[go: up one dir, main page]

US20010010314A1 - Portable thermos receptacles - Google Patents

Portable thermos receptacles Download PDF

Info

Publication number
US20010010314A1
US20010010314A1 US09/819,766 US81976601A US2001010314A1 US 20010010314 A1 US20010010314 A1 US 20010010314A1 US 81976601 A US81976601 A US 81976601A US 2001010314 A1 US2001010314 A1 US 2001010314A1
Authority
US
United States
Prior art keywords
receptacle
outer shell
thermos
gravity
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/819,766
Inventor
Toru Goto
Shoji Toida
Yasuhiro Kowa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10058019A external-priority patent/JPH11253330A/en
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to US09/819,766 priority Critical patent/US20010010314A1/en
Publication of US20010010314A1 publication Critical patent/US20010010314A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J41/00Thermally-insulated vessels, e.g. flasks, jugs, jars
    • A47J41/0083Accessories

Definitions

  • the present invention relates to a portable thermos receptacle.
  • thermos receptacles each have a receptacle main body provided with a heat-insulating section defined between an inner shell and an outer shell, and a cover removably applied to an opening of the receptacle main body.
  • Such thermos receptacles are roughly divided into two types, i.e. those with handles and those without handles.
  • many of large-capacity thermos receptacles, which have large barrel diameters are of the type with handles considering handleability, for example, when the receptacle is carried and when the content in the receptacle is poured out.
  • thermos receptacles having relatively small capacities are frequently of the type with no handles for convenience' sake, because they can be formed to have diameters such that the receptacles can be gripped with hands by the barrels.
  • relatively small-capacity thermos receptacles in many cases have smooth barrel surfaces with no protrusion or recess due to difficulty in molding and the like, and also they are formed to have a cylindrical shape which reduces from the bottom toward the top or from the middle part of the barrel toward the top or bottom.
  • thermos receptacles involve problems in that the receptacle is likely to slip when it is held with the hand by the barrel to pour the content of the receptacle out of it; and that, if the capacity of the receptacle is to be increased slightly, the height of the receptacle is increased rather than the barrel diameter, so that the center of gravity shifts greatly between the position when the receptacle is full and the position when the receptacle is empty to make it difficult to handle the receptacle unless the barrel of the receptacle is gripped at an appropriate position depending on the center of gravity in each occasion.
  • thermos receptacle which hardly slips even if it is held with the hand by the barrel and which can be handled easily even if the center of gravity shifts greatly.
  • the portable thermos receptacle according to the present invention has a receptacle main body containing an inner shell, an outer shell and a heat-insulating section defined between the inner shell and the outer shell; and a cover removably applied to an opening of the receptacle main body; the outer shell having non-slip means over a zone covering both a center of gravity when the thermos receptacle is full and a center of gravity when the thermos receptacle is empty.
  • thermos receptacle when the thermos receptacle is carried or when the content of the receptacle is poured out or drunk can be clarified by the presence of the non-slip means, and the thermos receptacle can be gripped always at the center of gravity, facilitating handling of the receptacle.
  • the non-slip means is suitably used in a cylindrical thermos receptacle which reduces gradually toward the top or bottom. Further, the non-slip means is a recess, ridge or corrugated portion which is formed on the outer shell or a synthetic resin non-slip member attached to the outer shell. This non-slip member has ribs or protrusions on the surface.
  • FIG. 1 is a partial cross-sectional view of the portable thermos receptacle according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the upper half of the portable thermos receptacle according to a second embodiment of the present invention
  • FIG. 3 is a partial cross-sectional view of the portable thermos receptacle according to a third embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a fourth embodiment of the present invention.
  • FIG. 5 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a fifth embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a sixth embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a seventh embodiment of the present invention.
  • FIG. 1 shows the first embodiment of the present invention.
  • a thermos receptacle 1 is provided with a receptacle main body 2 having a heat-insulating structure and a cover 3 serving also as a cup removably applied to an opening of the receptacle main body 2 .
  • the receptacle main body 2 is formed by joining a metallic or resin closed-bottom inner shell 4 and a metallic or resin closed-bottom outer shell 5 at their upper end openings, and a heat-insulating section 6 having a vacuum heat-insulating structure is defined between the shell 4 and the shell 5 . Further, a bottom part 7 is attached to the bottom of the outer shell 5 .
  • a non-slip means 8 is formed on the outer circumference of the outer shell 5 over the zone covering both the center of gravity G 1 when the thermos receptacle 1 is full and the center of gravity G 2 when the thermos receptacle 1 is empty.
  • the non-slip means 8 in this embodiment is an annular recess 81 formed by allowing the zone covering the centers of gravity G 1 and G 2 to recede from the upper and lower portions.
  • FIG. 2 shows a second embodiment of the present invention.
  • the thermos receptacle 1 in this embodiment has as the non-slip part 8 an annular ridge 82 , in place of the annular recess 81 , formed by expanding the zone covering the centers of gravity G 1 and G 2 compared with the upper and lower portions.
  • FIG. 3 shows a third embodiment of the present invention.
  • the cover 3 of the thermos receptacle 1 in this embodiment has on its top plate 3 a a closable drinking spout 11 protruding therefrom and a negative pressure relief valve 12 .
  • the drinking spout 11 contains a cylindrical drinking spout main body 13 having a channel 13 a and rising from one side of the top plate 3 a; a drinking spout portion 14 which is fitted on the drinking spout main body 13 to be shiftable along it in the axial direction so as to open and close the channel 13 a; and a drinking spout cap 15 which can be removably applied to the drinking spout portion 14 .
  • the drinking spout main body 13 has a columnar guide 13 b formed at the center of the upper end and also has a stopping rim 13 c protruding along the periphery and to prevent the drinking spout portion 14 from slipping off the drinking spout main body 13 .
  • the drinking spout portion 14 has, in its cylindrical body 14 a, a through hole 14 c, formed at the center of its top plate 14 b, to which the guide 13 b is inserted; an annular ridge 14 d formed on the inner circumference of the cylindrical body 14 a at the middle part; and an engaging portion 14 e, with which the drinking spout cap 15 is engaged, formed on the outer upper circumference of the cylindrical body 14 a.
  • the drinking spout cap 15 has a cap portion 15 a to be applied to the drinking spout portion 14 , a retaining ring 15 b to be attached to the proximal portion of the drinking spout main body 13 and a retaining belt 15 c which connects the cap portion 15 a with the retaining ring 15 b and can be bent into a U shape.
  • the cap portion 15 a has an engaging portion 15 d to be engaged with the engaging portion 14 e of the drinking spout portion 14 and a flange 15 e, which catches fingers when the cap portion 15 a is pulled off, formed along the inner upper circumference and along the outer upper circumference, respectively.
  • a slit-like air vent 16 for preventing reduction in the internal pressure of the receptacle main body 2 from occurring, and the negative pressure relief valve 12 is located in the air vent 16 .
  • the negative pressure relief valve 12 has a valve stem 12 a inserted to the air vent 16 , a valve element 12 b located on the lower end of the valve stem 12 a and a stopping end portion 12 c formed on the upper end of the valve stem 12 a.
  • the valve element 12 b attached to the inner side of the top plate 3 a flexes when the internal pressure of the receptacle main body 2 is reduced to open the air vent 16 , and closes the air vent 16 when the internal pressure of the receptacle main body 2 is returned to atmospheric pressure or when the pressure of the water in the receptacle main body 2 is exerted to the valve element 12 b.
  • An annular corrugated portion 83 consisting of a plurality of ribs is formed as the non-slip means 8 on the outer circumference of the outer shell 5 over the zone covering the centers of gravity G 1 and G 2 .
  • the corrugated portion 83 formed as the non-slip means 8 may be replaced with a plurality of protrusions.
  • thermos receptacle 1 having the constitution as described above, in the state where the drinking spout cap 15 is applied to the drinking spout portion 14 of the drinking spout 11 as shown in FIG. 3, the through hole 12 c and the channel 11 a are closed, and also the air vent 16 is closed by the valve element 12 b.
  • thermos receptacle 1 When one holds the thermos receptacle 1 by the non-slip means 8 and pulls up the flange 15 e with his or her hand or mouth, the drinking spout portion 14 is pulled up together with the drinking spout cap 15 to ascend until the annular ridge 14 d is engaged with the stopping rim 13 c. Then, the engaging portion 15 d rides over the engaging portion 14 e, and thus the drinking spout cap 15 is released from the drinking spout portion 14 to open the through hole 14 c and the channel 13 a.
  • thermos receptacle 1 tilted such that the drinking spout 11 may locate on-the lower side and sucks the water with his or her mouth applied to the drinking spout portion 14 , the internal pressure of the thermos receptacle 1 is reduced, and the valve element 12 b of the negative pressure relief valve 12 flexes to open the air vent 16 and allow the outside air to flow through it into the thermos receptacle 1 .
  • the internal pressure of the thermos receptacle 1 is prevented from being reduced, and the water in the thermos receptacle 1 can be drunk through the through hole 14 c via the channel 13 a.
  • thermos receptacle 1 since the procedures of opening and closing the drinking spout 11 , tilting the thermos receptacle 1 , etc. are carried out with the receptacle 1 being held with the hand by the non-slip means 8 formed to cover both the center of gravity G 1 when the receptacle 1 is full and the center of gravity G 2 when the receptacle 1 is empty, the thermos receptacle 1 can be gripped securely to facilitate the procedures of tilting etc.
  • FIG. 4 shows a fourth embodiment of the present invention which is carried out in a thermos receptacle 1 having the same drinking spout structure as in the third embodiment.
  • the outer shell 5 is provided on the outer circumference with a cylindrical non-slip band 84 made of a synthetic resin, as the non-slip means 8 , over the zone covering both the center of gravity G 1 when the receptacle 1 is full and the center of gravity G 2 when the receptacle 1 is empty.
  • This non-slip member 84 is preferably made of an elastic material such as elastomer resin materials and silicone resin materials and can be attached to the outer shell 5 utilizing elasticity of such materials. Otherwise, a leather non-slip member may be bonded to such a zone.
  • FIG. 5 shows a fifth embodiment of the present invention, in which the present invention is carried out in a thermos receptacle 1 having the same cover structure as in the first embodiment.
  • the thermos receptacle 1 has on the outer circumference of the outer shell a pair of annular ridges 5 a and 5 b molded integrally with the outer shell 5 at the upper and lower extremities of the zone covering both the center of gravity G 1 when the receptacle 1 is full and the center of gravity G 2 when the receptacle 1 is empty, and a non-slip member 85 having on the surface a plurality of annular ribs 85 a is interposed as the nonslip means 8 between these annular ridges 5 a and 5 b.
  • FIG. 6 shows a sixth embodiment of the present invention.
  • the present invention is carried out in a thermos receptacle 1 having a cover 3 of the same drinking spout structure as in the third embodiment.
  • An annular recess 5 c is formed on the outer circumference of the outer shell 5 integrally over the zone covering both the center of gravity G 1 when the receptacle 1 is full and the center of gravity G 2 when the receptacle 2 is empty, and the same non-slip member 85 as in the fifth embodiment is fitted as the non-slip means 8 in the recess 5 c.
  • FIG. 7 shows a seventh embodiment of the present invention, in which the present invention is carried out in a thermos receptacle 1 having a cover 3 of the same drinking spout structure as in the third embodiment, and a non-slip member 86 having on the surface a plurality of protrusions 86 a is interposed as the non-slip means 8 between a pair of annular ridges 5 a and 5 b formed in the same as in the fifth embodiment.
  • the gripping position can be clarified when the thermos receptacle is carried or when the content of the receptacle is poured out or drunk, and the thermos receptacle can be gripped at the center of gravity, facilitating handling of the receptacle.
  • the ribs or protrusions formed as the non-slip means exert higher effect of preventing slipping of the thermos receptacle.
  • thermos receptacles 1 in the respective embodiments are formed to have cylindrical shapes which reduce gradually from the middle of the barrel toward the top, they may be of cylindrical shapes which reduce gradually from the bottom to the top or from the middle part of the barrel toward the bottom.
  • the receptacle main bodies 2 explained in the respective embodiments were of the vacuum heat-insulating structure, they may be of other heat-insulating structures, for example, a heat-insulating structure sealed with a low-thermal conductivity gas and a heat-insulating structure employing a heat insulating material such as urethane foam and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Abstract

The portable thermos receptacle has a receptacle main body containing an inner shell, an outer shell and a heat-insulating section defined between the inner shell and the outer shell, and a cover removably applied to an opening of the receptacle main body. The thermos receptacle has on the outer shell non-slip means over a zone covering both a center of gravity when the receptacle is full and a center of gravity when the receptacle is empty. The portable thermos receptacle has a cylindrical shape which reduces toward the top or bottom. The non-slip means is a recess, ridge or corrugated portion which is formed integrally with the outer shell or a synthetic resin non-slip member attached to the outer shell.

Description

    TECHNICAL FIELD
  • The present invention relates to a portable thermos receptacle. [0001]
  • BACKGROUND ART
  • Portable thermos receptacles each have a receptacle main body provided with a heat-insulating section defined between an inner shell and an outer shell, and a cover removably applied to an opening of the receptacle main body. Such thermos receptacles are roughly divided into two types, i.e. those with handles and those without handles. Generally, many of large-capacity thermos receptacles, which have large barrel diameters, are of the type with handles considering handleability, for example, when the receptacle is carried and when the content in the receptacle is poured out. [0002]
  • Meanwhile, thermos receptacles having relatively small capacities are frequently of the type with no handles for convenience' sake, because they can be formed to have diameters such that the receptacles can be gripped with hands by the barrels. Further, such relatively small-capacity thermos receptacles in many cases have smooth barrel surfaces with no protrusion or recess due to difficulty in molding and the like, and also they are formed to have a cylindrical shape which reduces from the bottom toward the top or from the middle part of the barrel toward the top or bottom. [0003]
  • Accordingly, these thermos receptacles involve problems in that the receptacle is likely to slip when it is held with the hand by the barrel to pour the content of the receptacle out of it; and that, if the capacity of the receptacle is to be increased slightly, the height of the receptacle is increased rather than the barrel diameter, so that the center of gravity shifts greatly between the position when the receptacle is full and the position when the receptacle is empty to make it difficult to handle the receptacle unless the barrel of the receptacle is gripped at an appropriate position depending on the center of gravity in each occasion. [0004]
  • SUMMARY OF THE INVENTION
  • It is an objective of the present invention to provide a portable thermos receptacle which hardly slips even if it is held with the hand by the barrel and which can be handled easily even if the center of gravity shifts greatly. [0005]
  • The portable thermos receptacle according to the present invention has a receptacle main body containing an inner shell, an outer shell and a heat-insulating section defined between the inner shell and the outer shell; and a cover removably applied to an opening of the receptacle main body; the outer shell having non-slip means over a zone covering both a center of gravity when the thermos receptacle is full and a center of gravity when the thermos receptacle is empty. [0006]
  • Accordingly, the gripping position when the thermos receptacle is carried or when the content of the receptacle is poured out or drunk can be clarified by the presence of the non-slip means, and the thermos receptacle can be gripped always at the center of gravity, facilitating handling of the receptacle. [0007]
  • The non-slip means is suitably used in a cylindrical thermos receptacle which reduces gradually toward the top or bottom. Further, the non-slip means is a recess, ridge or corrugated portion which is formed on the outer shell or a synthetic resin non-slip member attached to the outer shell. This non-slip member has ribs or protrusions on the surface. [0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial cross-sectional view of the portable thermos receptacle according to a first embodiment of the present invention; [0009]
  • FIG. 2 is a cross-sectional view showing the upper half of the portable thermos receptacle according to a second embodiment of the present invention; [0010]
  • FIG. 3 is a partial cross-sectional view of the portable thermos receptacle according to a third embodiment of the present invention; [0011]
  • FIG. 4 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a fourth embodiment of the present invention; [0012]
  • FIG. 5 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a fifth embodiment of the present invention; [0013]
  • FIG. 6 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a sixth embodiment of the present invention; and [0014]
  • FIG. 7 is a partial cross-sectional view showing the upper half of the portable thermos receptacle according to a seventh embodiment of the present invention. [0015]
  • EMBODIMENTS OF THE INVENTION
  • The embodiments of the present invention will be described more specifically referring to the drawings respectively. It should be noted that like or same parts in these embodiments are affixed with the same reference numbers as used in the first embodiment, and description of them will be omitted or simplified. [0016]
  • FIG. 1 shows the first embodiment of the present invention. A thermos receptacle [0017] 1 is provided with a receptacle main body 2 having a heat-insulating structure and a cover 3 serving also as a cup removably applied to an opening of the receptacle main body 2. The receptacle main body 2 is formed by joining a metallic or resin closed-bottom inner shell 4 and a metallic or resin closed-bottom outer shell 5 at their upper end openings, and a heat-insulating section 6 having a vacuum heat-insulating structure is defined between the shell 4 and the shell 5. Further, a bottom part 7 is attached to the bottom of the outer shell 5.
  • A non-slip means [0018] 8 is formed on the outer circumference of the outer shell 5 over the zone covering both the center of gravity G1 when the thermos receptacle 1 is full and the center of gravity G2 when the thermos receptacle 1 is empty. The non-slip means 8 in this embodiment is an annular recess 81 formed by allowing the zone covering the centers of gravity G1 and G2 to recede from the upper and lower portions.
  • FIG. 2 shows a second embodiment of the present invention. The thermos receptacle [0019] 1 in this embodiment has as the non-slip part 8 an annular ridge 82, in place of the annular recess 81, formed by expanding the zone covering the centers of gravity G1 and G2 compared with the upper and lower portions.
  • FIG. 3 shows a third embodiment of the present invention. The [0020] cover 3 of the thermos receptacle 1 in this embodiment has on its top plate 3 a a closable drinking spout 11 protruding therefrom and a negative pressure relief valve 12. The drinking spout 11 contains a cylindrical drinking spout main body 13 having a channel 13 a and rising from one side of the top plate 3 a; a drinking spout portion 14 which is fitted on the drinking spout main body 13 to be shiftable along it in the axial direction so as to open and close the channel 13 a; and a drinking spout cap 15 which can be removably applied to the drinking spout portion 14.
  • The drinking spout [0021] main body 13 has a columnar guide 13 b formed at the center of the upper end and also has a stopping rim 13 c protruding along the periphery and to prevent the drinking spout portion 14 from slipping off the drinking spout main body 13. The drinking spout portion 14 has, in its cylindrical body 14 a, a through hole 14 c, formed at the center of its top plate 14 b, to which the guide 13 b is inserted; an annular ridge 14 d formed on the inner circumference of the cylindrical body 14 a at the middle part; and an engaging portion 14 e, with which the drinking spout cap 15 is engaged, formed on the outer upper circumference of the cylindrical body 14 a. The drinking spout cap 15 has a cap portion 15 a to be applied to the drinking spout portion 14, a retaining ring 15 b to be attached to the proximal portion of the drinking spout main body 13 and a retaining belt 15 c which connects the cap portion 15 a with the retaining ring 15 b and can be bent into a U shape. The cap portion 15 a has an engaging portion 15 d to be engaged with the engaging portion 14 e of the drinking spout portion 14 and a flange 15 e, which catches fingers when the cap portion 15 a is pulled off, formed along the inner upper circumference and along the outer upper circumference, respectively.
  • On the other side of the top plate [0022] 3 a of the cover 3, is formed a slit-like air vent 16 for preventing reduction in the internal pressure of the receptacle main body 2 from occurring, and the negative pressure relief valve 12 is located in the air vent 16. The negative pressure relief valve 12 has a valve stem 12 a inserted to the air vent 16, a valve element 12 b located on the lower end of the valve stem 12 a and a stopping end portion 12 c formed on the upper end of the valve stem 12 a. The valve element 12 b attached to the inner side of the top plate 3 a flexes when the internal pressure of the receptacle main body 2 is reduced to open the air vent 16, and closes the air vent 16 when the internal pressure of the receptacle main body 2 is returned to atmospheric pressure or when the pressure of the water in the receptacle main body 2 is exerted to the valve element 12 b.
  • An annular [0023] corrugated portion 83 consisting of a plurality of ribs is formed as the non-slip means 8 on the outer circumference of the outer shell 5 over the zone covering the centers of gravity G1 and G2. The corrugated portion 83 formed as the non-slip means 8 may be replaced with a plurality of protrusions.
  • In the thermos receptacle [0024] 1 having the constitution as described above, in the state where the drinking spout cap 15 is applied to the drinking spout portion 14 of the drinking spout 11 as shown in FIG. 3, the through hole 12 c and the channel 11 a are closed, and also the air vent 16 is closed by the valve element 12 b.
  • When one holds the thermos receptacle [0025] 1 by the non-slip means 8 and pulls up the flange 15 e with his or her hand or mouth, the drinking spout portion 14 is pulled up together with the drinking spout cap 15 to ascend until the annular ridge 14 d is engaged with the stopping rim 13 c. Then, the engaging portion 15 d rides over the engaging portion 14 e, and thus the drinking spout cap 15 is released from the drinking spout portion 14 to open the through hole 14 c and the channel 13 a.
  • If one holds the thermos receptacle [0026] 1 tilted such that the drinking spout 11 may locate on-the lower side and sucks the water with his or her mouth applied to the drinking spout portion 14, the internal pressure of the thermos receptacle 1 is reduced, and the valve element 12 b of the negative pressure relief valve 12 flexes to open the air vent 16 and allow the outside air to flow through it into the thermos receptacle 1. Thus, the internal pressure of the thermos receptacle 1 is prevented from being reduced, and the water in the thermos receptacle 1 can be drunk through the through hole 14 c via the channel 13 a.
  • In this embodiment, since the procedures of opening and closing the [0027] drinking spout 11, tilting the thermos receptacle 1, etc. are carried out with the receptacle 1 being held with the hand by the non-slip means 8 formed to cover both the center of gravity G1 when the receptacle 1 is full and the center of gravity G2 when the receptacle 1 is empty, the thermos receptacle 1 can be gripped securely to facilitate the procedures of tilting etc.
  • FIG. 4 shows a fourth embodiment of the present invention which is carried out in a thermos receptacle [0028] 1 having the same drinking spout structure as in the third embodiment. The outer shell 5 is provided on the outer circumference with a cylindrical non-slip band 84 made of a synthetic resin, as the non-slip means 8, over the zone covering both the center of gravity G1 when the receptacle 1 is full and the center of gravity G2 when the receptacle 1 is empty. This non-slip member 84 is preferably made of an elastic material such as elastomer resin materials and silicone resin materials and can be attached to the outer shell 5 utilizing elasticity of such materials. Otherwise, a leather non-slip member may be bonded to such a zone.
  • FIG. 5 shows a fifth embodiment of the present invention, in which the present invention is carried out in a thermos receptacle [0029] 1 having the same cover structure as in the first embodiment. The thermos receptacle 1 has on the outer circumference of the outer shell a pair of annular ridges 5 a and 5 b molded integrally with the outer shell 5 at the upper and lower extremities of the zone covering both the center of gravity G1 when the receptacle 1 is full and the center of gravity G2 when the receptacle 1 is empty, and a non-slip member 85 having on the surface a plurality of annular ribs 85 a is interposed as the nonslip means 8 between these annular ridges 5 a and 5 b.
  • FIG. 6 shows a sixth embodiment of the present invention. In this embodiment, the present invention is carried out in a thermos receptacle [0030] 1 having a cover 3 of the same drinking spout structure as in the third embodiment. An annular recess 5 c is formed on the outer circumference of the outer shell 5 integrally over the zone covering both the center of gravity G1 when the receptacle 1 is full and the center of gravity G2 when the receptacle 2 is empty, and the same non-slip member 85 as in the fifth embodiment is fitted as the non-slip means 8 in the recess 5 c.
  • FIG. 7 shows a seventh embodiment of the present invention, in which the present invention is carried out in a thermos receptacle [0031] 1 having a cover 3 of the same drinking spout structure as in the third embodiment, and a non-slip member 86 having on the surface a plurality of protrusions 86 a is interposed as the non-slip means 8 between a pair of annular ridges 5 a and 5 b formed in the same as in the fifth embodiment.
  • According to the above constitutions, the gripping position can be clarified when the thermos receptacle is carried or when the content of the receptacle is poured out or drunk, and the thermos receptacle can be gripped at the center of gravity, facilitating handling of the receptacle. Further, the ribs or protrusions formed as the non-slip means exert higher effect of preventing slipping of the thermos receptacle. [0032]
  • It should be noted that it is of course possible to apply each of the non-slip means employed in the above embodiments to the other embodiments. Further, while the thermos receptacles [0033] 1 in the respective embodiments are formed to have cylindrical shapes which reduce gradually from the middle of the barrel toward the top, they may be of cylindrical shapes which reduce gradually from the bottom to the top or from the middle part of the barrel toward the bottom. In addition, while the receptacle main bodies 2 explained in the respective embodiments were of the vacuum heat-insulating structure, they may be of other heat-insulating structures, for example, a heat-insulating structure sealed with a low-thermal conductivity gas and a heat-insulating structure employing a heat insulating material such as urethane foam and the like.

Claims (8)

1. A portable thermos receptacle comprising:
a receptacle main body containing an inner shell, an outer shell and a heat-insulating section defined between the inner shell and the outer shell; and
a cover removably applied to an opening of the receptacle main body;
the outer shell having non-slip means over a zone covering both a center of gravity when the thermos receptacle is full and a center of gravity when the thermos receptacle is empty.
2. The portable thermos receptacle according to
claim 1
having a cylindrical shape which reduces gradually toward the top or bottom.
3. The portable thermos receptacle according to
claim 1
, wherein the non-slip means is a recess formed integrally with the outer shell.
4. The portable thermos receptacle according to
claim 1
, wherein the non-slip means is a ridge formed integrally with the outer shell.
5. The portable thermos receptacle according to
claim 1
, wherein the non-slip means is a corrugated portion formed integrally with the outer shell.
6. The portable thermos receptacle according to
claim 1
, wherein the non-slip means is a synthetic resin non-slip member attached to the outer shell.
7. The portable thermos receptacle according to
claim 1
, wherein the non-slip member has ribs formed on the surface.
8. The portable thermos receptacle according to
claim 1
, wherein the non-slip member has protrusions formed on the surface.
US09/819,766 1998-03-10 2001-03-29 Portable thermos receptacles Abandoned US20010010314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/819,766 US20010010314A1 (en) 1998-03-10 2001-03-29 Portable thermos receptacles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10058019A JPH11253330A (en) 1998-03-10 1998-03-10 Metal insulated container
JP10-58019 1998-03-10
US09/264,568 US6119888A (en) 1998-03-10 1999-03-08 Portable insulating receptacles
US09/567,056 US6401964B1 (en) 1998-03-10 2000-05-08 Portable insulating receptacles
US09/819,766 US20010010314A1 (en) 1998-03-10 2001-03-29 Portable thermos receptacles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/567,056 Division US6401964B1 (en) 1998-03-10 2000-05-08 Portable insulating receptacles

Publications (1)

Publication Number Publication Date
US20010010314A1 true US20010010314A1 (en) 2001-08-02

Family

ID=26399108

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/819,817 Abandoned US20010010313A1 (en) 1998-03-10 2001-03-29 Portable thermos receptacles
US09/819,766 Abandoned US20010010314A1 (en) 1998-03-10 2001-03-29 Portable thermos receptacles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/819,817 Abandoned US20010010313A1 (en) 1998-03-10 2001-03-29 Portable thermos receptacles

Country Status (1)

Country Link
US (2) US20010010313A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272410A1 (en) * 2009-01-30 2011-11-10 Shiseido Company, Ltd. Double container, inner container, and outer container
US8474648B1 (en) * 2005-01-03 2013-07-02 Bic Corporation Thermos and cup combination
USD757279S1 (en) * 2012-07-23 2016-05-24 Fb Asset Management Gmbh & Co. Kg Self-heating feeding bottle
US10479543B1 (en) * 2018-05-09 2019-11-19 Robert William Bowling Container for storing, dispensing, and serving liquids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD686882S1 (en) 2012-07-25 2013-07-30 Wilton Industries, Inc. Insulated beverage container
USD874217S1 (en) * 2017-11-03 2020-02-04 Igloo Products Corp. Beverage container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474648B1 (en) * 2005-01-03 2013-07-02 Bic Corporation Thermos and cup combination
US20110272410A1 (en) * 2009-01-30 2011-11-10 Shiseido Company, Ltd. Double container, inner container, and outer container
US8998020B2 (en) * 2009-01-30 2015-04-07 Shiseido Company, Ltd. Double container, inner container, and outer container
USD757279S1 (en) * 2012-07-23 2016-05-24 Fb Asset Management Gmbh & Co. Kg Self-heating feeding bottle
US10479543B1 (en) * 2018-05-09 2019-11-19 Robert William Bowling Container for storing, dispensing, and serving liquids

Also Published As

Publication number Publication date
US20010010313A1 (en) 2001-08-02

Similar Documents

Publication Publication Date Title
US6401964B1 (en) Portable insulating receptacles
US4190173A (en) Beverage container
US7156253B2 (en) Single-piece paper cup sip adaptor
US5477979A (en) Beverage mug with removable closure
CN107028335B (en) Beverage container and method of pouring liquid from a beverage container
US8757425B2 (en) Beverage container
CN109562871B (en) container lid
US5680951A (en) Flow control cover for a cup
EP2194003B1 (en) Recloseable lid with closure plug
US5765716A (en) Cup protector
US8474648B1 (en) Thermos and cup combination
US20040031714A1 (en) Drinking cup and lid
EP3822191B1 (en) Container closure with venting seal
US20070295738A1 (en) Double rimmed beverage cup and holder
US20060151511A1 (en) Suction cup lid
AU2002357706A1 (en) Recloseable lid with closure plug
CA2493814A1 (en) No-spill drinking products
US5669538A (en) Bottom closure with automobile drink-holder adaptor for a sleeve-type beverage insulator
KR102696855B1 (en) Bottle assembly
US20040124196A1 (en) Paper cup sip adaptor
US20010010314A1 (en) Portable thermos receptacles
US8141740B2 (en) Portable container
US20220234811A1 (en) Container system including lid with improved neck insulation
US20060255051A1 (en) Travel mug, hand-held fluid container, and beverage cup
JPH051435U (en) Small bottle

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION