US20020177723A1 - Compounds and methods for the treatment of inflammatory and immune disorders - Google Patents
Compounds and methods for the treatment of inflammatory and immune disorders Download PDFInfo
- Publication number
- US20020177723A1 US20020177723A1 US09/547,941 US54794100A US2002177723A1 US 20020177723 A1 US20020177723 A1 US 20020177723A1 US 54794100 A US54794100 A US 54794100A US 2002177723 A1 US2002177723 A1 US 2002177723A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- lower alkyl
- tetrahydrofuran
- trimethoxyphenyl
- methoxyphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 48
- 208000027866 inflammatory disease Diseases 0.000 title description 6
- 208000026278 immune system disease Diseases 0.000 title description 5
- 230000002757 inflammatory effect Effects 0.000 title description 5
- 108010093579 Arachidonate 5-lipoxygenase Proteins 0.000 claims abstract description 26
- 230000001404 mediated effect Effects 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 239000003937 drug carrier Substances 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 102000001381 Arachidonate 5-Lipoxygenase Human genes 0.000 claims abstract 5
- 125000000217 alkyl group Chemical group 0.000 claims description 227
- 125000003342 alkenyl group Chemical group 0.000 claims description 45
- 125000000304 alkynyl group Chemical group 0.000 claims description 43
- -1 alkyaryl Chemical group 0.000 claims description 40
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims description 20
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 241000124008 Mammalia Species 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 125000001424 substituent group Chemical group 0.000 claims description 13
- 241001465754 Metazoa Species 0.000 claims description 12
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 11
- 150000001768 cations Chemical class 0.000 claims description 11
- 229910020008 S(O) Inorganic materials 0.000 claims description 9
- 150000002431 hydrogen Chemical group 0.000 claims description 9
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 108010003541 Platelet Activating Factor Proteins 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 208000035475 disorder Diseases 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 125000002883 imidazolyl group Chemical group 0.000 claims description 5
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 4
- 241000283690 Bos taurus Species 0.000 claims description 4
- 241000282465 Canis Species 0.000 claims description 4
- 241000283073 Equus caballus Species 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910006067 SO3−M Inorganic materials 0.000 claims description 4
- 150000001449 anionic compounds Chemical group 0.000 claims description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 4
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 4
- 229910001412 inorganic anion Chemical group 0.000 claims description 4
- 150000002891 organic anions Chemical group 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 4
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 4
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 claims description 3
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 claims description 3
- 125000002541 furyl group Chemical group 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 125000001041 indolyl group Chemical group 0.000 claims description 3
- 125000005956 isoquinolyl group Chemical group 0.000 claims description 3
- 125000001786 isothiazolyl group Chemical group 0.000 claims description 3
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 3
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 claims description 3
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 3
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 3
- 125000004076 pyridyl group Chemical group 0.000 claims description 3
- 125000005493 quinolyl group Chemical group 0.000 claims description 3
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 3
- 125000001544 thienyl group Chemical group 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000005093 alkyl carbonyl alkyl group Chemical group 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 125000001188 haloalkyl group Chemical group 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims description 2
- 125000002757 morpholinyl group Chemical group 0.000 claims description 2
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 claims description 2
- 125000003386 piperidinyl group Chemical group 0.000 claims description 2
- 125000002769 thiazolinyl group Chemical group 0.000 claims description 2
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 125000001475 halogen functional group Chemical group 0.000 claims 20
- ZXCIEWBDUAPBJF-MUUNZHRXSA-N 2-O-acetyl-1-O-octadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C ZXCIEWBDUAPBJF-MUUNZHRXSA-N 0.000 claims 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims 3
- 125000002015 acyclic group Chemical group 0.000 claims 2
- 108700023400 Platelet-activating factor receptors Proteins 0.000 abstract description 15
- 102000030769 platelet activating factor receptor Human genes 0.000 abstract description 15
- 150000002617 leukotrienes Chemical class 0.000 abstract description 14
- 150000003839 salts Chemical class 0.000 abstract description 14
- 239000003848 thrombocyte activating factor antagonist Substances 0.000 abstract description 13
- 239000003112 inhibitor Substances 0.000 abstract description 12
- 239000002464 receptor antagonist Substances 0.000 abstract description 10
- 229940044551 receptor antagonist Drugs 0.000 abstract description 10
- 230000004071 biological effect Effects 0.000 abstract description 9
- 230000028709 inflammatory response Effects 0.000 abstract description 8
- 230000028993 immune response Effects 0.000 abstract description 7
- 230000009977 dual effect Effects 0.000 abstract description 4
- 210000000224 granular leucocyte Anatomy 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract description 4
- 230000035605 chemotaxis Effects 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 230000019254 respiratory burst Effects 0.000 abstract description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 112
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 36
- 0 CC.CC.C[W].C[W].C[W].C[W].C[Y].C[Y].C[Y].C[Y].Cc1ccccc1.Cc1ccccc1.[1*]C1C(C)*C(C)C1[2*].c1ccncc1.c1ccncc1 Chemical compound CC.CC.C[W].C[W].C[W].C[W].C[Y].C[Y].C[Y].C[Y].Cc1ccccc1.Cc1ccccc1.[1*]C1C(C)*C(C)C1[2*].c1ccncc1.c1ccncc1 0.000 description 30
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 28
- 102100022364 Polyunsaturated fatty acid 5-lipoxygenase Human genes 0.000 description 24
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 24
- 125000005843 halogen group Chemical group 0.000 description 23
- 239000000243 solution Substances 0.000 description 23
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 17
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 16
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- 229940114079 arachidonic acid Drugs 0.000 description 14
- 235000021342 arachidonic acid Nutrition 0.000 description 14
- 125000001309 chloro group Chemical group Cl* 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 14
- 229910001868 water Inorganic materials 0.000 description 14
- 230000027455 binding Effects 0.000 description 13
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- HVAUUPRFYPCOCA-AREMUKBSSA-N 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C HVAUUPRFYPCOCA-AREMUKBSSA-N 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- NBHXLSHYODTEPJ-UHFFFAOYSA-N COC1(C2=CC(F)=CC(O)=C2)CCOCC1 Chemical compound COC1(C2=CC(F)=CC(O)=C2)CCOCC1 NBHXLSHYODTEPJ-UHFFFAOYSA-N 0.000 description 8
- 238000004440 column chromatography Methods 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 8
- 239000012044 organic layer Substances 0.000 description 8
- 230000003389 potentiating effect Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 7
- 210000001772 blood platelet Anatomy 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000001575 pathological effect Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229940098773 bovine serum albumin Drugs 0.000 description 6
- 239000002158 endotoxin Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 150000003235 pyrrolidines Chemical class 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 206010030113 Oedema Diseases 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- YCCPYTPBHUIHGW-HOTGVXAUSA-N (2s,5s)-2,5-bis(3,4,5-trimethoxyphenyl)oxolane Chemical compound COC1=C(OC)C(OC)=CC([C@H]2O[C@@H](CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=C1 YCCPYTPBHUIHGW-HOTGVXAUSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 150000001412 amines Chemical group 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 235000013877 carbamide Nutrition 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical class C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 150000003672 ureas Chemical class 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- HGCIXCUEYOPUTN-UHFFFAOYSA-N C1CC=CCC1 Chemical compound C1CC=CCC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 206010018873 Haemoconcentration Diseases 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 240000001307 Myosotis scorpioides Species 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 238000004166 bioassay Methods 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 210000000172 cytosol Anatomy 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 231100000673 dose–response relationship Toxicity 0.000 description 3
- 238000005534 hematocrit Methods 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- HORKHDZFNLMGDG-DHIUTWEWSA-N (2R,5R)-2-[4-[2-(4-chlorophenyl)sulfanylethoxy]-3-iodo-5-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)oxolane Chemical compound COC1=CC([C@@H]2O[C@H](CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(I)=C1OCCSC1=CC=C(Cl)C=C1 HORKHDZFNLMGDG-DHIUTWEWSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- QMBQAUFXKZCNOT-UHFFFAOYSA-N 1,5-bis(3,4,5-trimethoxyphenyl)penta-1,4-dien-3-one Chemical compound COC1=C(OC)C(OC)=CC(C=CC(=O)C=CC=2C=C(OC)C(OC)=C(OC)C=2)=C1 QMBQAUFXKZCNOT-UHFFFAOYSA-N 0.000 description 2
- UGTMTLVSHWBJLM-UHFFFAOYSA-N 1-[4-(2-hydroxyethoxy)-3-iodo-5-methoxyphenyl]-4-(3,4,5-trimethoxyphenyl)butane-1,4-diol Chemical compound COC1=C(OC)C(OC)=CC(C(O)CCC(O)C=2C=C(OC)C(OCCO)=C(I)C=2)=C1 UGTMTLVSHWBJLM-UHFFFAOYSA-N 0.000 description 2
- DWOKTSXOJGXCQJ-UHFFFAOYSA-N 1-[4-(2-hydroxyethoxy)-3-iodo-5-methoxyphenyl]-4-(3,4,5-trimethoxyphenyl)butane-1,4-dione Chemical compound COC1=C(OC)C(OC)=CC(C(=O)CCC(=O)C=2C=C(OC)C(OCCO)=C(I)C=2)=C1 DWOKTSXOJGXCQJ-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- RXNSCRLBANUKKW-IAGOWNOFSA-N 2-[2-iodo-6-methoxy-4-[(2r,5r)-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenoxy]ethanol Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2O[C@H](CC2)C=2C=C(OC)C(OCCO)=C(I)C=2)=C1 RXNSCRLBANUKKW-IAGOWNOFSA-N 0.000 description 2
- XELXACCMSWTPMV-QZTJIDSGSA-N 2-[4-iodo-2-methoxy-3-methyl-6-[(2R,5R)-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenoxy]ethyl hydrogen sulfate Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2O[C@H](CC2)C=2C(=C(OC)C(C)=C(I)C=2)OCCOS(O)(=O)=O)=C1 XELXACCMSWTPMV-QZTJIDSGSA-N 0.000 description 2
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- ZHYLLQLGGCGWTQ-UHFFFAOYSA-N 3-(dimethylamino)-1-(3,4,5-trimethoxyphenyl)propan-1-one Chemical compound COC1=CC(C(=O)CCN(C)C)=CC(OC)=C1OC ZHYLLQLGGCGWTQ-UHFFFAOYSA-N 0.000 description 2
- 125000005917 3-methylpentyl group Chemical group 0.000 description 2
- QKGBFXYMUNMYLA-UHFFFAOYSA-N 4-(2-hydroxyethoxy)-3-iodo-5-methoxybenzaldehyde Chemical compound COC1=CC(C=O)=CC(I)=C1OCCO QKGBFXYMUNMYLA-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- DSZAFKGCZVVRLG-PMACEKPBSA-N BN(O)C(=O)NC1=CC([C@@H]2CC[C@@H](C3=CC(OC)=C(C=O)C(C=O)=C3)O2)=CC(OC)=C1OCCC Chemical compound BN(O)C(=O)NC1=CC([C@@H]2CC[C@@H](C3=CC(OC)=C(C=O)C(C=O)=C3)O2)=CC(OC)=C1OCCC DSZAFKGCZVVRLG-PMACEKPBSA-N 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- YKYVRWYZDJSNFS-UHFFFAOYSA-M CCCN1=CC(OC(=N)C2=CC=CC=C2)=CC=C1.[I-] Chemical compound CCCN1=CC(OC(=N)C2=CC=CC=C2)=CC=C1.[I-] YKYVRWYZDJSNFS-UHFFFAOYSA-M 0.000 description 2
- HREHOXSRYOZKNT-UHFFFAOYSA-N Cl.OCC1=NC2=C(C=CC=C2)C=C1 Chemical compound Cl.OCC1=NC2=C(C=CC=C2)C=C1 HREHOXSRYOZKNT-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 208000037487 Endotoxemia Diseases 0.000 description 2
- 206010014824 Endotoxic shock Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000003820 Lipoxygenases Human genes 0.000 description 2
- 108090000128 Lipoxygenases Proteins 0.000 description 2
- QFXPHEAGOLHBIP-UHFFFAOYSA-N N=C(OC1=CC=CN=C1)C1=CC=CC=C1 Chemical compound N=C(OC1=CC=CN=C1)C1=CC=CC=C1 QFXPHEAGOLHBIP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- BESNWNVEKFZZCF-DNQXCXABSA-N [2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[(2R,5R)-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]methanamine Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2O[C@H](CC2)C=2C=C(OC)C(OCCSC=3C=CC(Cl)=CC=3)=C(CN)C=2)=C1 BESNWNVEKFZZCF-DNQXCXABSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000008512 biological response Effects 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- XHFGWHUWQXTGAT-UHFFFAOYSA-N dimethylamine hydrochloride Natural products CNC(C)C XHFGWHUWQXTGAT-UHFFFAOYSA-N 0.000 description 2
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 150000002066 eicosanoids Chemical class 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 230000036543 hypotension Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229950004354 phosphorylcholine Drugs 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000008057 potassium phosphate buffer Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- LRKDYEMHDRMUKA-WOJBJXKFSA-N (2r,5r)-2,5-bis(3,4,5-trimethoxyphenyl)thiolane Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2S[C@H](CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=C1 LRKDYEMHDRMUKA-WOJBJXKFSA-N 0.000 description 1
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- BQJLFNFFWILCPS-UHFFFAOYSA-N 1-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]pyrrolidine Chemical compound COC1=C(OC)C(OC)=CC(C2OC(CC2)C=2C=C(C(OCCSC=3C=CC(Cl)=CC=3)=C(OC)C=2)N2CCCC2)=C1 BQJLFNFFWILCPS-UHFFFAOYSA-N 0.000 description 1
- UUFQTNFCRMXOAE-UHFFFAOYSA-N 1-methylmethylene Chemical compound C[CH] UUFQTNFCRMXOAE-UHFFFAOYSA-N 0.000 description 1
- BBYWOYAFBUOUFP-JOCHJYFZSA-N 1-stearoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP(O)(=O)OCCN BBYWOYAFBUOUFP-JOCHJYFZSA-N 0.000 description 1
- PYHXGXCGESYPCW-UHFFFAOYSA-M 2,2-diphenylacetate Chemical compound C=1C=CC=CC=1C(C(=O)[O-])C1=CC=CC=C1 PYHXGXCGESYPCW-UHFFFAOYSA-M 0.000 description 1
- NTOIKDYVJIWVSU-UHFFFAOYSA-N 2,3-dihydroxy-2,3-bis(4-methylbenzoyl)butanedioic acid Chemical compound C1=CC(C)=CC=C1C(=O)C(O)(C(O)=O)C(O)(C(O)=O)C(=O)C1=CC=C(C)C=C1 NTOIKDYVJIWVSU-UHFFFAOYSA-N 0.000 description 1
- IWSVLBKHBJGMAA-UHFFFAOYSA-M 2-(3-benzyl-4-methyl-1,3-thiazol-3-ium-5-yl)ethanol;chloride Chemical compound [Cl-].CC1=C(CCO)SC=[N+]1CC1=CC=CC=C1 IWSVLBKHBJGMAA-UHFFFAOYSA-M 0.000 description 1
- VWFHRNWFOVZDRG-DNQXCXABSA-N 2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[(2R,5R)-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]benzonitrile Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2O[C@H](CC2)C=2C=C(C(OCCSC=3C=CC(Cl)=CC=3)=C(OC)C=2)C#N)=C1 VWFHRNWFOVZDRG-DNQXCXABSA-N 0.000 description 1
- KMGUEILFFWDGFV-UHFFFAOYSA-N 2-benzoyl-2-benzoyloxy-3-hydroxybutanedioic acid Chemical compound C=1C=CC=CC=1C(=O)C(C(C(O)=O)O)(C(O)=O)OC(=O)C1=CC=CC=C1 KMGUEILFFWDGFV-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- VUGQIIQFXCXZJU-UHFFFAOYSA-N 3,4,5-trimethoxyacetophenone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1OC VUGQIIQFXCXZJU-UHFFFAOYSA-N 0.000 description 1
- WFOVEDJTASPCIR-UHFFFAOYSA-N 3-[(4-methyl-5-pyridin-4-yl-1,2,4-triazol-3-yl)methylamino]-n-[[2-(trifluoromethyl)phenyl]methyl]benzamide Chemical compound N=1N=C(C=2C=CN=CC=2)N(C)C=1CNC(C=1)=CC=CC=1C(=O)NCC1=CC=CC=C1C(F)(F)F WFOVEDJTASPCIR-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- YZHWOQITUKQMJI-UHFFFAOYSA-N 4-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]morpholine Chemical compound COC1=C(OC)C(OC)=CC(C2OC(CC2)C=2C=C(C(OCCSC=3C=CC(Cl)=CC=3)=C(OC)C=2)N2CCOCC2)=C1 YZHWOQITUKQMJI-UHFFFAOYSA-N 0.000 description 1
- VZXOZSQDJJNBRC-UHFFFAOYSA-N 4-chlorobenzenethiol Chemical compound SC1=CC=C(Cl)C=C1 VZXOZSQDJJNBRC-UHFFFAOYSA-N 0.000 description 1
- FBBCSYADXYILEH-UHFFFAOYSA-N 4-hydroxy-3-iodo-5-methoxybenzaldehyde Chemical compound COC1=CC(C=O)=CC(I)=C1O FBBCSYADXYILEH-UHFFFAOYSA-N 0.000 description 1
- 229940124125 5 Lipoxygenase inhibitor Drugs 0.000 description 1
- RDEYORKJEDLLDB-DQVHGTJVSA-N 5-Hydroperoxyeicosatetraenoic acid Chemical compound CCCCCCCCCCC\C=C\C=C\C(\OO)=C\C=C\C(O)=O RDEYORKJEDLLDB-DQVHGTJVSA-N 0.000 description 1
- 208000016557 Acute basophilic leukemia Diseases 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- UAEPNZWRGJTJPN-UHFFFAOYSA-N CC1CCCCC1 Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 1
- OMZBGQDITIAPHH-UHFFFAOYSA-N CCCC(C)(CC)COCO.CCCC(C)(CC)COCS.CCCC(C)(CC)CSCO.CCCC(C)(CC)CSCS Chemical compound CCCC(C)(CC)COCO.CCCC(C)(CC)COCS.CCCC(C)(CC)CSCO.CCCC(C)(CC)CSCS OMZBGQDITIAPHH-UHFFFAOYSA-N 0.000 description 1
- CHQOOFKAAVLSNV-UHFFFAOYSA-N COCOCC1(C)CCCCC1.COCSCC1(C)CCCCC1.CSCOCC1(C)CCCCC1.CSCSCC1(C)CCCCC1 Chemical compound COCOCC1(C)CCCCC1.COCSCC1(C)CCCCC1.CSCOCC1(C)CCCCC1.CSCSCC1(C)CCCCC1 CHQOOFKAAVLSNV-UHFFFAOYSA-N 0.000 description 1
- HREMKBSQIZEAGM-UHFFFAOYSA-N C[Y].C[Y].Cc1ccccc1.c1ccncc1 Chemical compound C[Y].C[Y].Cc1ccccc1.c1ccncc1 HREMKBSQIZEAGM-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010009192 Circulatory collapse Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-M Glycolate Chemical compound OCC([O-])=O AEMRFAOFKBGASW-UHFFFAOYSA-M 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- VDYACOATPFOZIO-UBWHGVKJSA-N Kadsurenone Chemical compound C1=C(OC)C(OC)=CC=C1[C@@H]1[C@@H](C)[C@@]2(OC)C=C(CC=C)C(=O)C=C2O1 VDYACOATPFOZIO-UBWHGVKJSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000000867 Lipoxygenase Inhibitor Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NKUCMHGNYSVRRV-UHFFFAOYSA-N OO.CCCCCCCCCCCC=CC=CC(OO)=CC=CC(O)=O Chemical compound OO.CCCCCCCCCCCC=CC=CC(OO)=CC=CC(O)=O NKUCMHGNYSVRRV-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 241000534014 Piper kadsura Species 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NMHKTASGTFXJPL-UHFFFAOYSA-N [2-methoxy-3-(octadecylcarbamoyloxy)propyl] 2-(1,3-thiazol-3-ium-3-yl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCCCCNC(=O)OCC(OC)COP([O-])(=O)OCC[N+]=1C=CSC=1 NMHKTASGTFXJPL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical compound N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000004044 bronchoconstricting agent Substances 0.000 description 1
- 230000003435 bronchoconstrictive effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid Chemical compound OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000003997 cyclic ketones Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- SIBFMRAHSCSBRP-UHFFFAOYSA-N denudatin B Natural products COC1=C2OC(C(C)C2(OC)C=C(CC=C)C1=O)c3ccc(OC)c(OC)c3 SIBFMRAHSCSBRP-UHFFFAOYSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000002497 edematous effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229960004956 glycerylphosphorylcholine Drugs 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- RGZRSLKIOCHTSI-UHFFFAOYSA-N hydron;n-methylhydroxylamine;chloride Chemical compound Cl.CNO RGZRSLKIOCHTSI-UHFFFAOYSA-N 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- UFPQIRYSPUYQHK-WAQVJNLQSA-N leukotriene A4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@@H]1O[C@H]1CCCC(O)=O UFPQIRYSPUYQHK-WAQVJNLQSA-N 0.000 description 1
- VNYSSYRCGWBHLG-AMOLWHMGSA-M leukotriene B4(1-) Chemical compound CCCCC\C=C/C[C@@H](O)\C=C\C=C\C=C/[C@@H](O)CCCC([O-])=O VNYSSYRCGWBHLG-AMOLWHMGSA-M 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- ACTNHJDHMQSOGL-UHFFFAOYSA-N n',n'-dibenzylethane-1,2-diamine Chemical compound C=1C=CC=CC=1CN(CCN)CC1=CC=CC=C1 ACTNHJDHMQSOGL-UHFFFAOYSA-N 0.000 description 1
- ORJWCZRLKHUHBN-VGOFMYFVSA-N n-[(e)-3-[2-[2-(3,4-dichlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-enyl]-n-hydroxybutanamide Chemical compound CCCC(=O)N(O)\C=C\CC1=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C(Cl)=C1 ORJWCZRLKHUHBN-VGOFMYFVSA-N 0.000 description 1
- FSVDLJRAQXVXHA-KPKJPENVSA-N n-[(e)-3-[2-[2-(3,4-dichlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-enyl]-n-hydroxybutanamide Chemical compound CCCC(=O)N(O)\C=C\CC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C(Cl)=C1 FSVDLJRAQXVXHA-KPKJPENVSA-N 0.000 description 1
- VAZNVPWXOIQYFX-MKMNVTDBSA-N n-[(e)-3-[2-[2-(4-bromophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-enyl]-n-hydroxyacetamide Chemical compound COC1=C(OC)C(OC)=CC(C2OC(CC2)C=2C=C(OC)C(OCCSC=3C=CC(Br)=CC=3)=C(C\C=C\N(O)C(C)=O)C=2)=C1 VAZNVPWXOIQYFX-MKMNVTDBSA-N 0.000 description 1
- DFYNZLFSCLPMIH-WUXMJOGZSA-N n-[(e)-3-[2-[2-(4-bromophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-enyl]-n-hydroxyacetamide Chemical compound COC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(C\C=C\N(O)C(C)=O)=C1OCCSC1=CC=C(Br)C=C1 DFYNZLFSCLPMIH-WUXMJOGZSA-N 0.000 description 1
- CGLOAIIYCWRREX-VIZOYTHASA-N n-[(e)-3-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-enyl]-n-hydroxypropanamide Chemical compound CCC(=O)N(O)\C=C\CC1=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C=C1 CGLOAIIYCWRREX-VIZOYTHASA-N 0.000 description 1
- RCJREQQGLAAATN-NTUHNPAUSA-N n-[(e)-3-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-enyl]-n-hydroxypropanamide Chemical compound CCC(=O)N(O)\C=C\CC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C=C1 RCJREQQGLAAATN-NTUHNPAUSA-N 0.000 description 1
- MXKHOJJLLLYGAZ-QGMBQPNBSA-N n-[(e)-3-[2-[2-(4-fluorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-enyl]-n-hydroxycyclohexanecarboxamide Chemical compound C=1C=C(F)C=CC=1SCCOC=1C(OC)=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC=1C\C=C\N(O)C(=O)C1CCCCC1 MXKHOJJLLLYGAZ-QGMBQPNBSA-N 0.000 description 1
- QZRPXPYPMMNPGV-LZYBPNLTSA-N n-[(e)-3-[2-[2-(4-fluorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-enyl]-n-hydroxycyclohexanecarboxamide Chemical compound C=1C=C(F)C=CC=1SCCOC=1C(OC)=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC=1C\C=C\N(O)C(=O)C1CCCCC1 QZRPXPYPMMNPGV-LZYBPNLTSA-N 0.000 description 1
- AWPKWXKXGZDLMC-UHFFFAOYSA-N n-[3-[2-[2-(3,4-dichlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-ynyl]-n-hydroxybutanamide Chemical compound CCCC(=O)N(O)C#CCC1=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C(Cl)=C1 AWPKWXKXGZDLMC-UHFFFAOYSA-N 0.000 description 1
- MHVUWBWSAAUDDR-UHFFFAOYSA-N n-[3-[2-[2-(3,4-dichlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-ynyl]-n-hydroxybutanamide Chemical compound CCCC(=O)N(O)C#CCC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C(Cl)=C1 MHVUWBWSAAUDDR-UHFFFAOYSA-N 0.000 description 1
- DSERFBXHXXNQIY-UHFFFAOYSA-N n-[3-[2-[2-(4-bromophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-ynyl]-n-hydroxyacetamide Chemical compound COC1=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(CC#CN(O)C(C)=O)=C1OCCSC1=CC=C(Br)C=C1 DSERFBXHXXNQIY-UHFFFAOYSA-N 0.000 description 1
- QNJSEMHWELRZQB-UHFFFAOYSA-N n-[3-[2-[2-(4-bromophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-ynyl]-n-hydroxyacetamide Chemical compound COC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(CC#CN(O)C(C)=O)=C1OCCSC1=CC=C(Br)C=C1 QNJSEMHWELRZQB-UHFFFAOYSA-N 0.000 description 1
- NNZAAMFCFMNHIF-UHFFFAOYSA-N n-[3-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-ynyl]-n-hydroxypropanamide Chemical compound CCC(=O)N(O)C#CCC1=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C=C1 NNZAAMFCFMNHIF-UHFFFAOYSA-N 0.000 description 1
- NXZKJLCHGCWXJI-UHFFFAOYSA-N n-[3-[2-[2-(4-chlorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-ynyl]-n-hydroxypropanamide Chemical compound CCC(=O)N(O)C#CCC1=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC(OC)=C1OCCSC1=CC=C(Cl)C=C1 NXZKJLCHGCWXJI-UHFFFAOYSA-N 0.000 description 1
- RYGDDXHMLTYNDZ-UHFFFAOYSA-N n-[3-[2-[2-(4-fluorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-ynyl]-n-hydroxycyclohexanecarboxamide Chemical compound C=1C=C(F)C=CC=1SCCOC=1C(OC)=CC(C2OC(CC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC=1CC#CN(O)C(=O)C1CCCCC1 RYGDDXHMLTYNDZ-UHFFFAOYSA-N 0.000 description 1
- CILLXNZOIUBYEK-UHFFFAOYSA-N n-[3-[2-[2-(4-fluorophenyl)sulfanylethoxy]-3-methoxy-5-[5-(3,4,5-trimethoxyphenyl)oxolan-3-yl]phenyl]prop-1-ynyl]-n-hydroxycyclohexanecarboxamide Chemical compound C=1C=C(F)C=CC=1SCCOC=1C(OC)=CC(C2CC(OC2)C=2C=C(OC)C(OC)=C(OC)C=2)=CC=1CC#CN(O)C(=O)C1CCCCC1 CILLXNZOIUBYEK-UHFFFAOYSA-N 0.000 description 1
- ABMBEDCBNIPXRZ-UHFFFAOYSA-N n-hydroxy-n-[3-[3-methoxy-2-[2-(2,3,5,6-tetrafluorophenyl)sulfanylethoxy]-5-[5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]phenyl]prop-1-ynyl]-3-phenoxybenzamide Chemical compound COC1=C(OC)C(OC)=CC(C2OC(CC2)C=2C=C(OC)C(OCCSC=3C(=C(F)C=C(F)C=3F)F)=C(CC#CN(O)C(=O)C=3C=C(OC=4C=CC=CC=4)C=CC=3)C=2)=C1 ABMBEDCBNIPXRZ-UHFFFAOYSA-N 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229930182783 neolignan Natural products 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- WLJNZVDCPSBLRP-UHFFFAOYSA-N pamoic acid Chemical compound C1=CC=C2C(CC=3C4=CC=CC=C4C=C(C=3O)C(=O)O)=C(O)C(C(O)=O)=CC2=C1 WLJNZVDCPSBLRP-UHFFFAOYSA-N 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000000711 polarimetry Methods 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical group O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 239000003579 shift reagent Substances 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010414 supernatant solution Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 150000003572 thiolanes Chemical class 0.000 description 1
- 239000003634 thrombocyte concentrate Substances 0.000 description 1
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- UCPYLLCMEDAXFR-UHFFFAOYSA-N triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- MJIBOYFUEIDNPI-HBNMXAOGSA-L zinc 5-[2,3-dihydroxy-5-[(2R,3R,4S,5R,6S)-4,5,6-tris[[3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyl)oxybenzoyl]oxy]-2-[[3,4-dihydroxy-5-(3,4,5-trihydroxybenzoyl)oxybenzoyl]oxymethyl]oxan-3-yl]oxycarbonylphenoxy]carbonyl-3-hydroxybenzene-1,2-diolate Chemical class [Zn++].Oc1cc(cc(O)c1O)C(=O)Oc1cc(cc(O)c1O)C(=O)OC[C@H]1O[C@@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@@H](OC(=O)c2cc(O)c(O)c(OC(=O)c3cc(O)c(O)c(O)c3)c2)[C@@H]1OC(=O)c1cc(O)c(O)c(OC(=O)c2cc(O)c([O-])c([O-])c2)c1 MJIBOYFUEIDNPI-HBNMXAOGSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/08—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
- C07D207/09—Radicals substituted by nitrogen atoms, not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/10—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/12—Radicals substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/04—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D307/10—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/14—Radicals substituted by nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/16—Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/18—Radicals substituted by singly bound hetero atoms other than halogen by sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/20—Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
- C07D407/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- This invention is in the area of pharmaceutical compositions and methods for the treatment of inflammatory and immune disorders, and specifically provides novel compounds that reduce damage arising from an inflammatory or immune response.
- the compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
- Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine) is a potent inflammatory phospholipid mediator with a wide variety of biological activities.
- PAF was initially identified as a water soluble compound released by immunoglobulin E (IgE)-sensitized rabbit basophils. It is now known that PAF is also generated and released by monocytes, macrophages, polymorphonuclear leukocytes (PMNs), eosinophils, neutrophils, natural killer lymphocytes, platelets and endothelial cells, as well as by renal and cardiac tissues under appropriate immunological and non-immunological stimulation.
- IgE immunoglobulin E
- PAF causes the aggregation and degranulation of platelets at very low concentrations.
- the potency (active at 10 ⁇ 12 to 10 ⁇ 9 M), tissue level (picomoles) and short plasma half life (2-4 minutes) of PAF are similar to those of other lipid mediators such as thromboxane A 2 , prostaglandins, and leukotrienes.
- PAF mediates biological responses by binding, to specific PAF receptors found in a wide variety of cells and tissues.
- PAF mediates essential biological responses, it also appears to play a role in pathological immune and inflammatory responses.
- Many published studies have provided evidence for the involvement of PAF in human diseases, including arthritis, acute inflammation, asthma, endotoxic shock, pain, psoriasis, ophthalmic inflammation, ischemia, gastrointestinal ulceration, myocardial infarction, inflammatory bowel diseases, and acute respiratory distress syndrome. Animal models also demonstrate that PAF is produced or increased in certain pathological states.
- L-652,731 was found to be orally active, and to inhibit PAF-induced rat cutaneous vascular permeability at a dosage of 30 mg/kg body weight. The compound was found to have no effect on the enzyme 5-lipoxygenase.
- trans-L-652,731 wherein the aryl groups at the 2 and 5 positions are on opposite sides of the plane of the tetrahydrofuran ring, is approximately 1000 times more potent than cis-L-652,73 1, wherein the 2 and 5 aryl substituents are on the same side of the plane of the tetrahydrofuran ring.
- L-659,989 trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran
- L-659,989 trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran
- Leukotrienes like PAF, are potent local mediators, playing a major role in inflammatory and allergic responses, including arthritis, asthma, psoriasis, and thrombotic disease.
- Leukotrienes are straight chain eicosanoids produced by the oxidation of arachidonic acid by lipoxygenases.
- Arachidonic acid is oxidized by 5-lipoxygenase to the hydroperoxide 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is converted to leukotriene A 4 , which in turn can be converted to leukotriene B 4 , C 4 , or D 4 .
- the slow-reacting substance of anaphylaxis is now known to be a mixture of leukotrienes C 4 , D 4 , and E 4 , all of which are potent bronchoconstrictors.
- Leukotrienes are released simultaneously from leukocytes with PAF, possibly from a common phospholipid precursor such as 1-O-hexadecyl-2-arachidonyl-sn-glycero-phosphocholine, and upon cellular activation, act synergistically with PAF in many biological models.
- PAF phospholipid precursor
- L-652,731 trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrothiophene
- L-653,150 is a potent PAF antagonist and a moderate inhibitor of 5-lipoxygenase.
- X is O, S, S(O), S(O) 2 , CR 9 , or NR ;
- W is independently:
- n and m are independently 1-4;
- n 1 or 2;
- m is 1. 2or 3;
- p is 0 or 1
- A is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C 1-10 alkyl(oxy)C 1-10 alkyl, —C 1-10 alkyl(thio)C 1-10 alkyl, —N(R 3 )C(O)alkyl, —N(R 3 )C(O)alkenyl, —N(R 3 )C(O)alkynyl, —N(R 3 )C(O)(alkyl)oxy(alkyl), —N(R 3 )C(O)(alkyl)thio(alkyl), —N(R 3 )C(O)N(alkyl), —N(R 3 )C(O)N(alkenyl), —N(R 3 )C(O)N(alkynyl), —N(R 3 )
- M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group
- Y is independently:
- a heterocycle including but not limited to, pyrryl, furyl, pyridyl; 1,2,4-thiadiazolyl; pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b);
- X′ is halo such as F, Cl, Br and I; —C(O)aryl; CF 3 ; OR 3 ; —NR 3 COR 3 ; —OC(O)NH 2 ; —CR 3 R 3 R 4 ; —C(O)R 3 ; —CH 2 OR 3 ; —CH 2 CO 2 R 3 ; —CH 2 OC(O)R 3 ; R 3 CH(R 3 )CH 2 SO 3 ; —NHCH 2 COOR 3 ; N+R 3 R 3 R 4 R 7 ; —NR 3 SO 2 R 3 ; COR 3 ; NO 2 ; or CN; or
- R 13 , R 14 and R 15 independently represents:
- B is —CH 2 -oxacyclopropyl, —CH 2 OR 3 , —CH 2 C(O)R 3 , —CH 2 CH(R 3 )R 3 , —CH 2 Aryl, —CH 2 CH(OH)—CH 2 OH; R 3 C(R 3 ) 2 CH 2 SO 2 ;
- R 13 —R 14 or R 14 —R 5 are joined together to form a bridge such as —OCHR 2 CHR 2 —S(O) n wherein n is 0 to 3; or
- X′ is halo, —C(O)aryl, —CF 3 , or —OR 3 ; —CH 2 OR 3 ; —CH 2 CO 2 R 3 ; —CH 2 C(O)R 3 ; —NHCH 2 COOR 3 ; or —N+R 3 R 3 R 4 R 7
- R 1 and R 2 are independently hydrogen, or lower alkyl, specifically including lower alkyl of 1-6 carbon atoms, e.g., methyl, cyclopropylmethyl, ethyl, isopropyl, butyl, pentyl and hexyl, as well as C 3-8 cycloalkyl, for example, cyclopentyl; halo lower alkyl, especially C 1-6 haloalkyl, for example, tritluoromethyl; halo, especially fluoro; —COOH; —CONR 16 R 17 wherein R 16 and R 17 independently represent C 1-6 alkyl and hydrogen, —COOR 3 , lower alkenyl, especially C 2-6 alkenyl, e.g., vinyl, allyl, CH 3 CH ⁇ CH—CH 2 —CH 2 , and CH 3 CH 2 ) 3 —CH ⁇ CH—; —C(O)R 3 ; —CH 2 OR 3 ; lower alkyny
- R 3 and R 4 are independently alkyl, alkenyl, alkynyl, aryl, aralkyl, alkaryl, hydrogen, C 1-6 alkoxy-C 1-10 alkyl, C 1-6 alkylthio-C 1-10 alkyl, and C 1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C 1-10 );
- R 5 is lower alkyl, lower alkenyl, lower alkynyl, hydroxyl, hydrogen, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
- R 6 is lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
- R 7 is an organic or inorganic anion
- R 8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
- R 9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR 3 R 4 , —C(O)R 5 , —CO 2 R 5 , —CH 2 OR 5 , —CH 2 NR 5 R 5 , —CH 2 SR 5 , ⁇ O, ⁇ NR 5 , —NR 3 R 4 , —NR 3 R 4 R 7 , or —OR 5 ;
- R 10 is —R 3 , —R 8 , —C(O)N(OR 3 )R 3 , or —OR 3 .
- R 11 is phenyl-S(O) g -lower alkyl-; (R 3 O) d -phenyl-S(O)g-lower alkyl-; (R 3 R 3 N) d -phenyl-S(O) g -lower alkyl-; (CNR) d -phenyl-S(O) g -lower alkyl-; (halo) d -phenyl-S(O) g -lower alkyl-; (R 3 COO) d -phenyl-S(O) g -lower alkyl-; (R 3 OCO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d -phenyl-S(O) g -lower alkyl-; (R 3 CO) d
- R 12 is alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R 18 , wherein R 18 is —PO 2 (OH)-M+ or —PO 3 (M+) 2 , wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH 2 ) 2 CO 2 — M+, or —SO 3 —M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imnidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl wherein
- R 19 is H, lower alkyl, or lower alkenyl
- R 20 is H, halogen, lower alkoxy, or lower alkyl
- X is O, S, S(O), S(O) 2 , or NR 10 ;
- m is 1, 2, or 3;
- t is 1, 2, 3, or 4;
- Z is independently W or Y;
- v is 0, 1, or 2;
- Q is selected from the group consisting of substituted C 1 to C 12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O) m -lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl lower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl;
- These compounds in general reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response.
- the compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
- a method to treat disorders mediated by PAF or leukotrienes includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to reduce formation of oxygen radicals.
- the compounds disclosed herein can also be used as research tools to study the structure and location of PAF receptors as well as biological pathways involving leukotrienes.
- FIGS. 1 a and 1 b provide a schematic illustration of a process for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
- alkyl refers to a saturated straight, branched, or cyclic hydrocarbon of C 1 to C 10 , and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
- lower alkyl refers to a C 1 to C 6 saturated straight, branched, or cyclic (in the case of C 5-6 ) hydrocarbon, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
- alkenyl refers to a straight, branched, or cyclic (in the case of C 5-6 ) hydrocarbon of C 2 to C 10 with at least one double bond.
- lower alkenyl refers to an alkenyl group of C 2 to C 6 , and specifically includes vinyl and allyl.
- lower alkylamino refers to an amino group that has one or two lower alkyl substituents.
- alkynyl refers to a C 2 to C 10 straight or branched hydrocarbon with at least one triple bond.
- lower alkynyl refers to a C 2 to C 6 alkynyl group, specifically including acetylenyl and propynyl.
- aryl refers to phenyl or substituted phenyl, wherein the substituent is halo or lower alkyl.
- halo includes fluoro, chloro, bromo, and iodo.
- halo refers to a (alkyl, alkenyl, or alkynyl) group in which at least one of the hydrogens in the group has been replaced with a halogen atom.
- heterocycle or heteroaromatic refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring.
- Non-limiting examples are pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl.
- aralkyl refers to an aryl group with an alkyl substituent.
- alkaryl refers to an alkyl group that has an aryl substituent.
- organic or inorganic anion refers to an organic or inorganic moiety that carries a negative charge and can be used as the negative portion of a salt.
- pharmaceutically acceptable cation refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a countercation in a salt.
- Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quatemary amine.
- metabolically cleavable leaving group refers to a moiety that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (for example (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate.
- acyl for example (alkyl)C(O), including acetyl, propionyl, and butyryl
- alkyl phosphate, sulfate and sulfonate.
- enantiomerically enriched composition or compound refers to a composition or compound that includes at least 95% by weight of a single enantiomer of the compound.
- PAF receptor antagonist refers to a compound that binds to a PAF receptor with a binding constant of 30 ⁇ M or lower.
- 5-lipoxygenase inhibitor refers to a compound that inhibits the enzyme at 30 ⁇ M or lower in a broken cell system.
- pharmaceutically active derivative refers to any compound that upon administration to the recipient, is capable of providing directly or indirectly, the compounds disclosed herein.
- the 2,5-diaryl tetrahydrothiophenes, pyrrolidines, and tetrahydrofurans, 1,3-diaryl cyclopentanes, and the 2,4-diaryl tetrahydrothiophenes, pyrrolidines and tetrahydrofurans of the above-defined formulas exhibit PAF receptor antagonist activity or inhibit the enzyme 5-lipoxygenase, or have dual activity, and are thus useful in the treatment of humans who have immune and allergic disorders that are mediated by PAF or products of 5-lipoxygenase.
- R groups in the active compounds described herein can likewise include chiral carbons, and thus, optically active centers.
- one or more enantiomers of a biologically active compound is more active, and perhaps less toxic, than other enantiomers of the same compound.
- Such enantiomerically enriched compounds are often preferred for pharmaceutical administration to humans.
- trans-2,5-diaryl tetrahydrothiophene and trans-2,5-diaryl tetrahydrofuran are often more active PAF receptor antagonists than their cis counterparts.
- chiral acids that form diastereomeric derivatives that may possess significantly different solubility properties.
- Nonlimiting examples of chiral acids include malic acid, mandelic acid, dibenzoyl tartaric acid, 3-bromocamphor-8-sulfonic acid, 10-camphorsulfonic acid, and di-p-toluoyltartaric acid.
- acylation of a free hydroxyl group with a chiral acid also results in the formation of diastereomeric derivatives whose physical properties may differ sufficiently to permit separation.
- Enantiomerically pure or enriched compounds can be obtained by passing the racemic mixture through a chromatographic column that has been designed for chiral separations, including cyclodextrin bonded columns marketed by Rainin Corporation.
- 1,3-Diaryl cyclopentanes can be prepared using the procedure of Graham, et al. (1,3-Diaryl Cyclopentanes: A New Class of Potent PAF Receptor Antagonists. 197 th ACS National Meeting, Dallas, Tex., Apr. 9-14, 1989, Division of Medicinal Chemistry, poster no. 25 (abstract)), or by other known methods.
- 2,5-Diaryl pyrrolidines can be prepared by methods known to those skilled in the art including that described by Boekvall, et al. ( J. Org. Chem. 55, 826 (1990)).
- 2,4-Diaryl tetrahydrofurans and tetrahydrothiophenes and 2,4-diaryl pyrrolidines can also be prepared by adaptations of methods described herein, or by other known methods.
- a general procedure for preparing a hydroxyurea is:
- R is a 2,5-diaryl tetrahydrothiophene, tetrahydrofuran, or pyrrolidine; 1,3-diaryl cyclopentane; or 2,4-diaryl tetrahydrothiophene, tetrahydrofuran or pyrrolidine; with or without a linking moiety, and R′ is a moiety as defined in detail above.
- a general procedure for preparing a hydroxamic acid is:
- a general procedure for preparing a reverse hydroxamic acid is:
- a general procedure for preparing amidohydroxyurea moieties is:
- Oxalkanes and thioalkanes can be prepared as described by Crawley, et al., J. Med. Chem., 35, 2600-2609 (1992), and illustrated below, by conversion of the desired moiety into a Grignard reagent or lithium salt, followed by reaction with the appropriate cyclic ketone.
- trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 108, FIG. 1.
- trans-2-(3-methoxy-4hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran 4.7 g, 8.87 mmol
- dichloromethane 50 mL
- methylsulfonyl chloride 3.05 g, 26.6 mmole
- triethylamine (2.69 g, 26.60 mmol).
- trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 109, FIG. 1
- trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran 2.5 g, 4.11 mmol
- 4-chlorothiophenol (1.19 g, 8.22 mmol) and triethylamine (0.831 g, 8.22 mmol).
- trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 110, FIG. 1
- trans-2-(3-Methoxy-4p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.35 g, 3.58 mmole) and CuCN (0.358 g, 4.30 mmole) in DMF (20 mL) were heated at 140° C. for 16 hours.
- reaction mixture was cooled and quenched with water and extracted with ethyl acetate.
- organic layer was washed with water and saturated NaCl solution, dried over MgSO 4 , filtered and evaporated in vacuo to oil which was purified by column chromatography (silica, 2:1 hexanelethyl acetate) (1.79 g, 90.0%).
- trans 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran compound 111, FIG. 1.
- trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl tetrahydrofuran 300 mg, 0.5405 mmol
- sodium borohydride 36.8 mg, 0.9729 mmol
- boron trifluoride etherate (191.8 mg. 1.3512 mmol) dropwise.
- reaction mixture was refluxed for 1 hour, cooled, and then treated with a few drops of 10% HCl.
- the reaction mixture was poured into 10% K 2 CO 3 and extracted with ethyl acetate.
- the organic layer was washed with water and saturated NaCl solution, dried over MgSO 4 , filtered and evaporated in vacuo to an oil which was purified by column chromatography (silica, 93:7 CH 2 Cl 2 /MeOH) 64 mg, 21.2%).
- Humans, equine, canine, bovine and other animals, and in particular, mammals, suffering from inflammatory diseases, and in particular, disorders mediated by PAF or products of 5-lipoxygenase can be treated by administering to the patient an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable derivative or salt thereof in a pharmaceutically acceptable carrier or diluent to reduce formation of oxygen radicals.
- the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid, cream, gel or solid form.
- salts or complexes refers to salts or complexes that retain the desired biological activity of the above-identified compounds and exhibit minimal undesired toxicological effects.
- Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalacturonic acid; (b) base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and
- the compounds can also be administered as pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR-Z—, wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate.
- quaternary ammonium salt of the formula —NR-Z— wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, tolu
- the active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated.
- a preferred dose of the active compound for all of the above-mentioned conditions is in the range from about 0.01 to 300 mg/kg, preferably 0.1 to 100 mg/kg per day, more generally 0.5 to about 25 mg per kilogram body weight of the recipient per day.
- a typical topical dosage will range from; 0.01-3% wt/wt in a suitable carrier.
- the effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent compound to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.
- the compound is conveniently administered in any suitable unit dosage form, including but not limited to one containing 1 to 3000 mg, preferably 5 to 500 mg of active ingredient per unit dosage form.
- a oral dosage of 25-250 mg is usually convenient.
- the active ingredient should be administered to achieve peak plasma concentrations of the active compound of about 0.01-30 mM, preferably about 0.1-10 mM. This may be achieved, for example, by the intravenous injection of a solution or formulation of the active ingredient, optionally in saline, or an aqueous medium or administered as a bolus of the active ingredient.
- the concentration of active compound in the drug composition will depend on absorption, distribution, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- the active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a dispersing agent such as alginic acid. Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a dispersing agent such as alginic acid.
- Primogel, or corn starch a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- dosage unit form When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
- dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents.
- the active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
- a syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
- the active compound or pharmaceutically acceptable derivatives or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, other antiinflammatories, or antiviral compounds.
- Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite: chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- preferred carriers are physiological saline or phosphate buffered saline (PBS).
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- a controlled release formulation including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
- the materials can also be obtained commercially from Alza Corporation (CA) and Scios Nova (Baltimore, Md.).
- Liposomal suspensions may also be pharmaceutically acceptable carriers. These may be prepared-according to methods known to those skilled in the art, for example, as described in U.S. Pat. No.
- liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container.
- An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container.
- the container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
- a wide variety of biological assays have been used to evaluate the ability of a compound to act as a PAF receptor antagonist, including the ability of the compound to bind to PAF receptors, and the effect of the compound on various PAF mediated pathways. Any of these known assays can be used to evaluate the ability of the compounds disclosed herein to act as PAF receptor antagonists.
- PAF is known to induce hemoconcentration and increased permeability of microcirculation leading to a decrease in plasma volume.
- PAF mediated acute circulatory collapse can be used as the basis of an assay to evaluate the ability of a compound to act as a PAF antagonist, by analyzing the effect of the compound on PAF induced decreased plasma volume in an animal model such as mouse.
- Endotoxemia causes the release of chemical mediators including eicosanoids, PAF, and tumor necrosis factor (TNF) that stimulate a variety of physiologic responses including fever, hypotension, leukocytosis, and disturbances in glucose and lipid metabolism. Endotoxemia can result in severe shock and death. Endotoxin-induced mouse mortality is a useful animal model to evaluate the pharmacological effect of compounds on endotoxic shock.
- a wide variety of biological assays have also been used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase.
- a cytosol 5-lipoxygenase of rat basophilic leukemia ceuls (RBL) has been widely utilized in studies on leukotriene biosynthesis.
- Compounds that inhibit 5-lipoxygenase decrease the levels of leukotrienes.
- Another biological assay used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase is based on the classic pharmacological model of inflammation induced by the topical application of arachidonic acid to the mouse ear.
- arachidonic acid is converted by 5-lipoxygenase to various leukotrienes (and other mediators), which induce changes in blood flow, erythema, and increase vasodilation and vasopermeability.
- the resulting edema is measured by comparing the thickness of the treated ear to a control ear.
- Agents that inhibit 5-lipoxygenase reduce the edematous response, by lowering the amounts of biochemical mediators formed from arachidonic acid.
- Human platelet membranes were prepared from platelet concentrates obtained from the American Red Cross Blood Services (Dedham, Mass.). After several washes with platelet wash solution (150 mM NaCl, 10 mM Tris, and 2 mM EDTA, pH 7.5), the platelet pellets were resuspended in 5 mM MgCl. 10 mM Tris, and 2 mM EDTA at pH 7.0. The cells were then quickly frozen with liquid nitrogen and thawed slowly at room temperature. The freezing and thawing procedure was repeated at least three times.
- the lysed membrane suspension was layered over the top of a discontinuous sucrose density gradient of 0.25, 1.03, and 1.5 M sucrose prepared in 10 mM MgCl 2 , 10 mM Tris and 2 mM EDTA, pH 7.0, and centrifuged at 63,500 ⁇ g for 2 hr.
- the membrane fractions banding between 0.25 and 1.03 M (membrane A) and between 1.03 and 1.5 M (membrane B) were collected separately.
- the protein concentration of the membrane preparations was determined by Lowry's method with bovine serum albumin (BSA) as the standard.
- BSA bovine serum albumin
- Membrane protein 100 ⁇ g was added to a final 0.5 ml solution containing 0.15 pmol (0.3 nM concentration) of [ 3 H]PAF and a known amount of unlabeled PAF or PAF receptor antagonist in 10 mM MgCl 2 , 10 mM Tris and 0.25% BSA at pH 7.0. After incubation for four hours at 0° C., the bound and unbound [3H]PAF were separated through a Whatman GF/C glass fiber filter under vacuum.
- the nonspecific binding was defined as the total binding in the presence of excess unlabeled PAF (1 mM) where no further displacement was found with higher concentrations of either unlabeled PAF or PAF analogs or PAF receptor antagonists.
- the specific binding was defined as the difference between total binding and nonspecific binding.
- [3H]PAF binding in the presence of inhibitors was normalized in terms of percent inhibition by assigning the total binding in the absence of inhibitors as 0% inhibition and the total binding in the presence of 1 mM unlabeled PAF as 100%.
- the IC 50 was calculated as the concentration of the inhibitor necessary to obtain 50% inhibition of the specific [ 3 H]PAF binding and was calculated by a nonlinear regression computer software program, GraphPad Inplot, version 3.0 (GraphPad software, San Diego, Calif.). Tables 1 and 2 provide IC 50 values for a number of the disclosed compounds.
- mice Female CD-1 mice, weighing 16-20 grams, were obtained from Charles River Laboratory (Wilmington, Mass.). Tap water and rodent laboratory chow (5001, Purina Mills, St. Louis, Mo.) were provided ad libitum. The mice were housed for an average of four days prior to use.
- PAF (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, Sigma Chemical Co.) was dissolved in 0.25% bovine serum albumin (BSA) in 0.9% NaCl solution. Except for dose-response studies, 10 ⁇ g (10 ml/kg) of PAF solution was injected into the tail vein. All test compounds were dissolved in 0.5 DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Thirty to fifty ⁇ L blood was collected by cutting the tail end into a heparinized micro-hematocrit tube (O.D. 1.50 mm) 15 minutes after PAF administration.
- BSA bovine serum albumin
- Table 2 provides the mouse hematocrit response to varying concentration of PAF at 15 minutes after injection of PAF.
- Tables 3 and 4 provide the effect of various test compounds on PAF-induced mouse hemoconcentration; the reference compound MK287 is trans-2-(3,4,5-trimethoxy)-5-(3-methoxy-4-oxyallyl-(2-hydroxyethylsulfonyl))-tetrahydrofuran. (Sahoo, et al., Bioorganic Medicinal Chem. Letters, (1991), 1, 327.)
- Arachidonic acid was applied to both ears of mice in 0.025 ml of freshly prepared vehicle (acetone:pyridine:water) (97:2:1 v/v/v) and dried under a Sun-Lite Hitensity bulb. Except for dose-response studies, 0.5 mg of arachidonic acid was used for all applications. All test compounds were dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to arachidonic acid treatment. Animals were sacrificed by cervical dislocation at 1 hour after topical application of arachidonic acid. A 7 mm-diameter disc of tissue was removed from each ear by means of a metal punch. Edema was measured by the average wet weight of the both ear tissues.
- mice are obtained and treated as in Example 3 above.
- Endotoxin E. coli serotype 0127:B8, lipopolysaccharide, Sigma Chemical Co. (St. Louis, Mo.) are freshly dissolved in 0.9% NaCl solution. Except for dose-response studies, endotoxin at 50 mg/kg is injected into the tail vein. All test compounds are dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Death occurs typically within 12-36 hours. Mortality is recorded 48 hours after endotoxin challenge, as death rarely occurs after 48 hours.
- Washed rat RBL cells (4 ⁇ 108) are suspended in 20 ml of 50 M potassium phosphate buffer at pH 7.4 containing 10% ethylene glycol/1 mM EDTA (Buffer A). The cell suspension is sonicated at 20 KHz for 30 seconds, and the sonicate is centrifuged at 10.000 ⁇ g for 10 minutes, followed by further centrifugation at 105,000 ⁇ g for 1 hr. The supernatant solution (cytosol fraction) containing 5-lipoxygenase is stored at ⁇ 70° C. Protein concentration is determined according to the procedure of Bradford (Bradford Dye Reagent) with bovine serum albumin as a standard.
- the mixture contains 50 mM potassium phosphate buffer at pH 7.4, 2 mM CaCl 2 . 2 mM ATP, 25 M arachidonic acid (0.1 Ci) and enzyme (50-100 mg of protein) in a final volume of 200 L.
- the reaction is carried out at 24° C. for 3 minutes.
- the mixture is extracted with 0.2 ml of an ice-cold mixture of ethyl ether:methanol: 0.2 M citric acid (30:4:1).
- the extract is subjected to thin-layer chromatography at ⁇ 10° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Furan Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
2,5-Diaryl tetrahydrofurans, 2,5-diaryl tetrahydrothiophenes, 2,4-diaryl tetrahydrofurans, 2,4-diaryl tetrahydrothiophenes, 1,3-diaryl cyclopentanes, 2,4-diaryl pyrrolidines, and 2,5-diaryl pyrrolidines are disclosed that reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
A method to treat disorders mediated by PAF or leukotrienes is also disclosed, that includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.
Description
- This application is a continuation-in-part of U.S. Ser. No. 07/933,991. filed on Aug. 24, 1992, by Xiong Cai, Sajjat Hussoin, San Bao Hwang, David Killian. and T. Y. Shen, which is a divisional application of U.S. Ser. No. 07/912,788, filed Jul. 13, 1992, by Xiong Cai, Sajjat Hussoin, San Bao Hwang, David Killian, and T. Y. Shen.
- This invention is in the area of pharmaceutical compositions and methods for the treatment of inflammatory and immune disorders, and specifically provides novel compounds that reduce damage arising from an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
- Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine) is a potent inflammatory phospholipid mediator with a wide variety of biological activities. PAF was initially identified as a water soluble compound released by immunoglobulin E (IgE)-sensitized rabbit basophils. It is now known that PAF is also generated and released by monocytes, macrophages, polymorphonuclear leukocytes (PMNs), eosinophils, neutrophils, natural killer lymphocytes, platelets and endothelial cells, as well as by renal and cardiac tissues under appropriate immunological and non-immunological stimulation. (Hwang, “Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms”,Journal of Lipid Mediators 92, 123 (1990)). PAF causes the aggregation and degranulation of platelets at very low concentrations. The potency (active at 10−12 to 10−9M), tissue level (picomoles) and short plasma half life (2-4 minutes) of PAF are similar to those of other lipid mediators such as thromboxane A2, prostaglandins, and leukotrienes. PAF mediates biological responses by binding, to specific PAF receptors found in a wide variety of cells and tissues. Structure-activity studies on PAF and its analogs indicate that the ability of PAF to bind to these receptors is highly structure specific and stereospecific. (Shen. et al., “The Chemical and Biological Properties of PAF Agonists, Antagonists, and Biosynthetic Inhibitors”, Platelet-Activating Factor and Related Lipid Mediators, F. Snyder, Ed. Plenum Press, New York, N.Y. 153 (1987)).
- While PAF mediates essential biological responses, it also appears to play a role in pathological immune and inflammatory responses. Many published studies have provided evidence for the involvement of PAF in human diseases, including arthritis, acute inflammation, asthma, endotoxic shock, pain, psoriasis, ophthalmic inflammation, ischemia, gastrointestinal ulceration, myocardial infarction, inflammatory bowel diseases, and acute respiratory distress syndrome. Animal models also demonstrate that PAF is produced or increased in certain pathological states.
- The involvement of PAF in pathological inflammatory and immune states has stimulated a substantial research effort to identify PAF receptor antagonists. In 1983, a phospholipid analog referred to as CV-3988 (rac-3-(N-n-octadecyl-carbamoyloxy-w-methoxypropy)-2-thiazolioethyl phosphate) was reported to have PAF receptor antagonist properties. (Terashita, et al.,Life Sciences 32, 1975 (1983)). In other early work in this area, Shen, et al., (in Proc. Natl. Acad. Sci. USA 82, 672 (1985)), reported that kadsurenone, a neolignan derivative isolated from Piper futokadsura Sieb et Zucc (a Chinese herbal plant) was a potent, specific and competitive inhibitor of PAF activity at the receptor level. Hwang, et al., disclosed in 1985 that trans-2,5-bis-(3,4,5-trimethoxyphenyl) tetrahydrofuran (L-652,731) inhibits the binding of tritiated PAF to PAF receptor sites. (Hwang, et al., “Trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrofuran”, Journal of Biological Chemistry 260, 15639 (1985).) L-652,731 was found to be orally active, and to inhibit PAF-induced rat cutaneous vascular permeability at a dosage of 30 mg/kg body weight. The compound was found to have no effect on the enzyme 5-lipoxygenase. Hwang, et al., also reported that trans-L-652,731, wherein the aryl groups at the 2 and 5 positions are on opposite sides of the plane of the tetrahydrofuran ring, is approximately 1000 times more potent than cis-L-652,73 1, wherein the 2 and 5 aryl substituents are on the same side of the plane of the tetrahydrofuran ring.
- In 1988, Hwang, et al., reported that L-659,989 (trans-2-(3-methoxy-4-propoxyphenyl-5-methylsulfonyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran) is an orally active, potent, competitive PAF receptor antagonist, with an equilibrium inhibition constant 10 times greater than that of trans-L-652,731. (Hwang, et al.,Pharmacol. Exp. Ther. 246, 534 (1988).)
- U.S. Pat. Nos. 4,996,203, 5,001,123 and 4,539,332 to Biftu, et al. and European Patent Application Nos. 89202593.3, 90306235.4, and 90306234.7 disclose that a specific class of 2,5-diaryl tetrahydrofurans are PAF receptor antagonists.
- Leukotrienes, like PAF, are potent local mediators, playing a major role in inflammatory and allergic responses, including arthritis, asthma, psoriasis, and thrombotic disease. Leukotrienes are straight chain eicosanoids produced by the oxidation of arachidonic acid by lipoxygenases. Arachidonic acid is oxidized by 5-lipoxygenase to the hydroperoxide 5-hydroperoxyeicosatetraenoic acid (5-HPETE), which is converted to leukotriene A4, which in turn can be converted to leukotriene B4, C4, or D4. The slow-reacting substance of anaphylaxis is now known to be a mixture of leukotrienes C4, D4, and E4, all of which are potent bronchoconstrictors.
- There has been a research effort to develop specific receptor antagonists or inhibitors of leukotriene biosynthesis, to prevent or minimize pathogenic inflammatory responses mediated by these compounds.
- Leukotrienes are released simultaneously from leukocytes with PAF, possibly from a common phospholipid precursor such as 1-O-hexadecyl-2-arachidonyl-sn-glycero-phosphocholine, and upon cellular activation, act synergistically with PAF in many biological models. Recently, it was reported that the tetrahydrothiophene derivative of L-652,731, trans-2,5-bis-(3,4,5-trimethoxyphenyl)tetrahydrothiophene (L-653,150), is a potent PAF antagonist and a moderate inhibitor of 5-lipoxygenase. It has been disclosed that certain 2,5-diaryl tetrahydrothiophenes are PAF antagonists and leukotriene synthesis inhibitors. (Biftu, et al.,Abstr, of 6th Int. Conf. on Prostaglandins and Related Compounds, Jun. 3-6, 1986, Florence, Italy: U.S. Pat. No. 4,757,084 to Biftu). European Patent Application Nos. 90117171.0 and 901170171.0 disclose indole, benzofuran, and benzothiophene lipoxygenase inhibiting compounds. Given the significant number of pathological immune and inflammatory responses that are mediated by PAF and leukotrienes, there remains a need to identify new compounds and compositions that exhibit PAF receptor antagonistic activity or inhibit the enzyme 5-lipoxygenase.
- Therefore, it is an object of the present invention to provide compounds that reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals during an inflammatory or immune response.
- It is another object of the present invention to provide pharmaceutical compositions for the treatment of pathological immune or inflammatory disorders mediated by PAF or products of 5-lipoxygenase.
- It is another object of the present invention to provide methods for the treatment of pathological immune or inflammatory disorders mediated by PAF or products of 5-lipoxygenase.
-
- wherein:
- X is O, S, S(O), S(O)2, CR9, or NR ;
- W is independently:
- (1) —AN(OM)C(O)N(R3)R4, —AN(R3)C(O)N(OM)R4, —AN(OM)C(O)R4, —AC(O)N(OM)R4, —N(OM)C(O)N(R3)R4. —N(R3)C(O)N(OM)R4, —N(OM)C(O)R4, —C (O)N(OM)R4, —OR6N(R5)R6—(C5H4N)R6R7, —OR6N(COR5)R6—(C5H4N)R6R7, —OR6OC(O)N(COR5)R6—(C5H4N)R6R7, —OR6O(CO)N(CO2R6)R6(C5H4N)R6R7, —A(C5H4N)R6R7, or —OR6N(CO2R5)R6—(C5H4N)R6R7.
- (2) an amidohydroxyurea of the formula: —N(R19)C(O)C(R19)2N(OM)C(O)NHR20, —C(O)N(R19)C(R19)2N(OM)C(O)NHR20, —AN(R19)C(O)C(R19)2N(OM)C(O)NHR20, —AC(O)N(R19)C(R19)2N(OM)C(O)NHR20, —NHC(O)N(OM)C(R19)2C(O)N(R19)2; or —NHC(O)N(OM)C(R19)2N(R19)C(O)R19;
-
- wherein n and m are independently 1-4;
-
-
- n is 1 or 2;
- m is 1. 2or 3;
- p is 0 or 1;
- A is alkyl, alkenyl, alkynyl, alkaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C1-10alkyl(oxy)C1-10alkyl, —C1-10alkyl(thio)C1-10alkyl, —N(R3)C(O)alkyl, —N(R3)C(O)alkenyl, —N(R3)C(O)alkynyl, —N(R3)C(O)(alkyl)oxy(alkyl), —N(R3)C(O)(alkyl)thio(alkyl), —N(R3)C(O)N(alkyl), —N(R3)C(O)N(alkenyl), —N(R3)C(O)N(alkynyl), —N(R3)C(O)N(alkyl)oxy(alkyl), —N(R3)C(O)N(alkyl)thio(alkyl), —N(R3)C(O2)alkyl, —N(R3)C(O2)alkenyl, —N(R3)C(O2)alkynyl, —N(R3)C(O2)(alkyl)oxy(alkyl), —N(R3)C(O2)(alkyl)thio(alkyl), —OC(O2)alkyl, —OC(O2)alkenyl, —OC(O2)alkynyl, —OC(O2)(alkyl)oxy(alkyl), —OC(O2)(alkyl)thio(alkyl), —N(R3)C(S)alkyl, —N(R3)C(S)alkenyl, —N(R3)C(S)alkynyl, —N(R3)C(S)(alkyl)oxy(alkyl), —N(R3)C(S)(alkyl)thio(alkyl), —N(R3)C (S)N(alkyl), —N(R3)C(S)N(alkenyl), —N(R3)C(S)N(alkynyl), —N(R3)C(S)N(alkyl)oxy(alkyl), —N(R3)C(S)N(alkyl)thio(alkyl), —N(R3)C(S)S(alkyl), —N(R3)C(S)S(alkenyl), —N(R3)C(S)S(alkynyl), —N(R3)C(S)S(alkyl)oxy(alkyl), —N(R3)C(S)S(alkyl)thio(alkyl), —SC(S)S(alkyl), —SC(S)S(alkenyl), —SC(S)S(alkynyl), —SC(S)S(alkyl)oxy(alkyl), and —SC(S)S(alkyl)thio(alkyl);
- M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group;
- Y is independently:
- (a) hydrogen;
-
-
-
- (c) a heterocycle, including but not limited to, pyrryl, furyl, pyridyl; 1,2,4-thiadiazolyl; pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b);
-
-
- wherein R13, R14 and R15 independently represents:
- BO— wherein B is —CH2-oxacyclopropyl, —CH2OR3, —CH2C(O)R3, —CH2CH(R3)R3, —CH2Aryl, —CH2CH(OH)—CH2OH; R3C(R3)2CH2SO2;
-
- where X′ is halo, —C(O)aryl, —CF3, or —OR3; —CH2OR3; —CH2CO2R3; —CH2C(O)R3; —NHCH2COOR3; or —N+R3R3R4R7
- R1 and R2 are independently hydrogen, or lower alkyl, specifically including lower alkyl of 1-6 carbon atoms, e.g., methyl, cyclopropylmethyl, ethyl, isopropyl, butyl, pentyl and hexyl, as well as C3-8 cycloalkyl, for example, cyclopentyl; halo lower alkyl, especially C1-6 haloalkyl, for example, tritluoromethyl; halo, especially fluoro; —COOH; —CONR16R17 wherein R16 and R17 independently represent C1-6 alkyl and hydrogen, —COOR3, lower alkenyl, especially C2-6 alkenyl, e.g., vinyl, allyl, CH3CH═CH—CH2—CH2, and CH3CH2)3—CH═CH—; —C(O)R3; —CH2OR3; lower alkynyl, especially C2-6 alkynyl, e.g., —C═CH; —CH2NR4R3; —CH2SR3; ═O; —OR3; or —NR3R4;
- R3 and R4 are independently alkyl, alkenyl, alkynyl, aryl, aralkyl, alkaryl, hydrogen, C1-6 alkoxy-C1-10 alkyl, C1-6 alkylthio-C1-10 alkyl, and C1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C1-10);
- R5 is lower alkyl, lower alkenyl, lower alkynyl, hydroxyl, hydrogen, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
- R6 is lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
- R7 is an organic or inorganic anion;
- R8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
- R9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR3R4, —C(O)R5, —CO2R5, —CH2OR5, —CH2NR5R5, —CH2SR5, ═O, ═NR5, —NR3R4, —NR3R4R7, or —OR5;
- R10 is —R3, —R8, —C(O)N(OR3)R3, or —OR3.
- R11 is phenyl-S(O)g-lower alkyl-; (R3O)d-phenyl-S(O)g-lower alkyl-; (R3R3N)d-phenyl-S(O)g-lower alkyl-; (CNR)d-phenyl-S(O)g-lower alkyl-; (halo)d-phenyl-S(O)g-lower alkyl-; (R3COO)d-phenyl-S(O)g-lower alkyl-; (R3OCO)d-phenyl-S(O)g-lower alkyl-; (R3CO)d-phenyl-S(O)g-lower alkyl-; phenyl-O-lower alkyl-; (R3O)d-phenyl-O-lower alkyl-; (CN)d-phenyl-O-lower alkyl-; (halo)d-phenyl-O-lower alkyl-; (R3COO)d-phenyl-O-lower alkyl-; (R3OCO)d-phenyl-O-lower alkyl-; or (R3CO)d-phenyl-O-lower alkyl- where d is 1, 2, 3, 4 or 5; and g is 0, 1, or 2.
- R12 is alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R18, wherein R18 is —PO2(OH)-M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2— M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imnidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylarnino-lower alkyl; or thiazolyl-lower alkyl;
- R19 is H, lower alkyl, or lower alkenyl; and
-
- wherein:
- X is O, S, S(O), S(O)2, or NR10;
- m is 1, 2, or 3;
- t is 1, 2, 3, or 4;
-
- v is 0, 1, or 2; and
- Q is selected from the group consisting of substituted C1 to C12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O)m-lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl lower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl; triazolylphenylthio-lower alkyl; tetrazolylthio-lower alkyl; tetrazolylphenylthio-lower alkyl; aminophenylthio-lower alkyl; N,N-di-substituted aminophenylthio-lower alkyl wherein the amine substituents each independently represent lower alkyl; amidinophenylthio-lower alkyl; phenylsulfinyl-lower alkyl; or phenylsulfonyl lower alkyl; -lower alkyl-O—R18, wherein R18 is —PO2(OH)−M+ or —PO3 (M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2— M+, or —SO3−M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl, wherein the amine substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl: piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the amine substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.
- These compounds in general reduce the chemotaxis and respiratory burst leading to the formation of damaging oxygen radicals of polymorphonuclear leukocytes during an inflammatory or immune response. The compounds exhibit this biological activity by acting as PAF receptor antagonists, by inhibiting the enzyme 5-lipoxygenase, or by exhibiting dual activity, i. e., by acting as both a PAF receptor antagonist and inhibitor of 5-lipoxygenase.
- A method to treat disorders mediated by PAF or leukotrienes is also disclosed, that includes administering an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier, to reduce formation of oxygen radicals.
- The compounds disclosed herein can also be used as research tools to study the structure and location of PAF receptors as well as biological pathways involving leukotrienes.
- FIGS. 1a and 1 b provide a schematic illustration of a process for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
- A. Compounds
- The term alkyl, as used herein, unless otherwise specified, refers to a saturated straight, branched, or cyclic hydrocarbon of C1 to C10, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
- The term lower alkyl, as used herein, and unless otherwise specified, refers to a C1 to C6 saturated straight, branched, or cyclic (in the case of C5-6) hydrocarbon, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
- The term alkenyl, as referred to herein, and unless otherwise specified, refers to a straight, branched, or cyclic (in the case of C5-6) hydrocarbon of C2 to C10 with at least one double bond.
- The term lower alkenyl, as referred to herein, and unless otherwise specified, refers to an alkenyl group of C2 to C6, and specifically includes vinyl and allyl.
- The term lower alkylamino refers to an amino group that has one or two lower alkyl substituents.
- The term alkynyl, as referred to herein, and unless otherwise specified, refers to a C2 to C10 straight or branched hydrocarbon with at least one triple bond.
- The term lower alkynyl, as referred to herein, and unless otherwise specified, refers to a C2 to C6 alkynyl group, specifically including acetylenyl and propynyl.
- The term aryl, as used herein, and unless otherwise specified, refers to phenyl or substituted phenyl, wherein the substituent is halo or lower alkyl.
- The term halo, as used herein, includes fluoro, chloro, bromo, and iodo.
- The term halo (alkyl, alkenyl, or alkynyl) refers to a (alkyl, alkenyl, or alkynyl) group in which at least one of the hydrogens in the group has been replaced with a halogen atom.
- The term heterocycle or heteroaromatic, as used herein, refers to an aromatic moiety that includes at least one sulfur, oxygen, or nitrogen in the aromatic ring. Non-limiting examples are pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbazolyl, benzimidazolyl, and isoxazolyl.
- The term aralkyl refers to an aryl group with an alkyl substituent.
- The term alkaryl refers to an alkyl group that has an aryl substituent.
- The term organic or inorganic anion refers to an organic or inorganic moiety that carries a negative charge and can be used as the negative portion of a salt.
- The term “pharmaceutically acceptable cation” refers to an organic or inorganic moiety that carries a positive charge and that can be administered in association with a pharmaceutical agent, for example, as a countercation in a salt. Pharmaceutically acceptable cations are known to those of skill in the art, and include but are not limited to sodium, potassium, and quatemary amine.
- The term “metabolically cleavable leaving group” refers to a moiety that can be cleaved in vivo from the molecule to which it is attached, and includes but is not limited to an organic or inorganic anion, a pharmaceutically acceptable cation, acyl (for example (alkyl)C(O), including acetyl, propionyl, and butyryl), alkyl, phosphate, sulfate and sulfonate.
- The term “enantiomerically enriched composition or compound” refers to a composition or compound that includes at least 95% by weight of a single enantiomer of the compound.
- The term PAF receptor antagonist refers to a compound that binds to a PAF receptor with a binding constant of 30 μM or lower.
- The term 5-lipoxygenase inhibitor refers to a compound that inhibits the enzyme at 30 μM or lower in a broken cell system.
- The term pharmaceutically active derivative refers to any compound that upon administration to the recipient, is capable of providing directly or indirectly, the compounds disclosed herein.
- The 2,5-diaryl tetrahydrothiophenes, pyrrolidines, and tetrahydrofurans, 1,3-diaryl cyclopentanes, and the 2,4-diaryl tetrahydrothiophenes, pyrrolidines and tetrahydrofurans of the above-defined formulas exhibit PAF receptor antagonist activity or inhibit the enzyme 5-lipoxygenase, or have dual activity, and are thus useful in the treatment of humans who have immune and allergic disorders that are mediated by PAF or products of 5-lipoxygenase.
- The following are nonlimiting examples of compounds that fall within Formulas I, II, and III. These examples are merely exemplary and are not intended to limit the scope of the invention.
- N-Alkyl/arylhydroxyureas
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirnethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetralluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenysulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-( 3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trirnethoxyphenyl)tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trinethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Benzyl-N′-hydroxyureldyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Benzyl-N′-hydroxyureidyt)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trethoxyphenyl)tetrahydrofuran
- 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimnethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-propylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-n-pentylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hexyl-N′-hydroxyureldyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-methoxyethylureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Decyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Ethyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Hydroxy-N′-octylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Hydroxyl-N′-otylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- 2-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrothiophene
- Triple Bonded Hydroxamates
- 2-[5-[1-(N-Acetyl-N-hydroxyamino)propyn-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Hydroxy-N-propanoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Butanoyl-N-hydroxyamino)propyn-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Hydroxy-N-cyclohexanecarbonylamino)propyn-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Hydroxy-N-3-phenoxybenzoylamino)propyn-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Hydroxy-N-methoxybenzoylamino)propyn-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Hydroxy-N-hydroxybenzoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy) -3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Triple Bonded Ureas
- 2-[5-[1-(N′-Hydroxy-N′-methylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy) -3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Ethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Hydroxy-N′-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-n-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Hydroxy-N′-i-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-tert-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Benzyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N-Allyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[1-(N′-Hydroxy-N′-hydroxyethylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Double Bonded Hydroxamates: Both Cis and Trans Isomers at the Tetrahydrofuran Ring
- 2-[5-[trans-1-(N-Acetyl-N-hydroxyamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Hydroxy-N-propanoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Butanoyl-N-hydroxyamino)propen-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Hydroxy-N-cyclohexanecarbonylamino)propen-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Hydroxy-N-phenoxybenzoylamino)propen-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Hydroxy-N-methoxybenzoylamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N-Hydroxy-N-hydroxybenzoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Double Bonded Ureas: Both Cis and Trans Isomers at the Tetrahydrofuran Ring
- 2-[5-[trans-1-(N′-Hydroxy-N′-methylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Ethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Hydroxy-N′-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-n-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Hydroxy-N′-i-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-tert-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Benzyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Allyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[5-[trans-1-(N′-Hydroxy-N′-hydroxyethylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxypheny)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3,4,-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimnethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Ethyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(2-bromophenylsultonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-p-Chlorophenyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-tert-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Cyclohexyl-N′-hydroxyureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trinethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-sec-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-propylureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-n-pentylureidyl)-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hexyl-N′-hydroxyureidyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methoxyethylureidyl)-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Decyl-N′-hydroxyureidyl)-4-(2,3,4,5-tetrafluorophenylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N-Ethyl-N-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-octylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(p-bromophenylsulfonylethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Benzyl-N′-hydroxyureidyl)-4-(2-bromrophenyltsufonyethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-i-propylureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-octylureidyl)-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidyl)-4-(3-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-methylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Hydroxy-N′-i-propylureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-(N′-Butyl-N′-hydroxyureidylmethyl)-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Triple Bonded Hydroxamates
- 4-[5-[1-(N-Acetyl-N-hydroxyamino)propyn-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Hydroxy-N-propanoylamino)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Butanoyl-N-hydroxyamino)propyn-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Hydroxy-N-cyclohexanecarbonylamino)propyn-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Hydroxy-N-phenoxybenzoylamino)propyn-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Hydroxy-N-methoxybenzoylamino)propyn-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N-Hydroxy-N-hydroxybenzoylamino)propyn-3-yl]-4-(p-chlorophentylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Triple Bonded Ureas
- 4-[5-[1-(N′-Hydroxy-N′-methylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Ethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Hydroxy-N′-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-n-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Hydroxy-N′-i-propylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-tert-Butyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Benzyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Cyclopropylmethyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Allyl-N′-hydroxyureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[1-(N′-Hydroxy-N′-hydroxyethylureidyl)propyn-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Double Bonded Hydroxamates: Both Cis and Trans Isomers at the Tetrahydrofuran Ring
- 4-[5-[trans-1-(N-Acetyl-N-hydroxyamino)propen-3-yl]-4-(p-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Hydroxy-N-propanoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Butanoyl-N-hydroxyamino)propen-3-yl]-4-(3,4-dichlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Hydroxy-N-cyclohexanecarbonylamino)propen-3-yl]-4-(p-fluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Hydroxy-N-phenoxybenzoylamino)propen-3-yl]-4-(2,3,5,6-tetrafluorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Hydroxy-N-methoxybenzoylamino)propen-3-yl]-4-(2-bromophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N-Hydroxy-N-hydroxybenzoylamino)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- Double Bonded Ureas: Both Cis and Trans Isomers at the Tetrahydrofuran Ring
- 4-[5-[trans-1-(N′-Hydroxy-N′-methylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Ethyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-tmethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Hydroxy-N′-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trinethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-n-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Hydroxy-N′-i-propylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-tert-Butyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Benzyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Cyclopropyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Allyl-N′-hydroxyureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 4-[5-[trans-1-(N′-Hydroxy-N′-hydroxyethylureidyl)propen-3-yl]-4-(p-chlorophenylthioethoxy)-3-methoxyphenyl]-2-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N-methylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N-ethylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-bromophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-3,4-dichlorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-fluorophenylthioethoxy-5-N,N-dipropylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[3-Methoxy-4-(2,3,5,6-tetrafluorophenylthioethoxy)-5-N,N-dipropylaminophenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[3-Methoxy-4-(2-bromophenylthioethoxy)-5-N,N-dipropylaminophenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[3-Methoxy-4-p-chlorophenylthioethoxy-5-(1-pyrrolidinyl)phenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-diethylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-[3-Methoxy-4-p-chlorophenylthioethoxy-5-(4-morpholinyl)phenyl]-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-N,N-dibutylaminophenyl)-5-(3,4,5-trimethoxyphenyl)-tetrahydrofuran
- The 2,5-diaryl tetrahydrofurans, tetrahydrothiophenes, and pyrrolidines. 1,3-cyclopentanes, and the 2,4-diaryl tetrahydrofurans, tetrahydrothiophenes, and pyrrolidines disclosed herein exhibit a number of stereochemical configurations.
Carbon atoms 2 and 5 (or 2 and 4, in the compounds of Formula II) in the center ring are chiral, and thus the center ring exists at a minimum as a diastereomeric pair. Each diastereomer exists as a set of enantiomers. Therefore, based on the chiral C2 and C5 (or C2 and C4, in Formula II) atoms alone, the compound is a mixture of four enantiomers. - If nonhydrogen substituents are located on carbon atoms 3 and 4 in the center ring, (or carbon atoms 3 and 5, in Formula II compounds) then the C3 and C4 atoms are also chiral, and can also exist as a diastereomeric pair, that is also a mixture of four enantiomers.
- The R groups in the active compounds described herein can likewise include chiral carbons, and thus, optically active centers.
- It is sometimes found that one or more enantiomers of a biologically active compound is more active, and perhaps less toxic, than other enantiomers of the same compound. Such enantiomerically enriched compounds are often preferred for pharmaceutical administration to humans. For example, it has been discovered that trans-2,5-diaryl tetrahydrothiophene and trans-2,5-diaryl tetrahydrofuran are often more active PAF receptor antagonists than their cis counterparts.
- One of ordinary skill in the art can easily synthesize and separate the enantiomers of the disclosed compounds using chiral reagents and known procedures, and can evaluate the biological activity of the isolated enantiomer using methods disclosed herein or otherwise known. Through the use of chiral NMR shift reagents, polarimetry, or chiral HPLC, the optical enrichment of the compound can be determined.
- Classical methods of resolution include a variety of physical and chemical techniques. Often the simplest and most efficient technique is repeated recrystallization. Recrystallization can be performed at any stage in the preparation of the compound, or the final enantiomeric product. If successful, this simple approach represents a method of choice.
- When recrystallization fails to provide material of acceptable optical purity, other methods can be evaluated. If the compound is basic, one can use chiral acids that form diastereomeric derivatives that may possess significantly different solubility properties. Nonlimiting examples of chiral acids include malic acid, mandelic acid, dibenzoyl tartaric acid, 3-bromocamphor-8-sulfonic acid, 10-camphorsulfonic acid, and di-p-toluoyltartaric acid. Similarly, acylation of a free hydroxyl group with a chiral acid also results in the formation of diastereomeric derivatives whose physical properties may differ sufficiently to permit separation.
- Enantiomerically pure or enriched compounds can be obtained by passing the racemic mixture through a chromatographic column that has been designed for chiral separations, including cyclodextrin bonded columns marketed by Rainin Corporation.
- A variety of chemical reagents and experimental procedures have been developed in recent years to produce enantiomerically pure or enriched products. For example, individual 2S, 5S or 2R, 5R enantiomers of 2,5-diaryl tetrahydrofurans can be prepared by the method described by Corey et al. (Corey, E. J., et al.,
Tetrahedron Letters 29, 2899 (1988)). - C. Syntheses of Active Compounds
- The 2,5-diaryl tetrahydrofurans and tetrahydrothiophenes disclosed herein can be prepared in a variety of ways known to those skilled in the art, including by methods disclosed in or obvious in view of methods disclosed in U.S. Pat. Nos. 4,539,332, 4,757,084, 4,996,203 and 5,001,123, and European Patent Application Nos. 90306234.7, 90306235.4, and 89202593.3.
- 1,3-Diaryl cyclopentanes can be prepared using the procedure of Graham, et al. (1,3-Diaryl Cyclopentanes: A New Class of Potent PAF Receptor Antagonists. 197th ACS National Meeting, Dallas, Tex., Apr. 9-14, 1989, Division of Medicinal Chemistry, poster no. 25 (abstract)), or by other known methods.
- 2,5-Diaryl pyrrolidines can be prepared by methods known to those skilled in the art including that described by Boekvall, et al. (J. Org. Chem. 55, 826 (1990)).
- 2,4-Diaryl tetrahydrofurans and tetrahydrothiophenes and 2,4-diaryl pyrrolidines can also be prepared by adaptations of methods described herein, or by other known methods.
-
- wherein R is a 2,5-diaryl tetrahydrothiophene, tetrahydrofuran, or pyrrolidine; 1,3-diaryl cyclopentane; or 2,4-diaryl tetrahydrothiophene, tetrahydrofuran or pyrrolidine; with or without a linking moiety, and R′ is a moiety as defined in detail above.
-
-
-
-
-
-
- A method for the preparation of trans-2-[5-(N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3, 4, 5-trimethoxyphenyl)tetrahydrofuran is described in detail in the working example below. This example is merely illustrative, and not intended to limit the scope of the invention.
- 3-(N,N-Dimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone (
compound 101, FIG. 1). 3,4,5-Trimethoxyacetophenone (50 g, 237.8 mmole), paraformaldehyde (9.75 g, 304.7 mmole), dimethylamine hydrochloride (26.42 g, 324.0 mmole) and 5 mL conc. HCl were dissolved in 200 mL absolute ethanol and refluxed for 10 hours. Additional dimethylamine hydrochloride (13.21 g, 162.0 mmole) and paraformaldehyde (9.75 g, 304.7 mmole) were added and the solution returned to reflux. After 54 hours (total reaction time), 80 mL of 10% HCl and 500 mL of water were added and the solution was extracted with ethyl ether. The acidic aqueous layer was adjusted to pH 10 with 10% NaOH. The basic solution was extracted with ethyl acetate, dried over MgSO4, filtered and evaporated in vacuo to provide 57.5 g of a yellow oil (92%). 1H NMR (CDCl3): 2.30 (s, 6H); 2,74 (t, 2H); 3.11 (t, 3H); 3.91 (s, 9H); 7.23 (s, 1H); 7.32 (s, 1H). - 3-(N,N,N-Trimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone iodide (
compound 102, FIG. 1). 3-(N,N-Dimethylamino)-1-(3,4,5-trimethoxyphenyl)-1-propanone (57 g, 213.5 mmole) was dissolved in 200 mL of anhydrous diethyl ether. To this solution was added methyl iodide (57.6 g, 405.7 mmole). A white precipitate formed immediately, and the reaction mixture was stirred at room temperature for an additional 2 hours. This product was isolated by suction filtration (83.8 g, 96%) - 3,4,5-Trimethoxyphenylvinylketone (
compound 103, FIG. 1). 3-(N,N,N-Trimethylamino) -1-(3,4,5-trimethoxyphenyl)-1-propanone iodide (50 g, 120 mmole) was dissolved in H2O (500 mL) and ethyl acetate (500 mL) was added. The mixture was vigorously stirred at reflux for 3 hours. The reaction mixture was cooled and the layers were separated. To the aqueous phase was added ethyl acetate (400 mL). This was brought to reflux for 1.5 hours. The reaction mixture was cooled and separated. The combined organic layers were washed with saturated NaCl solution, dried over Na2SO4, filtered and concentrated in vacuo to an oil which was purified by flash column cbromatography using 3:1 hexane/ethyl acetate as solvent (14.7 g, 54%). 1H NMR (CDCl3): 3.92 (s, 9H); 5.92 (d, 1H); 6.44 (d, 1H); 7.12 (m, 1H); 7.22 (s, 2H). - 3-Methoxy-4-hydoxyethoxy-5-iodobenzaldehyde (
compound 104, FIG. 1). 5-Iodovanillin (25 g, 90 mmol) in DMF (100 mL) was added to potassium carbonate (18.6 g, 135 mmol). The mixture was heated at 40° C. for 16 hours. The reaction mixture was allowed to cool to room temperature and quenched with water (500 mL) and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, and dried over MgSO4, filtered and evaporated in vacuo to an oil, and then purified by column chromatography (silica, 2:1 hexane/ethyl acetate), to provide the product (16.6 g, 57%). 1H NMR (CDCl3): 2.70 (t, 1H); 3.92 (t, 2H); 3.92 (s, 3H); 3.94 (s, 3H); 4.29 (t, 2H); 7.44(s,1H); 7.87 (s, 1H); 9.85 (s, 1H). - 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanedione (
compound 105, FIG. 1). 3,4,5-Trimethoxyphenylvinylketone (4.8 g, 21.6 mmol), 3-methoxy-4-hydroxyethoxy-5-iodobenzaldehyde (5.7 g, 17.8 mmol), and 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (1.9 g, 7.0 mmol) were stirred in triethylamine (20 mL) at 60° C. for 16 hours. The reaction mixture was then acidified with 10% HCl, and extracted with dichloromethane. The organic layer was dried over MgSO4, filtered and evaporated in vacuo. The product was purified in column chromatography (silica. 1:1 hexane/ethyl acetate) as a solid (9.7 g, 51%). 1H NMR (CDCl3): 3.41 (m, 4H); 3.90 (m, 2H); 3.92 (s, 3H); 3.93 (s, 9H); 4.26 (t, 2H); 7.29 (s, 2H); 7.57 (d, 1H); 8.08 (d, 1H). - 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl) -1,4-butanediol (
compound 106, FIG. 1). 1-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanedione (11.6 g, 21.3 mmol), was added to 120 mL tetrahydrofuran and 240 mL methanol. To this solution was added dropwise sodium borohydride (1.45 g, 38.4 mmol), in 60 mL water. The reaction mixture was stirred at room temperature for 2.5 hours, and then cooled, quenched with water, and the aqueous layer extracted with ethyl acetate. The organic layer was dried over MgSO4, filtered and evaporated in vacuo to provide the product (11.8 g, 98.8%). 1H NMR (CDCl3): 1.84 (m, 4H); 3.84 (m, 2H); 3.86 (s, 3H); 3.87 (s, 9H); 4.15 (t, 2H); 4.68 (m, 2H); 6.57 (s, 2H); 6.91 (s, 1H); 7.32 (s, 1H). - trans-2-(3-Methoxy-4-hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (
compound 107, FIG. 1). To 1-(3-methoxy-4-hydroxyethoxy-5-iodophenyl)-4-(3,4,5-trimethoxyphenyl)-1,4-butanediol (11.8 g 21.5 mmol) in chloroform (100 mL) at 0° C. was added dropwise trifluoroacetic acid (9.82 g, 86.1 mmol) in chloroform (100 mL) over 30 minutes. The solution was stirred at 0° C. for 2 hours and then at room temperature for 1 hour. The reaction mixture was quenched with 1N NaOH and chloroform (100 mL) was added. The organic layer was washed with 1N NaOH solution, water and saturated NaCl solution, and then dried over MgSO4, filtered and evaporated in vacuo to an oil which was a cis and trans mixture. The trans isomer was isolated by column chromatography (silica, 1:1 hexane/ethyl acetate) (4.7 g, 41.4%) as the faster eluting isomer. 1H NMR (CDCl3): 1.99 (m, 2H); 2.47 (m, 2H); 3.83 (t, 2H); 3.84 (s, 3H); 3.87 (s, 3H); 3.89 (s, 6H); 4.16 (t, 2H); 5.18 (m, 2H); 6.62 (s, 2H); 6.96 (d, 1H); 7.39 (d, 1H). - trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (
compound 108, FIG. 1). To the solution of trans-2-(3-methoxy-4hydroxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (4.7 g, 8.87 mmol) in dichloromethane (50 mL) at 0° C. was added methylsulfonyl chloride (3.05 g, 26.6 mmole) and triethylamine (2.69 g, 26.60 mmol). The reaction mixture was stirred at 0° C. for 2 hours and room temperature overnight. The solvent was evaporated in vacuo and the residue purified by column chromatography (silica, 1:1 hexanelethyl acetate) (4.17 g, 77.3%). 1H NMR (CDCl3): 1.98 (m, 2H); 2.45 (m, 2H); 3.15 (s, 3H); 3.84 (s, 3H); 3.88 (s, 9H); 4.26 (t, 2H); 4.61 (t, 2H); 5.17 (m, 2H); 6.62 (s, 2H); 6.96 (d, 1H); 7.38 (d, 1H). - trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (
compound 109, FIG. 1), trans-2-(3-Methoxy-4-methylsulfoxyethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.5 g, 4.11 mmol) was dissolved in 50 mL ethanol. To this solution was added 4-chlorothiophenol (1.19 g, 8.22 mmol) and triethylamine (0.831 g, 8.22 mmol). The reaction mixture was refluxed for 16 hours and then the solvent was removed in vacuo. The residue was purified by column chromatography (silica, 3:1 hexanelethyl acetate) (2.35 g, 87%). 1H NMR (CDCl3): 1.97 (m, 2H); 2.45 (m, 2H); 3.35 (t, 2H); 3.82 (s, 3H); 3.84 (s, 3H); 3.88 (s, 6H); 4.11 (t, 2H); 5.17 (m, 2H); 6.61 (s, 2H); 6.92 (s, 1H); 7.26 (d, 2H); 7.33 (d, 2H); 7.35 (s, 1H). - trans-2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (
compound 110, FIG. 1), trans-2-(3-Methoxy-4p-chlorophenylthioethoxy-5-iodophenyl)-5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (2.35 g, 3.58 mmole) and CuCN (0.358 g, 4.30 mmole) in DMF (20 mL) were heated at 140° C. for 16 hours. The reaction mixture was cooled and quenched with water and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, dried over MgSO4, filtered and evaporated in vacuo to oil which was purified by column chromatography (silica, 2:1 hexanelethyl acetate) (1.79 g, 90.0%). 1H NMR (CDCl3): 1.99 (m, 2H); 2.47 (m, 2H); 3.32 (t, 2H); 3.85 (s, 6H), 3.89 (s, 6H); 4.27 (t, 2H); 5.17 (m, 2H); 6.61 (s, 2H); 7.16 (s, 2H); 7.28 (d, 2H); 7.32 (d, 2H). - trans 2-(3-Methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl)-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (
compound 111, FIG. 1). To trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-cyanophenyl)-5-(3,4,5-trimethoxyphenyl tetrahydrofuran (300 mg, 0.5405 mmol) in THF (10 mL) was added sodium borohydride (36.8 mg, 0.9729 mmol) and boron trifluoride etherate (191.8 mg. 1.3512 mmol) dropwise. The reaction mixture was refluxed for 1 hour, cooled, and then treated with a few drops of 10% HCl. The reaction mixture was poured into 10% K2CO3 and extracted with ethyl acetate. The organic layer was washed with water and saturated NaCl solution, dried over MgSO4, filtered and evaporated in vacuo to an oil which was purified by column chromatography (silica, 93:7 CH2Cl2/MeOH) 64 mg, 21.2%). 1H NMR (CDCl3): 1.99 (m, 2H); 2.46 (m, 2H); 3.28 (t, 2H); 3.84 (s, 6H); 3.88 (s, 6H); 4.26 (t, 2H); 5.19 (m, 2H); 6.71 (s, 2H); 6.90 (s, 2H); 7.25 (d, 2H); 7.32 (d, 2H). - trans-2-[5-(N′-Methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxypenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran (29, FIG. 1), trans-2-(3-methoxy-4-p-chlorophenylthioethoxy-5-aminomethylphenyl) -5-(3,4,5-trimethoxyphenyl) tetrahydrofuran (54 mg, 0.0966 mmol) was dissolved in 4 mL dry dichloromethane. To this solution was added triphosgene (9.46 mg, 0.0319 mmol) and triethylamine (9.77 mg, 0.0966 mmol). The reaction mixture was refluxed for 2 hours and then cooled to room temperature. To this solution was then added triethylamine (35.2 mg, 0.3478 mmol) and methylhydroxyamine hydrochloride (24.2 mg. 0.2898 mmol). The reaction mixture was stirred at room temperature overnight, and then quenched with water and extracted with dichloromethane. The organic layer was washed with water and saturated NaCl solution, dried over MgSO4, filtered and evaporated in vacuo. The product was purified by column chromatography (silica, ethyl acetate) (49 mg, 80.1%). 1H NMR (CDCl3): 1.97 (m, 2H); 2.43 (m, 2H); 3.08 (s, 3H); 3.27 (t, 2H); 3.82 (s, 3H); 3.83 (s, 3H); 3.87 (s, 6H); 4.15 (t, 2H); 4.39 (d, 2H); 5.17 (m, 2H); 6.41 (t, 1H); 6.51 (s, 2H); 6.78 (broad s, 1H); 6.90 (s, 2H); 7.24 (d, 2H); 7.31 (d, 2H).
- Humans, equine, canine, bovine and other animals, and in particular, mammals, suffering from inflammatory diseases, and in particular, disorders mediated by PAF or products of 5-lipoxygenase can be treated by administering to the patient an effective amount of one or more of the above-identified compounds or a pharmaceutically acceptable derivative or salt thereof in a pharmaceutically acceptable carrier or diluent to reduce formation of oxygen radicals. The active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid, cream, gel or solid form.
- As used herein, the term pharmaceutically acceptable salts or complexes refers to salts or complexes that retain the desired biological activity of the above-identified compounds and exhibit minimal undesired toxicological effects. Nonlimiting examples of such salts are (a) acid addition salts formed with inorganic acids (for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, and the like), and salts formed with organic acids such as acetic acid, oxalic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, tannic acid, pamoic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid, and polygalacturonic acid; (b) base addition salts formed with metal cations such as zinc, calcium, bismuth, barium, magnesium, aluminum, copper, cobalt, nickel, cadmium, sodium, potassium, and the like, or with a cation formed from ammonia, N,N-dibenzylethylene-diamine, D-glucosamine, tetraethylammonium, or ethylenediamine; or (c) combinations of (a) and (b); e.g., a zinc tannate salt or the like. The compounds can also be administered as pharmaceutically acceptable quaternary salts known by those skilled in the art, which specifically include the quaternary ammonium salt of the formula —NR-Z—, wherein R is alkyl or benzyl, and Z is a counterion, including chloride, bromide, iodide, —O-alkyl, toluenesulfonate, methylsulfonate, sulfonate, phosphate, or carboxylate (such as benzoate, succinate, acetate, glycolate, maleate, malate, citrate, tartrate, ascorbate, benzoate, cinnamoate, mandeloate, benzyloate, and diphenylacetate.
- The active compound is included in the pharmaceutically acceptable carrier or diluent in an amount sufficient to deliver to a patient a therapeutically effective amount without causing serious toxic effects in the patient treated. A preferred dose of the active compound for all of the above-mentioned conditions is in the range from about 0.01 to 300 mg/kg, preferably 0.1 to 100 mg/kg per day, more generally 0.5 to about 25 mg per kilogram body weight of the recipient per day. A typical topical dosage will range from; 0.01-3% wt/wt in a suitable carrier. The effective dosage range of the pharmaceutically acceptable derivatives can be calculated based on the weight of the parent compound to be delivered. If the derivative exhibits activity in itself, the effective dosage can be estimated as above using the weight of the derivative, or by other means known to those skilled in the art.
- The compound is conveniently administered in any suitable unit dosage form, including but not limited to one containing 1 to 3000 mg, preferably 5 to 500 mg of active ingredient per unit dosage form. A oral dosage of 25-250 mg is usually convenient.
- The active ingredient should be administered to achieve peak plasma concentrations of the active compound of about 0.01-30 mM, preferably about 0.1-10 mM. This may be achieved, for example, by the intravenous injection of a solution or formulation of the active ingredient, optionally in saline, or an aqueous medium or administered as a bolus of the active ingredient.
- The concentration of active compound in the drug composition will depend on absorption, distribution, inactivation, and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition. The active ingredient may be administered at once, or may be divided into a number of smaller doses to be administered at varying intervals of time.
- Oral compositions will generally include an inert diluent or an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a dispersing agent such as alginic acid. Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or enteric agents.
- The active compound or pharmaceutically acceptable salt or derivative thereof can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like. A syrup may contain, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
- The active compound or pharmaceutically acceptable derivatives or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, other antiinflammatories, or antiviral compounds.
- Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite: chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- If administered intravenously, preferred carriers are physiological saline or phosphate buffered saline (PBS).
- In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation (CA) and Scios Nova (Baltimore, Md.). Liposomal suspensions may also be pharmaceutically acceptable carriers. These may be prepared-according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (which is incorporated herein by reference in its entirety). For example, liposome formulations may be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound or its monophosphate, diphosphate, and/or triphosphate derivatives are then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
- A wide variety of biological assays have been used to evaluate the ability of a compound to act as a PAF receptor antagonist, including the ability of the compound to bind to PAF receptors, and the effect of the compound on various PAF mediated pathways. Any of these known assays can be used to evaluate the ability of the compounds disclosed herein to act as PAF receptor antagonists.
- For example, PAF is known to induce hemoconcentration and increased permeability of microcirculation leading to a decrease in plasma volume. PAF mediated acute circulatory collapse can be used as the basis of an assay to evaluate the ability of a compound to act as a PAF antagonist, by analyzing the effect of the compound on PAF induced decreased plasma volume in an animal model such as mouse. Endotoxemia causes the release of chemical mediators including eicosanoids, PAF, and tumor necrosis factor (TNF) that stimulate a variety of physiologic responses including fever, hypotension, leukocytosis, and disturbances in glucose and lipid metabolism. Endotoxemia can result in severe shock and death. Endotoxin-induced mouse mortality is a useful animal model to evaluate the pharmacological effect of compounds on endotoxic shock.
- Two other common assays used to evaluate the ability of a compound to act as a PAF receptor antagonist are platelet aggregation in vitro and hypotension in rats (Shen, et al., “The Chemical and Biological Properties of PAF Agonists, Antagonists, and Biosynthetic Inhibitors”,Platelet-Activating Factor and Related Lipid Mediators, F. Snyder. Ed. Plenum Press, New York, N.Y. 153 (1987)).
- A wide variety of biological assays have also been used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase. For example, a cytosol 5-lipoxygenase of rat basophilic leukemia ceuls (RBL) has been widely utilized in studies on leukotriene biosynthesis. Compounds that inhibit 5-lipoxygenase decrease the levels of leukotrienes. Another biological assay used to evaluate the ability of a compound to inhibit the enzyme 5-lipoxygenase is based on the classic pharmacological model of inflammation induced by the topical application of arachidonic acid to the mouse ear. On application, arachidonic acid is converted by 5-lipoxygenase to various leukotrienes (and other mediators), which induce changes in blood flow, erythema, and increase vasodilation and vasopermeability. The resulting edema is measured by comparing the thickness of the treated ear to a control ear. Agents that inhibit 5-lipoxygenase reduce the edematous response, by lowering the amounts of biochemical mediators formed from arachidonic acid.
- a) Preparation of Human Platelet Membranes
- Human platelet membranes were prepared from platelet concentrates obtained from the American Red Cross Blood Services (Dedham, Mass.). After several washes with platelet wash solution (150 mM NaCl, 10 mM Tris, and 2 mM EDTA, pH 7.5), the platelet pellets were resuspended in 5 mM MgCl. 10 mM Tris, and 2 mM EDTA at pH 7.0. The cells were then quickly frozen with liquid nitrogen and thawed slowly at room temperature. The freezing and thawing procedure was repeated at least three times. For further fractionation of membrane fragments, the lysed membrane suspension was layered over the top of a discontinuous sucrose density gradient of 0.25, 1.03, and 1.5 M sucrose prepared in 10 mM MgCl2, 10 mM Tris and 2 mM EDTA, pH 7.0, and centrifuged at 63,500×g for 2 hr. The membrane fractions banding between 0.25 and 1.03 M (membrane A) and between 1.03 and 1.5 M (membrane B) were collected separately. The protein concentration of the membrane preparations was determined by Lowry's method with bovine serum albumin (BSA) as the standard. The membranes were then separated into smaller fractions (4 ml each) and stored at −80° C. and thawed before use.
- b) [3H]PAF Binding inhibition
- The ability of [3H]PAF to bind to specific receptors on human platelet membranes was evaluated at optimal conditions at pH 7.0 and in the presence of 10 mM MgCl2. Membrane protein (100 μg) was added to a final 0.5 ml solution containing 0.15 pmol (0.3 nM concentration) of [3H]PAF and a known amount of unlabeled PAF or PAF receptor antagonist in 10 mM MgCl2, 10 mM Tris and 0.25% BSA at pH 7.0. After incubation for four hours at 0° C., the bound and unbound [3H]PAF were separated through a Whatman GF/C glass fiber filter under vacuum. No degradation of filter bound [3H]PAF has been detected under this assay condition. The nonspecific binding was defined as the total binding in the presence of excess unlabeled PAF (1 mM) where no further displacement was found with higher concentrations of either unlabeled PAF or PAF analogs or PAF receptor antagonists. The specific binding was defined as the difference between total binding and nonspecific binding.
- To determine the relative potency of tested compounds, [3H]PAF binding in the presence of inhibitors was normalized in terms of percent inhibition by assigning the total binding in the absence of inhibitors as 0% inhibition and the total binding in the presence of 1 mM unlabeled PAF as 100%. The percent inhibition by the compound can be calculated by the formula expressed below:
- The IC50 was calculated as the concentration of the inhibitor necessary to obtain 50% inhibition of the specific [3H]PAF binding and was calculated by a nonlinear regression computer software program, GraphPad Inplot, version 3.0 (GraphPad software, San Diego, Calif.). Tables 1 and 2 provide IC50 values for a number of the disclosed compounds.
TABLE 1 IC50(nM) Compounds A B PAF 5-LO 1 S—Ph-p-Br* CH2CH2CH2CH3 20.9 18.7 2 SO2—Ph-p-Br CH2CH2CH2CH3 38.3 3 S—Ph-2-Br CH2CH2CH2CH3 23.0 33.0 4 SO2—Ph-2-Br CH2CH2CH2CH3 25.0 161.0 5 S—Ph-3-Br CH2CH2CH2CH3 16.0 43.3 6 S—Ph-p-F CH2CH2CH2CH3 45.0 63.8 7 S—Ph-2,3,5,6-F CH2CH2CH2CH3 2.2 118.4 8 SO2—Ph-2,3,5,6-F CH2CH2CH2CH3 285.3 520.2 9 O—Ph-2,3,5,6-F CH2CH2CH2CH3 55.3 132.8 10 S—Ph-p-Cl CH2CH2CH2CH3 10.0 58.5 11 S—Ph-3,4-Cl CH2CH2CH2CH3 45.0 17.4 12 S—Ph-p-OH CH2CH2CH2CH3 5.53 180.0 13 S—Ph-p-OCH3 CH2CH2CH2CH3 39.2 71.2 14 S—Ph-p-CN CH2CH2CH2CH3 62.6 62.3 15 SCH3 CH2CH2CH2CH3 13.5 190.0 16 OCH3 CH2CH2CH2CH3 195.2 17 CH2CH2CH2CH3 281.0 87.0 18 CH2CH2CH2CH3 390.6 19 CH3 321.2 719.0 20 CH2Ph 622.7 900.9 21 CH2CH2CH2CH3 321.8 366.3 22 CH2CH2CH2CH3 16.3 479.0 23 CH2CH2CH2CH3 197.4 24 Ph-p-Cl 84.2 25 Ph-p-Cl 6285 670.0 26 CH3 Ph-p-Cl 217.6 533.0 27 S—Ph-p-OH Ph-p-Cl 26.9 3000 28 SCH3 Ph-p-Cl 317.7 3000 -
TABLE 2 IC50(nM) Compounds A B PAF 5-LO 29 S—Ph-p-Cl CH2NHCON(OH)CH3 7.60 22.2 30 S—Ph-p-Cl CH2N(CH2CH2CH3)CON(OH)CH3 7.40 31 S—Ph-p-Cl CH2N(OH)CONH2 33.2 34.2 32 S—Ph-p-Cl CH2N(OH)CON 06 185.0 33 S—Ph-p-Cl NHCOCH2N(OH) 318.0 34 S—Ph-p-Cl NHCOCH2N(OH)CONHCH3 3318.8 35 O—Ph-p-F ≡—CH2N(OH)CONH2 73.9 828.2 36 S—Ph-p-Cl ≡—CH2N(OH)CONH2 11.3 - a) Animals
- Female CD-1 mice, weighing 16-20 grams, were obtained from Charles River Laboratory (Wilmington, Mass.). Tap water and rodent laboratory chow (5001, Purina Mills, St. Louis, Mo.) were provided ad libitum. The mice were housed for an average of four days prior to use.
- b) Hematocrit Measurement
- PAF (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, Sigma Chemical Co.) was dissolved in 0.25% bovine serum albumin (BSA) in 0.9% NaCl solution. Except for dose-response studies, 10 μg (10 ml/kg) of PAF solution was injected into the tail vein. All test compounds were dissolved in 0.5 DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Thirty to fifty μL blood was collected by cutting the tail end into a heparinized micro-hematocrit tube (O.D. 1.50 mm) 15 minutes after PAF administration. Table 2 provides the mouse hematocrit response to varying concentration of PAF at 15 minutes after injection of PAF. Tables 3 and 4 provide the effect of various test compounds on PAF-induced mouse hemoconcentration; the reference compound MK287 is trans-2-(3,4,5-trimethoxy)-5-(3-methoxy-4-oxyallyl-(2-hydroxyethylsulfonyl))-tetrahydrofuran. (Sahoo, et al., Bioorganic Medicinal Chem. Letters, (1991), 1, 327.)
- a) Animals
- The animals were obtained and treated as in Example 3 above.
- b) Edema Measurement
- Arachidonic acid was applied to both ears of mice in 0.025 ml of freshly prepared vehicle (acetone:pyridine:water) (97:2:1 v/v/v) and dried under a Sun-Lite Hitensity bulb. Except for dose-response studies, 0.5 mg of arachidonic acid was used for all applications. All test compounds were dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to arachidonic acid treatment. Animals were sacrificed by cervical dislocation at 1 hour after topical application of arachidonic acid. A 7 mm-diameter disc of tissue was removed from each ear by means of a metal punch. Edema was measured by the average wet weight of the both ear tissues.
- Tables 3 and 4 provides the effect of various test compounds on arachidonic acid induced mouse ear edema.
TABLE 3 InH (%)* Compounds A B PAF-Htc AA-Ed 1 S—Ph-p-Br CH2CH2CH2CH3 −10.5 −2.7 2 SO2—Ph-p-Br CH2CH2CH2CH3 29.3 34.5 3 S—Ph-2-Br CH2CH2CH2CH3 34.2 26.3 4 SO2—Ph-2-Br CH2CH2CH2CH3 60.4 −9.1 5 S—Ph-3-Br CH2CH2CH2CH3 28.2 40.2 6 S—Ph-p-F CH2CH2CH2CH3 33.6 7 S—Ph-2,3,5,6-F CH2CH2CH2CH3 58.8 30.4 8 SO2—Ph-2,3,5,6-F CH2CH2CH2CH3 50.4 11.9 9 O—Ph-2,3,5,6-F CH2CH2CH2CH3 59.1 29.2 10 S—Ph-p-Cl CH2CH2CH2CH3 25.3 39.2 11 S—Ph-3,4-Cl CH2CH2CH2CH3 26.1 26.3 12 S—Ph-p-OH CH2CH2CH2CH3 33.5 49.9 13 S—Ph-p-OCH3 CH2CH2CH2CH3 23.6 2.7 14 S—Ph-p-CN CH2CH2CH2CH3 −12.4 46.5 15 SCH3 CH2CH2CH2CH3 11.1 41.1 16 OCH3 CH2CH2CH2CH3 11.2 17 CH2CH2CH2CH3 26.1 57.0 19 CH3 49.6 47.8 20 CH2Ph 63.1 49.9 21 CH2CH2CH2CH3 70.4 57.0 26 CH3 Ph-p-Cl 23.7 -
- a) Animals
- The mice are obtained and treated as in Example 3 above.
- b) Mortality Measurement
- Endotoxin (E. coli serotype 0127:B8, lipopolysaccharide, Sigma Chemical Co. (St. Louis, Mo.) are freshly dissolved in 0.9% NaCl solution. Except for dose-response studies, endotoxin at 50 mg/kg is injected into the tail vein. All test compounds are dissolved in 0.5% DMSO saline solution and intravenously injected at 3 mg/kg body weight 15 minutes prior to PAF challenge. Death occurs typically within 12-36 hours. Mortality is recorded 48 hours after endotoxin challenge, as death rarely occurs after 48 hours.
- a) Enzyme Preparation
- Washed rat RBL cells (4×108) are suspended in 20 ml of 50 M potassium phosphate buffer at pH 7.4 containing 10% ethylene glycol/1 mM EDTA (Buffer A). The cell suspension is sonicated at 20 KHz for 30 seconds, and the sonicate is centrifuged at 10.000×g for 10 minutes, followed by further centrifugation at 105,000×g for 1 hr. The supernatant solution (cytosol fraction) containing 5-lipoxygenase is stored at −70° C. Protein concentration is determined according to the procedure of Bradford (Bradford Dye Reagent) with bovine serum albumin as a standard.
- b) Enzyme Assay
- For routine assay of 5-LO the mixture contains 50 mM potassium phosphate buffer at pH 7.4, 2 mM CaCl2. 2 mM ATP, 25 M arachidonic acid (0.1 Ci) and enzyme (50-100 mg of protein) in a final volume of 200 L. The reaction is carried out at 24° C. for 3 minutes. The mixture is extracted with 0.2 ml of an ice-cold mixture of ethyl ether:methanol: 0.2 M citric acid (30:4:1). The extract is subjected to thin-layer chromatography at −10° C. in a solvent system of petroleum ether:ethyl ether:acetic acid (15:85:0.1) The silica gel zones corresponding to authentic arachidonic acid and its metabolites are scraped into scintillation vials for counting. The enzyme activity is expressed in terms of the amount of arachidonic acid oxygenated for 3 minutes.
- Modifications and variations of the present invention relating to compounds that reduce the formation of oxygen radicals during an inflammatory or immune response will be obvious to those skilled in the art from the foregoing detailed description of the invention. Such modifications and variations are intended to come within the scope of the appended claims.
Claims (25)
1. A compound of the formula:
wherein:
X is O, S, S(O), S(O)2, CR9, or NR10;
W is independently:
(1) —AN(OM)C(O)N(R3)R4, —AN(R3)C(O)N(OM)R4, —AN(OM)C(O)R4, —AC(O)N(OM)R4, —N(OM)C(O)N(R3)R4, —N(R3)C(O)N(OM)R4, —N(OM)C(O)R4, —C(O)N(OM)R4, —OR6N(R5)R6—(C5H4N)R6R7, —OR6N(COR5)R6—(C5H4N)R6R7, —OR6OC(O)N(COR5)R6—(C5H4N)R6R7, —OR6O(CO)N(CO2R6)R6(C5H4N)R6R7, —A(C5H4N)R6R7, or —OR6N(CO2R5)R6—(C5H4N)R6R7;
(2) an amidohydroxyurea of the formula: —N(R19)C(O)C(R19)2N(OM)C(O)NHR20, —C(O)N(R19)C(R19)2N(OM)C(O)NHR20, —AN(R19)C(O)C(R19)2N(OM)C(O)NHR20, —AC(O)N(R19)C(R19)2N(OM)C(O)NHR20, —NHC(O)N(OM)C(R19)2C(O)N(R19)2; or —NHC(O)N(OM)C(R19)2N(R19)C(O)R19;
(3) an oxalkane of the structure:
wherein n and m are independently 1-4;
(4) a thioalkane of the structure:
or (5) a quinolylinethoxy of the structure:
n is 1 or 2;
m is 1, 2 or 3;
p is 0 or 1;
A is alkyl, alkenyl, alkynyl, alkyaryl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, —C1-10alkyl(oxy)C1-10alkyl, —C1-10alkyl(thio)C1-10alkyl, —N(R3)C(O)alkyl, —N(R3)C(O)alkenyl, —N(R3)C(O)alkynyl, —N(R3)C(O)(alkyl)oxy(alkyl), —N(R3)C(O)(alkyl)thio(alkyl), —N(R3)C(O)N(alkyl), —N(R3)C(O)N(alkenyl), —N(R3)C(O)N(alkynyl), —N(R3)C(O)N(alkyl)oxy(alkyl), —N(R3)C(O)N(alkyl)thio(alkyl), —N(R3)C(O2)alkyl, —N(R3)C(O2)alkenyl, —N(R3)C(O2)alkynyl, —N(R3)C(O2)(alkyl)oxy(alkyl), —N(R3)C(O2)(alkyl)thio(alkyl), —OC(O2)alkyl, —OC(O2)alkenyl, —OC(O2)alkynyl, —OC(O2)(alkyl)oxy(alkyl), —OC(O2)(alkyl)thio(alkyl), —N(R3)C(S)alkyl, —N(R3)C(S)alkenyl, —N(R3)C(S)alkynyl, —N(R3)C(S)(alkyl)oxy(alkyl), —N(R3)C(S)(alkyl)thio(alkyl), —N(R3)C(S)N(alkyl), —N(R3)C(S)N(alkenyl), —N(R3)C(S)N(alkynyl), —N(R3)C(S)N(alkyl)oxy(alkyl), —N(R3)C(S)N(alkyl)thio(alkyl), —N(R3)C(S)S(alkyl), —N(R3)C(S)S(alkenyl), —N(R3)C(S)S(alkynyl), —N(R3)C(S)S(alkyl)oxy(alkyl), —N(R3)C(S)S(alkyl)thio(alkyl), —SC(S)S(alkyl), —SC(S)S(alkenyl), —SC(S)S(alkynyl), —SC(S)S(alkyl)oxy(alkyl), and —SC(S)S(alkyl)thio(alkyl);
M is hydrogen, a pharmaceutically acceptable cation, or a metabolically cleavable leaving group;
Y is independently;
(a) hydrogen;
(b) R1-6, R8, R10, —OR3, —OR11, —OR12, R3S—, R5S, R3SO—, R5SO—, R3SO2—, R5SO2—, CF3O—, CF3S—, CF3SO—, —CF3SO2, —OCH2oxycyclopropyl, —OCH2C(O)OR3, —OCH2OR3, —OCH2C(O)R3, —OCH2C3-8cycloalkyl, —OCH2CH(R)R3, —OCH2cyclopropyl, —OCH2-aryl, —OCH2CH(OH)CH2OH, aryl-CH2—SO2—, (R3)2CHCH2SO2—, —CH2CH(OH)CH2OH, CF3SO2—, R3R4N—, —OCH2CO2R3, —NR3COR3, —OCONH2, —OCONR3R4, —CONH2, —CONR3R4, —CR3R3R4, —SO2NR3R4, —SONR3R4, CH3OCH2ONR3R6, —SNR3R4, —CO2R3, —NR3R4SO2R3, —NR3R4SOR, —COR3, —CONR3, —NO2, —CN, —N(R5)CONR3R4, —CH2N(R5)CONR3R4, —R6NR3R4, —OR6NR3R4, —O(O)CR5, —O(O)CNR3R4,
—SR6NR3R4, —S(O)R6NR3R4, —SO2R6NR3R4,
—SR6OH; —S(O)R6OH; —SO2R6OH; —OR6OC(O)N(CO2R6)R6; O-alkyl-N-(aryl)-C(O)-heterocycle;
(c) a heterocycle, including but not limited to, pyrryl, furyl, pyridyl, 1,2,4-thiadiazolyl, pyrimidyl, thienyl, isothiazolyl, imidazolyl, tetrazolyl, pyrazinyl, pyrinidyl, quinolyl, isoquinolyl, benzothienyl, isobenzofuryl, pyrazolyl, indolyl, purinyl, carbozolyl, benzamidazolyl, and isoxazolyl, optionally substituted with a group described in Y section (b);
(d)
wherein X′ is halo, —C(O)aryl, CF3, or OR3; —NR3C(O)R3; —OC(O)NH2; —CR3R3R4; —C(O)R3; —CH2OR3; —CH2CO2R3; —CH2OC(O)R3; R3CH(R3)CH2SO3—; —NHCH2COOR3; halo such as F, Cl, Br and I; N+R3R3R4R7; —NR3SO2R3; —C(O)R3; NO2; or CN; or
wherein R13, R14 and R15 independently represents: BO— wherein B is —CH2-oxacyclopropyl, —CH2OR3, —CH2C(O)R3, —CH2CH(R3)R3, —CH2Aryl, —CH2CH(OH)—CH2OH; R3C(R3)2CH2SO2; or R13—R14 or R14—R15 are joined together to form a bridge such as —OCHR2CHR2—S(O)2— wherein n is 0 to 3; or
where X′ is halo, —C(O)aryl, CF3, or OR3; —CH2OR3; —CH2CO2R3; —CH2C(O)R3; —NHCH2COOR3; —N+R3R3R4R7.
R1 and R2 are independently hydrogen, halogen, or lower alkyl, halo lower alkyl, halo, —COOH, —CONR16R17 wherein R16 and R17 independently represent C1-6 alkyl and hydrogen, —COOR3, alkenyl, —C(O)R3; —CH2OR3; lower alkynyl, CH2NR4R3; —CH2SR3; ═O; —OR3; or —NR3R3;
R3 and R4 are independently cyclic and acyclic alkyl, alkenyl, alkynyl, aryl, aralkyl, alkyaryl, hydrogen, C1-6 alkoxy-C1-10 alkyl, C1-6 alkylthio-C1-10 alkyl, and C1-10 substituted alkyl (wherein the substituent is independently hydroxy or carbonyl, located on any of C1-10);
R5 is cyclic and acyclic lower alkyl, lower alkenyl, lower alkynyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, aralkyl, or aryl;
R6 is cyclic and acyclic lower alkyl, lower alkenyl, lower alkynyl, aralkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, or aryl;
R7 is an organic or inorganic anion;
R8 is halo alkyl, halo lower alkyl, halo lower alkenyl, halo lower alkynyl, lower alkenyl, lower alkynyl, aralkyl, or aryl;
R9 is independently hydrogen, halogen, lower alkyl, halo lower alkyl, lower alkenyl, lower alkynyl, —CONR3R4, —C(O)R5, —CO2R5, —CH2OR5, —CH2NR5R5, —CH2SR5, ═O, ═NR5, —NR3R4, —NR3R4R7, or —OR5;
R10 is —R3, —R8, —C(O)N(OR3)R3, or —OR3;
R11 is phenyl-S(O)g-lower alkyl-; (R3O)d-phenyl-S(O)g-lower alkyl-; (CN)d-phenyl-S(O)g-lower alkyl-; (halo)d-phenyl-S(O)g-lower alkyl-; (R3COO)d-phenyl-S(O)g-lower alkyl-; (R3OCO)d-phenyl-S(O)g-lower alkyl-; (R3CO)d-phenyl-S(O)g-lower alkyl-; phenyl-O-lower alkyl-; (R3O)d-phenyl-O-lower alkyl-; (CN)d-phenyl-O-lower alkyl-; (halo)d-phenyl-O-lower alkyl-; (R3COO)d-phenyl-O-lower alkyl-; (R3OCO)d-phenyl-O-lower alkyl-; (R3R3N)d-phenyl-S(O)g-lower alkyl-; or (R3CO)d-phenyl-O-lower alkyl- where d is 1, 2, 3, 4 or 5; and g is 0, 1, or 2;
R12 is selected from the group consisting of: alkyl; substituted alkyl wherein the substituent is selected from the group consisting of hydroxy and amino; -lower alkyl-O-R18, wherein R18 is —PO2(OH)—M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2—M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl;
R19 is H, lower alkyl, or lower alkenyl; and
R20 is H, halogen, lower alkoxy, or lower alkyl.
3. A compound of the formula:
wherein Ar5 is:
wherein Ar6 is:
wherein:
v is 0, 1, or 2;
all R groups, t, m, and n are as defined in claims 1 and 2; and
Q is selected from the group consisting of substituted C1 to C12 alkyl wherein the substituent is selected from the group consisting of hydroxy and amino, alkylcarbonylalkyl, alkyl; lower alkyl S(O)m-lower alkyl in which m is 1 or 2; imidazolyl lower alkyl, morpholinyl lower alkyl, thiazolinyl lower alkyl, piperidinyl ower alkyl, imidazolylcarbonyl, morpholinyl carbonyl, amorpholinyl (lower alkyl) aminocarbonyl, N-pyrrylpyridinyl-lower alkyl; pyridylthio-lower alkyl; morpholinyl-lower alkyl; hydroxyphenylthio-lower alkyl; cyanophenylthio-lower alkyl; imidazolylthio-lower alkyl; triazolylthio-lower alkyl; triazolylphenylthio-lower alkyl; tetrazolylthio-lower alkyl; tetrazolylphenylthio-lower alkyl; aminophenylthio-lower alkyl; N,N-di-substituted aminophenylthio-lower alkyl wherein the amine substituents each independently represent lower alkyl amidinophenylthio-lower alkyl; phenylsultinyl-lower alkyl; or phenylsulfonyl lower alkyl; -lower alkyl-O-R18, wherein R18 is —PO2(OH)—M+ or —PO3(M+)2, wherein M+ is a pharmaceutically acceptable cation; —C(O)(CH2)2CO2—M+, or —SO3—M+; -lower alkylcarbonyl-lower alkyl; -carboxy lower alkyl; -lower alkylamino-lower alkyl; N,N-di-substituted amino lower alkyl-, wherein the substituents each independently represent lower alkyl; pyridyl-lower alkyl; imidazolyl-lower alkyl; imidazolyl-Y-lower alkyl wherein Y is thio or amino; morpholinyl-lower alkyl; pyrrolidinyl-lower alkyl; thiazolinyl-lower alkyl; piperidinyl-lower alkyl; morpholinyl-lower hydroxyalkyl; N-pyrryl; piperazinyl-lower alkyl; N-substituted piperazinyl-lower alkyl, wherein the amine substituent is lower alkyl; triazolyl-lower alkyl; tetrazolyl-lower alkyl; tetrazolylamino-lower alkyl; or thiazolyl-lower alkyl.
4. A pharmaceutical composition comprising an effective amount of the compound of claim 1 in a pharmaceutically acceptable carrier.
5. The compound of claim 2 further comprising a pharmaceutically acceptable carrier.
6. The compound of claim 3 further comprising a pharmaceutically acceptable carrier.
7. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount, to reduce formation of oxygen radicals, of a compound of claim 1 in a pharmaceutically acceptable carrier.
8. The method of claim 7 , wherein the animal is a mammal.
9. The method of claim 8 , wherein the mammal is a human.
10. The method of claim 8 , wherein the mammal is equine.
11. The method of claim 8 , wherein the mammal is canine.
12. The method of claim 8 , wherein the mammal is bovine.
13. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount of a compound of claim 2 in a pharmaceutically acceptable carrier.
14. The method of claim 13 , wherein the animal is a mammal.
15. The method of claim 14 , wherein the mammal is a human.
16. The method of claim 14 , wherein the mammal is equine.
17. The method of claim 14 , wherein the mammal is canine.
18. The method of claim 14 , wherein the mammal is bovine.
19. A method for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase in an animal, comprising administering an effective amount of a compound of claim 3 in a pharmaceutically acceptable carrier.
20. The method of claim 19 , wherein the animal is a mammal.
21. The method of claim 20 , wherein the mammal is a human.
22. The method of claim 20 , wherein the mammal is equine.
23. The method of claim 20 , wherein the mammal is canine.
24. The method of claim 20 , wherein the mammal is bovine.
25. trans-2-[5-N′-methyl-N′-hydroxyureidylmethyl)-3-methoxy-4-p-chlorophenylthioethoxyphenyl]-5-(3,4,5-trimethoxyphenyl)tetrahydrofuran.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/547,941 US20020177723A1 (en) | 1992-07-13 | 2000-04-11 | Compounds and methods for the treatment of inflammatory and immune disorders |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/912,788 US5358938A (en) | 1992-07-13 | 1992-07-13 | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase |
US07/933,991 US5434151A (en) | 1992-08-24 | 1992-08-24 | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase |
US08/062,391 US5648486A (en) | 1992-07-13 | 1993-05-12 | Compounds and methods for the treatment of inflammatory and immune disorders |
US08/469,073 US6294574B1 (en) | 1992-07-13 | 1995-06-06 | Compounds and methods for the treatment of inflammatory and immune disorders |
US09/547,941 US20020177723A1 (en) | 1992-07-13 | 2000-04-11 | Compounds and methods for the treatment of inflammatory and immune disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/469,073 Continuation US6294574B1 (en) | 1992-07-13 | 1995-06-06 | Compounds and methods for the treatment of inflammatory and immune disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020177723A1 true US20020177723A1 (en) | 2002-11-28 |
Family
ID=27129612
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/469,073 Expired - Fee Related US6294574B1 (en) | 1992-07-13 | 1995-06-06 | Compounds and methods for the treatment of inflammatory and immune disorders |
US09/547,941 Abandoned US20020177723A1 (en) | 1992-07-13 | 2000-04-11 | Compounds and methods for the treatment of inflammatory and immune disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/469,073 Expired - Fee Related US6294574B1 (en) | 1992-07-13 | 1995-06-06 | Compounds and methods for the treatment of inflammatory and immune disorders |
Country Status (13)
Country | Link |
---|---|
US (2) | US6294574B1 (en) |
EP (1) | EP0650485B1 (en) |
JP (1) | JPH08502243A (en) |
AT (1) | ATE196903T1 (en) |
AU (1) | AU666578B2 (en) |
CA (1) | CA2140034A1 (en) |
DE (1) | DE69329550T2 (en) |
DK (1) | DK0650485T3 (en) |
ES (1) | ES2152952T3 (en) |
GR (1) | GR3035063T3 (en) |
HU (1) | HUT72601A (en) |
PT (1) | PT650485E (en) |
WO (1) | WO1994001430A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3791880A1 (en) | 2009-04-29 | 2021-03-17 | Amarin Pharmaceuticals Ireland Limited | Pharmaceutical compositions comprising epa |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5639782A (en) * | 1992-03-04 | 1997-06-17 | Center For Innovative Technology | Neolignan derivatives as platelet activating factor receptor antagonists and 5-lipoxygenase inhibitors |
US5434151A (en) * | 1992-08-24 | 1995-07-18 | Cytomed, Inc. | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase |
US5463083A (en) * | 1992-07-13 | 1995-10-31 | Cytomed, Inc. | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
AU666578B2 (en) | 1992-07-13 | 1996-02-15 | Cytomed, Inc | 2,5-diaryl tetrahydro-thiophenes, -furans and analogs for the treatment of inflammatory and immune disorders |
US5792776A (en) * | 1994-06-27 | 1998-08-11 | Cytomed, Inc., | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
CA2194064C (en) * | 1994-06-27 | 2009-03-17 | Xiong Cai | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
US5750565A (en) * | 1995-05-25 | 1998-05-12 | Cytomed, Inc. | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
US5703093A (en) * | 1995-05-31 | 1997-12-30 | Cytomed, Inc. | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
AU4856199A (en) * | 1998-07-03 | 2000-01-24 | Millennium Pharmaceuticals, Inc. | Substituted nitrogen and sulfur alicyclic compounds, including methods for synthesis thereof |
CA2345919A1 (en) | 1998-07-03 | 2000-01-13 | Gangavaram Vasantha Madhava Sharma | Substituted oxygen alicyclic compounds, including methods for synthesis thereof |
WO2000001683A1 (en) | 1998-07-03 | 2000-01-13 | Leukosite, Inc. | Methods for synthesis of substituted tetrahydrofuran compound |
US6255498B1 (en) | 1998-10-16 | 2001-07-03 | Millennium Pharmaceuticals, Inc. | Method for synthesizing diaryl-substituted heterocyclic compounds, including tetrahydrofurans |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2690988A (en) | 1952-12-24 | 1954-10-05 | Stauffer Chemical Co | Insecticidal substituted 1, 3-dithiolanes and method of application |
US3852601A (en) | 1971-07-15 | 1974-12-03 | Ital Elettionica Spa | Scanning device for scintigraphy according to three orthogonal planes |
US4166452A (en) | 1976-05-03 | 1979-09-04 | Generales Constantine D J Jr | Apparatus for testing human responses to stimuli |
US4256108A (en) | 1977-04-07 | 1981-03-17 | Alza Corporation | Microporous-semipermeable laminated osmotic system |
US4265874A (en) | 1980-04-25 | 1981-05-05 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
US4656190A (en) | 1983-11-14 | 1987-04-07 | Merck & Co., Inc. | Indene derivatives and their use as PAF-antagonists |
US4539332A (en) * | 1983-11-14 | 1985-09-03 | Merck & Co., Inc. | 2,5-Diaryl tetrahydrofurans and analogs thereof as PAF-antagonists |
US4757084A (en) * | 1984-02-29 | 1988-07-12 | Merck & Co., Inc. | 2,5-diaryl tetrahydrothiophenes and analogs thereof as PAF-antagonists |
US4595693A (en) | 1984-06-04 | 1986-06-17 | Merck & Co., Inc. | Method of use of 2,5-diaryl tetrahydrofurans and analogs thereof as PAF-antagonists |
US4871756A (en) | 1985-03-20 | 1989-10-03 | Merck Frosst Canada, Inc. | Leukotriene antagonists |
US4604407A (en) | 1985-04-04 | 1986-08-05 | E. R. Squibb & Sons, Inc. | Hydroxamates |
NZ215866A (en) * | 1985-04-22 | 1989-11-28 | Merck & Co Inc | 2,5-di(aryl/heterocyclyl) tetrahydro-furans and pharmaceutical compositions |
US4876346A (en) | 1985-05-02 | 1989-10-24 | American Home Products Corporation | Quinoline compounds |
US4891363A (en) | 1985-07-26 | 1990-01-02 | Sankyo Company Limited | Cyclic ether derivatives and their use |
DE3701344A1 (en) | 1986-01-21 | 1987-07-23 | Boehringer Ingelheim Kg | NEW THIENO-1,4-DIAZEPINE |
FR2601016B1 (en) | 1986-07-04 | 1988-10-07 | Rhone Poulenc Sante | NOVEL 1H, 3H-PYRROLO (1,2-C) THIAZOLE DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US4910206A (en) | 1986-07-14 | 1990-03-20 | Sandoz Pharmaceuticals Corp. | 5-hetero-or aryl-substituted-imidazo(2,1-a)isoquinolines and their use as PAF receptor antagonists |
DE3724031A1 (en) | 1986-07-22 | 1988-01-28 | Boehringer Ingelheim Kg | NEW HETRAZEPINES AND METHOD FOR THEIR PRODUCTION |
DE3724164A1 (en) | 1986-07-25 | 1988-01-28 | Boehringer Ingelheim Kg | NEW 1,4-BENZODIAZEPINES, THEIR PRODUCTION AND USE |
EP0257921B1 (en) | 1986-08-21 | 1992-04-15 | Merck & Co. Inc. | New 1,3-diaryl cyclopentanes and derivatives thereof as paf antagonists |
US4841968A (en) | 1986-09-26 | 1989-06-27 | Southern Research Institute | Antithrombotic/thrombolytic suture and methods of making and using the same |
GB2197650A (en) * | 1986-11-21 | 1988-05-25 | Merck & Co Inc | Process for preparing 2,5-diphenyl tetrahydrofurans and analogs thereof |
US4873259A (en) | 1987-06-10 | 1989-10-10 | Abbott Laboratories | Indole, benzofuran, benzothiophene containing lipoxygenase inhibiting compounds |
CN1030415A (en) | 1987-02-20 | 1989-01-18 | 山之内制药株式会社 | Saturated heterocycle carboxamide derivatives and its preparation method |
US4916145A (en) | 1987-07-10 | 1990-04-10 | Hoffmann-La Roche Inc. | Substituted n-[(pyridyl)alkyl]aryl-carboxamide |
GB2209031A (en) | 1987-08-24 | 1989-04-26 | Merck & Co Inc | Processes for preparing 1,3-diaryl cyclopentanes and derivatives thereof as PAF antagonists |
CA1334975C (en) | 1987-11-13 | 1995-03-28 | James H. Holms | Furan and pyrrole containing lipoxygenase inhibiting compounds |
JPH01149764A (en) | 1987-12-07 | 1989-06-12 | Green Cross Corp:The | Bis-S-alkylbenzene derivative |
US4959361A (en) | 1987-12-18 | 1990-09-25 | Hoffmann-La Roche Inc. | Triazolo(4,3-A)(1,4)benzodiazepines and thieno (3,2-F)(1,2,4)triazolo(4,3-A)(1,4)diazepine compounds which have useful activity as platelet activating factor (PAF) antagonists |
NZ227287A (en) * | 1987-12-21 | 1992-01-29 | Merck & Co Inc | 2,5-diaryl tetrahydrofurans and medicaments |
US4996203A (en) * | 1987-12-21 | 1991-02-26 | Merck & Co., Inc. | 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists |
US4845129A (en) | 1988-03-14 | 1989-07-04 | Sandoz Pharm. Corp. | Diaryl substituted cyclopentane and cyclopentene derivatives |
EP0338993A1 (en) | 1988-04-21 | 1989-10-25 | Sandoz Ag | 6-Aryl-substituted-4h-thieno[2,3-e][1,2,4]triazolo [3,4-c][1,4]diazepines |
US4992428A (en) | 1988-05-05 | 1991-02-12 | Sandoz Pharm. Corp. | 5-aryl-substituted-2,3-dihydro-imidazo[1,2-a]furo- and thieno pyridines |
EP0365089A3 (en) * | 1988-10-18 | 1991-06-05 | Merck & Co. Inc. | 2-aryl-5(3-methoxy-5-(hydroxypropylsulfonyl)-4-propoxyphenyl) tetrahydrothiophen and analogs |
FI95708C (en) | 1988-10-31 | 1996-03-11 | Eisai Co Ltd | Analogous process for preparing a 1,4-diazepine derivative and its pharmaceutically acceptable salt |
DE3936828A1 (en) | 1988-11-06 | 1990-05-10 | Boehringer Ingelheim Kg | New poly:cyclic thieno-diazepine derivs. - useful as platelet-activating factor inhibitors |
US5234950A (en) | 1988-12-23 | 1993-08-10 | Imperial Chemical Industries Plc | Tetrahydrofuran derivatives |
US5175183A (en) | 1989-02-01 | 1992-12-29 | Abbott Laboratories | Lipoxygenase inhibiting compounds |
DE4006471A1 (en) | 1989-03-03 | 1990-09-06 | Boehringer Ingelheim Kg | New 2-substd. thieno-triazolo-di:azepine derivs. - are inhibitors of platelet activating factor for treating inflammation etc., and new organo-metallic intermediates |
FR2644456B1 (en) | 1989-03-17 | 1991-07-05 | Rhone Poulenc Sante | NOVEL 1H, 3H-PYRROLO (1,2-C) THIAZOLECARBOXAMIDE-7 DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
GB8907401D0 (en) | 1989-04-01 | 1989-05-17 | Pfizer Ltd | Therapeutic agents |
US4977146A (en) * | 1989-06-08 | 1990-12-11 | Merck & Co., Inc. | 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists |
US5001123A (en) * | 1989-06-08 | 1991-03-19 | Merck & Co., Inc. | 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists |
US5011847A (en) * | 1989-06-08 | 1991-04-30 | Merck & Co., Inc. | 2,5-diaryl tetrahydrofurans and analogs thereof as PAF antagonists |
IL95584A (en) | 1989-09-07 | 1995-03-15 | Abbott Lab | Indole-, benzofuran-, and benzothiophene-containing lipoxygenase- inhibiting compounds, and pharmaceutical compositions containing them. |
US5037853A (en) | 1989-12-28 | 1991-08-06 | Abbott Laboratories | Cyclopropyl derivative lipoxygenase inhibitors |
GB9009469D0 (en) | 1990-04-27 | 1990-06-20 | British Bio Technology | Compounds |
US5244896A (en) | 1990-09-14 | 1993-09-14 | Marion Merrell Dow Inc. | Carbocyclic adenosine analogs useful as immunosuppressants |
JP3007138B2 (en) * | 1990-11-27 | 2000-02-07 | ファイザー製薬株式会社 | Novel hydroxamic acid and N-hydroxyurea derivatives and compositions thereof |
US5110831A (en) | 1990-11-30 | 1992-05-05 | Du Pont Merck Pharmaceutical Company | Vinylogous hydroxamic acids and derivatives thereof as 5-lipoxygenase inhibitors |
JPH0730061B2 (en) | 1991-02-07 | 1995-04-05 | ファイザー製薬株式会社 | Hydroxamic acid derivatives and compositions |
ES2163399T3 (en) | 1991-03-04 | 2002-02-01 | Univ Virginia | DERIVATIVES OF NEOLIGNANO AS RECEIVING ANTAGONISTS OF THE FACTOR OF ACTIVATION OF PLATES AND INHIBITORS 5-LIPOOXIGENASA. |
US5420164A (en) | 1991-04-04 | 1995-05-30 | Yoshitomi Pharmaceutical Industries, Ltd. | Cycloalkylurea compounds |
US5147893A (en) | 1991-05-09 | 1992-09-15 | G. D. Searle & Co. | Cyclic phenolic thioethers |
RU2059603C1 (en) | 1991-05-09 | 1996-05-10 | Хоффманн-Ля Рош АГ | Derivatives of &&&-substituted arylacetic acids and pharmaceutical composition |
GB9114337D0 (en) | 1991-07-03 | 1991-08-21 | British Bio Technology | Compounds |
US5183818A (en) | 1991-08-27 | 1993-02-02 | Abbott Laboratories | Arylalkylether and arylalkylthioether inhibitors of lipoxygenase enzyme activity |
GB9200210D0 (en) | 1992-01-07 | 1992-02-26 | British Bio Technology | Compounds |
GB9202791D0 (en) | 1992-02-11 | 1992-03-25 | British Bio Technology | Compounds |
US5169854A (en) | 1992-02-26 | 1992-12-08 | Abbott Laboratories | N-substituted-furylalkenyl hydroxamic acid and N-hydroxyurea compounds having lipoxygenase inhibitory activity |
US5639782A (en) | 1992-03-04 | 1997-06-17 | Center For Innovative Technology | Neolignan derivatives as platelet activating factor receptor antagonists and 5-lipoxygenase inhibitors |
US5187192A (en) | 1992-03-13 | 1993-02-16 | Abbott Laboratories | Cyclobutyl derivatives having lipoxygenase inhibitory activity |
US5326787A (en) | 1992-05-12 | 1994-07-05 | Abbott Laboratories | Cycloalkyl N-hydroxy derivatives having lipoxygenase inhibitory activity |
AU666578B2 (en) | 1992-07-13 | 1996-02-15 | Cytomed, Inc | 2,5-diaryl tetrahydro-thiophenes, -furans and analogs for the treatment of inflammatory and immune disorders |
US5358938A (en) | 1992-07-13 | 1994-10-25 | Cytomed, Inc. | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase |
US5434151A (en) | 1992-08-24 | 1995-07-18 | Cytomed, Inc. | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase |
US5463083A (en) | 1992-07-13 | 1995-10-31 | Cytomed, Inc. | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
WO1994004537A2 (en) | 1992-08-20 | 1994-03-03 | Cytomed, Inc. | Dual functional anti-inflammatory and immunosuppressive agents |
US5288751A (en) | 1992-11-06 | 1994-02-22 | Abbott Laboratories | [(Substituted) phenyalkyl]furylalkynyl-and [substituted) phenyalkyl] thienylalkynyl-N-hydroxyurea inhibitors or leukotriene biosynthesis |
ES2062943B1 (en) | 1993-03-23 | 1995-11-16 | Uriach & Cia Sa J | NEW DERIVATIVES OF (2-METHYL-3-PIRIDIL) CYANOMETILPIPERAZINES. |
CA2194064C (en) | 1994-06-27 | 2009-03-17 | Xiong Cai | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders |
-
1993
- 1993-07-13 AU AU47722/93A patent/AU666578B2/en not_active Ceased
- 1993-07-13 DE DE69329550T patent/DE69329550T2/en not_active Expired - Fee Related
- 1993-07-13 EP EP93918182A patent/EP0650485B1/en not_active Expired - Lifetime
- 1993-07-13 AT AT93918182T patent/ATE196903T1/en not_active IP Right Cessation
- 1993-07-13 PT PT93918182T patent/PT650485E/en unknown
- 1993-07-13 CA CA002140034A patent/CA2140034A1/en not_active Abandoned
- 1993-07-13 JP JP6503572A patent/JPH08502243A/en not_active Ceased
- 1993-07-13 ES ES93918182T patent/ES2152952T3/en not_active Expired - Lifetime
- 1993-07-13 DK DK93918182T patent/DK0650485T3/en active
- 1993-07-13 WO PCT/US1993/006575 patent/WO1994001430A1/en active IP Right Grant
- 1993-07-13 HU HU9500099A patent/HUT72601A/en unknown
-
1995
- 1995-06-06 US US08/469,073 patent/US6294574B1/en not_active Expired - Fee Related
-
2000
- 2000-04-11 US US09/547,941 patent/US20020177723A1/en not_active Abandoned
- 2000-12-13 GR GR20000402751T patent/GR3035063T3/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3791880A1 (en) | 2009-04-29 | 2021-03-17 | Amarin Pharmaceuticals Ireland Limited | Pharmaceutical compositions comprising epa |
EP4008327A1 (en) | 2009-04-29 | 2022-06-08 | Amarin Pharmaceuticals Ireland Limited | Pharmaceutical compositions comprising epa and a cardiovascular agent and methods of using the same |
Also Published As
Publication number | Publication date |
---|---|
GR3035063T3 (en) | 2001-03-30 |
HUT72601A (en) | 1996-05-28 |
ES2152952T3 (en) | 2001-02-16 |
AU666578B2 (en) | 1996-02-15 |
EP0650485A1 (en) | 1995-05-03 |
EP0650485B1 (en) | 2000-10-11 |
CA2140034A1 (en) | 1994-01-20 |
ATE196903T1 (en) | 2000-10-15 |
PT650485E (en) | 2001-03-30 |
DE69329550D1 (en) | 2000-11-16 |
HU9500099D0 (en) | 1995-03-28 |
DE69329550T2 (en) | 2001-05-31 |
US6294574B1 (en) | 2001-09-25 |
DK0650485T3 (en) | 2001-01-22 |
AU4772293A (en) | 1994-01-31 |
JPH08502243A (en) | 1996-03-12 |
WO1994001430A1 (en) | 1994-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5856323A (en) | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase | |
US5358938A (en) | Compounds and methods for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase | |
US5780503A (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
AU696227B2 (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
CA2194064C (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
US5648486A (en) | Compounds and methods for the treatment of inflammatory and immune disorders | |
US6294574B1 (en) | Compounds and methods for the treatment of inflammatory and immune disorders | |
US6569895B1 (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
WO1994004537A2 (en) | Dual functional anti-inflammatory and immunosuppressive agents | |
FR2981935A1 (en) | NOVEL DI-SUBSTITUTED DIAMINO-3,4-CYCLOBUTENE-3-DIONE-1,2 COMPOUNDS USEFUL IN THE TREATMENT OF CHEMOKINE MEDIATED PATHOLOGIES. | |
US5703093A (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
WO1994006790A1 (en) | 2,4-diaryl-1,3-dithiolanes; 2,4-diaryl-1,3-dioxolanes; 2,4-diaryl-1,3-oxathiolanes; and 2,5-diaryl-1,3-oxathiolanes as paf receptor antgonists and inhibitors of 5-lipoxygenase | |
US5530141A (en) | 2,4-diaryl-1,3-dithiolanes; 2,4-diaryl-1,3-dioxolanes; 2,4-diaryl-1,3-oxathiolanes; and 2,5-diaryl-1,3-oxathiolanes for the treatment of disorders mediated by platelet activating factor or products of 5-lipoxygenase | |
DE69021294T2 (en) | Furan derivatives. | |
US6201016B1 (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune disorders | |
JP3766896B2 (en) | Compounds and methods for the treatment of cardiovascular, inflammatory and immune diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LEUKOSITE, INC., MASSACHUSETTS Free format text: MERGER;ASSIGNOR:CYTOMED, INC.;REEL/FRAME:011327/0780 Effective date: 20000315 Owner name: MILLENNIUM PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: MERGER;ASSIGNOR:LEUKOSITE, INC.;REEL/FRAME:011327/0776 Effective date: 20000315 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |