US20020105488A1 - Active matrix type liquid crystal display - Google Patents
Active matrix type liquid crystal display Download PDFInfo
- Publication number
- US20020105488A1 US20020105488A1 US09/321,248 US32124899A US2002105488A1 US 20020105488 A1 US20020105488 A1 US 20020105488A1 US 32124899 A US32124899 A US 32124899A US 2002105488 A1 US2002105488 A1 US 2002105488A1
- Authority
- US
- United States
- Prior art keywords
- liquid crystal
- crystal display
- active matrix
- matrix type
- display panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
Definitions
- the present invention relates to an active matrix type liquid crystal display in which liquid crystal is driven by an electric field of components in parallel with the surface of a panel substrate.
- IPS system In-Plane Switching system
- a liquid crystal display of the latter IPS system is proposed in Japanese Patent Laid-Open Publication No. 7-225388 (published on Aug. 22, 1995).
- retardation of the liquid crystal composition layer is 0.21 to 0.36 ⁇ m.
- the retardation of the liquid crystal composition layer means the product ( ⁇ n ⁇ d) of the refractive index anisotropy ⁇ n and the thickness of the liquid crystal layer (cell gap) d.
- an active matrix type liquid crystal display may has a liquid crystal display panel.
- the liquid crystal display panel may comprise two substrates and a liquid crystal layer provided between the two substrates.
- the product “ ⁇ n ⁇ d” of the refractive index anisotropy ⁇ n of a liquid crystal material in the liquid crystal layer and the thickness d of the liquid crystal layer is preferably 0.12 to 0.18 ⁇ m.
- the shift of chromaticity, especially the shift to yellow can be restrained.
- the liquid crystal display panel may be stained blue when displaying halftone of white, but the effect to restrain the shift to yellow with a high luminosity is larger since the luminosity of blue is extremely lower than that of yellow. As a result, a good color reproducibility can be obtained regardless of the angle of visibility.
- FIG. 1 is a schematic diagram showing the outline of an active matrix type liquid crystal display according to an embodiment of the present invention
- FIG. 2 is a sectional view showing a liquid crystal display panel of the liquid crystal display according to an embodiment of the present invention
- FIG. 3 is a plane view showing a unit picture element of the liquid crystal display panel shown in FIG. 2;
- FIG. 4 is an enlarged diagram of the main part of the liquid crystal display shown in FIG. 2;
- FIG. 5 is a diagram showing the display mechanism of the IPS system
- FIG. 6 is a schematic diagram showing the staining phenomenon
- FIG. 7 is a schematic diagram showing definitions of the visual angle ⁇ and the azimuth ⁇ ;
- FIG. 8A and FIG. 8B are graphs showing the dependence of the retardation effective value ( ⁇ n′ ⁇ d′) on the visual angle ⁇ in the minor axis direction and in the major axis direction respectively found from the theoretical expression;
- FIG. 9 is a diagram showing examples of liquid crystal materials applicable to the present invention.
- FIG. 10A and FIG. 10B are Commission Internationale d'Eclairage chromaticity diagrams respectively showing the measurements of an embodiment and a comparative example.
- FIG. 1 is a schematic diagram showing the outline of an active matrix type liquid crystal display according to an embodiment of the present invention.
- FIG. 2 is a sectional view showing a liquid crystal display panel of a liquid crystal display according to an embodiment of the present invention.
- FIG. 3 is a plane view showing a unit picture element of the liquid crystal display panel shown in FIG. 2, and
- FIG. 4 is an enlarged diagram of the main part of an area shown by broken lines in FIG. 2.
- a liquid crystal display panel 300 is arranged on a back light 400 .
- a plurality of thin film transistors are provided to the liquid crystal display panel 300 .
- a liquid crystal driver circuit 500 which drives the thin film transistors, is connected to the liquid crystal display panel 300 .
- a TFT side substrate 100 and a opposite side substrate 200 may be arranged in parallel with each other.
- a spacer 302 is put and held between the opposite side substrate 200 and the TFT side substrate 100 , and a cell gap is formed between them.
- a liquid crystal layer including a liquid crystal molecule 301 is provided in the cell gap.
- a TFT side glass substrate 101 may be provided on a TFT side polarizing plate 110 in the TFT side substrate 100 .
- a plurality of common electrodes 103 are formed on the surface of the TFT side glass substrate 101 , and each common electrode 103 is covered by an interlayer insulating film 105 .
- a plurality of signal lines 102 and a plurality of picture element electrodes 104 electrically connected to the signal lines 102 are formed on the interlayer insulating film 105 .
- An electric field (lateral electric field) of components in parallel to the substrate is formed by the common electrodes 103 and the picture element electrodes 104 .
- the common electrodes 103 and the picture element electrodes 104 are covered by a protection insulating film 106 .
- the common electrodes 103 and the picture element electrodes 104 are arranged alternately in the plane view in a unit picture element.
- a TFT side orientation film 107 processed by rubbing is formed on the protection insulating film 106 for orientation of the liquid crystal 301 .
- the TFT side polarizing plate 110 is stuck on the TFT side glass substrate 101 in such a way that the transmission axis of the TFT side polarizing plate 110 is at right angles to the rubbing direction of the TFT side orientation film 107 .
- An opposite side glass substrate 201 may be provided on an opposite side polarizing plate 205 in the substrate 200 .
- a shading film 203 is formed like a matrix on the opposite side glass substrate 201 .
- a color layer 204 for the color display is selectively formed on the opposite side glass substrate 201 and the shading film 203 .
- a flattening film 202 is formed on the color layer 204 .
- an opposite side orientation film 207 processed by rubbing is formed for orientation of the liquid crystal 301 on the flattening film 202 .
- the rubbing direction is preferably reverse to that of the TFT side orientation film 107 .
- the surface of the opposite side substrate 200 is flattened by the flattening film 202 .
- the opposite side polarizing plate 205 is stuck on the opposite side glass substrate 201 in such a way that the transmission axis of the opposite side polarizing plate 205 is at right angles to the direction of the transmission axis of the TFT side polarizing plate 110 .
- the TFT side substrate 100 and the opposite side substrate 200 are stuck on each other with the spacer 302 in such a way that the orientation films 107 and 207 are reverse to each other. Consequently, as mentioned above, a cell gap is formed between both substrates 100 and 200 . Then, the liquid crystal layer including the liquid crystal molecule 301 is sealed in the cell gap.
- the thickness d of the liquid crystal layer between both substrates 100 and 200 is determined by the diameter of the spacer 302 .
- the product “ ⁇ n ⁇ d” of the refractive index anisotropy ⁇ n of the liquid crystal molecule 301 and the thickness d of the liquid crystal layer is 0.12 to 0.18 ⁇ m.
- a scanning line 108 and a signal line 102 connected to the driver circuit 500 are provided to each unit picture element.
- a thin film transistor 109 is arranged as a switching element.
- the comb-teeth-shaped picture element electrode 104 is connected to the thin film transistor 109 .
- the common electrode 103 extending in the reverse direction to that of the picture element electrode 104 is provided.
- the liquid crystal molecule 303 rotates by the interaction of the dielectric constant anisotropy thereof and the surrounding lateral electric field, as shown in FIG. 4.
- FIG. 4 the rotational direction in the case where the dielectric constant anisotropy of the liquid crystal molecule 303 is positive is shown. In the case where the dielectric constant anisotropy is negative, the rotational direction is reverse.
- the quantity of the light which has been emitted from the back light 400 and is transmitting through the liquid crystal display panel 300 changes in the area where a shading film 203 , a picture element electrode 104 , a common electrode 103 , a scanning line 108 , and a thin film transistor 109 are not provided.
- FIG. 5 is a diagram showing the display mechanism of the IPS system. The case where the dielectric constant anisotropy of the liquid crystal molecule is positive is shown in FIG. 5.
- the initial orientation direction of the liquid crystal molecule is determined by the rubbing direction of the TFT side substrate, and the liquid crystal molecules are aligned at right angles to the direction of the polarizing axis of the TFT side polarizing plate.
- the incident light polarized by the TFT side polarizing plate is not polarized by the liquid crystal molecule. Accordingly, the light is almost completely cut off by the opposite side polarizing plate. As a result, the screen becomes in the state of black display.
- T/T 0 sin 2 (2 ⁇ )sin 2 ⁇ ( ⁇ n ⁇ d )/ ⁇ ) ⁇ . . . (1)
- ⁇ is the angle between the average liquid crystal orientation direction and the initial orientation direction
- ⁇ n is the refractive index anisotropy of the liquid crystal molecule
- d is the thickness of the liquid crystal layer (cell gap)
- ⁇ is the wavelength of the transmitted light.
- FIG. 6 is a schematic diagram showing the staining phenomenon.
- the staining phenomenon is different according to the line of sight to the liquid crystal molecule, since the liquid crystal molecule has the refractive index anisotropy. For example, blue staining occurs in the case where the liquid crystal molecule is viewed in the major axis direction, and in the case where it is viewed in the minor axis direction, yellow staining occurs.
- FIG. 8A is a graph showing the dependence of the retardation effective value ( ⁇ n′ ⁇ d′) on the visual angle ⁇ in the minor axis direction found from the theoretical expression.
- FIG. 8B is a graph showing the dependence of the retardation effective value ( ⁇ n′ ⁇ d′) on the visual angle ⁇ in the major axis direction found from the theoretical expression.
- the solid lines in FIG. 8A and FIG. 8B show the effective value in the case where the retardation is 0.15 ⁇ m, which is in the range of the present invention.
- the broken lines show the effective value in the case where the retardation is 0.25 ⁇ m, which is out of the range of the present invention.
- the retardation effective value becomes smaller so that the picture may be stained blue
- the retardation effective value becomes larger so that the picture may be stained yellow
- the picture extremely shifts to yellow staining as the visual angle ⁇ becomes larger.
- the wavelength of the maximum transmission through the liquid crystal display panel may shift to the blue side, and yellow staining does not occur even if the display screen is viewed from a severely slant view. Also, the color change at all angles of visibility and all azimuths becomes small, and the color reproducibility is good regardless of the angle of visibility.
- liquid crystal materials available to the present invention are shown in FIG. 9. These liquid crystal materials can be used individually or in such a way that 2 or more kinds thereof are mixed. It is preferable for the refractive index anisotropy ⁇ n to be 0.04 to 0.07, that is, it is preferable to be comparatively smaller. For example, it is preferable to use a liquid crystal material in FIG. 9 whose refractive index anisotropy ⁇ n is in the range of 0.06 to 0.07 shown.
- the thickness d of the liquid crystal layer may be specified by the cell gap in which the liquid crystal material is sealed. This cell gap may be determined by the diameter of a spacer inserted between the opposite side substrate and the TFT side substrate. Moreover, it is preferable that the thickness d of the liquid crystal layer (cell gap) is 2 to 2.5 ⁇ m for the display characteristics.
- the x-coordinate of the chromaticity indication in Commission Internationale d'Eclairage chromaticity diagram is 0.35 or less at all azimuths and the y-coordinate of the chromaticity indication is 0.35 or less at all azimuths. Consequently, yellow staining of the display panel is more restrained even in the case where the display panel is viewed from a severely slant view.
- the display panel is viewed at a visual angle of 70 degrees when halftone of white is displayed, it is more preferable that the x-coordinate of the chromaticity indication in Commission Internationale d'Eclairage chromaticity diagram is 0.2 to 0.35 and the y-coordinate of the chromaticity indication is 0.2 to 0.35. Especially, it is preferable that the y-coordinate of the chromaticity indication is 0.25 or more. Consequently, the color reproducibility is extremely good at all azimuths even in the case where the display panel is viewed from a severely slant view, and the difference of the chromaticity between a slant view and a front view becomes small.
- FIG. 10A is a Commission Internationale d'Eclairage chromaticity diagram showing the measurements of the embodiment
- FIG. 10B is a Commission Internationale d'Eclairage chromaticity diagram showing the measurements of the comparative example.
- These show the x-y chromaticity changes in the case where halftone of white is displayed and the observation is performed at a visual angle ⁇ of 70 degrees and at an azimuth ⁇ of 0 to 360 degrees.
- the arrows show the chromaticity coordinate when viewed from the front.
- the effect of blue staining of the whole display panel does not cause any problem to the human vision, since the luminosity of blue itself is low. That is, the effect to restrain the staining of yellow with a high luminosity is larger.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to an active matrix type liquid crystal display in which liquid crystal is driven by an electric field of components in parallel with the surface of a panel substrate.
- 2. Description of the Related Art
- For liquid crystal displays, as one system to apply an electric field to liquid crystal, there is a static drive system to stationarily supply a constant voltage signal to each electrode. However, when a display of large capacity is performed, a very large number of pieces of signal lines are required in a static drive system. Therefore, recently, when a display of large capacity is performed, generally, a multiplex drive system to supply signal voltage by time sharing is employed.
- Among multiplex drive systems, according to an active matrix system in which the electric charge applied to an electrode is held until the next frame is displayed, a display of a high grade is performed.
- Furthermore, among active matrix systems, there are a system in which an electric field of components perpendicular to the surface of a panel substrate is applied to liquid crystal, and a system in which an electric field of components parallel to the surface of a panel substrate is applied to liquid crystal (In-Plane Switching system, hereafter, referred to simply as “IPS system”), with respect to the direction of an electric field applied to liquid crystal. Among them, the IPS system is suitable for the use of a large monitor since a wide angle of visibility can be obtained.
- For example, a liquid crystal display of the latter IPS system is proposed in Japanese Patent Laid-Open Publication No. 7-225388 (published on Aug. 22, 1995). In the conventional liquid crystal display, retardation of the liquid crystal composition layer is 0.21 to 0.36 μm. The retardation of the liquid crystal composition layer means the product (Δn·d) of the refractive index anisotropy Δn and the thickness of the liquid crystal layer (cell gap) d.
- However, in a conventional liquid crystal display of the IPS system, there is such a problem that a phenomenon of blue staining or yellow staining occurs because of the refractive index anisotropy of a liquid crystal molecule when a screen is viewed from a severely slant view at a comparatively large visual angle. Such a phenomenon is called color-tint. Especially, the grade of yellow staining is remarkable, and it is difficult for the original color viewed from the front to reappear.
- It is an object of the present invention to provide an active matrix type liquid crystal display of the IPS system in which a good color reproducibility is obtained regardless of the angle of visibility.
- According to one aspect of the present invention, an active matrix type liquid crystal display may has a liquid crystal display panel. The liquid crystal display panel may comprise two substrates and a liquid crystal layer provided between the two substrates. The product “Δn·d” of the refractive index anisotropy Δn of a liquid crystal material in the liquid crystal layer and the thickness d of the liquid crystal layer is preferably 0.12 to 0.18 μm.
- According to one aspect of the present invention, at all angles of visibility, the shift of chromaticity, especially the shift to yellow can be restrained. Furthermore, according to one aspect of the present invention, in some cases, the liquid crystal display panel may be stained blue when displaying halftone of white, but the effect to restrain the shift to yellow with a high luminosity is larger since the luminosity of blue is extremely lower than that of yellow. As a result, a good color reproducibility can be obtained regardless of the angle of visibility.
- FIG. 1 is a schematic diagram showing the outline of an active matrix type liquid crystal display according to an embodiment of the present invention;
- FIG. 2 is a sectional view showing a liquid crystal display panel of the liquid crystal display according to an embodiment of the present invention;
- FIG. 3 is a plane view showing a unit picture element of the liquid crystal display panel shown in FIG. 2;
- FIG. 4 is an enlarged diagram of the main part of the liquid crystal display shown in FIG. 2;
- FIG. 5 is a diagram showing the display mechanism of the IPS system;
- FIG. 6 is a schematic diagram showing the staining phenomenon;
- FIG. 7 is a schematic diagram showing definitions of the visual angle θ and the azimuth φ;
- FIG. 8A and FIG. 8B are graphs showing the dependence of the retardation effective value (Δn′·d′) on the visual angle θ in the minor axis direction and in the major axis direction respectively found from the theoretical expression;
- FIG. 9 is a diagram showing examples of liquid crystal materials applicable to the present invention; and
- FIG. 10A and FIG. 10B are Commission Internationale d'Eclairage chromaticity diagrams respectively showing the measurements of an embodiment and a comparative example.
- An active matrix type TFT (thin film transistor) liquid crystal display according to an embodiment of the present invention will concretely be described below by referring to accompanying drawings. FIG. 1 is a schematic diagram showing the outline of an active matrix type liquid crystal display according to an embodiment of the present invention. FIG. 2 is a sectional view showing a liquid crystal display panel of a liquid crystal display according to an embodiment of the present invention. FIG. 3 is a plane view showing a unit picture element of the liquid crystal display panel shown in FIG. 2, and FIG. 4 is an enlarged diagram of the main part of an area shown by broken lines in FIG. 2.
- In the embodiment of the present invention, as shown in FIG. 1, a liquid
crystal display panel 300 is arranged on aback light 400. A plurality of thin film transistors (not shown) are provided to the liquidcrystal display panel 300. A liquidcrystal driver circuit 500, which drives the thin film transistors, is connected to the liquidcrystal display panel 300. - In the liquid
crystal display panel 300, as shown in FIG. 2, aTFT side substrate 100 and aopposite side substrate 200 may be arranged in parallel with each other. Aspacer 302 is put and held between theopposite side substrate 200 and theTFT side substrate 100, and a cell gap is formed between them. In the cell gap, a liquid crystal layer including aliquid crystal molecule 301 is provided. - A TFT
side glass substrate 101 may be provided on a TFTside polarizing plate 110 in theTFT side substrate 100. A plurality ofcommon electrodes 103 are formed on the surface of the TFTside glass substrate 101, and eachcommon electrode 103 is covered by aninterlayer insulating film 105. Furthermore, a plurality ofsignal lines 102 and a plurality ofpicture element electrodes 104 electrically connected to thesignal lines 102 are formed on the interlayerinsulating film 105. An electric field (lateral electric field) of components in parallel to the substrate is formed by thecommon electrodes 103 and thepicture element electrodes 104. Thecommon electrodes 103 and thepicture element electrodes 104 are covered by aprotection insulating film 106. Thecommon electrodes 103 and thepicture element electrodes 104 are arranged alternately in the plane view in a unit picture element. A TFTside orientation film 107 processed by rubbing is formed on theprotection insulating film 106 for orientation of theliquid crystal 301. The TFTside polarizing plate 110 is stuck on the TFTside glass substrate 101 in such a way that the transmission axis of the TFTside polarizing plate 110 is at right angles to the rubbing direction of the TFTside orientation film 107. - An opposite
side glass substrate 201 may be provided on an oppositeside polarizing plate 205 in thesubstrate 200. Ashading film 203 is formed like a matrix on the oppositeside glass substrate 201. Acolor layer 204 for the color display is selectively formed on the oppositeside glass substrate 201 and theshading film 203. A flatteningfilm 202 is formed on thecolor layer 204. Then, an oppositeside orientation film 207 processed by rubbing is formed for orientation of theliquid crystal 301 on theflattening film 202. The rubbing direction is preferably reverse to that of the TFTside orientation film 107. The surface of theopposite side substrate 200 is flattened by the flatteningfilm 202. Furthermore, the oppositeside polarizing plate 205 is stuck on the oppositeside glass substrate 201 in such a way that the transmission axis of the oppositeside polarizing plate 205 is at right angles to the direction of the transmission axis of the TFTside polarizing plate 110. - The
TFT side substrate 100 and theopposite side substrate 200 are stuck on each other with thespacer 302 in such a way that theorientation films substrates liquid crystal molecule 301 is sealed in the cell gap. The thickness d of the liquid crystal layer between bothsubstrates spacer 302. The product “Δn·d” of the refractive index anisotropy Δn of theliquid crystal molecule 301 and the thickness d of the liquid crystal layer is 0.12 to 0.18 μm. - Furthermore, as shown in FIG. 3, a
scanning line 108 and asignal line 102 connected to thedriver circuit 500 are provided to each unit picture element. Near the intersection of thescanning line 108 and thesignal line 102, athin film transistor 109 is arranged as a switching element. Then, the comb-teeth-shapedpicture element electrode 104 is connected to thethin film transistor 109. Furthermore, thecommon electrode 103 extending in the reverse direction to that of thepicture element electrode 104 is provided. - Next, the action of the liquid crystal display composed as mentioned above will be described.
- By a signal transmitting through the
scanning line 108 provided at the same layer as thecommon electrode 103, ON/OFF of thethin film transistor 109 is shifted. When thethin film transistor 109 is ON, the electric charge is allowed to flow into thepicture element electrode 104 from thesignal line 102. After that, when thethin film transistor 109 is OFF, the electric charge is held in thepicture element electrode 104 to hold a fixed electric potential. A fixed direct current voltage is applied to thecommon electrode 103 at all times. The difference of electric potential between thepicture element electrode 104 and thecommon electrode 103 is changed by such a change of electric potential of thepicture element electrode 104. Then, a lateral electric field in parallel to the surfaces of the TFTside glass substrate 101 and the oppositeside glass substrate 201 is generated. Signals to thescanning line 108, thesignal line 102, and thecommon electrode 103 are supplied from thedriver circuit 500. - When a lateral electric field is generated in the liquid
crystal display panel 300, theliquid crystal molecule 303 rotates by the interaction of the dielectric constant anisotropy thereof and the surrounding lateral electric field, as shown in FIG. 4. In FIG. 4, the rotational direction in the case where the dielectric constant anisotropy of theliquid crystal molecule 303 is positive is shown. In the case where the dielectric constant anisotropy is negative, the rotational direction is reverse. By the rotation of theliquid crystal molecule 303, the quantity of the light which has been emitted from theback light 400 and is transmitting through the liquidcrystal display panel 300 changes in the area where ashading film 203, apicture element electrode 104, acommon electrode 103, ascanning line 108, and athin film transistor 109 are not provided. - However, according to the liquid crystal layer, in the case where the retardation is less than 0.12 μm, and in the case where the retardation is more than 0.18 μm, a good display cannot be obtained at a visual angle of about 70 degrees. The relation between the retardation and the visual angle which was found by the inventor of the present application will be described below. FIG. 5 is a diagram showing the display mechanism of the IPS system. The case where the dielectric constant anisotropy of the liquid crystal molecule is positive is shown in FIG. 5.
- In the state where the electric field is not applied, the initial orientation direction of the liquid crystal molecule is determined by the rubbing direction of the TFT side substrate, and the liquid crystal molecules are aligned at right angles to the direction of the polarizing axis of the TFT side polarizing plate. In this state, the incident light polarized by the TFT side polarizing plate is not polarized by the liquid crystal molecule. Accordingly, the light is almost completely cut off by the opposite side polarizing plate. As a result, the screen becomes in the state of black display.
- On the other hand, when a lateral electric field generated between the picture element electrode and the common electrode is applied to a liquid crystal molecule, the liquid crystal molecule rotates by the interaction of the dielectric constant anisotropy thereof and the surrounding lateral electric field as mentioned above. As a result, by the rotation of the liquid crystal molecule, the incident light to the liquid crystal display panel becomes elliptically polarized light just before transmitting through the opposite side polarized plate, and the components in the direction corresponding to the transmission axis of the opposite side polarizing plate of the elliptically polarized light is emitted from the display panel. Then, the time-averaged value of the intensity of the outgoing light is sensed by human eyes.
- The degree of the elliptically polarized light changes according to the angle Ψ between the orientation direction of the liquid crystal molecule and the initial orientation direction thereof shown in FIG. 5. The standardized transmission factor T/T0 of the liquid crystal display panel in this case is approximated by the following Expression 1:
- T/T0=sin2(2Ψ)sin2{(Δn·d)/λ×π)} . . . (1)
- Wherein Ψ is the angle between the average liquid crystal orientation direction and the initial orientation direction, and Δn is the refractive index anisotropy of the liquid crystal molecule, and d is the thickness of the liquid crystal layer (cell gap), and λ is the wavelength of the transmitted light.
- It is clear from
Expression 1 that the transmission factor is minimum when angle Ψ is 0 degree, and it is maximum when angle Ψ is 45 degrees. Furthermore, in order to maximize the transmission of light with a certain wavelength λ1, it is sufficient to fulfill the condition of the following Expression 2: - (Δn·d)/λ1=½ . . . (2)
- For example, in the case of maximizing the transmission of the light with a wavelength near the green (500 nm) where a person feels brightest, it is sufficient that λ1=500 nm is substituted in Expression 2 to make the retardation “Δn·d” be 0.250 μm.
- Next, the reason why a staining phenomenon such as the yellow shift occurs will be described. FIG. 6 is a schematic diagram showing the staining phenomenon. As shown in FIG. 6, the staining phenomenon is different according to the line of sight to the liquid crystal molecule, since the liquid crystal molecule has the refractive index anisotropy. For example, blue staining occurs in the case where the liquid crystal molecule is viewed in the major axis direction, and in the case where it is viewed in the minor axis direction, yellow staining occurs.
- Next, the mechanism through which such a staining phenomenon occurs will be described. In the following Table 1, theoretical expressions are shown, which is an expression to obtain the effective value Δn′ of the refractive index anisotropy and the effective value d′ of the thickness of the liquid crystal layer in the case where the liquid crystal molecule is viewed in the major axis direction or in the minor axis direction at the visual angle θ. Furthermore, the definitions of the visual angle θ and the azimuth φ in FIG. 7. In FIG. 7, x-y plane corresponds to the display surface of the liquid crystal display panel, and z-axis corresponds to the axis perpendicular to the display surface of the liquid crystal display panel.
TABLE 1 Δn′ d′ Major axis direction Minor axis direction Δn - In Table 1, ne is the refractive index in the major axis direction of liquid crystal, and no is the refractive index in the minor axis direction of liquid crystal, and Δn is the absolute value of (ne−no), and d is the thickness of the liquid crystal layer (cell gap). FIG. 8A is a graph showing the dependence of the retardation effective value (Δn′·d′) on the visual angle θ in the minor axis direction found from the theoretical expression. FIG. 8B is a graph showing the dependence of the retardation effective value (Δn′·d′) on the visual angle θ in the major axis direction found from the theoretical expression. The solid lines in FIG. 8A and FIG. 8B show the effective value in the case where the retardation is 0.15 μm, which is in the range of the present invention. The broken lines show the effective value in the case where the retardation is 0.25 μm, which is out of the range of the present invention.
- As shown in FIG. 8A, when the liquid crystal molecule is viewed in the minor axis direction thereof, the retardation effective value becomes extremely higher as the visual angle θ becomes larger. Furthermore, as shown by the above Expression 2, the retardation effective value and the wavelength of the maximum transmission are proportional to each other. Accordingly, in the minor axis direction, the retardation effective value becomes larger as the visual angle θ becomes larger, and the wavelength of the maximum transmission shifts to the yellow side. On the other hand, as shown in FIG. 8B, when the liquid crystal molecule is viewed in the major axis direction thereof, the retardation effective value becomes smaller as the visual angle θ becomes larger. Accordingly, the maximum wavelength of transmitted light shifts to the blue side.
- Thus, when the liquid crystal molecule is viewed in the major axis direction thereof, the retardation effective value becomes smaller so that the picture may be stained blue, and when the liquid crystal molecule is viewed in the minor axis direction thereof, the retardation effective value becomes larger so that the picture may be stained yellow. Especially, when the liquid crystal molecule is viewed in the minor axis direction, the picture extremely shifts to yellow staining as the visual angle θ becomes larger.
- Furthermore, as shown in
Expression 1 and Expression 2, in the case where the retardation effective value is 0.5 μm or less, the transmission factor of light with the yellow wavelength is low. Moreover, as shown in FIG. 8A, supposing that the retardation (Δn·d) is 0.25 μm, the retardation effective value in the minor axis direction is about 0.5 μm when the visual angle θ is 60 degrees. On the other hand, supposing that the retardation (Δn·d) is 0.15 μm, the visual angle θ at which the retardation effective value exceeds about 0.5 μm is larger than 70 degrees. Accordingly, by making the retardation (Δn·d) be 0.15 μm, yellow staining when the liquid crystal display panel is viewed from a severely slant view can be restrained. - This effect can be obtained when the retardation (Δn·d) is in the range of 0.15 μm±0.03 μm. Therefore, the product Δn·d of the refractive index anisotropy Δn of liquid crystal and the thickness d of the liquid crystal layer should be 0.12 to 0.18 μm.
- Furthermore, since the luminosity of blue is lower than that of yellow, the quality of display is improved by restraining the staining of yellow with a high luminosity.
- Therefore, according to the present embodiment, the wavelength of the maximum transmission through the liquid crystal display panel may shift to the blue side, and yellow staining does not occur even if the display screen is viewed from a severely slant view. Also, the color change at all angles of visibility and all azimuths becomes small, and the color reproducibility is good regardless of the angle of visibility.
- Examples of liquid crystal materials available to the present invention are shown in FIG. 9. These liquid crystal materials can be used individually or in such a way that 2 or more kinds thereof are mixed. It is preferable for the refractive index anisotropy Δn to be 0.04 to 0.07, that is, it is preferable to be comparatively smaller. For example, it is preferable to use a liquid crystal material in FIG. 9 whose refractive index anisotropy Δn is in the range of 0.06 to 0.07 shown.
- Furthermore, the thickness d of the liquid crystal layer may be specified by the cell gap in which the liquid crystal material is sealed. This cell gap may be determined by the diameter of a spacer inserted between the opposite side substrate and the TFT side substrate. Moreover, it is preferable that the thickness d of the liquid crystal layer (cell gap) is 2 to 2.5 μm for the display characteristics.
- Furthermore, in the case where the display panel is viewed at a visual angle of 70 degrees when halftone of white is displayed, it is preferable that the x-coordinate of the chromaticity indication in Commission Internationale d'Eclairage chromaticity diagram is 0.35 or less at all azimuths and the y-coordinate of the chromaticity indication is 0.35 or less at all azimuths. Consequently, yellow staining of the display panel is more restrained even in the case where the display panel is viewed from a severely slant view.
- Still furthermore, in the case where the display panel is viewed at a visual angle of 70 degrees when halftone of white is displayed, it is more preferable that the x-coordinate of the chromaticity indication in Commission Internationale d'Eclairage chromaticity diagram is 0.2 to 0.35 and the y-coordinate of the chromaticity indication is 0.2 to 0.35. Especially, it is preferable that the y-coordinate of the chromaticity indication is 0.25 or more. Consequently, the color reproducibility is extremely good at all azimuths even in the case where the display panel is viewed from a severely slant view, and the difference of the chromaticity between a slant view and a front view becomes small.
- An embodiment of the present invention will concretely be described below by comparing it with a comparative example, which is out of the claims thereof. The retardation (Δn·d) of the liquid crystal layer in the embodiment is 0.15 μm, and the retardation (Δn·d) of the liquid crystal layer in the comparative example is 0.302 μm. These structures are similar to those shown in the above FIG. 1 to FIG. 4. Then, halftone of white is displayed and the observation is performed at a visual angle θ of 70 degrees.
- FIG. 10A is a Commission Internationale d'Eclairage chromaticity diagram showing the measurements of the embodiment, and FIG. 10B is a Commission Internationale d'Eclairage chromaticity diagram showing the measurements of the comparative example. These show the x-y chromaticity changes in the case where halftone of white is displayed and the observation is performed at a visual angle θ of 70 degrees and at an azimuth φ of 0 to 360 degrees. In FIG. 10A and FIG. 10B, the arrows show the chromaticity coordinate when viewed from the front.
- As shown in10A, when the liquid crystal display panel is viewed from the front (visual angle θ=0 degree), a little blue staining occurs, but yellow staining is not noticeable even if the visual angle θ becomes larger. Furthermore, the chromaticity shift is small at all angles of visibility. To be concrete, in regard to the chromaticity coordinates (x, y), x is 0.3 or less and y is 0.35 or less at an azimuth φ of 0 to 360 degrees. In regard to the chromaticity distribution, x-coordinate is 0.2 to 0.35 and y-coordinate is 0.2 to 0.35, which are in the extremely narrow range.
- Moreover, as mentioned above, the effect of blue staining of the whole display panel does not cause any problem to the human vision, since the luminosity of blue itself is low. That is, the effect to restrain the staining of yellow with a high luminosity is larger.
- On the other hand, as shown in FIG. 10B, in the comparative example, the yellow shift in the case of a slant view is large.
- The reason why such a difference occurs is as follows: In the case where the retardation (Δn·d) is 0.302 μm like the comparative example, when the visual angle θ is taken as 70 degrees, the retardation effective value in the minor axis direction (direction of yellow staining) of the liquid crystal molecule obtained from the theoretical expression shown in Table 1 is 0.88 μm. On the other hand, in the case where the retardation (Δn·d) is 0.15 μm like the embodiment, when the visual angle θ is similarly taken as 70 degrees, the retardation effective value in the minor axis direction is about 0.45 μm. From
Expression 1 and Expression 2, in the case where the retardation effective value is about 0.45 μm, the yellow staining of the picture is restrained since the transmission factor of yellow light is low. That is, when the liquid crystal display panel is viewed from a severely slant view, for example, at a visual angle θ of 70 degrees, the yellow staining is restrained.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-153289 | 1998-06-02 | ||
JP15328998A JP3212946B2 (en) | 1998-06-02 | 1998-06-02 | Active matrix type liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
US6421036B1 US6421036B1 (en) | 2002-07-16 |
US20020105488A1 true US20020105488A1 (en) | 2002-08-08 |
Family
ID=15559231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/321,248 Expired - Lifetime US6421036B1 (en) | 1998-06-02 | 1999-05-27 | Active matrix type liquid crystal display |
Country Status (4)
Country | Link |
---|---|
US (1) | US6421036B1 (en) |
JP (1) | JP3212946B2 (en) |
KR (1) | KR100321950B1 (en) |
TW (1) | TW556015B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3678974B2 (en) * | 2000-03-29 | 2005-08-03 | 富士通ディスプレイテクノロジーズ株式会社 | Manufacturing method of liquid crystal display device |
KR20030003770A (en) * | 2001-04-03 | 2003-01-14 | 주식회사 현대 디스플레이 테크놀로지 | Fringe field switching liquid crystal display |
JP6223158B2 (en) * | 2013-12-09 | 2017-11-01 | 三菱電機株式会社 | Liquid crystal display |
KR102437424B1 (en) * | 2016-03-15 | 2022-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device, module, and electronic device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0264667B1 (en) | 1986-10-24 | 1992-12-02 | F. Hoffmann-La Roche Ag | Liquid-crystal cell |
US5576867A (en) | 1990-01-09 | 1996-11-19 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90° |
JPH04265948A (en) | 1991-02-21 | 1992-09-22 | Hitachi Ltd | Liquid crystal display element |
JP2916331B2 (en) * | 1991-11-08 | 1999-07-05 | 株式会社日立製作所 | Liquid crystal display |
JP3130682B2 (en) | 1992-10-22 | 2001-01-31 | 株式会社東芝 | Liquid crystal display device |
JP3543351B2 (en) | 1994-02-14 | 2004-07-14 | 株式会社日立製作所 | Active matrix type liquid crystal display |
JPH08286176A (en) * | 1995-04-18 | 1996-11-01 | Hitachi Ltd | Liquid crystal display |
JPH08313896A (en) | 1995-05-16 | 1996-11-29 | Hitachi Ltd | Liquid crystal display |
JPH095701A (en) * | 1995-06-21 | 1997-01-10 | Hitachi Ltd | Liquid crystal display |
JPH0980436A (en) * | 1995-09-08 | 1997-03-28 | Hosiden Corp | Liquid crystal display element |
JPH103076A (en) * | 1996-06-17 | 1998-01-06 | Furontetsuku:Kk | Liquid crystal display element |
JP2801591B2 (en) | 1997-06-13 | 1998-09-21 | 株式会社日立製作所 | Liquid crystal display |
JP2804261B2 (en) | 1998-01-13 | 1998-09-24 | 株式会社日立製作所 | Liquid crystal display |
JPH10206897A (en) | 1998-01-29 | 1998-08-07 | Hitachi Ltd | Liquid crystal display |
-
1998
- 1998-06-02 JP JP15328998A patent/JP3212946B2/en not_active Expired - Lifetime
-
1999
- 1999-05-27 US US09/321,248 patent/US6421036B1/en not_active Expired - Lifetime
- 1999-06-01 KR KR1019990019905A patent/KR100321950B1/en not_active Expired - Fee Related
- 1999-06-01 TW TW088109165A patent/TW556015B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW556015B (en) | 2003-10-01 |
JP3212946B2 (en) | 2001-09-25 |
JPH11344729A (en) | 1999-12-14 |
KR100321950B1 (en) | 2002-02-04 |
US6421036B1 (en) | 2002-07-16 |
KR20000005771A (en) | 2000-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100327613B1 (en) | Liquid crystal display device | |
US4906073A (en) | Liquid crystal display device using nematic liquid crystal having twisted helical structure and a phase correction plate | |
US5638200A (en) | Liquid crystal display with tilted retardation film | |
EP0435526B1 (en) | Liquid crystal display device | |
JP3267224B2 (en) | Active matrix type liquid crystal display | |
JP3066255B2 (en) | Liquid crystal display | |
KR100302576B1 (en) | Active-matrix liquid crystal display device and method of displaying image thereon | |
EP0686869A2 (en) | Liquid crystal display | |
US6359671B1 (en) | High contrast liquid crystal device | |
JPH10268309A (en) | Liquid crystal display device | |
JPH06331979A (en) | Normally white liquid-crystal display and method for compensation of its phase delay | |
EP0142326A1 (en) | Liquid crystal display | |
US6421036B1 (en) | Active matrix type liquid crystal display | |
JP2904182B2 (en) | Active matrix type liquid crystal display | |
JP3143271B2 (en) | Liquid crystal display | |
KR100357359B1 (en) | Liquid crystal display device using a birefringent film | |
JP2001100256A (en) | Liquid crystal display | |
JP2713328B2 (en) | Twisted nematic liquid crystal display device | |
JP2550681B2 (en) | Liquid crystal display element | |
JPH07294910A (en) | Color liquid crystal display element | |
JPH10170909A (en) | Liquid crystal display device | |
JPH07181480A (en) | Display device with pi- cell arrangement and delay compensation | |
JPH0950026A (en) | Liquid crystal display | |
KR100269576B1 (en) | Color liquid crystal display device | |
KR19990024959A (en) | Polymer dispersed liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATANABE, MAKOTO;WATANABE, TAKAHIKO;REEL/FRAME:010002/0463;SIGNING DATES FROM 19990226 TO 19990521 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: NEC LCD TECHNOLOGIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:014108/0248 Effective date: 20030401 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: NLT TECHNOLOGIES, LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC LCD TECHNOLOGIES, LTD.;REEL/FRAME:027188/0738 Effective date: 20110701 |
|
FPAY | Fee payment |
Year of fee payment: 12 |