US20020114954A1 - Coated materials - Google Patents
Coated materials Download PDFInfo
- Publication number
- US20020114954A1 US20020114954A1 US10/077,980 US7798002A US2002114954A1 US 20020114954 A1 US20020114954 A1 US 20020114954A1 US 7798002 A US7798002 A US 7798002A US 2002114954 A1 US2002114954 A1 US 2002114954A1
- Authority
- US
- United States
- Prior art keywords
- gas
- plasma
- pulsed
- oxygen
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 25
- 229920002313 fluoropolymer Polymers 0.000 claims abstract description 10
- 239000004811 fluoropolymer Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 230000005495 cold plasma Effects 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000000178 monomer Substances 0.000 claims description 21
- 229920000642 polymer Polymers 0.000 claims description 17
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims description 11
- 229920002125 Sokalan® Polymers 0.000 claims description 7
- 150000001735 carboxylic acids Chemical class 0.000 claims description 5
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000001464 adherent effect Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000002243 precursor Substances 0.000 claims description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims 2
- 239000001569 carbon dioxide Substances 0.000 claims 1
- 229910002092 carbon dioxide Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 230000005661 hydrophobic surface Effects 0.000 claims 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract description 2
- 238000006116 polymerization reaction Methods 0.000 abstract 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 17
- 239000002253 acid Substances 0.000 description 17
- 230000014759 maintenance of location Effects 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 11
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 230000003075 superhydrophobic effect Effects 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- RKIMETXDACNTIE-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorocyclohexane Chemical compound FC1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F RKIMETXDACNTIE-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical class [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- IOSXWGRWUQVKIP-UHFFFAOYSA-M C.C.C.CC(C)C(=O)[O+]1C(=O)[C-]1(C)(C)[O-].CC(C)C(=O)[O-].[CH2+][C-](C)(C)C(C)=O.[Na+] Chemical compound C.C.C.CC(C)C(=O)[O+]1C(=O)[C-]1(C)(C)[O-].CC(C)C(=O)[O-].[CH2+][C-](C)(C)C(C)=O.[Na+] IOSXWGRWUQVKIP-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229960004624 perflexane Drugs 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
- Y10T428/31544—Addition polymer is perhalogenated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
- Y10T428/31649—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31699—Ester, halide or nitrile of addition polymer
Definitions
- This invention relates to a method of applying a fluoropolymer film to a body and to bodies so treated.
- Oleophobic or superhydrophobic surfaces are desired for a number of applications.
- the invention arises out of investigations of the phenomenon of surfaces with lower energy than ptfe (polytetrafluoroethylene) by taking advantage of the effect arising from attachment of CF 3 groups to a variety of materials.
- the invention may be applicable to thin films usable in polymeric filter media and to cold plasma treatments to create low energy surfaces upon low-cost thermoplastics and natural media, and to the functionalisation of fluorinated polymers such as PTFE and PVDF (polyvinylidene difluoride).
- fluorinated polymers such as PTFE and PVDF (polyvinylidene difluoride).
- This specification discusses a plasma procedure leading to a thin film of perfluoroalkyl groups upon a substrate, which will exhibit superhydrophobicity or oleophobicity. By this we mean that the surface will repel liquid with surface energies as low as that of acetone and alcohol.
- a method of applying a fluoropolymer film to a porous or microporous or other body comprises exposing the body to cold plasma polymerisation using a pulsed gas regime to form either (i) an adherent layer of unsaturated carboxylic (e.g. acrylic) acid polymer on the surface and then derivatising the polymer to attach a perfluoroalkyl group terminating in—CF 3 trifluoromethyl, or (ii) a polymer of a perfluorocarbon monomer.
- a pulsed gas regime to form either (i) an adherent layer of unsaturated carboxylic (e.g. acrylic) acid polymer on the surface and then derivatising the polymer to attach a perfluoroalkyl group terminating in—CF 3 trifluoromethyl, or (ii) a polymer of a perfluorocarbon monomer.
- a combination of electrical and gas pulsing may be used.
- the cold method of applying a fluoropolymer film according to 1 and 2 wherein the cold plasma polymerisation uses a perfluorocarbon monomer or an unsaturated carboxylic acid.
- the “gas on” and “gas off” times are preferably from 0.1 microsecond to 10 seconds.
- the pulsed gas may be oxygen (except when perfluorocarbon monomer is used), or may be a noble or inert gas or H 2 , N 2 or CO 2 .
- acrylic acid polymer precursor or perfluorocarbon monomer may be pulsed directly without a process gas.
- the body may be a film (not necessarily microporous) or of other geometry that allows coating by plasma polymerisation to a standard of consistency adequate for the end use.
- the method may be stopped at any stage, when the applied film is continuous and impervious or at an earlier stage, when it is to a greater or lesser extent still apertured, i.e. has not yet completely filled in the underlying pores of the body.
- the pore size of the finished product can be set to any desired value by ceasing the method after an appropriate duration.
- the plasma power is preferably 1W to 100W, more preferably 1.5W to 7W, except possibly where perfluorocarbon monomer is used.
- the invention extends to the body with the thus-applied film.
- the substrate material of the body may be carbonaceous (e.g. a natural material such as cellulose, collagen or alginate, e.g. linen), synthetic, ceramic or metallic or a combination of these.
- the acid group may be reacted with a range of materials, for example perfluoralkylamines, to yield a surface rich in perfluoralkylamines groups.
- a range of materials for example perfluoralkylamines
- the surface would predominate in CF 3 functions.
- fluorinated surfactants will similarly generate a surface film of lower energy than ptfe and find application in for example the packaging market where oleophobic materials are desirable.
- the energy of a CF 3 surface is less at perhaps 6 dynes/cm, and can be influenced by the plasma conditions used for the deposition. It is also known that the substrate morphology can influence the value of the contact angle since surfaces of a certain roughness can lead to composite angles. The surface which has the greatest number of CF 3 groups packed together will have the lowest surface energy.
- Products having superior (high density) surface coverage, rapidly deposited, may arise from gas pulsing alone or in combination with R.F. pulsing. Such materials have application in filtration, chromatography, medical device and laboratory ware. For example low cost thermoplastics could be coated using perfluorocarbon monomers to afford ptfe-like properties.
- the body or substrate upon which the superhydrophobic layer is attached may be a carbonaceous polymer, e.g. a fluoropolymer such as ptfe, optionally itself a film, which may be porous or microporous.
- a fluoropolymer such as ptfe
- the process can also be applied to other polymers such as polyethylene and a range of other materials used for the biocompatible properties conferred by the acidic groups.
- the superhydrophobic properties of the closely spaced CF 3 groups can be utilised. In certain applications it is commercially attractive to change the surface properties of low cost materials such that they become superhydrophobic.
- cellulose or polyurethane foam are used for their absorbent nature in wound dressings and incontinence and other sanitary products.
- the hydrophobic layer By virtue of the hydrophobic layer being present the wicking effect can be directed and the flow of exudate or moisture constrained.
- a superhydrophobic or oleophobic layer would offer the same mechanism.
- FIG. 1 shows C(Is) XPS peak fit for 2 W continuous wave plasma polymer of acrylic acid.
- FIG. 2 shows continuous wave plasma polymerisation of acrylic acid as a function of power: (a) Q1s) XPS spectra; and (b) O/C ratio and percentage retention of acid functionality.
- FIG. 7 shows 2 W continuous wave plasma polymerisation of acrylic acid as a function of oxygen pressure: (a) C(Is) XPS spectra; and (b) O/C ratio and percentage retention of acid functionality.
- FIG. 10 shows XPS spectra of plasma polymerisation of acrylic acid under CW, electrically pulsed and electrically-and-gas pulsed plasma conditions
- the reactor was scrubbed clean with detergent, rinsed with isopropyl alcohol, oven dried and further cleaned with a 50 W air plasma ignited at a pressure of 0.2 mbar for 30 minutes.
- a glass slide which had been washed in detergent, then ultrasonically cleaned in 1:1 cyclohexane and IPA for one hour, was positioned at the centre of the copper coils and the system pumped back down to base pressure.
- the R.F. generator was modulated by pulses with a 5 V amplitude supplied by the pulse driver used to drive the gas pulsing valve. Pulse outputs from both the pulse generator and the R.F. generator were monitored by an oscilloscope (Hitachi V-252). For experiments involving both gas and electrical pulsing the pulse driver was used to simultaneously supply the gas pulsing valve and the R.F. generator. Thus the gas pulsing valve was open while the plasma was on.
- the absence of any Si(2p) XPS feature following plasma polymerisation was indicative of complete coverage of the glass substrate.
- a Marquardt minimisation computer program was used to fit peaks with a Gaussian shape and equal full width at half-maximum (FWHM).
- FIG. 1 shows the C(1s) envelope obtained by XPS analysis of acrylic acid plasma polymer.
- Five different carbon functionalities were fitted: C x H y (285 eV), C CO 2 (285.7 eV), C O (286.6 eV), O— C O/ C ⁇ O (287.9 eV), and C O 2 (289.0 eV).
- the hydrocarbon peak was used as a reference offset.
- the oxygen:carbon ratio was calculated by dividing the oxygen peak area (after the sensitivity factor had been taken into account) by the carbon peak area.
- the relative amounts of acidic carbon atom retention was compared by calculating the percentage of C O 2 functionality relative to the total C(1s) area.
- Continuous wave experiments were carried out at discharge power between 1.5 and 7 W, FIG. 2. As reported in earlier studies greater oxygen incorporation and acid group retention is achieved on decreasing the power of the discharge. The best results were found at a discharge power of 1.5 W which gave an O/C ratio of 0.52 ⁇ 0.02 and an acid group retention of 18
- the ATRAR spectrum of the acrylic acid monomer has the following peaks, FIG. 9 a: O—H stretch (3300-2500 cm ⁇ 1 ), C—H stretch (2986-2881 cm 31 1 ), C ⁇ O stretch (1694 cm ⁇ 1 ), C ⁇ C stretch (1634 cm ⁇ 1 ), O—H bend (1431 cm ⁇ 1 ), C—O stretch (1295-1236 cm ⁇ 1 ), C—H out-of-plane bend (974 cm ⁇ 1 ), O—H out-of-plane bend (918 cm ⁇ 1 ), and ⁇ CH 2 wagging (816 cm ⁇ 1 ).
- An ATR-IR of the plasma polymer deposited onto polyethylene
- FIG. 9 b demonstrates a large amount of oxygen functionalisation with the O—H bend and C ⁇ O stretches clearly evident.
- the reaction between a carboxylic acid (or e.g. ethylene oxide or styrene oxide) and a fluorinated amine may be used.
- the fluorinated surfactant may be for example
- Dupont FSDTM a commercially available fluorinated surfactant with a terminal CF 3 group, the opposite end possessing a cationic head based on a substituted ammonium ion, or
- Formation of the sodium salt of the poly(acrylic acid) PAA is followed by reaction with a solution of the fluorinated surfactant, the carboxylate anion and the cationic fluorosurfactant forming a salt with the fluoro-chain (terminating in a CF 3 group) uppermost.
