US20010013324A1 - Apparatus and method for fail-safe control of sliding mode control system - Google Patents
Apparatus and method for fail-safe control of sliding mode control system Download PDFInfo
- Publication number
- US20010013324A1 US20010013324A1 US09/731,820 US73182000A US2001013324A1 US 20010013324 A1 US20010013324 A1 US 20010013324A1 US 73182000 A US73182000 A US 73182000A US 2001013324 A1 US2001013324 A1 US 2001013324A1
- Authority
- US
- United States
- Prior art keywords
- sliding mode
- mode control
- control system
- control
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 8
- 230000005856 abnormality Effects 0.000 claims abstract description 53
- 238000002485 combustion reaction Methods 0.000 claims abstract description 6
- 230000015556 catabolic process Effects 0.000 description 17
- 230000002093 peripheral effect Effects 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 244000145845 chattering Species 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1403—Sliding mode control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/34423—Details relating to the hydraulic feeding circuit
- F01L2001/34426—Oil control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34479—Sealing of phaser devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/21—Elements
- Y10T74/2101—Cams
- Y10T74/2102—Adjustable
Definitions
- the present invention relates to technology of a fail-safe control of a sliding mode control system, for example, to technology for performing a fail-safe control at an abnormal time of a sliding mode control system used for feedback controlling a rotation phase of a camshaft relative to a crankshaft to a target value.
- a conventional valve timing apparatus is known as a vane type valve timing controlling apparatus disclosed in Japanese Unexamined Patent Publication 10-141022 such as an apparatus for successively changing opening and closing timing of intake and exhaust valves by changing rotation phase of a camshaft relative to a crankshaft.
- This apparatus forms concave portions in the inner surface of a cylindrical housing fixed to a cam sprocket in which vanes of an impeller are accommodated in the concave portions so that the camshaft can rotate relative to the cam sprocket within the range where the vanes of the impeller can move in the concave portions.
- the present invention has been achieved and has an object of carrying out a fail-safe control capable of maintaining high performance as possible on abnormality of a control system.
- Another object of the present invention is to carry out a fail-safe control corresponding to the types and degree of abnormality of a control system.
- the present invention comprises the following constitution in a system for feedback controlling a control object to a target value by calculating a control amount composed of a linear term and a non-linear term by a sliding mode control.
- the feedback control is carried out at a slower speed than in a normal time.
- a filter function is generated to instantaneous breakdown, noises, and fluctuations of control signal, so that the control object can be converged to the target value to achieve a desired performance restraining abrupt fluctuations, while restraining abrupt fluctuations.
- the constitution may be such that the feedback control may be carried out using the non-linear term only when it is judged that the sliding mode control system is in a predetermined abnormal state.
- the fail-safe control is carried out by a feedforward control. Only when the feedback control can be carried out, the feedback control is carried out using only the non-linear term. Thereby, the feedback control can be carried out according to a degree of abnormality.
- the constitution may be such that the predetermined abnormality includes an abnormality which occurs transiently.
- the feedback control can be carried out using only the non-linear term to the abnormality which occurs transiently, such as instantaneous breakdown and noises of control signal.
- control object can be feedback controlled to the target value while preventing abrupt fluctuations or operating errors caused by the abnormality occurring transiently.
- the predetermined abnormality may include an abnormality where a deviation between the target value and the actual value of the control object exceeds a threshold value for a predetermined time or above.
- the control object may be a rotation phase of a camshaft relative to a crankshaft of an internal combustion engine wherein the opening and closing timing of an intake valve and an exhaust valve is controlled variably and continuously by feedback controlling the rotation phase to a target value.
- valve timing (substantial control object) is feedback controlled to a target value by a sliding mode control and also the presence of abnormality is judged to carry out the feedback control by using only the non-linear term at the time of occurrence of abnormality.
- FIG. 1 is a cross sectional view of a valve timing control mechanism in common with each embodiment
- FIG. 2 is a cross sectional view taken on line B-B in FIG. 1;
- FIG. 3 is an exploded perspective view of the valve timing control mechanism
- FIG. 4 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism
- FIG. 5 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism
- FIG. 6 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism
- FIG. 7 is a control block diagram of the above valve timing control mechanism
- FIG. 8 is a time chart showing a state of convergence to a target angle during a sliding mode control of the above valve timing control apparatus
- FIG. 9 is a flowchart showing a fail-safe control at the time of an abnormality of the valve timing control mechanism
- FIG. 10 is a diagram showing a state of normality and a slight abnormality of a cam target signal of the valve timing control mechanism
- FIG. 11 is a diagram showing a comparison between a fail-safe control operation and a normal control operation of the valve timing control mechanism
- FIG. 1 ?? FIG. 6 show mechanical portions of a valve timing control apparatus in an internal combustion engine wherein the feedback control is carried out by a sliding mode control, applied to an intake valve side.
- the valve timing control apparatus as shown in the figures is equipped with a cam sprocket 1 (timing sprocket) driven to rotate through a timing chain by a crankshaft of an engine (not shown), a camshaft 2 mounted rotatably relative to the cam sprocket 1 , a rotation member 3 fixed to an end of the camshaft 2 to be received rotatably in the cam sprocket 1 , an oil pressure circuit 4 rotating the rotation member 3 relative to the cam sprocket 1 , and a lock mechanism 10 selectively locking a relative rotation position of the cam sprocket 1 and the rotation member 3 at a predetermined position.
- a cam sprocket 1 timing sprocket driven to rotate through a timing chain by a crankshaft of an engine (not shown)
- a camshaft 2 mounted rotatably relative to the cam sprocket 1
- a rotation member 3 fixed to an end of the camshaft 2 to be received rotatably in the cam
- the cam sprocket 1 includes a rotation portion 5 having a tooth portion 5 a on its periphery with which the timing chain (or timing belt) meshes, a housing 6 disposed in the front of the rotation portion 5 to rotatably receive the rotation member 3 , a disc-shaped front cover 7 which functions as a lid for closing a front end of the housing 6 and a substantially disc-shaped rear cover 8 disposed between the housing 6 and the rotation portion 5 to close a rear end of the housing 6 .
- the rotation portion 5 is joined integrally with the housing 6 , the front cover 7 , and the rear cover 8 by four small diameter bolts 9 in an axial direction.
- the rotation portion 5 has a substantially annular shape in which four female screw bores 5 b are through formed in the front-rear direction at equally spaced positions of 90 degrees in its peripheral direction and the small diameter bolts 9 are screwed to these female screw bores 5 b , and also in the internal and central position of the rotation portion 5 , a stepped fitting bore 11 is through formed into which a sleeve 25 for forming a passage to be described later is fitted. Moreover, at the front end of the rotation portion 5 , a disc-shaped fitting groove 12 is formed into which the rear cover 8 is fitted.
- the housing 6 has a cylindrical shape with the front and rear ends opened, and at 90 degree positions in the peripheral direction of the inner peripheral surface thereof, four partition walls 13 are formed projectingly.
- the partition walls 13 are formed in trapezoidal shapes in cross section and disposed along the axial direction of the housing 6 and both ends of each of the walls 13 are flush with both ends of the housing 6 .
- four bolt through holes 14 are through formed in the axial direction into which the small diameter bolts 9 are inserted.
- a cutout retaining groove 13 a is formed within which C-shaped sealing member 15 and a plate spring 16 urging the sealing member 15 inwards are held fittedly.
- the front cover 7 is formed with a relatively large diameter bolt through hole 17 at its center and four bolt through holes at the positions corresponding to the respective bolt through holes 14 in the housing 6 .
- the rear cover 8 is formed with a disc portion 8 a held fittedly within the fitting groove 12 of the rotation portion 5 at the rear end thereof, an insert hole 8 c into which a small diameter annular portion 25 a is inserted at the center thereof and further four bolt through holes 19 at the positions corresponding to the bolt through holes 14 .
- the camshaft 2 is supported rotatably through a cam bearing 23 at the tip end portion of a cylinder head 22 , and at a predetermined position in the outer peripheral surface of the camshaft 2 , a cam (not shown in the figures) is integrally mounted to open an intake valve through a valve lifter and a flange portion 24 is integrally mounted to its front end portion.
- the rotation member 3 is fixed to the front end of the camshaft 2 through a fixing bolt 26 inserted in the axial direction through the sleeve 25 with the front and rear ends thereof fitted into the flange portion 24 and the fitting bore 11 , respectively, and is equipped with an annular base portion 27 having a bolt through hole 27 a receiving the fixing bolt 26 at the center thereof and with four vanes 28 a , 28 b , 28 c , and 28 d integrally mounted at 90 degree positions in the outer peripheral surface of the base portion 27 .
- Each of the first to fourth vanes ( 28 a ⁇ 28 d ) has a substantially inverted trapezoidal shape in cross section and disposed in the concave between each of partition walls 13 to define the front concave and the rear concave in the rotation direction.
- An advance pressure chamber 32 and a retard pressure chamber 33 are defined between both sides of vanes 28 a ⁇ 28 d and both sides of partition walls.
- Sealing members 30 with C-shape in slide contact with an inner surface 6 a of the housing 6 and plate springs 31 urging the sealing members 30 outwards are held and inserted in retaining grooves 29 cut-out in the axial direction at the center of the peripheral surface of each of vanes 28 a ⁇ 28 d.
- the lock mechanism 10 includes an engagement groove 20 formed at a predetermined outward position of the fitting groove 12 of the rotation portion 5 , a tapered engagement bore 21 penetrated at a predetermined position of the rear cover 8 corresponding to the engagement 20 , a bore 35 for slide penetrated along the internal axial direction at substantially central position of one of vanes 28 corresponding to the engagement bore 21 , a lock pin 34 disposed slidably in the bore 35 of one of the vanes 28 , a coil spring 39 in compressive state disposed at the rear end of the lock pin 34 and an oil pressure receiving chamber 40 formed between the lock pin 34 and the bore 35 .
- the lock pin 34 includes an intermediate diameter lock body 34 a at its middle, a conical engagement portion 34 b with its front head being smaller in diameter at the front side of the lock body 34 a and a stepped, large diameter stopper portion formed on the rear end of the lock body 34 a .
- the lock pin 34 is urged in the direction of the engagement bore 21 by the spring force of the coil spring 39 disposed in compressive state between the bottom surface of a concave groove 34 d and an inner end surface of the front cover 7 , and is slidable in the direction of it being taken out from the engagement bore 21 by the oil pressure of the oil pressure receiving chamber 40 defined between a peripheral surface between the body 34 a and the stopper portion 34 c and the inner surface of the bore 35 for slide.
- This chamber 40 is in communication with the retard oil pressure chamber 33 through a penetrating bore 36 formed in the side of the vane 28 .
- the engagement portion 34 b of the lock pin 34 enters into and is in engagement with the engagement bore 21 at the maximum retard rotation
- the oil pressure circuit 4 includes a first oil pressure passage 41 which supplies and discharges oil pressure to the advance oil pressure chamber 32 and a second oil pressure passage 42 which supplies and discharges oil to the retard oil pressure chamber 33 , that is two lines of the oil pressure passages.
- These oil pressure passages 41 , 42 both are connected with a supply passage 43 and a drain passage 44 respectively through an electromagnetic switching valve 45 for passage switching.
- the supply passage 43 is equipped with an oil pump 47 for supplying oil in an oil pan under pressure while a downstream end of the drain passage 44 is connected with the oil pan.
- the first oil pressure passage 41 includes a first passage portion 41 a formed in the cylinder head 22 and in the axis of the camshaft 2 , a first oil path 41 b which branches off in the head portion 26 a through an axial direction of a fixing bolt 26 and communicates with the first passage portion 41 a , an oil chamber 41 c which is formed between a small diameter outer peripheral surface of the head portion 26 a and an inner peripheral surface of a bolt insert hole 27 a in the base portion 27 of the rotation member 3 to communicate with the first oil path 41 b and four branch paths 41 d which are formed in radial directions in the base portion 27 of the rotation member 3 to communicate with the oil chamber 41 c and each of advance oil pressure chambers 32 .
- the second oil pressure passage 42 includes a second passage portion 42 a in the cylinder head 22 and in an inner one side of the camshaft 2 , a second oil path 42 b which is formed in a substantially L-shape inside of the sleeve 25 to communicate with the second passage portion 42 a , four oil passage grooves 42 c which are formed at an outer peripheral side bore edge of the engagement bore 11 of the rotation member 5 to communicate with the second oil path 42 b and four oil bores 42 d which are formed at approximately 90 degree positions in a circumferential direction of the rear cover 8 to communicate each of the oil passage grooves 42 c with the retard oil pressure chamber 33 .
- a spool valve body of the valve 45 switches each of the oil pressure passages 41 , 42 and the supply passage 43 and the drain passages 44 a , 44 b relatively. Further, the electromagnetic switching valve 45 is switchingly operated by a control signal from a controller 48 .
- the electromagnetic switching valve includes a cylindrical body 51 inserted into and fixed to a holding bore 50 of the cylinder block 49 , a spool valve body 53 which is slidable inside a valve bore 52 of the valve body 51 and switches flow path, and a proportional solenoid electromagnetic actuator 54 operating the spool valve body 53 .
- the valve body 51 includes a supply port 55 penetrated at the substantially central position of the peripheral wall therein which makes communication between a downstream end of the supply passage 43 and the valve bore 52 , and a first port 56 and a second port 57 penetrated therein at both sides of the supply port 55 communicating other ends of the first oil pressure passage 41 and the second oil pressure passage 42 and the valve bore 52 .
- a third port 58 and a fourth port 59 are penetrated communicating both drain passages 44 a and 44 b and the valve bore 52 .
- the spool valve body 53 includes a substantially cylindrical first valve portion 60 opening and closing the supply port 55 at the center of a small diameter axis and substantially cylindrical second, third valve portions 61 , 62 at its ends therein opening and closing the third port and the fourth port 58 , 59 .
- the spool valve body 53 is urged in the right direction of the figure by a conical valve spring 63 disposed in compressive state between a cap portion 53 b in one end of a support axis 53 a at its front end and a spring sheet 51 a at an inner wall of the front end of the valve bore 52 so that at the first valve portion 60 the supply port 55 and the second oil pressure passage 42 are communicated.
- the electromagnetic actuator 54 is equipped with a core 64 , a moving plunger 65 , a coil 66 , a connector 67 and the like. At the front end of the moving plunger is fixed a driving rod 65 a pressing a cap portion 53 b of the spool valve body 53 .
- the controller 48 detects present operating conditions (load, rotation) by a signal from a rotation sensor 101 detecting an engine rotation speed and by a signal from an airflow meter 102 detecting an intake air amount, and detects rotation phase of the camshaft 2 relative to the crankshaft, that is, relative position of the rotation direction of the cam sprocket 1 and the camshaft 2 by signals from the crank angle sensor 103 and the cam sensor 104 .
- the controller 48 controls electricity to the electromagnetic actuator 54 based on a duty control signal.
- the controller 48 when the controller 48 outputs a control signal (off signal) with a duty ratio of 0% to the electromagnetic actuator 54 , the spool valve body 53 moves to the right direction at a maximum by spring force of the valve spring 63 as shown in FIG. 4.
- the first valve portion 60 opens an opening end 55 a of the supply port 55 for communicating with the second port 57 and at the same time the second valve portion 61 opens an opening end of the third port 58 and the fourth valve portion 62 closes the fourth port 59 .
- operating oil pressurized from a oil pump 47 is sent to the retard oil pressure chamber 33 through the supply port 55 , a valve port 52 , the second port 57 and the second oil pressure passage 42 and operating oil of the advance oil pressure chamber 32 is discharged to the oil pan 46 from the first drain passage 44 a through the first oil pressure passage 41 , the first port 56 , a valve bore 52 , and the third port 58 .
- the rotation member 3 rotates in one direction at a maximum through the vanes 28 a to 28 d .
- the cam sprocket 1 and the camshaft 2 rotates one side relatively and change their phase, resulting in that an opening time of the intake valve is delayed and overlapping with the exhaust valve gets smaller.
- the controller 48 when the controller 48 outputs a control signal (ON signal) with a duty ratio of 1000% to the electromagnetic actuator 54 , the spool valve body 53 slides in the left direction at a maximum against spring force of the valve spring 63 as shown in FIG. 6, the third valve portion 61 closes the third port 58 , and at the same time the fourth valve portion 62 opens the fourth valve port 59 and the first valve port 60 communicates the supply port 55 and the first port 56 . Therefore, the operating oil is supplied to the advance oil pressure chamber 32 through the supply port 55 , the first port 56 , and the first oil pressure passage 41 .
- the operating oil of the retard oil pressure chamber 33 is discharged to the oil pan 46 through the second oil pressure passage 42 , the second port 57 , the fourth port 59 , and the second drain passage 44 b .
- the oil pressure of the retard oil pressure chamber 33 gets lower.
- the rotation member 3 rotates in the other direction at a maximum through the vanes 28 a to 28 d , by which the cam sprocket 1 and the camshaft 2 rotate in the other side relatively and change their phase, resulting in that opening timing of an intake valve gets earlier (advanced) and overlapping with an exhaust valve gets larger.
- the controller 48 makes as base duty ratio the duty ratio at the position where the first valve portion 60 closes a supply port 55 , the third valve portion 61 closes the third port 58 , and the fourth valve portion 62 closes the fourth port 59 and on the other hand sets a feedback correction component duty by sliding mode control to make relative position of rotation (rotation phase) between the cam sprocket 1 and the camshaft 2 detected based on signals from a crank angle sensor 103 and a cam sensor 104 to be in accordance with a target value (target advance value) of the relative position of rotation (rotation phase) set corresponding to operating conditions, and makes a final duty ratio (VTCDTY) an additional result of the base duty ratio(BASEDTY) and the feedback correction component(UDTY) and outputs control signal of the duty ratio (VTCDTY) to the electromagnetic actuator 54 .
- a target value target advance value
- the base duty ratio (BASEDTY) is set at about a central value (for example, 50%) in the duty range within which the supply port 55 , the third port 58 and the fourth port 59 all close and there is no supply and no discharge of oil in both of the oil pressure chambers 32 , 33 .
- the duty ratio is controlled to be back close to the base duty ratio and closing of the supply port 55 , the third port 58 , and the fourth port 59 (cease of supply and discharge of oil pressure) functions to hold the inner pressure of each of the oil pressure chambers 32 , 33 .
- the feedback correction component (UDTY) will be calculated by sliding mode as follows. In the following the relative position of rotation (rotation phase) between a cam sprocket 1 and a camshaft 2 to be detected will be explained as an actual angle of a valve timing control apparatus (VTC) and its target value will be explained as a target angle of VTC.
- VTC valve timing control apparatus
- FIG. 7 is a block diagram showing a state of duty control of the electromagnetic actuator 54 by the above controller 48 to which the sliding mode control designed as mentioned above is applied (including a fail-safe control function according to the present invention described later).
- a deviation PERR between a target angle VTCTRG and an actual angle VTCNOW is calculated.
- a switching function S is calculated by adding a value obtained by multiplying the deviation PERR by an inclination y to the differential value d (PERR)Idt of the deviation PERR to calculate a non-linear term UNL as a smoothing function ⁇ kS/(
- k is a non-linear term gain and b is a chattering prevention coefficient
- the non-linear term UNL directs the state of control system to the switching line to bind it on the switching line. Thereby, the state of control system is moved from an initial state to the switching line on the phase plane. When getting on the switching line, the state of control system reaches an original point (target value) while sliding boundedly on the switching line (see FIG. 8).
- a feedback correction component UDTY is calculated by adding the linear term UL and the non-linear term UNL. Then, the feedback correction component UDTY is added to a base duty ratio BASEDTY equivalent to a dead band central position, to output the added result as a final duty ratio VTCDTY.
- FIG. 9 A flowchart in FIG. 9 illustrates an embodiment of fail-safe control.
- step 1 an abnormality diagnosis result of valve timing control system is read to judge whether or not an abnormality occurs (NG).
- step 2 When it is judged that there is no occurrence of abnormality, the routine goes to step 2 wherein the above regular control at the time of normality is carried out.
- step 3 When it is diagnosed that an abnormality occurs, the routine goes to step 3 .
- step 3 it is judged whether or not the cause of the occurring abnormality is a breakdown of cam target signal.
- step 3 When in step 3 , it is judged that there is no breakdown of cam target signal, the routine goes to step 5 , wherein it is judged whether or not the abnormality is caused by a breakdown of solenoid for driving the electromagnetic switching valve 45 .
- the cam target signal when the cam target signal is generated two or more times within the predetermined crank angle period (see FIG. 10B), it is diagnosed that the cam target signal has an instantaneous breakdown and noises. Besides, there are a diagnosis of VTC offset, an offset diagnosis during idling, and a diagnosis of VTC driving abnormality. When a state that the deviation PEER exceeds an allowable value lasts for a set time or more, it is diagnosed that there is an abnormality caused by a bad response.
- the control gain k of the non-linear term UNL is limited to a value that hunting does not occur when VTC reaches the target angle. Since a robust characteristic of sliding mode control depends on the non-linear term UNL, the control gain k is set to be as large as possible within the limited range.
- the non-linear term UNL is subjected to a chattering prevention (hunting prevention) process (adding the chattering prevention coefficient ⁇ to a denominator), it becomes larger when the PEER is large and it becomes smaller when the PEER is small.
- the feedback control is carried out while reducing the control velocity. It brings a filter function against an instantaneous breakdown, noises, and fluctuations, and finally, a desired performance can be secured by converging to the target angle while restraining abrupt fluctuations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Valve Device For Special Equipments (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Feedback Control In General (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
Abstract
Description
- The present invention relates to technology of a fail-safe control of a sliding mode control system, for example, to technology for performing a fail-safe control at an abnormal time of a sliding mode control system used for feedback controlling a rotation phase of a camshaft relative to a crankshaft to a target value.
- A conventional valve timing apparatus is known as a vane type valve timing controlling apparatus disclosed in Japanese Unexamined Patent Publication 10-141022 such as an apparatus for successively changing opening and closing timing of intake and exhaust valves by changing rotation phase of a camshaft relative to a crankshaft.
- This apparatus forms concave portions in the inner surface of a cylindrical housing fixed to a cam sprocket in which vanes of an impeller are accommodated in the concave portions so that the camshaft can rotate relative to the cam sprocket within the range where the vanes of the impeller can move in the concave portions.
- By relatively supplying and discharging oil into a pair of oil pressure chambers formed by defining the concave portions in the front and the rear of the rotation direction, the vanes are held in the mid position of the concave portions and thus successive changing of rotation phase can be carried out. Thus, supply and discharge of the oil is feedback controlled by PID control so that a rotation phase of a control object corresponds to a target value.
- When the rotation phase cannot be controlled to the target value in the above valve timing control apparatus, the operation performance of an engine is deteriorated. Therefore, in the conventional valve timing apparatus, a fail-safe control has been performed for diagnosing the existence of abnormality and for controlling the rotation phase of the camshaft relative to the crankshaft to the most retarded side when the occurrence of abnormality is diagnosed.
- However, the above fail-safe control for controlling the rotation phase to the most retarded side is of an inappropriate constitution, since only a minimum operation performance can be achieved.
- Further, it is preferable to variably set a feedback gain in accordance with an oil temperature and an oil pressure in order to execute the PID control with a good response characteristic. However, gain matching is not easily performed. Accordingly, the shift from the general PID control to a sliding mode control with small disturbance is being investigated.
- In view of the foregoing, the present invention has been achieved and has an object of carrying out a fail-safe control capable of maintaining high performance as possible on abnormality of a control system.
- Another object of the present invention is to carry out a fail-safe control corresponding to the types and degree of abnormality of a control system.
- In order to achieve the above objects, the present invention comprises the following constitution in a system for feedback controlling a control object to a target value by calculating a control amount composed of a linear term and a non-linear term by a sliding mode control.
- It is judged whether or not an abnormality occurs in the system.
- When it is judged that the system is abnormal, a feedback control is carried out using only a non-linear term calculated by the sliding mode control.
- According to this constitution, by using only the non-linear term, the feedback control is carried out at a slower speed than in a normal time. As a result, a filter function is generated to instantaneous breakdown, noises, and fluctuations of control signal, so that the control object can be converged to the target value to achieve a desired performance restraining abrupt fluctuations, while restraining abrupt fluctuations.
- Also, the constitution may be such that the feedback control may be carried out using the non-linear term only when it is judged that the sliding mode control system is in a predetermined abnormal state.
- According to this constitution, at an abnormal state where the feedback control cannot be carried out due to a steady failure such as a break down of control signal, the fail-safe control is carried out by a feedforward control. Only when the feedback control can be carried out, the feedback control is carried out using only the non-linear term. Thereby, the feedback control can be carried out according to a degree of abnormality.
- Further, the constitution may be such that the predetermined abnormality includes an abnormality which occurs transiently.
- According to this constitution, the feedback control can be carried out using only the non-linear term to the abnormality which occurs transiently, such as instantaneous breakdown and noises of control signal.
- Accordingly, the control object can be feedback controlled to the target value while preventing abrupt fluctuations or operating errors caused by the abnormality occurring transiently.
- Also, the predetermined abnormality may include an abnormality where a deviation between the target value and the actual value of the control object exceeds a threshold value for a predetermined time or above.
- According to this constitution, when a good response is not obtained, the feedback control using only the non-linear term can be carried out to secure the good performance while preventing abrupt fluctuations.
- The control object may be a rotation phase of a camshaft relative to a crankshaft of an internal combustion engine wherein the opening and closing timing of an intake valve and an exhaust valve is controlled variably and continuously by feedback controlling the rotation phase to a target value.
- In this way, in a constitution wherein the valve timing is continuously changed by changing the rotation phase of the camshaft relative to the crankshaft, the valve timing (substantial control object) is feedback controlled to a target value by a sliding mode control and also the presence of abnormality is judged to carry out the feedback control by using only the non-linear term at the time of occurrence of abnormality.
- Only when it is judged that there is a slight abnormality in a sliding mode control system in which the control object is the rotation phase of the camshaft relative to the crankshaft of the internal combustion engine, the feedback control using only the non-linear term is carried out. When it is judged that the sliding mode control system has a crucial abnormality, the rotation phase of the camshaft may be controlled fixedly to the most retarded side.
- In this way, when the system has a slight abnormality such as an instantaneous breakdown, noises and a bad response of signal necessary for detection of the rotation phase of the camshaft, the feedback control using only the non-linear term is carried out. When the system has an abnormality wherein it is impossible to carry out the feedback control due to a steady failure such as a breakdown of signal, the rotation phase of the camshaft can be controlled fixedly to the most retarded side to secure the required minimum performance.
- The other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
- FIG. 1 is a cross sectional view of a valve timing control mechanism in common with each embodiment;
- FIG. 2 is a cross sectional view taken on line B-B in FIG. 1;
- FIG. 3 is an exploded perspective view of the valve timing control mechanism;
- FIG. 4 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism;
- FIG. 5 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism;
- FIG. 6 is a longitudinal sectional view showing an electromagnetic switching valve in the valve timing control mechanism;
- FIG. 7 is a control block diagram of the above valve timing control mechanism;
- FIG. 8 is a time chart showing a state of convergence to a target angle during a sliding mode control of the above valve timing control apparatus;
- FIG. 9 is a flowchart showing a fail-safe control at the time of an abnormality of the valve timing control mechanism;
- FIG. 10 is a diagram showing a state of normality and a slight abnormality of a cam target signal of the valve timing control mechanism;
- FIG. 11 is a diagram showing a comparison between a fail-safe control operation and a normal control operation of the valve timing control mechanism;
- Embodiments of the present invention will be explained as follows.
- FIG. 1˜FIG. 6 show mechanical portions of a valve timing control apparatus in an internal combustion engine wherein the feedback control is carried out by a sliding mode control, applied to an intake valve side.
- The valve timing control apparatus as shown in the figures is equipped with a cam sprocket1 (timing sprocket) driven to rotate through a timing chain by a crankshaft of an engine (not shown), a
camshaft 2 mounted rotatably relative to thecam sprocket 1, arotation member 3 fixed to an end of thecamshaft 2 to be received rotatably in thecam sprocket 1, anoil pressure circuit 4 rotating therotation member 3 relative to thecam sprocket 1, and alock mechanism 10 selectively locking a relative rotation position of thecam sprocket 1 and therotation member 3 at a predetermined position. - The
cam sprocket 1 includes arotation portion 5 having atooth portion 5 a on its periphery with which the timing chain (or timing belt) meshes, ahousing 6 disposed in the front of therotation portion 5 to rotatably receive therotation member 3, a disc-shaped front cover 7 which functions as a lid for closing a front end of thehousing 6 and a substantially disc-shapedrear cover 8 disposed between thehousing 6 and therotation portion 5 to close a rear end of thehousing 6. Therotation portion 5 is joined integrally with thehousing 6, thefront cover 7, and therear cover 8 by foursmall diameter bolts 9 in an axial direction. - The
rotation portion 5 has a substantially annular shape in which fourfemale screw bores 5 b are through formed in the front-rear direction at equally spaced positions of 90 degrees in its peripheral direction and thesmall diameter bolts 9 are screwed to thesefemale screw bores 5 b, and also in the internal and central position of therotation portion 5, astepped fitting bore 11 is through formed into which asleeve 25 for forming a passage to be described later is fitted. Moreover, at the front end of therotation portion 5, a disc-shaped fitting groove 12 is formed into which therear cover 8 is fitted. - The
housing 6 has a cylindrical shape with the front and rear ends opened, and at 90 degree positions in the peripheral direction of the inner peripheral surface thereof, fourpartition walls 13 are formed projectingly. Thepartition walls 13 are formed in trapezoidal shapes in cross section and disposed along the axial direction of thehousing 6 and both ends of each of thewalls 13 are flush with both ends of thehousing 6. At the base end side of the housing, four bolt throughholes 14 are through formed in the axial direction into which thesmall diameter bolts 9 are inserted. Further, at the central position of the internal face of each ofwalls 13, acutout retaining groove 13 a is formed within which C-shaped sealing member 15 and aplate spring 16 urging the sealingmember 15 inwards are held fittedly. - Further, the
front cover 7 is formed with a relatively large diameter bolt throughhole 17 at its center and four bolt through holes at the positions corresponding to the respective bolt throughholes 14 in thehousing 6. - The
rear cover 8 is formed with adisc portion 8 a held fittedly within thefitting groove 12 of therotation portion 5 at the rear end thereof, aninsert hole 8 c into which a small diameterannular portion 25 a is inserted at the center thereof and further four bolt throughholes 19 at the positions corresponding to the bolt throughholes 14. - The
camshaft 2 is supported rotatably through a cam bearing 23 at the tip end portion of acylinder head 22, and at a predetermined position in the outer peripheral surface of thecamshaft 2, a cam (not shown in the figures) is integrally mounted to open an intake valve through a valve lifter and aflange portion 24 is integrally mounted to its front end portion. - The
rotation member 3 is fixed to the front end of thecamshaft 2 through afixing bolt 26 inserted in the axial direction through thesleeve 25 with the front and rear ends thereof fitted into the flange portion24 and thefitting bore 11, respectively, and is equipped with anannular base portion 27 having a bolt throughhole 27 a receiving thefixing bolt 26 at the center thereof and with fourvanes base portion 27. - Each of the first to fourth vanes (28 a˜28 d) has a substantially inverted trapezoidal shape in cross section and disposed in the concave between each of
partition walls 13 to define the front concave and the rear concave in the rotation direction. Anadvance pressure chamber 32 and aretard pressure chamber 33 are defined between both sides ofvanes 28 a˜28 d and both sides of partition walls.Sealing members 30 with C-shape in slide contact with aninner surface 6 a of thehousing 6 and plate springs 31 urging the sealingmembers 30 outwards are held and inserted in retaininggrooves 29 cut-out in the axial direction at the center of the peripheral surface of each ofvanes 28 a˜28 d. - The
lock mechanism 10 includes anengagement groove 20 formed at a predetermined outward position of thefitting groove 12 of therotation portion 5, a tapered engagement bore 21 penetrated at a predetermined position of therear cover 8 corresponding to theengagement 20, abore 35 for slide penetrated along the internal axial direction at substantially central position of one of vanes 28 corresponding to the engagement bore 21, alock pin 34 disposed slidably in thebore 35 of one of the vanes 28, acoil spring 39 in compressive state disposed at the rear end of thelock pin 34 and an oilpressure receiving chamber 40 formed between thelock pin 34 and thebore 35. - The
lock pin 34 includes an intermediatediameter lock body 34 a at its middle, aconical engagement portion 34 b with its front head being smaller in diameter at the front side of thelock body 34 a and a stepped, large diameter stopper portion formed on the rear end of thelock body 34 a. Thelock pin 34 is urged in the direction of the engagement bore 21 by the spring force of thecoil spring 39 disposed in compressive state between the bottom surface of aconcave groove 34 d and an inner end surface of thefront cover 7, and is slidable in the direction of it being taken out from the engagement bore 21 by the oil pressure of the oilpressure receiving chamber 40 defined between a peripheral surface between thebody 34 a and the stopper portion 34 c and the inner surface of thebore 35 for slide. Thischamber 40 is in communication with the retardoil pressure chamber 33 through a penetratingbore 36 formed in the side of the vane 28. Theengagement portion 34 b of thelock pin 34 enters into and is in engagement with the engagement bore 21 at the maximum retard rotation position. - The
oil pressure circuit 4 includes a firstoil pressure passage 41 which supplies and discharges oil pressure to the advanceoil pressure chamber 32 and a secondoil pressure passage 42 which supplies and discharges oil to the retardoil pressure chamber 33, that is two lines of the oil pressure passages. Theseoil pressure passages supply passage 43 and a drain passage 44 respectively through anelectromagnetic switching valve 45 for passage switching. Thesupply passage 43 is equipped with anoil pump 47 for supplying oil in an oil pan under pressure while a downstream end of the drain passage 44 is connected with the oil pan. - The first
oil pressure passage 41 includes afirst passage portion 41 a formed in thecylinder head 22 and in the axis of thecamshaft 2, afirst oil path 41 b which branches off in thehead portion 26 a through an axial direction of a fixingbolt 26 and communicates with thefirst passage portion 41 a, anoil chamber 41 c which is formed between a small diameter outer peripheral surface of thehead portion 26 a and an inner peripheral surface of abolt insert hole 27 a in thebase portion 27 of therotation member 3 to communicate with thefirst oil path 41 b and fourbranch paths 41 d which are formed in radial directions in thebase portion 27 of therotation member 3 to communicate with theoil chamber 41 c and each of advanceoil pressure chambers 32. - On the other hand, the second
oil pressure passage 42 includes a second passage portion42 a in thecylinder head 22 and in an inner one side of thecamshaft 2, asecond oil path 42 b which is formed in a substantially L-shape inside of thesleeve 25 to communicate with thesecond passage portion 42 a, fouroil passage grooves 42 c which are formed at an outer peripheral side bore edge of the engagement bore 11 of therotation member 5 to communicate with thesecond oil path 42 b and four oil bores 42 d which are formed at approximately 90 degree positions in a circumferential direction of therear cover 8 to communicate each of theoil passage grooves 42 c with the retardoil pressure chamber 33. - In the
electromagnetic switching valve 45, a spool valve body of thevalve 45 switches each of theoil pressure passages supply passage 43 and thedrain passages electromagnetic switching valve 45 is switchingly operated by a control signal from acontroller 48. - In more detail, as shown in FIG. 4 to FIG. 6, the electromagnetic switching valve includes a
cylindrical body 51 inserted into and fixed to a holding bore 50 of thecylinder block 49, aspool valve body 53 which is slidable inside a valve bore 52 of thevalve body 51 and switches flow path, and a proportional solenoidelectromagnetic actuator 54 operating thespool valve body 53. - The
valve body 51 includes asupply port 55 penetrated at the substantially central position of the peripheral wall therein which makes communication between a downstream end of thesupply passage 43 and the valve bore 52, and afirst port 56 and asecond port 57 penetrated therein at both sides of thesupply port 55 communicating other ends of the firstoil pressure passage 41 and the secondoil pressure passage 42 and the valve bore 52. At both ends of the peripheral wall athird port 58 and afourth port 59 are penetrated communicating bothdrain passages - The
spool valve body 53 includes a substantially cylindricalfirst valve portion 60 opening and closing thesupply port 55 at the center of a small diameter axis and substantially cylindrical second,third valve portions fourth port spool valve body 53 is urged in the right direction of the figure by aconical valve spring 63 disposed in compressive state between acap portion 53 b in one end of asupport axis 53 a at its front end and aspring sheet 51 a at an inner wall of the front end of the valve bore 52 so that at thefirst valve portion 60 thesupply port 55 and the secondoil pressure passage 42 are communicated. - The
electromagnetic actuator 54 is equipped with acore 64, a movingplunger 65, acoil 66, aconnector 67 and the like. At the front end of the moving plunger is fixed a drivingrod 65 a pressing acap portion 53 b of thespool valve body 53. - The
controller 48 detects present operating conditions (load, rotation) by a signal from arotation sensor 101 detecting an engine rotation speed and by a signal from anairflow meter 102 detecting an intake air amount, and detects rotation phase of thecamshaft 2 relative to the crankshaft, that is, relative position of the rotation direction of thecam sprocket 1 and thecamshaft 2 by signals from thecrank angle sensor 103 and thecam sensor 104. - The
controller 48 controls electricity to theelectromagnetic actuator 54 based on a duty control signal. - For example, when the
controller 48 outputs a control signal (off signal) with a duty ratio of 0% to theelectromagnetic actuator 54, thespool valve body 53 moves to the right direction at a maximum by spring force of thevalve spring 63 as shown in FIG. 4. By this thefirst valve portion 60 opens an openingend 55 a of thesupply port 55 for communicating with thesecond port 57 and at the same time thesecond valve portion 61 opens an opening end of thethird port 58 and thefourth valve portion 62 closes thefourth port 59. Therefore, operating oil pressurized from aoil pump 47 is sent to the retardoil pressure chamber 33 through thesupply port 55, avalve port 52, thesecond port 57 and the secondoil pressure passage 42 and operating oil of the advanceoil pressure chamber 32 is discharged to theoil pan 46 from thefirst drain passage 44 a through the firstoil pressure passage 41, thefirst port 56, a valve bore 52, and thethird port 58. - Accordingly as an inner pressure of the retard
oil pressure chamber 33 is high and that of the advanceoil pressure chamber 32 is low, therotation member 3 rotates in one direction at a maximum through thevanes 28 a to 28 d. With this, thecam sprocket 1 and thecamshaft 2 rotates one side relatively and change their phase, resulting in that an opening time of the intake valve is delayed and overlapping with the exhaust valve gets smaller. - On the other hand, when the
controller 48 outputs a control signal (ON signal) with a duty ratio of 1000% to theelectromagnetic actuator 54, thespool valve body 53 slides in the left direction at a maximum against spring force of thevalve spring 63 as shown in FIG. 6, thethird valve portion 61 closes thethird port 58, and at the same time thefourth valve portion 62 opens thefourth valve port 59 and thefirst valve port 60 communicates thesupply port 55 and thefirst port 56. Therefore, the operating oil is supplied to the advanceoil pressure chamber 32 through thesupply port 55, thefirst port 56, and the firstoil pressure passage 41. And the operating oil of the retardoil pressure chamber 33 is discharged to theoil pan 46 through the secondoil pressure passage 42, thesecond port 57, thefourth port 59, and thesecond drain passage 44 b. The oil pressure of the retardoil pressure chamber 33 gets lower. - Therefore, the
rotation member 3 rotates in the other direction at a maximum through thevanes 28 a to 28 d, by which thecam sprocket 1 and thecamshaft 2 rotate in the other side relatively and change their phase, resulting in that opening timing of an intake valve gets earlier (advanced) and overlapping with an exhaust valve gets larger. - The
controller 48 makes as base duty ratio the duty ratio at the position where thefirst valve portion 60 closes asupply port 55, thethird valve portion 61 closes thethird port 58, and thefourth valve portion 62 closes thefourth port 59 and on the other hand sets a feedback correction component duty by sliding mode control to make relative position of rotation (rotation phase) between thecam sprocket 1 and thecamshaft 2 detected based on signals from acrank angle sensor 103 and acam sensor 104 to be in accordance with a target value (target advance value) of the relative position of rotation (rotation phase) set corresponding to operating conditions, and makes a final duty ratio (VTCDTY) an additional result of the base duty ratio(BASEDTY) and the feedback correction component(UDTY) and outputs control signal of the duty ratio (VTCDTY) to theelectromagnetic actuator 54. - In addition, the base duty ratio (BASEDTY) is set at about a central value (for example, 50%) in the duty range within which the
supply port 55, thethird port 58 and thefourth port 59 all close and there is no supply and no discharge of oil in both of theoil pressure chambers - That is, in the case the relative position of rotation (rotation phase) is required to change into the direction of retard, the duty ratio decreases by feedback correction component (UDTY), operating oil pressurized from an
oil pump 47 is supplied to the retardoil pressure chamber 33, and operating oil of the advanceoil pressure chamber 32 is discharged to theoil pan 46. On the other hand, in the case the relative position of rotation (rotation phase) is required to change into the direction of advance, the duty ratio increases by the feedback correction component (UDTY), operating oil is supplied to the advanceoil pressure chamber 32, and operating oil of the retardoil pressure chamber 33 is discharged to theoil pan 46. In the case of holding the relative position of rotation at the then-state, with reduction of an absolute value of the feedback correction component (UDTY), the duty ratio is controlled to be back close to the base duty ratio and closing of thesupply port 55, thethird port 58, and the fourth port 59 (cease of supply and discharge of oil pressure) functions to hold the inner pressure of each of theoil pressure chambers - The feedback correction component (UDTY) will be calculated by sliding mode as follows. In the following the relative position of rotation (rotation phase) between a
cam sprocket 1 and acamshaft 2 to be detected will be explained as an actual angle of a valve timing control apparatus (VTC) and its target value will be explained as a target angle of VTC. - FIG. 7 is a block diagram showing a state of duty control of the
electromagnetic actuator 54 by theabove controller 48 to which the sliding mode control designed as mentioned above is applied (including a fail-safe control function according to the present invention described later). - A deviation PERR between a target angle VTCTRG and an actual angle VTCNOW is calculated. Then, a linear term UL (UL=UP+UNL) is calculated by adding a proportional component Up obtained by multiplying the deviation PERR by P component gain c to a velocity component UN obtained by multiplying a differential value of the actual angle VTCNOW by a velocity gain d.
- A switching function S is calculated by adding a value obtained by multiplying the deviation PERR by an inclination y to the differential value d (PERR)Idt of the deviation PERR to calculate a non-linear term UNL as a smoothing function −kS/(|S|+δ) using the switching function S.
- In the smoothing function, k is a non-linear term gain and b is a chattering prevention coefficient The above linear term UL moves the state of control system along the switching line (S=0) toward a target value. The non-linear term UNL directs the state of control system to the switching line to bind it on the switching line. Thereby, the state of control system is moved from an initial state to the switching line on the phase plane. When getting on the switching line, the state of control system reaches an original point (target value) while sliding boundedly on the switching line (see FIG. 8).
- A feedback correction component UDTY is calculated by adding the linear term UL and the non-linear term UNL. Then, the feedback correction component UDTY is added to a base duty ratio BASEDTY equivalent to a dead band central position, to output the added result as a final duty ratio VTCDTY.
- Thus, since a feedback correction amount is calculated by the sliding mode control and a feedback gain is switched to lead the state of control system on the preset switching line, a high robust control can be carried out with fewer influences caused by variations in the dead band of the switching line and disturbances by oil temperature and oil pressure. Consequently, the machining accuracy of parts can be lowered and also the machining cost can be reduced.
- Next, a fail-safe control during an abnormality in a feedback control system of valve timing by the above sliding mode control will be explained.
- A flowchart in FIG. 9 illustrates an embodiment of fail-safe control.
- In
step 1, an abnormality diagnosis result of valve timing control system is read to judge whether or not an abnormality occurs (NG). - When it is judged that there is no occurrence of abnormality, the routine goes to step2 wherein the above regular control at the time of normality is carried out. When it is diagnosed that an abnormality occurs, the routine goes to step 3.
- In
step 3, it is judged whether or not the cause of the occurring abnormality is a breakdown of cam target signal. The cam target signal is a signal generated by detecting projections or hollows formed on the rotation member of VTC in order to detect the rotation phase of the camshaft. If the system is normal, the cam target signal is generated one time within a predetermined crank angle period (see FIG. 10A). Accordingly, when the cam target signal is not generated within the predetermined crank angle period, it is diagnosed that there is a breakdown of signal line for outputting the cam target signal. Since the breakdown of cam target signal is a stationary failure, even if a feedback control to the target angle is carried out, there is no guarantee of a normal control. Therefore, the routine goes to step 4, wherein a duty ratio VTCDTY=0 and the fail-safe control to fix the rotation phase of the camshaft to the most retarded position is carried out. - When in
step 3, it is judged that there is no breakdown of cam target signal, the routine goes to step 5, wherein it is judged whether or not the abnormality is caused by a breakdown of solenoid for driving theelectromagnetic switching valve 45. The diagnosis of the solenoid breakdown is executed by a circuit for diagnosing a solenoid breakdown disposed in an ECU (engine control unit). Namely, a solenoid check signal is set to become a high level H when the duty ratio VTCDTY=0%, and to become a low level L when the duty ratio VTCDTY=100%, during the system is normal. On the other hand, the solenoid check signal is set to become the low level L when the duty ratio VTCDTY=0%, and to become the high level H when the duty ratio VTCDTY=100%, during the system is abnormal. When the number of times that the system falls in abnormal state becomes a predetermined value or above, it is judged that the solenoid has a breakdown failure. Since the breakdown of solenoid is also a stationary failure, even if the feedback control to the target value is carried out, there is no guarantee of a normal control. Therefore, the routine goes to step 4, wherein the duty ratio VTCDTY=0 and the fail-safe control to fix the rotation phase of the camshaft to the most retarded position is carried out. - On the other hand, in the case of no breakdown of cam target signal or no breakdown of solenoid, it is diagnosed that it is a temporal abnormality to be back to normal in a short time or it is a slight abnormality that the feedback control to the target angle is possible, although taking time and having a bad response.
- For example, when the cam target signal is generated two or more times within the predetermined crank angle period (see FIG. 10B), it is diagnosed that the cam target signal has an instantaneous breakdown and noises. Besides, there are a diagnosis of VTC offset, an offset diagnosis during idling, and a diagnosis of VTC driving abnormality. When a state that the deviation PEER exceeds an allowable value lasts for a set time or more, it is diagnosed that there is an abnormality caused by a bad response.
- When it is diagnosed as a slight abnormality as above, the routine goes to step6, wherein both the P component gain and the velocity gain d=0, and the linear term=0.
- In
step 7, the feedback control is carried out by calculating the control amount UDTY (feedback correction component). Since instep 6, the linear term UL=0, UDTY=UNL. So the feedback control is carried out only by the non-linear term UNL. - The control gain k of the non-linear term UNL is limited to a value that hunting does not occur when VTC reaches the target angle. Since a robust characteristic of sliding mode control depends on the non-linear term UNL, the control gain k is set to be as large as possible within the limited range.
- Since the non-linear term UNL is subjected to a chattering prevention (hunting prevention) process (adding the chattering prevention coefficient δ to a denominator), it becomes larger when the PEER is large and it becomes smaller when the PEER is small.
- As understood from the above description, in the fail-safe control mentioned above, when the feedback control is carried out by calculating the feedback correction amount UDTY only using the non-linear term UNL, a slight amount of oil enters into the oil chamber of VTC going slightly beyond the dead band of switching valve. From the opposite oil chamber (for example, the oil chamber of retard side, when oil flows into the oil chamber of advance side), oil flows out into a drain. Accordingly, VTC operates at a slower velocity compared with the normal control (see FIG. 11).
- In this way, the feedback control is carried out while reducing the control velocity. It brings a filter function against an instantaneous breakdown, noises, and fluctuations, and finally, a desired performance can be secured by converging to the target angle while restraining abrupt fluctuations.
- The whole contents of Japanese Patent Application No. 11-351142 are incorporated herein by the reference.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35114299A JP3616737B2 (en) | 1999-12-10 | 1999-12-10 | Fail-safe controller for sliding mode control system |
JP11-351142 | 1999-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010013324A1 true US20010013324A1 (en) | 2001-08-16 |
US6390044B2 US6390044B2 (en) | 2002-05-21 |
Family
ID=18415340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/731,820 Expired - Fee Related US6390044B2 (en) | 1999-12-10 | 2000-12-08 | Apparatus and method for fail-safe control of sliding mode control system |
Country Status (2)
Country | Link |
---|---|
US (1) | US6390044B2 (en) |
JP (1) | JP3616737B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030000489A1 (en) * | 2001-06-15 | 2003-01-02 | Yoshihiro Majima | Control apparatus for device having dead band, and variable valve system |
US6557540B1 (en) * | 2001-12-11 | 2003-05-06 | Visteon Global Technologies, Inc. | Method of calculating a valve timing command for an engine |
EP1340887A2 (en) * | 2002-02-27 | 2003-09-03 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for variable valve control for an internal combustion engine |
DE10218201C1 (en) * | 2002-04-24 | 2003-10-30 | Porsche Ag | Camshaft adjustment for variable valve control for IC engine has centring device cooperating with housing body of camshaft adjustment, intermediate housing and holder ring attached to drive wheel for camshaft |
US20050109298A1 (en) * | 2003-10-07 | 2005-05-26 | Gerald Bolz | Camshaft adjuster for an internal combustion engine having hydraulic medium guides |
US20050185358A1 (en) * | 2004-02-03 | 2005-08-25 | Hitachi, Ltd. | Driving control apparatus for motion mechanism and control method of driving control apparatus |
US20090292431A1 (en) * | 2008-05-21 | 2009-11-26 | Denso Corporation | Control apparatus for shift range changeover device |
EP2258935A1 (en) * | 2008-02-29 | 2010-12-08 | Honda Motor Co., Ltd. | Device for detecting deterioration in response of control subject |
CN104454061A (en) * | 2014-11-20 | 2015-03-25 | 绵阳富临精工机械股份有限公司 | Engine oil control valve with guiding structure |
US9957853B2 (en) * | 2016-08-30 | 2018-05-01 | Delphi Technologies Ip Limited | Camshaft phaser |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10049494A1 (en) * | 2000-10-06 | 2002-04-11 | Audi Ag | Adjustable valve control device for internal combustion engine has rotary body rotating synchronously with drive shaft and rotary body rotating synchronously with cam shaft and locked |
JP4115663B2 (en) * | 2000-11-27 | 2008-07-09 | 株式会社日立製作所 | Diagnostic device for variable valve timing device |
JP4409800B2 (en) * | 2001-11-28 | 2010-02-03 | 三菱電機株式会社 | Engine control device |
DE102004024221A1 (en) * | 2003-08-15 | 2005-03-10 | Ina Schaeffler Kg | Internal combustion engine, has pressurized medium adapter to connect axial channel in camshaft and axial channel in driven unit to each other, where adapter is arranged between end of camshaft and driven unit |
JP5115605B2 (en) * | 2010-08-24 | 2013-01-09 | 株式会社デンソー | Valve timing adjustment device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07127407A (en) * | 1993-11-05 | 1995-05-16 | Toyota Motor Corp | Valve timing control device for internal combustion engine |
JP3351090B2 (en) * | 1994-03-31 | 2002-11-25 | 株式会社デンソー | Valve timing control device for internal combustion engine |
JPH10141022A (en) | 1996-11-15 | 1998-05-26 | Toyota Motor Corp | Valve timing control device for internal combustion engine |
JP3546651B2 (en) * | 1997-07-30 | 2004-07-28 | トヨタ自動車株式会社 | Abnormality detection device for valve timing control device |
-
1999
- 1999-12-10 JP JP35114299A patent/JP3616737B2/en not_active Expired - Fee Related
-
2000
- 2000-12-08 US US09/731,820 patent/US6390044B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7004128B2 (en) * | 2001-06-15 | 2006-02-28 | Denso Corporation | Control apparatus for device having dead band, and variable valve system |
US20030000489A1 (en) * | 2001-06-15 | 2003-01-02 | Yoshihiro Majima | Control apparatus for device having dead band, and variable valve system |
US6557540B1 (en) * | 2001-12-11 | 2003-05-06 | Visteon Global Technologies, Inc. | Method of calculating a valve timing command for an engine |
US20030154966A1 (en) * | 2001-12-11 | 2003-08-21 | Visteon Global Technologies, Inc. | Method of calculating a valve timing command for an engine |
EP1340887A2 (en) * | 2002-02-27 | 2003-09-03 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for variable valve control for an internal combustion engine |
EP1340887A3 (en) * | 2002-02-27 | 2003-10-29 | Toyota Jidosha Kabushiki Kaisha | Apparatus and method for variable valve control for an internal combustion engine |
US6755165B2 (en) | 2002-02-27 | 2004-06-29 | Toyota Jidosha Kabushiki Kaisha | Valve control apparatus and method for internal combustion engine |
DE10218201C1 (en) * | 2002-04-24 | 2003-10-30 | Porsche Ag | Camshaft adjustment for variable valve control for IC engine has centring device cooperating with housing body of camshaft adjustment, intermediate housing and holder ring attached to drive wheel for camshaft |
US20050109298A1 (en) * | 2003-10-07 | 2005-05-26 | Gerald Bolz | Camshaft adjuster for an internal combustion engine having hydraulic medium guides |
US7004130B2 (en) * | 2003-10-07 | 2006-02-28 | Daimlerchrysler Ag | Camshaft adjuster for an internal combustion engine having hydraulic medium guides |
US20050185358A1 (en) * | 2004-02-03 | 2005-08-25 | Hitachi, Ltd. | Driving control apparatus for motion mechanism and control method of driving control apparatus |
US7623328B2 (en) | 2004-02-03 | 2009-11-24 | Hitachi, Ltd. | Driving control apparatus for motion mechanism and control method of driving control apparatus |
EP2258935A1 (en) * | 2008-02-29 | 2010-12-08 | Honda Motor Co., Ltd. | Device for detecting deterioration in response of control subject |
EP2258935A4 (en) * | 2008-02-29 | 2011-05-18 | Honda Motor Co Ltd | Device for detecting deterioration in response of control subject |
US20090292431A1 (en) * | 2008-05-21 | 2009-11-26 | Denso Corporation | Control apparatus for shift range changeover device |
US8311716B2 (en) * | 2008-05-21 | 2012-11-13 | Denso Corporation | Control apparatus for shift range changeover device |
CN104454061A (en) * | 2014-11-20 | 2015-03-25 | 绵阳富临精工机械股份有限公司 | Engine oil control valve with guiding structure |
US9957853B2 (en) * | 2016-08-30 | 2018-05-01 | Delphi Technologies Ip Limited | Camshaft phaser |
Also Published As
Publication number | Publication date |
---|---|
JP3616737B2 (en) | 2005-02-02 |
US6390044B2 (en) | 2002-05-21 |
JP2001164950A (en) | 2001-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6390044B2 (en) | Apparatus and method for fail-safe control of sliding mode control system | |
US5611304A (en) | Valve timing control mechanism for internal combustion engine | |
KR100365711B1 (en) | Combustion control apparatus for internal combustion engine | |
US7845321B2 (en) | Controller for vane-type variable timing adjusting mechanism | |
US6477996B2 (en) | Variable valve timing system | |
US6431131B1 (en) | Apparatus and a method for sliding mode control | |
US20020038640A1 (en) | Variable valve timing system | |
US7017551B2 (en) | Intake control apparatus for internal combustion engine and method thereof | |
US6945224B2 (en) | Intake air amount control apparatus for vehicle engine and method thereof | |
US6920851B2 (en) | Variable valve control apparatus for internal combustion engine and method thereof | |
US6574544B1 (en) | Apparatus and method of valve timing control for internal combustion engine | |
US6725175B1 (en) | Apparatus and method for diagnosing sliding mode control system | |
US6338323B1 (en) | Vane type variable valve timing control apparatus and control method | |
US6655361B2 (en) | Fuel injection control apparatus of engine | |
US6505585B1 (en) | Apparatus and method for controlling valve timing of an engine | |
US6332438B1 (en) | Vane-type variable valve timing control apparatus and control method | |
JP3835963B2 (en) | Sliding mode controller | |
JP2010223065A (en) | Control device of electric actuator mechanism for vehicle | |
JP3892181B2 (en) | Vane valve timing control device for internal combustion engine | |
US20020062798A1 (en) | Apparatus and method for diagnosing variable valve timing apparatus | |
US7263957B2 (en) | Evaluation method of diagnostic function for variable valve mechanism and evaluation apparatus for variable valve mechanism | |
JP5695128B2 (en) | Control device for electric actuator mechanism for vehicle | |
US6863037B2 (en) | Control unit for variable valve timing mechanism | |
US20060100802A1 (en) | Method for evaluating diagnosis function of a variable valve mechanism and apparatus for diagnosing a variable valve mechanism | |
JP3967555B2 (en) | Engine ignition control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNISIA JECS CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSHIZAWA, HIDEKAZU;MOTEKI, NORIO;REEL/FRAME:011659/0879 Effective date: 20010126 |
|
AS | Assignment |
Owner name: HITACHI, LTD., JAPAN Free format text: MERGER;ASSIGNOR:HITACHI UNISIA AUTOMOTIVE, LTD.;REEL/FRAME:016263/0073 Effective date: 20040927 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060521 |