US20020141893A1 - Shaft seal structure of vacuum pumps - Google Patents
Shaft seal structure of vacuum pumps Download PDFInfo
- Publication number
- US20020141893A1 US20020141893A1 US10/085,675 US8567502A US2002141893A1 US 20020141893 A1 US20020141893 A1 US 20020141893A1 US 8567502 A US8567502 A US 8567502A US 2002141893 A1 US2002141893 A1 US 2002141893A1
- Authority
- US
- United States
- Prior art keywords
- rotary shaft
- shaft
- seal
- oil
- housing member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/008—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
- F04C27/009—Shaft sealings specially adapted for pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/44—Free-space packings
- F16J15/445—Free-space packings with means for adjusting the clearance
Definitions
- the present invention relates to shaft seal structures of vacuum pumps that draw gas by operating a gas conveying body in a pump chamber through rotation of a rotary shaft.
- Japanese Laid-Open Patent Publication Nos. 60-145475, 38-9080, 6-101674 describe a vacuum pump that includes a plurality of rotors. Each rotor functions as a gas conveying body. Two rotors rotate as engaged with each other, thus conveying gas through a pump chamber. More specifically, one rotor is connected to a first rotary shaft and the other is connected to a second rotary shaft. A motor drives the first rotary shaft. A gear mechanism transmits the rotation of the first rotary shaft to the second rotary shaft.
- the gear mechanism is located in an oil chamber that retains lubricant oil.
- the pump of Japanese Laid-Out Patent Publication No. 60-145475 uses a labyrinth seal that seals the space between the oil chamber and the pump chamber to prevent the lubricant oil from leaking from the oil chamber to the pump chamber. More specifically, a partition separates the oil chamber from the pump chamber and has a through hole through which a rotary shaft extends. The labyrinth seal is fitted between the wall of the through hole and the corresponding portion of the rotary shaft.
- the pump of Japanese Laid-Open Patent Publication No. 3-89080 includes a bearing chamber for accommodating a bearing that supports a rotary shaft. An intermediate chamber is formed between the bearing chamber and the pump chamber.
- a partition separates the bearing chamber from the intermediate chamber and has a through hole through which a rotary shaft extends.
- a labyrinth seal is fitted between the wall of the through hole and the rotary shaft.
- the pump of Japanese Laid-Open Patent Publication No. 6-101674 includes a lip seal and a labyrinth seal. The seals are fitted between the wall of a through hole of a partition that separates the oil chamber from the pump chamber and a rotary shaft that extends through the through hole.
- the labyrinth seal includes a plurality of annular grooves, seal performance is maintained over time.
- the space between the rotary shaft, to which the labyrinth seal is located, and the through hole need be as small as possible.
- reducing the space requires an extremely high machining accuracy. It is thus difficult for improving the sealing performance of the labyrinth seal.
- a vacuum pump that draws gas by operating a gas conveying body in a pump chamber through rotation of a rotary shaft.
- the vacuum pump includes an oil housing member and a labyrinth seal.
- the oil housing member forms an oil zone adjacent to the pump chamber.
- the rotary shaft extends from the pump chamber to the oil zone through the oil housing member.
- the labyrinth seal is located between the rotary shaft and the oil housing member.
- the labyrinth seal includes a resin layer, which minimizes the space between the rotary shaft and the oil housing.
- FIG. 1( a ) is a cross-sectional plan view showing a multiple-stage Roots pump of a first embodiment according to the present invention
- FIG. 1( b ) is an enlarged cross-sectional view showing a seal structure around a first or a second rotary shaft of the pump of FIG. 1( a );
- FIG. 2( a ) is a cross-sectional view taken along line 2 a - 2 a of FIG. 1( a );
- FIG. 2( b ) is a cross-sectional view taken along line 2 b - 2 b of FIG. 1( a );
- FIG. 2( c ) is a cross-sectional view taken along line 2 b - 2 b of FIG. 1( c );
- FIG. 3( a ) is an enlarged cross-sectional view showing the seal structure around the first or the second rotary shaft of the pump shown in FIG. 1( a );
- FIG. 3( b ) is an enlarged cross-sectional view showing a portion of the seal structure of FIG. 3( a );
- FIG. 4 is a perspective view showing a first annular shaft seal
- FIG. 5 is a cross-sectional view showing a major portion of a seal structure of a second embodiment according to the present invention.
- FIG. 6 is a cross-sectional view showing a major portion of a seal structure of a third embodiment according to the present invention.
- FIG. 7 is a cross-sectional view showing a major portion of a seal structure of a fourth embodiment according to the present invention.
- FIG. 8 is a cross-sectional view showing a major portion of a seal structure of a fifth embodiment according to the present invention.
- FIG. 9 is a cross-sectional view showing a major portion of a seal structure of a sixth embodiment according to the present invention.
- FIG. 10 is a cross-sectional view showing a major portion of a seal structure of a seventh embodiment according to the present invention.
- FIG. 11 is a cross-sectional view showing a major portion of a seal structure of an eighth embodiment according to the present invention.
- FIG. 12 is a cross-sectional view showing a major portion of a seal structure of a ninth embodiment according to the present invention.
- FIGS. 1 ( a ) to 7 A first embodiment of a multiple-stage Roots pump 11 according to the present invention will now be described with reference to FIGS. 1 ( a ) to 7 .
- the pump 11 includes a rotor housing member 12 and a front housing member 13 .
- the housing members 12 , 13 are joined together.
- a lid 36 closes the front side of the front housing member 13 .
- a rear housing member 14 is connected to the rear side of the rotor housing member 12 .
- the rotor housing member 12 includes a cylinder block 15 and a plurality of (in this embodiment, four) chamber forming walls 16 .
- the cylinder block 15 includes a pair of block sections 17 , 18
- each chamber forming wall 16 includes a pair of wall sections 161 , 162 .
- the chamber forming walls 16 are identical to one another.
- a first pump chamber 39 is formed between the front housing member 13 and the leftmost chamber forming wall 16 , as viewed in the drawing.
- Second, third, and fourth pump chambers 40 , 41 , 42 are respectively formed between two adjacent chamber forming walls 16 in this order, as viewed from the left to the right in the drawing.
- a fifth pump chamber 43 is formed between the rear housing member 14 and the rightmost chamber forming wall 16 .
- a first rotary shaft 19 is rotationally supported by the front housing member 13 and the rear housing member 14 through a pair of radial bearings 21 , 37 .
- a second rotary shaft 20 is rotationally supported by the front housing member 13 and the rear housing member 14 through a pair of radial bearings 22 , 38 .
- the first and second rotary shafts 19 , 20 are parallel with each other and extend through the chamber forming walls 16 .
- the radial bearings 37 , 38 are supported respectively by a pair of bearing holders 45 , 46 that are installed in the rear housing member 14 .
- the bearing holders 45 , 46 are fitted respectively in a pair of recesses 47 , 48 that are formed in the rear side of the rear housing member 14 .
- First, second, third, fourth, and fifth rotors 23 , 24 , 25 , 26 , 27 are formed integrally with the first rotary shaft 19 .
- first, second, third, fourth, and fifth rotors 28 , 29 , 30 , 31 , 32 are formed integrally with the second rotary shaft 20 .
- the shapes and the sizes of the rotors 23 - 32 are identical.
- the axial dimensions of the first to fifth rotors 23 - 27 of the first rotary shaft 19 become gradually smaller in this order.
- the axial dimensions of the first to fifth rotors 28 - 32 of the second rotary shaft 20 become gradually smaller in this order.
- the first rotors 23 , 28 are accommodated in the first pump chamber 39 as engaged with each other.
- the second rotors 24 , 29 are accommodated in the second pump chamber 40 as engaged with each other.
- the third rotors 25 , 30 are accommodated in the third pump chamber 41 as engaged with each other.
- the fourth rotors 26 , 31 are accommodated in the fourth pump chamber 42 as engaged with each other.
- the fifth rotors 27 , 32 are accommodated in the fifth pump chamber 43 as engaged with each other.
- the first to fifth pump chambers 39 - 43 are non-lubricated.
- the rotors 23 - 32 are maintained in a non-contact state with any of the cylinder block 15 , the chamber forming walls 16 , the front housing member 13 , and the rear housing member 14 . Further, the engaged rotors do not slide against each other.
- a gear housing member 33 is coupled with the rear housing member 14 .
- a pair of through holes 141 , 142 are formed in the rear housing member 14 .
- the rotary shafts 19 , 20 extend respectively through the through holes 141 , 142 and the associated recesses 47 , 48 .
- the rotary shafts 19 , 20 thus project into the gear housing member 33 to form projecting portions 193 , 203 , respectively.
- a pair of gears 34 , 35 are secured respectively to the projecting portions 193 , 203 and are meshed together.
- An electric motor M is connected to the gear housing member 33 .
- a shaft coupling 44 transmits the drive force of the motor M to the first rotary shaft 19 .
- the motor M thus rotates the first rotary shaft 19 in the direction indicated by arrow R 1 of FIGS. 2 ( a ), 2 ( b ), 2 ( c ).
- the gears 34 , 35 transmit the rotation of the first rotary shaft 19 to the second rotary shaft 20 .
- the second rotary shaft 20 thus rotates in the direction indicated by arrow R 2 of FIGS. 2 ( a ), 2 ( b ), 2 ( c ). Accordingly, the first and second rotary shafts 19 , 20 rotate in opposite directions.
- the gears 34 , 35 form a gear mechanism to rotate the rotary shafts 19 , 20 integrally.
- a gear accommodating chamber 331 is formed in the gear housing member 33 and retains lubricant oil (not shown) for lubricating the gears 34 , 35 .
- the gear accommodating chamber 331 is a sealed oil zone.
- the gear housing member 33 and the rear housing member 14 thus form an oil housing, or an oil zone adjacent to the fifth pump chamber 43 .
- the rear housing member 14 functions as a partition that separates the fifth pump chamber 43 from the oil zone.
- the gears 34 , 35 rotate to agitate the lubricant oil in the gear accommodating chamber 331 .
- the lubricant oil thus lubricates the radial bearings 37 , 38 .
- a gap 371 , 381 of each radial bearing 37 , 38 allows the lubricant oil to enter a portion of the associated recess 47 , 48 that is located inward from the gap 371 , 381 .
- the recesses 47 , 48 are thus connected to the gear accommodating chamber 331 through the gaps 371 , 381 and form part of the oil zone.
- each chamber forming wall 16 has an inlet 164 and an outlet 165 that are connected to the passage 163 .
- the adjacent pump chambers 39 - 43 are connected to each other by the passage 163 of the associated chamber forming wall 16 .
- an inlet 181 extends through the block section 18 of the cylinder block 15 and is connected to the first pump chamber 39 .
- an outlet 171 extends through the block section 17 of the cylinder block 15 and is connected to the fifth pump chamber 43 .
- each rotor 23 - 32 functions as a gas conveying body for conveying gas.
- first and second annular shaft seals 49 , 50 are securely fitted around the first and second rotary shafts 19 , 20 , respectively.
- the shaft seals 49 , 50 are located in the associated recesses 47 , 48 and rotate integrally with the associated rotary shafts 19 , 20 .
- Each shaft seal 49 , 50 forms a part of the corresponding rotary shaft 19 , 20 .
- a seal ring 51 is located between the inner circumferential side of the shaft seal 49 and a circumferential side 192 of the first rotary shaft 19 .
- a seal ring 52 is located between the inner circumferential side of the shaft seal 50 and a circumferential side 202 of the second rotary shaft 20 .
- Each seal ring 51 , 52 prevents the lubricant oil from leaking from the associated recess 47 , 48 to the fifth pump chamber 43 along the circumferential side 192 , 202 of the associated rotary shaft 19 , 20 .
- a plurality of annular projections 53 coaxially project from the bottom 472 of the recess 47 .
- a plurality of annular projections 54 coaxially project from the bottom 482 of the recess 48 .
- a plurality of annular grooves 55 are coaxially formed in the front side 492 of the shaft seal 49 that opposes the bottom 472 of the recess 47 .
- a plurality of annular grooves 56 are coaxially formed in the front side 502 of the shaft seal 50 that opposes the bottom 482 of the recess 48 .
- each annular projection 53 , 54 projects in the associated groove 55 , 56 such that the distal end of the projection 53 , 54 is located close to the bottom of the groove 55 , 56 .
- Each projection 53 divides the interior of the associated groove 55 of the first shaft seal 49 to a pair of labyrinth chambers 551 , 552 .
- Each projection 54 divides the interior of the associated groove 56 of the second shaft seal 50 to a pair of labyrinth chambers 561 , 562 .
- the projections 53 and the grooves 55 form a first labyrinth seal 57 corresponding to the first rotary shaft 19 .
- the projections 54 and the grooves 56 form a second labyrinth seal 58 corresponding to the second rotary shaft 20 .
- resin layers 59 , 60 are securely applied on the front sides 492 , 502 of the first and second shaft seals 49 , 50 , respectively.
- a gap g 1 between the resin layer 59 and the bottom 472 is smaller than a gap G 1 between the distal end of each projection 53 and the bottom of the associated groove 55 .
- a gap g 2 between the resin layer 60 and the bottom 482 is smaller than a gap G 2 between the distal end of each projection 54 and the bottom of the associated groove 56 .
- Each gap G 1 , G 2 is substantially equal to the gap between the outer circumferential side 491 , 502 of the associated shaft seal 49 , 50 and the circumferential wall 471 , 481 of the recesses 47 , 48 .
- the gap g 1 is a minimum gap between the first shaft seal 49 and the rear housing member 14 .
- the gap g 2 is a minimum gap between the second shaft seal 50 and the rear housing member 14 .
- minimum gap refers to a gap with a dimension that improves sealing of the labyrinth chambers.
- the first embodiment has the following effects.
- each shaft seal 49 , 50 is in contact with the bottom 472 , 482 of the associated recess 47 , 48 .
- the recesses 47 , 48 are located in the rear housing member 14 that is formed of metal.
- the resin layers 59 , 60 simply slide along the bottoms 472 , 482 of the associated recesses 47 , 48 without affecting rotation of each rotary shaft 19 , 20 .
- the total (F 1 +d 1 ) of the depth F 1 of each annular groove 55 (see FIGS. 3 ( a ) and 3 ( b )) and the thickness d 1 of the resin layer 59 (see FIGS. 3 ( a ) and 3 ( b )) is selected to be slightly larger than the projecting amount H 1 of each annular projection 53 (see FIGS. 3 ( a ) and 3 ( b )).
- the first rotary shaft 19 and the first shaft seal 49 are then assembled together such that the resin layer 59 contacts the bottom 472 of the recess 47 . In this state, the first rotary shaft 19 is allowed to rotate smoothly.
- the total (F 2 +d 2 ) of the depth F 2 of each annular groove 56 (see FIGS. 3 ( a ) and 3 ( b )) and the thickness d 2 of the resin layer 60 (see FIGS. 3 ( a ) and 3 ( b )) is selected to be slightly larger than the projecting amount H 2 of each annular projection 54 (see FIGS. 3 ( a ) and 3 ( b )).
- the second rotary shaft 20 and the second shaft seal 50 are then assembled together such that the resin layer 60 contacts the bottom 482 of the recess 48 . In this state, the second rotary shaft 20 is allowed to rotate smoothly.
- each resin layer 59 , 60 minimizes the minimum gap g 1 , g 2 between the shaft seal 49 , 50 and the rear housing member 14 . If sealing of each labyrinth chamber 551 , 552 , 561 , 562 is improved, the seal performance of each labyrinth seal 57 , 58 is also improved. The improved sealing of the labyrinth chambers 551 , 552 , 562 , 562 can be achieved by reducing the volume of each minimum gap g 1 , g 2 . That is, each resin layer 59 , 60 of this embodiment improves the seal performance of the labyrinth seals 57 , 58 .
- each shaft seal 49 , 50 which is fitted around the associated rotary shaft 19 , 20 , has a diameter larger than that of the circumferential side 192 , 202 of the rotary shaft 19 , 20 .
- each labyrinth seal 57 , 58 is located between the front side 492 , 502 of the associated shaft seal 49 , 50 and the bottom 472 , 482 of the recess 47 , 48 .
- each labyrinth seal 57 , 58 is relatively large.
- each labyrinth seal 57 , 58 of this embodiment is preferable in increasing the volume of each labyrinth chamber 551 , 552 , 561 , 562 for improving the seal performance of the labyrinth seals 57 , 58 .
- each resin layer 59 , 60 contacts the bottom 472 , 482 of the associated recess 47 , 48 without hampering the rotation of each rotary shaft 19 , 20 .
- locating each resin layer 59 , 60 at the front side 492 , 502 of the associated shaft seal 49 , 50 is preferable in minimizing the minimum gaps g 1 , g 2 .
- the labyrinth seals 57 , 58 also stop gas leak. More specifically, when the Roots pump 11 operates, the pressure in each pump chamber 39 - 43 exceeds the atmospheric pressure. However, each labyrinth seal 57 , 58 prevents gas from leaking from the fifth pump chamber 43 to the gear accommodating chamber 331 along the surface of the associated shaft seal 49 , 50 . That is, the labyrinth seals 57 , 58 stop both oil leak and gas leak and are optimal non-contact type seals.