- a solution of the fluorinated surfactant, the carboxylate anion and the cationic fluorosurfactant forming a salt with the fluoro-chain (terminating in a CF 3 group) uppermost.
- An alternative route involves a further cold plasma step using sulphur hexafluoride, SF 6 .
- This reagent will yield CF 3 groups when reacted with carboxylic acids or with esters.
- Double pulsing could be carried out on other plasma polymer systems—for example with fluorinated monomers like perfluorohexane or even perfluorocyclohexane, to encourage the preferential coating by CF 3 rather than CF 2 .
- the pulsing technique allows one polymerisation pathway to be favoured over another by changing the time on and time off periods for the plasma, so influencing the reaction kinetics.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Materials For Medical Uses (AREA)
Abstract
A thin fluoropolymer film is bonded to a substrate for medical, filtration or packaging purposes by using a pulsed or combination of gas and electrical pulsed cold plasma polymerization procedures.
Description
- This invention relates to a method of applying a fluoropolymer film to a body and to bodies so treated.
- Oleophobic or superhydrophobic surfaces are desired for a number of applications. The invention arises out of investigations of the phenomenon of surfaces with lower energy than ptfe (polytetrafluoroethylene) by taking advantage of the effect arising from attachment of CF3 groups to a variety of materials.
- The invention may be applicable to thin films usable in polymeric filter media and to cold plasma treatments to create low energy surfaces upon low-cost thermoplastics and natural media, and to the functionalisation of fluorinated polymers such as PTFE and PVDF (polyvinylidene difluoride). This specification discusses a plasma procedure leading to a thin film of perfluoroalkyl groups upon a substrate, which will exhibit superhydrophobicity or oleophobicity. By this we mean that the surface will repel liquid with surface energies as low as that of acetone and alcohol.
- The controlled deposition of many plasma polymers has been examined and the ratio of CF2 to CF3 is documented in terms of monomer type, plasma power levels and proximity to the glow region. We are now describing a new method for creating surfaces with greater coverage of functional groups which offers a novel approach to the creation of polymer surfaces by pulsed gas introduction to the plasma.
- According to the present invention, a method of applying a fluoropolymer film to a porous or microporous or other body, comprises exposing the body to cold plasma polymerisation using a pulsed gas regime to form either (i) an adherent layer of unsaturated carboxylic (e.g. acrylic) acid polymer on the surface and then derivatising the polymer to attach a perfluoroalkyl group terminating in—CF3 trifluoromethyl, or (ii) a polymer of a perfluorocarbon monomer. A combination of electrical and gas pulsing may be used.
- Preferably, the cold method of applying a fluoropolymer film according to 1 and 2 wherein the cold plasma polymerisation uses a perfluorocarbon monomer or an unsaturated carboxylic acid.
- The “gas on” and “gas off” times are preferably from 0.1 microsecond to 10 seconds.
- The pulsed gas may be oxygen (except when perfluorocarbon monomer is used), or may be a noble or inert gas or H2, N2 or CO2. Alternatively, acrylic acid polymer precursor or perfluorocarbon monomer may be pulsed directly without a process gas.
- The body may be a film (not necessarily microporous) or of other geometry that allows coating by plasma polymerisation to a standard of consistency adequate for the end use.
- The method may be stopped at any stage, when the applied film is continuous and impervious or at an earlier stage, when it is to a greater or lesser extent still apertured, i.e. has not yet completely filled in the underlying pores of the body. The pore size of the finished product can be set to any desired value by ceasing the method after an appropriate duration.
- The plasma power is preferably 1W to 100W, more preferably 1.5W to 7W, except possibly where perfluorocarbon monomer is used.
- The invention extends to the body with the thus-applied film. The substrate material of the body may be carbonaceous (e.g. a natural material such as cellulose, collagen or alginate, e.g. linen), synthetic, ceramic or metallic or a combination of these.
- Electrical pulsing of the radio frequency supply to the plasma is known. This technique can ensure a more rapid deposition and greater coverage of the substrate surface by the plasma polymer. We have utilised the plasma polymerisation of acrylic acid, which again is known but using a pulsed gas regime and clearly there are many other possible unsaturated carboxylic acids available as monomers. It is believed that such functionalities impart a degree of biocompatibility to substrates and allow of cell culture experiments to be undertaken successfully upon such a surface even with difficult and sensitive cell lines.
- By virtue of a derivatisation stage, the acid group may be reacted with a range of materials, for example perfluoralkylamines, to yield a surface rich in perfluoralkylamines groups. In this way the surface would predominate in CF3 functions. Additionally the use of fluorinated surfactants will similarly generate a surface film of lower energy than ptfe and find application in for example the packaging market where oleophobic materials are desirable.
- In the packaging market, there is a need for oleophobic venting films where the contents of a vessel or a package may require the release of a differential pressure. Such pressure differentials may arise from expansion or contraction of the container or the liquid contents, with changes in the ambient temperature or pressure. The liquid contents must be retained without leakage and so porous venting aids are used. In those situations where liquids of low surface tension are involved e.g. surfactants, detergents, or organic solvents, then conventional porous ptfe materials are not as efficient. The surface energy of such materials is of the order of 18 to 20 dynes/cm at 20° C. and the energy of a CF3 surface is less at perhaps 6 dynes/cm, and can be influenced by the plasma conditions used for the deposition. It is also known that the substrate morphology can influence the value of the contact angle since surfaces of a certain roughness can lead to composite angles. The surface which has the greatest number of CF3 groups packed together will have the lowest surface energy.
- Products having superior (high density) surface coverage, rapidly deposited, may arise from gas pulsing alone or in combination with R.F. pulsing. Such materials have application in filtration, chromatography, medical device and laboratory ware. For example low cost thermoplastics could be coated using perfluorocarbon monomers to afford ptfe-like properties.
- The body or substrate upon which the superhydrophobic layer is attached may be a carbonaceous polymer, e.g. a fluoropolymer such as ptfe, optionally itself a film, which may be porous or microporous. The process can also be applied to other polymers such as polyethylene and a range of other materials used for the biocompatible properties conferred by the acidic groups. Additionally by conversion to functionalities terminating in perfluoroalkyl groups the superhydrophobic properties of the closely spaced CF3 groups can be utilised. In certain applications it is commercially attractive to change the surface properties of low cost materials such that they become superhydrophobic. For example cellulose or polyurethane foam are used for their absorbent nature in wound dressings and incontinence and other sanitary products. By virtue of the hydrophobic layer being present the wicking effect can be directed and the flow of exudate or moisture constrained. Similarly for fluids with lower surface tension a superhydrophobic or oleophobic layer would offer the same mechanism.
- A specific embodiment of the invention will now be described by way of example with reference to the accompanying drawings (all graphs), in which:
- FIG. 1 shows C(Is) XPS peak fit for 2 W continuous wave plasma polymer of acrylic acid.
- FIG. 2 shows continuous wave plasma polymerisation of acrylic acid as a function of power: (a) Q1s) XPS spectra; and (b) O/C ratio and percentage retention of acid functionality.
- FIG. 3 shows C(Is) XPS spectra for electrically pulsed plasma polymerisation of acrylic acid: (a) as a function of Ton (Toff=4 ms and Pp=5 W); and (b) as a function of Toff (Ton=175 μs and Pp=5 W).
- FIG. 4 shows dependence on average power of: (a) oxygen:carbon ratios; and (b) percentage acid group incorporation for continuous wave; and electrically pulsed plasma polymerisation of acrylic acid as a function of Ton (Toff=4 ms and Pp=5 W and 70 W) and Toff (Ton=175 μs and Pp=5 W).
- FIG. 5 shows variation in the O/C ratio and percentage acid group incorporation during electrical and gas pulsed plasma polymerisation of acrylic acid using different gases (Ton=175 μs Toff=4 ms and Pp=5 W).
- FIG. 6 shows electrical and gas pulsed plasma polymerisation of acrylic acid using oxygen as a function of Ton (Toff=4 ms and Pp=5 W): (a) C(Is) XPS spectra; and (b) O/C ratio and percentage acid group retention.
- FIG. 7 shows 2 W continuous wave plasma polymerisation of acrylic acid as a function of oxygen pressure: (a) C(Is) XPS spectra; and (b) O/C ratio and percentage retention of acid functionality.
- FIG. 8 shows electrical and gas pulsed plasma polymerisation of acrylic acid with oxygen as a function of Toff (Ton=175 μs and Pp=5 W): (a) C(Is) XPS spectra; and (b) O/C ratio and percentage acid group retention.
- FIG. 9 shows ATR-IR spectra of: (a) acrylic acid monomer; and (b) Electrical and gas pulsed plasma polymer of acrylic acid, using oxygen, deposited on polyethylene (Ton=175 μs, Toff=4 ms, and Pp=5 W), and
- FIG. 10 shows XPS spectra of plasma polymerisation of acrylic acid under CW, electrically pulsed and electrically-and-gas pulsed plasma conditions
- All plasma polymerisations were performed in an electrodeless cylindrical glass reactor (50 mm diameter) enclosed in a Faraday cage. The reactor was pumped by a two stage rotary pump (Edwards E2M2) via a liquid nitrogen cold trap (base pressure of 5×10−3 mbar). Power was supplied from a 13.56 MHz source to a copper coil (10 turns) wound around the plasma chamber via an L-C matching unit and power meter.
- Prior to each experiment, the reactor was scrubbed clean with detergent, rinsed with isopropyl alcohol, oven dried and further cleaned with a 50 W air plasma ignited at a pressure of 0.2 mbar for 30 minutes. A glass slide which had been washed in detergent, then ultrasonically cleaned in 1:1 cyclohexane and IPA for one hour, was positioned at the centre of the copper coils and the system pumped back down to base pressure.
- Before polymerisation the acrylic acid (Aldrich 99%) was subject to several freeze thaw cycles and used without further purification. The monomer vapour was admitted via a needle valve (Edwards LV 1OK) to a pressure of 0.2 mbar for 2 minutes prior to ignition of the plasma. If gas was also to be added it was introduced via a needle valve (Edwards LV 1OK) to the required pressure. For gas pulsing experiments, gas was pulsed into the system by a gas pulsing valve (General Valve Corporation 91-110-900) driven by a pulse driver (General Valve Corporation Iota One). Both continuous wave and pulsed plasma polymerisations were performed for 10 minutes.
- For pulsed plasma experiments the R.F. generator was modulated by pulses with a 5 V amplitude supplied by the pulse driver used to drive the gas pulsing valve. Pulse outputs from both the pulse generator and the R.F. generator were monitored by an oscilloscope (Hitachi V-252). For experiments involving both gas and electrical pulsing the pulse driver was used to simultaneously supply the gas pulsing valve and the R.F. generator. Thus the gas pulsing valve was open while the plasma was on.
- Upon termination of the plasma, the reactor system was flushed with monomer and gas (where applicable) for a further 2 minutes, and then vented to air. Samples were then immediately removed from the reactor and affixed to probe tips using double sided adhesive tape for analysis.
- A Vacuum Generators
ESCA Lab Mk 5 fitted with an unmonochromated X-ray source (Mg Kα=1253.6 eV) was used for chemical characterisation of the deposited films. Ionised core electrons were collected by a concentric hemispherical analyser (CHA) operating in constant analyser energy mode (CAE=20 eV). Instrumentally determined sensitivity factors for unit stoichiometery were taken as C(1s):0(1s):N0s):Si(2P)=1.00:0.39:0.65:1.00. The absence of any Si(2p) XPS feature following plasma polymerisation was indicative of complete coverage of the glass substrate. A Marquardt minimisation computer program was used to fit peaks with a Gaussian shape and equal full width at half-maximum (FWHM). - Results
- FIG. 1 shows the C(1s) envelope obtained by XPS analysis of acrylic acid plasma polymer. Five different carbon functionalities were fitted:C x Hy (285 eV), C CO2 (285.7 eV), C O (286.6 eV), O—C O/C═O (287.9 eV), and CO2 (289.0 eV). The hydrocarbon peak was used as a reference offset. The oxygen:carbon ratio was calculated by dividing the oxygen peak area (after the sensitivity factor had been taken into account) by the carbon peak area. The relative amounts of acidic carbon atom retention was compared by calculating the percentage of CO2 functionality relative to the total C(1s) area. Continuous wave experiments were carried out at discharge power between 1.5 and 7 W, FIG. 2. As reported in earlier studies greater oxygen incorporation and acid group retention is achieved on decreasing the power of the discharge. The best results were found at a discharge power of 1.5 W which gave an O/C ratio of 0.52±0.02 and an acid group retention of 18%±1.
- This is considerably less than the oxygen:carbon ration of 0.67 and an acid group of 33% anticipated from the monomer structure. Various electrical pulse plasma polymerisation experiments were investigated in an attempt to improve retention of the monomer structure, FIGS. 3 and 4. It was found that decreasing the average power of a pulse modulated plasma discharge, by systematically reducing the plasma ontime or increasing the time-off, enhances oxygen incorporation and acid group retention in the plasma polymer. Both the oxygen:carbon ratio and the level of acid group retention found under the lowest average power conditions are significantly greater than found for the continuous wave experiments. The O/C ratio at the lowest average power was found to be 0.72±0.03 and the acid group retention was 30%±1.
- Pulsed addition of various gases was found to increase O/C ratios, FIG. 5. The percentage acid group showed less variation except when the gas used was oxygen. A large increase, well above monomer values, in both the O/C ratio and acid group retention is evident when oxygen is added to the plasma.
- Gas and electric pulse time-on greatly influence the plasma polymer composition, FIG. 6; at gas and electrical pulse on times below approx. 130 μs, the electrical power of the plasma is dominant. The effect of oxygen in the system is negligible. Decreasing the time-on increases the functionality of the plasma polymer. Beyond 140 μs the oxygen partial pressure in the system becomes non trivial. The composition of the thin films produced are altered markedly by this increase in the partial pressure of oxygen reaching a maximum at approx. 175 μs. Under these conditions the oxygen: carbon ratio was 1.00±0.04 and the percentage acid group was 43%±2.
- Continuous wave polymerisation in the presence of oxygen has a direct influence on the functionalisation of films formed, FIG. 7. Increasing the oxygen content in a low power continuous wave plasma increases the O/C ratio and the percentage acid group retention. the effect is less pronounced than for pulsed modulated systems.
- Increasing the plasma and gas time-off for the electrical and gas pulsed plasma polymerisation of acrylic acid using oxygen decreases the functionalisation of the films produced, FIG. 8. This is the opposite to the trend reported above for the electrically pulsed polymerisation of acrylic acid alone and it may be attributed to the decrease in oxygen content of the plasma with increasing gas time-off.
- The ATRAR spectrum of the acrylic acid monomer has the following peaks, FIG. 9a: O—H stretch (3300-2500 cm−1), C—H stretch (2986-2881 cm31 1), C═O stretch (1694 cm−1), C═C stretch (1634 cm−1), O—H bend (1431 cm−1), C—O stretch (1295-1236 cm−1), C—H out-of-plane bend (974 cm−1), O—H out-of-plane bend (918 cm−1), and ═CH2 wagging (816 cm−1). An ATR-IR of the plasma polymer deposited onto polyethylene,
- FIG. 9b, demonstrates a large amount of oxygen functionalisation with the O—H bend and C═O stretches clearly evident.
- To optimise the derivatisation of the poly(acrylic acid) or similar layer with fluorinated surfactant, the reaction between a carboxylic acid (or e.g. ethylene oxide or styrene oxide) and a fluorinated amine may be used. The fluorinated surfactant may be for example
- Dupont FSD™, a commercially available fluorinated surfactant with a terminal CF3 group, the opposite end possessing a cationic head based on a substituted ammonium ion, or
- Hoechst AG 3658 ™
- F3C—(CF2)n—CH2—CH2—N+(Alkyl)3I.
- Fluoroalkyl trialkyl ammonium salt.
-
- An alternative route involves a further cold plasma step using sulphur hexafluoride, SF6. This reagent will yield CF3 groups when reacted with carboxylic acids or with esters.
- Double pulsing could be carried out on other plasma polymer systems—for example with fluorinated monomers like perfluorohexane or even perfluorocyclohexane, to encourage the preferential coating by CF3 rather than CF2. The pulsing technique allows one polymerisation pathway to be favoured over another by changing the time on and time off periods for the plasma, so influencing the reaction kinetics.
- A very high degree of functional group control has been achieved by the combined pulsing techniques; see FIG. 10.
Claims (12)
1. A method of applying a fluoropolymer film to a porous or microporous or other body, comprising exposing the body to cold plasma polymerisation using a pulsed gas regime to form either (i) an adherent layer of unsaturated carboxylic (e.g. acrylic) acid polymer on the surface and then derivatising the polymer to attach a perfluoroalkyl group terminating in —CF3 trifluoromethyl, or (ii) a polymer of a perfluorocarbon monomer.
2. A method of applying a fluoropolymer film according to claim 1 wherein a combination of electrical and gas pulsing is used.
3. A method of applying a fluoropolymer film according to claim 1 or 2 wherein the cold plasma polymerisation uses a perfluorocarbon monomer or an unsaturated carboxylic acid.
4. A method of applying a fluoropolymer film according to claim 1 , 2 or 3 where both the “gas on” and “gas off” times are from 0.1 microsecond to 10 seconds.
5. A method according to any preceding claim, wherein perfluorocarbon monomer is not used and wherein the pulsed gas used is oxygen.
6. A method according to claim 1 , 2, 3, or 4 wherein the pulsed gas used is a noble or inert gas or is hydrogen, nitrogen or carbon dioxide.
7. A method according to claim 2 , 3, or 4 wherein acrylic acid polymer precursor or perfluorocarbon monomer is pulsed directly without a process gas.
8. A method according to any preceding claim wherein the body is not microporous.
9. A method according to any preceding claim, wherein perfluorocarbon monomer is not used and wherein the plasma power applied is in the range 1 Watt to 100 Watt.
10. A method according to claim 9 , wherein the plasma power applied is 1.5 Watt to 7 Watt.
11. A body having a hydrophobic surface obtained by a method according to any preceding claim.
12. A body according to claim 11 , whose substrate is carbonaceous, ceramic, metallic or a combination of these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/077,980 US20020114954A1 (en) | 1997-12-18 | 2002-02-20 | Coated materials |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9726807.2 | 1997-12-18 | ||
GBGB9726807.2A GB9726807D0 (en) | 1997-12-18 | 1997-12-18 | Hydrophobic/Oleophobic surfaces and a method of manufacture |
US09/582,051 US6358569B1 (en) | 1997-12-18 | 1998-12-18 | Applying a film to a body |
US10/077,980 US20020114954A1 (en) | 1997-12-18 | 2002-02-20 | Coated materials |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1998/003838 Division WO1999032235A1 (en) | 1997-12-18 | 1998-12-18 | Applying fluoropolymer film to a body |
US09/582,051 Division US6358569B1 (en) | 1997-12-18 | 1998-12-18 | Applying a film to a body |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020114954A1 true US20020114954A1 (en) | 2002-08-22 |
Family
ID=10823857
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,051 Expired - Fee Related US6358569B1 (en) | 1997-12-18 | 1998-12-18 | Applying a film to a body |
US10/077,980 Abandoned US20020114954A1 (en) | 1997-12-18 | 2002-02-20 | Coated materials |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,051 Expired - Fee Related US6358569B1 (en) | 1997-12-18 | 1998-12-18 | Applying a film to a body |
Country Status (11)
Country | Link |
---|---|
US (2) | US6358569B1 (en) |
EP (1) | EP1042081B1 (en) |
JP (1) | JP2001526312A (en) |
AT (1) | ATE240163T1 (en) |
AU (1) | AU1770099A (en) |
DE (1) | DE69814683T2 (en) |
DK (1) | DK1042081T3 (en) |
ES (1) | ES2200396T3 (en) |
GB (1) | GB9726807D0 (en) |
PT (1) | PT1042081E (en) |
WO (1) | WO1999032235A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050015105A1 (en) * | 2003-07-18 | 2005-01-20 | Scimed Life Systems, Inc. | Protective coatings for medical devices |
WO2005059040A3 (en) * | 2003-12-16 | 2006-10-26 | Sun Chemical Corp | Method of forming a radiation curable coating and coated article |
US20070005024A1 (en) * | 2005-06-10 | 2007-01-04 | Jan Weber | Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both |
US20070237947A1 (en) * | 2005-09-16 | 2007-10-11 | Massachusetts Institute Of Technology | Superhydrophobic fibers produced by electrospinning and chemical vapor deposition |
WO2013009684A1 (en) * | 2011-07-08 | 2013-01-17 | The University Of Akron | Carbon nanotube-based robust steamphobic surfaces |
CN109280205A (en) * | 2018-10-26 | 2019-01-29 | 南京科技职业学院 | Preparation method of polytetrafluoroethylene amphiphobic film |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9814717D0 (en) * | 1998-02-23 | 1998-09-02 | Bespak Plc | Improvements in drug delivery devices |
GB9816077D0 (en) * | 1998-07-24 | 1998-09-23 | Secr Defence | Surface coatings |
WO2000044207A1 (en) * | 1999-01-20 | 2000-07-27 | Nkt Research Center A/S | Method for the excitation of a plasma and a use of the method |
GB2367756B (en) | 2000-10-12 | 2003-01-08 | Bespak Plc | Dispensing apparatus |
US6579604B2 (en) * | 2000-11-29 | 2003-06-17 | Psiloquest Inc. | Method of altering and preserving the surface properties of a polishing pad and specific applications therefor |
US7396582B2 (en) | 2001-04-06 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Medical device chemically modified by plasma polymerization |
GB2375098B (en) | 2001-04-30 | 2003-08-27 | Bespak Plc | Improvements in valves for pressurised dispensing containers |
US7887889B2 (en) * | 2001-12-14 | 2011-02-15 | 3M Innovative Properties Company | Plasma fluorination treatment of porous materials |
GB2385315B (en) * | 2002-01-15 | 2004-06-30 | Bespak Plc | Improvements in or relating to valves for dispensers |
GB2384190A (en) * | 2002-01-22 | 2003-07-23 | Bespak Plc | Dispensing device for a powdered product |
GB0206930D0 (en) | 2002-03-23 | 2002-05-08 | Univ Durham | Method and apparatus for the formation of hydrophobic surfaces |
GB0206932D0 (en) * | 2002-03-23 | 2002-05-08 | Univ Durham | Preparation of superabsorbent materials by plasma modification |
GB0207350D0 (en) * | 2002-03-28 | 2002-05-08 | Univ Sheffield | Surface |
US20060127598A1 (en) | 2003-01-30 | 2006-06-15 | Marc Pauwels | Method for providing a coating on the surfaces of a product with an open cell structure throughout its structure and use of such a method |
US7722951B2 (en) | 2004-10-15 | 2010-05-25 | Georgia Tech Research Corporation | Insulator coating and method for forming same |
CA2618223A1 (en) * | 2005-08-09 | 2007-02-22 | Soane Labs, Llc | Hair hold formulations |
US20090165976A1 (en) * | 2006-02-03 | 2009-07-02 | Nanopaper, Llc | Expansion agents for paper-based materials |
WO2007092450A2 (en) | 2006-02-03 | 2007-08-16 | Nanopaper Llc | Functionalization of paper components |
MX2009001794A (en) * | 2006-08-18 | 2009-07-22 | Porex Corp | Sintered polymeric materials and applications thereof. |
US7820563B2 (en) * | 2006-10-23 | 2010-10-26 | Hawaii Nanosciences, Llc | Compositions and methods for imparting oil repellency and/or water repellency |
US8187534B2 (en) * | 2007-02-12 | 2012-05-29 | Porex Corporation | Porous barrier media comprising color change indicators |
GB0721527D0 (en) * | 2007-11-02 | 2007-12-12 | P2I Ltd | Filtration Membranes |
US8286561B2 (en) | 2008-06-27 | 2012-10-16 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
ES2654377T3 (en) | 2008-10-07 | 2018-02-13 | Ross Technology Corporation | Spill resistant surfaces with hydrophobic and oleophobic boundaries |
EP2496886B1 (en) | 2009-11-04 | 2016-12-21 | SSW Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern and methods of making the same |
CA2796305A1 (en) | 2010-03-15 | 2011-09-22 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
EP2678400A4 (en) | 2011-02-21 | 2015-11-18 | Ross Technology Corp | Superhydrophobic and oleophobic coatings with low voc binder systems |
US8852693B2 (en) | 2011-05-19 | 2014-10-07 | Liquipel Ip Llc | Coated electronic devices and associated methods |
WO2012173812A1 (en) | 2011-06-15 | 2012-12-20 | Porex Corporation | Sintered porous plastic liquid barrier media and applications thereof |
WO2013037006A1 (en) * | 2011-09-14 | 2013-03-21 | Pacifitech Pty Ltd | Plasma treatment of halogenated compounds |
DE102011085428A1 (en) | 2011-10-28 | 2013-05-02 | Schott Ag | shelf |
WO2013090939A1 (en) | 2011-12-15 | 2013-06-20 | Ross Technology Corporation | Composition and coating for superhydrophobic performance |
WO2014003852A2 (en) | 2012-06-25 | 2014-01-03 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
WO2015133532A1 (en) * | 2014-03-04 | 2015-09-11 | ダイキン工業株式会社 | Polymer base material, use thereof, and production method therefor |
JP7041916B2 (en) * | 2018-02-07 | 2022-03-25 | 積水化学工業株式会社 | Surface treatment method and equipment |
US20220202999A1 (en) * | 2020-12-30 | 2022-06-30 | Convatec Technologies Inc. | Functionalisation of medical devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4410338A (en) * | 1979-06-25 | 1983-10-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Gas separating members and a method of making the same |
US5888591A (en) * | 1996-05-06 | 1999-03-30 | Massachusetts Institute Of Technology | Chemical vapor deposition of fluorocarbon polymer thin films |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1085995A1 (en) * | 1979-09-25 | 1984-04-15 | Предприятие П/Я В-8584 | Process for surface modification of rubber articles |
JPS57147514A (en) * | 1981-03-06 | 1982-09-11 | Mitsubishi Chem Ind Ltd | Preparation of ultra-thin film |
-
1997
- 1997-12-18 GB GBGB9726807.2A patent/GB9726807D0/en not_active Ceased
-
1998
- 1998-12-18 AT AT98962565T patent/ATE240163T1/en not_active IP Right Cessation
- 1998-12-18 AU AU17700/99A patent/AU1770099A/en not_active Abandoned
- 1998-12-18 DK DK98962565T patent/DK1042081T3/en active
- 1998-12-18 DE DE69814683T patent/DE69814683T2/en not_active Expired - Lifetime
- 1998-12-18 PT PT98962565T patent/PT1042081E/en unknown
- 1998-12-18 WO PCT/GB1998/003838 patent/WO1999032235A1/en active IP Right Grant
- 1998-12-18 ES ES98962565T patent/ES2200396T3/en not_active Expired - Lifetime
- 1998-12-18 EP EP98962565A patent/EP1042081B1/en not_active Expired - Lifetime
- 1998-12-18 JP JP2000525215A patent/JP2001526312A/en active Pending
- 1998-12-18 US US09/582,051 patent/US6358569B1/en not_active Expired - Fee Related
-
2002
- 2002-02-20 US US10/077,980 patent/US20020114954A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4410338A (en) * | 1979-06-25 | 1983-10-18 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Gas separating members and a method of making the same |
US5888591A (en) * | 1996-05-06 | 1999-03-30 | Massachusetts Institute Of Technology | Chemical vapor deposition of fluorocarbon polymer thin films |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050015105A1 (en) * | 2003-07-18 | 2005-01-20 | Scimed Life Systems, Inc. | Protective coatings for medical devices |
US7335185B2 (en) | 2003-07-18 | 2008-02-26 | Boston Scientific Scimed, Inc. | Protective coatings for medical devices |
WO2005059040A3 (en) * | 2003-12-16 | 2006-10-26 | Sun Chemical Corp | Method of forming a radiation curable coating and coated article |
US20070104957A1 (en) * | 2003-12-16 | 2007-05-10 | Sun Chemical Corporation | Method of forming a radiation curable coating and coated article |
US20070005024A1 (en) * | 2005-06-10 | 2007-01-04 | Jan Weber | Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both |
US20070237947A1 (en) * | 2005-09-16 | 2007-10-11 | Massachusetts Institute Of Technology | Superhydrophobic fibers produced by electrospinning and chemical vapor deposition |
US7651760B2 (en) * | 2005-09-16 | 2010-01-26 | Massachusetts Institute Of Technology | Superhydrophobic fibers produced by electrospinning and chemical vapor deposition |
WO2013009684A1 (en) * | 2011-07-08 | 2013-01-17 | The University Of Akron | Carbon nanotube-based robust steamphobic surfaces |
US10245625B2 (en) | 2011-07-08 | 2019-04-02 | The University Of Akron | Carbon nanotube-based robust steamphobic surfaces |
CN109280205A (en) * | 2018-10-26 | 2019-01-29 | 南京科技职业学院 | Preparation method of polytetrafluoroethylene amphiphobic film |
Also Published As
Publication number | Publication date |
---|---|
ES2200396T3 (en) | 2004-03-01 |
AU1770099A (en) | 1999-07-12 |
PT1042081E (en) | 2003-09-30 |
ATE240163T1 (en) | 2003-05-15 |
EP1042081B1 (en) | 2003-05-14 |
JP2001526312A (en) | 2001-12-18 |
EP1042081A1 (en) | 2000-10-11 |
WO1999032235A1 (en) | 1999-07-01 |
DK1042081T3 (en) | 2003-09-01 |
DE69814683D1 (en) | 2003-06-18 |
DE69814683T2 (en) | 2004-02-26 |
GB9726807D0 (en) | 1998-02-18 |
US6358569B1 (en) | 2002-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358569B1 (en) | Applying a film to a body | |
Booth et al. | Foundations of plasma surface functionalization of polymers for industrial and biological applications | |
US5229172A (en) | Modification of polymeric surface by graft polymerization | |
US4919659A (en) | Radio frequency plasma deposited polymers that enhance cell growth | |
CN1146675C (en) | Superhydrophobic coated substrates | |
US5462781A (en) | Surface modified porous expanded polytetrafluoroethylene and process for making | |
WO2005042795A2 (en) | Plasma polymerization of atomically modified surfaces | |
JP7084394B2 (en) | Hydrophilic multifunctional ultra-thin coating with excellent stability and durability | |
KR20000035056A (en) | Biomedical devices comprising at least one surfaces having a coating | |
CA2343160A1 (en) | Raw materials or blanks having super hydrophobic coating | |
Wang et al. | Surface structures and adhesion enhancement of poly (tetrafluoroethylene) films after modification by graft copolymerization with glycidyl methacrylate | |
Narimisa et al. | Different techniques used for plasma modification of polyolefin surfaces | |
Griesser et al. | Plasma surface modifications for improved biocompatibility of commercial polymers | |
Cho et al. | Improvement of paint adhesion to a polypropylene bumper by plasma treatment | |
JPS62235339A (en) | Modification of plastic surface | |
CA2365039A1 (en) | Multilayer film and process for producing the same | |
JP2002020514A (en) | Method for modifying surface of fluororesin | |
JPH08188658A (en) | Process for treating surface of substrate | |
CA2243869A1 (en) | Non-fouling, wettable coated devices | |
Matsuda et al. | Theremo-responsive Properties of Surface Layer of Poly (tetrafluoroethylene) Plates Grafted with N-Isopropylacrylamide by Oxygen Plasma-treatment and Photografting. | |
JP2001323091A (en) | Polymer surface treatment method | |
JPH09208726A (en) | Surface treatment of substrate utilizing plasma | |
Thomes | The influence on protein adsorption of surface chemistry and surface roughness produced via the pulsed plasma technique | |
Andou et al. | Design of Stimuli-responsive Surface for Reversible Wettability Switching by Vapor-Phase Assisted Photo-polymerization. | |
JPS60158231A (en) | Surface treatment of polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |