- Y—S—X (I)
- wherein S is sulfur,
- X and Y are the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, oxygen, hydoxyl, amine, aminosilane, oxygen, and alcohol.
- Examples of preferred sulfur-containing compounds within formula (I) include hydrogen sulfide, methylthiol, ethylthiol, n-propylthiol, i-propylthiol, benzylthiol, and the like.
- A first aspect of the invention relates to a manufactured product comprising:
- a) a container having an internal space and a passivated internal metal surface;
- b) a composition comprising a reactive gas contained within the internal space and in contact with the passivated internal metal surface, the reactive gas having an intended concentration that is substantially maintained; and
- c) the passivated internal metal surface comprising:
- 1) the reaction product of a silicon-containing material and an oxygen-containing material (preferably selected from the group consisting of moisture, molecular oxygen, metal oxides, and mixtures thereof), and
- 2) an effective amount of the reactive gas, the effective amount being many times the intended concentration of reactive gas that is to be substantially maintained.
- Preferred manufactured products of the invention are those wherein the reactive gas is selected from the group consisting of chlorine and an acid as selected from the group consisting of carbondisulfide, carbonylsulfide, and compounds within formula (I). Other preferred manufactured products include products wherein the passivated internal surface is a passivated metal. Preferably the metal is selected from the group consisting of aluminum, aluminum alloys, steel, iron and combinations thereof. Yet other preferred manufactured products of the invention are those wherein the silicon-containing material is selected from the group consisting of compounds within the general formula (II):
- SiR1R2R3R4 (II)
- wherein R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, amine, alkyl, aryl, halogenated alkyl, and halogenated aryl; and manufactured products wherein the compound is silane or a methyl-containing silane, more preferably wherein the methyl-containing silane is selected from the group consisting of methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane.
- Preferred manufactured products of the invention are those wherein the composition comprises a reactive gas having a concentration of about 1000 ppb and that does not vary by more than +/−10 percent; products wherein the composition comprises a reactive gas having a concentration of about 500 ppb and that does not vary by more than +/−15 percent; products wherein the composition comprises a reactive gas having a concentration of about 100 ppb and that does not vary by more than +/−20 percent;. Products wherein the composition comprises higher or lower concentration of reactive gas, and correspondingly larger or smaller variation in concentration, are considered within the invention.
- Preferred manufactured products of the invention comprise only a single reactive gas with an inert gas like nitrogen, argon, helium, and the like. The composition may comprise a mixture of two or more reactive gases. Also, the balance of the fluid composition is, in some preferred embodiments, a hydrocarbon, such as ethylene, propylene, and the like.
- A second aspect of the invention is a method of making a manufactured product of the invention, the method comprising the steps of:
- i) exposing an internal metal surface of a container to a first fluid composition comprising a silicon-containing compound for a time sufficient to allow at least some of the silicon-containing compound to react with oxygen-containing compounds (preferably selected from the group consisting of moisture, molecular oxygen, metal oxides, and mixtures thereof) present to form a silicon-treated surface on at least some of the internal metal surface, the silicon-containing compound selected from the group consisting of compounds within the general formula (II):
- SiR1R2R3R4 (II)
- wherein R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, alkyl, aryl, amine, halogenated alkyl, and halogenated aryl;
- ii) evacuating the container for a time sufficient to remove substantially all of the silicon-containing compound(s) that has not reacted with the oxygen-containing compound to form the silicon-treated surface;
- iii) exposing the silicon-treated surface to a second fluid composition, the second fluid composition comprising a reactive gas having a concentration that is greater than an intended reactive gas concentration of the manufactured product;
- iv) evacuating the container for a time sufficient to remove just enough of the second fluid composition to enable maintenance of an increased shelf-life, low concentration reactive gas at the intended concentration in the container; and
- v) filling the container with a third fluid composition having the intended reactive gas concentration for the manufactured product.
- Preferred methods in this aspect of the invention are those wherein the silicon-containing compound is silane or a methyl-containing organosilane; particularly those wherein the methyl-containing organosilane is selected from the group consisting of silane, methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane. Also preferred are methods wherein the second fluid composition has a concentration of reactive gas at least 10 times the intended reactive gas concentration of the manufactured product; methods wherein steps i) and ii) are repeated prior to step iii); methods wherein the metal surface is cleaned prior to step i); methods wherein the concentration of the silicon-containing compound used in step i) ranges from about 100 ppm to 100 percent; methods wherein during step i) the silicon-containing compound is heated to a temperature of not more than 74° C., and methods wherein during step iii) the second composition is heated to a temperature of not more than 74° C. Other preferred methods are those wherein the container is a gas cylinder having an attached cylinder valve, and the cylinder valve is removed prior to step i). After all the steps are completed, preferably at very high temperatures for steps i) and iii), the cylinder valve is reattached, and the process steps i)-v) are repeated, but steps i) and iii) take place at not more than 74° C.
- A third aspect of the invention is a method of passivating a metal surface, the method comprising the steps of:
- i) exposing the metal surface to a first composition comprising a silicon-containing compound for a time sufficient to allow at least some of the silicon-containing compound to react with oxygen-containing compounds present to form a silicon-treated surface on at least some of the metal surface, the silicon-containing compound selected from the group consisting of compounds within the general formula (II):
- SiR1R2R3R4 (II)
- wherein R1, R2, R3, and R4 are the same or different and are independently selected from the group consisting of hydrogen, halogen, amine, alkyl, aryl, halogenated alkyl, and halogenated aryl;
- ii) evacuating the surface for a time sufficient to remove substantially all silicon-containing compound that has not reacted with the oxygen-containing compound to form the silicon-treated surface;
- iii) exposing the silicon-treated surface to a second fluid composition, the second fluid composition comprising a reactive gas having a concentration that is greater than an intended reactive gas concentration to be in contact with the silicon-treated surface;
- iv) evacuating the surface for a time sufficient to remove just enough of the second fluid composition to enable maintenance of a low concentration of reactive gas at an intended concentration; and
- v) exposing the metal treated surface to a third fluid composition having concentration of reactive gas at the intended reactive gas concentration.
- Preferably, the metal surface is part of a pipe, piping manifold, tubing, tubing manifold, ton unit, tube trailer, tank trailer, cylinder, flow regulator, pressure regulator, valve, cylinder valve, or other pressure-reducing device. The metal surface is preferably cleaned prior to step i) as disclosed further herein.
- Further aspects and advantages of the invention will become apparent by reviewing the description of preferred embodiments that follow.
- FIG. 1 is a logic diagram illustrating the methods of the invention
- FIG. 2 illustrates that a prior art process of “vacuum baking” an aluminum cylinder at 65° C. to vacuum of 1 micrometer Hg for 3 days was not sufficient to provide stability of a 150 ppb H2S balance nitrogen mixture for a cylinder which was previously exposed to moisture;
- FIG. 3 illustrates that a prior art process of passivation of a cylinder and valve after vacuum baking with a high concentration of the gas mixture to be prepared, which had also been used to extend shelf life of a high purity mixture, did not prove successful; and
- FIGS. 4 and 5 illustrate stability of gas products made in accordance with the invention.
- While the following discussion focuses on a container which has a metal internal surface, the description is not limited thereto, and could apply to a piping or tubing system, a manifold, a gas cylinder having a cylinder valve, ton unit, and the like.
- Silicon-containing compounds within the general formula (II) are known to react with oxygen-containing compounds, such as H2O, N2O, CO2, and the like, to produce SiO2, especially when the silicon-containing compounds are in the gaseous or vapor state. This fact is taken advantage of in the practice of the various aspects of the invention. The reaction product of a silicon-containing compound and an oxygen-containing compound such as water forms an amorphous or crystalline glassy material on the surfaces on which it is deposited. The amorphous or crystalline glassy material may include aluminum silicide, if the container or surface being treated comprises aluminum. Although the deposited material is referred top herein as a “coating”, it shall be readily understood that in fact the material may deposit non-uniformly, or not at all on certain areas of the surface being treated. This coating then serves the function of deactivating a surface for the adsorption of molecules of the gas that is ultimately to be contained in the container or piping system at low concentration. In other words, the coating serves to decrease the number of reactive sites on the metal surface being treated. For simplicity, silicon-containing compounds within formula (II) shall be referred to as organosilanes, although their formal name under IUPAC convention may differ.
- The reaction of an organosilane within general formula (II) with oxygen-containing materials such as water proceeds without catalyst at room temperature (25° C.); however, it is preferred to carry out the reaction at moderately elevated temperatures, such as temperature ranging from 25° C. up to 100° C, in order to produce the coatings in reasonable time. The pressure of the reaction of an organosilane with water vapor will generally also proceed at atmospheric pressure, however, the pressure in the container, or near the surface being treated, may either be in vacuum or above atmospheric pressure. This will of course depend on the rates of reaction of the organosilane with the oxygen-containing compound, the desired coating deposition rate, and desired thickness of the coating. It is of course within the invention to make layered coatings of two or more organosilane/oxygen-containing compound reaction products. It is also considered within the invention to employ two or more organosilanes simultaneously to make a “mixed” coating. Indeed, it is possible that the organosilane may be employed in conjunction with a non-organosilane to form either layered or mixed coatings.
- Silane and organosilanes are toxic materials, and, depending on the organosilane, pyrophoric. Special care in handling these materials is warranted, preferably well-ventilated hoods. Electronic grade silane (SiH4) is available commercially in cylinders from Air Liquide America Corporation, Houston, Tex. Trimethylsilane is available commercially from Dow Corning Corporation.
- Preferred silicon-containing compounds include silane, and methyl-containing organosilanes; particularly those wherein the methyl-containing organosilane is selected from the group consisting of methylsilane, dimethylsilane, trimethylsilane and tetramethylsilane. Preferred organosilane compounds include methylsilane compounds having the structure SiHn(CH3)4-n, where n=1 to 3, i.e. methylsilane, dimethylsilane, or trimethylsilane or the structure Si2Hm(CH3)6-m, where m=1 to 5. The most preferred organosilane compound is methylsilane, CH3SiH3. The organosilane compounds are hydrolyzed by reaction with water, oxygen or water-containing gases such as humid air and/or other oxygen-containing gases, such that the carbon content of the deposited film is from 1 to 50% by atomic weight, preferably about 20%.
- It is conceivable to employ adjuvants during the reaction of an organosilane with water. In the practice of the invention, “adjuvant” includes physical and chemical adjuvants, and combinations thereof. Suitable physical adjuvants include electrostatic discharge, plasma discharge, laser excitation, and the like, under temperatures and pressures suitable for each of these processes. For example, plasmas are preferably best employed in moderate vacuum. A chemical adjuvant might include an oxidant gas such as oxygen, ozone, chlorine dioxide, combinations thereof, and the like. When a combination of physical and chemical adjuvants is employed, for example ozone and plasma discharge, the reaction product may be described as similar to the films produced b the process described in U.S. Pat. No. 6,054,379, which is incorporated herein by reference for its teaching of the production of such films.
- The container or surface to be treated may be selected from the group consisting of iron, stainless steel (for example 301, 316, 401), aluminum, aluminum alloy, steel alloys and the like. The internal surface of the container, or the surface to be treated, may be subject to abrasion prior to reaction of the organosilane with water vapor in order to improve adhesion of the reaction product to the metal. Residues may be removed by a variety of mechanical means such as scrubbing, grinding, and peening. Scrubbing may be performed with non-woven abrasives. The use of lofty, fibrous, nonwoven abrasive products for scouring surfaces such as the soiled surfaces of pots and pans is well known. These products are typically lofty, nonwoven, open mats formed of staple fibers which are bonded together at points where they intersect and contact each other. The staple fibers of low-density abrasive products of this type can be, and typically are, bonded together at points of contact with a binder that may or may not contain abrasive particles. The staple fibers are typically crimped, have a length of about 3.8 cm, a diameter ranging from about 25 to about 250 micrometers, and are formed into lofty open webs by equipment such as “Rando-Webber” and “Rando-Feeder” equipment (marketed by the Curlator Corporation, of Rochester, N.Y. and described in U.S. Pat. Nos. 2,451,915; 2,700,188; 2,703,441 and 2,744,294). One very successful commercial embodiment of such an abrasive product is that sold under the trade designation “ScotchBrite” by Minnesota Mining and Manufacturing Company of St. Paul, Minn. (“3M”). Low-density abrasive products of this type can be prepared by the method disclosed by Hoover et al. in U.S. Pat. No. 2,958,593, incorporated herein by reference.
- Low-density, lofty abrasive products may also be formed of webs or mats of continuous filaments. For example, in U.S. Pat. No. 4,227,350, Fitzer, incorporated herein by reference, discloses a low-density abrasive product comprising a uniform cross-section, generally flat-surfaced, open, porous, lofty web of autogenously bonded, continuous, undulated, interengaged filaments. The web of Fitzer is formed by downwardly extruding a plurality of thermoplastic organic (e.g. polyamide, polyester) filaments from a spinneret into a quench bath. As the filaments enter the quench bath, they begin to coil and undulate, thereby setting up a degree of resistance to the flow of the molten filaments, causing the molten filaments to oscillate just above the bath surface. The spacing of the extrusion openings from which the filaments are formed is such that, as the molten filaments coil and undulate at the bath surface, adjacent filaments touch one another. The coiling and undulating filaments are still sufficiently tacky as this occurs, and, where the filaments touch, most adhere to one another to cause autogenous bonding to produce a lofty, open, porous, handlable filament web. The web, so formed, is then impregnated with a tough binder resin which adherently bonds the filaments of the web together and also bonds a multitude of abrasive granules, uniformly dispersed throughout the web, to the surface of the filaments. Fibrous polishing and/or abrading materials can be prepared from continuous or substantially continuous synthetic filaments by the method disclosed by Zimmer et al., in U.S. Pat. No. 3,260,582, incorporated herein by reference. In this method crimped or curled continuous filaments are straightened out under tension into a substantially parallel relationship with one another, uniformly coated while under tension with an adhesive which may or may not contain abrasive particles, interlocked with one another by release of such tension and then set in a permanently interlocked and lofty, open, 3-dimensional state by curing or setting up the adhesive. Low-density, lofty, open, porous, nonwoven scouring articles have been more easily and economically manufactured from continuous filaments by the method disclosed by Heyer et al., in U.S. Pat. Nos. 4,991,362, and 5,025,596, both incorporated herein by reference. The scouring pads described in these patents comprise a multiplicity of crimped or undulated, continuous, thermoplastic organic filaments that are bonded together (e.g., by fusion or an adhesive) at opposite ends. The pad is made by arranging a multiplicity of continuous, crimped or undulated, thermoplastic organic filaments in an open lofty array, with one point of each filament in the array corresponding to a first filament bonding site and a second point of each filament, distant from the first point, corresponding to a second filament bonding site. A pad is formed in the filament array by bonding substantially all of the thermoplastic organic filaments together at the first and second bonding sites. When a pad having greater abrasiveness is desired, abrasive particles may be adherently bonded to the filaments of the pad, preferably before the individual pad is cut from the filament array. These pads have also enjoyed commercial success and are economical to make. U.S. Pat. No. 5,363,604, incorporated by reference, describes nonwoven scouring articles comprising a low-density, lofty, open, porous, nonwoven web, the web comprising a multiplicity of crimped or undulated, continuous, preformed thermoplastic organic filaments, at least partially coated with an organic thermoset binder which binds the filaments at least at a portion of points where they contact. The continuous thermoplastic organic filaments, preferably in the form of tow, are entangled together at a multiplicity of points along their length to provide a cross-direction tensile strength the web of at least about 0.02 kg/cm, more preferably at least about 0.03 kg/cm, before coating the web with a thermosetting binder precursor solution. The continuous filaments are “entangled”, preferably by needlepunching from a plurality of directions perpendicular to the machine direction. Other background references include U.S. Pat. Nos. 3,688,453; 4,622,253; 4,669,163; 4,902,561; 4,927,432; 4,931,358; and 4,935,295; World Patent Application No. WO 92/01536, published Feb. 6, 1992; European
Patent Application number 0 492 868 A1, published Jul. 1, 1992, the disclosures of which are incorporated herein by reference. - Other means of removing residues from metal surfaces include grinding, such as by using so-called bonded abrasives. Bonded abrasives typically consist of a shaped mass of abrasive grains held together by a binder. The shaped mass can be in any number of conventional forms such as wheels, points, discs, and cylinders, but is preferably in the form of a grinding wheel. A preferred bonded abrasive product useful in the present invention comprises between about 50 to about 90 weight percent abrasive grains dispersed and adhered within a binder. Bonded abrasives products are preferably manufactured by a molding process, and are made with varying degrees of porosity to control the breakdown. Bonded abrasives which may be used for this purpose are such as those described in U.S. Pat. Nos. 5,250,085; 5,269,821; and 5,273,558, all incorporated herein by reference. Abrasive products comprising a solid or foamed organic polymeric matrix having abrasive granules dispersed throughout and bonded therein are well known and widely used. Typically, the polymeric matrix is composed of either a hard, thermoset resin, such as a catalyzed phenol-formaldehyde, or resilient elastomer, such as a polyurethane or a vulcanized rubber.
- Bonded abrasives are to be distinguished from coated abrasives in their construction and mode of operation. Bonded abrasives (e.g., grinding wheels) are three-dimensional structures of binder and abrasive grains which rely upon the continual breakdown and removal of the abrasive grains on the cutting surface to continually present sharp cutting points to the material being ground. Coated abrasives, on the other hand, typically have only a single layer of abrasive grains. See, for example, U.S. Pat. No. 5,011,512, incorporated herein by reference.
- When elastomeric binder matrices are used in bonded abrasives they generally produce an abrasive article having some degree of flexibility and resiliency. These abrasive articles typically provide a smoother abrasive action and a finer surface finish than that provided by a bonded abrasive article made with hard, thermoset resin. As a result of this, elastomeric bonded abrasive articles have found a wide range of industrial applications, such as deburring, finishing, and sanding in the metal and wood-working industries. However, often these elastomeric bonded abrasive articles have shown premature loss of abrasive particles and, in some cases, undesirable smearing or transfer of portions of the elastomeric binder to the surface of the workpiece.
- Conventional flexible bonded abrasive articles typically employ an elastomeric polyurethane as the binder matrix. The polyurethane binder matrix may be a foam, as disclosed in U.S. Pat. Nos. 4,613,345, 4,459,779, 2,972,527, 3,850,589; UK Patent Specification No. 1,245,373 (published Sep. 8, 1971); or the polyurethane binder may be a solid, as disclosed in U.S. Pat. Nos. 3,982,359, 4,049,396, 4,221,572, and 4,933,373, all incorporated herein by reference.
- For very large containers, such as ton units, bullets, and spheres, peening may be used with success to remove residues, scales and other deposits on internal surfaces of these containers. U.S. Pat. Nos. 3,638,464 and 3,834,200 (incorporated herein by reference) disclose a high-intensity peening flap construction which includes an elongate strap of a flexible, tear-resistant material, and at least one metal peening particle support base fastened to the elongate strap. A plurality of refractory-hard, impact fracture-resistant peening particles are metallurgically joined to an exposed face of the support base. In use, one or more of the flaps are mounted on a hub, and the hub is rotated while the flaps are forced against the workpiece to be peened. The peening particles on each support base strike the workpiece in turn, thereby causing the peening particles to perform their normal peening function, but preventing the normal uncontrolled scattering which occurs in conventional shot peening. Improvements to these articles are described in U.S. Pat. Nos. 5,179,852 and 5,203,189, incorporated herein by reference where necessary to understand their use in removing residues.
- Once the metal container inner surface, or metal surface to be treated is cleaned, and the reaction of organosilane with oxygen-containing compounds completed, either with or with out adjuvants, to form a coating, the processes of the invention comprise evacuating the container for a time and vacuum sufficient to remove substantially all organosilane that has not reacted with oxygen-containing compounds. This first evacuation step preferably includes evacuation down to a vacuum of about 1 torr, more preferably down to 0.01 torr. The temperature during this evacuation process is not critical, but higher temperatures may tend to increase the removal rate of organosilane. This will be balanced by safety issues, in that higher temperatures may be more hazardous. Therefore, room temperature (about 25° C.), or slightly lower or slightly higher than room temperature is preferred.
- Subsequent to this first evacuation step, the next step is exposing the coating to a gas composition, the gas composition having a concentration of reactive gas that is greater than an intended reactive gas concentration of a manufactured product. The reactive gas is caused to contact the coating and deactivate the surface even further. The reactive gas preferably has a concentration of at least 10 times the concentration of the reactive gas that is to be ultimately stored in the container or exposed to the surface, and more preferably has a concentration 500 times greater than the ultimate concentration, even more preferably 50,000 times the concentration of the reactive gas to be stored in the container or exposed to the surface.
- The degree of adsorption of the reactive gas onto the coating depends in a complicated way on the composition and physical properties of the coating, the temperature and pressure employed during this step, as well as on the chemical and physical properties of the particular reactive gas that is being adsorbed thereon. These parameters are in turn dictated by the final concentration of reactive gas that is to be stored in the container. A discussion of adsorption of gaseous species onto surfaces that is helpful in this respect is included in Daniels, F. et al., “Experimental Physical Chemistry”, Seventh Edition, McGraw-Hill, pages 369-374 (1970). While the inventors are not certain, it is believed that the attraction of the reactive gas to the coating is physical in nature, involving an interaction of dipoles or induced dipoles, but may be chemical in nature involving chemical bonds, as when oxygen is adsorbed on charcoal. A combination of physical and chemical forces may be at work as well. Thus, the surface area of a coating produced by the practice of the present invention may be determined by the B.E.T. method, and preferably is at least about 1 m2/gram, more preferably at least 10 m2/gram. If the coating is somewhat porous, the pore volume may be determined by nitrogen adsorption isotherm methods, and is preferably at least 0.1 ml/gram. The B.E.T. method is described in detail in Brunauer, S. Emmet, P. H., and Teller, E., J.Am.Chem.Soc., 60, 309-16 (1938). The nitrogen adsorption isotherm method is described in detail in Barrett, E. P., Joyner, L. G. and Helenda, P. P., J.Am.Chem.Soc., 73, 373-80 (1951), incorporated by reference herein. In general, if the concentration of reactive gas to be stored in the container is 100 ppb, then for the same reactive gas, same temperature and pressure, and same coating, the concentration of reactive gas used in this step will be higher than if the ultimate concentration of reactive gas is to be only 50 ppb, assuming adsorption is the governing pathway. An increase in temperature will tend to require an increase in concentration of reactive gas, an increase in pressure, or both, to achieve the same degree of adsorption. In contrast, a decrease in temperature will tend to require a decreased concentration of reactive gas, a decrease in pressure, or both to achieve the same level of adsorption.
- After the surface has been further deactivated by exposure to the reactive gas at high concentration, a second evacuation step is carried out to remove excess reactive gas. In this step, evacuation of the container is carried out for a time sufficient to remove substantially all of non-adsorbed reactive gas, leaving reactive gas adsorbed on the coating. The container is then filled with a gas composition comprising the intended low concentration of reactive gas.
- Referring now to FIG. 1, there is illustrated schematically a logic diagram for carrying out processes of the invention. A container having a metal internal surface is selected at12. The metal surface is exposed to a silicon-containing passivation material, 14, for a time and at a temperature and pressure sufficient to react most of the silicon-containing material with oxygen-containing compounds present on the metal surface. The container is then evacuated for a time sufficient to remove the bulk of the non-reacted silicon-containing material, at 16. Next, the metal surface is exposed to high concentration of reactive gas or liquid of the desired end product to be contained in the container, at 18. The container is again evacuated at 20 for a time sufficient to remove substantially all of the non-adsorbed reactive gas, then the container is filled with the composition having the desired material at the desired concentration, at 22. At this point, the container is allowed to equilibrate and the concentration of the gas in the container is tested at various times to determine the concentration of reactive gas in the container. If the shelf life is acceptable at 24, the product is made in accordance with the procedure followed, at 26. If the concentration of the gas increases or decreases beyondthe accepted tolerances, then the process of
steps - In the following examples, hydrogen sulfide concentrations were measured using a chemiluminescence detector.
- Vacuum baking has long been employed to reduce moisture in cylinders to prevent and/or decrease corrosion due to acid as reactions with moisture and the cylinder wall (and cylinder valve). However, as illustrated in FIG. 2, vacuum baking an aluminum cylinder at 65° C. to vacuum of 1 micrometer of Hg for 3 days was not sufficient to provide stability of a 150 ppb H2S balance nitrogen mixture for a cylinder which was previously exposed to moisture.
- Passivation of the cylinder and valve after vacuum baking with a high concentration of the gas mixture to be prepared has also been used to extend shelf life of high purity mixtures. However, this has not proved successful. After an initial vacuum baking as in Comparative Example 1, the cylinder was subsequently filled with 5000 ppm of H2S balance nitrogen and heated at 80° C. for 3 days. After 3 days the contents were emptied and a vacuum pulled on the cylinder in order to remove all residual H2S. The cylinder was subsequently filled with 150 ppb H2S balance nitrogen. As illustrated in FIG. 3, although the stability of the mixture was enhanced, a fast decay was still observed.
- Silane, a silicon-containing material having the formula SiH4, is known to react with moisture and other oxygen-containing compounds and hydrogen. It has also been reported that SiO2 can bind to aluminum, and we have data indicating formation of weak Si—Al bonds when treating an aluminum alloy cylinder known under the trade designation “Calgaz 3003”. In this example, a 1 percent silane balance nitrogen mixture was introduced into an aluminum cylinder (note: this was not a cylinder known under the trade designation “Calgaz 3003”) and left in the cylinder overnight. Subsequently the balance was vacuumed out and the cylinder was filled with a 250 ppb H2S balance nitrogen mixture. As illustrated in FIG. 4, the signal decay for the curve labeled “No H2S Passiv” was slower than observed previously, indicating that the reaction of moisture with the H2S was not solely responsible for the loss of stability of the H2S. The cylinder was subsequently evacuated and passivated with a 5000 ppm mixture of H2S at 62° C. The cylinder was evacuated and filled with 150 ppb H2S. The signal was observed to increase with time, indicating that substantially all of the passivation mixture had not been removed prior to filling.
- Applying the same silane treatment followed by H2S passivation as in Example 1, but using a longer vacuum time period to remove extraneous silane, it was possible to achieve a stable H2S mixture, as illustrated in FIG. 5 by the curve labelled “H2S Passivated.”
- Although the description herein is intended to be representative of the invention, it is not intended to limit the scope of the appended claims.
Claims (21)
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/157,466 US20030017359A1 (en) | 2001-07-17 | 2002-05-29 | Increased stability low concentration gases, products comprising same, and methods of making same |
AT02745713T ATE500350T1 (en) | 2001-07-17 | 2002-07-15 | METHOD FOR PRODUCING A PASSIVATED SURFACE |
DE60239339T DE60239339D1 (en) | 2001-07-17 | 2002-07-15 | METHOD FOR PRODUCING A PASSIVATED SURFACE |
CA2448697A CA2448697C (en) | 2001-07-17 | 2002-07-15 | Method of making a passivated surface |
EP02745713A EP1412551B1 (en) | 2001-07-17 | 2002-07-15 | Method of making a passivated surface |
CNB028142187A CN1223701C (en) | 2001-07-17 | 2002-07-15 | Increased stability low concentration gases, products comprising same and methods of making same |
PCT/IB2002/002770 WO2003008664A2 (en) | 2001-07-17 | 2002-07-15 | Method of making a passivated surface |
KR10-2003-7016559A KR20040030684A (en) | 2001-07-17 | 2002-07-15 | Increased stability low concentration gases, products comprising same, and methods of making same |
JP2003514975A JP2004536227A (en) | 2001-07-17 | 2002-07-15 | Stability-enhancing gas with low concentration, product containing the same, and method for producing the same |
AU2002317422A AU2002317422A1 (en) | 2001-07-17 | 2002-07-15 | Method of making a passivated surface |
US11/114,953 US7832550B2 (en) | 2001-07-17 | 2005-04-25 | Reactive gases with concentrations of increased stability and processes for manufacturing same |
US11/168,948 US7794841B2 (en) | 2001-07-17 | 2005-06-28 | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US11/622,352 US7799150B2 (en) | 2001-07-17 | 2007-01-11 | Increased stability low concentration gases, products comprising same, and methods of making same |
US12/352,925 US7837806B2 (en) | 2001-07-17 | 2009-01-13 | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US12/416,556 US7850790B2 (en) | 2001-07-17 | 2009-04-01 | Reactive gases with concentrations of increased stability and processes for manufacturing same |
US12/912,289 US8288161B2 (en) | 2001-07-17 | 2010-10-26 | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30601401P | 2001-07-17 | 2001-07-17 | |
US30601201P | 2001-07-17 | 2001-07-17 | |
US10/157,466 US20030017359A1 (en) | 2001-07-17 | 2002-05-29 | Increased stability low concentration gases, products comprising same, and methods of making same |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15746802A Division | 2001-07-17 | 2002-05-29 | |
US11/114,953 Continuation-In-Part US7832550B2 (en) | 2001-07-17 | 2005-04-25 | Reactive gases with concentrations of increased stability and processes for manufacturing same |
US11/168,948 Continuation-In-Part US7794841B2 (en) | 2001-07-17 | 2005-06-28 | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US11/168,948 Continuation US7794841B2 (en) | 2001-07-17 | 2005-06-28 | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US11/622,352 Continuation US7799150B2 (en) | 2001-07-17 | 2007-01-11 | Increased stability low concentration gases, products comprising same, and methods of making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030017359A1 true US20030017359A1 (en) | 2003-01-23 |
Family
ID=27388019
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/157,466 Abandoned US20030017359A1 (en) | 2001-07-17 | 2002-05-29 | Increased stability low concentration gases, products comprising same, and methods of making same |
US11/622,352 Expired - Fee Related US7799150B2 (en) | 2001-07-17 | 2007-01-11 | Increased stability low concentration gases, products comprising same, and methods of making same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/622,352 Expired - Fee Related US7799150B2 (en) | 2001-07-17 | 2007-01-11 | Increased stability low concentration gases, products comprising same, and methods of making same |
Country Status (1)
Country | Link |
---|---|
US (2) | US20030017359A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050271544A1 (en) * | 2001-07-17 | 2005-12-08 | Robert Benesch | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
CN103866262A (en) * | 2014-03-26 | 2014-06-18 | 北京博赛德科技有限公司 | Preparation method of stainless steel surface silanization treatment membrane |
CN105112886A (en) * | 2015-09-18 | 2015-12-02 | 杭州天净检测技术有限公司 | Inert surface treating technique |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7905154B2 (en) * | 2004-11-29 | 2011-03-15 | Jones Jr Arthur T | Apparatus and method of contaminant detection for food industry |
JP6845235B2 (en) | 2016-06-22 | 2021-03-17 | 昭和電工株式会社 | Hydrogen sulfide mixture and its manufacturing method and filling container |
US11920732B2 (en) | 2019-08-23 | 2024-03-05 | Airgas, Inc. | Use of stable isotopes of CO2 to validate cylinder preparation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4385086A (en) * | 1978-12-07 | 1983-05-24 | Tokyo Ohka Kogyo Kabushiki Kaisha | Method for preventing leaching of contaminants from solid surfaces |
US5045355A (en) * | 1990-06-28 | 1991-09-03 | General Electric Company | Carbon chalcogenide macromolecular composition and process for preparation thereof |
US5480677A (en) * | 1991-06-03 | 1996-01-02 | American Air Liquide Chicago Research Center | Process for passivating metal surfaces to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith |
US20010054454A1 (en) * | 1998-04-08 | 2001-12-27 | Modi Paresh R. | System and method for inhibiting corrosion of metal containers and components |
US6444326B1 (en) * | 1999-03-05 | 2002-09-03 | Restek Corporation | Surface modification of solid supports through the thermal decomposition and functionalization of silanes |
US6511760B1 (en) * | 1998-02-27 | 2003-01-28 | Restek Corporation | Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA616981A (en) | 1961-03-21 | B. Wojcik Roger | Heat-reflecting laminates | |
CA614495A (en) | 1961-02-14 | Becton, Dickinson And Company | Control syringe assembly and attachment | |
CA817915A (en) | 1969-07-15 | Ciric Julius | Sodium-tetramethylammonium aluminosilicate and preparation | |
US2451915A (en) * | 1946-05-01 | 1948-10-19 | George F Buresh | Machine and method for forming fiber webs |
US2700188A (en) * | 1948-05-11 | 1955-01-25 | Curlator Corp | Fiber web forming machine |
US2744294A (en) * | 1950-01-13 | 1956-05-08 | Curlator Corp | Feeder mechanism for textile machines |
US2703441A (en) * | 1951-02-02 | 1955-03-08 | Curlator Corp | Machine for forming composite fiber webs |
US2882243A (en) * | 1953-12-24 | 1959-04-14 | Union Carbide Corp | Molecular sieve adsorbents |
US2882244A (en) * | 1953-12-24 | 1959-04-14 | Union Carbide Corp | Molecular sieve adsorbents |
DE1694594C3 (en) * | 1960-01-11 | 1975-05-28 | Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) | Cleaning and polishing media |
US2950962A (en) * | 1957-03-28 | 1960-08-30 | Carlson Oscar Norman | Reduction of fluoride to metal |
US3012853A (en) * | 1957-08-26 | 1961-12-12 | Union Carbide Corp | Crystalline zeolite |
US2996358A (en) * | 1957-09-04 | 1961-08-15 | Union Carbide Corp | Crystalline zeolite f |
US2995423A (en) * | 1957-09-20 | 1961-08-08 | Union Carbide Corp | Crystalline zeolite m |
US3010789A (en) * | 1957-12-05 | 1961-11-28 | Union Carbide Corp | Crystalline zeolite h |
US2991151A (en) * | 1957-12-05 | 1961-07-04 | Union Carbide Corp | Crystalline zeolite q |
US3054657A (en) * | 1958-03-31 | 1962-09-18 | Union Carbide Corp | Crystalline zeolite s |
US2972527A (en) * | 1959-03-03 | 1961-02-21 | Chemical Res Corp | Abrasive products and method of making |
US3850589A (en) * | 1959-05-15 | 1974-11-26 | Sherwin Williams Co | Grinding tool having a rigid and dimensionally stable resin binder |
US3008803A (en) * | 1959-07-17 | 1961-11-14 | Union Carbide Corp | Crystalline zeolite b |
US3001869A (en) * | 1959-08-07 | 1961-09-26 | Ford Motor Co | Nodular iron manufacture |
US3044482A (en) * | 1959-11-09 | 1962-07-17 | Carl E Golden | Liquid gas vaporizer with float control |
US3140249A (en) * | 1960-07-12 | 1964-07-07 | Socony Mobil Oil Co Inc | Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite |
US3130007A (en) * | 1961-05-12 | 1964-04-21 | Union Carbide Corp | Crystalline zeolite y |
US3260582A (en) * | 1961-08-10 | 1966-07-12 | Norton Co | Polishing and abrading materials |
US3140252A (en) * | 1961-12-21 | 1964-07-07 | Socony Mobil Oil Co Inc | Hydrocarbon conversion with crystalline acid-metal aluminosilicates |
US3140253A (en) * | 1964-05-01 | 1964-07-07 | Socony Mobil Oil Co Inc | Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst |
US3982359A (en) * | 1968-06-21 | 1976-09-28 | Roc A.G. | Abrasive member of bonded aggregates in an elastomeric matrix |
US3638464A (en) * | 1968-07-22 | 1972-02-01 | Minnesota Mining & Mfg | Shot peening |
CA941173A (en) | 1969-01-16 | 1974-02-05 | Joseph V. Petrone | Abrasive tool and manufacture thereof |
US3688453A (en) * | 1970-12-11 | 1972-09-05 | Minnesota Mining & Mfg | Abrasive articles |
US3834200A (en) * | 1972-04-17 | 1974-09-10 | Minnesota Mining & Mfg | High intensity shot peening |
US3847551A (en) * | 1972-05-18 | 1974-11-12 | Cal Detect Inc | Standardizing of alcohol-content measuring apparatus |
US3780163A (en) * | 1972-06-05 | 1973-12-18 | Steel Corp | Process for removing iron carbonyl with ozone |
US4082834A (en) * | 1973-03-21 | 1978-04-04 | General Electric Company | Process for gettering moisture and reactive gases |
US4049396A (en) * | 1973-05-01 | 1977-09-20 | National Research Development Corporation | Molded abrasive article comprising non-foamed, friable polyurethane and process |
US4057510A (en) * | 1975-09-29 | 1977-11-08 | Texaco Inc. | Production of nitrogen rich gas mixtures |
JPS52122184A (en) * | 1976-04-07 | 1977-10-14 | Yoshiichi Hashimoto | Standard dilution gas by using ph buffer solution* method and apparatus for preparation the same |
US4137151A (en) * | 1977-02-25 | 1979-01-30 | Chevron Research Company | Hydrocarbon conversion with cracking catalyst having co-combustion promoters lanthanum and iron |
JPS53107794A (en) * | 1977-03-03 | 1978-09-20 | Kao Corp | Abraisives |
US4159917A (en) * | 1977-05-27 | 1979-07-03 | Eastman Kodak Company | Method for use in the manufacture of semiconductor devices |
US4135130A (en) * | 1977-06-29 | 1979-01-16 | The United States Of America As Represented By The United States Department Of Energy | Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride |
US4227350A (en) * | 1977-11-02 | 1980-10-14 | Minnesota Mining And Manufacturing Company | Low-density abrasive product and method of making the same |
US4358627A (en) * | 1980-01-28 | 1982-11-09 | International Business Machines Corporation | Reducing chloride concentration |
US4414128A (en) * | 1981-06-08 | 1983-11-08 | The Procter & Gamble Company | Liquid detergent compositions |
US4485519A (en) * | 1982-05-24 | 1984-12-04 | Carpet Clinic Ltd. | Ozone cleaning system |
US4459779A (en) * | 1982-09-16 | 1984-07-17 | International Business Machines Corporation | Fixed abrasive grinding media |
US4622253A (en) * | 1984-10-12 | 1986-11-11 | Harry Levy | Thermal laminated lining and method of manufacture |
US4613345A (en) * | 1985-08-12 | 1986-09-23 | International Business Machines Corporation | Fixed abrasive polishing media |
US4781907A (en) * | 1985-12-04 | 1988-11-01 | Mcneill John M | Production of membrane-derived nitrogen from combustion gases |
US4669163A (en) * | 1985-12-12 | 1987-06-02 | Minnesota Mining And Manufacturing Company | Polyolefin fiber roll |
US5120512A (en) * | 1986-02-24 | 1992-06-09 | Senichi Masuda | Apparatus for sterilizing objects to be sterilized |
US4927432A (en) * | 1986-03-25 | 1990-05-22 | Rodel, Inc. | Pad material for grinding, lapping and polishing |
US4713224A (en) * | 1986-03-31 | 1987-12-15 | The Boc Group, Inc. | One-step process for purifying an inert gas |
US4724819A (en) * | 1987-01-23 | 1988-02-16 | Precision National Plating Services, Inc. | Cylinder liner reconditioning process and cylinder liner produced thereby |
US4853148A (en) * | 1987-03-24 | 1989-08-01 | Advanced Technology Materials, Inc. | Process and composition for drying of gaseous hydrogen halides |
US4925646A (en) * | 1987-03-24 | 1990-05-15 | Advanced Technology Materials, Inc. | Process and composition for drying of gaseous hydrogen halides |
DE3741669A1 (en) * | 1987-12-09 | 1989-06-22 | Basf Ag | FIBER REINFORCED, THERMOPLASTIC SEMI-FINISHED PRODUCTS |
US4902561A (en) * | 1988-03-04 | 1990-02-20 | The Dow Chemical Company | Lock set structure |
FR2630133B1 (en) * | 1988-04-18 | 1993-09-24 | Siderurgie Fse Inst Rech | PROCESS FOR IMPROVING THE CORROSION RESISTANCE OF METAL MATERIALS |
US5011512A (en) * | 1988-07-08 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Coated abrasive products employing nonabrasive diluent grains |
US4991362A (en) * | 1988-09-13 | 1991-02-12 | Minnesota Mining And Manufacturing Company | Hand scouring pad |
US5025596A (en) * | 1988-09-13 | 1991-06-25 | Minnesota Mining And Manufacturing Company | Hand scouring pad |
US4935295A (en) * | 1988-12-01 | 1990-06-19 | E. I. Du Pont De Nemours And Company | Needling process for spundbonded composites |
US4933373A (en) * | 1989-04-06 | 1990-06-12 | Minnesota Mining And Manufacturing Company | Abrasive wheels |
US5080831A (en) * | 1989-06-29 | 1992-01-14 | Buckeye International, Inc. | Aqueous cleaner/degreaser compositions |
US4923828A (en) * | 1989-07-07 | 1990-05-08 | Eastman Kodak Company | Gaseous cleaning method for silicon devices |
US5080822A (en) * | 1990-04-10 | 1992-01-14 | Buckeye International, Inc. | Aqueous degreaser compositions containing an organic solvent and a solubilizing coupler |
US5197852A (en) * | 1990-05-31 | 1993-03-30 | General Electric Company | Nozzle band overhang cooling |
US5227229A (en) | 1990-12-20 | 1993-07-13 | Minnesota Mining And Manufacturing Company | Nonwoven polyester articles and method of making same |
JPH04230018A (en) * | 1990-12-27 | 1992-08-19 | Orc Mfg Co Ltd | Photo-ashing device of photoresist |
US5255445A (en) * | 1991-06-06 | 1993-10-26 | American Air Liquide, Chicago Research Center | Process for drying metal surfaces using gaseous hydrides to inhibit moisture adsorption and for removing adsorbed moisture from the metal surfaces |
US5273558A (en) * | 1991-08-30 | 1993-12-28 | Minnesota Mining And Manufacturing Company | Abrasive composition and articles incorporating same |
US5203189A (en) * | 1991-11-06 | 1993-04-20 | Minnesota Mining And Manufacturing Company | High-intensity roto peen flaps, method of making same, wheels incorporating same, and methods of using wheels incorporating same |
US5232467A (en) * | 1992-06-18 | 1993-08-03 | Texaco Inc. | Process for producing dry, sulfur-free, CH4 -enriched synthesis or fuel gas |
US5363604A (en) * | 1992-08-21 | 1994-11-15 | Minnesota Mining And Manufacturing Company | Entangled continuous filament nonwoven scouring articles and methods of making same |
GB9225098D0 (en) * | 1992-12-01 | 1993-01-20 | Coffee Ronald A | Charged droplet spray mixer |
US5250085A (en) * | 1993-01-15 | 1993-10-05 | Minnesota Mining And Manufacturing Company | Flexible bonded abrasive articles, methods of production and use |
ES2107813T3 (en) * | 1993-03-30 | 1997-12-01 | Minnesota Mining & Mfg | CLEANING COMPOSITIONS AND METHODS OF USE. |
AU699991B2 (en) * | 1993-03-30 | 1998-12-17 | Minnesota Mining And Manufacturing Company | Multi-surface cleaning compositions and method of use |
US5296821A (en) * | 1993-05-03 | 1994-03-22 | Motorola, Inc. | Method and apparatus for controlling transient responses in a power amplifier |
US5479727A (en) * | 1994-10-25 | 1996-01-02 | Air Products And Chemicals, Inc. | Moisture removal and passivation of surfaces |
US5591273A (en) * | 1994-12-30 | 1997-01-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for distributing ultra high purity gases with minimized contamination and particulates |
US5963336A (en) * | 1995-10-10 | 1999-10-05 | American Air Liquide Inc. | Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use |
US5880850A (en) * | 1996-04-18 | 1999-03-09 | American Air Liquide Inc | Method and system for sensitive detection of molecular species in a vacuum by harmonic detection spectroscopy |
US5875507A (en) * | 1996-07-15 | 1999-03-02 | Oliver Design, Inc. | Wafer cleaning apparatus |
US5879732A (en) * | 1996-09-10 | 1999-03-09 | Boc Group, Inc. | Food processing method |
US5910292A (en) * | 1997-08-19 | 1999-06-08 | Aeronex, Inc. | Method for water removal from corrosive gas streams |
US6325304B1 (en) * | 1997-12-19 | 2001-12-04 | Alan D. Brite | Trigger-activated insecticide applicator with extended nozzle |
US6345773B1 (en) * | 1998-02-06 | 2002-02-12 | S. C. Johnson & Son, Inc. | Aspiration-type sprayer |
US6054379A (en) * | 1998-02-11 | 2000-04-25 | Applied Materials, Inc. | Method of depositing a low k dielectric with organo silane |
US6183539B1 (en) * | 1998-07-01 | 2001-02-06 | Zeochem Co. | Molecular sieve adsorbent for gas purification and preparation thereof |
US6395070B1 (en) * | 1998-10-06 | 2002-05-28 | Matheson Tri-Gas, Inc. | Methods for removal of impurity metals from gases using low metal zeolites |
US6110258A (en) * | 1998-10-06 | 2000-08-29 | Matheson Tri-Gas, Inc. | Methods for removal of water from gases using superheated zeolites |
US6142750A (en) * | 1998-11-30 | 2000-11-07 | The Procter & Gamble Company | Gear pump and replaceable reservoir for a fluid sprayer |
US6328223B1 (en) * | 1999-08-20 | 2001-12-11 | Campbell Hausfeld/Scott Fetzer Company | Single control paint sprayer |
US6255222B1 (en) * | 1999-08-24 | 2001-07-03 | Applied Materials, Inc. | Method for removing residue from substrate processing chamber exhaust line for silicon-oxygen-carbon deposition process |
US6346201B1 (en) * | 2000-04-05 | 2002-02-12 | Icf Technologies, Inc. | Ozonated solutions of tetrasilver tetroxide |
US6332562B1 (en) | 2000-09-12 | 2001-12-25 | Saint-Gobain Calmar Inc. | Ergonomic trigger sprayer having side saddle supports |
US6334578B1 (en) * | 2000-11-20 | 2002-01-01 | John L. House | Spray hood assembly |
US7832550B2 (en) | 2001-07-17 | 2010-11-16 | American Air Liquide, Inc. | Reactive gases with concentrations of increased stability and processes for manufacturing same |
US6752852B1 (en) | 2001-07-17 | 2004-06-22 | American Air Liquide, Inc. | Apparatus for removing moisture from fluids comprising acid gases; methods of using same, and compositions |
CN1316246C (en) | 2002-05-29 | 2007-05-16 | 液体空气乔治洛德方法利用和研究的具有监督和管理委员会的有限公司 | Reduced moisture compositions comprising an acid gas and a matrix gas, articles of manufacture comprising said compositions and processes for manufacturing same |
US8568513B2 (en) | 2004-03-26 | 2013-10-29 | American Air Liquide, Inc. | Systems and methods for purifying unsaturated hydrocarbon(s), and compositions resulting therefrom |
-
2002
- 2002-05-29 US US10/157,466 patent/US20030017359A1/en not_active Abandoned
-
2007
- 2007-01-11 US US11/622,352 patent/US7799150B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4385086A (en) * | 1978-12-07 | 1983-05-24 | Tokyo Ohka Kogyo Kabushiki Kaisha | Method for preventing leaching of contaminants from solid surfaces |
US5045355A (en) * | 1990-06-28 | 1991-09-03 | General Electric Company | Carbon chalcogenide macromolecular composition and process for preparation thereof |
US5480677A (en) * | 1991-06-03 | 1996-01-02 | American Air Liquide Chicago Research Center | Process for passivating metal surfaces to enhance the stability of gaseous hydride mixtures at low concentration in contact therewith |
US6511760B1 (en) * | 1998-02-27 | 2003-01-28 | Restek Corporation | Method of passivating a gas vessel or component of a gas transfer system using a silicon overlay coating |
US20010054454A1 (en) * | 1998-04-08 | 2001-12-27 | Modi Paresh R. | System and method for inhibiting corrosion of metal containers and components |
US6444326B1 (en) * | 1999-03-05 | 2002-09-03 | Restek Corporation | Surface modification of solid supports through the thermal decomposition and functionalization of silanes |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050271544A1 (en) * | 2001-07-17 | 2005-12-08 | Robert Benesch | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US20090120158A1 (en) * | 2001-07-17 | 2009-05-14 | American Air Liquide Inc. | Articles Of Manufacture Containing Increased Stability Low Concentration Gases And Methods Of Making And Using The Same |
US7794841B2 (en) | 2001-07-17 | 2010-09-14 | American Air Liquide, Inc. | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US7837806B2 (en) | 2001-07-17 | 2010-11-23 | American Air Liquide, Inc. | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
US20110100088A1 (en) * | 2001-07-17 | 2011-05-05 | American Air Liquide Inc. | Articles Of Manufacture Containing Increased Stability Low Concentration Gases And Methods Of Making And Using The Same |
US8288161B2 (en) | 2001-07-17 | 2012-10-16 | American Air Liquide, Inc. | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same |
CN103866262A (en) * | 2014-03-26 | 2014-06-18 | 北京博赛德科技有限公司 | Preparation method of stainless steel surface silanization treatment membrane |
CN105112886A (en) * | 2015-09-18 | 2015-12-02 | 杭州天净检测技术有限公司 | Inert surface treating technique |
Also Published As
Publication number | Publication date |
---|---|
US20070116622A1 (en) | 2007-05-24 |
US7799150B2 (en) | 2010-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7850790B2 (en) | Reactive gases with concentrations of increased stability and processes for manufacturing same | |
EP1412551B1 (en) | Method of making a passivated surface | |
US7799150B2 (en) | Increased stability low concentration gases, products comprising same, and methods of making same | |
US4505720A (en) | Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith | |
RU2399432C2 (en) | Highly porous fine particles with coating, composition and method of production | |
EP2395127B1 (en) | Cylinder surface treatment for monochlorosilane | |
KR20080091842A (en) | Nanoporous carbon materials, and systems and methods utilizing same | |
KR20160114627A (en) | Abrasive material having a structured surface | |
US6733876B1 (en) | Flexible abrasive article | |
US20030015223A1 (en) | Methods of cleaning containers using ozone compositions | |
ES2361826T3 (en) | METHOD OF PREPARATION OF A PASSIVE SURFACE. | |
US6328773B1 (en) | Flexible abrasive article | |
WO2015048493A1 (en) | Gas filtering in adsorbed gas systems | |
EP1224062B1 (en) | Flexible abrasive article releasing low amounts of contaminants | |
US12140272B2 (en) | Systems and methods for storing molecular diborane | |
WO2023076184A1 (en) | Boron oxide-containing adsorbent and related methods and devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME A' DIRECTOIRE ET CO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACKSIER, TRACEY;BENESCH, ROBERT;REEL/FRAME:013147/0484 Effective date: 20020629 Owner name: AMERICAN AIR LIQUIDE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACKSIER, TRACEY;BENESCH, ROBERT;REEL/FRAME:013147/0461 Effective date: 20020629 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |