US20010019493A1 - Power output circuit having a pluse-width modulation mode and a permanently closed mode - Google Patents
Power output circuit having a pluse-width modulation mode and a permanently closed mode Download PDFInfo
- Publication number
- US20010019493A1 US20010019493A1 US09/137,004 US13700498A US2001019493A1 US 20010019493 A1 US20010019493 A1 US 20010019493A1 US 13700498 A US13700498 A US 13700498A US 2001019493 A1 US2001019493 A1 US 2001019493A1
- Authority
- US
- United States
- Prior art keywords
- voltage
- pulse
- power output
- setpoint
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 101100204286 Ustilago maydis (strain 521 / FGSC 9021) ust1 gene Proteins 0.000 description 14
- 230000007704 transition Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0045—Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
Definitions
- the present invention relates to a power output stage circuit having an automatically controlled pulse-width modulation generator and an upstream closed-loop control circuit.
- the upstream closed-loop control circuit switches the pulse-width modulation generator and the power output stage to a permanently open state, to a PWM mode having pulse-width modulated pulses, and to a permanently closed state as a function of a preset external setpoint, an actual value of the power output stage, and a reference voltage derived from the supply voltage.
- An object of the present invention is to provide a power output circuit which avoids an increased power loss and high EMC value, particularly at the transition from PWM mode to a permanently closed power output stage. It is also possible to reduce the costs of cooling the power output stage using the power output circuit according to the present invention.
- the power output circuit according to the present invention achieves this object by prematurely switching from PWM mode to permanently closed mode as a function of a preset setpoint and the supply voltage and then returning to PWM mode with a hysteresis of these values.
- the early transition can be very easily initiated by supplying the closed-loop control circuit with an additional bias voltage which, in conjunction with a preset setpoint that is smaller than the setpoint producing the maximum pulse width by a specific amount, abruptly and prematurely switches the pulse-width modulation generator and the power output stage to the permanently closed state.
- the setpoint When it reaches the value defined by the additional bias voltage, the setpoint causes the closed-loop control circuit to abruptly switch the pulse modulation generator and the power output stage to the permanently closed state even before the maximum setpoint is reached. This reliably avoids voltage peaks in the output voltage of the power output stage which result in a higher power loss. It also maintains a low EMC value, making it possible to reduce cooling costs, since the power loss and therefore the heat to be dissipated in the power output stage did not increase during this transition to full load, i.e. to the permanently closed state.
- the point at which early switching to the permanently closed state occurs is defined so that the preset setpoint corresponds to a pulse width of 95% of the maximum pulse width (period). Steps are taken, in particular, to reduce, compared to the period, the pulse width obtained with the preset setpoint by a duration that is longer than the times of the pulse switching edges in PWM mode.
- the power output circuit is designed so that the closed-loop control circuit has a voltage regulator whose non-inverting control input is supplied with the reference voltage and whose inverting control input is supplied with the setpoint via a resistor and the output voltage of the power output stage via another resistor as the actual value; the voltage regulator emits a control voltage which increases as the setpoint rises.
- the pulse-width modulation generator has a saw-tooth voltage generator whose output voltage varies periodically between a lower and upper voltage limit. When the control voltage is less than the lower voltage limit, the pulse-width modulation generator does not sent a control signal to the power output stage.
- the pulse-width modulation generator switches the power output stage to a PWM mode having a increasing pulse width as the setpoint rises.
- the pulse-width modulation generator switches the power output stage to the permanently closed state so that it can detect all operating states.
- the abrupt, early transition to the permanently closed state can be easily achieved by supplying the additional bias voltage to the non-inverting control input, by supplying the setpoint to the inverting input of a compensating stage by switching the output potential of the compensating stage from frame potential to positive potential when the preset setpoint corresponds to the bias voltage, by connecting the output of the compensating stage to the non-inverting control input of the voltage regulator via a decoupling diode, and by the fact that the output potential of the compensating stage produces a sudden voltage change at the non-inverting control input of the voltage regulator, resulting in a sudden voltage change for increasing the control voltage and switching the pulse-width modulation generator and the power output stage to the permanently closed state.
- the present invention provides an exemplary embodiment of a particular circuit layout.
- the comparators or operational amplifiers used in the voltage regulator and in the compensating stage can also be controlled in reverse, and the sudden voltage change can also be implemented in the setpoint.
- the other control operation can act on the output of the voltage regulator so that the control voltage decreases as the setpoint increases.
- the pulse width of the control signal reaches is maximum value when the control voltage approaches the lower saw-tooth voltage generator value, and the transition to the permanently closed state occurs when the control voltage drops below the lower voltage limit of the saw-tooth voltage generator.
- the output of the compensating stage is connected via a resistor to the non-inverting control input of the same compensating stage, thereby reducing the bias voltage, which is more or less equivalent to a setpoint that is around 92% of the maximum setpoint, this will achieve a switching hysteresis for early switching to the permanently closed state and a return to PWM mode as the setpoint decreases, thereby preventing the closed-loop control circuit from swinging back and forth.
- the cost of control and the transition from PWM mode to permanently closed mode can be reduced by having a microprocessor control the functions of the voltage regulator and compensating stage.
- FIG. 1 shows a circuit diagram of a power output circuit having a controller circuit and a compensating stage which switches prematurely from a pulse-width modulation (PWM) mode to a permanently closed state.
- PWM pulse-width modulation
- FIG. 2 shows a voltage time diagram of an output voltage at a power output stage.
- FIG. 3 shows the voltage time diagram of the output voltage having a very short interpulse period of a PWM control signal.
- FIG. 4 shows the voltage time diagram of the output voltage having a setpoint corresponding to the PWM control signal having the very short interpulse period, however, with a premature switching to the permanently closed state already occurring with this setpoint.
- the power output circuit has a power output stage LEST, which can be constructed from one or more parallel-connected power semiconductors, such as FET transistors, and controls a load L.
- Power output stage LEST is controlled by a control signal ust 2 that is emitted by a regulated pulse-width modulation generator PWM-G, which in turn is controlled by a control voltage ust 1 of a voltage regulator U 1 A.
- Pulse-width modulation generator PWM-G has a saw-tooth voltage generator which generates an output voltage that varies periodically between a lower voltage limit and an upper voltage limit.
- pulse-width modulation generator PWM-G emits a pulse-width-modulated control signal ust 2 , having a specific frequency and a pulse width that varies as a function of control voltage ust 1 .
- control voltage ust 1 is just above the lower limit of the output voltage of the saw-tooth voltage generator, the pulse width of control signal ust 2 is very small and takes up the entire period of the output voltage of the saw-tooth voltage generator upon reaching the upper voltage limit of the saw-tooth voltage generator and control voltage ust 1 , unless steps are taken for early transition to the permanently closed state.
- Pulse-width modulation generator PWM-G switches to the permanently closed setting when control voltage ust 1 exceeds the upper limit of the output voltage of the saw-tooth voltage generator.
- Control signal ust 2 switches power output stage LEST to the permanently closed state when control voltage ust 1 drops below the lower voltage limit of the saw-tooth voltage generator.
- a voltage regulator (comparator) U 1 A is connected upstream from pulse-width modulation generator PWM-G in order to generate control voltage ust 1 .
- a reference voltage uv 1 which is tapped from resistors R 3 and R 4 at a voltage divider, is supplied to non-inverting control input 2 of comparator U 1 A.
- Inverting control input 3 of comparator U 1 A is supplied with an actual value Uist of power output stage LEST via a resistor R 7 and an external setpoint Usoll via a resistor R 6 . Actual value Uist thus corresponds to output voltage ua of power output stage LEST.
- Inverting control input 3 of voltage regulator U 1 A is also connected to the frame potential of supply output Ubatt via a smoothing capacitor C 1 .
- setpoint Usoll is at frame potential, which is then supplied to inverting control input 6 of a compensating stage U 1 B.
- a bias voltage uv 2 corresponding to a setpoint Usollv that is around 95% of maximum setpoint Usollmax, is supplied to non-inverting control input 5 of compensating stage U 1 B from resistors R 1 and R 2 via the voltage divider.
- output 7 of compensating stage U 1 B is set to positive potential. The positive potential cannot pass through diode D 1 to control input 2 of the voltage regulator.
- both control inputs 2 and 3 of the voltage regulator maintain the same potential at uv 1 and Uist.
- Voltage regulator U 1 A does not emit control voltage ust 1 .
- Power output stage LEST is not triggered and remains inactive.
- pulse-width modulation generator PWM-G generates a pulse sequence in which the frequency is determined by the frequency of the saw-tooth voltage generator, while the pulse width increase as control voltage ust 1 rises. Without compensating stage U 1 B, the pulse width would take up the entire period when control voltage ust 1 reaches the upper limit of the output voltage of the saw-tooth voltage generator.
- Output 7 of compensating stage U 1 B is connected to non-inverting control input 5 of compensating stage U 1 B via resistor R 5 in order to obtain a switching hysteresis. This slightly reduces bias voltage uv 2 and, when a reduced setpoint Usoll is reached, causes compensating stage U 1 B to switch back to frame potential when the latter drops to around 92% of maximum setpoint Usollmax. The power output circuit then returns to PWM mode.
- the switching times of compensating stage U 1 B are adjusted to the duration of the switching edges of the pulses of control signals ust 2 so that power output stage LEST switches prematurely to the permanently closed state before the interpulse periods drop below the duration of the switching edges.
- the switching hysteresis is set so that the output stage returns to pwm mode when a preset setpoint Usoll is reached, which is approximately 92% of maximum setpoint Usollmax.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Transmitters (AREA)
Abstract
Description
- The present invention relates to a power output stage circuit having an automatically controlled pulse-width modulation generator and an upstream closed-loop control circuit. The upstream closed-loop control circuit switches the pulse-width modulation generator and the power output stage to a permanently open state, to a PWM mode having pulse-width modulated pulses, and to a permanently closed state as a function of a preset external setpoint, an actual value of the power output stage, and a reference voltage derived from the supply voltage.
- With a conventional power output circuit, there is the danger of the power output stage no longer being accurately clocked shortly before the transition from PWM mode to permanently closed mode. This is especially true when the interpulse periods at the threshold of the PWM zone take on approximately the same duration as the switching edges of the control signal pulses. This results in incomplete switching of the power output stage, which increases the power loss in the power output stage. The cooling system for the power output stage must therefore be designed for this increased power loss. In addition, the imprecise clocking of the output stage increases the EMC value, as a result of the bursts that occur. Moreover, the pulse packets produce audible low-frequency oscillations.
- An object of the present invention is to provide a power output circuit which avoids an increased power loss and high EMC value, particularly at the transition from PWM mode to a permanently closed power output stage. It is also possible to reduce the costs of cooling the power output stage using the power output circuit according to the present invention.
- The power output circuit according to the present invention achieves this object by prematurely switching from PWM mode to permanently closed mode as a function of a preset setpoint and the supply voltage and then returning to PWM mode with a hysteresis of these values.
- The early transition from PWM mode to permanently closed mode and the return from permanently closed mode to PWM mode via a hysteresis avoids the threshold having short periods that is critical for the increase in power loss and elevated EMC value.
- The early transition can be very easily initiated by supplying the closed-loop control circuit with an additional bias voltage which, in conjunction with a preset setpoint that is smaller than the setpoint producing the maximum pulse width by a specific amount, abruptly and prematurely switches the pulse-width modulation generator and the power output stage to the permanently closed state.
- When it reaches the value defined by the additional bias voltage, the setpoint causes the closed-loop control circuit to abruptly switch the pulse modulation generator and the power output stage to the permanently closed state even before the maximum setpoint is reached. This reliably avoids voltage peaks in the output voltage of the power output stage which result in a higher power loss. It also maintains a low EMC value, making it possible to reduce cooling costs, since the power loss and therefore the heat to be dissipated in the power output stage did not increase during this transition to full load, i.e. to the permanently closed state.
- According to one embodiment of the present invention, the point at which early switching to the permanently closed state occurs is defined so that the preset setpoint corresponds to a pulse width of 95% of the maximum pulse width (period). Steps are taken, in particular, to reduce, compared to the period, the pulse width obtained with the preset setpoint by a duration that is longer than the times of the pulse switching edges in PWM mode.
- According to another embodiment of the present invention, the power output circuit is designed so that the closed-loop control circuit has a voltage regulator whose non-inverting control input is supplied with the reference voltage and whose inverting control input is supplied with the setpoint via a resistor and the output voltage of the power output stage via another resistor as the actual value; the voltage regulator emits a control voltage which increases as the setpoint rises. The pulse-width modulation generator has a saw-tooth voltage generator whose output voltage varies periodically between a lower and upper voltage limit. When the control voltage is less than the lower voltage limit, the pulse-width modulation generator does not sent a control signal to the power output stage. When the control voltage is greater than the lower voltage limit but less than the upper voltage limit, the pulse-width modulation generator switches the power output stage to a PWM mode having a increasing pulse width as the setpoint rises. When the control voltage is greater than the upper voltage limit, the pulse-width modulation generator switches the power output stage to the permanently closed state so that it can detect all operating states. In doing this, the abrupt, early transition to the permanently closed state can be easily achieved by supplying the additional bias voltage to the non-inverting control input, by supplying the setpoint to the inverting input of a compensating stage by switching the output potential of the compensating stage from frame potential to positive potential when the preset setpoint corresponds to the bias voltage, by connecting the output of the compensating stage to the non-inverting control input of the voltage regulator via a decoupling diode, and by the fact that the output potential of the compensating stage produces a sudden voltage change at the non-inverting control input of the voltage regulator, resulting in a sudden voltage change for increasing the control voltage and switching the pulse-width modulation generator and the power output stage to the permanently closed state.
- The present invention provides an exemplary embodiment of a particular circuit layout. The comparators or operational amplifiers used in the voltage regulator and in the compensating stage can also be controlled in reverse, and the sudden voltage change can also be implemented in the setpoint. The other control operation can act on the output of the voltage regulator so that the control voltage decreases as the setpoint increases. In this case, the pulse width of the control signal reaches is maximum value when the control voltage approaches the lower saw-tooth voltage generator value, and the transition to the permanently closed state occurs when the control voltage drops below the lower voltage limit of the saw-tooth voltage generator. Depending on how the control voltages are laid out and applied to the comparators or operational amplifiers, it may be necessary to reverse the polarity of the decoupling diode.
- If the output of the compensating stage is connected via a resistor to the non-inverting control input of the same compensating stage, thereby reducing the bias voltage, which is more or less equivalent to a setpoint that is around 92% of the maximum setpoint, this will achieve a switching hysteresis for early switching to the permanently closed state and a return to PWM mode as the setpoint decreases, thereby preventing the closed-loop control circuit from swinging back and forth.
- According to another embodiment of the present invention, the cost of control and the transition from PWM mode to permanently closed mode can be reduced by having a microprocessor control the functions of the voltage regulator and compensating stage.
- FIG. 1 shows a circuit diagram of a power output circuit having a controller circuit and a compensating stage which switches prematurely from a pulse-width modulation (PWM) mode to a permanently closed state.
- FIG. 2 shows a voltage time diagram of an output voltage at a power output stage.
- FIG. 3 shows the voltage time diagram of the output voltage having a very short interpulse period of a PWM control signal.
- FIG. 4 shows the voltage time diagram of the output voltage having a setpoint corresponding to the PWM control signal having the very short interpulse period, however, with a premature switching to the permanently closed state already occurring with this setpoint.
- As shown in FIG. 1, the power output circuit has a power output stage LEST, which can be constructed from one or more parallel-connected power semiconductors, such as FET transistors, and controls a load L. Power output stage LEST is controlled by a control signal ust2 that is emitted by a regulated pulse-width modulation generator PWM-G, which in turn is controlled by a control voltage ust1 of a voltage regulator U1A. Pulse-width modulation generator PWM-G has a saw-tooth voltage generator which generates an output voltage that varies periodically between a lower voltage limit and an upper voltage limit. When control voltage ust1 lies between these two limits of the output voltage of the saw-tooth voltage generator, pulse-width modulation generator PWM-G emits a pulse-width-modulated control signal ust2, having a specific frequency and a pulse width that varies as a function of control voltage ust1. When control voltage ust1 is just above the lower limit of the output voltage of the saw-tooth voltage generator, the pulse width of control signal ust2 is very small and takes up the entire period of the output voltage of the saw-tooth voltage generator upon reaching the upper voltage limit of the saw-tooth voltage generator and control voltage ust1, unless steps are taken for early transition to the permanently closed state. This transition is usually carried out when control voltage ust1 is greater than the upper limit of the output voltage of the saw-tooth voltage generator. Pulse-width modulation generator PWM-G switches to the permanently closed setting when control voltage ust1 exceeds the upper limit of the output voltage of the saw-tooth voltage generator. Control signal ust2 switches power output stage LEST to the permanently closed state when control voltage ust1 drops below the lower voltage limit of the saw-tooth voltage generator.
- A voltage regulator (comparator) U1A is connected upstream from pulse-width modulation generator PWM-G in order to generate control voltage ust1. A reference voltage uv1, which is tapped from resistors R3 and R4 at a voltage divider, is supplied to
non-inverting control input 2 of comparator U1A. Invertingcontrol input 3 of comparator U1A is supplied with an actual value Uist of power output stage LEST via a resistor R7 and an external setpoint Usoll via a resistor R6. Actual value Uist thus corresponds to output voltage ua of power output stage LEST. Invertingcontrol input 3 of voltage regulator U1A is also connected to the frame potential of supply output Ubatt via a smoothing capacitor C1. - Upon starting up the power output circuit, setpoint Usoll is at frame potential, which is then supplied to inverting control input6 of a compensating stage U1B. A bias voltage uv2, corresponding to a setpoint Usollv that is around 95% of maximum setpoint Usollmax, is supplied to non-inverting control input 5 of compensating stage U1B from resistors R1 and R2 via the voltage divider. At start-up, output 7 of compensating stage U1B is set to positive potential. The positive potential cannot pass through diode D1 to control
input 2 of the voltage regulator. Since, when the power output circuit is started up, actual value Uist is more or less equal to positive potential +Ubatt of the supply voltage, and the resistive ratio of resistors R3 and R4 as well as resistors R6 and R7 is the same, bothcontrol inputs - If setpoint Usoll is increased in the positive potential direction, the potential at
control input 3 of the voltage regulator exceeds reference voltage uv1, and the voltage regulator emits a control voltage uv1 which increases in proportion to the rise in setpoint Usoll. When control voltage ust1 exceeds the lower limit of the output voltage of the saw-tooth voltage generator, pulse-width modulation generator PWM-G generates a pulse sequence in which the frequency is determined by the frequency of the saw-tooth voltage generator, while the pulse width increase as control voltage ust1 rises. Without compensating stage U1B, the pulse width would take up the entire period when control voltage ust1 reaches the upper limit of the output voltage of the saw-tooth voltage generator. However, since power output stage LEST cannot be accurately clocked and switched, especially in this threshold region, voltage peaks in output voltage ua, and therefore in actual value Uist of power output stage LEST occur right in the switching edges, thereby increasing power loss and the EMC value (as can be seen in output voltage ua in FIG. 3). - When setpoint Usollv reaches this threshold region, and if it is equal to additionally defined bias voltage uv2 at compensating stage U1B, the potential at output 7 of the compensating stage changes to frame potential of the supply voltage. This produces a sudden voltage change usp at
control input 2 of voltage regulator U1A, thereby abruptly increasing the difference with respect to the control voltage present atcontrol input 3. Control voltage ust1 also makes a sudden change, abruptly exceeding the upper limit of the output voltage of the saw-tooth voltage generator. Pulse-width modulation generator PWM-G sends a continuous control signal ust2 to power output stage LEST, explicitly switching the latter to the permanently closed state and maintaining this state. FIG. 4 shows output voltage ua present at power output stage LEST. - This avoids the high power loss in power output stage LEST. It also produces less heat to be dissipated via a heat sink or a similar device, making it possible to reduce cooling costs. The accurate switching performance of the power output stage reduces the EMC value, since no bursts occur. Furthermore, it is not possible to hear any low-frequency oscillations, which would occur with noisy pulse packets.
- Output7 of compensating stage U1B is connected to non-inverting control input 5 of compensating stage U1B via resistor R5 in order to obtain a switching hysteresis. This slightly reduces bias voltage uv2 and, when a reduced setpoint Usoll is reached, causes compensating stage U1B to switch back to frame potential when the latter drops to around 92% of maximum setpoint Usollmax. The power output circuit then returns to PWM mode.
- The switching times of compensating stage U1B are adjusted to the duration of the switching edges of the pulses of control signals ust2 so that power output stage LEST switches prematurely to the permanently closed state before the interpulse periods drop below the duration of the switching edges. Setting the permanently closed state when the preset setpoint Usoll reaches around 95% of maximum setpoint Usollmax, at which the output stage would normally switch to permanently closed mode, has been found to be advantageous. The switching hysteresis is set so that the output stage returns to pwm mode when a preset setpoint Usoll is reached, which is approximately 92% of maximum setpoint Usollmax.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19736338 | 1997-08-21 | ||
DE19736338A DE19736338A1 (en) | 1997-08-21 | 1997-08-21 | Power stage switch with PWM operation and continuous switch-on operation |
DE19736338.5 | 1997-08-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010019493A1 true US20010019493A1 (en) | 2001-09-06 |
US6445168B2 US6445168B2 (en) | 2002-09-03 |
Family
ID=7839686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/137,004 Expired - Fee Related US6445168B2 (en) | 1997-08-21 | 1998-08-20 | Power output circuit having a pulse-width modulation mode and a permanently closed mode |
Country Status (4)
Country | Link |
---|---|
US (1) | US6445168B2 (en) |
EP (1) | EP0899860B1 (en) |
DE (2) | DE19736338A1 (en) |
ES (1) | ES2189045T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040220713A1 (en) * | 2003-04-30 | 2004-11-04 | Robert Bosch Corporation | Thermal optimization of EMI countermeasures |
CN102064695A (en) * | 2010-12-23 | 2011-05-18 | 山东理工大学 | Electronic voltage stabilizer of semiconductor temperature difference power generation device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10133389A1 (en) | 2001-07-10 | 2003-01-23 | Bosch Gmbh Robert | Device for controlling a power output stage |
JP2007526731A (en) * | 2003-06-27 | 2007-09-13 | マックスウェル テクノロジーズ, インク | Energy storage system |
US20040264085A1 (en) * | 2003-06-27 | 2004-12-30 | Maxwell Technologies, Inc. | Energy storage system |
US7156365B2 (en) | 2004-07-27 | 2007-01-02 | Kelsey-Hayes Company | Method of controlling microvalve actuator |
US8686937B2 (en) * | 2005-10-29 | 2014-04-01 | Lg Display Co. Ltd. | Backlight unit with feedback circuit and driving method using the same |
US9627967B2 (en) * | 2014-03-21 | 2017-04-18 | Stmicroelectronics International N.V. | Power management system and method of use thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4656572A (en) * | 1985-02-19 | 1987-04-07 | Westinghouse Electric Corp. | PWM inverter |
US4692854A (en) * | 1986-03-04 | 1987-09-08 | Best Power Technology, Inc | Method and apparatus for modulating inverter pulse width |
DE3743866C1 (en) * | 1987-12-23 | 1989-07-27 | Lenze Gmbh & Co Kg Aerzen | Circuit arrangement for protecting a switching transistor |
US4959606A (en) * | 1989-01-06 | 1990-09-25 | Uniphase Corporation | Current mode switching regulator with programmed offtime |
US5180964A (en) * | 1990-03-28 | 1993-01-19 | Ewing Gerald D | Zero-voltage switched FM-PWM converter |
IT1268472B1 (en) * | 1993-10-22 | 1997-03-04 | St Microelectronics Srl | BUCK CONVERTER WITH OPERATING MODE AUTOMATICALLY DETERMINED BY THE LOAD LEVEL |
US5594631A (en) * | 1994-04-20 | 1997-01-14 | The Boeing Company | Digital pulse width modulator for power supply control |
US5623198A (en) * | 1995-12-21 | 1997-04-22 | Intel Corporation | Apparatus and method for providing a programmable DC voltage |
-
1997
- 1997-08-21 DE DE19736338A patent/DE19736338A1/en not_active Ceased
-
1998
- 1998-07-23 EP EP98113731A patent/EP0899860B1/en not_active Expired - Lifetime
- 1998-07-23 ES ES98113731T patent/ES2189045T3/en not_active Expired - Lifetime
- 1998-07-23 DE DE59805950T patent/DE59805950D1/en not_active Expired - Lifetime
- 1998-08-20 US US09/137,004 patent/US6445168B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040220713A1 (en) * | 2003-04-30 | 2004-11-04 | Robert Bosch Corporation | Thermal optimization of EMI countermeasures |
US7251553B2 (en) | 2003-04-30 | 2007-07-31 | Robert Bosch Corporation | Thermal optimization of EMI countermeasures |
CN102064695A (en) * | 2010-12-23 | 2011-05-18 | 山东理工大学 | Electronic voltage stabilizer of semiconductor temperature difference power generation device |
Also Published As
Publication number | Publication date |
---|---|
DE59805950D1 (en) | 2002-11-21 |
EP0899860A3 (en) | 2001-01-03 |
EP0899860B1 (en) | 2002-10-16 |
DE19736338A1 (en) | 1999-02-25 |
US6445168B2 (en) | 2002-09-03 |
ES2189045T3 (en) | 2003-07-01 |
EP0899860A2 (en) | 1999-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7646184B2 (en) | Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply | |
US6738272B2 (en) | Charge pump rush current limiting circuit | |
US5568044A (en) | Voltage regulator that operates in either PWM or PFM mode | |
US6713995B2 (en) | Voltage regulator with pulse width modulation in dual frequencies | |
CN101341647B (en) | Switching regulator slope compensation generator circuit | |
US4988942A (en) | Switched resistor regulator control when transfer function includes discontinuity | |
EP1913679B1 (en) | Switching regulator with slope compensation independent of changes in switching frequency | |
US5914591A (en) | Switching power supply | |
JPH07110132B2 (en) | Voltage converter | |
US6369558B2 (en) | Switching regulator | |
US6359410B1 (en) | Apparatus and method for motor current protection through a motor controller | |
US6445168B2 (en) | Power output circuit having a pulse-width modulation mode and a permanently closed mode | |
US4195335A (en) | Switching power supply having a wide range input capability | |
US20060038627A1 (en) | PWM controller with temperature regulation of switching frequency | |
JPH11235026A (en) | Switching regulator | |
US4594541A (en) | Switching regulator using dual slope sawtooth generator | |
JP2002051541A (en) | Switching power supply device and semiconductor device for switching power supply | |
JP3277851B2 (en) | Control circuit with malfunction prevention function | |
JPH08205531A (en) | Dc power supply device | |
JPS5930032B2 (en) | Constant voltage control method | |
JPH0649111Y2 (en) | Flyback DC-DC converter | |
RU2006062C1 (en) | Step-down pulse constant voltage regulator | |
JPH1098875A (en) | Switching regulator | |
JPS6139883A (en) | Rotating speed controller of dc motor | |
JPS62178194A (en) | Drive device for dc motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EISENHARDT, HARALD;FALLIANO, ROLF;REEL/FRAME:009568/0141;SIGNING DATES FROM 19981008 TO 19981012 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140903 |