- Roots pump 11 is a dry type, the lubricant oil does not circulate in any pump chamber 39 - 43 . It is preferred that the present invention be applied to this type of pump.
- the present invention may be modified, as shown in second to ninth embodiments of FIGS. 5 to 12 .
- the labyrinth seal for the first rotary shaft 19 is illustrated in FIGS. 5 to 12
- an identical labyrinth seal is provided for the second rotary shaft 20 of these embodiments.
- annular projections 61 that project from the front side 492 of the shaft seal 49 oppose the annular projections 53 , which project from the bottom 472 of the recess 47 .
- a resin layer 62 is formed at the distal end of each projection 61 .
- the annular projections 53 , 61 form a labyrinth seal.
- the third embodiment does not include the annular projections 53 that otherwise project from the bottom 472 of the recess 47 , unlike the first embodiment. Instead, the annular grooves 55 formed in the shaft seal 49 form a labyrinth seal.
- the fourth embodiment does not include the annular grooves 55 that are otherwise formed in the shaft seal 49 , unlike the first embodiment. Instead, the annular projections 53 projecting from the bottom 472 of the recess 47 form a labyrinth seal. A resin layer 63 is formed at the distal end of each projection 53 .
- the fifth embodiment does not include the annular projections 53 that otherwise project from the bottom 472 of the recess 47 , unlike the first embodiment. Instead, the annular grooves 55 of the shaft seal 49 form a labyrinth seal. A resin layer 64 is formed on the bottom 472 of the recess 47 .
- the sixth embodiment does not include the annular grooves 55 that are otherwise formed in the shaft seal 49 , unlike the first embodiment. Instead, the annular projections 53 projecting from the bottom 472 of the recess 47 form a labyrinth seal. A resin layer 65 is formed at the front side 492 of the shaft seal 49 .
- a shaft seal 49 A is formed integrally with the rotary shaft 19 and is connected to the fifth rotor 27 .
- the shaft seal 49 A is accommodated in a recess 66 formed in the side of the rear housing member 14 that opposes the rotor housing member 12 .
- a labyrinth seal 57 is located between the rear side of the shaft seal 49 A and a bottom 661 of the recess 66 .
- a rubber lip seal 67 is located on the rotary shaft 19 .
- the lip seal 67 slides on the circumferential side 192 of the rotary shaft 19 .
- a labyrinth seal 68 is located between the through hole 141 and the circumferential side 192 of the rotary shaft 19 .
- the labyrinth seal 68 includes annular grooves 681 formed in the circumferential side 192 .
- a resin layer 69 is formed on part of the circumferential side of the through hole 141 that faces the annular grooves 681 .
- FIG. 12 illustrates the ninth embodiment.
- the ninth embodiment is different from the eighth embodiment in that labyrinth seal 70 is formed by annular grooves 701 , which are formed in the inner circumferential side of the through hole 141 .
- a resin layer 71 is formed on part of the circumferential side 192 of the rotary shaft 19 that faces the annular grooves 701 .
- a resin layer may be applied at the distal end of each projection 53 , 54 .
- a resin plate may be located between the bottom 472 , 482 of each recess 47 , 48 and the front side 492 , 502 of the associated shaft seal 49 , 50 , thus forming a resin layer.
- the present invention may be applied to other types of vacuum pumps than Roots types.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
- Sealing Of Bearings (AREA)
Abstract
Description
- The present invention relates to shaft seal structures of vacuum pumps that draw gas by operating a gas conveying body in a pump chamber through rotation of a rotary shaft.
- Japanese Laid-Open Patent Publication Nos. 60-145475, 38-9080, 6-101674 describe a vacuum pump that includes a plurality of rotors. Each rotor functions as a gas conveying body. Two rotors rotate as engaged with each other, thus conveying gas through a pump chamber. More specifically, one rotor is connected to a first rotary shaft and the other is connected to a second rotary shaft. A motor drives the first rotary shaft. A gear mechanism transmits the rotation of the first rotary shaft to the second rotary shaft.
- The gear mechanism is located in an oil chamber that retains lubricant oil. The pump of Japanese Laid-Out Patent Publication No. 60-145475 uses a labyrinth seal that seals the space between the oil chamber and the pump chamber to prevent the lubricant oil from leaking from the oil chamber to the pump chamber. More specifically, a partition separates the oil chamber from the pump chamber and has a through hole through which a rotary shaft extends. The labyrinth seal is fitted between the wall of the through hole and the corresponding portion of the rotary shaft. The pump of Japanese Laid-Open Patent Publication No. 3-89080 includes a bearing chamber for accommodating a bearing that supports a rotary shaft. An intermediate chamber is formed between the bearing chamber and the pump chamber. A partition separates the bearing chamber from the intermediate chamber and has a through hole through which a rotary shaft extends. A labyrinth seal is fitted between the wall of the through hole and the rotary shaft. The pump of Japanese Laid-Open Patent Publication No. 6-101674 includes a lip seal and a labyrinth seal. The seals are fitted between the wall of a through hole of a partition that separates the oil chamber from the pump chamber and a rotary shaft that extends through the through hole.
- If the labyrinth seal includes a plurality of annular grooves, seal performance is maintained over time. To improve the seal performance of the labyrinth seal, the space between the rotary shaft, to which the labyrinth seal is located, and the through hole need be as small as possible. However, reducing the space requires an extremely high machining accuracy. It is thus difficult for improving the sealing performance of the labyrinth seal.
- Accordingly, it is an objective of the present invention to improve seal performance of a labyrinth seal that prevents oil from leaking to a pump chamber of a vacuum pump.
- To achieve the foregoing and other objectives and in accordance with the purpose of the present invention, a vacuum pump that draws gas by operating a gas conveying body in a pump chamber through rotation of a rotary shaft is provided. The vacuum pump includes an oil housing member and a labyrinth seal. The oil housing member forms an oil zone adjacent to the pump chamber. The rotary shaft extends from the pump chamber to the oil zone through the oil housing member. The labyrinth seal is located between the rotary shaft and the oil housing member. The labyrinth seal includes a resin layer, which minimizes the space between the rotary shaft and the oil housing.
- Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
- The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
- FIG. 1(a) is a cross-sectional plan view showing a multiple-stage Roots pump of a first embodiment according to the present invention;
- FIG. 1(b) is an enlarged cross-sectional view showing a seal structure around a first or a second rotary shaft of the pump of FIG. 1(a);
- FIG. 2(a) is a cross-sectional view taken along line 2 a-2 a of FIG. 1(a);
- FIG. 2(b) is a cross-sectional view taken along
line 2 b-2 b of FIG. 1(a); - FIG. 2(c) is a cross-sectional view taken along
line 2 b-2 b of FIG. 1(c); - FIG. 3(a) is an enlarged cross-sectional view showing the seal structure around the first or the second rotary shaft of the pump shown in FIG. 1(a);
- FIG. 3(b) is an enlarged cross-sectional view showing a portion of the seal structure of FIG. 3(a);
- FIG. 4 is a perspective view showing a first annular shaft seal;
- FIG. 5 is a cross-sectional view showing a major portion of a seal structure of a second embodiment according to the present invention;
- FIG. 6 is a cross-sectional view showing a major portion of a seal structure of a third embodiment according to the present invention;
- FIG. 7 is a cross-sectional view showing a major portion of a seal structure of a fourth embodiment according to the present invention;
- FIG. 8 is a cross-sectional view showing a major portion of a seal structure of a fifth embodiment according to the present invention;
- FIG. 9 is a cross-sectional view showing a major portion of a seal structure of a sixth embodiment according to the present invention;
- FIG. 10 is a cross-sectional view showing a major portion of a seal structure of a seventh embodiment according to the present invention;
- FIG. 11 is a cross-sectional view showing a major portion of a seal structure of an eighth embodiment according to the present invention; and
- FIG. 12 is a cross-sectional view showing a major portion of a seal structure of a ninth embodiment according to the present invention.
- A first embodiment of a multiple-
stage Roots pump 11 according to the present invention will now be described with reference to FIGS. 1(a) to 7. - As shown in FIG. 1(a), the
pump 11, or a vacuum pump, includes arotor housing member 12 and afront housing member 13. Thehousing members lid 36 closes the front side of thefront housing member 13. Arear housing member 14 is connected to the rear side of therotor housing member 12. Therotor housing member 12 includes acylinder block 15 and a plurality of (in this embodiment, four)chamber forming walls 16. As shown in FIG. 2(b), thecylinder block 15 includes a pair ofblock sections chamber forming wall 16 includes a pair ofwall sections chamber forming walls 16 are identical to one another. - As shown in FIG. 1(a), a
first pump chamber 39 is formed between thefront housing member 13 and the leftmostchamber forming wall 16, as viewed in the drawing. Second, third, andfourth pump chambers chamber forming walls 16 in this order, as viewed from the left to the right in the drawing. Afifth pump chamber 43 is formed between therear housing member 14 and the rightmostchamber forming wall 16. - A first
rotary shaft 19 is rotationally supported by thefront housing member 13 and therear housing member 14 through a pair ofradial bearings rotary shaft 20 is rotationally supported by thefront housing member 13 and therear housing member 14 through a pair ofradial bearings 22, 38. The first and secondrotary shafts chamber forming walls 16. Theradial bearings 37, 38 are supported respectively by a pair ofbearing holders rear housing member 14. The bearingholders recesses rear housing member 14. - First, second, third, fourth, and
fifth rotors rotary shaft 19. Likewise, first, second, third, fourth, andfifth rotors rotary shaft 20. As viewed in the directions of theaxes rotary shafts rotary shaft 19 become gradually smaller in this order. Likewise, the axial dimensions of the first to fifth rotors 28-32 of the secondrotary shaft 20 become gradually smaller in this order. - The
first rotors first pump chamber 39 as engaged with each other. Thesecond rotors second pump chamber 40 as engaged with each other. Thethird rotors third pump chamber 41 as engaged with each other. Thefourth rotors 26, 31 are accommodated in thefourth pump chamber 42 as engaged with each other. Thefifth rotors fifth pump chamber 43 as engaged with each other. The first to fifth pump chambers 39-43 are non-lubricated. Thus, the rotors 23-32 are maintained in a non-contact state with any of thecylinder block 15, thechamber forming walls 16, thefront housing member 13, and therear housing member 14. Further, the engaged rotors do not slide against each other. - A
gear housing member 33 is coupled with therear housing member 14. A pair of throughholes rear housing member 14. Therotary shafts holes rotary shafts gear housing member 33 to form projectingportions gears portions gear housing member 33. A shaft coupling 44 transmits the drive force of the motor M to the firstrotary shaft 19. The motor M thus rotates the firstrotary shaft 19 in the direction indicated by arrow R1 of FIGS. 2(a), 2(b), 2(c). Thegears rotary shaft 19 to the secondrotary shaft 20. The secondrotary shaft 20 thus rotates in the direction indicated by arrow R2 of FIGS. 2(a), 2(b), 2(c). Accordingly, the first and secondrotary shafts gears rotary shafts - A
gear accommodating chamber 331 is formed in thegear housing member 33 and retains lubricant oil (not shown) for lubricating thegears gear accommodating chamber 331 is a sealed oil zone. Thegear housing member 33 and therear housing member 14 thus form an oil housing, or an oil zone adjacent to thefifth pump chamber 43. Therear housing member 14 functions as a partition that separates thefifth pump chamber 43 from the oil zone. Thegears gear accommodating chamber 331. The lubricant oil thus lubricates theradial bearings 37, 38. Agap radial bearing 37, 38 allows the lubricant oil to enter a portion of the associatedrecess gap recesses gear accommodating chamber 331 through thegaps - As shown in FIG. 2(b), a
passage 163 is formed in the interior of eachchamber forming wall 16. Eachchamber forming wall 16 has aninlet 164 and an outlet 165 that are connected to thepassage 163. The adjacent pump chambers 39-43 are connected to each other by thepassage 163 of the associatedchamber forming wall 16. - As shown in FIG. 2(a), an
inlet 181 extends through theblock section 18 of thecylinder block 15 and is connected to thefirst pump chamber 39. As shown in FIG. 2(c), anoutlet 171 extends through theblock section 17 of thecylinder block 15 and is connected to thefifth pump chamber 43. When gas enters thefirst pump chamber 39 from theinlet 181, rotation of thefirst rotors second pump chamber 40 through theinlet 164 in the chamber forming wall, thepassage 163, and the outlet 165. Afterwards, the gas flows from thesecond pump chamber 40 to the third, fourth, andfifth pump chambers fifth pump chamber 43, the gas is then discharged from theoutlet 171 to the exterior of thevacuum pump 11. That is, each rotor 23-32 functions as a gas conveying body for conveying gas. - As shown in FIG. 1(a), first and second annular shaft seals 49, 50 are securely fitted around the first and second
rotary shafts rotary shafts shaft seal rotary shaft seal ring 51 is located between the inner circumferential side of theshaft seal 49 and acircumferential side 192 of the firstrotary shaft 19. In the same manner, aseal ring 52 is located between the inner circumferential side of theshaft seal 50 and acircumferential side 202 of the secondrotary shaft 20. Eachseal ring recess fifth pump chamber 43 along thecircumferential side rotary shaft - As shown in FIGS.3(a) and 3(b), there is a gap between an outer
circumferential side 491, 501 of a portion with a maximum diameter of eachshaft seal circumferential wall 471, 481 of the associatedrecess front side 492, 502 of eachshaft seal recess - As shown in FIG. 4, a plurality of
annular projections 53 coaxially project from thebottom 472 of therecess 47. In the same manner, a plurality of annular projections 54 coaxially project from the bottom 482 of therecess 48. Further, a plurality ofannular grooves 55 are coaxially formed in thefront side 492 of theshaft seal 49 that opposes the bottom 472 of therecess 47. In the same manner, a plurality of annular grooves 56 are coaxially formed in the front side 502 of theshaft seal 50 that opposes the bottom 482 of therecess 48. As shown in FIGS. 1(b), 3(a) and 3(b), eachannular projection 53, 54 projects in the associatedgroove 55, 56 such that the distal end of theprojection 53, 54 is located close to the bottom of thegroove 55, 56. Eachprojection 53 divides the interior of the associatedgroove 55 of thefirst shaft seal 49 to a pair of labyrinth chambers 551, 552. Each projection 54 divides the interior of the associated groove 56 of thesecond shaft seal 50 to a pair of labyrinth chambers 561, 562. - The
projections 53 and thegrooves 55 form afirst labyrinth seal 57 corresponding to the firstrotary shaft 19. The projections 54 and the grooves 56 form asecond labyrinth seal 58 corresponding to the secondrotary shaft 20. - As shown in FIGS.3(a) and 3(b), resin layers 59, 60 are securely applied on the
front sides 492, 502 of the first and second shaft seals 49, 50, respectively. A gap g1 between theresin layer 59 and the bottom 472 is smaller than a gap G1 between the distal end of eachprojection 53 and the bottom of the associatedgroove 55. A gap g2 between the resin layer 60 and the bottom 482 is smaller than a gap G2 between the distal end of each projection 54 and the bottom of the associated groove 56. Each gap G1, G2 is substantially equal to the gap between the outercircumferential side 491, 502 of the associatedshaft seal circumferential wall 471, 481 of therecesses first shaft seal 49 and therear housing member 14. The gap g2 is a minimum gap between thesecond shaft seal 50 and therear housing member 14. In the present invention, the term “minimum gap” refers to a gap with a dimension that improves sealing of the labyrinth chambers. - The first embodiment has the following effects.
- When the Roots pump11 is completely assembled, the
resin layer 59, 60 of eachshaft seal recess recesses rear housing member 14 that is formed of metal. When the Roots pump 11 operates, the resin layers 59, 60 simply slide along thebottoms 472, 482 of the associated recesses 47, 48 without affecting rotation of eachrotary shaft - More specifically, when manufacturing the
Roots pump 11, the total (F1+d1) of the depth F1 of each annular groove 55 (see FIGS. 3(a) and 3(b)) and the thickness d1 of the resin layer 59 (see FIGS. 3(a) and 3(b)) is selected to be slightly larger than the projecting amount H1 of each annular projection 53 (see FIGS. 3(a) and 3(b)). The firstrotary shaft 19 and thefirst shaft seal 49 are then assembled together such that theresin layer 59 contacts thebottom 472 of therecess 47. In this state, the firstrotary shaft 19 is allowed to rotate smoothly. Likewise, the total (F2+d2) of the depth F2 of each annular groove 56 (see FIGS. 3(a) and 3(b)) and the thickness d2 of the resin layer 60 (see FIGS. 3(a) and 3(b)) is selected to be slightly larger than the projecting amount H2 of each annular projection 54 (see FIGS. 3(a) and 3(b)). The secondrotary shaft 20 and thesecond shaft seal 50 are then assembled together such that the resin layer 60 contacts the bottom 482 of therecess 48. In this state, the secondrotary shaft 20 is allowed to rotate smoothly. - Accordingly, each
resin layer 59, 60 minimizes the minimum gap g1, g2 between theshaft seal rear housing member 14. If sealing of each labyrinth chamber 551, 552, 561, 562 is improved, the seal performance of eachlabyrinth seal resin layer 59, 60 of this embodiment improves the seal performance of the labyrinth seals 57, 58. - The
front side 492, 502 of eachshaft seal rotary shaft circumferential side rotary shaft labyrinth seal front side 492, 502 of the associatedshaft seal recess circumferential side rotary shaft rear housing member 14, the diameter of eachlabyrinth seal labyrinth seal labyrinth seal - As described, each
resin layer 59, 60 contacts the bottom 472, 482 of the associatedrecess rotary shaft resin layer 59, 60 at thefront side 492, 502 of the associatedshaft seal - The labyrinth seals57, 58 also stop gas leak. More specifically, when the Roots pump 11 operates, the pressure in each pump chamber 39-43 exceeds the atmospheric pressure. However, each
labyrinth seal fifth pump chamber 43 to thegear accommodating chamber 331 along the surface of the associatedshaft seal - If the Roots pump11 is a dry type, the lubricant oil does not circulate in any pump chamber 39-43. It is preferred that the present invention be applied to this type of pump.
- The present invention may be modified, as shown in second to ninth embodiments of FIGS.5 to 12. Although only the labyrinth seal for the first
rotary shaft 19 is illustrated in FIGS. 5 to 12, an identical labyrinth seal is provided for the secondrotary shaft 20 of these embodiments. - In the second embodiment, as shown in FIG. 5, a plurality of
annular projections 61 that project from thefront side 492 of theshaft seal 49 oppose theannular projections 53, which project from thebottom 472 of therecess 47. Aresin layer 62 is formed at the distal end of eachprojection 61. Theannular projections - As shown in FIG. 6, the third embodiment does not include the
annular projections 53 that otherwise project from thebottom 472 of therecess 47, unlike the first embodiment. Instead, theannular grooves 55 formed in theshaft seal 49 form a labyrinth seal. - As shown in FIG. 7, the fourth embodiment does not include the
annular grooves 55 that are otherwise formed in theshaft seal 49, unlike the first embodiment. Instead, theannular projections 53 projecting from thebottom 472 of therecess 47 form a labyrinth seal. Aresin layer 63 is formed at the distal end of eachprojection 53. - As shown in FIG. 8, the fifth embodiment does not include the
annular projections 53 that otherwise project from thebottom 472 of therecess 47, unlike the first embodiment. Instead, theannular grooves 55 of theshaft seal 49 form a labyrinth seal. Aresin layer 64 is formed on thebottom 472 of therecess 47. - As shown in FIG. 9, the sixth embodiment does not include the
annular grooves 55 that are otherwise formed in theshaft seal 49, unlike the first embodiment. Instead, theannular projections 53 projecting from thebottom 472 of therecess 47 form a labyrinth seal. Aresin layer 65 is formed at thefront side 492 of theshaft seal 49. - In the seventh embodiment, as shown in FIG. 10, a
shaft seal 49A is formed integrally with therotary shaft 19 and is connected to thefifth rotor 27. Theshaft seal 49A is accommodated in arecess 66 formed in the side of therear housing member 14 that opposes therotor housing member 12. Alabyrinth seal 57 is located between the rear side of theshaft seal 49A and abottom 661 of therecess 66. - In the eighth embodiment, as shown in FIG. 11, a
rubber lip seal 67 is located on therotary shaft 19. Thelip seal 67 slides on thecircumferential side 192 of therotary shaft 19. Alabyrinth seal 68 is located between the throughhole 141 and thecircumferential side 192 of therotary shaft 19. Thelabyrinth seal 68 includesannular grooves 681 formed in thecircumferential side 192. Aresin layer 69 is formed on part of the circumferential side of the throughhole 141 that faces theannular grooves 681. - FIG. 12 illustrates the ninth embodiment. The ninth embodiment is different from the eighth embodiment in that
labyrinth seal 70 is formed byannular grooves 701, which are formed in the inner circumferential side of the throughhole 141. Aresin layer 71 is formed on part of thecircumferential side 192 of therotary shaft 19 that faces theannular grooves 701. - It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Particularly, it should be understood that the invention may be embodied in the following forms.
- In the first embodiment, a resin layer may be applied at the distal end of each
projection 53, 54. - A resin plate may be located between the bottom472, 482 of each
recess front side 492, 502 of the associatedshaft seal - The present invention may be applied to other types of vacuum pumps than Roots types.
- Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-054452 | 2001-02-28 | ||
JP2001054452A JP2002257244A (en) | 2001-02-28 | 2001-02-28 | Shaft seal structure in vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020141893A1 true US20020141893A1 (en) | 2002-10-03 |
US6659746B2 US6659746B2 (en) | 2003-12-09 |
Family
ID=18914782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/085,675 Expired - Fee Related US6659746B2 (en) | 2001-02-28 | 2002-02-26 | Shaft seal structure of vacuum pumps |
Country Status (3)
Country | Link |
---|---|
US (1) | US6659746B2 (en) |
EP (1) | EP1236903A3 (en) |
JP (1) | JP2002257244A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100047104A1 (en) * | 2006-07-19 | 2010-02-25 | Masahiro Inagaki | Fluid machine |
US20110110769A1 (en) * | 2008-07-07 | 2011-05-12 | Henrik Stiesdal | Wind turbine comprising a main bearing and method for replacement of the main bearing |
US20130075979A1 (en) * | 2011-09-27 | 2013-03-28 | Denso Corporation | Shaft seal device and pump apparatus using the same |
EP4093972A4 (en) * | 2020-01-24 | 2023-02-22 | CIRCOR Pumps North America, LLC | SCREW PUMP WITH IMPROVED SEALING AND BEARING ARRANGEMENT |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4844489B2 (en) | 2007-07-19 | 2011-12-28 | 株式会社豊田自動織機 | Fluid machinery |
US8539936B2 (en) * | 2009-10-20 | 2013-09-24 | James E. Bell | Supercharger rotor shaft seal pressure equalization |
DE102010055798A1 (en) * | 2010-08-26 | 2012-03-01 | Vacuubrand Gmbh + Co Kg | vacuum pump |
JP2015527523A (en) * | 2012-06-29 | 2015-09-17 | イートン コーポレーションEaton Corporation | Supercharger assembly having rotor end face seal and method of manufacturing supercharger assembly |
GB2631498A (en) * | 2023-07-03 | 2025-01-08 | Edwards Ltd | Pump assembly and vacuum pump with reduced seal requirements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990069A (en) * | 1988-11-07 | 1991-02-05 | Societe Anonyme Dite: Alcatel Cit | Multi-stage roots vacuum pump with sealing module |
US5178529A (en) * | 1990-12-28 | 1993-01-12 | Tes Wankel Technische Forschungs- Und Entwicklungsstelle | Seal formed of plastic layer having outwardly open depressions |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951190A (en) * | 1982-09-17 | 1984-03-24 | Hitachi Ltd | Oil thrower device of oil-free screw compressor |
DE3344953A1 (en) | 1983-12-13 | 1985-06-20 | Leybold-Heraeus GmbH, 5000 Köln | TWO-SHAFT VACUUM PUMP WITH GEARBOX EVACUATION |
JPH0389080A (en) | 1989-08-30 | 1991-04-15 | Ebara Corp | Seal mechanism for vacuum pump lubricating oil |
JPH06505076A (en) * | 1991-02-01 | 1994-06-09 | ライボルト アクチエンゲゼルシヤフト | Dry operation type two-shaft vacuum pump |
JP3085561B2 (en) | 1992-09-02 | 2000-09-11 | 株式会社日立製作所 | Screw vacuum pump |
JPH07111186B2 (en) | 1992-09-21 | 1995-11-29 | 株式会社アンレット | Roots blower seal configuration |
JPH09196186A (en) | 1996-01-19 | 1997-07-29 | Japan Energy Corp | Labyrinth seal device |
-
2001
- 2001-02-28 JP JP2001054452A patent/JP2002257244A/en active Pending
-
2002
- 2002-02-26 EP EP02004403A patent/EP1236903A3/en not_active Withdrawn
- 2002-02-26 US US10/085,675 patent/US6659746B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990069A (en) * | 1988-11-07 | 1991-02-05 | Societe Anonyme Dite: Alcatel Cit | Multi-stage roots vacuum pump with sealing module |
US5178529A (en) * | 1990-12-28 | 1993-01-12 | Tes Wankel Technische Forschungs- Und Entwicklungsstelle | Seal formed of plastic layer having outwardly open depressions |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100047104A1 (en) * | 2006-07-19 | 2010-02-25 | Masahiro Inagaki | Fluid machine |
US8215937B2 (en) | 2006-07-19 | 2012-07-10 | Kabushiki Kaisha Toyota Jidoshokki | Fluid machine with divided housing |
US20110110769A1 (en) * | 2008-07-07 | 2011-05-12 | Henrik Stiesdal | Wind turbine comprising a main bearing and method for replacement of the main bearing |
CN102089515A (en) * | 2008-07-07 | 2011-06-08 | 西门子公司 | Wind turbine comprising a main bearing and method for replacement of the main bearing |
US8696302B2 (en) | 2008-07-07 | 2014-04-15 | Siemens Aktiengesellschaft | Wind turbine comprising a main bearing and method for replacement of the main bearing |
US20130075979A1 (en) * | 2011-09-27 | 2013-03-28 | Denso Corporation | Shaft seal device and pump apparatus using the same |
CN103016339A (en) * | 2011-09-27 | 2013-04-03 | 株式会社爱德克斯 | Shaft seal device and pump apparatus using the same |
US9297388B2 (en) * | 2011-09-27 | 2016-03-29 | Advics Co., Ltd. | Shaft seal device and pump apparatus using the same |
EP4093972A4 (en) * | 2020-01-24 | 2023-02-22 | CIRCOR Pumps North America, LLC | SCREW PUMP WITH IMPROVED SEALING AND BEARING ARRANGEMENT |
US11905950B2 (en) | 2020-01-24 | 2024-02-20 | Circor Pumps North America, Llc. | Screw pump with improved sealing and bearing assembly |
Also Published As
Publication number | Publication date |
---|---|
EP1236903A3 (en) | 2004-04-14 |
US6659746B2 (en) | 2003-12-09 |
EP1236903A2 (en) | 2002-09-04 |
JP2002257244A (en) | 2002-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6659746B2 (en) | Shaft seal structure of vacuum pumps | |
US6659227B2 (en) | Oil leak prevention structure for vacuum pump | |
US6663367B2 (en) | Shaft seal structure of vacuum pumps | |
US6659747B2 (en) | Shaft seal structure of vacuum pumps | |
US20020182097A1 (en) | Oil leak Prevention Structure for vacuum pump | |
CN100400881C (en) | Axle sealing structure for vacuum pump | |
JP2002122087A (en) | Shaft-sealing structure in vacuum pump | |
US6554594B2 (en) | Shaft seal structure for vacuum pump | |
US7467934B2 (en) | Axial piston engine with integrated filling pump | |
US6688863B2 (en) | Oil leak prevention structure of vacuum pump | |
KR100450104B1 (en) | Shaft seal structure of vacuum pumps | |
US6688864B2 (en) | Oil leak prevention structure of vacuum pump | |
JP4670854B2 (en) | Shaft seal structure in vacuum pump | |
US20030072651A1 (en) | Method and apparatus for controlling vacuum pump to stop | |
KR100450105B1 (en) | Shaft seal structure of vacuum pumps | |
EP1283367A2 (en) | Vane compressor | |
JPH11303781A (en) | Vane compressor | |
KR20040032505A (en) | Oil leak prevention structure for vacuum pump | |
KR20040032504A (en) | Oil leak prevention structure for vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSHINO, NOBUAKI;KUWAHARA, MAMORU;OKADA, MASAHIKO;AND OTHERS;REEL/FRAME:012981/0552 Effective date: 20020225 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20071209 |